WorldWideScience

Sample records for ccr5 promote hepatic

  1. The frequency of CCR5 promoter polymorphisms and CCR5 32 mutation in Iranian populations

    Directory of Open Access Journals (Sweden)

    Mohammad Zare-Bidaki

    2015-04-01

    Full Text Available Evidence showed that chemokines serve as pro-migratory factors for immune cells. CCL3, CCL4 and CCL5, as the main CC  chemokines subfamily members, activate immune cells through binding to CC chemokine receptor 5 or CCR5. Macrophages, NK cells and T lymphocytes express CCR5 and thus, affected CCR5 expression or functions could be associated with altered immune responses. Deletion of 32 base pairs (D 32 in the exon 1 of the CCR5 gene, which is known as CCR5 D 32 mutation causes down regulation and malfunction of the molecule. Furthermore, it has been evidenced that three polymorphisms in the promoter region of CCR5 modulate its expression. Altered CCR5 expression in microbial infection and immune related diseases have been reported by several researchers but the role of CCR5 promoter polymorphisms and CCR5 D 32 mutation in Iranian patients suffering from these diseases are controversial. Due to the fact that Iranian people have different genetic backgrounds compared to other ethnics, hence, CCR5 promoter polymorphisms and CCR5 D 32 mutation association with the diseases may be different in Iranian patients. Therefore, this review addresses the most recent information regarding the prevalence as well as association of the mutation and polymorphisms in Iranian patients with microbial infection and immune related diseases as along with normal population.

  2. Adverse effect of the CCR5 promoter -2459A allele on HIV-1 disease progression

    DEFF Research Database (Denmark)

    Knudsen, T B; Kristiansen, T B; Katzenstein, T L

    2001-01-01

    HIV positive individuals heterozygous for a 32 basepair deletion in the CCR5 encoding gene (CCR5 Delta32) have a reduced number of CCR5 receptors on the cell surface and a slower progression towards AIDS and death. Other human polymorphisms, such as the CCR2 64I and the CCR5 promoter -2459 A....... Genotypes were determined in 119 individuals enrolled in the Copenhagen AIDS Cohort. When including the concurrent effects of the CCR5 Delta32 and CCR2 64I mutations, homozygous carriers of the CCR5 promoter -2459A allele had a significantly faster progression towards death than heterozygous A/G individuals...... (P = 0.03), whereas this adverse effect was not significant when comparing A/A and G/G individuals. However, independent analysis revealed a significant adverse effect of the CCR5 promoter -2459A allele. Homozygous carriers of the -2459A allele that lack the protective effects of the CCR5 Delta32...

  3. CCR5 and CXCR3 are dispensable for liver infiltration, but CCR5 protects against virus-induced T-cell-mediated hepatic steatosis

    DEFF Research Database (Denmark)

    Holst, P J; Orskov, C; Qvortrup, K

    2007-01-01

    CCR5 and CXCR3 are important molecules in regulating the migration of activated lymphocytes. Thus, the majority of tissue-infiltrating T cells found in the context of autoimmune conditions and viral infections express CCR5 and CXCR3, and the principal chemokine ligands are expressed within inflamed...... tissues. Accordingly, intervention studies have pointed to nonredundant roles of these receptors in models of allograft rejection, viral infection, and autoimmunity. In spite of this, considerable controversy exists, with many studies failing to support a role for CCR5 or CXCR3 in disease pathogenesis....... One possible explanation is that different chemokine receptors may take over in the absence of any individual receptor, thus rendering individual receptors redundant. We have attempted to address this issue by analyzing CCR5(-/-), CXCR3(-/-), and CCR5/CXCR3(-/-) mice with regard to virus-induced liver...

  4. A novel dual-luciferase assay for anti-HIV drug screening based on the CCR5/CXCR4 promoters.

    Science.gov (United States)

    Feng, Long; Lu, Wuhao; Ma, Yunyun; Guo, Wentao; Wang, Yuanyuan; Sun, Qianqian; Wu, Jianbo; Zhao, Guoqiang; Zhang, Xiaoli

    2018-02-23

    Acquired immunodeficiency syndrome (AIDS) is a serious worldwide disease caused by infection with the human immunodeficiency virus (HIV). C-C chemokine receptor 5 (CCR5) and C-X-C chemokine receptor 4 (CXCR4) are important coreceptors mediating HIV-1 cell entry. Many new anti-HIV drugs are currently in preclinical and clinical trials; however, drug development has proceeded slowly partly because of the lack of a high-throughput system to screen these drugs. Here, we describe the development of a novel dual-luciferase assay using a CCR5/CXCR4 promoter-driven firefly and Renilla luciferase vector (pGL4.10-RLUC-CCR5 /CXCR4). Drugs were screened for the ability to regulate CCR5 and CXCR4 promoter activities. The CCR5 and CXCR4 promoters were inserted separately into the recombinant vector and transfected into the acute T lymphocyte leukemia cell line H9. Treatment of stable transfected cells with four traditional Chinese medicine compounds resulted in the dose-dependent inhibition of the CXCR4 and CCR5 promoter activities. The dual-luciferase reporter assay provides a rapid and direct method to screen anti-AIDS/HIV drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Distribution of CCR5-Delta32, CCR5 promoter 59029 A/G, CCR2-64I and SDF1-3'A genetic polymorphisms in HIV-1 infected and uninfected patients in the west region of Cameroon.

    Science.gov (United States)

    Nkenfou, Céline Nguefeu; Mekue, Linda Chapdeleine Mouafo; Nana, Christelle Tafou; Kuiate, Jules Roger

    2013-07-23

    Genetic variants of the genes encoding human immunodeficiency virus-1 (HIV-1) co-receptors and their ligands, like CC-chemokine receptor 5 delta 32 mutation (CCR5-Delta32), CCR5 promoter A/G (Adenine/Guanine), CC-chemokine receptor 2 mutation 64 isoleucine (CCR2-64I) and the stromal cell-derived factor 3'A mutation (SDF1-3'A), are involved in the susceptibility to HIV-1 infection and progression. The prevalence of these mutations varies by region. However, little is known about their distribution in the population of Dschang, located in the west region of Cameroon. The prevalence of HIV in the west region of Cameroon is lower than elsewhere in Cameroon. The objectives of this study were to determine the distribution of four AIDS Related Gene (ARG) variants in HIV-infected and non-infected population of Cameroon especially in the west region and to estimate the contribution of these variants to the susceptibility or resistance to HIV infection. We also aimed to evaluate the effectiveness of genotyping using dried blood spot (DBS) samples. A total of 179 participants were recruited from two hospitals in Dschang in the west region of Cameroon. Their genotypes for CCR5-Delta32, CCR5 promoter 59029A/G, CCR2-64I and SDF1-3'A were analyzed using polymerase chain reaction (PCR) and restriction fragment length polymorphisms. A total of 179 participants were enrolled in the study. Among them, 32 (17.9%) were HIV positive and 147 (82.1%) were HIV negative. The allelic frequencies of these genes were: 0%, 49.72%, 17.6% and 100% respectively for CCR5-Delta32, CCR5 promoter 59029A/G, CCR2-64I and SDF1-3'A. No individual was found to carry the CCR5-Delta 32 mutation. All participants recruited were heterozygous for the SDF1-3'A allele. Our data suggest that the CCR5-Delta32 cannot account for the protection as it was completely absent in our population. SDF1-3'A variants, may be in association with other polymorphisms, may account for the overall protection from HIV-1 infection

  6. CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Shih-Wei Wang

    Full Text Available BACKGROUND: Osteosarcoma is characterized by a high malignant and metastatic potential. CCL5 (previously called RANTES was originally recognized as a product of activated T cells, and plays a crucial role in the migration and metastasis of human cancer cells. It has been reported that the effect of CCL5 is mediated via CCR receptors. However, the effect of CCL5 on migration activity and integrin expression in human osteosarcoma cells is mostly unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that CCL5 increased the migration and expression of αvβ3 integrin in human osteosarcoma cells. Stimulation of cells with CCL5 increased CCR5 but not CCR1 and CCR3 expression. CCR5 mAb, inhibitor, and siRNA reduced the CCL5-enhanced the migration and integrin up-regulation of osteosarcoma cells. Activations of MEK, ERK, and NF-κB pathways after CCL5 treatment were demonstrated, and CCL5-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK, and NF-κB cascades. In addition, over-expression of CCL5 shRNA inhibited the migratory ability and integrin expression in osteosarcoma cells. CONCLUSIONS/SIGNIFICANCE: CCL5 and CCR5 interaction acts through MEK, ERK, which in turn activates NF-κB, resulting in the activations of αvβ3 integrin and contributing the migration of human osteosarcoma cells.

  7. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...

  8. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...... analyzed in 109 patients with relapsing-remitting MS treated with IFN-beta who were followed clinically for 1 year. Cellular CCR5 expression was measured by flow cytometry. RESULTS: Patients with MS had a higher percentage of CCR5-positive monocytes than healthy controls. Increased monocyte expression...... of CCR5 correlated weakly with an increased short-term relapse risk but there was no relationship between CCR5 Delta32 allele and CCR5 promoter polymorphism genotypes and relapse risk. CONCLUSIONS: The results do not support a major role of CCR5 in the pathogenesis of relapses in MS patients treated...

  9. CCR5 as a treatment target in pulmonary arterial hypertension.

    Science.gov (United States)

    Amsellem, Valérie; Lipskaia, Larissa; Abid, Shariq; Poupel, Lucie; Houssaini, Amal; Quarck, Rozenn; Marcos, Elisabeth; Mouraret, Nathalie; Parpaleix, Aurélien; Bobe, Régis; Gary-Bobo, Guillaume; Saker, Mirna; Dubois-Randé, Jean-Luc; Gladwin, Mark T; Norris, Karen A; Delcroix, Marion; Combadière, Christophe; Adnot, Serge

    2014-09-09

    Pulmonary arterial hypertension (PH), whether idiopathic or related to underlying diseases such as HIV infection, results from complex vessel remodeling involving both pulmonary artery smooth muscle cell (PA-SMC) proliferation and inflammation. CCR5, a coreceptor for cellular HIV-1 entry expressed on macrophages and vascular cells, may be involved in the pathogenesis of PH. Maraviroc is a new CCR5 antagonist designed to block HIV entry. Marked CCR5 expression was found in lungs from patients with idiopathic PH, in mice with hypoxia-induced PH, and in Simian immunodeficiency virus-infected macaques, in which it was localized chiefly in the PA-SMCs. To assess the role for CCR5 in experimental PH, we used both gene disruption and pharmacological CCR5 inactivation in mice. Because maraviroc does not bind to murine CCR5, we used human-CCR5ki mice for pharmacological and immunohistochemical studies. Compared with wild-type mice, CCR5-/- mice or human-CCR5ki mice treated with maraviroc exhibited decreased PA-SMC proliferation and recruitment of perivascular and alveolar macrophages during hypoxia exposure. CCR5-/- mice reconstituted with wild-type bone marrow cells and wild-type mice reconstituted with CCR5-/- bone marrow cells were protected against PH, suggesting CCR5-mediated effects on PA-SMCs and macrophage involvement. The CCR5 ligands CCL5 and the HIV-1 gp120 protein increased intracellular calcium and induced growth of human and human-CCR5ki mouse PA-SMCs; maraviroc inhibited both effects. Maraviroc also reduced the growth-promoting effects of conditioned media from CCL5-activated macrophages derived from human-CCR5ki mice on PA-SMCs from wild-type mice. The CCL5-CCR5 pathway represents a new therapeutic target in PH associated with HIV or with other conditions. © 2014 American Heart Association, Inc.

  10. Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Pérez-Martínez, Laura; Pérez-Matute, Patricia; Aguilera-Lizarraga, Javier; Rubio-Mediavilla, Susana; Narro, Judit; Recio, Emma; Ochoa-Callejero, Laura; Oteo, José-Antonio; Blanco, José-Ramón

    2014-07-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the general population. The NAFLD spectrum ranges from simple steatosis to cirrhosis. The chemokine CCL5/RANTES plays an important role in the progression of hepatic inflammation and fibrosis. The objective of this study was to examine the effects of maraviroc, a CCR5 antagonist, on liver pathology in a NAFLD mouse model. A total of 32 male C57BL/6 mice were randomly assigned to one of four groups: (i) control group (chow diet plus tap water); (ii) maraviroc group (chow diet plus maraviroc in drinking water); (iii) high-fat diet (HFD) group (HFD plus tap water); and (iv) maraviroc/HFD group (HFD plus maraviroc). All mice were sacrificed 16 weeks after the beginning of the experiment. Biochemical analyses and liver examinations were performed. Mice in the HFD group showed a tendency towards increased body mass gain and liver damage compared with the maraviroc/HFD group. Moreover, liver weight in the HFD group was significantly higher than in the maraviroc/HFD group. Hepatic triglyceride concentration in the maraviroc/HFD group was significantly lower than in the HFD group. Interestingly, the maraviroc/HFD group exhibited a lower degree of steatosis. Furthermore, hepatic CCL5/RANTES expression was significantly lower in the maraviroc/HFD group than in the HFD group. Overall, no differences were observed between the control group and the maraviroc group. Maraviroc ameliorates hepatic steatosis in an experimental model of NAFLD. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Distribution of CCR5-Delta32, CCR5 promoter 59029 A/G, CCR2-64I and SDF1-3’A genetic polymorphisms in HIV-1 infected and uninfected patients in the West Region of Cameroon

    Science.gov (United States)

    2013-01-01

    Background Genetic variants of the genes encoding Human Immunodeficiency Virus-1 (HIV-1) co-receptors and their ligands, like CC-Chemokine Receptor 5 delta 32 mutation (CCR5-Delta32), CCR5 promoter A/G (Adenine/Guanine), CC-Chemokine Receptor 2 mutation 64 isoleucine (CCR2-64I) and the Stromal cell-derived Factor 3’A mutation (SDF1-3’A), are involved in the susceptibility to HIV-1 infection and progression. The prevalence of these mutations varies by Region. However, little is known about their distribution in the population of Dschang, located in the West Region of Cameroon. The prevalence of HIV in the West Region of Cameroon is lower than elsewhere in Cameroon. The objectives of this study were to determine the distribution of four AIDS Related Gene (ARG) variants in HIV-infected and non-infected population of Cameroon especially in the West Region and to estimate the contribution of these variants to the susceptibility or resistance to HIV infection. We also aimed to evaluate the effectiveness of genotyping using dried blood spot (DBS) samples. Methods A total of 179 participants were recruited from two hospitals in Dschang in the West Region of Cameroon. Their genotypes for CCR5-Delta32, CCR5 promoter 59029A/G, CCR2-64I and SDF1-3’A were analyzed using polymerase chain reaction (PCR) and restriction fragment length polymorphisms. Results A total of 179 participants were enrolled in the study. Among them, 32 (17.9%) were HIV positive and 147 (82.1%) were HIV negative. The allelic frequencies of these genes were: 0%, 49.72%, 17.6% and 100% respectively for CCR5-Delta32, CCR5 promoter 59029A/G, CCR2-64I and SDF1-3’A. No individual was found to carry the CCR5-Delta 32 mutation. All participants recruited were heterozygous for the SDF1-3’A allele. Conclusion Our data suggest that the CCR5-Delta32 cannot account for the protection as it was completely absent in our population. SDF1-3’A variants, may be in association with other polymorphisms, may account

  12. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines.

    Science.gov (United States)

    Colin, Philippe; Bénureau, Yann; Staropoli, Isabelle; Wang, Yongjin; Gonzalez, Nuria; Alcami, Jose; Hartley, Oliver; Brelot, Anne; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2013-06-04

    CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.

  13. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry.

    Science.gov (United States)

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G H; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-07-04

    CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  15. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Science.gov (United States)

    Jin, Qingwen; Chen, Hong; Wang, Xingxia; Zhao, Liandong; Xu, Qingchen; Wang, Huijuan; Li, Guanyu; Yang, Xiaofan; Ma, Hongming; Wu, Haoquan; Ji, Xiaohui

    2015-01-01

    Insertion of T4 lysozyme (T4L) into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed. We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects. Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1) infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5. Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  16. Relevance of CCL3/CCR5 axis in oral carcinogenesis.

    Science.gov (United States)

    da Silva, Janine Mayra; Moreira Dos Santos, Tálita Pollyanna; Sobral, Lays Martin; Queiroz-Junior, Celso Martins; Rachid, Milene Alvarenga; Proudfoot, Amanda E I; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; Teixeira, Mauro Martins; Leopoldino, Andréia Machado; Russo, Remo Castro; Silva, Tarcília Aparecida

    2017-08-01

    The chemokine CCL3 is a chemotactic cytokine crucial for inflammatory cell recruitment in homeostatic and pathological conditions. CCL3 might stimulate cancer progression by promoting leukocyte accumulation, angiogenesis and tumour growth. The expression of CCL3 and its receptors CCR1 and CCR5 was demonstrated in oral squamous cell carcinoma (OSCC), but their role was not defined. Here, the functions of CCL3 were assessed using a model of chemically induced tongue carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). Lineages of OSCC were used to analyse the effects of CCL3 in vitro . The 4NQO-induced lesions exhibited increased expression of CCL3, CCR1 and CCR5. CCL3 -/- and CCR5 -/- mice presented reduced incidence of tongue tumours compared to wild-type (WT) and CCR1 -/- mice. Consistently, attenuated cytomorphological atypia and reduced cell proliferation were observed in lesions of CCL3 -/- and CCR5 -/- mice. OSCC from CCL3 -/- mice exhibited lower infiltration of eosinophils and reduced expression of Egf, Fgf1, Tgf-β1, Vegfa, Vegfb, Itga-4, Vtn, Mmp-1a, Mmp-2 and Mmp-9 than WT mice. In vitro , CCL3 induced invasion and production of CCL5, IL-6, MMP -2, -8, -9. Blockage of CCL3 in vitro using α-CCL3 or Evasin-1 (a CCL3-binding protein) impaired tumour cell invasion. In conclusion, CCL3/CCR5 axis has pro-tumourigenic effects in oral carcinogenesis. The induction of inflammatory and angiogenic pathways and eosinophils recruitment appear to be the underlying mechanism explaining these effects. These data reveal potential protective effects of CCL3 blockade in oral cancer.

  17. Analysis of CCR5 and SDF-1 genetic variants and HIV infection in Indian population.

    Science.gov (United States)

    Gupta, A; Padh, Harish

    2015-08-01

    HIV-1 infection and progression exhibits interindividual variation. The polymorphism in the chemokine receptors CCR5 and CXCR4, the principal coreceptors for HIV-1 and their ligands like SDF-1 have a profound effect in altering the HIV-1 disease progression rate. A single nucleotide polymorphism designated SDF1-3'UTR-801G-A has been associated with resistance to HIV-1 infection or delayed progression to AIDS. In this study, the SDF1-3'A polymorphism, CCR5∆32 polymorphism and CCR5 promoter polymorphism at positions 58934 G/T, 59029 G/A, 59353 T/C, 59356 C/T, 59402 A/G and 59653 C/T were analysed in Indian population. The polymorphisms in HIV-1 patients and healthy individuals were evaluated by conventional PCR, RFLP-PCR and direct sequencing techniques. The CCR5∆32 mutant allele was found to be almost absent in Indian population. The analysis of the CCR5-59356C/T polymorphism revealed a trend towards an association of the C allele with an increased risk of HIV-1 infection. The frequency of allele CCR5-59356C was higher in HIV-1 patients (100%) as compared to healthy control subjects (89%, P = 0.003). The correlation of SDF1-3'A and CCR5 promoter CCR5-58934G/T, CCR5-59029G/A, CCR5-59353T/C, CCR5-59402 A/G and CCR5-59653C/T polymorphisms and protection to HIV-1 infection and progression to AIDS was found to be nonsignificant. Nine haplotypes with more than 1% frequency were detected but were not significant in their protective role against HIV. Comparative analysis with global populations showed a noteworthy difference in CCR5 and SDF-1 polymorphisms' frequency distribution, indicating the ethnic variability of Indians. Although susceptibility to infections cannot be completely dependent on one or few genetic variants, it is important to remember that SDF-1 and CCR5 variants have been correlated globally with HIV-1 infection and disease progression. In the light of that, higher frequency of SDF-1 variants in the Indian population is noteworthy. © 2015 John

  18. Constrained use of CCR5 on CD4+ lymphocytes by R5X4 HIV-1: Efficiency of Env-CCR5 interactions and low CCR5 expression determine a range of restricted CCR5-mediated entry

    OpenAIRE

    Loftin, Lamorris M.; Kienzle, Martha F.; Yi, Yanjie; Lee, Benhur; Lee, Fang-Hua; Gray, Lachlan; Gorry, Paul R.; Collman, Ronald G.

    2010-01-01

    R5X4 HIV-1 have impaired utilization of CCR5 on primary CD4+ lymphocytes but the mechanisms responsible are not well defined. Using a panel of diverse R5X4 Envs we identified a spectrum of CCR5 use on CD4+ lymphocytes. Greater lymphocyte CCR5 use correlated with relative resistance to CCR5 mAbs and small molecule antagonists. Increasing CCR5 expression on lymphocytes increased the proportion of entry mediated by CCR5 for all R5X4 isolates except 89.6. In cell lines with regulated CCR5 express...

  19. Staphylococcus aureus Leukocidin LukED and HIV-1 gp120 Target Different Sequence Determinants on CCR5.

    Science.gov (United States)

    Tam, Kayan; Schultz, Megan; Reyes-Robles, Tamara; Vanwalscappel, Bénédicte; Horton, Joshua; Alonzo, Francis; Wu, Beili; Landau, Nathaniel R; Torres, Victor J

    2016-12-13

    Leukocidin ED (LukED) is a bicomponent pore-forming toxin produced by Staphylococcus aureus that lyses host cells by targeting the chemokine receptors CC chemokine receptor type 5 (CCR5), CXCR1, CXCR2, and DARC. In addition to its role as a receptor for LukED, CCR5 is the major coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and has been extensively studied. To compare how LukED and HIV-1 target CCR5, we analyzed their respective abilities to use CCR5/CCR2b chimeras to mediate cytotoxicity and virus entry. These analyses showed that the second and third extracellular loops (ECL) of CCR5 are necessary and sufficient for LukED to target the receptor and promote cell lysis. In contrast, the second ECL of CCR5 is necessary but not sufficient for HIV-1 infectivity. The analysis of CCR5 point mutations showed that glycine-163 is critical for HIV-1 infectivity, while arginine-274 and aspartic acid-276 are critical for LukED cytotoxicity. Point mutations in ECL2 diminished both HIV-1 infectivity and LukED cytotoxicity. Treatment of cells with LukED did not interfere with CCR5-tropic HIV-1 infectivity, demonstrating that LukED and the viral envelope glycoprotein use nonoverlapping sites on CCR5. Analysis of point mutations in LukE showed that amino acids 64 to 69 in the rim domain are required for CCR5 targeting and cytotoxicity. Taking the results together, this study identified the molecular basis by which LukED targets CCR5, highlighting the divergent molecular interactions evolved by HIV-1 and LukED to interact with CCR5. The bicomponent pore-forming toxins are thought to play a vital role in the success of Staphylococcus aureus as a mammalian pathogen. One of the leukocidins, LukED, is necessary and sufficient for lethality in mice. At the molecular level, LukED causes cell lysis through binding to specific cellular receptors. CCR5 is one of the receptors targeted by LukED and is the major coreceptor for CCR5-tropic HIV-1. While the

  20. CCR5 inhibitors in HIV-1 therapy.

    Science.gov (United States)

    Dorr, Patrick; Perros, Manos

    2008-11-01

    The human immunodeficiency virus 1 (HIV-1) is the causative pathogen of AIDS, the world's biggest infectious disease killer. About 33 million people are infected worldwide, with 2.1 million deaths a year as a direct consequence. The devastating nature of AIDS has prompted widespread research, which has led to an extensive array of therapies to suppress viral replication and enable recovery of the immune system to prolong and improve patient life substantially. However, the genetic plasticity and replication rate of HIV-1 are considerable, which has lead to rapid drug resistance. This, together with the need for reducing drug side effects and increasing regimen compliance, has led researchers to identify antiretroviral drugs with new modes of action. This review describes the discovery and clinical development of CCR5 antagonists and the recent approval of maraviroc as a breakthrough in anti-HIV-1 therapy. CCR5 inhibitors target a human cofactor to disable HIV-1 entry into the cells, and thereby provide a new hurdle for the virus to overcome. The status and expert opinion of CCR5 antagonists for the treatment of HIV-1 infection are detailed.

  1. Owl monkey CCR5 reveals synergism between CD4 and CCR5 in HIV-1 entry.

    Science.gov (United States)

    Nahabedian, John; Sharma, Amit; Kaczmarek, Maryska E; Wilkerson, Greg K; Sawyer, Sara L; Overbaugh, Julie

    2017-12-01

    Studying HIV-1 replication in the presence of functionally related proteins from different species has helped define host determinants of HIV-1 infection. Humans and owl monkeys, but not macaques, encode a CD4 receptor that permits entry of transmissible HIV-1 variants due to a single residue difference. However, little is known about whether divergent CCR5 receptor proteins act as determinants of host-range. Here we show that both owl monkey (Aotus vociferans) CD4 and CCR5 receptors are functional for the entry of transmitted HIV-1 when paired with human versions of the other receptor. By contrast, the owl monkey CD4/CCR5 pair is generally a suboptimal receptor combination, although there is virus-specific variation in infection with owl monkey receptors. Introduction of the human residues 15Y and 16T within a sulfation motif into owl monkey CCR5 resulted in a gain of function. These findings suggest there is cross-talk between CD4 and CCR5 involving the sulfation motif. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Naturally Occurring Deletional Mutation in the C-Terminal Cytoplasmic Tail of CCR5 Affects Surface Trafficking of CCR5

    OpenAIRE

    Shioda, Tatsuo; Nakayama, Emi E.; Tanaka, Yuetsu; Xin, Xiaomi; Liu, Huanliang; Kawana-Tachikawa, Ai; Kato, Atsushi; Sakai, Yuko; Nagai, Yoshiyuki; Iwamoto, Aikichi

    2001-01-01

    CCR5 is an essential coreceptor for the cellular entry of R5 strains of human immunodeficiency virus type 1 (HIV-1). CCR5-893(−) is a single-nucleotide deletion mutation which is observed exclusively in Asians (M. A. Ansari-Lari, et al., Nat. Genet. 16:221–222, 1997). This mutant gene produces a CCR5 which lacks the entire C-terminal cytoplasmic tail. To assess the effect of CCR5-893(−) on HIV-1 infection, we generated a recombinant Sendai virus expressing the mutant CCR5 and compared its HIV...

  3. The Abrogation of Phosphorylation Plays a Relevant Role in the CCR5 Signalosome Formation with Natural Antibodies to CCR5

    Directory of Open Access Journals (Sweden)

    Assunta Venuti

    2017-12-01

    Full Text Available The exposure to CCR5 (CC chemokine receptor 5 specific natural antibodies in vitro produces a Class B β-arrestin2-dependent CCR5 retention with the aid of ERK1, due to the formation of a CCR5 signalosome, which remains stable for at least 48 h. Considering that β-arrestins and MAPKs are receptive to environmental signals, their signal complexes could be one of the key junction for GPCRs internalization related signal transduction. Here, we demonstrate that, in T cells, the phosphorylation status of either CCR5 receptor or ERK1 protein is necessary to drive the internalized receptor into the early endosomes, forming the CCR5 signalosome. In particular, our data show that β-arrestin2/ERK1 complex is a relevant transducer in the CCR5 signaling pathway. Understanding the mechanism of CCR5 regulation is essential for many inflammatory disorders, tumorigenesis and viral infection such as HIV.

  4. CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5

    OpenAIRE

    Pham, Kien; Luo, Defang; Liu, Che; Harrison, Jeffrey K.

    2012-01-01

    Glioblastoma multiforme (GBM) is the most malignant brain tumor. Microglia/macrophages are found within human GBM where they likely promote tumor progression. We report that CCL5, CCR1, and CCR5 are expressed in glioblastoma. Individual deletion of CCR1 or CCR5 had little to no effect on survival of tumor bearing mice, or numbers of glioblastoma-infiltrated microglia/macrophages or lymphocytes. CCL5 promoted in vitro migration of wild type, CCR1- or CCR5-deficient microglia/macrophages that w...

  5. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis.

    Science.gov (United States)

    Carpenter, Danielle; Taype, Carmen; Goulding, Jon; Levin, Mike; Eley, Brian; Anderson, Suzanne; Shaw, Marie-Anne; Armour, John A L

    2014-01-09

    Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0-6 copies per diploid genome (pdg) in Peru, between 0-12 pdg in !Xhosa samples and between 0-10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). The case-control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.

  6. A Simplified Technique for Evaluating Human "CCR5" Genetic Polymorphism

    Science.gov (United States)

    Falteisek, Lukáš; Cerný, Jan; Janštová, Vanda

    2013-01-01

    To involve students in thinking about the problem of AIDS (which is important in the view of nondecreasing infection rates), we established a practical lab using a simplified adaptation of Thomas's (2004) method to determine the polymorphism of HIV co-receptor CCR5 from students' own epithelial cells. CCR5 is a receptor involved in inflammatory…

  7. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  8. Phenotypic expressions of CCR5-Delta 32/Delta 32 homozygosity

    NARCIS (Netherlands)

    Nguyen, GT; Carrington, M; Beeler, JA; Dean, M; Aledort, LM; Blatt, PM; Cohen, AR; DiMichele, D; Eyster, ME; Kessler, CM; Konkle, B; Leissinger, C; Luban, N; O'Brien, SJ; Goedert, JJ; O'Brien, TR

    1999-01-01

    Objective: As blockade of CC-chemokine receptor 5 (CCR5) has been proposed as therapy for HIV-1, we examined whether the CCR5-Delta 32/Delta 32 homozygous genotype has phenotypic expressions other than those related to HIV-1. Design: Study subjects were white homosexual men or men with hemophilia

  9. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    Science.gov (United States)

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael; Umana, Pablo; Brinkmann, Ulrich

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains. PMID:21300827

  10. Editing CCR5: a novel approach to HIV gene therapy.

    Science.gov (United States)

    Cornu, Tatjana I; Mussolino, Claudio; Bloom, Kristie; Cathomen, Toni

    2015-01-01

    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.

  11. Clinical use of CCR5 inhibitors in HIV and beyond

    Directory of Open Access Journals (Sweden)

    Gilliam Bruce

    2010-01-01

    Full Text Available Abstract Since the discovery of CCR5 as a coreceptor for HIV entry, there has been interest in blockade of the receptor for treatment and prevention of HIV infection. Although several CCR5 antagonists have been evaluated in clinical trials, only maraviroc has been approved for clinical use in the treatment of HIV-infected patients. The efficacy, safety and resistance profile of CCR5 antagonists with a focus on maraviroc are reviewed here along with their usage in special and emerging clinical situations. Despite being approved for use since 2007, the optimal use of maraviroc has yet to be well-defined in HIV and potentially in other diseases. Maraviroc and other CCR5 antagonists have the potential for use in a variety of other clinical situations such as the prevention of HIV transmission, intensification of HIV treatment and prevention of rejection in organ transplantation. The use of CCR5 antagonists may be potentiated by other agents such as rapamycin which downregulate CCR5 receptors thus decreasing CCR5 density. There may even be a role for their use in combination with other entry inhibitors. However, clinical use of CCR5 antagonists may have negative consequences in diseases such as West Nile and Tick-borne encephalitis virus infections. In summary, CCR5 antagonists have great therapeutic potential in the treatment and prevention of HIV as well as future use in novel situations such as organ transplantation. Their optimal use either alone or in combination with other agents will be defined by further investigation.

  12. Functional analysis of the CC chemokine receptor 5 (CCR5) on virus-specific CD8+ T cells following coronavirus infection of the central nervous system

    International Nuclear Information System (INIS)

    Glass, William G.; Lane, Thomas E.

    2003-01-01

    Intracranial infection of C57BL/6 mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a demyelinating disease similar in pathology to the human disease multiple sclerosis (MS). T cells participate in both defense and disease progression following MHV infection. Expression of chemokine receptors on activated T cells is important in allowing these cells to traffic into and accumulate within the central nervous system (CNS) of MHV-infected mice. The present study evaluated the contributions of CCR5 to the activation and trafficking of virus-specific CD8 + T cells into the MHV-infected CNS mice. Comparable numbers of virus-specific CD8 + T cells derived from immunized CCR5 +/+ or CCR5 -/- mice were present within the CNS of MHV-infected RAG1 -/- mice following adoptive transfer, indicating that CCR5 is not required for trafficking of these cells into the CNS. RAG1 -/- recipients of CCR5 -/- -derived CD8 + T cells exhibited a modest, yet significant (P ≤ 0.05), reduction in viral burden within the brain which correlated with increased CTL activity and IFN-γ expression. Histological analysis of RAG1 -/- recipients of either CCR5 +/+ or CCR5 -/- -derived CD8 + T cells revealed only focal areas of demyelination with no significant differences in white matter destruction. These data indicate that CCR5 signaling on CD8 + T cells modulates antiviral activities but is not essential for entry into the CNS

  13. The chemokine receptor CCR5 in the central nervous system.

    Science.gov (United States)

    Sorce, Silvia; Myburgh, Renier; Krause, Karl-Heinz

    2011-02-01

    The expression and the role of the chemokine receptor CCR5 have been mainly studied in the context of HIV infection. However, this protein is also expressed in the brain, where it can be crucial in determining the outcome in response to different insults. CCR5 expression can be deleterious or protective in controlling the progression of certain infections in the CNS, but it is also emerging that it could play a role in non-infectious diseases. In particular, it appears that, in addition to modulating immune responses, CCR5 can influence neuronal survival. Here, we summarize the present knowledge about the expression of CCR5 in the brain and highlight recent findings suggesting its possible involvement in neuroprotective mechanisms. Copyright © 2011. Published by Elsevier Ltd.

  14. The case for selection at CCR5-Delta32.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Delta32 allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Delta32 arose within the past 1,000 y and rose to its present high frequency (5%-14% in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Delta32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Delta32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5, they imply that the pattern of genetic variation seen atCCR5-Delta32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.

  15. The case for selection at CCR5-Delta32.

    Directory of Open Access Journals (Sweden)

    Pardis C Sabeti

    2005-11-01

    Full Text Available The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Delta32 allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Delta32 arose within the past 1,000 y and rose to its present high frequency (5%-14% in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Delta32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Delta32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5, they imply that the pattern of genetic variation seen at CCR5-Delta32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.

  16. Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities

    OpenAIRE

    Pugach, Pavel; Ray, Neelanjana; Klasse, Per Johan; Ketas, Thomas J.; Michael, Elizabeth; Doms, Robert W.; Lee, Benhur; Moore, John P.

    2009-01-01

    HIV-1 variants resistant to small molecule CCR5 inhibitors such as vicriviroc (VVC) have modified Env complexes that can use both the inhibitor-bound and -free forms of the CCR5 co-receptor to enter target cells. However, entry via the inhibitor-CCR5 complex is inefficient in some, but not all, cell types, particularly cell lines engineered to express CCR5. We investigated the effect of increasing CCR5 expression, and hence the density of the inhibitor-CCR5 complex when a saturating inhibitor...

  17. The CCR5 receptor acts as an alloantigen in CCR5Δ32 homozygous individuals: Identification of chemokineand HIV-1-blocking human antibodies

    OpenAIRE

    Ditzel, Henrik J.; Rosenkilde, Mette M.; Garred, Peter; Wang, Meng; Koefoed, Klaus; Pedersen, Court; Burton, Dennis R.; Schwartz, Thue W.

    1998-01-01

    The chemokine receptor CCR5 is the major coreceptor for infection by macrophage-tropic R5 HIV-1. A 32-bp deletion in the gene coding for CCR5 (CCR5Δ32) occurs with a frequency of 10% in the Caucasian population and results in a receptor protein that is truncated and not expressed at the cell surface. CCR5Δ32 homozygous individuals are apparently normal but resistant to infection with R5 HIV-1. In two individuals homozygous for CCR5Δ32, who had been repeatedly exposed to CCR5-expressing blood ...

  18. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Madsen, Hans O; Jensen, Claus V

    2000-01-01

    Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5...... targeting CCR5 or treatment with MMP inhibitors may attenuate disease activity in MS...

  19. Solution Structure of LC4 Transmembrane Segment of CCR5

    OpenAIRE

    Miyamoto, Kazuhide; Togiya, Kayo

    2011-01-01

    CC-chemokine receptor 5 (CCR5) is a specific co-receptor allowing the entry of human immunodeficiency virus type 1 (HIV-1). The LC4 region in CCR5 is required for HIV-1 entry into the cells. In this study, the solution structure of LC4 in SDS micelles was elucidated by using standard 1H two-dimensional NMR spectroscopy, circular dichroism, and fluorescdence quenching. The LC4 structure adopts two helical structures, whereas the C-terminal part remains unstructured. The positions in which LC4 ...

  20. Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis.

    Directory of Open Access Journals (Sweden)

    Eric Lefebvre

    Full Text Available Interactions between C-C chemokine receptor types 2 (CCR2 and 5 (CCR5 and their ligands, including CCL2 and CCL5, mediate fibrogenesis by promoting monocyte/macrophage recruitment and tissue infiltration, as well as hepatic stellate cell activation. Cenicriviroc (CVC is an oral, dual CCR2/CCR5 antagonist with nanomolar potency against both receptors. CVC's anti-inflammatory and antifibrotic effects were evaluated in a range of preclinical models of inflammation and fibrosis.Monocyte/macrophage recruitment was assessed in vivo in a mouse model of thioglycollate-induced peritonitis. CCL2-induced chemotaxis was evaluated ex vivo on mouse monocytes. CVC's antifibrotic effects were evaluated in a thioacetamide-induced rat model of liver fibrosis and mouse models of diet-induced non-alcoholic steatohepatitis (NASH and renal fibrosis. Study assessments included body and liver/kidney weight, liver function test, liver/kidney morphology and collagen deposition, fibrogenic gene and protein expression, and pharmacokinetic analyses.CVC significantly reduced monocyte/macrophage recruitment in vivo at doses ≥20 mg/kg/day (p < 0.05. At these doses, CVC showed antifibrotic effects, with significant reductions in collagen deposition (p < 0.05, and collagen type 1 protein and mRNA expression across the three animal models of fibrosis. In the NASH model, CVC significantly reduced the non-alcoholic fatty liver disease activity score (p < 0.05 vs. controls. CVC treatment had no notable effect on body or liver/kidney weight.CVC displayed potent anti-inflammatory and antifibrotic activity in a range of animal fibrosis models, supporting human testing for fibrotic diseases. Further experimental studies are needed to clarify the underlying mechanisms of CVC's antifibrotic effects. A Phase 2b study in adults with NASH and liver fibrosis is fully enrolled (CENTAUR Study 652-2-203; NCT02217475.

  1. Short Communication: HIV-1 Variants That Use Mouse CCR5 Reveal Critical Interactions of gp120's V3 Crown with CCR5 Extracellular Loop 1.

    Science.gov (United States)

    Platt, Emily J; Durnin, James P; Kabat, David

    2015-10-01

    The CCR5 coreceptor amino terminus and extracellular (ECL) loops 1 and 2 have been implicated in HIV-1 infections, with species differences in these regions inhibiting zoonoses. Interactions of gp120 with CD4 and CCR5 reduce constraints on metastable envelope subunit gp41, enabling gp41 conformational changes needed for infection. We previously selected HIV-1JRCSF variants that efficiently use CCR5(Δ18) with a deleted amino terminus or CCR5(HHMH) with ECL2 from an NIH/Swiss mouse. Unexpectedly, the adaptive gp120 mutations were nearly identical, suggesting that they function by weakening gp120's grip on gp41 and/or by increasing interactions with ECL1. To analyze this and further wean HIV-1 from human CCR5, we selected variants using CCR5(HMMH) with murine ECL1 and 2 sequences. HIV-1JRCSF mutations adaptive for CCR5(Δ18) and CCR5(HHMH) were generally maladaptive for CCR5(HMMH), whereas the converse was true for CCR5(HMMH) adaptations. The HIV-1JRCSF variant adapted to CCR5(HMMH) also weakly used intact NIH/Swiss mouse CCR5. Our results strongly suggest that HIV-1JRCSF makes functionally critical contacts with human ECL1 and that adaptation to murine ECL1 requires multiple mutations in the crown of gp120's V3 loop.

  2. CCR1 and CCR5 expressions on peripheral blood mononuclear ...

    African Journals Online (AJOL)

    Isolated PBMCs from 25 patients with HCC, 10 LC patients and 9 adult healthy controls were stained with monoclonal antibodies against CD4, CD8, CCR1 and CCR5, then detected by using a flow cytometry technique. Patients were diagnosed by abdominal ultrasound (US) and computed tomography (CT) scan findings, ...

  3. Epitope Switching as a Novel Escape Mechanism of HIV to CCR5 Monoclonal Antibodies▿

    OpenAIRE

    Jekle, Andreas; Chhabra, Milloni; Lochner, Adriane; Meier, Sonja; Chow, Eugene; Brandt, Michael; Sankuratri, Surya; Cammack, Nick; Heilek, Gabrielle

    2009-01-01

    In passaging experiments, we isolated HIV strains resistant to MAb3952, a chemokine (C-C motif) receptor 5 (CCR5) monoclonal antibody (MAb) that binds to the second extracellular domain (extracellular loop 2 [ECL-2]) of CCR5. MAb3952-resistant viruses remain CCR5-tropic and are cross-resistant to a second ECL-2-specific antibody. Surprisingly, MAb3952-resistant viruses were more susceptible to RoAb13, a CCR5 antibody binding to the N terminus of CCR5. Using CCR5 receptor mutants, we show that...

  4. Solution structure of LC4 transmembrane segment of CCR5.

    Directory of Open Access Journals (Sweden)

    Kazuhide Miyamoto

    Full Text Available CC-chemokine receptor 5 (CCR5 is a specific co-receptor allowing the entry of human immunodeficiency virus type 1 (HIV-1. The LC4 region in CCR5 is required for HIV-1 entry into the cells. In this study, the solution structure of LC4 in SDS micelles was elucidated by using standard 1H two-dimensional NMR spectroscopy, circular dichroism, and fluorescence quenching. The LC4 structure adopts two helical structures, whereas the C-terminal part remains unstructured. The positions in which LC4 binds to the HIV-1 inhibitory peptide LC5 were determined by docking calculations in addition to NMR data. The poses showed the importance of the hydrophobic interface of the assembled structures. The solution structure of LC4 elucidated in the present work provides a structural basis for further studies on the HIV-1 inhibitory function of the LC4 region.

  5. Solution structure of LC4 transmembrane segment of CCR5.

    Science.gov (United States)

    Miyamoto, Kazuhide; Togiya, Kayo

    2011-01-01

    CC-chemokine receptor 5 (CCR5) is a specific co-receptor allowing the entry of human immunodeficiency virus type 1 (HIV-1). The LC4 region in CCR5 is required for HIV-1 entry into the cells. In this study, the solution structure of LC4 in SDS micelles was elucidated by using standard 1H two-dimensional NMR spectroscopy, circular dichroism, and fluorescence quenching. The LC4 structure adopts two helical structures, whereas the C-terminal part remains unstructured. The positions in which LC4 binds to the HIV-1 inhibitory peptide LC5 were determined by docking calculations in addition to NMR data. The poses showed the importance of the hydrophobic interface of the assembled structures. The solution structure of LC4 elucidated in the present work provides a structural basis for further studies on the HIV-1 inhibitory function of the LC4 region.

  6. Use of G-Protein-Coupled and -Uncoupled CCR5 Receptors by CCR5 Inhibitor-Resistant and -Sensitive Human Immunodeficiency Virus Type 1 Variants

    Science.gov (United States)

    Berro, Reem; Yasmeen, Anila; Abrol, Ravinder; Trzaskowski, Bartosz; Abi-Habib, Sarya; Grunbeck, Amy; Lascano, Danny; Goddard, William A.; Klasse, Per Johan; Sakmar, Thomas P.

    2013-01-01

    Small-molecule CCR5 inhibitors such as vicriviroc (VVC) and maraviroc (MVC) are allosteric modulators that impair HIV-1 entry by stabilizing a CCR5 conformation that the virus recognizes inefficiently. Viruses resistant to these compounds are able to bind the inhibitor-CCR5 complex while also interacting with the free coreceptor. CCR5 also interacts intracellularly with G proteins, as part of its signal transduction functions, and this process alters its conformation. Here we investigated whether the action of VVC against inhibitor-sensitive and -resistant viruses is affected by whether or not CCR5 is coupled to G proteins such as Gαi. Treating CD4+ T cells with pertussis toxin to uncouple the Gαi subunit from CCR5 increased the potency of VVC against the sensitive viruses and revealed that VVC-resistant viruses use the inhibitor-bound form of Gαi-coupled CCR5 more efficiently than they use uncoupled CCR5. Supportive evidence was obtained by expressing a signaling-deficient CCR5 mutant with an impaired ability to bind to G proteins, as well as two constitutively active mutants that activate G proteins in the absence of external stimuli. The implication of these various studies is that the association of intracellular domains of CCR5 with the signaling machinery affects the conformation of the external and transmembrane domains and how they interact with small-molecule inhibitors of HIV-1 entry. PMID:23468486

  7. Depletion of Gut-Resident CCR5+Cells for HIV Cure Strategies.

    Science.gov (United States)

    Merriam, David; Chen, Connie; Méndez-Lagares, Gema; Rogers, Kenneth A; Michaels, Anthony J; Yan, Jiangli; Casaz, Paul; Reimann, Keith A; Villinger, François; Hartigan-O'Connor, Dennis J

    2017-11-01

    The HIV reservoir forming at the earliest stages of infection is likely composed of CCR5 + cells, because these cells are the targets of transmissible virus. Restriction of the CCR5 + reservoir, particularly in the gut, may be needed for subsequent cure attempts. Strategies for killing or depleting CCR5 + cells have been described, but none have been tested in vivo in nonhuman primates, and the extent of achievable depletion from tissues is not known. In this study we investigate the efficacy of two novel cytotoxic treatments for targeting and eliminating CCR5 + cells in young rhesus macaques. The first, an immunotoxin consisting of the endogenous CCR5 ligand RANTES fused with Pseudomonas exotoxin (RANTES-PE38), killed CCR5 + lamina propria lymphocytes (LPLs) ex vivo, but had no detectable effect on CCR5 + LPLs in vivo. The second, a primatized bispecific antibody for CCR5 and CD3, depleted all CCR5 + cells from blood and the vast majority of such cells from the colonic mucosa (up to 96% of CD4 + CCR5 + ). Absence of CCR5-expressing cells from blood endured for at least 1 week, while CCR5 + cells in colon were substantially replenished over the same time span. These data open an avenue to investigation of combined early ART treatment and CCR5 + reservoir depletion for cure of HIV-infected infants.

  8. Epitope Switching as a Novel Escape Mechanism of HIV to CCR5 Monoclonal Antibodies▿

    Science.gov (United States)

    Jekle, Andreas; Chhabra, Milloni; Lochner, Adriane; Meier, Sonja; Chow, Eugene; Brandt, Michael; Sankuratri, Surya; Cammack, Nick; Heilek, Gabrielle

    2010-01-01

    In passaging experiments, we isolated HIV strains resistant to MAb3952, a chemokine (C-C motif) receptor 5 (CCR5) monoclonal antibody (MAb) that binds to the second extracellular domain (extracellular loop 2 [ECL-2]) of CCR5. MAb3952-resistant viruses remain CCR5-tropic and are cross-resistant to a second ECL-2-specific antibody. Surprisingly, MAb3952-resistant viruses were more susceptible to RoAb13, a CCR5 antibody binding to the N terminus of CCR5. Using CCR5 receptor mutants, we show that MAb3952-resistant virus strains preferentially use the N terminus of CCR5, while the wild-type viruses preferentially use ECL-2. We propose this switch in the CCR5 binding site as a novel mechanism of HIV resistance. PMID:19995923

  9. Gene editing using a zinc-finger nuclease mimicking the CCR5Δ32 mutation induces resistance to CCR5-using HIV-1.

    Science.gov (United States)

    Badia, Roger; Riveira-Muñoz, Eva; Clotet, Bonaventura; Esté, José A; Ballana, Ester

    2014-07-01

    To characterize a new zinc-finger nuclease (ZFN) that targets close to the sequence of the 32 bp deletion polymorphism in the CCR5 gene, and to generate cells resistant to HIV-1 strains that use CCR5. CCR5Δ32 is a naturally occurring deletion that provides genetic resistance to R5-tropic HIV-1. The specificity and efficacy of a newly identified target for CCR5 gene editing, near the CCR5Δ32 sequence (ZFNCCR5Δ32), was assessed as well as its ability to generate cells resistant to HIV infection with reduced off-target effects. ZFNCCR5Δ32 activity was evaluated by heteroduplex formation in human K562 cells. Assessment of ZFNCCR5Δ32 specificity was analysed in silico. The yield of ZFNCCR5Δ32 in cell culture was improved by fluorescence-activated cell sorting, and the anti-HIV potency of ZFNCCR5Δ32 was measured in vitro in TZM-bl cells against HIV-1 strains. ZFNCCR5Δ32 effectively recognized the CCR5Δ32 region, inducing a frameshift of the CCR5 coding region that resulted in the complete absence of CCR5 expression of mRNA and of protein at the cell surface. CCR5 knockout cells were refractory to HIV-1 infection by the R5-using strain BaL. Unlike previous CCR5 ZFN studies, the new ZFN has no detectable off-target activity. ZFNCCR5Δ32 is a specific and efficient tool for the generation of CCR5 knockouts. Its ability to mimic the natural CCR5Δ32 phenotype in the absence of relevant off-site cutting events suggests that ZFNCCR5Δ32 might be safe in clinical research. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. An anti-CCR5 monoclonal antibody and small molecule CCR5 antagonists synergize by inhibiting different stages of human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Safarian, Diana; Carnec, Xavier; Tsamis, Fotini; Kajumo, Francis; Dragic, Tatjana

    2006-01-01

    HIV-1 coreceptors are attractive targets for novel antivirals. Here, inhibition of entry by two classes of CCR5 antagonists was investigated. We confirmed previous findings that HIV-1 isolates vary greatly in their sensitivity to small molecule inhibitors of CCR5-mediated entry, SCH-C and TAK-779. In contrast, an anti-CCR5 monoclonal antibody (PA14) similarly inhibited entry of diverse viral isolates. Sensitivity to small molecules was V3 loop-dependent and inversely proportional to the level of gp120 binding to CCR5. Moreover, combinations of the MAb and small molecules were highly synergistic in blocking HIV-1 entry, suggesting different mechanisms of action. This was confirmed by time course of inhibition experiments wherein the PA14 MAb and small molecules were shown to inhibit temporally distinct stages of CCR5 usage. We propose that small molecules inhibit V3 binding to the second extracellular loop of CCR5, whereas PA14 preferentially inhibits subsequent events such as CCR5 recruitment into the fusion complex or conformational changes in the gp120-CCR5 complex that trigger fusion. Importantly, our findings suggest that combinations of CCR5 inhibitors with different mechanisms of action will be central to controlling HIV-1 infection and slowing the emergence of resistant strains

  11. Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor.

    Science.gov (United States)

    Gornalusse, German G; Mummidi, Srinivas; Gaitan, Alvaro A; Jimenez, Fabio; Ramsuran, Veron; Picton, Anabela; Rogers, Kristen; Manoharan, Muthu Saravanan; Avadhanam, Nymisha; Murthy, Krishna K; Martinez, Hernan; Molano Murillo, Angela; Chykarenko, Zoya A; Hutt, Richard; Daskalakis, Demetre; Shostakovich-Koretskaya, Ludmila; Abdool Karim, Salim; Martin, Jeffrey N; Deeks, Steven G; Hecht, Frederick; Sinclair, Elizabeth; Clark, Robert A; Okulicz, Jason; Valentine, Fred T; Martinson, Neil; Tiemessen, Caroline Tanya; Ndung'u, Thumbi; Hunt, Peter W; He, Weijing; Ahuja, Sunil K

    2015-08-25

    T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG -41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG -41 that is (i) specific to southern Africa, (ii) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm(3)) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes.

  12. HIV-1 Escape from the CCR5 Antagonist Maraviroc Associated with an Altered and Less-Efficient Mechanism of gp120-CCR5 Engagement That Attenuates Macrophage Tropism▿

    Science.gov (United States)

    Roche, Michael; Jakobsen, Martin R.; Sterjovski, Jasminka; Ellett, Anne; Posta, Filippo; Lee, Benhur; Jubb, Becky; Westby, Mike; Lewin, Sharon R.; Ramsland, Paul A.; Churchill, Melissa J.; Gorry, Paul R.

    2011-01-01

    Maraviroc (MVC) inhibits the entry of human immunodeficiency virus type 1 (HIV-1) by binding to and modifying the conformation of the CCR5 extracellular loops (ECLs). Resistance to MVC results from alterations in the HIV-1 gp120 envelope glycoproteins (Env) enabling recognition of the drug-bound conformation of CCR5. To better understand the mechanisms underlying MVC resistance, we characterized the virus-cell interactions of gp120 from in vitro-generated MVC-resistant HIV-1 (MVC-Res Env), comparing them with those of gp120 from the sensitive parental virus (MVC-Sens Env). In the absence of the drug, MVC-Res Env maintains a highly efficient interaction with CCR5, similar to that of MVC-Sens Env, and displays a relatively modest increase in dependence on the CCR5 N terminus. However, in the presence of the drug, MVC-Res Env interacts much less efficiently with CCR5 and becomes critically dependent on the CCR5 N terminus and on positively charged elements of the drug-modified CCR5 ECL1 and ECL2 regions (His88 and His181, respectively). Structural analysis suggests that the Val323 resistance mutation in the gp120 V3 loop alters the secondary structure of the V3 loop and the buried surface area of the V3 loop–CCR5 N terminus interface. This altered mechanism of gp120-CCR5 engagement dramatically attenuates the entry of HIV-1 into monocyte-derived macrophages (MDM), cell-cell fusion activity in MDM, and viral replication capacity in MDM. In addition to confirming that HIV-1 escapes MVC by becoming heavily dependent on the CCR5 N terminus, our results reveal novel interactions with the drug-modified ECLs that are critical for the utilization of CCR5 by MVC-Res Env and provide additional insights into virus-cell interactions that modulate macrophage tropism. PMID:21345957

  13. Marked differences in CCR5 expression and activation levels in two South African populations

    Science.gov (United States)

    Picton, Anabela C P; Shalekoff, Sharon; Paximadis, Maria; Tiemessen, Caroline T

    2012-01-01

    The chemokine receptor CCR5 is pivotal in determining an individual’s susceptibility to HIV-1 infection and rate of disease progression. To establish whether population-based differences exist in cell surface expression of CCR5 we evaluated the extent of CCR5 expression across all peripheral blood cell types in individuals from two populations, South African Africans (SAA) and South African Caucasians (SAC). Significant differences in CCR5 expression, both in number of CCR5 molecules per cell (density) and the percentage of CCR5-expressing cells, were observed between the two study groups, within all cell subsets. Most notably, the percentage of all CCR5+ cell subsets was significantly lower in SAC compared with SAA individuals (P CCR5 density was significantly higher in SAC compared with SAA individuals in CCR5+ CD8+ T-cell subsets and CCR5+ NK-cell subsets (CD56+, CD16+ CD56+ and CD56dim) (all P CCR5 expression, which are likely to impact on both susceptibility to HIV-1 infection and the rate of HIV-1 disease progression. PMID:22509959

  14. CCR5 Expression Levels Influence NFAT Translocation, IL-2 Production, and Subsequent Signaling Events during T Lymphocyte Activation1

    OpenAIRE

    Camargo, Jose F.; Quinones, Marlon P.; Mummidi, Srinivas; Srinivas, Sowmya; Gaitan, Alvaro A.; Begum, Kazi; Jimenez, Fabio; VanCompernolle, Scott; Unutmaz, Derya; Ahuja, Seema S.; Ahuja, Sunil K.

    2009-01-01

    Ligands of CCR5, the major coreceptor of HIV-1, costimulate T lymphocyte activation. However, the full impact of CCR5 expression on T cell responses remains unknown. Here, we show that compared with CCR5+/+, T cells from CCR5−/− mice secrete lower amounts of IL-2, and a similar phenotype is observed in humans who lack CCR5 expression (CCR5-Δ32/Δ32 homozygotes) as well as after Ab-mediated blockade of CCR5 in human T cells genetically intact for CCR5 expression. Conversely, overexpression of C...

  15. The chemokine receptor CCR5 Δ32 allele in natalizumab-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Møller, M; Søndergaard, H B; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: The chemokine receptor CCR5 may be important for the recruitment of pathogenic T cells to the CNS in multiple sclerosis (MS). We hypothesized that this chemokine receptor might still be important for T-cell migration during treatment with anti-very late antigen (VLA)-4 antibody. We...... therefore analysed whether natalizumab-treated MS patients carrying the CCR5 Δ32 deletion allele, which results in reduced expression of CCR5 on the cell surface, had lower disease activity. METHODS: CCR5 Δ32 was analysed in 212 natalizumab-treated MS patients. RESULTS: CCR5 Δ32 status had no significant...... impact on the frequency of relapses 1 year prior to natalizumab treatment or during the first 48 weeks of treatment. The multiple sclerosis severity score (MSSS) was significantly lower at baseline in patients carrying CCR5 Δ32 (P = 0.031). CONCLUSIONS: CCR5 Δ32 is not associated with lower disease...

  16. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  17. Frequency of CCR5delta32 in Brazilian populations

    Directory of Open Access Journals (Sweden)

    A.E. Vargas

    2006-03-01

    Full Text Available A sample of 103 randomly chosen healthy individuals from Alegrete, RS, Brazil, was tested for the CCR5delta32 allele, which is known to influence susceptibility to HIV-1 infection. The CCR5delta32 allele was identified by PCR amplification using specific primers flanking the region of deletion, followed by electrophoresis on a 3% agarose gel. The data obtained were compared to those reported for other populations and interpreted in terms of Brazilian history. The individuals studied came from a highly admixed population. Most of them were identified as white (N = 59, while blacks and browns (mulattoes were N = 13 and N = 31, respectively. The observed frequencies, considering the white, black and brown samples (6.8, 3.8, and 6.4%, respectively, suggest an important European parental contribution, even in populations identified as black and brown. However, in Brazil as a whole, this allele shows gradients indicating a relatively good correlation with the classification based on skin color and other physical traits, used here to define major Brazilian population groups.

  18. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    OpenAIRE

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linker...

  19. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    Science.gov (United States)

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  20. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus

    Directory of Open Access Journals (Sweden)

    HyunJun Kang

    2015-01-01

    Full Text Available The chemokine (C-C motif receptor 5 (CCR5 serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs using CRISPR/Cas9 with single and dual guide RNAs (gRNAs. Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  1. The molecular cloning and functional expression of the dog CCR5.

    Science.gov (United States)

    Mosley, Michael; Pullen, Sarah; Botham, Andrew; Gray, Andrew; Napier, Carolyn; Mansfield, Roy; Holbrook, Mark

    2006-10-15

    Activation of CCR5 by specific chemokines is involved in the regulation of the immunological response of leukocytes at sites of inflammation. In addition, CCR5 serves as a fusion co-factor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). Consequently, several CCR5 antagonists are currently in development for the treatment of HIV-1 infection. The dog CCR5 gene was cloned in order to characterise the chemokine binding site of the dog receptor for comparison across species. The deduced amino acid sequence of the dog CCR5 has close homology to the human receptor (80% identity). A HEK-293 cell line expressing the dog recombinant receptor was generated and immunoblot analysis with an anti-human CCR5 antibody revealed a 58kDa band in the cell lysate. In functional calcium signalling assays, the CCR5 endogenous ligands MIP-1alpha, MIP-1beta and RANTES evoked a robust response in the dog recombinant CCR5 cells. In a CRE-Luc (cAMP response element-luciferase) reporter gene assay, MIP-1beta (0.01-30nM) produced concentration-dependent inhibition of forskolin induced elevation in cAMP levels, and was equipotent in dog, human and macaque recombinant CCR5 cells (EC(50) 0.4, 0.21 and 0.47nM, respectively). These data suggest that chemokine signalling is conserved in the dog CCR5.

  2. CCR5 Conformations Are Dynamic and Modulated by Localization, Trafficking and G Protein Association

    Science.gov (United States)

    Flegler, Ayanna J.; Cianci, Gianguido C.; Hope, Thomas J.

    2014-01-01

    CCR5 acts as the principal coreceptor during HIV-1 transmission and early stages of infection. Efficient HIV-1 entry requires a series of processes, many dependent on the conformational state of both viral envelope protein and cellular receptor. Monoclonal antibodies (MAbs) are able to identify different CCR5 conformations, allowing for their use as probes to distinguish CCR5 populations. Not all CCR5 MAbs are able to reduce HIV-1 infection, suggesting the use of select CCR5 populations for entry. In the U87.CD4.CCR5-GFP cell line, we used such HIV-1-restricting MAbs to probe the relation between localization, trafficking and G protein association for individual CCR5 conformations. We find that CCR5 conformations not only exhibit different localization and abundance patterns throughout the cell, but that they also display distinct sensitivities to endocytosis inhibition. Using chemokine analogs that vary in their HIV-1 inhibitory mechanisms, we also illustrate that responses to ligand engagement are conformation-specific. Additionally, we provide supporting evidence for the select sensitivity of conformations to G protein association. Characterizing the link between the function and dynamics of CCR5 populations has implications for understanding their selective targeting by HIV-1 and for the development of inhibitors that will block CCR5 utilization by the virus. PMID:24586501

  3. Molecular Gymnastics: Mechanisms of HIV-1 Resistance to CCR5 Antagonists and Impact on Virus Phenotypes.

    Science.gov (United States)

    Roche, Michael; Borm, Katharina; Flynn, Jacqueline K; Lewin, Sharon R; Churchill, Melissa J; Gorry, Paul R

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters host cells through the binding of its envelope glycoproteins (Env) to the host cell receptor CD4 and then subsequent binding to a chemokine coreceptor, either CCR5 or CXCR4. CCR5 antagonists are a relatively recent class addition to the armamentarium of anti-HIV-1 drugs. These compounds act by binding to a hydrophobic pocket formed by the transmembrane helices of CCR5 and altering the conformation of the extracellular domains, such that they are no longer recognized by Env. Maraviroc is the first drug within this class to be licenced for use in HIV-1 therapy regimens. HIV resistance to CCR5 antagonists occurs either through outgrowth of pre-existing CXCR4-using viruses, or through acquisition of the ability of CCR5-using HIV-1 to use the antagonist bound form of CCR5. In the latter scenario, the mechanism underlying resistance is through complex alterations in the way that resistant Envs engage CCR5. These significant changes are unlikely to occur without consequence to the viral entry phenotype and may also open up new avenues to target CCR5 antagonist resistant viruses. This review discusses the mechanism of action of CCR5 antagonists, how HIV resistance to CCR5 antagonists occurs, and the subsequent effects on Env function.

  4. Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Strayer, David S

    2013-09-01

    Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. The CC chemokine receptor 5 (CCR5) is a member of CC-chemokine receptor family that binds several chemokines, including CCL3 (macrophage inflammatory protein-1alpha, MIP-1alpha), CCL4 (macrophage inflammatory protein-1beta, MIP-1beta) and CCL5 (RANTES). The current review examines the relationship between CCR5 and the microglia in different neurological disorders and models of CNS injury. CCR5 expression is upregulated in different neurological diseases, where it is often immunolocalized in microglial cells. A multistep cascade couples CCR5 activation by chemokines to Ca(2+) increases in human microglia. Because changes in [Ca(2+)] (i) affect chemotaxis, secretion, and gene expression, pharmacologic modulation of this pathway may alter inflammatory and degenerative processes in the CNS. Consequently, targeting CCR5 by using CCR5 antagonists may attenuate critical aspects of neuroinflammation in different models of neurological disorders. To illustrate the interaction between CCR5 and microglia in the CNS, we used a model of excitotoxicity, and demonstrate the intimate involvement of CCR5 in neuron injury and inflammation attendant to kainic acid (KA)-induced neurotoxicity. CCR5 participates in neuronal injury caused by the excitotoxin, KA, brings inflammatory cells to the sites of KA-induced CNS injury, defines the extent of tissue loss after KA exposure and limits reparative responses. We used a SV40-derived vector carrying an interfering RNA (RNAi) that targets CCR5. Delivered directly to the bone marrow, this vector decreased CCR5 expression in circulating cells. Animals so treated showed greatly reduced expression of CCR5 and its ligands (MIP-1alpha and RANTES) in the CNS, including in the brain vasculature, decreased BBB leakage, demonstrated greater KA-stimulated neurogenesis and increased

  5. Limited protective effect of the CCR5Delta32/CCR5Delta32 genotype on human immunodeficiency virus infection incidence in a cohort of patients with hemophilia and selection for genotypic X4 virus

    DEFF Research Database (Denmark)

    Iversen, Astrid K N; Christiansen, Claus Bohn; Attermann, Jørn

    2003-01-01

    The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)-infected patients with hemophilia. One patient (0.6%) had the CCR5Delta32/CCR5Delta32 genotype (which occurs in approximately 2...... time were seen for CCR5/CCR5 patients. Surprisingly, no protective effect of the CCR5/CCR5Delta32 genotype on disease progression or survival was seen for children but was evident for adults. Age group-related immunologic differences might explain this variation, and transmission route and/or viral...... phenotype variation within donor virus may be related to the limited protection of the CCR5Delta32/CCR5Delta32 genotype. Sequence comparisons indicate that X4 virus can be selected in vivo due to either absence of CCR5 receptors or relative increase of CXCR4 receptors....

  6. Deficient Fas expression by CD4+ CCR5+ T cells in multiple sclerosis

    DEFF Research Database (Denmark)

    Julià, Eva; Montalban, Xavier; Al-Zayat, Hammad

    2006-01-01

    OBJECTIVE: To evaluate whether T cells expressing CCR5 and CXCR3 from multiple sclerosis (MS) patients are more resistant to apoptosis. METHODS: Expression of CD69, TNF-R1, Fas, FasL, bcl-2, and bax was investigated in 41 MS patients and 12 healthy controls by flow cytometry in CD4+ and CD8+ T...... cells expressing CCR5 and CXCR3. RESULTS: In MS patients, the percentage of CD69 was increased and Fas expression decreased in CD4+ CCR5+ T cells. INTERPRETATION: The lower Fas expression in activated CD4+ CCR5+ T cells might contribute to disease pathogenesis by prolonging cell survival and favoring...

  7. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

    Science.gov (United States)

    Zhou, Miou; Greenhill, Stuart; Huang, Shan; Silva, Tawnie K; Sano, Yoshitake; Wu, Shumin; Cai, Ying; Nagaoka, Yoshiko; Sehgal, Megha; Cai, Denise J; Lee, Yong-Seok; Fox, Kevin; Silva, Alcino J

    2016-01-01

    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV. DOI: http://dx.doi.org/10.7554/eLife.20985.001 PMID:27996938

  8. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory.

    Science.gov (United States)

    Zhou, Miou; Greenhill, Stuart; Huang, Shan; Silva, Tawnie K; Sano, Yoshitake; Wu, Shumin; Cai, Ying; Nagaoka, Yoshiko; Sehgal, Megha; Cai, Denise J; Lee, Yong-Seok; Fox, Kevin; Silva, Alcino J

    2016-12-20

    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV.

  9. CCR5 internalisation and signalling have different dependence on membrane lipid raft integrity.

    Science.gov (United States)

    Cardaba, Clara Moyano; Kerr, Jason S; Mueller, Anja

    2008-09-01

    The chemokine receptor, CCR5, acts as a co-receptor for human immunodeficiency virus entry into cells. CCR5 has been shown to be targeted to cholesterol- and sphingolipid-rich membrane microdomains termed lipid rafts or caveolae. Cholesterol is essential for CCL4 binding to CCR5 and for keeping the conformational integrity of the receptor. Filipin treatment leads to loss of caveolin-1 from the membrane and therefore to a collapse of the caveolae. We have found here that sequestration of membrane cholesterol with filipin did not affect receptor signalling, however a loss of ligand-induced internalisation of CCR5 was observed. Cholesterol extraction with methyl-beta-cyclodextrin (MCD) reduced signalling through CCR5 as measured by release of intracellular Ca(2+) and completely abolished the inhibition of forskolin-stimulated cAMP accumulation with no effect on internalisation. Pertussis toxin (PTX) treatment inhibited the intracellular release of calcium that is transduced via Galphai G-proteins. Depletion of cholesterol destroyed microdomains in the membrane and switched CCR5/G-protein coupling to a PTX-independent G-protein. We conclude that cholesterol in the membrane is essential for CCR5 signalling via the Galphai G-protein subunit, and that integrity of lipid rafts is not essential for effective CCR5 internalisation however it is crucial for proper CCR5 signal transduction via Galphai G-proteins.

  10. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    Science.gov (United States)

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  11. Effect of CCR5-Δ32 heterozygosity on HIV-1 susceptibility: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Sijie Liu

    Full Text Available BACKGROUND: So far, many studies have investigated the distribution of CCR5 genotype between HIV-1 infected patients and uninfected people. However, no definite results have been put forward about whether heterozygosity for a 32-basepair deletion in CCR5 gene (CCR5-Δ32 can affect HIV-1 susceptibility. METHODS: We performed a meta-analysis of 18 studies including more than 12000 subjects for whom the CCR5-Δ32 polymorphism was genotyped. Odds ratio (OR with 95% confidence interval (CI were employed to assess the association of CCR5-Δ32 polymorphism with HIV-1 susceptibility. RESULTS: Compared with the wild-type CCR5 homozygotes, the pooled OR for CCR5-Δ32 heterozygotes was 1.02 (95%CI, 0.88-1.19 for healthy controls (HC and 0.95 (95%CI, 0.71-1.26 for exposed uninfected (EU controls. Similar results were found in stratified analysis by ethnicity, sample size and method of CCR5-Δ32 genotyping. CONCLUSIONS: The meta-analysis indicated that HIV-1 susceptibility is not significantly affected by heterozygosity for CCR5-Δ32.

  12. Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor.

    Science.gov (United States)

    Espy, Nicole; Pacheco, Beatriz; Sodroski, Joseph

    2017-08-01

    The binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41) 3 ) to the receptors CD4 and CCR5 triggers virus entry into host cells. To identify Env regions that respond to CCR5 binding, HIV-1 was serially passaged on a CD4-positive canine cell line expressing progressively lower levels of CCR5. HIV-1 replication was observed in cells expressing ~1300 CCR5 molecules/cell. Env changes that conferred this low-CCR5 replication phenotype were located outside of the known CCR5-binding region of the gp120 Env subunit and did not apparently increase CCR5 binding affinity. The adaptation-associated changes, located in the gp120 α1 helix and in the gp41 HR1 heptad repeat and membrane-proximal external region (MPER), enhanced HIV-1 replication in cells at all levels of CCR5 expression. The adapted Envs exhibited a greater propensity to undergo conformational changes, as evidenced by increased exposure of conserved regions near the CD4- and CCR5-binding sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  14. Amino- and Carboxyl-Terminal CCR5 Mutations in Brazilian HIV-1-Infected Women and Homology Model of p.L55Q CCR5 Mutant.

    Science.gov (United States)

    Costa, Giselle Calasans de Souza; Nunes, Marcio Roberto T; Jesus, Jaqueline Goes; Novaes, Thiago; Cardoso, Jedson Ferreira; Sousa Júnior, Edivaldo Costa; Santos, Edson de Souza; Galvão-Castro, Bernardo; Zanette, Dalila Luciola; Gonçalves, Marilda de Souza; Alcantara, Luiz Carlos Junior

    2015-07-01

    Genetic factors from an HIV-1 host can affect the rate of progression to AIDS and HIV infection. To investigate the frequency of mutations in the CCR5 gene, HIV-1 samples from infected women and uninfected individuals were selected for sequencing of the CCR5 gene regions encoding the N- and C-terminal protein domains. Physicochemical CCR5 modeling and potential protein domain analysis were performed in order to evaluate the impact of the mutations found in the properties and structure of CCR5. The p.L55Q mutation in the N-terminal protein domain was observed only in uninfected individuals, with an allelic frequency of 1.8%. Physicochemical analysis revealed that the p.L55Q mutation magnified the flexibility and accessibility profiles and the modeling of CCR5 structures showed resulting in a small deviation to the right, as well as a hydrophobic to hydrophilic property alteration. The p.L55Q mutation also resulted in a slight modification of the electrostatic load of this region. Additionally, three novel silent mutations were found at the C-terminal coding region among HIV-1-infected women. The results suggest that the p.L55Q mutation might alter CCR5 conformation. Further studies should be conducted to verify the role of this mutation in HIV-1 susceptibility.

  15. 27-Hydroxycholesterol and 7alpha-hydroxycholesterol trigger a sequence of events leading to migration of CCR5-expressing Th1 lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Mi, E-mail: lala1647@hanmail.net [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Kim, Bo-Young, E-mail: kimboyoung@pusan.ac.kr [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sae-A, E-mail: saeah486@nate.com [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Eo, Seong-Kug, E-mail: vetvirus@chonbuk.ac.kr [Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Yun, Yungdae, E-mail: yunyung@ewha.ac.kr [Department of Life Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Chi-Dae, E-mail: chidkim@pusan.ac.kr [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Kim, Koanhoi, E-mail: koanhoi@pusan.ac.kr [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of)

    2014-02-01

    Th1 lymphocyte recruitment in a cholesterol-rich milieu. We propose a model via which 27OHChol and 7αOHChol contribute to the predominance of Th1 cells in atherosclerotic lesions on the basis of our results and previous findings. Cholesterol deposited in the artery undergoes oxidative modification to oxysterols. Exposure of monocytic cells to 27OHChol or 7αOHChol results in increased transcription and secretion of CCR5 ligands, like CCL3 and CCL4, which leads to a concentration gradient of the chemokines. Among the lymphocytes attached to cell adhesion molecules expressed on endothelial cells, Th1 cells that express CCR5 recognize the gradient and follow the signal of increasing chemokine concentration towards the source of the chemokines, whereas other subtypes of T cells that do not express CCR5 (Tregs and Th2 cells) do not respond. The preferential infiltration of Th1 cells leads to predominance of Th1 cells. Since oxidized LDL (oxLDL) enhances the expression of cell adhesion molecules on endothelial cells, existence of oxLDL will accelerate the recruitment of Th1 lymphocytes into atherosclerotic lesions in response to the oxysterols. - Highlights: • High-cholesterol diet induces CCR5L expression, like CCL3 and CCL4, in ApoE{sup −/−} mice. • 27OHChol and 7αOHChol enhance secretion of CCL3 and CCL4 by monocytic cells. • The secreted CCR5 ligands promote migration of CCR5-expressing Th1 cells. • We report a mechanism underlying Th1 cell recruitment into atherosclerotic lesions.

  16. 27-Hydroxycholesterol and 7alpha-hydroxycholesterol trigger a sequence of events leading to migration of CCR5-expressing Th1 lymphocytes

    International Nuclear Information System (INIS)

    Kim, Sun-Mi; Kim, Bo-Young; Lee, Sae-A; Eo, Seong-Kug; Yun, Yungdae; Kim, Chi-Dae; Kim, Koanhoi

    2014-01-01

    lymphocyte recruitment in a cholesterol-rich milieu. We propose a model via which 27OHChol and 7αOHChol contribute to the predominance of Th1 cells in atherosclerotic lesions on the basis of our results and previous findings. Cholesterol deposited in the artery undergoes oxidative modification to oxysterols. Exposure of monocytic cells to 27OHChol or 7αOHChol results in increased transcription and secretion of CCR5 ligands, like CCL3 and CCL4, which leads to a concentration gradient of the chemokines. Among the lymphocytes attached to cell adhesion molecules expressed on endothelial cells, Th1 cells that express CCR5 recognize the gradient and follow the signal of increasing chemokine concentration towards the source of the chemokines, whereas other subtypes of T cells that do not express CCR5 (Tregs and Th2 cells) do not respond. The preferential infiltration of Th1 cells leads to predominance of Th1 cells. Since oxidized LDL (oxLDL) enhances the expression of cell adhesion molecules on endothelial cells, existence of oxLDL will accelerate the recruitment of Th1 lymphocytes into atherosclerotic lesions in response to the oxysterols. - Highlights: • High-cholesterol diet induces CCR5L expression, like CCL3 and CCL4, in ApoE −/− mice. • 27OHChol and 7αOHChol enhance secretion of CCL3 and CCL4 by monocytic cells. • The secreted CCR5 ligands promote migration of CCR5-expressing Th1 cells. • We report a mechanism underlying Th1 cell recruitment into atherosclerotic lesions

  17. Chemokine Receptor CCR5 Antagonist Maraviroc: Medicinal Chemistry and Clinical Applications

    Science.gov (United States)

    Xu, Guoyan G.; Guo, Jia; Wu, Yuntao

    2015-01-01

    The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc. PMID:25159165

  18. The functional antagonist Met-RANTES: a modified agonist that induces differential CCR5 trafficking.

    Science.gov (United States)

    Kiss, Debra L; Longden, James; Fechner, Gregory A; Avery, Vicky M

    2009-01-01

    CC chemokine receptor 5 (CCR5) is a pro-inflammatory chemokine receptor that is expressed on cells of the immune system, and specializes in cell migration in response to inflammation and tissue damage. Due to its key role in cell communication and migration, this receptor is involved in various inflammatory and autoimmune diseases, in addition to HIV infection. Met-RANTES is a modified CCR5 ligand that has previously been shown to antagonize CCR5 activation and function in response to its natural ligands in vitro. In vivo, Met-RANTES is able to reduce inflammation in models of induced inflammatory and autoimmune diseases. However, due to the fact that Met-RANTES is also capable of partial agonist activity regarding receptor signaling and internalization, it is clear that Met-RANTES does not function as a conventional receptor antagonist. To further elucidate the effect of Met-RANTES on CCR5, receptor trafficking was investigated in a CHO-CCR5-GFP cell line using the Opera confocal plate reader. The internalization response of CCR5 was quantified, and showed that Met-RANTES internalized CCR5 in a slower, less potent manner than the agonists CCL3 and CCL5. Fluorescent organelle labeling and live cell imaging showed CCL3 and CCL5 caused CCR5 to traffic through sorting endosomes, recycling endosomes and the Golgi apparatus. In contrast, Met-RANTES caused CCR5 to traffic through sorting endosomes and the Golgi apparatus in a manner that was independent of recycling endosomes. As receptor trafficking impacts on cell surface expression and the ability of the receptor to respond to more ligand, this information may indicate an alternative regulation of CCR5 by Met-RANTES that allows the modified ligand to reduce inflammation through stimulation of a pro-inflammatory receptor.

  19. Association between HIV-1 tropism and CCR5 human haplotype E in a Caucasian population.

    Science.gov (United States)

    Huik, Kristi; Avi, Radko; Uibopuu, Helen; Pauskar, Merit; Margus, Tõnu; Karki, Tõnis; Krispin, Tõnu; Kool, Piret; Rüütel, Kristi; Talu, Ave; Abel-Ollo, Katri; Uusküla, Anneli; Carrillo, Andrew; He, Weijing; Ahuja, Sunil K; Lutsar, Irja

    2014-07-01

    The influence of the diversity of CCR5 on HIV susceptibility and disease progression has been clearly demonstrated but how the variability of this gene influences the HIV tropism is poorly understood. We investigated whether CCR5 haplotypes are associated with HIV tropism in a Caucasian population. We evaluated 161 HIV-positive subjects in a cross-sectional study. CCR5 haplotypes were derived after genotyping 9 CCR2-CCR5 polymorphisms. The HIV subtype was determined by phylogenetic analysis using the maximum likelihood method and viral tropism by the genotypic tropism assay (geno2pheno). Associations between CCR5 haplotypes and viral tropism were determined using logistic regression analyses. Samples from 500 blood donors were used to evaluate the representativeness of HIV-positives in terms of CCR5 haplotype distribution. The distribution of CCR5 haplotypes was similar in HIV-positive subjects and blood donors. The majority of viruses (93.8%) belonged to HIV-1 CRF06_cpx; 7.5% were X4, and the remaining were R5 tropic. X4 tropic viruses were over represented among people with CCR5 human haplotype E (HHE) compared with those without this haplotype (13.0% vs 1.4%; P = 0.006). People possessing CCR5 HHE had 11 times increased odds (odds ratio = 11.00; 95% confidence interval: 1.38 to 87.38) of having X4 tropic viruses than those with non-HHE. After adjusting for antiretroviral (ARV) therapy, neither the presence of HHE nor the use of ARV was associated with X4 tropic viruses. Our results suggest that CCR5 HHE and ARV treatment might be associated with the presence of HIV-1 X4 tropic viruses.

  20. CCR5 down-regulates osteoclast function in orthodontic tooth movement.

    Science.gov (United States)

    Andrade, I; Taddei, S R A; Garlet, G P; Garlet, T P; Teixeira, A L; Silva, T A; Teixeira, M M

    2009-11-01

    During orthodontic tooth movement, there is local production of chemokines and an influx of leukocytes into the periodontium. CCL5 plays an important role in osteoclast recruitment and activation. This study aimed to investigate whether the CCR5-receptor influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and CCR5-deficient mice (CCR5(-/-)). The expression of mediators involved in bone remodeling was evaluated in periodontal tissues by Real-time PCR. The number of TRAP-positive osteoclasts and the expression of cathepsin K, RANKL, and MMP13 were significantly higher in CCR5(-/-). Meanwhile, the expression of two osteoblastic differentiation markers, RUNX2 and osteocalcin, and that of bone resorption regulators, IL-10 and OPG, were lower in CCR5(-/-). Analysis of the data also showed that CCR5(-/-) exhibited a greater amount of tooth movement after 7 days of mechanical loading. The results suggested that CCR5 might be a down-regulator of alveolar bone resorption during orthodontic movement.

  1. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop.

    Science.gov (United States)

    Tamamis, Phanourios; Floudas, Christodoulos A

    2014-01-01

    The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13-21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.

  2. Decreased HIV type 1 transcription in CCR5-Δ32 heterozygotes during suppressive antiretroviral therapy.

    Science.gov (United States)

    Wang, Charlene; Abdel-Mohsen, Mohamed; Strain, Matthew C; Lada, Steven M; Yukl, Steven; Cockerham, Leslie R; Pilcher, Christopher D; Hecht, Frederick M; Sinclair, Elizabeth; Liegler, Teri; Richman, Douglas D; Deeks, Steven G; Pillai, Satish K

    2014-12-01

    Individuals who are heterozygous for the CCR5-Δ32 mutation provide a natural model to examine the effects of reduced CCR5 expression on human immunodeficiency virus (HIV) persistence. We evaluated the HIV reservoir in 18 CCR5-Δ32 heterozygotes and 54 CCR5 wild-type individuals during suppressive antiretroviral therapy. Cell-associated HIV RNA levels (P=.035), RNA to DNA transcriptional ratios (P=.013), and frequency of detectable HIV 2-long terminal repeat circular DNA (P=.013) were significantly lower in CD4+ T cells from CCR5-Δ32 heterozygotes. Cell-associated HIV RNA was significantly correlated with CCR5 surface expression on CD4+ T cells (r2=0.136; P=.002). Our findings suggest that curative strategies should further explore manipulation of CCR5. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. CCR2, CCR5, and CXCL12 variation and HIV/AIDS in Papua New Guinea.

    Science.gov (United States)

    Mehlotra, Rajeev K; Hall, Noemi B; Bruse, Shannon E; John, Bangan; Zikursh, Melinda J Blood; Stein, Catherine M; Siba, Peter M; Zimmerman, Peter A

    2015-12-01

    Polymorphisms in chemokine receptors, serving as HIV co-receptors, and their ligands are among the well-known host genetic factors associated with susceptibility to HIV infection and/or disease progression. Papua New Guinea (PNG) has one of the highest adult HIV prevalences in the Asia-Pacific region. However, information regarding the distribution of polymorphisms in chemokine receptor (CCR5, CCR2) and chemokine (CXCL12) genes in PNG is very limited. In this study, we genotyped a total of nine CCR2-CCR5 polymorphisms, including CCR2 190G >A, CCR5 -2459G >A and Δ32, and CXCL12 801G >A in PNG (n=258), North America (n=184), and five countries in West Africa (n=178). Using this data, we determined previously characterized CCR5 haplotypes. In addition, based on the previously reported associations of CCR2 190, CCR5 -2459, CCR5 open reading frame, and CXCL12 801 genotypes with HIV acquisition and/or disease progression, we calculated composite full risk scores, considering both protective as well as susceptibility effects of the CXCL12 801 AA genotype. We observed a very high frequency of the CCR5 -2459A allele (0.98) in the PNG population, which together with the absence of Δ32 resulted in a very high frequency of the HHE haplotype (0.92). These frequencies were significantly higher than in any other population (all P-valuesnew insights regarding CCR5 variation in the PNG population, and suggest that the collective variation in CCR2, CCR5, and CXCL12 may increase the risk of HIV/AIDS in a large majority of Papua New Guineans. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. CCR5 Haplotypes Influence HCV Serostatus in Caucasian Intravenous Drug Users

    Science.gov (United States)

    Huik, Kristi; Avi, Radko; Carrillo, Andrew; Harper, Nathan; Pauskar, Merit; Sadam, Maarja; Karki, Tõnis; Krispin, Tõnu; Kongo, Ulvi-Kaire; Jermilova, Tatiana; Rüütel, Kristi; Talu, Ave; Abel-Ollo, Katri; Uusküla, Anneli; Ahuja, Sunil K.; He, Weijing; Lutsar, Irja

    2013-01-01

    Background Up to 90% HIV-1 positive intravenous drug users (IDUs) are co-infected with HCV. Although best recognized for its function as a major co-receptor for cell entry of HIV, CC chemokine receptor 5 (CCR5) has also been implicated in the pathogenesis of HCV infection. Here, we investigated whether CCR5 haplotypes influence HIV-1 and HCV seropositivity among 373 Caucasian IDUs from Estonia. Methods Of these IDUs, 56% and 44% were HIV and HCV seropositive, respectively, and 47% were coinfected. 500 blood donors seronegative for HIV and HCV were also evaluated. CCR5 haplotypes (HHA to HHG*2) were derived after genotyping nine CCR2–CCR5 polymorphisms. The association between CCR5 haplotypes with HIV and/or HCV seropositivity was determined using logistic regression analysis. Co-variates included in the models were length of intravenous drug use, HBV serostatus and copy number of CCL3L1, the gene encoding the most potent HIV-suppressive chemokine and ligand for CCR5. Results Compared to IDUs seronegative for both HCV and HIV (HCV−/HIV-), IDUs who were HCV+/HIV- and HCV+/HIV+were 92% and 82%, respectively, less likely to possess the CCR5-HHG*1 haplotype, after controlling for co-variates (Padjusted = 1.89×10−4 and 0.003, respectively). This association was mostly due to subjects bearing the CCR5 HHE and HHG*1 haplotype pairs. Approximately 25% andHIV- IDUs and HCV−/HIV- blood donors, respectively, possessed the HHE/HHG*1 genotype. Conclusions Our findings suggest that HHG*1-bearing CCR5 genotypes influence HCV seropositivity in a group of Caucasian IDUs. PMID:23936229

  5. Limited protective effect of the CCR5Δ32/CCR5Δ32 genotype on human immunodeficiency virus infection incidence in a cohort of patients with hemophilia and selection for genotypic X4 virus

    DEFF Research Database (Denmark)

    Iversen, Astrid K. N.; Christiansen, Claus Bohn; Attermann, Jørn

    2003-01-01

    The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)–infected patients with hemophilia. One patient (0.6%) had the CCR5Δ32/CCR5Δ32 genotype (which occurs in ∼2% of the Scandinavian population...

  6. Molekulare Klonierung, stabile Transfektion und funktionelle Expression der murinen Chemokinrezeptoren Ccr2 und Ccr5

    OpenAIRE

    Simonis, Christopher

    2009-01-01

    The two chemokine receptors CCR2 and CCR5 play important roles in the recruitment and activation of monocytes/macrophages and T-lymphocytes at sites of infection and inflammation. To further examine their function, I cloned the two murine chemokine receptors Ccr2 and Ccr5 from genomic mouse DNA by a PCR-based cloning strategy and functionally expressed them in stably transfected CHO-cells. These cells were used to generate the first monoclonal antibodies against Ccr2 and Ccr5.

  7. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Timm, Sally; Wang, August G

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  8. Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors.

    Science.gov (United States)

    Asin-Milan, Odalis; Sylla, Mohamed; El-Far, Mohamed; Belanger-Jasmin, Geneviève; Haidara, Alpha; Blackburn, Julie; Chamberland, Annie; Tremblay, Cécile L

    2014-12-01

    Here, we evaluated the in vitro anti-HIV-1 activity of the experimental CCR5 inhibitor VCH-286 as a single agent or in combination with various classes of HIV-1 inhibitors. Although VCH-286 used alone had highly inhibitory activity, paired combinations with different drug classes led to synergistic or additive interactions. However, combinations with other CCR5 inhibitors led to effects ranging from synergy to antagonism. We suggest that caution should be exercised when combining CCR5 inhibitors in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. CD4-independent use of the CCR5 receptor by sequential primary SIVsm isolates

    Directory of Open Access Journals (Sweden)

    Thorstensson Rigmor

    2007-07-01

    Full Text Available Abstract Background CD4-independence has been taken as a sign of a more open envelope structure that is more accessible to neutralizing antibodies and may confer altered cell tropism. In the present study, we analyzed SIVsm isolates for CD4-independent use of CCR5, mode of CCR5-use and macrophage tropism. The isolates have been collected sequentially from 13 experimentally infected cynomolgus macaques and have previously been shown to use CCR5 together with CD4. Furthermore, viruses obtained early after infection were neutralization sensitive, while neutralization resistance appeared already three months after infection in monkeys with progressive immunodeficiency. Results Depending whether isolated early or late in infection, two phenotypes of CD4-independent use of CCR5 could be observed. The inoculum virus (SIVsm isolate SMM-3 and reisolates obtained early in infection often showed a pronounced CD4-independence since virus production and/or syncytia induction could be detected directly in NP-2 cells expressing CCR5 but not CD4 (CD4-independent-HIGH. Conversely, late isolates were often more CD4-dependent in that productive infection in NP-2/CCR5 cells was in most cases weak and was revealed only after cocultivation of infected NP-2/CCR5 cells with peripheral blood mononuclear cells (CD4-independent-LOW. Considering neutralization sensitivity of these isolates, newly infected macaques often harbored virus populations with a CD4-independent-HIGH and neutralization sensitive phenotype that changed to a CD4-independent-LOW and neutralization resistant virus population in the course of infection. Phenotype changes occurred faster in progressor than long-term non-progressor macaques. The phenotypes were not reflected by macrophage tropism, since all isolates replicated efficiently in macrophages. Infection of cells expressing CCR5/CXCR4 chimeric receptors revealed that SIVsm used the CCR5 receptor in a different mode than HIV-1. Conclusion Our

  10. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1...... fusion inhibitors. A virus-free cell-based fusion reporter assay, based on mixing "effector cells" (expressing HIV Env and luciferase activator) with "target cells" (expressing CD4, CCR5 wild type or a selection of well-described mutations, and luciferase reporter), was used as fusion readout. Receptor...... expression was evaluated by ELISA and fluorescence microscopy. On CCR5 WT, Maraviroc and Aplaviroc inhibited fusion with high potencies (EC 50 values of 91 and 501 nM, respectively), whereas removal of key residues for both antagonists (Glu283Ala) or Maraviroc alone (Tyr251Ala) prevented fusion inhibition...

  11. Quantifying CD4/CCR5 Usage Efficiency of HIV-1 Env Using the Affinofile System.

    Science.gov (United States)

    Webb, Nicholas E; Lee, Benhur

    2016-01-01

    Entry of HIV-1 into target cells involves the interaction of the HIV envelope (Env) with both a primary receptor (CD4) and a coreceptor (CXCR4 or CCR5). The relative efficiency with which a particular Env uses these receptors is a major component of cellular tropism in the context of entry and is related to a variety of pathological Env phenotypes (Chikere et al. Virology 435:81-91, 2013). The protocols outlined in this chapter describe the use of the Affinofile system, a 293-based dual-inducible cell line that expresses up to 25 distinct combinations of CD4 and CCR5, as well as the associated Viral Entry Receptor Sensitivity Assay (VERSA) metrics used to summarize the CD4/CCR5-dependent infectivity results. This system allows for high-resolution profiling of CD4 and CCR5 usage efficiency in the context of unique viral phenotypes.

  12. CCR5 as a natural and modulated target for inhibition of HIV.

    Science.gov (United States)

    Burke, Bryan P; Boyd, Maureen P; Impey, Helen; Breton, Louis R; Bartlett, Jeffrey S; Symonds, Geoff P; Hütter, Gero

    2013-12-30

    Human immunodeficiency virus type 1 (HIV-1) infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection-this without detrimental effects to the host-and transplantation of CCR5-delta32 stem cells in a patient with HIV ("Berlin patient") achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46) that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.

  13. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili [Scripps; (Chinese Aca. Sci.); (UCSD)

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  14. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system.

    Science.gov (United States)

    Durrant, Douglas M; Daniels, Brian P; Pasieka, TracyJo; Dorsey, Denise; Klein, Robyn S

    2015-12-15

    Cell-mediated immunity is critical for clearance of central nervous system (CNS) infection with the encephalitic flavivirus, West Nile virus (WNV). Prior studies from our laboratory have shown that WNV-infected neurons express chemoattractants that mediate recruitment of antiviral leukocytes into the CNS. Although the chemokine receptor, CCR5, has been shown to play an important role in CNS host defense during WNV infection, regional effects of its activity within the infected brain have not been defined. We used CCR5-deficient mice and an established murine model of WNV encephalitis to determine whether CCR5 activity impacts on WNV levels within the CNS in a region-specific fashion. Statistical comparisons between groups were made with one- or two-way analysis of variance; Bonferroni's post hoc test was subsequently used to compare individual means. Survival was analyzed by the log-rank test. Analyses were conducted using Prism software (GraphPad Prism). All data were expressed as means ± SEM. Differences were considered significant if P ≤ 0.05. As previously shown, lack of CCR5 activity led to increased symptomatic disease and mortality in mice after subcutaneous infection with WNV. Evaluation of viral burden in the footpad, draining lymph nodes, spleen, olfactory bulb, and cerebellum derived from WNV-infected wild-type, and CCR5(-/-) mice showed no differences between the genotypes. In contrast, WNV-infected, CCR5(-/-) mice exhibited significantly increased viral burden in cortical tissues, including the hippocampus, at day 8 post-infection. CNS regional studies of chemokine expression via luminex analysis revealed significantly increased expression of CCR5 ligands, CCL4 and CCL5, within the cortices of WNV-infected, CCR5(-/-) mice compared with those of similarly infected WT animals. Cortical elevations in viral loads and CCR5 ligands in WNV-infected, CCR5(-/-) mice, however, were associated with decreased numbers of infiltrating mononuclear cells

  15. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives.

    Science.gov (United States)

    Wei, Robert G; Arnaiz, Damian O; Chou, Yuo-Ling; Davey, Dave; Dunning, Laura; Lee, Wheeseong; Lu, Shou-Fu; Onuffer, James; Ye, Bin; Phillips, Gary

    2007-01-01

    High throughput screening (HTS) led to the identification of the guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde as a CCR5 receptor antagonist. Initial modifications of the guanylhydrazone series indicated that substitution of the benzyl group at the para-position was well tolerated. Substitution at the 5-position of the central phenyl ring was critical for potency. Replacement of the guanylhydrazone group led to the discovery of a novel series of CCR5 antagonists.

  16. Frequency of CCR5Δ32 allele in healthy Bosniak population.

    Directory of Open Access Journals (Sweden)

    Grażyna Adler

    2014-08-01

    Full Text Available Recent evidence has demonstrated the role of CCR5Δ32 in a variety of human diseases: from infectious and inflammatory diseases to cancer. Several studies have confirmed that genetic variants in chemokine receptor CCR5 gene are correlated with susceptibility and resistance to HIV infection. A 32-nucleotide deletion within the CCR5 reading frame is associated with decreased susceptibility to HIV acquisition and a slower progression to AIDS. Mean frequency of CCR5Δ32 allele in Europe is approximately 10%. The highest allele frequency is observed among Nordic populations (about 12% and lower in the regions of Southeast Mediterranean (about 5%. Although the frequency of CCR5Δ32 was determined in numerous European populations, there is a lack of studies on this variant in the Bosnia and Hercegovina population. Therefore, the aim of our study was to assess the frequency of CCR5Δ32 allele in the cohort of Bosniaks and compare the results with European reports. CCR5Δ32 was detected by sequence-specific PCR in a sample of 100 healthy subjects from Bosnia and Herzegovina (DNA collected 2011-2013.  Mean age of the cohort being 58.8 (±10.7 years, with 82% of women. We identified 17 heterozygotes and one mutant homozygote in study group, with mean ∆32 allele frequency of 9.5%. CCR5∆32 allele frequency among Bosniaks is comparable to that found in Caucasian populations and follows the pattern of the north-southern gradient observed for Europe. Further studies on larger cohorts with adequate female-to-male ratio are necessary. 

  17. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5.

    Science.gov (United States)

    Berg, Christian; Spiess, Katja; Lüttichau, Hans R; Rosenkilde, Mette M

    2016-12-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1 fusion inhibitors. A virus-free cell-based fusion reporter assay, based on mixing "effector cells" (expressing HIV Env and luciferase activator) with "target cells" (expressing CD4, CCR5 wild type or a selection of well-described mutations, and luciferase reporter), was used as fusion readout. Receptor expression was evaluated by ELISA and fluorescence microscopy. On CCR5 WT, Maraviroc and Aplaviroc inhibited fusion with high potencies (EC 50 values of 91 and 501 nM, respectively), whereas removal of key residues for both antagonists (Glu283Ala) or Maraviroc alone (Tyr251Ala) prevented fusion inhibition, establishing this assay as suitable for screening of HIV entry inhibitors. Both ligands inhibited HIV fusion on signaling-deficient CCR5 mutations (Tyr244Ala and Trp248Ala). Moreover, the steric hindrance CCR5 mutation (Gly286Phe) impaired fusion, presumably by a direct hindrance of gp120 interaction. Finally, the efficacy switch mutation (Leu203Phe) - converting small-molecule antagonists/inverse agonists to full agonists biased toward G-protein activation - uncovered that also small-molecule agonists can function as direct HIV-1 cell entry inhibitors. Importantly, no agonist-induced receptor internalization was observed for this mutation. Our studies of the pharmacodynamic requirements for HIV-1 fusion inhibitors highlight the possibility of future development of biased ligands with selective targeting of the HIV-CCR5 interaction without interfering with the normal functionality of CCR5.

  18. Cytomegalovirus upregulates expression of CCR5 in central memory cord blood mononuclear cells, which may facilitate in utero HIV type 1 transmission.

    Science.gov (United States)

    Johnson, Erica L; Howard, Chanie L; Thurman, Joy; Pontiff, Kyle; Johnson, Elan S; Chakraborty, Rana

    2015-01-15

    Administration of combination antiretroviral therapy to human immunodeficiency virus type 1 (HIV-1)-infected pregnant women significantly reduces vertical transmission. In contrast, maternal co-opportunistic infection with primary or reactivated cytomegalovirus (CMV) or other pathogens may facilitate in utero transmission of HIV-1 by activation of cord blood mononuclear cells (CBMCs). Here we examine the targets and mechanisms that affect fetal susceptibility to HIV-1 in utero. Using flow cytometry, we demonstrate that the fraction of CD4(+)CD45RO(+) and CD4(+)CCR5(+) CBMCs is minimal, which may account for the low level of in utero HIV-1 transmission. Unstimulated CD4(+) CBMCs that lack CCR5/CD45RO showed reduced levels of HIV-1 infection. However, upon in vitro stimulation with CMV, CBMCs undergo increased proliferation to upregulate the fraction of T central memory cells and expression of CCR5, which enhances susceptibility to HIV-1 infection in vitro. These data suggest that activation induced by CMV in vivo may alter CCR5 expression in CD4(+) T central memory cells to promote in utero transmission of HIV-1. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Distribution of the CCR5delta32 allele (gene variant CCR5) in Rondônia, Western Amazonian region, Brazil

    Science.gov (United States)

    de Farias, Josileide Duarte; Santos, Marlene Guimarães; de França, Andonai Krauze; Delani, Daniel; Tada, Mauro Shugiro; Casseb, Almeida Andrade; Simões, Aguinaldo Luiz; Engracia, Vera

    2012-01-01

    Since around 1723, on the occasion of its initial colonization by Europeans, Rondonia has received successive waves of immigrants. This has been further swelled by individuals from northeastern Brazil, who began entering at the beginning of the twentieth century. The ethnic composition varies across the state according to the various sites of settlement of each wave of immigrants. We analyzed the frequency of the CCR5Δ32 allele of the CCR5 chemokine receptor, which is considered a Caucasian marker, in five sample sets from the population. Four were collected in Porto Velho, the state capital and the site of several waves of migration. Of these, two, from the Hospital de Base were comprised of HB Mothers and HB Newborns presenting allele frequencies of 3.5% and 3.1%, respectively, a third from the peri-urban neighborhoods of Candelária/Bate-Estaca (1.8%), whereas a fourth, from the Research Center on Tropical Medicine/CEPEM (0.6%), was composed of malaria patients under treament. The fifth sample (3.4%) came from the inland Quilombola village of Pedras Negras. Two homozygous individuals (CCR5Δ32/CCR5Δ32) were detected among the HB Mother samples. The frequency of this allele was heterogeneous and higher where the European inflow was more pronounced. The presence of the allele in Pedras Negras revealed European miscegenation in a community largely comprising Quilombolas. PMID:22481870

  20. Heroin use in Indonesia is associated with higher expression of CCR5 on CD4+ cells and lower ex-vivo production of CCR5 ligands

    NARCIS (Netherlands)

    Meijerink, H.; Indrati, A.R.; Soedarmo, S.; Utami, F.; Jong, C.A.J. de; Alisjahbana, B.; Crevel, R. van; Wisaksana, R.; Ven, A.J.A.M. van der

    2015-01-01

    Opioid use may affect HIV infection through altered expression of HIV co-receptors. This was examined in Indonesia among antiretroviral therapy-naive HIV patients, many of whom use drugs. C-C chemokine receptor type 5 (CCR5) expression on CD4+ cells was higher in heroin (P = 0.007), methadone

  1. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape.

    Science.gov (United States)

    Hütter, Gero; Bodor, Josef; Ledger, Scott; Boyd, Maureen; Millington, Michelle; Tsie, Marlene; Symonds, Geoff

    2015-07-27

    Allogeneic transplantation with CCR5-delta 32 (CCR5-d32) homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC) to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN), clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9), transcription activator-like effectors nuclease (TALEN), short hairpin RNA (shRNA), and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.

  2. CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV.

    Science.gov (United States)

    Kim, Michelle B; Giesler, Kyle E; Tahirovic, Yesim A; Truax, Valarie M; Liotta, Dennis C; Wilson, Lawrence J

    2016-12-01

    The chemokine receptor CCR5 has garnered significant attention in recent years as a target to treat HIV infection largely due to the approval and success of the drug Maraviroc. The side effects and inefficiencies with other first generation agents led to failed clinical trials, prompting the development of newer CCR5 antagonists. Areas covered: This review aims to survey the current status of 'next generation' CCR5 antagonists in the preclinical pipeline with an emphasis on emerging agents for the treatment of HIV infection. These efforts have culminated in the identification of advanced second-generation agents to reach the clinic and the dual CCR5/CCR2 antagonist Cenicriviroc as the most advanced currently in phase II clinical studies. Expert opinion: The clinical success of CCR5 inhibitors for treatment of HIV infection has rested largely on studies of Maraviroc and a second-generation dual CCR5/CCR2 antagonist Cenicriviroc. Although research efforts identified several promising preclinical candidates, these were dropped during early clinical studies. Despite patient access to Maraviroc, there is insufficient enthusiasm surrounding its use as front-line therapy for treatment of HIV. The non-HIV infection related development activities for Maraviroc and Cenicriviroc may help drive future interests.

  3. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape

    Directory of Open Access Journals (Sweden)

    Gero Hütter

    2015-07-01

    Full Text Available Allogeneic transplantation with CCR5-delta 32 (CCR5-d32 homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN, clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9, transcription activator-like effectors nuclease (TALEN, short hairpin RNA (shRNA, and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.

  4. The coreceptor mutation CCR5Δ32 influences the dynamics of HIV epidemics and is selected for by HIV

    OpenAIRE

    Sullivan, Amy D.; Wigginton, Janis; Kirschner, Denise

    2001-01-01

    We explore the impact of a host genetic factor on heterosexual HIV epidemics by using a deterministic mathematical model. A protective allele unequally distributed across populations is exemplified in our models by the 32-bp deletion in the host-cell chemokine receptor CCR5, CCR5Δ32. Individuals homozygous for CCR5Δ32 are protected against HIV infection whereas those heterozygous for CCR5Δ32 have lower pre-AIDS viral loads and delayed progression to AIDS. CCR5Δ32 may limit HIV spread by decre...

  5. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells

    OpenAIRE

    Fox, James M.; Kasprowicz, Richard; Hartley, Oliver; Signoret, Nathalie

    2015-01-01

    CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4+ T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4+ T lymphocytes. Howeve...

  6. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Trebst, C; Sørensen, Torben Lykke; Kivisäkk, P

    2001-01-01

    and macrophage inflammatory protein-1alpha/CCL3. We analyzed expression of CCR1 and CCR5, the monocyte receptors for these chemokines, on circulating and cerebrospinal fluid CD14+ cells, and in MS brain lesions. Approximately 70% of cerebrospinal fluid monocytes were CCR1+/CCR5+, regardless of the presence...... of CNS pathology, compared to less than 20% of circulating monocytes. In active MS lesions CCR1+/CCR5+ monocytes were found in perivascular cell cuffs and at the demyelinating edges of evolving lesions. Mononuclear phagocytes in early demyelinating stages comprised CCR1+/CCR5+ hematogenous monocytes...... and CCR1-/CCR5- resident microglial cells. In later stages, phagocytic macrophages were uniformly CCR1-/CCR5+. Cultured in vitro, adherent monocytes/macrophages up-regulated CCR5 and down-regulated CCR1 expression, compared to freshly-isolated monocytes. Taken together, these findings suggest...

  7. A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5-μ-opioid receptor interactions between human astroglia and microglia.

    Science.gov (United States)

    El-Hage, Nazira; Dever, Seth M; Podhaizer, Elizabeth M; Arnatt, Christopher K; Zhang, Yan; Hauser, Kurt F

    2013-09-10

    We explored whether the opiate, morphine, affects the actions of maraviroc, as well as a recently synthesized bivalent derivative of maraviroc linked to an opioid antagonist, naltrexone, on HIV-1 entry in primary human glia. HIV-1 entry was monitored in glia transiently transfected with an LTR construct containing a luciferase reporter gene under control of a promoter for the HIV-1 transactivator protein Tat. The effect of maraviroc and the bivalent ligand with or without morphine on CCR5 surface expression and cytokine release was also explored. Maraviroc inhibits HIV-1 entry into glial cells, whereas morphine negates the effects of maraviroc leading to a significant increase in viral entry. We also demonstrate that the maraviroc-containing bivalent ligand better inhibits R5-tropic viral entry in astrocytes than microglia compared to maraviroc when coadministered with morphine. Importantly, the inhibitory effects of the bivalent compound in astrocytes were not compromised by morphine. Exposure to maraviroc decreased the release of pro-inflammatory cytokines and restricted HIV-1-dependent increases in CCR5 expression in both astrocytes and microglia, whereas exposure to the bivalent had a similar effect in astrocytes but not in microglia. The CCR5-μ-opioid receptor (MOR) stoichiometric ratio varied among the two cell types with CCR5 expressed at much higher levels than MOR in microglia, which could explain the effectiveness of the bivalent ligand in astrocytes compared to microglia. A novel bivalent compound reveals fundamental differences in CCR5-MOR interactions and HIV-1 infectivity among glia, and has unique therapeutic potential in opiate abuse-HIV interactive comorbidity.

  8. Resistance to the CCR5 inhibitor 5P12-RANTES requires a difficult evolution from CCR5 to CXCR4 coreceptor use.

    Directory of Open Access Journals (Sweden)

    Rebecca Nedellec

    Full Text Available Viral resistance to small molecule allosteric inhibitors of CCR5 is well documented, and involves either selection of preexisting CXCR4-using HIV-1 variants or envelope sequence evolution to use inhibitor-bound CCR5 for entry. Resistance to macromolecular CCR5 inhibitors has been more difficult to demonstrate, although selection of CXCR4-using variants might be expected. We have compared the in vitro selection of HIV-1 CC1/85 variants resistant to either the small molecule inhibitor maraviroc (MVC or the macromolecular inhibitor 5P12-RANTES. High level resistance to MVC was conferred by the same envelope mutations as previously reported after 16-18 weeks of selection by increasing levels of MVC. The MVC-resistant mutants were fully sensitive to inhibition by 5P12-RANTES. By contrast, only transient and low level resistance to 5P12-RANTES was achieved in three sequential selection experiments, and each resulted in a subsequent collapse of virus replication. A fourth round of selection by 5P12-RANTES led, after 36 weeks, to a "resistant" variant that had switched from CCR5 to CXCR4 as a coreceptor. Envelope sequences diverged by 3.8% during selection of the 5P12-RANTES resistant, CXCR4-using variants, with unique and critical substitutions in the V3 region. A subset of viruses recovered from control cultures after 44 weeks of passage in the absence of inhibitors also evolved to use CXCR4, although with fewer and different envelope mutations. Control cultures contained both viruses that evolved to use CXCR4 by deleting four amino acids in V3, and others that maintained entry via CCR5. These results suggest that coreceptor switching may be the only route to resistance for compounds like 5P12-RANTES. This pathway requires more mutations and encounters more fitness obstacles than development of resistance to MVC, confirming the clinical observations that resistance to small molecule CCR5 inhibitors very rarely involves coreceptor switching.

  9. Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands.

    Science.gov (United States)

    Knepp, Adam M; Grunbeck, Amy; Banerjee, Sourabh; Sakmar, Thomas P; Huber, Thomas

    2011-02-01

    The inherent instability of heptahelical G protein-coupled receptors (GPCRs) during purification and reconstitution is a primary impediment to biophysical studies and to obtaining high-resolution crystal structures. New approaches to stabilizing receptors during purification and screening reconstitution procedures are needed. Here we report the development of a novel homogeneous time-resolved fluorescence assay (HTRF) to quantify properly folded CC-chemokine receptor 5 (CCR5). The assay permits high-throughput thermal stability measurements of femtomole quantities of CCR5 in detergent and in engineered nanoscale apolipoprotein-bound bilayer (NABB) particles. We show that recombinantly expressed CCR5 can be incorporated into NABB particles in high yield, resulting in greater thermal stability compared with that of CCR5 in a detergent solution. We also demonstrate that binding of CCR5 to the HIV-1 cellular entry inhibitors maraviroc, AD101, CMPD 167, and vicriviroc dramatically increases receptor stability. The HTRF assay technology reported here is applicable to other membrane proteins and could greatly facilitate structural studies of GPCRs.

  10. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    International Nuclear Information System (INIS)

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika

    2007-01-01

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1 IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent

  11. CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar.

    Science.gov (United States)

    Tollenaere, C; Rahalison, L; Ranjalahy, M; Rahelinirina, S; Duplantier, J-M; Brouat, C

    2008-12-01

    Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a functionally important region of the gene. We then compared (i) CCR5 genotypes of dying and surviving plague-challenged rats and (ii) CCR5 allelic frequencies in plague focus and plague-free populations. Our results suggested a higher prevalence of the substitution in resistant animals compared to susceptible individuals, and a tendency for higher frequencies in plague focus areas compared to plague-free areas. Therefore, the CCR5 polymorphism may be involved in Malagasy black rat plague resistance. CCR5 and other undetermined plague resistance markers may provide useful biological information about host evolution and disease dynamics.

  12. Preventing HIV transmission through blockade of CCR5: rationale, progress and perspectives.

    Science.gov (United States)

    Hartley, Oliver; Martins, Elsa; Scurci, Ilaria

    2018-01-29

    Of the two million people estimated to be newly infected with human immunodeficiency virus (HIV) every year, 95% live in poorer regions of the world where effective HIV treatment is not universally available. Strategies to reduce the spread of HIV infection, which predominantly occurs via sexual contact, are urgently required. In the absence of an effective vaccine, a number of approaches to prevent HIV infection have been developed. These include using potent anti-HIV drugs prophylactically, either through systemic administration or topical application to the mucosal tissues that HIV initially encounters during sexual transmission. Genetic deficiency of the chemokine receptor CCR5 provides individuals with a remarkable degree of protection from HIV acquisition. This is because CCR5 is the major coreceptor used by HIV to infect new target cells. Since CCR5 deficiency does not appear to carry any health disadvantages, targeting the receptor is a promising strategy for both therapy and prevention of HIV. In this review we first describe the advantages and limitations of the currently available strategies for HIV prevention, then we focus on strategies targeting CCR5, covering the progress that has been made in developing different classes of CCR5 inhibitors for prophylaxis, and the perspectives for their future development as new weapons in the global fight against HIV/AIDS.

  13. Concordance of CCR5 Genotypes that Influence Cell-Mediated Immunity and HIV-1 Disease Progression Rates

    Science.gov (United States)

    Catano, Gabriel; Chykarenko, Zoya A.; Mangano, Andrea; Anaya, J-M; Smith, Alison; Bologna, Rosa; Sen, Luisa; Clark, Robert A.; Lloyd, Andrew; Shostakovich-Koretskaya, Ludmila

    2011-01-01

    We used cutaneous delayed-type hypersensitivity responses, a powerful in vivo measure of cell-mediated immunity, to evaluate the relationships among cell-mediated immunity, AIDS, and polymorphisms in CCR5, the HIV-1 coreceptor. There was high concordance between CCR5 polymorphisms and haplotype pairs that influenced delayed-type hypersensitivity responses in healthy persons and HIV disease progression. In the cohorts examined, CCR5 genotypes containing -2459G/G (HHA/HHA, HHA/HHC, HHC/HHC) or -2459A/A (HHE/HHE) associated with salutary or detrimental delayed-type hypersensitivity and AIDS phenotypes, respectively. Accordingly, the CCR5-Δ32 allele, when paired with non-Δ32-bearing haplotypes that correlate with low (HHA, HHC) versus high (HHE) CCR5 transcriptional activity, associates with disease retardation or acceleration, respectively. Thus, the associations of CCR5-Δ32 heterozygosity partly reflect the effect of the non-▵32 haplotype in a background of CCR5 haploinsufficiency. The correlations of increased delayed-type hypersensitivity with -2459G/G-containing CCR5 genotypes, reduced CCR5 expression, decreased viral replication, and disease retardation suggest that CCR5 may influence HIV infection and AIDS, at least in part, through effects on cell-mediated immunity. PMID:21288827

  14. CCR5 mediates HIV-1 Tat-induced neuroinflammation and influences morphine tolerance, dependence, and reward.

    Science.gov (United States)

    Gonek, Maciej; McLane, Virginia D; Stevens, David L; Lippold, Kumiko; Akbarali, Hamid I; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F; Paris, Jason J

    2017-11-13

    The HIV-1 regulatory protein, trans-activator of transcription (Tat), interacts with opioids to potentiate neuroinflammation and neurodegeneration within the CNS. These effects may involve the C-C chemokine receptor type 5 (CCR5); however, the behavioral contribution of CCR5 on Tat/opioid interactions is not known. Using a transgenic murine model that expresses HIV-1 Tat protein in a GFAP-regulated, doxycycline-inducible manner, we assessed morphine tolerance, dependence, and reward. To assess the influence of CCR5 on these effects, mice were pretreated with oral vehicle or the CCR5 antagonist, maraviroc, prior to morphine administration. We found that HIV-1 Tat expression significantly attenuated the antinociceptive potency of acute morphine (2-64 mg/kg, i.p.) in non-tolerant mice. Consistent with this, Tat attenuated withdrawal symptoms among morphine-tolerant mice. Pretreatment with maraviroc blocked the effects of Tat, reinstating morphine potency in non-tolerant mice and restoring withdrawal symptomology in morphine-tolerant mice. Twenty-four hours following morphine administration, HIV-1 Tat significantly potentiated (∼3.5-fold) morphine-conditioned place preference and maraviroc further potentiated these effects (∼5.7-fold). Maraviroc exerted no measurable behavioral effects on its own. Protein array analyses revealed only minor changes to cytokine profiles when morphine was administered acutely or repeatedly; however, 24 h post morphine administration, the expression of several cytokines was greatly increased, including endogenous CCR5 chemokine ligands (CCL3, CCL4, and CCL5), as well as CCL2. Tat further elevated levels of several cytokines and maraviroc pretreatment attenuated these effects. These data demonstrate that CCR5 mediates key aspects of HIV-1 Tat-induced alterations in the antinociceptive potency and rewarding properties of opioids. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  16. Transmitted/Founder and Chronic HIV-1 Envelope Proteins Are Distinguished by Differential Utilization of CCR5

    Science.gov (United States)

    Parker, Zahra F.; Iyer, Shilpa S.; Wilen, Craig B.; Parrish, Nicholas F.; Chikere, Kelechi C.; Lee, Fang-Hua; Didigu, Chuka A.; Berro, Reem; Klasse, Per Johan; Lee, Benhur; Moore, John P.; Shaw, George M.

    2013-01-01

    Infection by HIV-1 most often results from the successful transmission and propagation of a single virus variant, termed the transmitted/founder (T/F) virus. Here, we compared the attachment and entry properties of envelope (Env) glycoproteins from T/F and chronic control (CC) viruses. Using a panel of 40 T/F and 47 CC Envs, all derived by single genome amplification, we found that 52% of clade C and B CC Envs exhibited partial resistance to the CCR5 antagonist maraviroc (MVC) on cells expressing high levels of CCR5, while only 15% of T/F Envs exhibited this same property. Moreover, subtle differences in the magnitude with which MVC inhibited infection on cells expressing low levels of CCR5, including primary CD4+ T cells, were highly predictive of MVC resistance when CCR5 expression levels were high. These results are consistent with previous observations showing a greater sensitivity of T/F Envs to MVC inhibition on cells expressing very high levels of CCR5 and indicate that CC Envs are often capable of recognizing MVC-bound CCR5, albeit inefficiently on cells expressing physiologic levels of CCR5. When CCR5 expression levels are high, this phenotype becomes readily detectable. The utilization of drug-bound CCR5 conformations by many CC Envs was seen with other CCR5 antagonists, with replication-competent viruses, and did not obviously correlate with other phenotypic traits. The striking ability of clade C and B CC Envs to use MVC-bound CCR5 relative to T/F Envs argues that the more promiscuous use of CCR5 by these Env proteins is selected against at the level of virus transmission and is selected for during chronic infection. PMID:23269796

  17. Coincident natural selection of CCR5∆32 and C282Y in Europe: to ...

    Indian Academy of Sciences (India)

    Unknown

    population, comparable to the mortality in North Africa and the Near East. China, India, and the rest of the Far. East are commonly believed to be severely affected (Norris. 1977; Drancourt and Raoult 2002; Wheelis 2002). As a result, lack of plague mortality is unlikely to be related to low frequencies of CCR5∆32 and C282Y ...

  18. Recent updates for designing CCR5 antagonists as anti-retroviral agents.

    Science.gov (United States)

    Shah, Harshil R; Savjani, Jignasa Ketan

    2018-03-10

    The healthcare system faces various challenges in human immunodeficiency virus (HIV) therapy due to resistance to Anti-Retroviral Therapy (ART) as a consequence of the evolutionary process. Despite the success of antiretroviral drugs like Zidovudine, Zalcitabine, Raltegravir WHO ranks HIV as one of the deadliest diseases with a mortality of one million lives in 2016. Thus, there emerges an urgency of developing a novel anti-retroviral agent that combat resistant HIV strains. The clinical development of ART from a single drug regimen to current triple drug combination is very slow. The progression in the structural biology of the viral envelope prompted the discovery of novel targets, which can be demonstrated a proficient approach for drug design of anti-retroviral agents. The current review enlightens the recent updates in the structural biology of the viral envelope and focuses on CCR5 as a validated target as well as ways to overcome CCR5 resistance. The article also throws light on the SAR studies and most prevalent mutations in the receptor for designing CCR5 antagonists that can combat HIV-1 infection. To conclude, the paper lists diversified scaffolds that are in pipeline by various pharmaceutical companies that could provide an aid for developing novel CCR5 antagonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. CCR5 as a Natural and Modulated Target for Inhibition of HIV

    Directory of Open Access Journals (Sweden)

    Bryan P. Burke

    2013-12-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection—this without detrimental effects to the host—and transplantation of CCR5-delta32 stem cells in a patient with HIV (“Berlin patient” achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46 that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.

  20. Impact of CCR5 Delta32/+ deletion on herpes zoster among HIV-1-infected homosexual men

    NARCIS (Netherlands)

    Krol, Anneke; Lensen, Ruud; Veenstra, Jan; Prins, Maria; Schuitemaker, Hanneke; Coutinho, Roel A.

    2006-01-01

    The association between the presence of CCR5 Delta32 heterozygosity and incidence of clinical herpes zoster was studied among 296 homosexual men from the Amsterdam cohort study (ACS) infected with human immunodeficiency virus type I (HIV-1) with an estimated date of seroconversion. Of them 63 were

  1. Development of maraviroc, a CCR5 antagonist for treatment of HIV, using a novel tropism assay.

    Science.gov (United States)

    van der Ryst, Elna; Heera, Jayvant; Demarest, James; Knirsch, Charles

    2015-06-01

    Assays to identify infectious organisms are critical for diagnosis and enabling the development of therapeutic agents. The demonstration that individuals with a 32-bp deletion within the CCR5 locus were resistant to human immunodeficiency virus (HIV) infection, while those heterozygous for the mutation progressed more slowly, led to the discovery of maraviroc (MVC), a CCR5 antagonist. As MVC is only active against CCR5-tropic strains of HIV, it was critical to develop a diagnostic assay to identify appropriate patients. Trofile™, a novel phenotypic tropism assay, was used to identify patients with CCR5-tropic virus for the MVC development program. Results of these clinical studies demonstrated that the assay correctly identified patients likely to respond to MVC. Over time, the performance characteristics of the phenotypic assay were enhanced, necessitating retesting of study samples. Genotypic tropism tests that have the potential to allow for local use and more rapid turnaround times are also being developed. © 2015 New York Academy of Sciences.

  2. IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo.

    Directory of Open Access Journals (Sweden)

    Cheryl A Stoddart

    2010-02-01

    Full Text Available Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3(-CD4(+CD8(-CXCR4(+CCR5(- intrathymic T-cell progenitors (ITTP and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-alpha (IFN-alpha in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-alpha in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-alpha production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression.

  3. Detection of new mutant sites of HIV-1 coreceptor CCR5 among Saudi populations.

    Science.gov (United States)

    Abuelsaad, Abdelaziz S A; Al-Ghamdi, Abdullhamid S; Al-Ghamdi, Ahmed N; Alakkas, Eyad A; Alsulaimani, Adnan A; Al-Harthi, Abdulla A; Abdel-Moneim, Ahmed S

    2013-12-01

    The genetic association of CCR5 with human immunodeficiency virus-1 (HIV-1) pathogenesis is well known. The HIV-1 entry into target cells is initiated by the binding of the viral envelope glycoproteins (gp120-gp41) with the cell surface receptor (CD4) and the coreceptor (CCR5), followed by fusion of the viral and cell membranes. Genetic variants of the gene-encoding HIV-1 coreceptor are implicated in the susceptibility to HIV-1 infection. The prevalence of these mutations may vary according to population ethnicity. In the current study, characterization and frequency distribution of the HIV-related gene variants in 135 samples of the Saudi populations were conducted. Polymerase chain reaction (PCR) of 276 bp amplicons was used to rapidly detect Δ32 deletion in the initial sample of DNA. The direct sequence of 2 overlapping PCR amplicons flanking 1,059 bp was used to detect single-nucleotide polymorphisms. A single hetrozygous Δ32 deletion allele and 6 single-nucleotide polymorphisms were detected. Only one of the identified haplotypes, Taif-1, which was found in the majority of the tested sample, is identical to CCR5 wild-type alleles. Furthermore, the results of this study raised a concern about the prospective role of the mutations detected among Saudi nationals in the HIV pathogenesis and the clinical use of CCR5 antagonists, which are currently being developed as therapeutics for HIV-1 and inflammatory diseases.

  4. Detection of HIV-1 neutralizing antibodies in a human CD4⁺/CXCR4⁺/CCR5⁺ T-lymphoblastoid cell assay system.

    Science.gov (United States)

    McLinden, Robert J; Labranche, Celia C; Chenine, Agnès-Laurence; Polonis, Victoria R; Eller, Michael A; Wieczorek, Lindsay; Ochsenbauer, Christina; Kappes, John C; Perfetto, Stephen; Montefiori, David C; Michael, Nelson L; Kim, Jerome H

    2013-01-01

    Sensitive assays are needed to meaningfully assess low levels of neutralizing antibodies (NAbs) that may be important for protection against the acquisition of HIV-1 infection in vaccine recipients. The current assay of choice uses a non-lymphoid cell line (TZM-bl) that may lack sensitivity owing to over expression of CD4 and CCR5. We used transfection of a human CD4+/CXCR4+/α4β7+ T-lymphoblastoid cell line (A3.01) with a CMV IE promoter-driven CCR5neo vector to stably express CCR5. The resulting line, designated A3R5, is permissive to a wide range of CCR5-tropic circulating strains of HIV-1, including HIV-1 molecular clones containing a Tat-inducible Renilla luciferase reporter gene and expressing multiple Env subtypes. Flow cytometric analysis found CCR5 surface expression on A3R5 cells to be markedly less than TZM-bl but similar to CD3.8 stimulated PBMC. More importantly, neutralization mediated by a diverse panel of monoclonal antibodies, HIV-1 positive polyclonal sera and sCD4 was consistently greater in A3R5 compared to TZM-bl cells. The A3R5 cell line provides a novel approach to guide the development and qualification of promising new HIV-1 vaccine immunogens.

  5. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells

    International Nuclear Information System (INIS)

    Latinovic, Olga; Reitz, Marvin; Le, Nhut M.; Foulke, James S.; Faetkenheuer, Gerd; Lehmann, Clara; Redfield, Robert R.; Heredia, Alonso

    2011-01-01

    R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance.

  6. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc.

    Science.gov (United States)

    Garg, Himanshu; Lee, Raphael T C; Maurer-Stroh, Sebastian; Joshi, Anjali

    2016-06-01

    Variability in CCR5 levels in the human population is suggested to affect virus evolution, fitness and the course of HIV disease. We previously demonstrated that cell surface CCR5 levels directly affect HIV Envelope mediated bystander apoptosis. In this study, we attempted to understand HIV evolution in the presence of low levels of CCR5, mimicking the limiting CCR5 levels inherent to the host. HIV-1 adaptation in a T cell line expressing low levels of CCR5 resulted in two specific mutations; N302Y and E172K. The N302Y mutation led to accelerated virus replication, increase in Maraviroc IC50 and an increase in Envelope mediated bystander apoptosis in low CCR5 expressing cells. Analysis of subtype B sequences showed that N302Y is over-represented in CXCR4 tropic viruses in comparison to CCR5 tropic isolates. Considering the variability in CCR5 levels between individuals, our findings have implications for virus evolution, MVC susceptibility as well as HIV pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells

    Science.gov (United States)

    Latinovic, Olga; Reitz, Marvin; Le, Nhut M.; Foulke, James S.; Fätkenheuer, Gerd; Lehmann, Clara; Redfield, Robert R.; Heredia, Alonso

    2010-01-01

    R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance. PMID:21232779

  8. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry.

    Science.gov (United States)

    Haworth, Kevin G; Peterson, Christopher W; Kiem, Hans-Peter

    2017-11-01

    Human immunodeficiency virus (HIV) was first reported and characterized more than three decades ago. Once thought of as a death sentence, HIV infection has become a chronically manageable disease. However, it is estimated that a staggering 0.8% of the world's population is infected with HIV, with more than 1 million deaths reported in 2015 alone. Despite the development of effective anti-retroviral drugs, a permanent cure has only been documented in one patient to date. In 2007, an HIV-positive patient received a bone marrow transplant to treat his leukemia from an individual who was homozygous for a mutation in the CCR5 gene. This mutation, known as CCR5Δ32, prevents HIV replication by inhibiting the early stage of viral entry into cells, resulting in resistance to infection from the majority of HIV isolates. More than 10 years after his last dose of anti-retroviral therapy, the transplant recipient remains free of replication-competent virus. Multiple groups are now attempting to replicate this success through the use of other CCR5-negative donor cell sources. Additionally, developments in the use of lentiviral vectors and targeted nucleases have opened the doors of precision medicine and enabled new treatment methodologies to combat HIV infection through targeted ablation or down-regulation of CCR5 expression. Here, we review historical cases of CCR5-edited cell-based therapies, current clinical trials and future benefits and challenges associated with this technology. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Differential evolution of a CXCR4-using HIV-1 strain in CCR5wt/wt and CCR5∆32/∆32 hosts revealed by longitudinal deep sequencing and phylogenetic reconstruction.

    Science.gov (United States)

    Le, Anh Q; Taylor, Jeremy; Dong, Winnie; McCloskey, Rosemary; Woods, Conan; Danroth, Ryan; Hayashi, Kanna; Milloy, M-J; Poon, Art F Y; Brumme, Zabrina L

    2015-12-03

    Rare individuals homozygous for a naturally-occurring 32 base pair deletion in the CCR5 gene (CCR5∆32/∆32) are resistant to infection by CCR5-using ("R5") HIV-1 strains but remain susceptible to less common CXCR4-using ("X4") strains. The evolutionary dynamics of X4 infections however, remain incompletely understood. We identified two individuals, one CCR5wt/wt and one CCR5∆32/∆32, within the Vancouver Injection Drug Users Study who were infected with a genetically similar X4 HIV-1 strain. While early-stage plasma viral loads were comparable in the two individuals (~4.5-5 log10 HIV-1 RNA copies/ml), CD4 counts in the CCR5wt/wt individual reached a nadir of 250 cells/mm(3) in the CCR5∆32/∆32 individual. Ancestral phylogenetic reconstructions using longitudinal envelope-V3 deep sequences suggested that both individuals were infected by a single transmitted/founder (T/F) X4 virus that differed at only one V3 site (codon 24). While substantial within-host HIV-1 V3 diversification was observed in plasma and PBMC in both individuals, the CCR5wt/wt individual's HIV-1 population gradually reverted from 100% X4 to ~60% R5 over ~4 years whereas the CCR5∆32/∆32 individual's remained consistently X4. Our observations illuminate early dynamics of X4 HIV-1 infections and underscore the influence of CCR5 genotype on HIV-1 V3 evolution.

  10. Evidence favoring the involvement of CC chemokine receptor (CCR) 5 in T-lymphocyte accumulation in optic neuritis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Jensen, J

    2003-01-01

    To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON).......To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON)....

  11. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...ted gp120-elicited signalingpathways. PubmedID 12960231 Title Macrophage activation through CCR

  12. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells

    Directory of Open Access Journals (Sweden)

    David L DiGiusto

    2016-01-01

    Full Text Available Gene therapy for HIV-1 infection is a promising alternative to lifelong combination antiviral drug treatment. Chemokine receptor 5 (CCR5 is the coreceptor required for R5-tropic HIV-1 infection of human cells. Deletion of CCR5 renders cells resistant to R5-tropic HIV-1 infection, and the potential for cure has been shown through allogeneic stem cell transplantation with naturally occurring homozygous deletion of CCR5 in donor hematopoietic stem/progenitor cells (HSPC. The requirement for HLA-matched HSPC bearing homozygous CCR5 deletions prohibits widespread application of this approach. Thus, a strategy to disrupt CCR5 genomic sequences in HSPC using zinc finger nucleases was developed. Following discussions with regulatory agencies, we conducted IND-enabling preclinical in vitro and in vivo testing to demonstrate the feasibility and (preclinical safety of zinc finger nucleases-based CCR5 disruption in HSPC. We report here the clinical-scale manufacturing process necessary to deliver CCR5-specific zinc finger nucleases mRNA to HSPC using electroporation and the preclinical safety data. Our results demonstrate effective biallelic CCR5 disruption in up to 72.9% of modified colony forming units from adult mobilized HSPC with maintenance of hematopoietic potential in vitro and in vivo. Tumorigenicity studies demonstrated initial product safety; further safety and feasibility studies are ongoing in subjects infected with HIV-1 (NCT02500849@clinicaltrials.gov.

  13. Structural insight into a novel human CCR5-V130I variant associated with resistance to HIV-1 infection.

    Science.gov (United States)

    Stambouli, Nejla; Wei, Ning-Ning; Jlizi, Asma; Aissa, Samah; Abdelmalek, Rim; Kilani, Baderredine; Slim, Amine; Tiouiri, Ben Aissa Hanen; Dridi, Mahdi; Hamza, Adel; Ben Ammar Elgaied, Amel

    2014-01-01

    We report the identification of a novel CC chemokine receptor 5 (CCR5) variant that seems associated with resistance to HIV-1 infection. The V130I mutation of the CCR5 receptor is located in the intracellular loop ICL2 known as DRY box and described in the literature as a nonsynonymous mutation present in nonhuman primates group. Extensive molecular modeling and dynamics simulations were performed to elucidate the mechanism by which the V130I mutation may induce conformational change of the CCR5 folding protein and prevent the interaction with the β-arrestin protein. Our study provides new mechanistic insight into how a specific mutation in the regulatory domain of CCR5 might alter the structural folding of the DRY box and the possible ICL2 loop binding with the β-arrestin protein, as described in our previous computational study. The results from our large-scale simulations complement recent experimental results and clinical features and offer useful insights into the mechanism behind CCR5 protein folding and signal transduction. In order for HIV, the entry of the virus to the cells must fuse with the CCR5 receptor that sits on the surface of T-helper immune cells. The described V130I mutation in the gene encoding the CCR5 protein may results in a defective CCR5-Arrestin binding complex that blocks entry of the virus.

  14. The impact of CCR5-Δ32 deletion on C-reactive protein levels and cardiovascular disease

    DEFF Research Database (Denmark)

    Dinh, Khoa M; Pedersen, Ole B; Petersen, Mikkel S

    2015-01-01

    BACKGROUND AND PURPOSE: The C-C chemokine receptor 5-Δ32 deletion (CCR5-Δ32) has been associated with lower levels of C-reactive protein (CRP), but the effect on cardiovascular diseases is uncertain. This study addresses the impact of CCR5-Δ32 on the risk of low-grade inflammation...... and hospitalization with cardiovascular diseases in a large cohort of blood donors. METHODS: Genotyping of 15,206 healthy participants from The Danish Blood Donor Study for CCR5-Δ32 was performed and combined with CRP measurements and questionnaire data. Cardiovascular disease diagnoses were identified by ICD-10...... codes in the Danish National Patient Registry. RESULTS: CCR5-Δ32-carriers had a higher risk of hospitalization for cardiovascular diseases when compared with wild-type homozygotes (hazard ratio = 1.35, 95%-confidence interval: 1.00-1.87). CRP levels were unaffected by the CCR5-Δ32 deletion. CONCLUSION...

  15. The role of the N-terminal segment of CCR5 in HIV-1 Env-mediated membrane fusion and the mechanism of virus adaptation to CCR5 lacking this segment

    Directory of Open Access Journals (Sweden)

    Kabat David

    2007-08-01

    Full Text Available Abstract Background HIV-1 envelope glycoprotein (Env induces membrane fusion as a result of sequential binding to CD4 and chemokine receptors (CCR5 or CXCR4. The critical determinants of CCR5 coreceptor function are the N-terminal domain (Nt and the second extracellular loop. However, mutations in gp120 adapt HIV-1 to grow on cells expressing the N-terminally truncated CCR5(Δ18 (Platt et al., J. Virol. 2005, 79: 4357–68. Results We have functionally characterized the adapted Env (designated Env(NYP using a quantitative cell-cell fusion assay. The rate of fusion with target cells expressing wild-type CCR5 and the resistance to fusion inhibitors was virtually identical for wild-type Env and Env(NYP, implying that the coreceptor affinity had not increased as a result of adaptation. In contrast, Env(NYP-induced fusion with cells expressing CCR5(Δ18 occurred at a slower rate and was extremely sensitive to the CCR5 binding inhibitor, Sch-C. Resistance to Sch-C drastically increased after pre-incubation of Env(NYP- and CCR5(Δ18-expressing cells at a temperature that was not permissive to fusion. This indicates that ternary Env(NYP-CD4-CCR5(Δ18 complexes accumulate at sub-threshold temperature and that low-affinity interactions with the truncated coreceptor are sufficient for triggering conformational changes in the gp41 of Env(NYP but not in wild-type Env. We also demonstrated that the ability of CCR5(Δ18 to support fusion and infection mediated by wild-type Env can be partially reconstituted in the presence of a synthetic sulfated peptide corresponding to the CCR5 Nt. Pre-incubation of wild-type Env- and CCR5(Δ18-expressing cells with the sulfated peptide at sub-threshold temperature markedly increased the efficiency of fusion. Conclusion We propose that, upon binding the Nt region of CCR5, wild-type Env acquires the ability to productively engage the extracellular loop(s of CCR5 – an event that triggers gp41 refolding and membrane merger

  16. Extracellular Disulfide Bridges Serve Different Purposes in Two Homologous Chemokine Receptors, CCR1 and CCR5

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Thiele, Stefanie; Hansen, Laerke Smidt

    2013-01-01

    interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other...... chemokine receptors, high affinity CCL3 chemokine binding was maintained in the absence of either bridge. In CCR5, the closest homolog to CCR1, a completely different dependency was observed as neither chemokine activation nor binding was retained in the absence of either bridge. In contrast, both bridges...... where dispensable for small-molecule activation. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1, preserved folding of ECL2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup, does not necessarily...

  17. Natural anti-CCR5 antibodies in HIV-infection and -exposure

    Directory of Open Access Journals (Sweden)

    Lopalco Lucia

    2010-01-01

    Full Text Available Abstract Natural antibodies constitute a first-line of defence against pathogens; they may also play other roles in immune regulation and homeostasis, through their ability to bind host antigens, surface molecules and receptors. Natural anti-CCR5 antibodies can be decisive in preventing HIV infection in mucosal tissues and offer prompt and effective protection just at major sites of virus entry. Among natural anti-CCR5 antibodies, IgG and IgA to the ECL1 domain have been shown to block HIV effectively and durably without causing harm to the host. Their biological properties and their uncommon generation in subsets of HIV-infected and HIV-exposed individuals (so called ESN will be introduced and discussed, with the aim at exploiting their potential in therapy and prevention.

  18. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene.

    Science.gov (United States)

    Pandit, Aridaman; de Boer, Rob J

    2015-12-17

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART is gene therapy that targets the CCR5 co-receptor and creates a population of genetically modified host cells that are less susceptible to viral infection. With generic mathematical models we show that gene therapy that only targets the CCR5 co-receptor fails to suppress HIV-1 (which is in agreement with current data). We predict that the same gene therapy can be markedly improved if it is combined with a suicide gene that is only expressed upon HIV-1 infection.

  19. Predominance of CCR5-dependent HIV-1 subtype E isolates in Cambodia.

    Science.gov (United States)

    Menu, E; Reynes, J M; Müller-Trutwin, M C; Guillemot, L; Versmisse, P; Chiron, M; An, S; Trouplin, V; Charneau, P; Fleury, H; Barré-Sinoussi, F; Sainte Marie, F F

    1999-04-15

    To investigate the genetic and biologic features of HIV-1 strains circulating in Cambodia, viruses from 95 HIV-1-seropositive individuals were subtyped by heteroduplex mobility assay (HMA) and 23 were further analyzed for their biologic characteristics. Eighty-nine individuals were clearly infected by HIV-1 subtype E. The other six samples were sequenced, together with 17 HMA subtype E samples. All but one of the 23 Cambodian env sequences clustered with previously described Thai and Vietnamese subtype E sequences, bearing a GPGQ motif at the tip of the V3 loop; the last had a GPGR motif and was phylogenetically equidistant from Asian and African subtype E viruses. Nonsyncytium-inducing, CCR5-dependent viruses predominated in patients of clinical stage B even in some with a high viral load and were detected in about 50% of the patients of stage C. All syncytium-inducing strains, mostly from AIDS patients, used both CCR5 and CXCR4. The presence of syncytium-inducing viruses did not correlate with the plasma viral load. These data show that CCR5-dependent HIV-1 subtype E is currently predominant in Cambodia. The analysis of clinical and virologic markers strongly supports the idea that dynamics of the viral population during subtype E infection in Southeast Asia is similar to that of subtype B infection in Europe and the United States.

  20. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist

    DEFF Research Database (Denmark)

    Princen, Katrien; Hatse, Sigrid; Vermeire, Kurt

    2004-01-01

    Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5...... at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did...... not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4...

  1. Multifaceted mechanisms of HIV inhibition and resistance to CCR5 inhibitors PSC-RANTES and Maraviroc.

    Science.gov (United States)

    Lobritz, Michael A; Ratcliff, Annette N; Marozsan, Andre J; Dudley, Dawn M; Tilton, John C; Arts, Eric J

    2013-06-01

    Small-molecule CCR5 antagonists, such as maraviroc (MVC), likely block HIV-1 through an allosteric, noncompetitive inhibition mechanism, whereas inhibition by agonists such as PSC-RANTES is less defined and may involve receptor removal by cell surface downregulation, competitive inhibition by occluding the HIV-1 envelope binding, and/or allosteric effects by altering CCR5 conformation. We explored the inhibitory mechanisms of maraviroc and PSC-RANTES by employing pairs of virus clones with differential sensitivities to these inhibitors. Intrinsic PSC-RANTES-resistant virus (YA versus RT) or those selected in PSC-RANTES treated macaques (M584 versus P3-4) only displayed resistance in multiple-cycle assays or with a CCR5 mutant that cannot be downregulated. In single-cycle assays, these HIV-1 clones displayed equal sensitivity to PSC-RANTES inhibition, suggesting effective receptor downregulation. Prolonged PSC-RANTES exposure resulted in desensitization of the receptor to internalization such that increasing virus concentration (substrate) could saturate the receptors and overcome PSC-RANTES inhibition. In contrast, resistance to MVC was observed with the MVC-resistant HIV-1 (R3 versus S2) in both multiple- and single-cycle assays and with altered virus concentrations, which is indicative of allosteric inhibition. MVC could also mediate inhibition and possibly resistance through competitive mechanisms.

  2. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible and inhibits HIV-1 infectivity

    Science.gov (United States)

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S.; Morris, Kevin V.; Burnett, John; Rossi, John

    2015-01-01

    SUMMARY The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T-cells and macrophages that serves as a co-receptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here we combine the live cell-based SELEX with high throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as siRNA delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5 expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4+ T cells with a nanomolar IC50. G-3 was also capable of transferring functional siRNAs to CCR5 expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties. PMID:25754473

  3. Novel AgoshRNA molecules for silencing of the CCR5 co-receptor for HIV-1 infection.

    Science.gov (United States)

    Herrera-Carrillo, Elena; Berkhout, Ben

    2017-01-01

    Allogeneic transplantation of blood stem cells from a CCR5-Δ32 homozygous donor to an HIV-infected individual, the "Berlin patient", led to a cure. Since then there has been a search for approaches that mimic this intervention in a gene therapy setting. RNA interference (RNAi) has evolved as a powerful tool to regulate gene expression in a sequence-specific manner and can be used to inactivate the CCR5 mRNA. Short hairpin RNA (shRNA) molecules can impair CCR5 expression, but these molecules may cause unintended side effects and they will not be processed in cells that lack Dicer, such as monocytes. Dicer-independent RNAi pathways have opened opportunities for new AgoshRNA designs that rely exclusively on Ago2 for maturation. Furthermore, AgoshRNA processing yields a single active guide RNA, thus reducing off-target effects. In this study, we tested different AgoshRNA designs against CCR5. We selected AgoshRNAs that potently downregulated CCR5 expression on human T cells and peripheral blood mononuclear cells (PBMC) and that had no apparent adverse effect on T cell development as assessed in a competitive cell growth assay. CCR5 knockdown significantly protected T cells from CCR5 tropic HIV-1 infection.

  4. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity.

    Science.gov (United States)

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S; Morris, Kevin V; Burnett, John C; Rossi, John J

    2015-03-19

    The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Annulus fibrosus cells express and utilize C-C chemokine receptor 5 (CCR5) for migration.

    Science.gov (United States)

    Liu, Weijun; Liu, David; Zheng, Justin; Shi, Peng; Chou, Po-Hsin; Oh, Chundo; Chen, Di; An, Howard S; Chee, Ana

    2017-05-01

    Disc degeneration is associated with the progressive loss of the proteoglycan content of the intervertebral disc, decreased matrix synthesis, higher concentrations of proteolytic enzymes, and increased levels of proinflammatory cytokines. In previous studies, we have shown that C-C chemokine ligand (CCL)2, CCL3, and CCL5 are highly expressed by cultured nucleus pulposus (NP) and annulus fibrosus (AF) cells that have been treated by interleukin-1. The major function of these chemokines is to recruit immune cells into the disc. It is unclear if disc cells can respond to these chemokines. Recent studies by Phillips et al. (2015) showed that NP cells express a number of cytokines and chemokine receptors. The purpose of this study is to determine the gene and protein expression of C-C chemokine receptor (CCR)1, CCR2, and CCR5 in NP and AF cells, and to test if these receptors can respond to their ligands in these cells by cell signaling and migration. This is an in vitro study. For RNA, surface expression, and cell signaling studies, human cells were isolated from the NP and AF tissues collected after spine surgery or from donated spine segments (Gift of Hope Human Donor & Tissue Network of Illinois) and cultured in monolayer. The gene expression of human CCR1, CCR2, and CCR5 was analyzed using real-time polymerase chain reaction. The surface expression of CCR1, CCR2, and CCR5 was analyzed using flow cytometry and fluorescently tagged antibodies specific for these proteins. Extracellular signal-regulated kinase (ERK) phosphorylation was analyzed from the cell lysates of NP and AF cells treated with CCL2 and CCL5 for 1 hour using enzyme-linked immunosorbent assay. Migration of primary rabbit AF cells was assayed using 8-µm Corning Transwell inserts in the presence or absence of CCL5. This study was partially funded by a North American Spine Society 2014 Basic Research Grant Award ($50,000). RNA analysis showed that gene expression of CCR1, CCR2, and CCR5 was evident in

  6. Elucidating a Key Anti-HIV-1 and Cancer-Associated Axis: The Structure of CCL5 (Rantes) in Complex with CCR5

    Science.gov (United States)

    Tamamis, Phanourios; Floudas, Christodoulos A.

    2014-06-01

    CCL5 (RANTES) is an inflammatory chemokine which binds to chemokine receptor CCR5 and induces signaling. The CCL5:CCR5 associated chemotactic signaling is of critical biological importance and is a potential HIV-1 therapeutic axis. Several studies provided growing evidence for the expression of CCL5 and CCR5 in non-hematological malignancies. Therefore, the delineation of the CCL5:CCR5 complex structure can pave the way for novel CCR5-targeted drugs. We employed a computational protocol which is primarily based on free energy calculations and molecular dynamics simulations, and report, what is to our knowledge, the first computationally derived CCL5:CCR5 complex structure which is in excellent agreement with experimental findings and clarifies the functional role of CCL5 and CCR5 residues which are associated with binding and signaling. A wealth of polar and non-polar interactions contributes to the tight CCL5:CCR5 binding. The structure of an HIV-1 gp120 V3 loop in complex with CCR5 has recently been derived through a similar computational protocol. A comparison between the CCL5 : CCR5 and the HIV-1 gp120 V3 loop : CCR5 complex structures depicts that both the chemokine and the virus primarily interact with the same CCR5 residues. The present work provides insights into the blocking mechanism of HIV-1 by CCL5.

  7. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection.

    Science.gov (United States)

    Wang, Weiming; Ye, Chaobaihui; Liu, Jingjing; Zhang, Di; Kimata, Jason T; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

  8. Possible Impact of 190G > A CCR2 and Δ32 CCR5 Mutations on Decrease of the HBV Vaccine Immunogenicity—A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Maria Ganczak

    2017-02-01

    Full Text Available Background: Chemokine genetic variations are involved in infectious diseases such as hepatitis B virus (HBV. Several allelic variants might, in theory, affect the outcome of vaccination. Objectives: This study was carried out to examine the associations of Δ32 CCR5 and 190G > A CCR2 polymorphisms with a response to a primary course of three HBV vaccinations. Methods: Between December 2014 and December 2016, patients from three randomly selected primary care clinics in the West Pomeranian region (Poland, 1 month after receiving the third dose of HBV vaccine, were enrolled. Enzyme-linked immunosorbent assay (ELISA system version 3.0 was used to detect anti-HBs and anti-HBc totals. The identification of polymorphisms were performed by a polymerase chain reaction technique using a single primer extension assay. Genotype distributions of responders versus non-responders to HBV vaccination were compared on the basis of anti-HBs level. Results: In 149 patients (mean age 60 years the mean anti-HBs level was 652.2 ± 425.9 mIU/mL (range: 0–1111.0 mIU/mL. There were 14.1% (n = 21 non-responders to the HBV vaccine (anti-HBs < 10.0 mIU/mL. The wild type/Δ32 genotype of CCR5 gene was found in 18.1% participants, and 1.3% were Δ32/Δ32 homozygotes. The frequency of allele A of the CCR2 gene was 11.1%. Lower anti-HBs levels in Δ32/Δ32 homozygotes were observed (Me = 61 mIU/mL vs. Me = 660.2 mIU/mL; p = 0.048. As age was found to be a correlate to the anti-HBs titer (r = −0.218, p = 0.0075; 95% CI: −0.366–−0.059—an analysis of a co-variance was performed which found a statistically significant (p = 0.04 difference in anti-HBs titres between Δ32/Δ32 homozygotes and other CCR5 genotypes. The association between anti-HBs titres and CCR2 genotypes was not statistically significant. Conclusions: Our study—which is a preliminary report that suggest this topic deserves further observation with larger sample sizes, different ethnicities, and other

  9. C-C chemokine receptor type five (CCR5: An emerging target for the control of HIV infection

    Directory of Open Access Journals (Sweden)

    Fatima Barmania

    2013-12-01

    Full Text Available When HIV was initially discovered as the causative agent of AIDS, many expected to find a vaccine within a few years. This has however proven to be elusive; it has been approximately 30 years since HIV was first discovered, and a suitable vaccine is still not in effect. In 2009, a paper published by Hutter et al. reported on a bone marrow transplant performed on an HIV positive individual using stem cells that were derived from a donor who was homozygous for a mutation in the CCR5 gene known as CCR5 delta-32 (Δ32 (Hütter et al., 2009. The HIV positive individual became HIV negative and remained free of viral detection after transplantation despite having halted anti-retroviral (ARV treatment. This review will focus on CCR5 as a key component in HIV immunity and will discuss the role of CCR5 in the control of HIV infection.

  10. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    International Nuclear Information System (INIS)

    Mefford, Megan E.; Kunstman, Kevin; Wolinsky, Steven M.; Gabuzda, Dana

    2015-01-01

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions

  11. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    Energy Technology Data Exchange (ETDEWEB)

    Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Kunstman, Kevin, E-mail: kunstman@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Gabuzda, Dana, E-mail: dana_gabuzda@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Neurology (Microbiology and Immunobiology), Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.

  12. Partial protective effect of CCR5-Delta 32 heterozygosity in a cohort of heterosexual Italian HIV-1 exposed uninfected individuals

    Directory of Open Access Journals (Sweden)

    Cauda Roberto

    2006-09-01

    Full Text Available Abstract Despite multiple sexual exposure to HIV-1 virus, some individuals remain HIV-1 seronegative (exposed seronegative, ESN. The mechanisms underlying this resistance remain still unclear, although a multifactorial pathogenesis can be hypothesised. Although several genetic factors have been related to HIV-1 resistance, the homozigosity for a mutation in CCR5 gene (the 32 bp deletion, i.e. CCR5-Delta32 allele is presently considered the most relevant one. In the present study we analysed the genotype at CCR5 locus of 30 Italian ESN individuals (case group who referred multiple unprotected heterosexual intercourse with HIV-1 seropositive partner(s, for at least two years. One hundred and twenty HIV-1 infected patients and 120 individuals representative of the general population were included as control groups. Twenty percent of ESN individuals had heterozygous CCR5-Delta 32 genotype, compared to 7.5% of HIV-1 seropositive and 10% of individuals from the general population, respectively. None of the analysed individuals had CCR5-Delta 32 homozygous genotype. Sequence analysis of the entire open reading frame of CCR5 was performed in all ESN subjects and no polymorphisms or mutations were identified. Moreover, we determined the distribution of C77G variant in CD45 gene, which has been previously related to HIV-1 infection susceptibility. The frequency of the C77G variant showed no significant difference between ESN subjects and the two control groups. In conclusion, our data show a significantly higher frequency of CCR5-Delta 32 heterozygous genotype (p = 0.04 among the Italian heterosexual ESN individuals compared to HIV-1 seropositive patients, suggesting a partial protective role of CCR5-Delta 32 heterozygosity in this cohort.

  13. CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface.

    Science.gov (United States)

    Martínez-Muñoz, Laura; Barroso, Rubén; Dyrhaug, Sunniva Y; Navarro, Gemma; Lucas, Pilar; Soriano, Silvia F; Vega, Beatriz; Costas, Coloma; Muñoz-Fernández, M Ángeles; Santiago, César; Rodríguez Frade, José Miguel; Franco, Rafael; Mellado, Mario

    2014-05-13

    CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.

  14. G Protein-Dependent CCR5 Signaling Is Not Required for Efficient Infection of Primary T Lymphocytes and Macrophages by R5 Human Immunodeficiency Virus Type 1 Isolates

    OpenAIRE

    Amara, Ali; Vidy, Aurore; Boulla, Genevieve; Mollier, Karine; Garcia-Perez, Javier; Alcamí, Jose; Blanpain, Cedric; Parmentier, Marc; Virelizier, Jean-Louis; Charneau, Pierre; Arenzana-Seisdedos, Fernando

    2003-01-01

    The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4+-transformed cells or pharmacological inhibition of Gαi proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. ...

  15. CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar

    OpenAIRE

    Tollenaere, C.; Rahalison, L.; Ranjalahy, M.; Rahelinirina, S.; Duplantier, Jean-Marc; Brouat, Carine

    2008-01-01

    Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a fu...

  16. HIV-1 tropism testing and clinical management of CCR5 antagonists: Quebec review and recommendations

    Science.gov (United States)

    Tremblay, Cécile; Hardy, Isabelle; Lalonde, Richard; Trottier, Benoit; Tsarevsky, Irina; Vézina, Louis-Philippe; Roger, Michel; Wainberg, Mark; Baril, Jean-Guy

    2013-01-01

    HIV-1 tropism assays play a crucial role in determining the response to CCR5 receptor antagonists. Initially, phenotypic tests were used, but limited access to these tests prompted the development of alternative strategies. Recently, genotyping tropism has been validated using a Canadian technology in clinical trials investigating the use of maraviroc in both experienced and treatment-naive patients. The present guidelines review the evidence supporting the use of genotypic assays and provide recommendations regarding tropism testing in daily clinical management. PMID:24489562

  17. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.

    Science.gov (United States)

    Tebas, Pablo; Stein, David; Tang, Winson W; Frank, Ian; Wang, Shelley Q; Lee, Gary; Spratt, S Kaye; Surosky, Richard T; Giedlin, Martin A; Nichol, Geoff; Holmes, Michael C; Gregory, Philip D; Ando, Dale G; Kalos, Michael; Collman, Ronald G; Binder-Scholl, Gwendolyn; Plesa, Gabriela; Hwang, Wei-Ting; Levine, Bruce L; June, Carl H

    2014-03-06

    CCR5 is the major coreceptor for human immunodeficiency virus (HIV). We investigated whether site-specific modification of the gene ("gene editing")--in this case, the infusion of autologous CD4 T cells in which the CCR5 gene was rendered permanently dysfunctional by a zinc-finger nuclease (ZFN)--is safe. We enrolled 12 patients in an open-label, nonrandomized, uncontrolled study of a single dose of ZFN-modified autologous CD4 T cells. The patients had chronic aviremic HIV infection while they were receiving highly active antiretroviral therapy. Six of them underwent an interruption in antiretroviral treatment 4 weeks after the infusion of 10 billion autologous CD4 T cells, 11 to 28% of which were genetically modified with the ZFN. The primary outcome was safety as assessed by treatment-related adverse events. Secondary outcomes included measures of immune reconstitution and HIV resistance. One serious adverse event was associated with infusion of the ZFN-modified autologous CD4 T cells and was attributed to a transfusion reaction. The median CD4 T-cell count was 1517 per cubic millimeter at week 1, a significant increase from the preinfusion count of 448 per cubic millimeter (PCCR5-modified CD4 T cells at 1 week was 250 cells per cubic millimeter. This constituted 8.8% of circulating peripheral-blood mononuclear cells and 13.9% of circulating CD4 T cells. Modified cells had an estimated mean half-life of 48 weeks. During treatment interruption and the resultant viremia, the decline in circulating CCR5-modified cells (-1.81 cells per day) was significantly less than the decline in unmodified cells (-7.25 cells per day) (P=0.02). HIV RNA became undetectable in one of four patients who could be evaluated. The blood level of HIV DNA decreased in most patients. CCR5-modified autologous CD4 T-cell infusions are safe within the limits of this study. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00842634.).

  18. Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1.

    Science.gov (United States)

    Nakano, Yusuke; Monde, Kazuaki; Terasawa, Hiromi; Yuan, Yuzhe; Yusa, Keisuke; Harada, Shinji; Maeda, Yosuke

    2014-03-01

    Bimolecular fluorescence complementation (BiFC) and western blot analysis demonstrated that CCR5 exists as constitutive homo-oligomers, which was further enhanced by its antagonists such as maraviroc (MVC) and TAK-779. Staining by monoclonal antibodies recognizing different epitopes of CCR5 revealed that CCR5 oligomer was structurally different from the monomer. To determine which forms of CCR5 are well recognized by CCR5-using HIV-1 for the entry, BiFC-positive and -negative cell fractions in CD4-positive 293T cells were collected by fluorescent-activated cell sorter, and infected with luciferase-reporter HIV-1 pseudotyped with CCR5-using Envs including R5 and R5X4. R5 and dual-R5 HIV-1 substantially infected BiFC-negative fraction rather than BiFC-positive fraction, indicating the preferential recognition of monomeric CCR5 by R5 and dual-R5 Envs. Although CCR5 antagonists enhanced oligomerization of CCR5, MVC-resistant HIV-1 was found to still recognize both MVC-bound and -unbound forms of monomeric CCR5, suggesting the constrained use of monomeric CCR5 by R5 HIV-1. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. CCR5-Δ32 Heterozygosity, HIV-1 Reservoir Size, and Lymphocyte Activation in Individuals Receiving Long-term Suppressive Antiretroviral Therapy.

    Science.gov (United States)

    Henrich, Timothy J; Hanhauser, Emily; Harrison, Linda J; Palmer, Christine D; Romero-Tejeda, Marisol; Jost, Stephanie; Bosch, Ronald J; Kuritzkes, Daniel R

    2016-03-01

    We conducted a case-controlled study of the associations of CCR5-Δ32 heterozygosity with human immunodeficiency virus type 1 (HIV-1) reservoir size, lymphocyte activation, and CCR5 expression in 114 CCR5(Δ32/WT) and 177 wild-type CCR5 AIDS Clinical Trials Group participants receiving suppressive antiretroviral therapy. Overall, no significant differences were found between groups for any of these parameters. However, higher levels of CCR5 expression correlated with lower amounts of cell-associated HIV-1 RNA. The relationship between CCR5-Δ32 heterozygosity, CCR5 expression, and markers of HIV-1 persistence is likely to be complex and may be influenced by factors such as the duration of ART. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. Viremic control and viral coreceptor usage in two HIV-1-infected persons homozygous for CCR5 Δ32.

    Science.gov (United States)

    Henrich, Timothy J; Hanhauser, Emily; Hu, Zixin; Stellbrink, Hans-Jürgen; Noah, Christian; Martin, Jeffrey N; Deeks, Steven G; Kuritzkes, Daniel R; Pereyra, Florencia

    2015-05-15

    To determine viral and immune factors involved in transmission and control of HIV-1 infection in persons without functional CCR5. Understanding transmission and control of HIV-1 in persons homozygous for CCR5(Δ32) is important given efforts to develop HIV-1 curative therapies aimed at modifying or disrupting CCR5 expression. We identified two HIV-infected CCR5(Δ32/Δ32) individuals among a cohort of patients with spontaneous control of HIV-1 infection without antiretroviral therapy and determined coreceptor usage of the infecting viruses. We assessed genetic evolution of full-length HIV-1 envelope sequences by single-genome analysis from one participant and his sexual partner, and explored HIV-1 immune responses and HIV-1 mutations following virologic escape and disease progression. Both participants experienced viremia of less than 4000 RNA copies/ml with preserved CD4(+) T-cell counts off antiretroviral therapy for at least 3.3 and 4.6 years after diagnosis, respectively. One participant had phenotypic evidence of X4 virus, had no known favorable human leukocyte antigen alleles, and appeared to be infected by minority X4 virus from a pool that predominately used CCR5 for entry. The second participant had virus that was unable to use CXCR4 for entry in phenotypic assay but was able to engage alternative viral coreceptors (e.g., CXCR6) in vitro. Our study demonstrates that individuals may be infected by minority X4 viruses from a population that predominately uses CCR5 for entry, and that viruses may bypass traditional HIV-1 coreceptors (CCR5 and CXCR4) completely by engaging alternative coreceptors to establish and propagate HIV-1 infection.

  1. First report of a healthy Indian heterozygous for delta 32 mutant of HIV-1 co-receptor-CCR5 gene.

    Science.gov (United States)

    Husain, S; Goila, R; Shahi, S; Banerjea, A

    1998-01-30

    The beta-chemokine receptor, CCR5, is a major co-receptor for macrophage tropic non-syncytia-inducing isolates of HIV-1. Recently a 32 bp homozygous deletion in the coding region of CCR5 has been reported in a very small percentage (heritage with varying frequencies (13-20%). However, when a large number of the non-Caucasian population (261 Africans and 423 Asians) were screened for the presence of this deleted allele, not a single case of either homozygous or heterozygous mutant for delta 32 allele of CCR5 was detected. We screened 100 normal individuals and found a single heterozygous case with an identical 32 bp deletion in CCR5 gene reported earlier, the rest possessed wild-type alleles. This deleted gene was inherited in Mendelian fashion among the family members of this individual. Thus, the frequency of this deleted allele in India among unrelated normal individuals is likely to be very low (< 1%). We observed a moderate transdominant effect of this mutant allele in a fusion assay. Finally, we show a significant inhibition of fusion of cell membranes when the 176-bp region of CCR5 was used as an antisense.

  2. Influence of the CCR-5/MIP-1 α axis in the pathogenesis of Rocio virus encephalitis in a mouse model.

    Science.gov (United States)

    Chávez, Juliana H; França, Rafael F O; Oliveira, Carlo J F; de Aquino, Maria T P; Farias, Kleber J S; Machado, Paula R L; de Oliveira, Thelma F M; Yokosawa, Jonny; Soares, Edson G; da Silva, João S; da Fonseca, Benedito A L; Figueiredo, Luiz T M

    2013-11-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5-/- mice, while MIP-1 α-/- mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection.

  3. High frequency of the CCR5delta32 variant among individuals from an admixed Brazilian population with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    J.A.B. Chies

    2003-01-01

    Full Text Available Homozygous sickle cell disease (SCD has a wide spectrum of clinical manifestations. In Brazil, the main cause of death of individuals with SCD is recurrent infection. The CCR5delta32 allele, which confers relative resistance to macrophage-tropic HIV virus infection, probably has reached its frequency and world distribution due to other pathogens that target macrophage in European populations. In the present investigation a relatively higher prevalence (5.1% of the CCR5delta32 allele was identified, by PCR amplification using specific primers, in 79 SCD patients when compared to healthy controls (1.3% with the same ethnic background (Afro-Brazilians. Based on a hypothesis that considers SCD as a chronic inflammatory condition, and since the CCR5 chemokine receptor is involved in directing a Th1-type immune response, we suggest that a Th1/Th2 balance can influence the morbidity of SCD. If the presence of the null CCR5delta32 allele results in a reduction of the chronic inflammation state present in SCD patients, this could lead to differential survival of SCD individuals who are carriers of the CCR5delta32 allele. This differential survival could be due to the development of less severe infections and consequently reduced or less severe vaso-occlusive crises.

  4. Genotyping of CCR5 gene, CCR2b and SDF1 variants related to HIV-1 infection in Gabonese subjects.

    Science.gov (United States)

    Mombo, Landry Erik; Bisseye, Cyrille; Mickala, Patrick; Ossari, Simon; Makuwa, Maria

    2015-01-01

    Given the magnitude of the HIV epidemic infection, many viral and human factors were analyzed, and the most decisive was the variant CCR5-Δ32. The presence of a low HIV prevalence (1.8%) in Gabon in the 1990s, compared to neighboring countries, represents a paradox that led us to search for viral and human genetic variants in this country. In this study, only variants of coreceptors and chemokines were investigated. Variants of the coding region of the CCR5 gene were analyzed by denaturing gradient gel electrophoresis, and then variants of SDF1 and CCR2b were determined by polymerase chain reaction-restriction fragment length polymorphism. Four rare variants of the CCR5 coreceptor were found, while CCR5-Δ32 and CCR5m303 variants were not found. No association with CCR2b-V64I (17%) and SDF1-3'A (2%) variants was determined in relation to HIV-1 infection in Gabonese patients. The paradox of HIV seroprevalence in Gabon, which ended in the 2000s, was not caused by human genetic variants but rather by environmental factors. © 2015 S. Karger AG, Basel.

  5. Gating function of isoleucine-116 in TM-3 (position III:16/3.40) for the activity state of the CC-chemokine receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Steen, A; Sparre-Ulrich, A H; Thiele, Stefanie

    2014-01-01

    TM receptors - it is a leucine indicating an altered function. Here, we describe the significance of this position and its possible interaction with TM-3 for CCR5 activity. EXPERIMENTAL APPROACH: The effects of [L203F]-CCR5 in TM-5 (position V:13/5.47), [I116A]-CCR5 in TM-3 (III:16/3.40) and [L203F......;G286F]-CCR5 (V:13/5.47;VII:09/7.42) were determined in G-protein- and β-arrestin-coupled signalling. Computational modelling monitored changes in amino acid conformation. KEY RESULTS: [L203F]-CCR5 increased the basal level of G-protein coupling (20-70% of Emax ) and β-arrestin recruitment (50% of Emax...... ) with a threefold increase in agonist potency. In silico, [I116A]-CCR5 switched χ1-angle in [L203F]-CCR5. Furthermore, [I116A]-CCR5 was constitutively active to a similar degree as [L203F]-CCR5. Tyr(244) in TM-6 (VI:09/6.44) moved towards TM-5 in silico, consistent with its previously shown function for CCR5...

  6. CCR5 knockout prevents neuronal injury and behavioral impairment induced in a transgenic mouse model by a CXCR4-using HIV-1 glycoprotein 120.

    Science.gov (United States)

    Maung, Ricky; Hoefer, Melanie M; Sanchez, Ana B; Sejbuk, Natalia E; Medders, Kathryn E; Desai, Maya K; Catalan, Irene C; Dowling, Cari C; de Rozieres, Cyrus M; Garden, Gwenn A; Russo, Rossella; Roberts, Amanda J; Williams, Roy; Kaul, Marcus

    2014-08-15

    The innate immune system has been implicated in several neurodegenerative diseases, including HIV-1-associated dementia. In this study, we show that genetic ablation of CCR5 prevents microglial activation and neuronal damage in a transgenic model of HIV-associated brain injury induced by a CXCR4-using viral envelope gp120. The CCR5 knockout (KO) also rescues spatial learning and memory in gp120-transgenic mice. However, the CCR5KO does not abrogate astrocytosis, indicating it can occur independently from neuronal injury and behavioral impairment. To characterize further the neuroprotective effect of CCR5 deficiency we performed a genome-wide gene expression analysis of brains from HIVgp120tg mice expressing or lacking CCR5 and nontransgenic controls. A comparison with a human brain microarray study reveals that brains of HIVgp120tg mice and HIV patients with neurocognitive impairment share numerous differentially regulated genes. Furthermore, brains of CCR5 wild-type and CCR5KO gp120tg mice express markers of an innate immune response. One of the most significantly upregulated factors is the acute phase protein lipocalin-2 (LCN2). Using cerebrocortical cell cultures, we find that LCN2 is neurotoxic in a CCR5-dependent fashion, whereas inhibition of CCR5 alone is not sufficient to abrogate neurotoxicity of a CXCR4-using gp120. However, the combination of pharmacologic CCR5 blockade and LCN2 protects neurons from toxicity of a CXCR4-using gp120, thus recapitulating the finding in CCR5-deficient gp120tg mouse brain. Our study provides evidence for an indirect pathologic role of CCR5 and a novel protective effect of LCN2 in combination with inhibition of CCR5 in HIV-associated brain injury. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5.

    Science.gov (United States)

    Mefford, Megan E; Kunstman, Kevin; Wolinsky, Steven M; Gabuzda, Dana

    2015-07-01

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120-CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, H.B.; Timm, S.; Wang, A.G.

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... to a psychiatric hospital department served as a measure of disease onset. RESULTS: Patients and comparison subjects differed marginally in their genotype distribution, with a slightly higher frequency of the deletion allele seen in the patients. The authors found the deletion allele to be associated with higher......-onset schizophrenia) and healthy subjects differed significantly. This was reflected in an increased frequency of the deletion allele in the patient subgroup. Patients with ages at first admission below and above 40 years significantly differed in distribution of genotypes and alleles, with an overrepresentation...

  9. HIV-1 Infection in Persons Homozygous for CCR5-Δ32 Allele: The Next Case and the Review.

    Science.gov (United States)

    Smoleń-Dzirba, Joanna; Rosińska, Magdalena; Janiec, Janusz; Beniowski, Marek; Cycoń, Mariusz; Bratosiewicz-Wąsik, Jolanta; Wąsik, Tomasz J

    2017-12-01

    CC-chemokine receptor 5 serves as the coreceptor for the HIV-1 R5 strains, which are responsible for the majority of HIV transmissions. A deletion of 32 nucleotides in the gene encoding this receptor (termed CCR5-Δ32) leads to the suppression of CC-chemokine receptor 5 presentation at the cell surface, thus impeding process of HIV entry into the cell. Individuals homozygous for the CCR5-Δ32 allele are resistant to infection with HIV-1 R5 strains, and are extremely rare among HIV-1-infected individuals. We have described a case of person homozygous for CCR5-Δ32, who was infected with subtype B HIV-1. Based on examination of proviral V3 sequences obtained from the first clinical blood sample within less than five months after seroconversion, the CXC-chemokine receptor 4-using strains (X4 or R5/X4) were detected. Data on HIV-1-infected patients homozygous for the CCR5-Δ32 allele, course of HIV-1 infection in these cases, and the infecting viral strains from current and all former reports on HIV-1 infection in CCR5-Δ32 homozygotes were gathered and compared. Identification of HIV-1-infected persons homozygous for CCR5-Δ32 supports the evidence that the lack of functional CC-chemokine receptor 5 at the cell surface does not confer absolute protection against HIV-1 infection, which should be considered when designing future HIV pre-exposure prophylaxis schemes basing on CC-chemokine receptor 5 blocking drugs.

  10. Frequency of the CCR5-delta32 allele in Brazilian populations: A systematic literature review and meta-analysis.

    Science.gov (United States)

    Silva-Carvalho, Wlisses Henrique Veloso; de Moura, Ronald Rodrigues; Coelho, Antonio Victor Campos; Crovella, Sergio; Guimarães, Rafael Lima

    2016-09-01

    The CCR5 is a chemokine receptor widely expressed by several immune cells that are engaged in inflammatory responses. Some populations have individuals exhibiting a 32bp deletion in the CCR5 gene (CCR5-delta32) that produces a truncated non-functional protein not expressed on the cell surface. This polymorphism, known to be associated with susceptibility to infectious and inflammatory diseases, such as osteomyelitis, pre-eclampsia, systemic lupus erythematous, juvenile idiopathic arthritis, rheumatoid arthritis and HIV/AIDS, is more commonly found in European populations with average frequency of 10%. However, it is also possible to observe a significant frequency in other world populations, such as the Brazilian one. We performed a systematic review and meta-analysis of CCR5-delta32 genetic association studies in Brazilian populations throughout the country to estimate the frequency of this polymorphism. We also compared CCR5-delta32 frequencies across Brazilian regions. The systematic literature reviewed studies involving delta32 allele in Brazilian populations published from 1995 to 2015. Among the reviewed literature, 25 studies including 30 Brazilian populations distributed between the North, Northeast, South and Southeast regions were included in our meta-analysis. We observed an overall allelic frequency of 4% (95%-CI, 0.03-0.05), that was considered moderate and, notably, higher than some European populations, such as Cyprus (2.8%), Italy (3%) and Greece (2.4%). Regarding the regional frequency comparisons between North-Northeast (N-NE) and South-Southeast (S-SE) regions, we observed an allelic frequency of 3% (95%-CI, 0.02-0.04) and 4% (95%-CI, 0.03-0.05), respectively. The populations from S-SE regions had a slightly higher CCR5-delta32 frequency than N-NE regions (OR=1.41, p=0.002). Although there are several studies about the CCR5-delta32 polymorphism and its effect on the immune response of some infectious diseases, this report is the first meta

  11. CCR5 Δ32 homozygous cord blood allogeneic transplantation in a patient with HIV: a case report.

    Science.gov (United States)

    Duarte, Rafael F; Salgado, María; Sánchez-Ortega, Isabel; Arnan, Montserrat; Canals, Carmen; Domingo-Domenech, Eva; Fernández-de-Sevilla, Alberto; González-Barca, Eva; Morón-López, Sara; Nogues, Nuria; Patiño, Beatriz; Puertas, Maria Carmen; Clotet, Bonaventura; Petz, Lawrence D; Querol, Sergio; Martinez-Picado, Javier

    2015-06-01

    Allogeneic donor CCR5 Δ32 homozygous haemopoietic cell transplantation (HCT) provides the only evidence to date of long-term control of HIV infection. However, availability of conventional CCR5 Δ32 homozygous donors is insufficient to develop this as a therapeutic strategy further. We present a 37-year-old patient with HIV-1 infection and aggressive lymphoma who had disease progression after five lines of radiochemotherapy including an autologous HCT, and in the absence of matched sibling donors, received an allogeneic HCT with four of six HLA-matched CCR5 Δ32 homozygous cord blood cells (StemCyte, Covina, CA), supported with purified CD34+ cells from a haploidentical sibling. Blood or tissue samples were obtained before and weekly after HCT to monitor transplant and HIV infection, including chimerism analysis, CCR5 genotyping and viral tropism, viral isolation and sequence, viral reservoir analysis, immune activation and proliferation, and ex-vivo cell infectivity assays. Combined antiretroviral therapy continued during the procedure. The patient's HIV was CCR5-tropic by genotypic and phenotypic analyses. Baseline latent reservoir tests showed HIV DNA copies in bulk and resting CD4 T cells and in gut-associated lymphoid tissue, CD4 T-cell-associated HIV RNA, replication competent viral size of 2·1 copies per 10(7) CD4 T cells, and single copy assay of 303 copies per mL. After HCT, plasma HIV DNA load was undetectable by ultrasensitive analyses. Upon cord blood full chimerism, the patient's CCR5 Δ32 homozygous CD4 T cells responded to proliferation and activation stimuli and became resistant to infection by the patient's viral isolate and by laboratory-adapted HIV-1 strains. Death related to lymphoma progression regretfully prevented long-term monitoring of the patient's viral reservoir. CCR5 Δ32 homozygous cord blood reconstitution can successfully eliminate HIV-1 and render the allogeneic graft recipient's T lymphocytes resistant to HIV infection. Thus

  12. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5.

    Science.gov (United States)

    Mock, Ulrike; Machowicz, Rafał; Hauber, Ilona; Horn, Stefan; Abramowski, Pierre; Berdien, Belinda; Hauber, Joachim; Fehse, Boris

    2015-06-23

    Homozygosity for a natural deletion variant of the HIV-coreceptor molecule CCR5, CCR5Δ32, confers resistance toward HIV infection. Allogeneic stem cell transplantation from a CCR5Δ32-homozygous donor has resulted in the first cure from HIV ('Berlin patient'). Based thereon, genetic disruption of CCR5 using designer nucleases was proposed as a promising HIV gene-therapy approach. Here we introduce a novel TAL-effector nuclease, CCR5-Uco-TALEN that can be efficiently delivered into T cells by mRNA electroporation, a gentle and truly transient gene-transfer technique. CCR5-Uco-TALEN mediated high-rate CCR5 knockout (>90% in PM1 and >50% in primary T cells) combined with low off-target activity, as assessed by flow cytometry, next-generation sequencing and a newly devised, very convenient gene-editing frequency digital-PCR (GEF-dPCR). GEF-dPCR facilitates simultaneous detection of wild-type and gene-edited alleles with remarkable sensitivity and accuracy as shown for the CCR5 on-target and CCR2 off-target loci. CCR5-edited cells were protected from infection with HIV-derived lentiviral vectors, but also with the wild-type CCR5-tropic HIV-1BaL strain. Long-term exposure to HIV-1BaL resulted in almost complete suppression of viral replication and selection of CCR5-gene edited T cells. In conclusion, we have developed a novel TALEN for the targeted, high-efficiency knockout of CCR5 and a useful dPCR-based gene-editing detection method. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Analysis of the CCR5 gene coding region diversity in five South American populations reveals two new non-synonymous alleles in Amerindians and high CCR5*D32 frequency in Euro-Brazilians

    Directory of Open Access Journals (Sweden)

    Angelica B.W. Boldt

    2009-01-01

    Full Text Available The CC chemokine receptor 5 (CCR5 molecule is an important co-receptor for HIV. The effect of the CCR5*D32 allele in susceptibility to HIV infection and AIDS disease is well known. Other alleles than CCR5*D32 have not been analysed before, neither in Amerindians nor in the majority of the populations all over the world. We investigated the distribution of the CCR5 coding region alleles in South Brazil and noticed a high CCR5*D32 frequency in the Euro-Brazilian population of the Paraná State (9.3%, which is the highest thus far reported for Latin America. The D32 frequency is even higher among the Euro-Brazilian Mennonites (14.2%. This allele is uncommon in Afro-Brazilians (2.0%, rare in the Guarani Amerindians (0.4% and absent in the Kaingang Amerindians and the Oriental-Brazilians. R223Q is common in the Oriental-Brazilians (7.7% and R60S in the Afro-Brazilians (5.0%. A29S and L55Q present an impaired response to b-chemokines and occurred in Afro- and Euro-Brazilians with cumulative frequencies of 4.4% and 2.7%, respectively. Two new non-synonymous alleles were found in Amerindians: C323F (g.3729G > T in Guarani (1.4% and Y68C (g.2964A > G in Kaingang (10.3%. The functional characteristics of these alleles should be defined and considered in epidemiological investigations about HIV-1 infection and AIDS incidence in Amerindian populations.

  14. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav

    2016-01-01

    The small molecule metal-ion chelators bipyridine and terpyridine complexed with Zn(2+) (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3-binding to CCR5, weak modulators of CCL4-binding, and as competitors for CCL5-binding. Here we describe their binding...... site using computational modeling, binding and functional studies on WT and mutated CCR5. The metal-ion Zn(2+) is anchored to the chemokine receptor-conserved E283(VII:06/7.39) Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of Zn....../1.39), W86(II:20/2.60) and F109(III:09/3.33) The small molecules and CCL3 approach this interface from opposite directions with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine...

  15. A Linear Epitope in the N-Terminal Domain of CCR5 and Its Interaction with Antibody.

    Directory of Open Access Journals (Sweden)

    Benny Chain

    Full Text Available The CCR5 receptor plays a role in several key physiological and pathological processes and is an important therapeutic target. Inhibition of the CCR5 axis by passive or active immunisation offers one very selective strategy for intervention. In this study we define a new linear epitope within the extracellular domain of CCR5 recognised by two independently produced monoclonal antibodies. A short peptide encoding the linear epitope can induce antibodies which recognise the intact receptor when administered colinear with a tetanus toxoid helper T cell epitope. The monoclonal antibody RoAb 13 is shown to bind to both cells and peptide with moderate to high affinity (6x10^8 and 1.2x107 M-1 respectively, and binding to the peptide is enhanced by sulfation of tyrosines at positions 10 and 14. RoAb13, which has previously been shown to block HIV infection, also blocks migration of monocytes in response to CCR5 binding chemokines and to inflammatory macrophage conditioned medium. A Fab fragment of RoAb13 has been crystallised and a structure of the antibody is reported to 2.1 angstrom resolution.

  16. Detection of inferred CCR5- and CXCR4-using HIV-1 variants and evolutionary intermediates using ultra-deep pyrosequencing

    NARCIS (Netherlands)

    Bunnik, Evelien M.; Swenson, Luke C.; Edo-Matas, Diana; Huang, Wei; Dong, Winnie; Frantzell, Arne; Petropoulos, Christos J.; Coakley, Eoin; Schuitemaker, Hanneke; Harrigan, P. Richard; van 't Wout, Angélique B.

    2011-01-01

    The emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants is associated with accelerated disease progression. CXCR4-using variants are believed to evolve from CCR5-using variants, but due to the extremely low frequency at which transitional intermediate variants are often

  17. Novel AgoshRNA molecules for silencing of the CCR5 co-receptor for HIV-1 infection

    NARCIS (Netherlands)

    Herrera-Carrillo, Elena; Berkhout, Ben

    2017-01-01

    Allogeneic transplantation of blood stem cells from a CCR5-Δ32 homozygous donor to an HIV-infected individual, the "Berlin patient", led to a cure. Since then there has been a search for approaches that mimic this intervention in a gene therapy setting. RNA interference (RNAi) has evolved as a

  18. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro

    NARCIS (Netherlands)

    Wu, L.; Paxton, W. A.; Kassam, N.; Ruffing, N.; Rottman, J. B.; Sullivan, N.; Choe, H.; Sodroski, J.; Newman, W.; Koup, R. A.; Mackay, C. R.

    1997-01-01

    Chemokine receptors serve as coreceptors for HIV entry into CD4+ cells. Their expression is thought to determine the tropism of viral strains for different cell types, and also to influence susceptibility to infection and rates of disease progression. Of the chemokine receptors, CCR5 is the most

  19. Patients with active tuberculosis have increased expression of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells

    NARCIS (Netherlands)

    Juffermans, N. P.; Speelman, P.; Verbon, A.; Veenstra, J.; Jie, C.; van Deventer, S. J.; van der Poll, T.

    2001-01-01

    Expression of human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5 was found to be elevated on CD4(+) T cells (1) in blood samples obtained from patients with tuberculosis and (2) in blood samples obtained from healthy subjects and stimulated with mycobacterial lipoarabinomannan in vitro.

  20. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD.

    Science.gov (United States)

    Costa, Claudia; Rufino, Rogerio; Traves, Suzanne L; Lapa E Silva, Jose Roberto; Barnes, Peter J; Donnelly, Louise E

    2008-01-01

    COPD is associated with increased numbers of CD4(+) and CD8(+) lymphocytes and macrophages in the small airways and lung parenchyma. The chemokines regulating T-cell recruitment into the lung are unknown but may involve CXCR3 and CCR5 chemoattractants. The aims of this study were to determine the concentrations of CXCR3 chemokines CXCL9, CXCL10, CXCL11, and the CCR5 chemokine CCL5 in induced sputum from patients with COPD, smokers, and nonsmokers, and to examine the relationship between chemokine expression, inflammatory cells, and airway obstruction. Differential cell counts were performed and concentrations of CXCL9, CXCL10, CXCL11, and CCL5 were measured in induced sputum from nonsmokers (n = 18), smokers (n = 20), and COPD patients (n = 35) using an enzyme-linked immunosorbent assay. Concentrations of CXCL9, CXCL10, CXCL11, and CCL5 were significantly increased in the sputum of patients with COPD when compared with nonsmokers but not smokers without obstruction: CXCL9 (median, 14.3 pg/mL; interquartile range [IQR], 6.5 to 99.3; vs median, 1.4 pg/mL; IQR, 0 to 10.4 [p < 0.001]; vs 8.5 pg/mL; IQR, 0 to 16.0, respectively); CXCL10 (16.9 pg/mL; IQR, 6.2 to 148.8; vs 3.7 pg/mL; IQR, 0 to 18.8 [p < 0.05]; vs 11.3 pg/mL; IQR, 3.7 to 46.7); CXCL11 (58.1 pg/mL; IQR, 34.5 to 85.3; vs 33.5 pg/mL; IQR, 23.2 to 49.7 [p < 0.05]; vs 49.8 pg/mL; IQR, 32.6 to 105.6); and CCL5 (59.9 pg/mL; IQR, 57.1 to 67.8; vs 33.5 pg/mL; IQR, 31.6 to 36.9 [p < 0.001]). CCL5 in sputum from smokers was also significantly increased compared with that from nonsmokers (median, 63.0 pg/mL; IQR, 60.8 to70.2; p < 0.001). There was a negative correlation between FEV(1) percentage of predicted, FEV(1)/FVC ratio, and percentage of macrophages, and all the chemokines analyzed. Neutrophil numbers correlated positively with the concentrations of chemokines. CXCR3 chemokines and CCL5 are increased in sputum from COPD patients compared with nonsmokers, and may be important in COPD pathogenesis.

  1. Relationship between CCR5(WT/Δ32) heterozygosity and HIV-1 reservoir size in adolescents and young adults with perinatally acquired HIV-1 infection.

    Science.gov (United States)

    Martínez-Bonet, M; González-Serna, A; Clemente, M I; Morón-López, S; Díaz, L; Navarro, M; Puertas, M C; Leal, M; Ruiz-Mateos, E; Martinez-Picado, J; Muñoz-Fernández, M A

    2017-05-01

    Several host factors contribute to human immunodeficiency virus (HIV) disease progression in the absence of combination antiretroviral therapy (cART). Among them, the CC-chemokine receptor 5 (CCR5) is known to be the main co-receptor used by HIV-1 to enter target cells during the early stages of an HIV-1 infection. We evaluated the association of CCR5 (WT/Δ32) heterozygosity with HIV-1 reservoir size, lymphocyte differentiation, activation and immunosenescence in adolescents and young adults with perinatally acquired HIV infection receiving cART. CCR5 genotype was analysed in 242 patients with vertically transmitted HIV-1 infection from Paediatric Spanish AIDS Research Network Cohort (coRISpe). Proviral HIV-1 DNA was quantified by digital-droplet PCR, and T-cell phenotype was evaluated by flow cytometry in a subset of 24 patients (ten with CCR5 (Δ32/WT) genotype and 14 with CCR5 (WT/WT) genotype). Twenty-three patients were heterozygous for the Δ32 genotype but none was homozygous for the mutated CCR5 allele. We observed no difference in the HIV-1 reservoir size (455 and 578 copies of HIV-1 DNA per million CD4 + T cells in individuals with CCR5 (WT/WT) and CCR5 (Δ32/WT) genotypes, respectively; p 0.75) or in the immune activation markers between both genotype groups. However, we found that total HIV-1 DNA in CD4 + T cells correlated with the percentage of memory CD4 + T cells: a direct correlation in CCR5 (WT/Δ32) patients but an inverse correlation in those with the CCR5 (WT/WT) genotype. This finding suggests a differential distribution of the viral reservoir compartment in CCR5 (WT/Δ32) patients with perinatal HIV infection, which is a characteristic that may affect the design of strategies for reservoir elimination. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Detection of inferred CCR5- and CXCR4-using HIV-1 variants and evolutionary intermediates using ultra-deep pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Evelien M Bunnik

    2011-06-01

    Full Text Available The emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1 variants is associated with accelerated disease progression. CXCR4-using variants are believed to evolve from CCR5-using variants, but due to the extremely low frequency at which transitional intermediate variants are often present, the kinetics and mutational pathways involved in this process have been difficult to study and are therefore poorly understood. Here, we used ultra-deep sequencing of the V3 loop of the viral envelope in combination with the V3-based coreceptor prediction tools PSSM(NSI/SI and geno2pheno([coreceptor] to detect HIV-1 variants during the transition from CCR5- to CXCR4-usage. We analyzed PBMC and serum samples obtained from eight HIV-1-infected individuals at three-month intervals up to one year prior to the first phenotypic detection of CXCR4-using variants in the MT-2 assay. Between 3,482 and 10,521 reads were generated from each sample. In all individuals, V3 sequences of predicted CXCR4-using HIV-1 were detected at least three months prior to phenotypic detection of CXCR4-using variants in the MT-2 assay. Subsequent analysis of the genetic relationships of these V3 sequences using minimum spanning trees revealed that the transition in coreceptor usage followed a stepwise mutational pathway involving sequential intermediate variants, which were generally present at relatively low frequencies compared to the major predicted CCR5- and CXCR4-using variants. In addition, we observed differences between individuals with respect to the number of predicted CXCR4-using variants, the diversity among major predicted CCR5-using variants, and the presence or absence of intermediate variants with discordant phenotype predictions. These results provide the first detailed description of the mutational pathways in V3 during the transition from CCR5- to CXCR4-usage in natural HIV-1 infection.

  3. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.

    Science.gov (United States)

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S; Taube, Ran; Engel, Stanislav

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.

  4. Site-selective solid-phase synthesis of a CCR5 sulfopeptide library to interrogate HIV binding and entry.

    Science.gov (United States)

    Liu, Xuyu; Malins, Lara R; Roche, Michael; Sterjovski, Jasminka; Duncan, Renee; Garcia, Mary L; Barnes, Nadine C; Anderson, David A; Stone, Martin J; Gorry, Paul R; Payne, Richard J

    2014-09-19

    Tyrosine (Tyr) sulfation is a common post-translational modification that is implicated in a variety of important biological processes, including the fusion and entry of human immunodeficiency virus type-1 (HIV-1). A number of sulfated Tyr (sTyr) residues on the N-terminus of the CCR5 chemokine receptor are involved in a crucial binding interaction with the gp120 HIV-1 envelope glycoprotein. Despite the established importance of these sTyr residues, the exact structural and functional role of this post-translational modification in HIV-1 infection is not fully understood. Detailed biological studies are hindered in part by the difficulty in accessing homogeneous sulfopeptides and sulfoproteins through biological expression and established synthetic techniques. Herein we describe an efficient approach to the synthesis of sulfopeptides bearing discrete sulfation patterns through the divergent, site-selective incorporation of sTyr residues on solid support. By employing three orthogonally protected Tyr building blocks and a solid-phase sulfation protocol, we demonstrate the synthesis of a library of target N-terminal CCR5(2-22) sulfoforms bearing discrete and differential sulfation at Tyr10, Tyr14, and Tyr15, from a single resin-bound intermediate. We demonstrate the importance of distinct sites of Tyr sulfation in binding gp120 through a competitive binding assay between the synthetic CCR5 sulfopeptides and an anti-gp120 monoclonal antibody. These studies revealed a critical role of sulfation at Tyr14 for binding and a possible additional role for sulfation at Tyr10. N-terminal CCR5 variants bearing a sTyr residue at position 14 were also found to complement viral entry into cells expressing an N-terminally truncated CCR5 receptor.

  5. The Black Death and AIDS: CCR5-Delta32 in genetics and history.

    Science.gov (United States)

    Cohn, S K; Weaver, L T

    2006-08-01

    Black Death and AIDS are global pandemics that have captured the popular imagination, both attracting extravagant hypotheses to account for their origins and geographical distributions. Medical scientists have recently attempted to connect these two great pandemics. Some argue that the Black Death of 1346-52 was responsible for a genetic shift that conferred a degree of resistance to HIV 1 infection, that this shift was almost unique to European descendents, and that it mirrors the intensity of Black Death mortality within Europe. Such a hypothesis is not supported by the historical evidence: the Black Death did not strike Europe alone but spread from the east, devastating regions such as China, North Africa, and the Middle East as much or even more than Europe. Further, in Europe its levels of mortality do not correspond with the geographic distribution of the proportion of descendents with this CCR5 gene. If anything, the gradient of Black Death mortality sloped in the opposite direction from that of present-day genotypes: the heaviest casualties were in the Mediterranean, the very regions whose descendents account for the lowest incidences of the HIV-1 resistant allele. We argue that closer collaboration between historians and scientists is needed to understand the selective pressures on genetic mutation, and the possible triggers for changes in genetic spatial frequencies over the past millennia. This requires care and respect for each other's methods of evaluating data.

  6. The applications of PCA in QSAR studies: A case study on CCR5 antagonists.

    Science.gov (United States)

    Yoo, ChangKyoo; Shahlaei, Mohsen

    2018-01-01

    Principal component analysis (PCA), as a well-known multivariate data analysis and data reduction technique, is an important and useful algebraic tool in drug design and discovery. PCA, in a typical quantitative structure-activity relationship (QSAR) study, analyzes an original data matrix in which molecules are described by several intercorrelated quantitative dependent variables (molecular descriptors). Although extensively applied, there is disparity in the literature with respect to the applications of PCA in the QSAR studies. This study investigates the different applications of PCA in QSAR studies using a dataset including CCR5 inhibitors. The different types of preprocessing are used to compare the PCA performances. The use of PC plots in the exploratory investigation of matrix of descriptors is described. This work is also proved PCA analysis to be a powerful technique for exploring complex datasets in QSAR studies for identification of outliers. This study shows that PCA is able to easily apply to the pool of calculated structural descriptors and also the extracted information can be used to help decide upon an appropriate harder model for further analysis. © 2017 John Wiley & Sons A/S.

  7. Thalidomide suppresses Up-regulation of human immunodeficiency virus coreceptors CXCR4 and CCR5 on CD4+ T cells in humans

    NARCIS (Netherlands)

    Juffermans, N. P.; Verbon, A.; Olszyna, D. P.; van Deventer, S. J.; Speelman, P.; van der Poll, T.

    2000-01-01

    Concurrent infection in patients with human immunodeficiency virus (HIV) infection increases the expression of HIV coreceptors CXCR4 and CCR5. Thalidomide has beneficial effects in a number of HIV-associated diseases. The effect of thalidomide on CXCR4 and CCR5 expression on CD4+ T cells was

  8. The isolation of novel phage display-derived human recombinant antibodies against CCR5, the major co-receptor of HIV.

    Science.gov (United States)

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai; Hizi, Amnon

    2013-08-01

    Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest.

  9. The Isolation of Novel Phage Display-Derived Human Recombinant Antibodies Against CCR5, the Major Co-Receptor of HIV

    Science.gov (United States)

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai

    2013-01-01

    Abstract Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674

  10. The Second Extracellular Loop of CCR5 Contains the Dominant Epitopes for Highly Potent Anti-Human Immunodeficiency Virus Monoclonal Antibodies▿

    Science.gov (United States)

    Zhang, Jun; Rao, Eileen; Dioszegi, Marianna; Kondru, Rama; DeRosier, Andre; Chan, Eva; Schwoerer, Stephan; Cammack, Nick; Brandt, Michael; Sankuratri, Surya; Ji, Changhua

    2007-01-01

    Six mouse anti-human CCR5 monoclonal antibodies (mAbs) that showed potent antiviral activities were identified from over 26,000 mouse hybridomas. The epitopes for these mAbs were determined by using various CCR5 mutants, including CCR5/CCR2B chimeras. One mAb, ROAb13, was found to bind to a linear epitope in the N terminus of CCR5. Strikingly, the other five mAbs bind to epitopes derived from extracellular loop 2 (ECL2). The three most potent mAbs, ROAb12, ROAb14, and ROAb18, require residues from both the N-terminal (Lys171 and Glu172) and C-terminal (Trp190) halves of ECL2 for binding; two other mAbs, ROAb10 and ROAb51, which also showed potent antiviral activities, require Lys171 and Glu172 but not Trp190 for binding. Binding of the control mAb 2D7 completely relies on Lys171 and Glu172. Unlike 2D7, the novel mAbs ROAb12, ROAb14, and ROAb18 do not bind to the linear peptide 2D7-2SK. In addition, all three mAbs bind to monkey CCR5 (with Arg at position 171 instead of Lys); however, 2D7 does not. Since five of the six most potent CCR5 mAbs derived from the same pool of immunized mice require ECL2 as epitopes, we hypothesize that CCR5 ECL2 contains the dominant epitopes for mAbs with potent antiviral activities. These dominant epitopes were found in CCR5 from multiple species and were detected in large proportions of the total cell surface CCR5. mAbs recognizing these epitopes also showed high binding affinity. A homology model of CCR5 was generated to aid in the interpretation of these dominant epitopes in ECL2. PMID:17242138

  11. CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Hemant Kulkarni

    Full Text Available BACKGROUND: Whether vexing clinical decision-making dilemmas can be partly addressed by recent advances in genomics is unclear. For example, when to initiate highly active antiretroviral therapy (HAART during HIV-1 infection remains a clinical dilemma. This decision relies heavily on assessing AIDS risk based on the CD4+ T cell count and plasma viral load. However, the trajectories of these two laboratory markers are influenced, in part, by polymorphisms in CCR5, the major HIV coreceptor, and the gene copy number of CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine. Therefore, we determined whether accounting for both genetic and laboratory markers provided an improved means of assessing AIDS risk. METHODS AND FINDINGS: In a prospective, single-site, ethnically-mixed cohort of 1,132 HIV-positive subjects, we determined the AIDS risk conveyed by the laboratory and genetic markers separately and in combination. Subjects were assigned to a low, moderate or high genetic risk group (GRG based on variations in CCL3L1 and CCR5. The predictive value of the CCL3L1-CCR5 GRGs, as estimated by likelihood ratios, was equivalent to that of the laboratory markers. GRG status also predicted AIDS development when the laboratory markers conveyed a contrary risk. Additionally, in two separate and large groups of HIV+ subjects from a natural history cohort, the results from additive risk-scoring systems and classification and regression tree (CART analysis revealed that the laboratory and CCL3L1-CCR5 genetic markers together provided more prognostic information than either marker alone. Furthermore, GRGs independently predicted the time interval from seroconversion to CD4+ cell count thresholds used to guide HAART initiation. CONCLUSIONS: The combination of the laboratory and genetic markers captures a broader spectrum of AIDS risk than either marker alone. By tracking a unique aspect of AIDS risk distinct from that captured by the laboratory parameters

  12. Gene polymorphisms in CCR5, CCR2, SDF1 and RANTES among Chinese Han population with HIV-1 infection.

    Science.gov (United States)

    Li, Hui; Liu, Ting-Jun; Hong, Ze-Hui

    2014-06-01

    Chemokines and chemokine receptors are crucial for immune response in HIV-1 infection. Although many studies have been done to investigate the relationship between chemokines and chemokine receptor gene polymorphisms and host's susceptibility to HIV-1 infection, the conclusions are under debate. In the present study, a cohort of 287 HIV-1 seropositive patients, 388 ethnically age-matched healthy controls and 49 intravenous drug users (IDUs) HIV-1 exposed seronegative individuals (HESN) from Chinese Han population were enrolled in order to determine the influence of host genetic factors on HIV-1 infection. Seven polymorphisms on four known chemokines/chemokine receptor genes (CCR5Δ32, CCR5 m303, CCR5 59029A/G, CCR2 64I, RANTES -403A/G, RANTES -28C/G and SDF1 3'-A) were screened. CCR5Δ32 and CCR5 m303 were absent or infrequent in Chinese Han population, which may not be hosts' genetic protective factors for HIV-1 infection. Our results showed the CCR5 59029A/G, CCR2 64I and SDF1 3'-A were not associated with host's resistance to HIV-1 infection. The frequency of RANTES -403A allele was significantly lower in HIV-1 patients than in healthy blood donors (p=0.0005) and HESN group (p=0.035), which implied the association between A allele and reduced HIV-1 infection risk. Different genetic models were assessed to investigate this association (AA vs. GG+AG, OR=0.38 95% CI, 0.22-0.65 p=0.0004; A vs. G, OR=0.66 95% CI, 0.52-0.84 p=0.0006), which supported this association, either. The genotype and allele distribution of RANTES -28 between HIV-1 patients and healthy controls (genotype profile: p=0.072; allele profile: p=0.027) or HIV-1 seronegative group (genotype profile: p=0.036; allele profile: p=0.383) were both at the marginal level of significance, which were not observed after Bonferroni correction. All these results suggest the RANTES -403A may be associated with reduced susceptibility to HIV-1 infection, while the RANTES -28 locus not. By lack of the patients

  13. A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations.

    Science.gov (United States)

    Roche, Michael; Salimi, Hamid; Duncan, Renee; Wilkinson, Brendan L; Chikere, Kelechi; Moore, Miranda S; Webb, Nicholas E; Zappi, Helena; Sterjovski, Jasminka; Flynn, Jacqueline K; Ellett, Anne; Gray, Lachlan R; Lee, Benhur; Jubb, Becky; Westby, Mike; Ramsland, Paul A; Lewin, Sharon R; Payne, Richard J; Churchill, Melissa J; Gorry, Paul R

    2013-04-20

    The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Clinical resistance to MVC may involve divergent Env

  14. African Ancestry Influences CCR5 –2459G>A Genotype-Associated Virologic Success of Highly Active Antiretroviral Therapy

    Science.gov (United States)

    Cheruvu, Vinay K.; Igo, Robert P.; Jurevic, Richard J.; Serre, David; Zimmerman, Peter A.; Rodriguez, Benigno; Mehlotra, Rajeev K.

    2014-01-01

    Introduction In a North American, HIV-positive, highly active antiretroviral therapy (HAART)-treated, adherent cohort of self-identified white and black patients, we previously observed that chemokine (C-C motif) receptor 5 (CCR5) –2459G>A genotype had a strong association with time to achieve virologic success (TVLS) in black but not in white patients. Methods Using 128 genome-wide ancestry informative markers, we performed a quantitative assessment of ancestry in these patients (n = 310) to determine (1) whether CCR5 –2459G>A genotype is still associated with TVLS of HAART when ancestry, not self-identified race, is considered and (2) whether this association is influenced by varying African ancestry. Results We found that the interaction between CCR5 –2459G>A genotype and African ancestry (≤0.125 vs. ≥0.425 and A genotype and TVLS was stronger in patients with African ancestry ≥0.71 than in patients with African ancestry ≥0.452, in both Kaplan-Meier (log-rank P = 0.039 and 0.057, respectively, for AA, GA, and GG) and Cox proportional hazards regression (relative hazard for GG compared with AA 2.59 [95% CI, 1.27–5.22; P = 0.01] and 2.26 [95% CI, 1.18–4.32; P = 0.01], respectively) analyses. Conclusions We observed that the association between CCR5 –2459G>A genotype and TVLS of HAART increased with stronger African ancestry. Understanding the genomic mechanisms by which African ancestry influences this association is critical, and requires further studies. PMID:24714069

  15. Influence of Acyclic Nucleoside Phosphonate Antivirals on Gene Expression of Chemokine Receptors CCR5 and CXCR4

    Czech Academy of Sciences Publication Activity Database

    Potměšil, P.; Holý, Antonín; Zídek, Zdeněk

    2015-01-01

    Roč. 61, č. 1 (2015), s. 1-7 ISSN 0015-5500 R&D Projects: GA ČR GA305/03/1470; GA MŠk 1M0508 Institutional support: RVO:61388963 ; RVO:68378041 Keywords : acyclic nucleoside phosphonate * HIV * CCR5 * CXCR4 * cytokine * RT-PCR Subject RIV: CC - Organic Chemistry; FR - Pharmacology ; Medidal Chemistry (UEM-P) Impact factor: 0.833, year: 2015

  16. Quantitative deep sequencing reveals dynamic HIV-1 escape and large population shifts during CCR5 antagonist therapy in vivo.

    Directory of Open Access Journals (Sweden)

    Athe M N Tsibris

    2009-05-01

    Full Text Available High-throughput sequencing platforms provide an approach for detecting rare HIV-1 variants and documenting more fully quasispecies diversity. We applied this technology to the V3 loop-coding region of env in samples collected from 4 chronically HIV-infected subjects in whom CCR5 antagonist (vicriviroc [VVC] therapy failed. Between 25,000-140,000 amplified sequences were obtained per sample. Profound baseline V3 loop sequence heterogeneity existed; predicted CXCR4-using populations were identified in a largely CCR5-using population. The V3 loop forms associated with subsequent virologic failure, either through CXCR4 use or the emergence of high-level VVC resistance, were present as minor variants at 0.8-2.8% of baseline samples. Extreme, rapid shifts in population frequencies toward these forms occurred, and deep sequencing provided a detailed view of the rapid evolutionary impact of VVC selection. Greater V3 diversity was observed post-selection. This previously unreported degree of V3 loop sequence diversity has implications for viral pathogenesis, vaccine design, and the optimal use of HIV-1 CCR5 antagonists.

  17. Genetic Variations in the Receptor-Ligand Pair CCR5 and CCL3L1 Are Important Determinants of Susceptibility to Kawasaki Disease

    Science.gov (United States)

    Burns, Jane C.; Shimizu, Chisato; Gonzalez, Enrique; Kulkarni, Hemant; Patel, Sukeshi; Shike, Hiroko; Sundel, Robert S.; Newburger, Jane W.; Ahuja, Sunil K.

    2010-01-01

    Kawasaki disease (KD) is an enigmatic, self-limited vasculitis of childhood that is complicated by development of coronary-artery aneurysms. The high incidence of KD in Asian versus European populations prompted a search for genetic polymorphisms that are differentially distributed among these populations and that influence KD susceptibility. Here, we demonstrate a striking, inverse relationship between the worldwide distribution of CCR5-Δ32 allele and the incidence of KD. In 164 KD patient-parent trios, 4 CCR5 haplotypes including the CCR5-Δ32 allele were differentially transmitted from heterozygous parents to affected children. However, the magnitude of the reduced risk of KD associated with the CCR5-Δ32 allele and certain CCR5 haplotypes was significantly greater in individuals who also possessed a high copy number of the gene encoding CCL3L1, the most potent CCR5 ligand. These findings, derived from the largest genetic study of any systemic vasculitis, suggest a central role of CCR5-CCL3L1 gene-gene interactions in KD susceptibility and the importance of gene modifiers in infectious diseases. PMID:15962231

  18. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.

    Science.gov (United States)

    Xu, Lei; Yang, Huan; Gao, Yang; Chen, Zeyu; Xie, Liangfu; Liu, Yulin; Liu, Ying; Wang, Xiaobao; Li, Hanwei; Lai, Weifeng; He, Yuan; Yao, Anzhi; Ma, Liying; Shao, Yiming; Zhang, Bin; Wang, Chengyan; Chen, Hu; Deng, Hongkui

    2017-08-02

    Transplantation of hematopoietic stem cells (HSCs) with a naturally occurring CCR5 mutation confers a loss of detectable HIV-1 in the patient, making ablation of the CCR5 gene in HSCs an ideal therapy for an HIV-1 cure. Although CCR5 disruption has been attempted in CD4 + T cells and hematopoietic stem/progenitor cells (HSPCs), efficient gene editing with high specificity and long-term therapeutic potential remains a major challenge for clinical translation. Here, we established a CRISPR/Cas9 gene editing system in human CD34 + HSPCs and achieved efficient CCR5 ablation evaluated in long-term reconstituted NOD/Prkdc scid /IL-2Rγ null mice. The CCR5 disruption efficiency in our system remained robust in secondary transplanted repopulating hematopoietic cells. More importantly, an HIV-1 resistance effect was observed as indicated by significant reduction of virus titration and enrichment of human CD4 + T cells. Hence, we successfully established a CRISPR/Cas9 mediated CCR5 ablating system in long-term HSCs, which confers HIV-1 resistance in vivo. Our study provides evidence for translating CCR5 gene-edited HSC transplantation for an HIV cure to the clinic. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  19. CCR5 interaction with HIV-1 Env contributes to Env-induced depletion of CD4 T cells in vitro and in vivo.

    Science.gov (United States)

    Tsao, Li-Chung; Guo, Haitao; Jeffrey, Jerry; Hoxie, James A; Su, Lishan

    2016-03-29

    CD4 T cell depletion during HIV-1 infection is associated with AIDS disease progression, and the HIV-1 Env protein plays an important role in the process. Together with CXCR4, CCR5 is one of the two co-receptors that interact with Env during virus entry, but the role of CCR5 in Env-induced pathogenesis is not clearly defined. We have investigated CD4 T cell depletion mechanisms caused by the Env of a highly pathogenic CXCR4/CCR5 dual-tropic HIV-1 isolate R3A. We report here that R3A infection induced depletion of both infected and uninfected "bystander" CD4 T cells, and treatment with CCR5 antagonist TAK-779 inhibited R3A-induced bystander CD4 T cell depletion without affecting virus replication. To further define the role of Env-CCR5 interaction, we utilized an Env-mutant of R3A, termed R3A-5/6AA, which has lost CCR5 binding capability. Importantly, R3A-5/6AA replicated to the same level as wild type R3A by using CXCR4 for viral infection. We found the loss of CCR5 interaction resulted in a significant reduction of bystander CD4 T cells death during R3A-5/6AA infection, whereas stimulation of CCR5 with MIP1-β increased bystander pathogenesis induced by R3A-5/6AA. We confirmed our findings using a humanized mouse model, where we observed similarly reduced pathogenicity of the mutant R3A-5/6AA in various lymphoid organs in vivo. We provide the first evidence that shows CCR5 interaction with a dual-tropic HIV-1 Env played a significant role in Env-induced depletion of CD4 T cells.

  20. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9.

    Science.gov (United States)

    Li, Chang; Guan, Xinmeng; Du, Tao; Jin, Wei; Wu, Biao; Liu, Yalan; Wang, Ping; Hu, Bodan; Griffin, George E; Shattock, Robin J; Hu, Qinxue

    2015-08-01

    CCR5 serves as an essential coreceptor for human immunodeficiency virus type 1 (HIV-1) entry, and individuals with a CCR5(Δ32) variant appear to be healthy, making CCR5 an attractive target for control of HIV-1 infection. The CRISPR/Cas9, which functions as a naturally existing adaptive immune system in prokaryotes, has been recently harnessed as a novel nuclease system for genome editing in mammalian cells. Although CRISPR/Cas9 can be readily delivered into cell lines, due to the large size of the Cas9 protein, efficient delivery of CCR5-targeting CRISPR/Cas9 components into primary cells, including CD4(+) T-cells, the primary target for HIV-1 infection in vivo, remains a challenge. In the current study, following design of a panel of top-ranked single-guided RNAs (sgRNAs) targeting the ORF of CCR5, we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the CCR5 locus in cell lines, resulting in the knockout of CCR5 expression on the cell surface. Next-generation sequencing revealed that various mutations were introduced around the predicted cleavage site of CCR5. For each of the three most effective sgRNAs that we analysed, no significant off-target effects were detected at the 15 top-scoring potential sites. More importantly, by constructing chimeric Ad5F35 adenoviruses carrying CRISPR/Cas9 components, we efficiently transduced primary CD4(+) T-lymphocytes and disrupted CCR5 expression, and the positively transduced cells were conferred with HIV-1 resistance. To our knowledge, this is the first study establishing HIV-1 resistance in primary CD4(+) T-cells utilizing adenovirus-delivered CRISPR/Cas9.

  1. Characterization of the virus-cell interactions by HIV-1 subtype C variants from an antiretroviral therapy-naïve subject with baseline resistance to the CCR5 inhibitor maraviroc

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard

    The CCR5 inhibitor maraviroc (MVC) exerts its antiviral activity by binding to- and altering the conformation of the CCR5 extracellular loops such that HIV-1 gp120 no longer recognizes CCR5. Viruses that have become resistant to MVC through long-term in vitro culture, or from treatment failure...... in vivo, can use the MVCbound form of CCR5 for HIV-1 entry via adaptive alterations in gp120. Partial baseline resistance to another CCR5 inhibitor through this mechanism, AD101, has been noted recently in one subject (1). Here, we identified and characterized envelope (Env) clones with baseline...... related abstract by Jakobsen et al., “Preferential CCR5-usage by R5X4 subtype C HIV-1 imparts sensitivity to maraviroc and tempers disease progression”), nine subjects persistently harboured CCR5-using (R5) Envs to late stages of infection. Virus inhibition assays in NP2-CD4/CCR5 cells using Env...

  2. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach.

    Science.gov (United States)

    Spanevello, Francesca; Calistri, Arianna; Del Vecchio, Claudia; Mantelli, Barbara; Frasson, Chiara; Basso, Giuseppe; Palù, Giorgio; Cavazzana, Marina; Parolin, Cristina

    2016-04-19

    Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4(+) T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.

  3. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C.; Kaas, A.; Hansen, L.

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated...... longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated...... of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes. (C) 2008 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/7...

  4. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double......-deficient mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  5. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C; Kaas, A; Hansen, L

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated...... longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated...... of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes....

  6. Changes in the V3 Region of gp120 Contribute to Unusually Broad Coreceptor Usage of an HIV-1 Isolate from a CCR5 Δ32 Heterozygote

    Science.gov (United States)

    Gorry, Paul R.; Dunfee, Rebecca L.; Mefford, Megan E.; Kunstman, Kevin; Morgan, Tom; Moore, John P.; Mascola, John R.; Agopian, Kristin; Holm, Geoffrey H.; Mehle, Andrew; Taylor, Joann; Farzan, Michael; Wang, Hui; Ellery, Philip; Willey, Samantha J.; Clapham, Paul R.; Wolinsky, Steven M.; Crowe, Suzanne M.; Gabuzda, Dana

    2007-01-01

    Heterozygosity for the CCR5 Δ32 allele is associated with delayed progression to AIDS in human immunodeficiency virus type 1 (HIV-1) infection. Here we describe an unusual HIV-1 isolate from blood of an asymptomatic individual who was heterozygous for the CCR5 Δ32 allele and had reduced levels of CCR5 expression. The primary virus used CCR5, CXCR4, and an unusually broad range of alternative coreceptors to enter transfected cells. However, only CXCR4 and CCR5 were used to enter primary T cells and monocyte-derived macrophages, respectively. Full-length Env clones had an unusually long V1/V2 region and rare amino acid variants in the V3 and C4 regions. Mutagenesis studies and structural models suggested Y308, D321, and to a lesser extent K442 and E444, contribute to the broad coreceptor usage of these Envs, whereas I317 is likely to be a compensatory change. Furthermore, database analysis suggests covariation can occur at positions 308/317 and 308/321 in vivo. Y308 and D321 reduced dependence on the extracellular loop 2 (ECL2) region of CCR5, while these residues along with Y330, K442, and E444 enhanced dependence on the CCR5 N-terminus compared to clade B consensus residues at these positions. These results suggest that expanded coreceptor usage of HIV-1 can occur in some individuals without rapid progression to AIDS as a consequence of changes in the V3 region that reduce dependence on the ECL2 region of CCR5 by enhancing interactions with conserved structural elements in G-protein-coupled receptors. PMID:17239419

  7. HIV-1 entry inhibition by small-molecule CCR5 antagonists: A combined molecular modeling and mutant study using a high-throughput assay

    International Nuclear Information System (INIS)

    Labrecque, Jean; Metz, Markus; Lau, Gloria; Darkes, Marilyn C.; Wong, Rebecca S.Y.; Bogucki, David; Carpenter, Bryon; Chen Gang; Li Tongshuang; Nan, Susan; Schols, Dominique; Bridger, Gary J.; Fricker, Simon P.; Skerlj, Renato T.

    2011-01-01

    Based on the attrition rate of CCR5 small molecule antagonists in the clinic the discovery and development of next generation antagonists with an improved pharmacology and safety profile is necessary. Herein, we describe a combined molecular modeling, CCR5-mediated cell fusion, and receptor site-directed mutagenesis approach to study the molecular interactions of six structurally diverse compounds (aplaviroc, maraviroc, vicriviroc, TAK-779, SCH-C and a benzyloxycarbonyl-aminopiperidin-1-yl-butane derivative) with CCR5, a coreceptor for CCR5-tropic HIV-1 strains. This is the first study using an antifusogenic assay, a model of the interaction of the gp120 envelope protein with CCR5. This assay avoids the use of radioactivity and HIV infection assays, and can be used in a high throughput mode. The assay was validated by comparison with other established CCR5 assays. Given the hydrophobic nature of the binding pocket several binding models are suggested which could prove useful in the rational drug design of new lead compounds.

  8. V3 loop sequence space analysis suggests different evolutionary patterns of CCR5- and CXCR4-tropic HIV.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    Full Text Available The V3 loop of human immunodeficiency virus type 1 (HIV-1 is critical for coreceptor binding and is the main determinant of which of the cellular coreceptors, CCR5 or CXCR4, the virus uses for cell entry. The aim of this study is to provide a large-scale data driven analysis of HIV-1 coreceptor usage with respect to the V3 loop evolution and to characterize CCR5- and CXCR4-tropic viral phenotypes previously studied in small- and medium-scale settings. We use different sequence similarity measures, phylogenetic and clustering methods in order to analyze the distribution in sequence space of roughly 1000 V3 loop sequences and their tropism phenotypes. This analysis affords a means of characterizing those sequences that are misclassified by several sequence-based coreceptor prediction methods, as well as predicting the coreceptor using the location of the sequence in sequence space and of relating this location to the CD4(+ T-cell count of the patient. We support previous findings that the usage of CCR5 is correlated with relatively high sequence conservation whereas CXCR4-tropic viruses spread over larger regions in sequence space. The incorrectly predicted sequences are mostly located in regions in which their phenotype represents the minority or in close vicinity of regions dominated by the opposite phenotype. Nevertheless, the location of the sequence in sequence space can be used to improve the accuracy of the prediction of the coreceptor usage. Sequences from patients with high CD4(+ T-cell counts are relatively highly conserved as compared to those of immunosuppressed patients. Our study thus supports hypotheses of an association of immune system depletion with an increase in V3 loop sequence variability and with the escape of the viral sequence to distant parts of the sequence space.

  9. HIV signaling through CD4 and CCR5 activates Rho family GTPases that are required for optimal infection of primary CD4+ T cells.

    Science.gov (United States)

    Lucera, Mark B; Fleissner, Zach; Tabler, Caroline O; Schlatzer, Daniela M; Troyer, Zach; Tilton, John C

    2017-01-24

    HIV-1 hijacks host cell machinery to ensure successful replication, including cytoskeletal components for intracellular trafficking, nucleoproteins for pre-integration complex import, and the ESCRT pathway for assembly and budding. It is widely appreciated that cellular post-translational modifications (PTMs) regulate protein activity within cells; however, little is known about how PTMs influence HIV replication. Previously, we reported that blocking deacetylation of tubulin using histone deacetylase inhibitors promoted the kinetics and efficiency of early post-entry viral events. To uncover additional PTMs that modulate entry and early post-entry stages in HIV infection, we employed a flow cytometric approach to assess a panel of small molecule inhibitors on viral fusion and LTR promoter-driven gene expression. While viral fusion was not significantly affected, early post-entry viral events were modulated by drugs targeting multiple processes including histone deacetylation, methylation, and bromodomain inhibition. Most notably, we observed that inhibitors of the Rho GTPase family of cytoskeletal regulators-including RhoA, Cdc42, and Rho-associated kinase signaling pathways-significantly reduced viral infection. Using phosphoproteomics and a biochemical GTPase activation assay, we found that virion-induced signaling via CD4 and CCR5 activated Rho family GTPases including Rac1 and Cdc42 and led to widespread modification of GTPase signaling-associated factors. Together, these data demonstrate that HIV signaling activates members of the Rho GTPase family of cytoskeletal regulators that are required for optimal HIV infection of primary CD4+ T cells.

  10. [Single nucleotide polymorphisms of HIV coreceptor CCR5 gene in Chinese Yi ethnic group and its association with HIV infection].

    Science.gov (United States)

    Ma, Li-ying; Hong, Kun-xue; Lu, Xiao-zhi; Qin, Guang-ming; Chen, Jian-ping; Chen, Kang-lin; Ruan, Yu-hua; Xing, Hui; Zhu, Jia-hong; Shao, Yi-ming

    2005-11-30

    To investigate the single nucleotide polymorphism (SNP) of HIV-1 coreceptor CCR5 gene in Chinese Yi ethnic group and the association between these SNPs and HIV/AIDS. Peripheral blood samples of 102 HIV negative persons of Chinese Yi nationality, 87 males amd 15 females, aged 23 (12-37), and 68 HIV carriers, 61 males and 7 females, aged 27 (17-51). The regulatory and structural regions of the HIV coreceptor CCR5 gene were amplified from the genomic DNA by nested PCR, each of the two regions was divided into three gene fragments which were overlapped. High throughput DHPLC was used for screening of unknown mutations in each gene fragment. The PCR products showing different peak traces from wild types in DHPLC were sequenced by forward and reverse primers respectively. The sequences were analyzed with the help of Sequence Navigator software to search for SNP loci. Statistical analysis by SPSS and PPAP softwares were made to study the association between these SNPs and HIV infection. Five SNPs (A77G, G316A, T532C, C921T, and G668A) and a AGA deletion of the 686-688 nucleotides were discovered in the coding region of this gene in Chinese Yi ethnic group. C921T mutation was a nonsense mutation, and the other SNPs (A77G, G316A, T532C, and G668A) are sense mutation, with the amino acid changes of K26R, G106R, C178R, and R223Q. Only the frequency of R223Q allelic gene was high (0.08) but those of the others were low (less than 0.01). There was no significant difference in the allele frequency between the HIV negative and HIV positive groups (all P > 0.05). Five SNP loci (T58934G, G59029A, T59353C, G59402A, and C59653T) were found in the regulatory region of CCR5 gene with high allelic frequencies of 0.1912-0.2941. Between the HIV negative and HIV positive groups, there were no differences in the SNP loc (all P > 0.05). Statistical analysis of the association between the linkage of mutation loci with HIV infection suggested a significant difference in the haplotype frequency

  11. HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells

    Directory of Open Access Journals (Sweden)

    John Zaunders

    2017-04-01

    Full Text Available BackgroundT follicular helper (Tfh cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells.MethodologyTfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay.ResultsPhylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils.ConclusionThe major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population

  12. HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells.

    Science.gov (United States)

    Xu, Yin; Phetsouphanh, Chansavath; Suzuki, Kazuo; Aggrawal, Anu; Graff-Dubois, Stephanie; Roche, Michael; Bailey, Michelle; Alcantara, Sheilajen; Cashin, Kieran; Sivasubramaniam, Rahuram; Koelsch, Kersten K; Autran, Brigitte; Harvey, Richard; Gorry, Paul R; Moris, Arnaud; Cooper, David A; Turville, Stuart; Kent, Stephen J; Kelleher, Anthony D; Zaunders, John

    2017-01-01

    T follicular helper (Tfh) cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4 + T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells. Tfh and other CD4 + T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV + subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay. Phylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV + subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5 + PD-1 intermediate(int)+ memory CD4 + T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1 int cells survive, carry SIV provirus, and differentiate into PD-1 hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1 hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5 + Tfh and pre-Tfh cells from human tonsils. The major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population. As the generation of Tfh are important

  13. Divergent Expression of CXCR5 and CCR5 on CD4+T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection.

    Science.gov (United States)

    Zaunders, John; Xu, Yin; Kent, Stephen J; Koelsch, Kersten K; Kelleher, Anthony D

    2017-01-01

    Viral infection sets in motion a cascade of immune responses, including both CXCR5 + CD4 + T follicular helper (Tfh) cells that regulate humoral immunity and CCR5 + CD4 + T cells that mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of memory CD4 + T cells appear to fall into either of these two lineages, CCR5 - CXCR5 + or CCR5 + CXCR5 - . Very high titers of anti-HIV IgG antibodies are a hallmark of infection, strongly suggesting that there is significant HIV-specific CD4 + T cell help to HIV-specific B cells. We now know that characteristic increases in germinal centers (GC) in lymphoid tissue (LT) during SIV and HIV-1 infections are associated with an increase in CXCR5 + PD-1 high Tfh, which expand to a large proportion of memory CD4 + T cells in LT, and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through infection of a subset of PD-1 intermediate CCR5 + Bcl-6 + pre-Tfh cells. In contrast, in human LT, a subset of PD-1 high Tfh appears to express low levels of CCR5, as measured by flow cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in HIV infection are not completely normalized by antiretroviral therapy (ART), suggesting a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5 + Tfh, there is no accumulation of proliferating CCR5 + CD4 T HIV Gag-specific cells in peripheral blood that make IFN-γ. Altogether, CXCR5 + CCR5 - CD4 T cells that regulate humoral immunity are allowed greater freedom to operate and expand during HIV-1 infection, but at the same time can contain HIV DNA at levels at least as high as in other CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce the infected Tfh reservoir in LT and also interrupt cycles of

  14. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage.

    Science.gov (United States)

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna; Perno, Carlo Federico; Svicher, Valentina

    2015-08-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Overcoming hERG affinity in the discovery of maraviroc; a CCR5 antagonist for the treatment of HIV.

    Science.gov (United States)

    Price, David A; Armour, Duncan; de Groot, Marcel; Leishman, Derek; Napier, Carolyn; Perros, Manos; Stammen, Blanda L; Wood, Anthony

    2008-01-01

    Avoiding cardiac liability associated with blockade of hERG (human ether a go-go) is key for successful drug discovery and development. This paper describes the work undertaken in the discovery of a potent CCR5 antagonist, maraviroc 34, for the treatment of HIV. In particular the use of a pharmacophore model of the hERG channel and a high throughput binding assay for the hERG channel are described that were critical to elucidate SAR to overcome hERG liabilities. The key SAR involves the introduction of polar substituents into regions of the molecule where it is postulated to undergo hydrophobic interactions with the ion channel. Within the CCR5 project there appeared to be no strong correlation between hERG affinity and physiochemical parameters such as pKa or lipophilicity. It is believed that chemists could apply these same strategies early in drug discovery to remove hERG interactions associated with lead compounds while retaining potency at the primary target.

  16. A study of the molecular mechanism of binding kinetics and long residence times of human CCR5 receptor small molecule allosteric ligands.

    Science.gov (United States)

    Swinney, David C; Beavis, Paul; Chuang, Kai-Ting; Zheng, Yue; Lee, Ina; Gee, Peter; Deval, Jerome; Rotstein, David M; Dioszegi, Marianna; Ravendran, Palani; Zhang, Jun; Sankuratri, Surya; Kondru, Rama; Vauquelin, Georges

    2014-07-01

    The human CCR5 receptor is a co-receptor for HIV-1 infection and a target for anti-viral therapy. A greater understanding of the binding kinetics of small molecule allosteric ligand interactions with CCR5 will lead to a better understanding of the binding process and may help discover new molecules that avoid resistance. Using [(3) H] maraviroc as a radioligand, a number of different binding protocols were employed in conjunction with simulations to determine rate constants, kinetic mechanism and mutant kinetic fingerprints for wild-type and mutant human CCR5 with maraviroc, aplaviroc and vicriviroc. Kinetic characterization of maraviroc binding to the wild-type CCR5 was consistent with a two-step kinetic mechanism that involved an initial receptor-ligand complex (RA), which transitioned to a more stable complex, R'A, with at least a 13-fold increase in affinity. The dissociation rate from R'A, k-2 , was 1.2 × 10(-3) min(-1) . The maraviroc time-dependent transition was influenced by F85L, W86A, Y108A, I198A and Y251A mutations of CCR5. The interaction between maraviroc and CCR5 proceeded according to a multi-step kinetic mechanism, whereby initial mass action binding and later reorganizations of the initial maraviroc-receptor complex lead to a complex with longer residence time. Site-directed mutagenesis identified a kinetic fingerprint of residues that affected the binding kinetics, leading to the conclusion that allosteric ligand binding to CCR5 involved the rearrangement of the binding site in a manner specific to each allosteric ligand. © 2014 The British Pharmacological Society.

  17. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies?

    Directory of Open Access Journals (Sweden)

    Faure Eric

    2008-10-01

    Full Text Available Abstract Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32 raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding

  18. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies?

    Science.gov (United States)

    Faure, Eric

    2008-01-01

    Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of

  19. The dual CCR5 and CCR2 inhibitor cenicriviroc does not redistribute HIV into extracellular space: implications for plasma viral load and intracellular DNA decline.

    Science.gov (United States)

    Kramer, Victor G; Hassounah, Said; Colby-Germinario, Susan P; Oliveira, Maureen; Lefebvre, Eric; Mesplède, Thibault; Wainberg, Mark A

    2015-03-01

    Cenicriviroc is a potent antagonist of the chemokine coreceptors 5 and 2 (CCR5/CCR2) and blocks HIV-1 entry. The CCR5 inhibitor maraviroc has been shown in tissue culture to be able to repel cell-free virions from the cell surface into extracellular space. We hypothesized that cenicriviroc might exhibit a similar effect, and tested this using clinical samples from the Phase IIb study 652-2-202, by measuring rates of intracellular DNA decline. We also monitored viral RNA levels in culture fluids. We infected PM-1 cells with CCR5-tropic HIV-1 BaL in the presence or absence of inhibitory concentrations of cenicriviroc (20 nM) or maraviroc (50 nM) or controls. Viral load levels and p24 were measured by ELISA, quantitative PCR and quantitative real-time reverse transcription PCR at 4 h post-infection. Frozen PBMC DNA samples from 30 patients with virological success in the Phase IIb study were studied, as were early and late reverse transcript levels. Docking studies compared binding between cenicriviroc/CCR5 and maraviroc/CCR5. Unlike maraviroc, cenicriviroc did not cause an increase in the amount of virus present in culture fluids at 4 h compared with baseline. The use of cenicriviroc did, however, result in lower levels of intracellular viral DNA after 4 h. Structural modelling indicates that cenicriviroc binds more deeply than maraviroc to the hydrophobic pocket of CCR5, providing an explanation for the absence of viral rebound with cenicriviroc. In contrast to maraviroc, cenicriviroc does not repel virus back into extracellular space. Differences in results may be due to superior binding of cenicriviroc to CCR5 compared with maraviroc. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Enriching the Housing Environment for Mice Enhances Their NK Cell Antitumor Immunity via Sympathetic Nerve-Dependent Regulation of NKG2D and CCR5.

    Science.gov (United States)

    Song, Yanfang; Gan, Yu; Wang, Qing; Meng, Zihong; Li, Guohua; Shen, Yuling; Wu, Yufeng; Li, Peiying; Yao, Ming; Gu, Jianren; Tu, Hong

    2017-04-01

    Mice housed in an enriched environment display a tumor-resistant phenotype due to eustress stimulation. However, the mechanisms underlying enriched environment-induced protection against cancers remain largely unexplained. In this study, we observed a significant antitumor effect induced by enriched environment in murine pancreatic cancer and lung cancer models. This effect remained intact in T/B lymphocyte-deficient Rag1 -/- mice, but was nearly eliminated in natural killer (NK) cell-deficient Beige mice or in antibody-mediated NK-cell-depleted mice, suggesting a predominant role of NK cells in enriched environment-induced tumor inhibition. Exposure to enriched environment enhanced NK-cell activity against tumors and promoted tumoral infiltration of NK cells. Enriched environment increased the expression levels of CCR5 and NKG2D (KLRK1) in NK cells; blocking their function effectively blunted the enriched environment-induced enhancement of tumoral infiltration and cytotoxic activity of NK cells. Moreover, blockade of β-adrenergic signaling or chemical sympathectomy abolished the effects of enriched environment on NK cells and attenuated the antitumor effect of enriched environment. Taken together, our results provide new insight into the mechanism by which eustress exerts a beneficial effect against cancer. Cancer Res; 77(7); 1611-22. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Directory of Open Access Journals (Sweden)

    Lídia Cedó

    Full Text Available Human hepatic lipase (hHL is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT. In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL-mediated free fatty acid (FFA lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  2. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach

    Directory of Open Access Journals (Sweden)

    Francesca Spanevello

    2016-01-01

    Full Text Available Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1 were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4+ T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.

  3. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+T cells from HIV-1 infection.

    Science.gov (United States)

    Liu, Zhepeng; Chen, Shuliang; Jin, Xu; Wang, Qiankun; Yang, Kongxiang; Li, Chenlin; Xiao, Qiaoqiao; Hou, Panpan; Liu, Shuai; Wu, Shaoshuai; Hou, Wei; Xiong, Yong; Kong, Chunyan; Zhao, Xixian; Wu, Li; Li, Chunmei; Sun, Guihong; Guo, Deyin

    2017-01-01

    The main approach to treat HIV-1 infection is combination antiretroviral therapy (cART). Although cART is effective in reducing HIV-1 viral load and controlling disease progression, it has many side effects, and is expensive for HIV-1 infected patients who must remain on lifetime treatment. HIV-1 gene therapy has drawn much attention as studies of genome editing tools have progressed. For example, zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 have been utilized to successfully disrupt the HIV-1 co-receptors CCR5 or CXCR4, thereby restricting HIV-1 infection. However, the effects of simultaneous genome editing of CXCR4 and CCR5 by CRISPR-Cas9 in blocking HIV-1 infection in primary CD4 + T cells has been rarely reported. Furthermore, combination of different target sites of CXCR4 and CCR5 for disruption also need investigation. In this report, we designed two different gRNA combinations targeting both CXCR4 and CCR5, in a single vector. The CRISPR-sgRNAs-Cas9 could successfully induce editing of CXCR4 and CCR5 genes in various cell lines and primary CD4 + T cells. Using HIV-1 challenge assays, we demonstrated that CXCR4-tropic or CCR5-tropic HIV-1 infections were significantly reduced in CXCR4 - and CCR5 -modified cells, and the modified cells exhibited a selective advantage over unmodified cells during HIV-1 infection. The off-target analysis showed that no non-specific editing was identified in all predicted sites. In addition, apoptosis assays indicated that simultaneous disruption of CXCR4 and CCR5 in primary CD4 + T cells by CRISPR-Cas9 had no obvious cytotoxic effects on cell viability. Our results suggest that simultaneous genome editing of CXCR4 and CCR5 by CRISPR-Cas9 can potentially provide an effective and safe strategy towards a functional cure for HIV-1 infection.

  4. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity.

    Science.gov (United States)

    Garcia-Perez, Javier; Staropoli, Isabelle; Azoulay, Stéphane; Heinrich, Jean-Thomas; Cascajero, Almudena; Colin, Philippe; Lortat-Jacob, Hugues; Arenzana-Seisdedos, Fernando; Alcami, Jose; Kellenberger, Esther; Lagane, Bernard

    2015-06-18

    Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their

  5. Using the distribution of the CCR5-Δ32 allele in third-generation Maltese citizens to disprove the Black Death hypothesis.

    Science.gov (United States)

    Baron, B; Schembri-Wismayer, P

    2011-04-01

    Malta was under Norman rule for over 400 years and has had three major documented plague outbreaks (and a number of minor ones) since the 14th century with death tolls of 5-15% of the population at the time. This makes the Maltese population ideal for testing the hypothesis that the Black Death (particularly that of 1346-52) was responsible for a genetic shift that spread the CCR5-Δ32 allele. By enrolling 300 blood donors to determine the percentage of the Maltese population resistant to HIV-1 (which uses the CCR5-receptor to infect cells), it was established that the CCR5-Δ32 allele frequency is almost zero in third-generation Maltese citizens and sequencing showed that the deletion observed in the region of interest is the 32-base deletion expected. Thus, despite the extensive Norman occupation and the repeated plague cullings, the CCR5-Δ32 allele frequency is extremely low. This provides a basis for the discussion of conflicting hypotheses regarding the possible origin, function and spread of the CCR5-Δ32 deletion. © 2010 Blackwell Publishing Ltd.

  6. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells

    DEFF Research Database (Denmark)

    Odum, Niels; Bregenholt, S; Eriksen, K W

    1999-01-01

    The CC-chemokine receptor 5 (CCR5) has recently been described as a surface marker of human T cells producing type 1 (Th1) cytokines. Here we confirm that CCR5 is expressed on human Th1 but not on Th2 T-cell clones. Using intracellular cytokine staining, we show that alloantigen specific CD4+ T......-cell lines derived from a CCR5-deficient individual (delta32 allele homozygote) contain high numbers of both interferon gamma (IFN-gamma) and interleukin (IL)-2 producing cells, low numbers of IL-10 producing cells and no IL4 or IL-5 producing cells when stimulated with phorbol ester and ionomycin in vitro....... These results were similar to those obtained from alloantigen specific CD4+ T-cell lines derived from CCR5 expressing individuals. An enzyme-linked immunoabsorbent assay (ELISA) confirmed that the Th1 cytokine-positive cells from the CCR5-deficient individual were able to produce equal amounts of cytokines when...

  7. HIV type 1 coreceptor tropism, CCR5 genotype, and integrase inhibitor resistance profiles in Vietnam: implications for the introduction of new antiretroviral regimens.

    Science.gov (United States)

    Luu, Quynh Phuong; Dean, Jonathan; Do, Trinh Thi Diem; Carr, Michael J; Dunford, Linda; Coughlan, Suzie; Connell, Jeff; Nguyen, Hien Tran; Hall, William W; Nguyen Thi, Lan Anh

    2012-10-01

    In Vietnam, where an estimated 280,000 people will be HIV-positive by 2012, recommended antiretroviral regimens do not include more recently developed therapeutics, such as Integrase inhibitors (INI) and coreceptor antagonists. This study examined HIV-1 coreceptor tropism and INI drug resistance profiles, in parallel with CCR5 genotypes, in a cohort of 60 HIV-positive individuals from different regions of Vietnam. No evidence of INI resistance was detected. Some 40% of individuals had X4-tropic HIV-1, making them unsuitable for treatment with CCR5 antagonists. We identified a novel CCR5 variant-S272P-along with other, previously reported variants: G106R, C178R, W153C, R223Q, and S336I. Interestingly, CCR5 variants known to affect HIV-1 infectivity were observed only in individuals harboring X4-tropic virus. Together, this study presents valuable baseline information on HIV-1 INI resistance, coreceptor tropism, and CCR5 variants in HIV-positive individuals in Vietnam. This should help inform policy on the future use of novel antiretrovirals in Vietnam.

  8. Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance

    Science.gov (United States)

    Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J

    2016-01-01

    A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222

  9. Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies.

    Science.gov (United States)

    Kuwata, Takeo; Enomoto, Ikumi; Baba, Masanori; Matsushita, Shuzo

    2016-01-01

    Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice......-deficient mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...... were generated and infected intracerebrally with noncytolytic lymphocytic choriomeningitis virus. Because these chemokine receptors are mostly expressed by overlapping subsets of activated CD8+ T cells, it was expected that absence of both receptors would synergistically impair effector T cell invasion...

  11. The CCL3L1-CCR5 genotype influences the development of AIDS, but not HIV susceptibility or the response to HAART

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Tanmoy [Los Alamos National Laboratory; Stanton, Jennifer [NORTHWESTERN UNIV; Kim, Eun - Young [NORTHWESTERN UNIV; Kunstman, Kevin [NORTHWESTERN UNIV; Phair, John [NORTHWESTERN UNIV; Jacobson, Lisa P [JOHNS HOPKINS UNIV; Wolinsky, Steven M [NORTHWESTERN UNIV

    2008-01-01

    A selective advantage against infectious diseases such as HIV/AIDS is associated with differences in the genes relevant to immunity and virus replication. The CC chemokine receptor 5 (CCR5), the principal coreceptor for HIV, and its chemokine ligands, including CCL3L1, influences the CD4+ target cells susceptibility to infection. The CCL3L1 gene is in a region of segmental duplication on the q-arm of human chromosome 17. Increased numbers of CCL3L1 gene copies that affect the gene expression phenotype might have substantial protective effects. Here we show that the population-specific CCL3L1 gene copy number and the CCR5 {Delta}32 protein-inactivating deletion that categorizes the CCL3L1-CCR5 genotype do not influence HIV/AIDS susceptibility or the robustness of immune recovery after the initiation of highly active antiretroviral therapy (HAART).

  12. Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression

    DEFF Research Database (Denmark)

    Ioannidis, J P; Rosenberg, P S; Goedert, J J

    2001-01-01

    seroconversion. Data were combined with fixed-effects and random-effects models. RESULTS: Both the CCR5-Delta32 and CCR2-64I alleles were associated with a decreased risk for progression to AIDS (relative hazard among seroconverters, 0.74 and 0.76, respectively; P = 0.01 for both), a decreased risk for death...... (relative hazard among seroconverters, 0.64 and 0.74; P CCR5-Delta32 or CCR2-64I allele had no clear protective effect on the risk for death.......00), or death after development of AIDS (relative hazard, 0.81 and 0.97; P > 0.5 for all). CONCLUSIONS: The CCR5-Delta32 and CCR2-64I alleles had a strong protective effect on progression of HIV-1 infection, but SDF-1 3'A homozygosity carried no such protection....

  13. Pushing it back. Dating the CCR5–32 bp deletion to the Mesolithic in Sweden and its implications for the Meso\\Neo transition

    Directory of Open Access Journals (Sweden)

    Kerstin Lidén

    2006-12-01

    Full Text Available Genetic variation in the chemokine receptor gene CCR5 has received considerable scientific interest during the last few years. Protection against HIV-infection and AIDS, together with specific geographic distribution are the major reasons for the great interest in CCR5 32bp deletion. The event for the occurrence of this mutation has been postulated by coalescence dating to the 14th century, or 5000 BP. In our prehistoric Swedish samples we show that the frequency of 32pb deletion in CCR5 in the Neolithic population does not deviate from the frequency in a modern Swedish population, and that the deletion existed in Sweden already during the Mesolithic period.

  14. Pathogenic infection of Macaca nemestrina with a CCR5-tropic subtype-C simian-human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Song Ruijiang

    2009-07-01

    Full Text Available Abstract Background Although pig-tailed macaques (Macaca nemestrina have been used in AIDS research for years, less is known about the early immunopathogenic events in this species, as compared to rhesus macaques (Macaca mulatta. Similarly, the events in early infection are well-characterized for simian immunodeficiency viruses (SIV, but less so for chimeric simian-human immunodeficiency viruses (SHIV, although the latter have been widely used in HIV vaccine studies. Here, we report the consequences of intrarectal infection with a CCR5-tropic clade C SHIV-1157ipd3N4 in pig-tailed macaques. Results Plasma and cell-associated virus was detectable in peripheral blood and intestinal tissues of all four pig-tailed macaques following intrarectal inoculation with SHIV-1157ipd3N4. We also observed a rapid and irreversible loss of CD4+ T cells at multiple mucosal sites, resulting in a marked decrease of CD4:CD8 T cell ratios 0.5–4 weeks after inoculation. This depletion targeted subsets of CD4+ T cells expressing the CCR5 coreceptor and having a CD28-CD95+ effector memory phenotype, consistent with the R5-tropism of SHIV-1157ipd3N4. All three animals that were studied beyond the acute phase seroconverted as early as week 4, with two developing cross-clade neutralizing antibody responses by week 24. These two animals also demonstrated persistent plasma viremia for >48 weeks. One of these animals developed AIDS, as shown by peripheral blood CD4+ T-cell depletion starting at 20 weeks post inoculation. Conclusion These findings indicate that SHIV-1157ipd3N4-induced pathogenesis in pig-tailed macaques followed a similar course as SIV-infected rhesus macaques. Thus, R5 SHIV-C-infection of pig-tailed macaques could provide a useful and relevant model for AIDS vaccine and pathogenesis research.

  15. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry.

    Science.gov (United States)

    Simmons, G; Wilkinson, D; Reeves, J D; Dittmar, M T; Beddows, S; Weber, J; Carnegie, G; Desselberger, U; Gray, P W; Weiss, R A; Clapham, P R

    1996-12-01

    A panel of primary syncytium-inducing (SI) human immunodeficiency virus type 1 isolates that infected several CD4+ T-cell lines, including MT-2 and C8166, were tested for infection of blood-derived macrophages. Infectivity titers for C8166 cells and macrophages demonstrated that primary SI strains infected macrophages much more efficiently than T-cell line-adapted HIV-1 strains such as LAI and RF. These primary SI strains were therefore dual-tropic. Nine biological clones of two SI strains, prepared by limiting dilution, had macrophage/C8166 infectivity ratios similar to those of their parental viruses, indicating that the dual-tropic phenotype was not due to a mixture of non-SI/macrophage-tropic and SI/T-cell tropic viruses. We tested whether the primary SI strains used either Lestr (fusin) or CCR5 as coreceptors. Infection of cat CCC/CD4 cells transiently expressing Lestr supported infection by T-cell line-adapted strains including LAI, whereas CCC/CD4 cells expressing CCR5 were sensitive to primary non-SI strains as well as to the molecularly cloned strains SF-162 and JR-CSF. Several primary SI strains, as well as the molecularly cloned dual-tropic viruses 89.6 and GUN-1, infected both Lestr+ and CCR5+ CCC/CD4 cells. Thus, these viruses can choose between Lestr and CCR5 for entry into cells. Interestingly, some dual-tropic primary SI strains that infected Lestr+ cells failed to infect CCR5+ cells, suggesting that these viruses may use an alternative coreceptor for infection of macrophages. Alternatively, CCR5 may be processed or presented differently on cat cells so that entry of some primary SI strains but not others is affected.

  16. Macrophage-tropic HIV-1 variants from brain demonstrate alterations in the way gp120 engages both CD4 and CCR5

    Science.gov (United States)

    Salimi, Hamid; Roche, Michael; Webb, Nicholas; Gray, Lachlan R.; Chikere, Kelechi; Sterjovski, Jasminka; Ellett, Anne; Wesselingh, Steve L.; Ramsland, Paul A.; Lee, Benhur; Churchill, Melissa J.; Gorry, Paul R.

    2013-01-01

    BR-derived HIV-1 strains have an exceptional ability to enter macrophages via mechanisms involving their gp120 Env that remain incompletely understood. Here, we used cell-based affinity-profiling methods and mathematical modeling to generate quantitative VERSA metrics that simultaneously measure Env-CD4 and Env-CCR5 interactions. These metrics were analyzed to distinguish the phenotypes of M-tropic and non-M-tropic CCR5-using HIV-1 variants derived from autopsy BRs and LNs, respectively. We show that highly M-tropic Env variants derived from brain can be defined by two distinct and simultaneously occurring phenotypes. First, BR-derived Envs demonstrated an enhanced ability to interact with CD4 compared with LN-derived Envs, permitting entry into cells expressing scant levels of CD4. Second, BR-derived Envs displayed an altered mechanism of engagement between CD4-bound gp120 and CCR5 occurring in tandem. With the use of epitope mapping, mutagenesis, and structural studies, we show that this altered mechanism is characterized by increased exposure of CD4-induced epitopes in gp120 and by a more critical interaction between BR-derived Envs and the CCR5 N-terminus, which was associated with the predicted presence of additional atomic contacts formed at the gp120-CCR5 N-terminus interface. Our results suggest that BR-derived HIV-1 variants with highly efficient macrophage entry adopt conformations in gp120 that simultaneously alter the way in which the Env interacts with CD4 and CCR5. PMID:23077246

  17. CCR5 Antagonist TD-0680 Uses a Novel Mechanism for Enhanced Potency against HIV-1 Entry, Cell-mediated Infection, and a Resistant Variant*

    Science.gov (United States)

    Kang, Yuanxi; Wu, Zhiwei; Lau, Terrence C. K.; Lu, Xiaofan; Liu, Li; Cheung, Allen K. L.; Tan, Zhiwu; Ng, Jenny; Liang, Jianguo; Wang, Haibo; Li, Saikam; Zheng, Bojian; Li, Ben; Chen, Li; Chen, Zhiwei

    2012-01-01

    Regardless of the route of transmission, R5-tropic HIV-1 predominates early in infection, rendering C-C chemokine receptor type 5 (CCR5) antagonists as attractive agents not only for antiretroviral therapy but also for prevention. Here, we report the specificity, potency, and underlying mechanism of action of a novel small molecule CCR5 antagonist, TD-0680. TD-0680 displayed the greatest potency against a diverse group of R5-tropic HIV-1 and SIV strains when compared with its prodrug, TD-0232, the Food and Drug Administration-approved CCR5 antagonist Maraviroc, and TAK-779, with EC50 values in the subnanomolar range (0.09–2.29 nm). Importantly, TD-0680 was equally potent at blocking envelope-mediated cell-cell fusion and cell-mediated viral transmission as well as the replication of a TAK-779/Maraviroc-resistant HIV-1 variant. Interestingly, TD-0232 and TD-0680 functioned differently despite binding to a similar transmembrane pocket of CCR5. Site-directed mutagenesis, drug combination, and antibody blocking assays identified a novel mechanism of action of TD-0680. In addition to binding to the transmembrane pocket, the unique exo configuration of this molecule protrudes and sterically blocks access to the extracellular loop 2 (ECL2) region of CCR5, thereby interrupting the interaction between virus and its co-receptor more effectively. This mechanism of action was supported by the observations of similar TD-0680 potency against CD4-dependent and -independent SIV strains and by molecular docking analysis using a CCR5 model. TD-0680, therefore, merits development as an anti-HIV-1 agent for therapeutic purposes and/or as a topical microbicide for the prevention of sexual transmission of R5-tropic HIV-1. PMID:22447925

  18. Differences in T cell distribution and CCR5 expression in HIV-positive and HIV-exposed seronegative persons who inject drugs.

    Science.gov (United States)

    Kallas, Eveli; Huik, Kristi; Türk, Silver; Pauskar, Merit; Jõgeda, Ene-Ly; Šunina, Marina; Karki, Tõnis; Des Jarlais, Don; Uusküla, Anneli; Avi, Radko; Lutsar, Irja

    2016-06-01

    Some individuals remain uninfected despite repeated exposure to HIV. This protection against HIV has been partly associated with altered T cell subset distributions and CCR5 expression levels. However, the majority of studies have been conducted in sexually exposed subjects. We aimed to assess whether HIV infection and intravenous drug use were associated with differences in CCR5 expression, immune activation on the CD4+ and CD8+ T cells and T cell distribution among Caucasian persons who inject drugs (PWIDs). Analyses of the data from 41 HIV-positive PWIDs, 47 HIV-exposed seronegative PWIDs (ESNs) and 47 age- and gender-matched HIV-negative non-drug users are presented. Of all of the study subjects, 111 (82 %) were male, and the median age was 29 years. T cell phenotyping was performed in peripheral blood mononuclear cells with multicolour flow cytometry using anti-CD3, CD4, CD8, CD45RA, CD45RO, HLA-DR and CCR5 antibodies. The ESNs exhibited greater levels of immune activation and higher percentages of CD4+ CD45RA+RO+ and CD8+ CD45RA+RO+ cells compared to the controls but not the HIV-positive people. The CCR5 expression on the CD4+ T cell subsets in the ESNs was lower than that in the controls but similar to that the HIV positives. The percentages of CCR5+ T cells were similar in all study groups and in most of the studied cell populations. Intravenous drug use was similarly associated with differences in T cell subset distributions and CCR5 expression among both the HIV-positive and HIV-negative PWIDs compared with the controls.

  19. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  20. More about the Viking hypothesis of origin of the delta32 mutation in the CCR5 gene conferring resistance to HIV-1 infection.

    Science.gov (United States)

    Lucotte, Gérard; Dieterlen, Florent

    2003-11-01

    The chemokine receptor CCR5 constitutes the major coreceptor for the HIV-1, because a mutant allele of the CCR5 gene named delta32 was shown to provide to homozygotes a strong resistance against infection. In the present study the frequency of the delta32 allele was collected in 36 European populations and in Cyprus, and the highest allele frequencies were found in Nordic countries. We constructed an allele map of delta32 frequencies in Europe; the map is in accordance to the Vikings hypothesis of the origin of the mutation and his dissemination during the eighth to the tenth centuries.

  1. Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis

    OpenAIRE

    Lebre, M.C.; Vergunst, C.E.; Choi, I.Y.K.; Aarrass, S.; Oliveira, A.S.F.; Wyant, T.; Horuk, R.; Reedquist, K.A.; Tak, P.P.

    2011-01-01

    BACKGROUND: The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model. METHODOLOGY/PRINCIPAL FINDINGS: Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either ...

  2. CCR3, CCR5, CCR8 and CXCR3 expression in memory T helper cells from allergic rhinitis patients, asymptomatically sensitized and healthy individuals

    DEFF Research Database (Denmark)

    Holse, Mille; Assing, Kristian; Poulsen, Lars K.

    2006-01-01

    Chemokine receptors have been suggested to be preferentially expressed on CD4+ T cells with CCR3 and CCR8 linked to the T helper (Th) 2 subset and CCR5 and CXCR3 to the Th1 subset, however this remains controversial.......Chemokine receptors have been suggested to be preferentially expressed on CD4+ T cells with CCR3 and CCR8 linked to the T helper (Th) 2 subset and CCR5 and CXCR3 to the Th1 subset, however this remains controversial....

  3. Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity

    OpenAIRE

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony

    2005-01-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades a...

  4. Biased and Constitutive Signaling in the CC-Chemokine Receptor CCR5 by manipulating the Interface between Transmembrane Helix 6 and 7

    DEFF Research Database (Denmark)

    Steen, Anne; Thiele, Stefanie; Guo, Dong

    2013-01-01

    The equilibrium state of CCR5 is manipulated here toward either activation or inactivation by introduction of single amino acid substitutions in the transmembrane domains (TMs) 6 and 7. Insertion of a steric hindrance mutation in the center of TM7 (G286F in position VII:09/7.42) resulted in biased...... signaling. Thus, beta-arrestin recruitment was eliminated, whereas constitutive activity was observed in Gi-mediated signaling. Furthermore, the CCR5 antagonist aplaviroc was converted to a full agonist (a so-called efficacy switch). Computational modeling revealed that the position of the 7TM receptor......-conserved Trp in TM6 (Trp-248 in position VI:13/6.48, part of the CWXP motif) was influenced by the G286F mutation, causing Trp-248 to change orientation away from TM7. The essential role of Trp-248 in CCR5 activation was supported by complete inactivity of W248A-CCR5 despite maintaining chemokine binding...

  5. A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2007-01-01

    We have developed a closed-tube assay for determination of the chemokine receptor type 5 (CCR5) 32-bp deletion allele, which protects against infections with HIV and modulates susceptibility to a variety of inflammatory diseases. This assay utilizes dissociation analysis of amplified products...

  6. Effects of CCR5-Delta32 and CCR2-64I alleles on HIV-1 disease progression: the protection varies with duration of infection

    NARCIS (Netherlands)

    Mulherin, Stephanie A.; O'Brien, Thomas R.; Ioannidis, John P.; Goedert, James J.; Buchbinder, Susan P.; Coutinho, Roel A.; Jamieson, Beth D.; Meyer, Laurence; Michael, Nelson L.; Pantaleo, Giuseppe; Rizzardi, G. Paolo; Schuitemaker, Hanneke; Sheppard, Haynes W.; Theodorou, Ioannis D.; Vlahov, David; Rosenberg, Philip S.

    2003-01-01

    OBJECTIVE: To examine temporal variation in the effects of CCR5-Delta32 and CCR2-64I chemokine receptor gene polymorphisms on HIV-1 disease progression. DESIGN: Pooled analysis of individual patient data from 10 cohorts of HIV-1 seroconverters from the United States, Europe, and Australia. METHODS:

  7. Causal pathways of the effects of age and the CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on AIDS development

    NARCIS (Netherlands)

    Geskus, Ronald B.; Meyer, Laurence; Hubert, Jean-Baptiste; Schuitemaker, Hanneke; Berkhout, Ben; Rouzioux, Christine; Theodorou, Ioannis D.; Delfraissy, Jean-François; Prins, Maria; Coutinho, Roel A.

    2005-01-01

    OBJECTIVE: To investigate the causal pathways by which age and the CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles influence progression to AIDS. DESIGN: Analysis of follow-up data from 2 cohort studies among homosexual men (n=400), having >10 years of follow-up. METHODS: The effects of the 4

  8. Impact of CCR5delta32 Host Genetic Background and Disease Progression on HIV-1 Intrahost Evolutionary Processes: Efficient Hypothesis Testing through Hierarchical Phylogenetic Models

    NARCIS (Netherlands)

    Edo-Matas, Diana; Lemey, Philippe; Tom, Jennifer A.; Serna-Bolea, Cèlia; van den Blink, Agnes E.; van 't Wout, Angélique B.; Schuitemaker, Hanneke; Suchard, Marc A.

    2011-01-01

    The interplay between C-C chemokine receptor type 5 (CCR5) host genetic background, disease progression, and intrahost HIV-1 evolutionary dynamics remains unclear because differences in viral evolution between hosts limit the ability to draw conclusions across hosts stratified into clinically

  9. Expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients

    NARCIS (Netherlands)

    Wolday, Dawit; Tegbaru, Belete; Kassu, Afework; Messele, Tsehaynesh; Coutinho, Roel; van Baarle, Debbie; Miedema, Frank

    2005-01-01

    The pathogenesis of persistently elevated plasma HIV viremia in patients coinfected with tuberculosis (TB) during anti-TB treatment in Africans remains unknown. We examined the expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels of macrophage inflammatory

  10. High levels of CD4⁺ CTLA-4⁺ Treg cells and CCR5 density in HIV-1-infected patients with visceral leishmaniasis.

    Science.gov (United States)

    Vallejo, A; Abad-Fernández, M; Moreno, S; Moreno, A; Pérez-Elías, M J; Dronda, F; Casado, J L

    2015-02-01

    Visceral leishmaniasis (VL) in HIV-1-infected patients has been associated with poor immunological recovery and frequent disease relapses. The aim of this study was to analyse the role of T cell populations, Treg cells and CCR5 density in patients with VL compared to HIV-1-infected patients without leishmaniasis. A cross-sectional study of nine Leishmania-HIV-1-coinfected (LH) patients with VL receiving suppressive cART for at least 1 year were compared to 16 HIV-1-infected patients with non-immunological response (NIR, CD4 count below 250 cells/mm(3)) and 26 HIV-1-infected patients with immunological response (IR, CD4 count above 500 cells/mm(3)) without leishmaniasis. LH patients had a deep depletion of naïve T cells (p = 0.002), despite similar levels of effector T cells compared to NIR patients. CD4 Treg cells were similar compared to NIR patients, but higher compared to IR patients (p CCR5(+) T cell levels were higher compared to IR patients (p CCR5 density on T cells were higher compared to both NIR and IR patients (p CCR5 density on CD8(+) T cells are strongly associated with VL in HIV-1-infected patients. Also, these patients have a poor immunological profile that might explain the persistence and relapse of the pathogen.

  11. Cell-Delivered Entry Inhibitors for HIV-1: CCR5 Downregulation and Blocking Virus/Membrane Fusion in Defending the Host Cell Population.

    Science.gov (United States)

    Symonds, Geoff; Bartlett, Jeffrey S; Kiem, Hans-Peter; Tsie, Marlene; Breton, Louis

    2016-12-01

    HIV-1 infection requires the presence of the CD4 receptor on the target cell surface and a coreceptor, predominantly CC-chemokine receptor 5 (CCR5). It has been shown that individuals who are homozygous for a defective CCR5 gene are protected from HIV-1 infection. A novel self-inactivating lentiviral vector LVsh5/C46 (Cal-1) has been engineered to block HIV-1 infection with two viral entry inhibitors, conferring resistance to HIV-1 infection from both CCR5 and CXCR4 tropic strains. Cal-1 encodes a short hairpin RNA (sh5) to downregulate CCR5 and C46, an HIV-1 fusion inhibitor. Gene therapy by Cal-1 is aimed at transducing CD4 + T cells and CD34 + hematopoietic stem/progenitor cells in an autologous transplant setting. Pre-clinical safety and efficacy studies in vitro and in vivo (humanized mouse model and nonhuman primates) have shown that Cal-1 is safe with no indication of any toxicity risk and acts to decrease viral load and increase CD4 counts. Two clinical trials are underway using Cal-1: a phase I/II study to assess safety and feasibility in an adult HIV-1-positive population not on antiretroviral therapy (ART); and a second Fred Hutchinson Investigator Initiated phase I study to assess safety and feasibility in adults with HIV-1-associated non-Hodgkin or Hodgkin lymphoma.

  12. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection.

    Science.gov (United States)

    Didigu, Chuka A; Wilen, Craig B; Wang, Jianbin; Duong, Jennifer; Secreto, Anthony J; Danet-Desnoyers, Gwenn A; Riley, James L; Gregory, Phillip D; June, Carl H; Holmes, Michael C; Doms, Robert W

    2014-01-02

    HIV-1 entry into CD4(+) T cells requires binding of the virus to CD4 followed by engagement of either the C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor 4 (CXCR4) coreceptor. Pharmacologic blockade or genetic inactivation of either coreceptor protects cells from infection by viruses that exclusively use the targeted coreceptor. We have used zinc-finger nucleases to drive the simultaneous genetic modification of both ccr5 and cxcr4 in primary human CD4(+) T cells. These gene-modified cells proliferated normally and were resistant to both CCR5- and CXCR4-using HIV-1 in vitro. When introduced into a humanized mouse model of HIV-1 infection, these coreceptor negative cells engraft and traffic normally, and are protected from infection with CCR5- and CXCR4-using HIV-1 strains. These data suggest that simultaneous disruption of the HIV coreceptors may provide a useful approach for the long-term, drug-free treatment of established HIV-1 infections.

  13. HIV-1 with multiple CCR5/CXCR4 chimeric receptor use is predictive of immunological failure in infected children.

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    Full Text Available BACKGROUND: HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5(broad viruses, was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT of HIV-1 and pediatric disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5(narrow phenotype (n = 20, but R5(broad and R5X4 viruses were also found in seven and one case, respectively. The presence of R5(broad and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3 or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5(broad phenotype, however, the presence of the R5(broad virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5(broad viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5(broad phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn's viral variant. CONCLUSIONS/SIGNIFICANCE: Our results show that R5(broad viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5(narrow phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.

  14. Association of TGFβ1, TNFα, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians

    Directory of Open Access Journals (Sweden)

    Gupta Arvind

    2007-04-01

    Full Text Available Abstract Background Cytokines play an important role in the development of diabetic chronic renal insufficiency (CRI. Transforming growth factor β1 (TGF β1 induces renal hypertrophy and fibrosis, and cytokines like tumor necrosis factor-alpha (TNFα, chemoattractant protein-1 (MCP-1, and regulated upon activation and normal T cell expressed and secreted (RANTES mediate macrophage infiltration into kidney. Over expression of these chemokines leads to glomerulosclerosis and interstitial fibrosis. The effect of MCP-1 and RANTES on kidney is conferred by their receptors i.e., chemokine receptor (CCR-2 and CCR-5 respectively. We tested association of nine single nucleotide polymorphisms (SNPs from TGFβ1, TNFα, CCR2 and CCR5 genes among individuals with type-2 diabetes with and without renal insufficiency. Methods Type-2 diabetes subjects with chronic renal insufficiency (serum creatinine ≥ 3.0 mg/dl constituted the cases, and matched individuals with diabetes of duration ≥ 10 years and normoalbuminuria were evaluated as controls from four centres in India. Allelic and genotypic contributions of nine SNPs from TGFβ1, TNFα, CCR2 and CCR5 genes to diabetic CRI were tested by computing odds ratio (OR and 95% confidence intervals (CI. Sub-analysis of CRI cases diabetic retinopathy status as dependent variable and SNP genotypes as independent variable in a univariate logistic regression was also performed. Results SNPs Tyr81His and Thr263Ile in TGF β1 gene were monomorphic, and Arg25Pro in TGF β1 gene and Δ32 polymorphism in CCR5 gene were minor variants (minor allele frequency A SNP of CCR5 gene has been observed and the allele 59029A seems to confer predisposition to development of diabetic CRI (OR 1.39; CI 1.04–1.84. In CRI subjects a compound group of genotypes "GA and AA" of SNP G>A -800 was found to confer predisposition for proliferative retinopathy (OR 3.03; CI 1.08–8.50, p = 0.035. Conclusion Of the various cytokine gene

  15. An extended CCR5 ECL2 peptide forms a helix that binds HIV-1 gp120 through non-specific hydrophobic interactions.

    Science.gov (United States)

    Abayev, Meital; Moseri, Adi; Tchaicheeyan, Oren; Kessler, Naama; Arshava, Boris; Naider, Fred; Scherf, Tali; Anglister, Jacob

    2015-05-01

    C-C chemokine receptor 5 (CCR5) serves as a co-receptor for HIV-1. The CCR5 N-terminal segment, the second extracellular loop (ECL2) and the transmembrane helices have been implicated in binding the envelope glycoprotein gp120. Peptides corresponding to the sequence of the putative ECL2 as well as peptides containing extracellular loops 1 and 3 (ECL1 and ECL3) were found to inhibit HIV-1 infection. The aromatic residues in the C-terminal half of an ECL2 peptide were shown to interact with gp120. In the present study, we found that, in aqueous buffer, the segment Q188-Q194 in an elongated ECL2 peptide (R168-K197) forms an amphiphilic helix, which corresponds to the beginning of the fifth transmembrane helix in the crystal structure of CCR5. Two-dimensional saturation transfer difference NMR spectroscopy and dynamic filtering studies revealed involvement of Y187, F189, W190 and F193 of the helical segment in the interaction with gp120. The crystal structure of CCR5 shows that the aromatic side chains of F189, W190 and F193 point away from the binding pocket and interact with the membrane or with an adjacent CCR5 molecule, and therefore could not interact with gp120 in the intact CCR5 receptor. We conclude that these three aromatic residues of ECL2 peptides interact with gp120 through hydrophobic interactions that are not representative of the interactions of the intact CCR5 receptor. The HIV-1 inhibition by ECL2 peptides, as well as by ECL1 and ECL3 peptides and peptides corresponding to ECL2 of CXCR4, which serves as an alternative HIV-1 co-receptor, suggests that there is a hydrophobic surface in the envelope spike that could be a target for HIV-1 entry inhibitors. The structures and NMR data of ECL2S (Q186-T195) were deposited under Protein Data Bank ID 2mzx and BioMagResBank ID 25505. © 2015 FEBS.

  16. Is the European spatial distribution of the HIV-1-resistant CCR5-Delta32 allele formed by a breakdown of the pathocenosis due to the historical Roman expansion?

    Science.gov (United States)

    Faure, Eric; Royer-Carenzi, Manuela

    2008-12-01

    We studied the possible effects of the expansion of ancient Mediterranean civilizations during the five centuries before and after Christ on the European distribution of the mutant allele for the chemokine receptor gene CCR5 which has a 32-bp deletion (CCR5-Delta32). There is a strong evidence for the unitary origin of the CCR5-Delta32 mutation, this it is found principally in Europe and Western Asia, with generally a north-south downhill cline frequency. Homozygous carriers of this mutation show a resistance to HIV-1 infection and a slower progression towards AIDS. However, HIV has clearly emerged too recently to have been the selective force on CCR5. Our analyses showed strong negative correlations in Europe between the allele frequency and two historical parameters, i.e. the first colonization dates by the great ancient Mediterranean civilizations, and the distances from the Northern frontiers of the Roman Empire in its greatest expansion. Moreover, other studies have shown that the deletion frequencies in both German Bronze Age and Swedish Neolithic populations were similar to those found in the corresponding modern populations, and this deletion has been found in ancient DNA of around 7000 years ago, suggesting that in the past, the deletion frequency could have been relatively high in European populations. In addition, in West Nile virus pathogenesis, CCR5 plays an antimicrobial role showing that host genetic factors are highly pathogen-specific. Our results added to all these previous data suggest that the actual European allele frequency distribution might not be due to genes spreading, but to a negative selection resulting in the spread of pathogens principally during Roman expansion. Indeed, as gene flows from colonizers to European native populations were extremely low, the mutational changes might be associated with vulnerability to imported infections. To date, the nature of the parasites remains unknown; however, zoonoses could be incriminated.

  17. HIV-1 induces cytoskeletal alterations and Rac1 activation during monocyte-blood-brain barrier interactions: modulatory role of CCR5.

    Science.gov (United States)

    Woollard, Shawna M; Li, Hong; Singh, Sangya; Yu, Fang; Kanmogne, Georgette D

    2014-02-26

    Most HIV strains that enter the brain are macrophage-tropic and use the CCR5 receptor to bind and infect target cells. Because the cytoskeleton is a network of protein filaments involved in cellular movement and migration, we investigated whether CCR5 and the cytoskeleton are involved in endothelial-mononuclear phagocytes interactions, adhesion, and HIV-1 infection. Using a cytoskeleton phospho-antibody microarray, we showed that after co-culture with human brain microvascular endothelial cells (HBMEC), HIV-1 infected monocytes increased expression and activation of cytoskeleton-associated proteins, including Rac1/cdc42 and cortactin, compared to non-infected monocytes co-cultured with HBMEC. Analysis of brain tissues from HIV-1-infected patients validated these findings, and showed transcriptional upregulation of Rac1 and cortactin, as well as increased activation of Rac1 in brain tissues of HIV-1-infected humans, compared to seronegative individuals and subjects with HIV-1-encephalitis. Confocal imaging showed that brain cells expressing phosphorylated Rac1 were mostly macrophages and blood vessels. CCR5 antagonists TAK-799 and maraviroc prevented HIV-induced upregulation and phosphorylation of cytoskeleton-associated proteins, prevented HIV-1 infection of macrophages, and diminished viral-induced adhesion of monocytes to HBMEC. Ingenuity pathway analysis suggests that during monocyte-endothelial interactions, HIV-1 alters protein expression and phosphorylation associated with integrin signaling, cellular morphology and cell movement, cellular assembly and organization, and post-translational modifications in monocytes. CCR5 antagonists prevented these HIV-1-induced alterations. HIV-1 activates cytoskeletal proteins during monocyte-endothelial interactions and increase transcription and activation of Rac1 in brain tissues. In addition to preventing macrophage infection, CCR5 antagonists could diminish viral-induced alteration and phosphorylation of cytoskeletal

  18. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections.

    Science.gov (United States)

    Oo, Z; Barrios, C S; Castillo, L; Beilke, M A

    2015-05-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 are common copathogens among Human Immunodeficiency Virus (HIV)-infected individuals. HTLV-2 may confer a survival benefit among patients with HIV-1/HTLV-2 coinfections, along with lower plasma HIV-1 levels and delayed rates of CD4(+) T-cell decline. These effects have been attributed to the ability of the HTLV-2 viral transactivating Tax2 protein to induce the production of high levels of antiviral CC-chemokines and to downregulate expression of the CCR5 receptor, resulting in impaired entry of HIV-1 into CD4(+) T-cells. This study investigated the innate immunity of coinfected HIV/HTLV individuals by testing the ability of patient PBMCs to produce CC-chemokines in association CCR5 receptor modulation. The cellular proliferative responses of HIV/HTLV coinfected versus HIV monoinfected individuals were also evaluated. Higher levels of MIP-1α, MIP-1β, and RANTES (P HIV-1/HTLV-2 coinfected group compared to HIV-1 monoinfected population. Upregulated levels of RANTES were shown in HIV-1/HTLV-1 after 1 and 3 days of culture (P HIV-1/HTLV-2 coinfected individuals showed significant CCR5 downregulation after 1 and 3 days of culture compared to lymphocytes from HIV-1 and uninfected groups (P CCR5-positive cells were found in HIV-1/HTLV-1 coinfected after 3 days of incubation (P HIV-1/HTLV-1 group compared to HIV-1 alone (P HIV-1 via stimulation of CC-chemokines and receptors, potentially modifying CCR5/HIV-1 binding and HIV-1 progression in coinfected individuals. © 2015 Wiley Periodicals, Inc.

  19. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships.

    Science.gov (United States)

    Jaumdally, Shameem Z; Picton, Anabela; Tiemessen, Caroline T; Paximadis, Maria; Jaspan, Heather B; Gamieldien, Hoyam; Masson, Lindi; Coetzee, David; Williamson, Anna-Lise; Little, Francesca; Gumbi, Pamela P; Passmore, Jo-Ann S

    2017-08-01

    Several host factors have been implicated in resistance to HIV infection in individuals who remain HIV-seronegative despite exposure. In a cohort of HIV-serodiscordant heterosexual couples, we investigated interactions between systemic inflammation and T-cell activation in resistance to HIV infection. Males and females in stable long-term relationships with either HIV-infected or uninfected partners were recruited, blood T-cell activation (CD38, HLA-DR, CCR5 and Ki67) and plasma cytokine concentrations were evaluated. The HIV-negative exposed individuals had significantly lower frequencies of CCR5 + CD4 + and CD8 + T cells than unexposed individuals. Mean fluorescence intensity of CCR5 expression on CD4 + T cells was significantly lower in HIV-negative exposed than unexposed individuals. Protective CCR5 haplotypes (HHA/HHF*2, HHF*2/HHF*2, HHC/HHF*2, HHA/HHA, HHA/HHC and HHA/HHD) tended to be over-represented in exposed compared with unexposed individuals (38% versus 28%, P = 0·58) whereas deleterious genotypes (HHC/HHD, HHC/HHE, HHD/HHE, HHD/HHD and HHE/HHE) were under-represented (26% versus 44%; P = 0·16). Plasma concentrations of interleukin-2 (P = 0·02), interferon-γ (P = 0·05) and granulocyte-macrophage colony-stimulating factor (P = 0·006) were lower in exposed compared with unexposed individuals. Activation marker expression and systemic cytokine concentrations were not influenced by gender. We conclude that the dominant signature of resistance to HIV infection in this cohort of exposed but uninfected individuals was lower T-cell CCR5 expression and plasma cytokine concentrations. © 2017 John Wiley & Sons Ltd.

  20. CCR2+ and CCR5+ CD8+ T cells increase during viral infection and migrate to sites of infection

    DEFF Research Database (Denmark)

    Nansen, A; Marker, O; Bartholdy, C

    2000-01-01

    Chemokines and their receptors play a critical role in the selective recruitment of various leukocyte subsets. In this study, we correlated the expression of multiple chemokine and CC chemokine receptor (CCR) genes during the course of intracerebral (i.c.) infection with lymphocytic choriomeningi......Chemokines and their receptors play a critical role in the selective recruitment of various leukocyte subsets. In this study, we correlated the expression of multiple chemokine and CC chemokine receptor (CCR) genes during the course of intracerebral (i.c.) infection with lymphocytic...... a rapidly lethal, T cell-independent encephalitis, and infection resulted in a dramatic early up-regulation of chemokine gene expression. Similar marked up-regulation of chemokine expression was not seen until late after LCMV infection and required the presence of activated T cells. Cerebral CCR gene...... expression was dominated by CCR1, CCR2 and CCR5. However, despite a stronger initial chemokine signal in VSV-infected mice, only LCMV-induced T cell-dependent inflammation was found to be associated with substantially increased expression of CCR genes. Virus-activated CD8+ T cells were found to express CCR2...

  1. The number of CCR5 expressing CD4+ T lymphocytes is lower in HIV-infected long-term non-progressors with viral control compared to normal progressors: a cross-sectional study

    NARCIS (Netherlands)

    Meijerink, H.; Indrati, A.R.; Crevel, R. van; Joosten, I.; Koenen, H.; Ven, A. van der

    2014-01-01

    BackgroundThe HIV co-receptors CXCR4 and CCR5 play an important role in HIV infection and replication. Therefore we hypothesize that long-term non-progressors (LTNP) with viral control have lower expression of CCR5 and CXCR4 on CD4+ cells, specifically on memory T-lymphocytes since they are the

  2. Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells during human endotoxemia and after stimulation with (myco)bacterial antigens: the role of cytokines

    NARCIS (Netherlands)

    Juffermans, N. P.; Paxton, W. A.; Dekkers, P. E.; Verbon, A.; de Jonge, E.; Speelman, P.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Concurrent infections in patients with human immunodeficiency virus (HIV) infection stimulate HIV replication. Chemokine receptors CXCR4 and CCR5 can act as HIV coreceptors. The authors hypothesized that concurrent infection increases the HIV load through up-regulation of CXCR4 and CCR5. Using

  3. Analysis of Clinical HIV-1 Strains with Resistance to Maraviroc Reveals Strain-Specific Resistance Mutations, Variable Degrees of Resistance, and Minimal Cross-Resistance to Other CCR5 Antagonists.

    Science.gov (United States)

    Flynn, Jacqueline K; Ellenberg, Paula; Duncan, Renee; Ellett, Anne; Zhou, Jingling; Sterjovski, Jasminka; Cashin, Kieran; Borm, Katharina; Gray, Lachlan R; Lewis, Marilyn; Jubb, Becky; Westby, Mike; Lee, Benhur; Lewin, Sharon R; Churchill, Melissa; Roche, Michael; Gorry, Paul R

    2017-12-01

    Maraviroc (MVC) is an allosteric inhibitor of human immunodeficiency virus type 1 (HIV-1) entry, and is the only CCR5 antagonist licensed for use as an anti-HIV-1 therapeutic. It acts by altering the conformation of the CCR5 extracellular loops, rendering CCR5 unrecognizable by the HIV-1 envelope (Env) glycoproteins. This study aimed to understand the mechanisms underlying the development of MVC resistance in HIV-1-infected patients. To do this, we obtained longitudinal plasma samples from eight subjects who experienced treatment failure with phenotypically verified, CCR5-tropic MVC resistance. We then cloned and characterized HIV-1 Envs (n = 77) from plasma of pretreatment (n = 36) and treatment failure (n = 41) samples. Our results showed variation in the magnitude of MVC resistance as measured by reductions in maximal percent inhibition of Env-pseudotyped viruses, which was more pronounced in 293-Affinofile cells compared to other cells with similar levels of CCR5 expression. Amino acid determinants of MVC resistance localized to the V3 Env region and were strain specific. We also observed minimal cross-resistance to other CCR5 antagonists by MVC-resistant strains. We conclude that 293-Affinofile cells are highly sensitive for detecting and measuring MVC resistance through a mechanism that is CCR5-dependent yet independent of CCR5 expression levels. The strain-specific nature of resistance mutations suggests that sequence-based diagnostics and prognostics will need to be more sophisticated than simple position scoring to be useful for managing resistance in subjects taking MVC. Finally, the minimal levels of cross-resistance suggests that recognition of the MVC-modified form of CCR5 does not necessarily lead to recognition of other antagonist-modified forms of CCR5.

  4. Linkages between HIV-1 specificity for CCR5 or CXCR4 and in vitro usage of alternative coreceptors during progressive HIV-1 subtype C infection.

    Science.gov (United States)

    Cashin, Kieran; Jakobsen, Martin R; Sterjovski, Jasminka; Roche, Michael; Ellett, Anne; Flynn, Jacqueline K; Borm, Katharina; Gouillou, Maelenn; Churchill, Melissa J; Gorry, Paul R

    2013-09-16

    Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is spreading rapidly and is now responsible for >50% of HIV-1 infections worldwide, and >95% of infections in southern Africa and central Asia. These regions are burdened with the overwhelming majority of HIV-1 infections, yet we know very little about the pathogenesis of C-HIV. In addition to CCR5 and CXCR4, the HIV-1 envelope glycoproteins (Env) may engage a variety of alternative coreceptors for entry into transfected cells. Whilst alternative coreceptors do not appear to have a broad role in mediating the entry of HIV-1 into primary cells, characterizing patterns of alternative coreceptor usage in vitro can provide valuable insights into mechanisms of Env-coreceptor engagement that may be important for HIV-1 pathogenesis. Here, we characterized the ability of luciferase reporter viruses pseudotyped with HIV-1 Envs (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects experiencing progression from chronic to advanced C-HIV infection over an approximately 3-year period, who either exclusively maintained CCR5-using (R5) variants (n = 20 subjects) or who experienced a coreceptor switch to CXCR4-using (X4) variants (n = 1 subject), to utilize alternative coreceptors for entry. At a population level, CCR5 usage by R5 C-HIV Envs was strongly linked to usage of FPRL1, CCR3 and CCR8 as alternative coreceptors, with the linkages to FPRL1 and CCR3 usage becoming statistically more robust as infection progressed from chronic to advanced stages of disease. In contrast, acquisition of an X4 Env phenotype at advanced infection was accompanied by a dramatic loss of FPRL1 usage. Env mutagenesis studies confirmed a direct link between CCR5 and FPRL1 usage, and showed that the V3 loop crown, but not other V3 determinants of CCR5-specificity, was the principal Env determinant governing the ability of R5 C-HIV Envs from one particular subject to engage FPRL1. Our results suggest

  5. High Sucrose Intake Ameliorates the Accumulation of Hepatic Triacylglycerol Promoted by Restraint Stress in Young Rats.

    Science.gov (United States)

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Rodríguez, Ida Soto; Cuevas, Estela; Martínez-Gómez, Margarita; Castelán, Francisco; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2015-11-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Stress promotes the onset of the NAFLD with a concomitant increment in the activity of the hepatic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1). However, the interaction between the stress and a carbohydrate-enriched diet for the development of NAFLD in young animals is unknown. In the present study, we evaluated the impact of chronic stress on the hepatic triacylglycerol level of young rats fed or not with a high sucrose-diet. For doing this, 21-day old male Wistar rats were allocated into 4 groups: control (C), chronic restraint stress (St), high-sucrose diet (S30), and chronic restraint stress plus a 30 % sucrose diet (St + S30). Chronic restraint stress consisted of 1-hour daily session, 5 days per week and for 4 weeks. Rats were fed with a standard chow and tap water (C group) or 30 % sucrose diluted in water (S30 group). The St + S30 groups consumed less solid food but had an elevated visceral fat accumulation in comparison with the St group. The St group showed a high level of serum corticosterone and a high activity of the hepatic 11β-HSD-1 concomitantly to the augmentation of hepatic steatosis signs, a high hepatic triacylglycerol content, and hepatic oxidative stress. Conversely, the high-sucrose intake in stressed rats (St + S30 group) reduced the hepatic 11β-HSD-1 activity, the level of serum corticosterone, and the hepatic triacylglycerol content. Present findings show that a high-sucrose diet ameliorates the triacylglycerol accumulation in liver promoted by the restraint stress in young male rats.

  6. Recombinant human T-cell leukemia virus types 1 and 2 Tax proteins induce high levels of CC-chemokines and downregulate CCR5 in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Barrios, Christy S; Abuerreish, Muna; Lairmore, Michael D; Castillo, Laura; Giam, Chou-Zen; Beilke, Mark A

    2011-12-01

    Human T-cell leukemia viruses types 1 (HTLV-1) and 2 (HTLV-2) produce key transcriptional regulatory gene products, known as Tax1 and Tax2, respectively. Tax1 and Tax2 transactivate multiple host genes involved in cellular immune responses within the cellular microenvironment, including induction of genes encoding expression of CC-chemokines. It is speculated that HTLV Tax proteins may act as immune modulators. In this study, recombinant Tax1 and Tax2 proteins were tested for their effects on the viability of cultured peripheral blood mononuclear cells (PBMCs), and their ability to induce expression of CC-chemokines and to downregulate the level of CCR5 expression in PBMCs. PBMCs obtained from uninfected donors were cultured in a range of Tax1 and Tax2 concentrations (10-100 pM), and supernatant fluids were harvested at multiple time points for quantitative determinations of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. Treatment of PBMCs with Tax1 and Tax2 proteins (100 pM) resulted in a significant increase in viability over a 7-d period compared to controls (pTax1 and Tax2 induced high levels of all three CC-chemokines over the dosing range compared to mock-treated controls (pTax2, as well as lymphocytes from HTLV-2-infected donors, showed a significantly lower percentage of CCR5-positive cells compared to those of uninfected donors and from mock-treated lymphocytes, respectively (pTax1 and Tax2 could promote innate immunity in the extracellular environment during HTLV-1 and HTLV-2 infections via CC-chemokine ligands and receptors.

  7. Distribution of the CCR5 gene 32-basepair deletion in West Europe. A hypothesis about the possible dispersion of the mutation by the Vikings in historical times.

    Science.gov (United States)

    Lucotte, G

    2001-09-01

    The chemokine receptor CCR5 constitutes the major coreceptor for the macrophage-tropic strains of HIV-1. A mutant allele of the CCR5 gene named Delta32 was shown to provide to homozygotes a strong resistance against infection by HIV. The frequency of the Delta32 allele was collected in 7328 noninfected unrelated individuals from 31 different European populations, and in Cyprus, Turkey, Daghestan, and North-Africa. The Delta32 allele was found in all populations studied, with a mean frequency of about 8.0%. A north to south gradient correlating latitude with Delta32 allelic frequencies was found (r = 0.795, p Vikings during the eighth to the tenth centuries, because the most elevated values of this variant are actually found in their actual populations, and because they raided during the corresponding period in most European countries.

  8. Design, synthesis and biological evaluation of (E)-3,4-dihydroxystyryl 4-acylaminophenethyl sulfone, sulfoxide derivatives as dual inhibitors of HIV-1 CCR5 and integrase.

    Science.gov (United States)

    Sun, Yixing; Xu, Weisi; Fan, Ningning; Sun, Xuefeng; Ning, Xianling; Ma, Liying; Liu, Junyi; Wang, Xiaowei

    2017-02-01

    Aiming at the limited effectiveness of current clinical therapeutic effect of AIDS, novel series of compounds bearing (E)-3,4-dihydroxystyryl sulfone (or sulfoxide) and anilide fragments were designed and synthesized as dual inhibitors of HIV-1 CCR5/IN. The biological results indicated that several target compounds showed inhibitory activity against HIV-1 Bal (R5) infection in TZM-bl cells. Besides targeting the chemokine receptor on the host cell surface, they also displayed binding affinities with HIV-1 integrase using the surface plasmon resonance (SPR) binding assays. Molecular docking studies have inferred the possible binding mode of target compounds against integrase. These data demonstrate that the structure of (E)-3,4-dihydroxystyryl sulfone and sulfoxide derivatives have the potential to derive potent dual inhibitors of HIV-1 Integrase and CCR5. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. CCR5Δ32 Polymorphism Associated with a Slower Rate Disease Progression in a Cohort of RR-MS Sicilian Patients

    Directory of Open Access Journals (Sweden)

    Rosalia D'Angelo

    2011-01-01

    Full Text Available Multiple sclerosis (MS disease is carried through inflammatory and degenerative stages. Based on clinical feaures, it can be subdivided into three groups: relapsing-remitting MS, secondary progressive MS, and primary progressive MS. Multiple sclerosis has a multifactorial etiology with an interplay of genetic predisposition, environmental factors, and autoimmune inflammatory mechanism in which play a key role CC-chemokines and its receptors. In this paper, we studied the frequency of CCR5 gene Δ32 allele in a cohort of Sicilian RR-MS patients comparing with general Sicilian population. Also, we evaluate the association between this commonly polymorphism and disability development and age of disease onset in the same cohort. Our results show that presence of CCR5Δ32 is significantly associated with expanded disability status scale score (EDSS but not with age of disease onset.

  10. Association of CCR2-CCR5 haplotypes and CCL3L1 copy number with Kawasaki Disease, coronary artery lesions, and IVIG responses in Japanese children.

    Directory of Open Access Journals (Sweden)

    Manju Mamtani

    Full Text Available BACKGROUND: The etiology of Kawasaki Disease (KD is enigmatic, although an infectious cause is suspected. Polymorphisms in CC chemokine receptor 5 (CCR5 and/or its potent ligand CCL3L1 influence KD susceptibility in US, European and Korean populations. However, the influence of these variations on KD susceptibility, coronary artery lesions (CAL and response to intravenous immunoglobulin (IVIG in Japanese children, who have the highest incidence of KD, is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used unconditional logistic regression analyses to determine the associations of the copy number of the CCL3L1 gene-containing duplication and CCR2-CCR5 haplotypes in 133 Japanese KD cases [33 with CAL and 25 with resistance to IVIG] and 312 Japanese controls without a history of KD. We observed that the deviation from the population average of four CCL3L1 copies (i.e., four copies was associated with an increased risk of KD and IVIG resistance (adjusted odds ratio (OR=2.25, p=0.004 and OR=6.26, p=0.089, respectively. Heterozygosity for the CCR5 HHF*2 haplotype was associated with a reduced risk of both IVIG resistance (OR=0.21, p=0.026 and CAL development (OR=0.44, p=0.071. CONCLUSIONS/SIGNIFICANCE: The CCL3L1-CCR5 axis may play an important role in KD pathogenesis. In addition to clinical and laboratory parameters, genetic markers may also predict risk of CAL and resistance to IVIG.

  11. Reduced Maximal Inhibition in Phenotypic Susceptibility Assays Indicates that Viral Strains Resistant to the CCR5 Antagonist Maraviroc Utilize Inhibitor-Bound Receptor for Entry▿

    Science.gov (United States)

    Westby, Mike; Smith-Burchnell, Caroline; Mori, Julie; Lewis, Marilyn; Mosley, Michael; Stockdale, Mark; Dorr, Patrick; Ciaramella, Giuseppe; Perros, Manos

    2007-01-01

    Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Δ32/Δ32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus. PMID:17182681

  12. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry.

    Science.gov (United States)

    Westby, Mike; Smith-Burchnell, Caroline; Mori, Julie; Lewis, Marilyn; Mosley, Michael; Stockdale, Mark; Dorr, Patrick; Ciaramella, Giuseppe; Perros, Manos

    2007-03-01

    Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Delta32/Delta32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus.

  13. CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo.

    Science.gov (United States)

    Sebastian, Nadia T; Zaikos, Thomas D; Terry, Valeri; Taschuk, Frances; McNamara, Lucy A; Onafuwa-Nuga, Adewunmi; Yucha, Ryan; Signer, Robert A J; Riddell Iv, James; Bixby, Dale; Markowitz, Norman; Morrison, Sean J; Collins, Kathleen L

    2017-07-01

    Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells.

  14. Preferential HIV infection of CCR6+ Th17 cells is associated with higher levels of virus receptor expression and lack of CCR5 ligands.

    Science.gov (United States)

    Alvarez, Yelina; Tuen, Michael; Shen, Guomiao; Nawaz, Fatima; Arthos, James; Wolff, Martin J; Poles, Michael A; Hioe, Catarina E

    2013-10-01

    Th17 cells are enriched in the gut mucosa and play a critical role in maintenance of the mucosal barrier and host defense against extracellular bacteria and fungal infections. During chronic human immunodeficiency virus (HIV) infection, Th17 cells were more depleted compared to Th1 cells, even when the patients had low or undetectable viremia. To investigate the differential effects of HIV infection on Th17 and Th1 cells, a culture system was used in which CCR6(+) CD4(+) T cells were sorted from healthy human peripheral blood and activated in the presence of interleukin 1β (IL-1β) and IL-23 to drive expansion of Th17 cells while maintaining Th1 cells. HIV infection of these cultures had minimal effects on Th1 cells but caused depletion of Th17 cells. Th17 loss correlated with greater levels of virus-infected cells and cell death. In identifying cellular factors contributing to higher susceptibility of Th17 cells to HIV, we compared Th17-enriched CCR6(+) and Th17-depleted CCR6(-) CD4 T cell cultures and noted that Th17-enriched CCR6(+) cells expressed higher levels of α4β7 and bound HIV envelope in an α4β7-dependent manner. The cells also had greater expression of CD4 and CXCR4, but not CCR5, than CCR6(-) cells. Moreover, unlike Th1 cells, Th17 cells produced little CCR5 ligand, and transfection with one of the CCR5 ligands, MIP-1β (CCL4), increased their resistance against HIV. These results indicate that features unique to Th17 cells, including higher expression of HIV receptors and lack of autocrine CCR5 ligands, are associated with enhanced permissiveness of these cells to HIV.

  15. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  16. Resistance of a human immunodeficiency virus type 1 isolate to a small molecule CCR5 inhibitor can involve sequence changes in both gp120 and gp41

    International Nuclear Information System (INIS)

    Anastassopoulou, Cleo G.; Ketas, Thomas J.; Depetris, Rafael S.; Thomas, Antonia M.; Klasse, Per Johan; Moore, John P.

    2011-01-01

    Here, we describe the genetic pathways taken by a human immunodeficiency virus type 1 (HIV-1) isolate, D101.12, to become resistant to the small molecule CCR5 inhibitor, vicriviroc (VCV), in vitro. Resistant D101.12 variants contained at least one substitution in the gp120 V3 region (H308P), plus one of two patterns of gp41 sequence changes involving the fusion peptide (FP) and a downstream residue: G514V+V535M or M518V+F519L+V535M. Studies of Env-chimeric and point-substituted viruses in peripheral blood mononuclear cells (PBMC) and TZM-bl cells showed that resistance can arise from the cooperative action of gp120 and gp41 changes, while retaining CCR5 usage. Modeling the VCV inhibition data from the two cell types suggests that D101.12 discriminates between high- and low-VCV affinity forms of CCR5 less than D1/85.16, a resistant virus with three FP substitutions.

  17. Frequency of CCR5 Delta-32 Mutation in Human Immunodeficiency Virus (HIV-seropositive and HIV-exposed Seronegative Individuals and in General Population of Medellin, Colombia

    Directory of Open Access Journals (Sweden)

    Francisco J Díaz

    2000-04-01

    Full Text Available Repeated exposure to human immunodeficiency virus (HIV does not always result in seroconversion. Modifications in coreceptors for HIV entrance to target cells are one of the factors that block the infection. We studied the frequency of Delta-32 mutation in ccr5 gene in Medellin, Colombia. Two hundred and eighteen individuals distributed in three different groups were analyzed for Delta-32 mutation in ccr5 gene by polymerase chain reaction (PCR: 29 HIV seropositive (SP, 39 exposed seronegative (ESN and 150 individuals as a general population sample (GPS. The frequency of the Delta-32 mutant allele was 3.8% for ESN, 2.7% for GPS and 1.7% for SP. Only one homozygous mutant genotype (Delta-32/Delta-32 was found among the ESN (2.6%. The heterozygous genotype (ccr5/Delta-32 was found in eight GPS (5.3%, in one SP (3.4% and in one ESN (2.6%. The differences in the allelic and genotypic frequencies among the three groups were not statistically significant. A comparison between the expected and the observed genotypic frequencies showed that these frequencies were significantly different for the ESN group, which indirectly suggests a protective effect of the mutant genotype (Delta-32/Delta-32. Since this mutant genotype explained the resistance of infection in only one of our ESN persons, different mechanisms of protection must be playing a more important role in this population.

  18. Preclinical safety and efficacy of an anti–HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor

    Directory of Open Access Journals (Sweden)

    Orit Wolstein

    2014-01-01

    Full Text Available Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC. CCR5-targeted shRNA (sh5 and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

  19. HIV-1 subtype CRF01_AE and B differ in utilization of low levels of CCR5, Maraviroc susceptibility and potential N-glycosylation sites.

    Science.gov (United States)

    Joshi, Anjali; Cox, Emily K; Sedano, Melina J; Punke, Erin B; Lee, Raphael Tc; Maurer-Stroh, Sebastian; Kaur, Palvinder; Ng, Oon Tek; Garg, Himanshu

    2017-12-01

    HIV subtypes not only predominate in different geographical regions but also differ in key phenotypic characteristics. To determine if genotypic and/or phenotypic differences in the Envelope (Env) glycoprotein can explain subtype related differences, we cloned 37 full length Envs from Subtype B and AE HIV infected individuals from Singapore. Our data demonstrates that CRF01_AE Envs have lower Potential N Glycosylation Sites and higher risk of ×4 development. Phenotypically, CRF01_AE were less infectious than subtype B Envs in cells expressing low levels of CCR5. Moreover, the Maraviroc IC 50 was higher for subtype B Envs and correlated with infectivity in low CCR5 expressing cells as well as PNGS. Specifically, the glycosylation site N301 in the V3 loop was seen less frequently in AE subtype and CXCR4 topic viruses. CRF01_AE differs from B subtype in terms of CCR5 usage and Maraviroc susceptibility which may have implications for HIV pathogenesis and virus evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Frequency of polymorphisms of genes coding for HIV-1 co-receptors CCR5 and CCR2 in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Munerato Patrícia

    2003-01-01

    Full Text Available Entry of human immunodeficiency type 1 virus (HIV-1 into target cells requires both CD4and one of the chemokine receptors. Viruses predominantly use one, or occasionally both, of the major co-receptors CCR5 and CXCR4, although other receptors, including CCR2B and CCR3, function as minor co-receptors. A 32-nucleotide deletion (delta32 within the beta-chemokine receptor 5 gene (CCR5 has been described in subjects who remain uninfected despite extensive exposition to HIV-1. The heterozygous genotype delays disease progression. This allele is common among Caucasians, but has not been found in people of African or Asian ancestry. A more common transition involving a valine to isoleucine switch in transmembrane domain I of CCR2B (64I, with unknown functional consequences, was found to delay disease progression but not to reduce infection risk. As the Brazilian population consists of a mixture of several ethnic groups, we decided to examine the genotype frequency of these polymorphisms in this country. There were 11.5% CCR5 heterozygotes among the HIV-1 infected population and 12.5% among uninfected individuals, similar to data from North America and Western Europe. The prevalence of CCR2-64I homozygotes and heterozygotes was 0.06 and 15.2%, respectively, also similar to what is known for North America and Western Europe.

  1. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2007-12-01

    Full Text Available Abstract Background CCR5-restricted (R5 human immunodeficiency virus type 1 (HIV-1 variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA and AIDS (A R5 Envs, respectively. Results Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362, a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. Conclusion Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.

  2. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan)

    2015-12-15

    C–C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5–MIP-1α interaction affects the progress of autoimmune diseases.

  3. Molecular anatomy of CCR5 engagement by physiologic and viral chemokines and HIV-1 envelope glycoproteins: differences in primary structural requirements for RANTES, MIP-1 alpha, and vMIP-II Binding.

    Science.gov (United States)

    Navenot, J M; Wang, Z X; Trent, J O; Murray, J L; Hu, Q X; DeLeeuw, L; Moore, P S; Chang, Y; Peiper, S C

    2001-11-09

    Molecular analysis of CCR5, the cardinal coreceptor for HIV-1 infection, has implicated the N-terminal extracellular domain (N-ter) and regions vicinal to the second extracellular loop (ECL2) in this activity. It was shown that residues in the N-ter are necessary for binding of the physiologic ligands, RANTES (CCL5) and MIP-1 alpha (CCL3). vMIP-II, encoded by the Kaposi's sarcoma-associated herpesvirus, is a high affinity CCR5 antagonist, but lacks efficacy as a coreceptor inhibitor. Therefore, we compared the mechanism for engagement by vMIP-II of CCR5 to its interaction with physiologic ligands. RANTES, MIP-1 alpha, and vMIP-II bound CCR5 at high affinity, but demonstrated partial cross-competition. Characterization of 15 CCR5 alanine scanning mutants of charged extracellular amino acids revealed that alteration of acidic residues in the distal N-ter abrogated binding of RANTES, MIP-1 alpha, and vMIP-II. Whereas mutation of residues in ECL2 of CCR5 dramatically reduced the binding of RANTES and MIP-1 alpha and their ability to induce signaling, interaction with vMIP-II was not altered by any mutation in the exoloops of the receptor. Paradoxically, monoclonal antibodies to N-ter epitopes did not block chemokine binding, but those mapped to ECL2 were effective inhibitors. A CCR5 chimera with the distal N-ter residues of CXCR2 bound MIP-1 alpha and vMIP-II with an affinity similar to that of the wild-type receptor. Engagement of CCR5 by vMIP-II, but not RANTES or MIP-1 alpha blocked the binding of monoclonal antibodies to the receptor, providing additional evidence for a distinct mechanism for viral chemokine binding. Analysis of the coreceptor activity of randomly generated mouse-human CCR5 chimeras implicated residues in ECL2 between H173 and V197 in this function. RANTES, but not vMIP-II blocked CCR5 M-tropic coreceptor activity in the fusion assay. The insensitivity of vMIP-II binding to mutations in ECL2 provides a potential rationale to its inefficiency as an

  4. Hepatitis

    Science.gov (United States)

    ... body digest food, store energy, and remove poisons. Hepatitis is an inflammation of the liver. Viruses cause most cases of hepatitis. The type ... can lead to scarring, called cirrhosis, or to liver cancer. Sometimes hepatitis goes away by itself. If it does not, ...

  5. HIV-infected individuals with the CCR delta32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. Copenhagen AIDS Cohort Study Group

    DEFF Research Database (Denmark)

    Katzenstein, T L; Eugen-Olsen, J; Hofmann, B

    1997-01-01

    The relations among serum HIV RNA levels, CD4 cell counts, presence of the mutant CCR5-allele in heterozygous form, and clinical outcome was analyzed in 96 patients from the Copenhagen AIDS Cohort. In the early years of the infection, patients with the CCR5 delta32/CCR5 genotype had significantly...

  6. Development of a culturally tailored Internet intervention promoting hepatitis B screening in the Turkish community in the Netherlands

    NARCIS (Netherlands)

    Veen, Y.J.J. van der; Empelen, P. van; Richardus, J.H.

    2012-01-01

    Hepatitis B virus infections are an important health problem in the Turkish community in the Netherlands. Screening for hepatitis B should be promoted through public health interventions, which take into account the socio-cultural and behavioural determinants that influence screening. The

  7. Involvement of both the V2 and V3 Regions of the CCR5-Tropic Human Immunodeficiency Virus Type 1 Envelope in Reduced Sensitivity to Macrophage Inflammatory Protein 1α

    Science.gov (United States)

    Maeda, Yosuke; Foda, Mohamed; Matsushita, Shuzo; Harada, Shinji

    2000-01-01

    To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1α-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1α (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat–β-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1β (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1α. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1α, MIP-1β, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors. PMID:10644351

  8. CCR5 Expression Is Reduced in Lymph Nodes of HIV Type 1–Infected Women, Compared With Men, But Does Not Mediate Sex-Based Differences in Viral Loads

    Science.gov (United States)

    Meditz, Amie L.; Folkvord, Joy M.; Lyle, Ngan H.; Searls, Kristina; Lie, Yolanda S.; Coakley, Eoin P.; McCarter, Martin; MaWhinney, Samantha; Connick, Elizabeth

    2014-01-01

    Background. Human immunodeficiency virus type 1 (HIV-1)–infected women have lower viral loads than men but similar rates of disease progression. We hypothesized that sex-based differences in CCR5 expression mediate viral load differences. Methods. CCR5 was analyzed by flow cytometry in disaggregated lymph node cells from untreated HIV-1–infected women (n = 28) and men (n = 27). The frequencies of HIV-1 RNA–producing cells in the lymph node were determined by in situ hybridization. Linear and generalized linear regression models were used. Results. The percentage of CCR5+CD3+CD4+ cells was lower in women (mean, 12%) than men (mean, 16%; P = .034). Neither the percentage of CCR5+CD3+CD4+ cells nor the CCR5 density predicted viral load or HIV-1 RNA–producing lymph node cells (P ≥ .24), after adjusting for CD4+ T-cell count, race, and age. Women had marginally fewer HIV-1 RNA–producing cells (mean, 0.21 cells/mm2) than men (mean, 0.44 cells/mm2; P = .046). After adjusting for the frequency of HIV-1 RNA–producing cells and potential confounders, the viral load in women were 0.46 log10 copies/mL lower than that in men (P = .018). Conclusions. Reduced lymph node CCR5 expression in women did not account for the viral load difference between sexes. CCR5 expression did not predict viral load or frequencies of HIV-1 RNA–producing cells, indicating that physiologic levels of CCR5 do not limit HIV-1 replication in lymph node. Less plasma virus was associated with each HIV-1 RNA–producing cell in women as compared to men, suggesting that women may either produce fewer virions per productively infected cell or more effectively clear extracellular virus. PMID:24179109

  9. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis B to interferon alfa

    Directory of Open Access Journals (Sweden)

    Ma Weimin

    2011-01-01

    Full Text Available Abstract In order to examine whether variation in interleukin-10 promoter polymorphism would predict the likelihood of sustain response of chronic hepatitis B to treatment with interferon alfa (IFN-α, the inheritance of 3 biallelic polymorphisms in the IL-10 gene promoter in patients with 52 chronic hepatitis B were determined by polymerase chain reaction (PCR-bared techniques, restriction enzyme digestion or direct sequencing. The relationship to the outcome of antiviral therapy for chronic HBV infection was studied in 24 patients who had a virologically sustained response(SR and in 28 non-responder(NR to interferon alfa-2b and several IL-10 variants were more frequent among SR compared with NR. Carriage of the -592A allele, -592A/A genotype and -1082/-1819/-592 ATA haplotype was associated with SR. Our findings indicate that heterogeneity in the promoter region of the IL-10 gene has a role in determining the initial response of chronic hepatitis B to IFN-α therapy.

  10. Different Pathogenesis of CCR5-Using Primary HIV-1 Isolates from Non-Switch and Switch Virus Patients in Human Lymphoid Tissue Ex Vivo

    Science.gov (United States)

    Iarlsson, Ingrid; Grivel, Jean-Charles; Chen. Silvia; Karlsson, Anders; Albert, Jan; Fenyol, Eva Maria; Margolis, Leonid B.

    2005-01-01

    CCR5-utilizing HIV-1 variants (R5) typically transmit infection and dominate its early stages, whereas emergence of CXCR4-using (X4 or R5X4) HIV-1 is often associated with disease progression. However, such a switch in co-receptor usage can only be detected in approximately onehalf of HIV-infected patients (switch virus patients), and progression to immunodeficiency may also occur in patients without detectable switch in co-receptor usage (non-switch virus patients). Here, we used a system of ex vivo-infected tonsillar tissue to compare the pathogenesis of sequential primary R5 HIV-1 isolates from the switch and non-switch patients. Inoculation of ex vivo tissue with these R5 isolates resulted in viral replication and CCR5(+)CD4(+) T cell depletion. The levels of such depletion by HIV-1 isolated from non-switch virus patients were significantly higher than those by R5 HIV-1 isolates from switch virus patients. T cell depletion seemed to be controlled by viral factors and did not significantly vary between tissues from different donors. In contrast, viral replication did not correlate with the switch status of the patients; in tissues fiom different donors it varied 30-fold and seemed to be controlled by a combination of viral and tissue factors. Nevertheless, replication-level hierarchy among sequential isolates remained constant in tissues from various donors. Viral load in vivo was higher in switch virus patients compared to non-switch virus patients. The high cytopathogenicity of CCR5(+)CD4(+) T cells by R5 HIV-1 isolates from non-switch virus patients may explain the steady decline of CD4(+) T cells in the absence of CXCR4 using virus; elimination of target cells by these isolates may limit their own replication in vivo.

  11. A recombinant vesicular stomatitis virus encoding CCR5-tropic HIV-1 receptors targets HIV-1-infected cells and controls HIV-1 infection.

    Science.gov (United States)

    Okuma, Kazu; Fukagawa, Koji; Kohma, Takuya; Takahama, Youichi; Hamaguchi, Yukio; Ito, Mamoru; Tanaka, Yuetsu; Buonocore, Linda; Rose, John K; Hamaguchi, Isao

    Anti-retroviral therapy is useful to treat human immunodeficiency virus type 1 (HIV-1)-infected individuals, but has some major problems, such as the generation of multidrug-resistant viruses. To develop a novel supplemental or alternative therapeutic for CCR5-tropic (R5) HIV-1 infection, we generated a recombinant vesicular stomatitis virus (rVSV) in which the gene encoding its envelope glycoprotein (G) was replaced with the genes encoding R5 HIV-1 receptors (human CD4 and CCR5), designated VSVΔG-CC5. Our present data demonstrate that this rVSV specifically infects cells that are transiently expressing R5 HIV-1 envelope glycoproteins, but does not infect those expressing CXCR4-tropic HIV-1 envelope glycoproteins. Notably, after a CD4 + CCR5 + T cell line or primary cells initially infected with R5 HIV-1 were inoculated with G-complemented VSVΔG-CC5, the rVSV significantly reduced the number of HIV-1-infected cells, probably through direct targeting of the rVSV and VSV-mediated cytolysis and/or through syncytium formation- or cell-cell fusion-dependent killing, and markedly inhibited HIV-1 production. Furthermore, G-complemented VSVΔG-CC5 also efficiently inhibited HIV-1 infection in R5 HIV-1-infected humanized immunodeficient mice. Taken together, our findings indicate that a cytolytic rVSV that targets and eliminates R5 HIV-1-infected cells potentially has therapeutic value for controlling R5 HIV-1 infection. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort.

    Science.gov (United States)

    Vega, Jorge A; Villegas-Ospina, Simón; Aguilar-Jiménez, Wbeimar; Rugeles, María T; Bedoya, Gabriel; Zapata, Wildeman

    2017-06-01

    Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p' value ;0.05 after Bonferroni correction was considered significant. Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. The haplotypes C-C and T-T in CCL3 were associated with susceptibility (p'=0.016) and resistance (p';0.0001) to HIV-1 infection, respectively. Finally, in multilocus analysis, the haplotype combinations formed by HHC in CCR5-CCR2, T-T in CCL3 and G-C in CCL5 were associated with resistance (p'=0.006). Our results suggest that specific combinations of variants in genes from the same signaling pathway can define an HIV-1 resistant phenotype. Despite our small sample size, our statistically significant associations suggest strong effects; however, these results should be further validated in larger cohorts.

  13. A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2007-01-01

    We have developed a closed-tube assay for determination of the chemokine receptor type 5 (CCR5) 32-bp deletion allele, which protects against infections with HIV and modulates susceptibility to a variety of inflammatory diseases. This assay utilizes dissociation analysis of amplified products...... in the presence of Sybr Green I for allele discrimination. After having established robust conditions for the assay, we used it to genotype 590 unknown DNA samples. A blinded comparison with a procedure based upon agarose gel electrophoresis of amplified material revealed complete concordance between the two...

  14. Lentivector Knockdown of CCR5 in Hematopoietic Stem and Progenitor Cells Confers Functional and Persistent HIV-1 Resistance in Humanized Mice.

    Science.gov (United States)

    Myburgh, Renier; Ivic, Sandra; Pepper, Michael S; Gers-Huber, Gustavo; Li, Duo; Audigé, Annette; Rochat, Mary-Aude; Jaquet, Vincent; Regenass, Stephan; Manz, Markus G; Salmon, Patrick; Krause, Karl-Heinz; Speck, Roberto F

    2015-07-01

    Gene-engineered CD34(+) hematopoietic stem and progenitor cells (HSPCs) can be used to generate an HIV-1-resistant immune system. However, a certain threshold of transduced HSPCs might be required for transplantation into mice for creating an HIV-resistant immune system. In this study, we combined CCR5 knockdown by a highly efficient microRNA (miRNA) lentivector with pretransplantation selection of transduced HSPCs to obtain a rather pure population of gene engineered CD34(+) cells. Low-level transduction of HSPCs and subsequent sorting by flow cytometry yielded >70% transduced cells. Mice transplanted with these cells showed functional and persistent resistance to a CCR5-tropic HIV strain: viral load was significantly decreased over months, and human CD4(+) T cells were preserved. In one mouse, viral mutations, resulting presumably in a CXCR4-tropic strain, overcame HIV resistance. Our results suggest that HSPC-based CCR5 knockdown may lead to efficient control of HIV in vivo. We overcame a major limitation of previous HIV gene therapy in humanized mice in which only a proportion of the cells in chimeric mice in vivo are anti-HIV engineered. Our strategy underlines the promising future of gene engineering HIV-resistant CD34(+) cells that produce a constant supply of HIV-resistant progeny. Major issues in experimental long-term in vivo HIV gene therapy have been (i) low efficacy of cell transduction at the time of transplantation and (ii) transduction resulting in multiple copies of heterologous DNA in target cells. In this study, we demonstrated the efficacy of a transplantation approach with a selection step for transduced cells that allows transplantation of an enriched population of HSPCs expressing a single (low) copy of a CCR5 miRNA. Efficient maintenance of CD4(+) T cells and a low viral titer resulted only when at least 70% of the HIV target cells were genetically modified. These findings imply that clinical protocols of HIV gene therapy require a selective

  15. A Novel Role for the Receptor of the Complement Cleavage Fragment C5a, C5aR1, in CCR5-Mediated Entry of HIV into Macrophages.

    Science.gov (United States)

    Moreno-Fernandez, Maria E; Aliberti, Julio; Groeneweg, Sander; Köhl, Jörg; Chougnet, Claire A

    2016-04-01

    The complement system is an ancient pattern recognition system that becomes activated during all stages of HIV infection. Previous studies have shown that C5a can enhance the infection of monocyte-derived macrophages and T cells indirectly through the production of interleukin (IL)-6 and tumor necrosis factor (TNF)-α and the attraction of dendritic cells. C5a exerts its multiple biologic functions mainly through activation of C5a receptor 1 (C5aR1). Here, we assessed the role of C5aR1 as an enhancer of CCR5-mediated HIV infection. We determined CCR5 and C5aR1 heterodimer formation in myeloid cells and the impact of C5aR1 blockade on HIV entry and genomic integration. C5aR1/CCR5 heterodimer formation was identified by immunoprecipitation and western blotting. THP-1 cells and monocyte-derived macrophages (MDM) were infected by R5 laboratory strains or HIV pseudotyped for the vesicular stomatitis virus (VSV) envelope. Levels of integrated HIV were measured by quantitative PCR after targeting of C5aR1 by a C5aR antagonist, neutralizing C5aR1 monoclonal antibody (mAb) or hC5a. C5aR1 was also silenced by specific siRNA prior to viral entry. We found that C5aR1 forms heterodimers with the HIV coreceptor CCR5 in myeloid cells. Targeting C5aR1 significantly decreased integration by R5 viruses but not by VSV-pseudotyped viruses, suggesting that C5aR1 is critical for viral entry. The level of inhibition achieved with C5aR1-blocking reagents was comparable to that of CCR5 antagonists. Mechanistically, C5aR1 targeting decreased CCR5 expression. MDM from CCR5Δ32 homozygous subjects expressed levels of C5aR1 similar to CCR5 WT individuals, suggesting that mere C5aR1 expression is not sufficient for HIV infection. HIV appeared to preferentially enter THP-1 cells expressing high levels of both C5aR1 and CCR5. Targeted reduction of C5aR1 expression in such cells reduced HIV infection by ~50%. Our data thus suggest that C5aR1 acts as an enhancer of CCR5-mediated HIV entry into

  16. Hepatitis

    Science.gov (United States)

    ... changes can alleviate some of the symptoms. Long-term effects can last as long as six months to one year. Hepatitis A is rarely fatal (100 deaths per year in the United States), but 20% of hepatitis A cases require hospitalization. Swallowing fecal matter, even in microscopic quantities. Infection ...

  17. Grape seed extract proanthocyanidins downregulate HIV- 1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    MADHAVAN P NAIR

    2002-01-01

    Full Text Available Flavonoids and related polyphenols, in addition to their cardioprotective, anti-tumor, anti-inflammatory, anti-carcinogenic and anti-allergic activities, also possess promising anti-HIV effects. Recent studies documented that the ß-chemokine receptors, CCR2b, CCR3 and CCR5, and the alpha-chemokine receptors, CXCR1, CXCR2 and CXCR4 serve as entry coreceptors for HIV-1. Although flavonoids and polyphenolic compounds elicit anti-HIV effects such as inhibition of HIV-1 expression and virus replication, the molecular mechanisms underlying these effects remain to be clearly elucidated. We hypothesize that flavonoids exert their anti-HIV effects, possibly by interfering at the HIV co-receptor level. We investigated the effect of flavonoid constituents of a proprietary grape seed extract (GSE on the expression of HIV-1 coentry receptors by immunocompetent mononuclear leukocytes. Our results showed that GSE significantly downregulated the expression of the HIV-1 entry co-receptors, CCR2b , CCR3 and CCR5 in normal PBMC in a dose dependent manner. Further , GSE treated cultures showed significantly lower number of CCR3 positive cells as quantitated by flow cytometry analysis which supports RT-PCR gene expression data.Investigations of the mechanisms underlying the anti-HIV-1 effects of grape seed extracts may help to identify promising natural products useful in the prevention and /or amelioration of HIV-1 infection

  18. Integrated Computational Tools for Identification of CCR5 Antagonists as Potential HIV-1 Entry Inhibitors: Homology Modeling, Virtual Screening, Molecular Dynamics Simulations and 3D QSAR Analysis

    Directory of Open Access Journals (Sweden)

    Suri Moonsamy

    2014-04-01

    Full Text Available Using integrated in-silico computational techniques, including homology modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry inhibitors. Via validated docking calculations, binding free energies revealed that novel leads demonstrated better binding affinities with CCR5 compared to maraviroc, an FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy decomposition analysis on the averaged MD structure showed that hydrophobic active residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding. The validated 3D-QSAR model showed a high cross-validated rcv2 value of 0.84 using three principal components and non-cross-validated r2 value of 0.941. It was also revealed that almost all compounds in the test set and training set yielded a good predicted value. Information gained from this study could shed light on the activity of a new series of lead compounds as potential HIV entry inhibitors and serve as a powerful tool in the drug design and development machinery.

  19. Enhanced CD4+ cellular apoptosis by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with progressive HIV-1 infection

    International Nuclear Information System (INIS)

    Wade, Jessica; Sterjovski, Jasminka; Gray, Lachlan; Roche, Michael; Chiavaroli, Lisa; Ellett, Anne; Jakobsen, Martin R.; Cowley, Daniel; Fonseca Pereira, Candida da; Saksena, Nitin; Wang, Bin; Purcell, Damian F.J.; Karlsson, Ingrid; Fenyoe, Eva-Maria; Churchill, Melissa; Gorry, Paul R.

    2010-01-01

    CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains cause CD4+ T-cell loss in most infected individuals, but mechanisms underlying cytopathicity of R5 viruses are poorly understood. We investigated mechanisms contributing to R5 envelope glycoprotein (Env)-mediated cellular apoptosis by constructing a panel of retroviral vectors engineered to co-express GFP and R5 Envs derived from two HIV-1-infected subjects spanning asymptomatic (Early, E-R5 Envs) to late stages of infection (Late, L-R5 Envs). The L-R5 Envs induced significantly more cellular apoptosis than E-R5 Envs, but only in Env-expressing (GFP-positive) cells, and only in cells where CD4 and CCR5 levels were limiting. Studies with fusion-defective Env mutants showed induction of apoptosis required membrane-fusing events. Our results provide evidence for an intracellular mechanism of R5 Env-induced apoptosis of CD4+ cells that requires membrane fusion. Furthermore, they contribute to a better understanding of mechanisms involved in CD4+ T-cell loss in subjects experiencing progressive R5 HIV-1 infection.

  20. HIV replication in conjunction with granzyme B production by CCR5+ memory CD4 T cells: Implications for bystander cell and tissue pathologies.

    Science.gov (United States)

    Couturier, Jacob; Hutchison, Alexander T; Medina, Miguel A; Gingaras, Cosmina; Urvil, Petri; Yu, Xiaoying; Nguyen, Chi; Mahale, Parag; Lin, Lin; Kozinetz, Claudia A; Schmitz, Joern E; Kimata, Jason T; Savidge, Tor C; Lewis, Dorothy E

    2014-08-01

    Granzyme B (GrzB) is expressed by activated T cells and mediates cellular apoptosis. GrzB also acts as an extracellular protease involved in tissue degradation. We hypothesized that GrzB production from activated memory CD4 T cells may be associated with HIV pathogenesis. We found that stimulated memory CD4 T cells (via costimulation, cytokines, and TLR ligands) concomitantly produced GrzB and HIV. Both GrzB and HIV expression were mainly restricted to CCR5-expressing memory CD4+CD45RO+ T cells, including Th1 and Th17 subsets. Activated memory CD4 T cells also mediated tissue damage, such as disruption of intestinal epithelial monolayers. In non-human primates, CD4 T cells of rhesus macaques (pathogenic SIV hosts) expressed higher GrzB compared to African green monkeys (non-pathogenic SIV hosts). These results suggest that GrzB from CCR5+ memory CD4 T cells may have a role in cellular and tissue pathologies during HIV infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

    Science.gov (United States)

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony; Perros, Manos

    2005-11-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.

  2. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells.

    Science.gov (United States)

    Glatzel, Andrea; Wesch, Daniela; Schiemann, Florian; Brandt, Ernst; Janssen, Ottmar; Kabelitz, Dieter

    2002-05-15

    Gammadelta T lymphocytes play an important role in the immune defense against infection, based on the unique reactivity of human Vdelta2Vgamma9 gammadelta T cells toward bacterial phosphoantigens. Chemokines and their corresponding receptors orchestrate numerous cellular reactions, including leukocyte migration, activation, and degranulation. In this study we investigated the expression of various receptors for inflammatory and homeostatic chemokines on peripheral blood gammadelta T cells and compared their expression patterns with those on alphabeta T cells. Although several of the analyzed receptors (including CCR6, CCR7, CXCR4, and CXCR5) were not differentially expressed on gammadelta vs alphabeta T cells, gammadelta T cells expressed strongly increased levels of the RANTES/macrophage inflammatory protein-1alpha/-1beta receptor CCR5 and also enhanced levels of CCR1-3 and CXCR1-3. CCR5 expression was restricted to Vdelta2 gammadelta T cells, while the minor subset of Vdelta1 gammadelta T cells preferentially expressed CXCR1. Stimulation with heat-killed extracts of Mycobacterium tuberculosis down-modulated cell surface expression of CCR5 on gammadelta T cells in a macrophage-dependent manner, while synthetic phosphoantigen isopentenyl pyrophosphate and CCR5 ligands directly triggered CCR5 down-modulation on gammadelta T cells. The functionality of chemokine receptors CCR5 and CXCR3 on gammadelta T cells was demonstrated by Ca(2+) mobilization and chemotactic response to the respective chemokines. Our results identify high level expression of CCR5 as a characteristic and selective feature of circulating Vdelta2 gammadelta T cells, which is in line with their suspected function as Th1 effector T cells.

  3. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  4. Hepatitis

    Science.gov (United States)

    ... low because of routine testing of donated blood. Sexual transmission and transmission among family members through close contact ... associated with drinking contaminated water. Hepatitis Viruses ... B Blood, needles, sexual 10% of older children develop chronic infection. 90% ...

  5. Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE

    Directory of Open Access Journals (Sweden)

    Ericsson-Dahlstrand Anders

    2007-05-01

    Full Text Available Abstract Background The CC chemokine receptors CCR1, CCR2 and CCR5 are critical for the recruitment of mononuclear phagocytes to the central nervous system (CNS in multiple sclerosis (MS and other neuroinflammatory diseases. Mononuclear phagocytes are effector cells capable of phagocytosing myelin and damaging axons. In this study, we characterize the regional, temporal and cellular expression of CCR1, CCR2 and CCR5 mRNA in the spinal cord of rats with myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE. While resembling human MS, this animal model allows unique access to CNS-tissue from various time-points of relapsing neuroinflammation and from various lesional stages: early active, late active, and inactive completely demyelinated lesions. Methods The expression of CCR1, CCR2 and CCR5 mRNA was studied with in situ hybridization using radio labelled cRNA probes in combination with immunohistochemical staining for phenotypic cell markers. Spinal cord sections from healthy rats and rats with MOG-EAE (acute phase, remission phase, relapse phase were analysed. In defined lesion stages, the number of cells expressing CCR1, CCR2 and CCR5 mRNA was determined. Data were statistically analysed by the nonparametric Mann-Whitney U test. Results In MOG-EAE rats, extensive up-regulation of CCR1 and CCR5 mRNA, and moderate up-regulation of CCR2 mRNA, was found in the spinal cord during episodes of active inflammation and demyelination. Double staining with phenotypic cell markers identified the chemokine receptor mRNA-expressing cells as macrophages/microglia. Expression of all three receptors was substantially reduced during clinical remission, coinciding with diminished inflammation and demyelination in the spinal cord. Healthy control rats did not show any detectable expression of CCR1, CCR2 or CCR5 mRNA in the spinal cord. Conclusion Our results demonstrate that the acute and chronic-relapsing phases of MOG

  6. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway

    Directory of Open Access Journals (Sweden)

    Gompels Ursula A

    2009-07-01

    Full Text Available Abstract Background Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Methods Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. Results U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4

  7. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway.

    Science.gov (United States)

    Catusse, Julie; Clark, David J; Gompels, Ursula A

    2009-07-30

    Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A) infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4. U83A diverts human chemokines from signalling, but not

  8. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    Science.gov (United States)

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  9. Association of hepatic nuclear factor-4 in the apolipoprotein B promoter: a preliminary report

    Directory of Open Access Journals (Sweden)

    Nóvak E.M.

    1998-01-01

    Full Text Available Previous studies have examined the arrangement of regulatory elements along the apolipoprotein B (apoB promoter region (-3067 to +940 and a promoter fragment extending from nucleotides -150 to +124 has been demonstrated to be essential for transcriptional activation of the apoB gene in hepatic and intestinal cells. It has also been shown that transcriptional activation of apoB requires a synergistic interaction between hepatic nuclear factor-4 (HNF-4 and CCAAT/enhancer-binding protein a (C/EBPa transcription factors. Here, we have examined the hypothesis that HNF-4 factor binding to DNA may induce a DNA helix bend, thus facilitating the communication with a C/EBPa factor located one helix turn from this HNF-4 factor in the apoB promoter. A gel electrophoretic mobility shift assay using wild type double-stranded oligonucleotides or modified wild type duplex oligonucleotides with 10 nucleotides inserted between HNF-4 and C/EBPa factor motifs showed similar retarded complexes, indicating that HNF-4 and C/EBPa factors interact independently of the distance between binding sites. However, when only one base, a thymidine, was inserted at the -71 position of the apoB promoter, the complex shift was completely abolished. In conclusion, these results regarding the study of the mechanisms involving the interaction between HNF-4 and C/EBPa factors in the apoB promoter suggest that the perfect 5'-CCCTTTGGA-3' motif is needed in order to facilitate the interaction between the two factors.

  10. Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of the coreceptor function by DNA-enzyme.

    Science.gov (United States)

    Goila, R; Banerjea, A C

    1998-10-02

    The chemokine receptor CCR5 is used as a major coreceptor for fusion and entry by non-syncytia inducing macrophage tropic isolates of HIV-1, which is mainly involved in transmission. Individuals who are homozygous for the delta32 allele of CCR5 are usually resistant to HIV-1 infection and continue to lead a normal healthy life. Thus this gene is dispensable and is, therefore, an attractive target in the host cell for interfering specifically with the virus-host interaction. With the aim to develop a specific antiviral approach at the molecular level, we have synthesized a hammer-head ribozyme and a DNA-enzyme. Both ribozyme and DNA-enzyme cleaved the CCR5 RNA in a sequence specific manner. This cleavage was protein independent but Mg2+ dependent. The extent of cleavage increased with increasing concentration of magnesium chloride. DNA-enzyme was more effective in cleaving a full length (1376 bases) in vitro generated transcript of CCR5 gene. In this communication, we show that the DNA-enzyme when introduced into a mammalian cell, results in decreased CD4-CCR5-gp160 mediated fusion of cell membranes. Potential applications of these trans acting molecules are discussed.

  11. Optimization of Polycistronic Anti-CCR5 Artificial microRNA Leads to Improved Accuracy of Its Lentiviral Vector Transfer and More Potent Inhibition of HIV-1 in CD4⁺ T-Cells.

    Science.gov (United States)

    Urusov, Felix; Glazkova, Dina; Omelchenko, Denis; Bogoslovskaya, Elena; Tsyganova, Galina; Kersting, Katerina; Shipulin, German; Pokrovsky, Vadim

    2018-02-04

    C-C chemokine receptor type 5 (CCR5) is utilized by human immunodeficiency virus (HIV) as a co-receptor for cell entry. Suppression of the CCR5 gene by artificial microRNAs (amiRNAs) could confer cell resistance. In previous work, we created a lentivector that encoded the polycistron of two identical amiRNAs that could effectively suppress CCR5. However, tandem repeats in lentiviral vectors led to deletions of the repeated sequences during reverse transcription of the vector RNA. To solve this problem, we have created a new amiRNA against CCR5, mic1002, which has a different microRNA scaffold and targets a different sequence. Replacing one of the two identical tandem amiRNAs in the polycistron with the mic1002 amiRNA increased the accuracy of its lentiviral vector transfer while retaining its ability to effectively suppress CCR5. A lentiviral vector containing two heterogenic amiRNAs significantly inhibited HIV replication in a vector-transduced human CD4⁺ lymphocyte culture.

  12. CCR5 and CXCR4 chemokine receptor expression and β-chemokine production during early T cell repopulation induced by highly active anti-retroviral therapy

    Science.gov (United States)

    Giovannetti, A; Ensoli, F; Mazzetta, F; De Cristofaro, M; Pierdominici, M; Muratori, D S; Fiorelli, V; Aiuti, F

    1999-01-01

    Expression of chemokine receptors and β-chemokine production by peripheral blood mononuclear cells (PBMC) were determined in HIV-1-infected individuals before and after highly active anti-retroviral therapy (HAART) and their relationship to viral load, T cell phenotype and the expression of immunological activation markers was examined. We found that the expression of CCR5 is up-regulated in HIV-1-infected individuals while CXCR4 appears down-regulated on both CD4 and CD8 T cells compared with normal controls. These alterations are associated with the high levels of viral load. In addition, a relationship was observed between the degree of immune activation and chemokine receptor expression on T cells. However, after 3 months of combined anti-retroviral regimen, expression of CXCR4 significantly increased while CCR5 decreased when compared with pretherapy determinations. This was seen in strict association with a dramatic decrease of viral load and an increase of both CD45RA+/CD62L+ (naive) and CD45RA−/CD62L+ or CD45RA+/CD62L− (memory) T cells accompanied by a significant decrease of the expression of immune activation markers such as HLA-DR and CD38. At enrolment, both spontaneous and lectin-induced RANTES, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β production by PBMC were higher in HIV-1-infected individuals compared with normal controls, although differences for MIP-1β were not statistically significant. However, RANTES and MIP-1α production decreased during HAART at levels closer to that determined with normal controls, while MIP-1β production was less consistently modified. These data indicate that the expression of chemokine receptors CCR5 and CXCR4 and the production of β-chemokines are altered in HIV-infected individuals, and suggest that their early modifications during HAART reflect both the peripheral redistribution of naive/memory T cell compartments and the decrease in levels of T cell activation. Such modifications in the

  13. O-GlcNAcylation of Orphan Nuclear Receptor Estrogen-Related Receptor γ Promotes Hepatic Gluconeogenesis.

    Science.gov (United States)

    Misra, Jagannath; Kim, Don-Kyu; Jung, Yoon Seok; Kim, Han Byeol; Kim, Yong-Hoon; Yoo, Eun-Kyung; Kim, Byung Gyu; Kim, Sunghoon; Lee, In-Kyu; Harris, Robert A; Kim, Jeong-Sun; Lee, Chul-Ho; Cho, Jin Won; Choi, Hueng-Sik

    2016-10-01

    Estrogen-related receptor γ (ERRγ) is a major positive regulator of hepatic gluconeogenesis. Its transcriptional activity is suppressed by phosphorylation signaled by insulin in the fed state, but whether posttranslational modification alters its gluconeogenic activity in the fasted state is not known. Metabolically active hepatocytes direct a small amount of glucose into the hexosamine biosynthetic pathway, leading to protein O-GlcNAcylation. In this study, we demonstrate that ERRγ is O-GlcNAcylated by O-GlcNAc transferase in the fasted state. This stabilizes the protein by inhibiting proteasome-mediated protein degradation, increasing ERRγ recruitment to gluconeogenic gene promoters. Mass spectrometry identifies two serine residues (S317, S319) present in the ERRγ ligand-binding domain that are O-GlcNAcylated. Mutation of these residues destabilizes ERRγ protein and blocks the ability of ERRγ to induce gluconeogenesis in vivo. The impact of this pathway on gluconeogenesis in vivo was confirmed by the observation that decreasing the amount of O-GlcNAcylated ERRγ by overexpressing the deglycosylating enzyme O-GlcNAcase decreases ERRγ-dependent glucose production in fasted mice. We conclude that O-GlcNAcylation of ERRγ serves as a major signal to promote hepatic gluconeogenesis. © 2016 by the American Diabetes Association.

  14. Identification and characterization of HIV-2 strains obtained from asymptomatic patients that do not use CCR5 or CXCR4 coreceptors

    International Nuclear Information System (INIS)

    Azevedo-Pereira, J.M.; Santos-Costa, Q.; Mansinho, K.; Moniz-Pereira, J.

    2003-01-01

    In vivo, human immunodeficiency virus type 2 (HIV-2) infection reveals several unique characteristics when compared to HIV-1 infection, the most remarkable of which is the extraordinarily long asymptomatic period. Here we describe two HIV-2 primary isolates, obtained from asymptomatic individuals, which do not infect any coreceptor-expressing cell lines tested. In those cells, we show that the absence of replication is directly related to cell entry events. Furthermore, productive infection observed in peripheral blood mononuclear cells (PBMC) was not inhibited by natural ligands and monoclonal antibodies directed to CCR5 and CXCR4. Finally, viral entry efficiency and viral progeny production of these viruses are markedly impaired in PBMC, indicating a reduced replicative fitness of both viruses. In conclusion, our data suggest that in some HIV-2 asymptomatic individuals, the circulating viruses are unable to use the major coreceptors to infect PBMC. This fact should have important implications in HIV-2 pathogenesis and transmission

  15. Comparison of chemokines (CCL-5 and SDF-1), chemokine receptors (CCR-5 and CXCR-4) and IL-6 levels in patients with different severities of depression.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna; Just, Marek J; Moś, Danuta; Araszkiewicz, Aleksander

    2014-10-01

    Depression can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the body's neurochemical and neuroendocrine functions play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 160 men and women were enrolled in the study. 120 of them were diagnosed with various types of depression. The mean age was 45.2 ± 4.5 years (range: 19-47 years). The control group consisted of 40 healthy individuals. The average age in this group was 42.4 ± 4.1 years. Plasma levels of chemokines and their receptors (CCL-5 - RANTES and CXCR-5, SDF-1 and CXCR-4), as well as of IL-6, were assessed by ELISA. There was an increase in SDF-1 and CCL-5 levels in women and men with different severities of depression, versus the control group. Also, an increase in the IL-6 levels, CXCR4 and CCR-5 receptors was observed in both women and men with all types of depression. Levels of SDF-1 and CCL-5 chemokines, as well as of CCR-5 and CXCR4 chemokine receptors, were higher in women than in men. The results of this study indicate the need for assessment of CCL-5 and SDF-1 chemokines levels, as they are likely markers of developing depression. Early measurement of these chemokines levels may be helpful in choosing the best pharmacotherapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Chemokine Ligand 5 (CCL5 and chemokine receptor (CCR5 genetic variants and prostate cancer risk among men of African Descent: a case-control study

    Directory of Open Access Journals (Sweden)

    Kidd LaCreis R

    2012-11-01

    Full Text Available Abstract Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs are associated with various cancers, their impact on prostate cancer (PCA among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA and rs3817655 (AA, AG, AG+AA genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655 and CCR5 (rs1799988 sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent.

  17. HIV-1 Tropism Dynamics and Phylogenetic Analysis from Longitudinal Ultra-Deep Sequencing Data of CCR5- and CXCR4-Using Variants

    Science.gov (United States)

    Sede, Mariano M.; Moretti, Franco A.; Laufer, Natalia L.

    2014-01-01

    Objective Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. The molecular and evolutionary mechanisms underlying the CCR5 to CXCR4 switch are the focus of intense recent research. We studied the HIV-1 tropism dynamics in relation to coreceptor usage, the nature of quasispecies from ultra deep sequencing (UDPS) data and their phylogenetic relationships. Methods Here, we characterized C2-V3-C3 sequences of HIV obtained from 19 patients followed up for 54 to 114 months using UDPS, with further genotyping and phylogenetic analysis for coreceptor usage. HIV quasispecies diversity and variability as well as HIV plasma viral load were measured longitudinally and their relationship with the HIV coreceptor usage was analyzed. The longitudinal UDPS data were submitted to phylogenetic analysis and sampling times and coreceptor usage were mapped onto the trees obtained. Results Although a temporal viral genetic structuring was evident, the persistence of several viral lineages evolving independently along the infection was statistically supported, indicating a complex scenario for the evolution of viral quasispecies. HIV X4-using variants were present in most of our patients, exhibiting a dissimilar inter- and intra-patient predominance as the component of quasispecies even on antiretroviral therapy. The viral populations from some of the patients studied displayed evidences of the evolution of X4 variants through fitness valleys, whereas for other patients the data favored a gradual mode of emergence. Conclusions CXCR4 usage can emerge independently, in multiple lineages, along the course of HIV infection. The mode of emergence, i.e. gradual or through fitness valleys seems to depend on both virus and patient factors. Furthermore, our analyses suggest that, besides becoming dominant after population-level switches, minor proportions of X4 viruses might exist along the infection, perhaps even at early stages of it. The fate of these minor

  18. Cenicriviroc, a Novel CCR5 (R5) and CCR2 Antagonist, Shows In Vitro Activity against R5 Tropic HIV-2 Clinical Isolates.

    Science.gov (United States)

    Visseaux, Benoit; Charpentier, Charlotte; Collin, Gilles; Bertine, Mélanie; Peytavin, Gilles; Damond, Florence; Matheron, Sophie; Lefebvre, Eric; Brun-Vézinet, Françoise; Descamps, Diane

    2015-01-01

    Maraviroc activity against HIV-2, a virus naturally resistant to different HIV-1 antiretroviral drugs, has been recently demonstrated. The aim of this study was to assess HIV-2 susceptibility to cenicriviroc, a novel, once-daily, dual CCR5 and CCR2 antagonist that has completed Phase 2b development in HIV-1 infection. Cenicriviroc phenotypic activity has been tested using a PBMC phenotypic susceptibility assay against four R5-, one X4- and one dual-tropic HIV-2 clinical primary isolates. All isolates were obtained by co-cultivation of PHA-activated PBMC from distinct HIV-2-infected CCR5-antagonist-naïve patients included in the French HIV-2 cohort and were previously tested for maraviroc susceptibility using the same protocol. HIV-2 tropism was determined by phenotypic assay using Ghost(3) cell lines. Regarding the 4 R5 HIV-2 clinical isolates tested, effective concentration 50% EC50 for cenicriviroc were 0.03, 0.33, 0.45 and 0.98 nM, similar to those observed with maraviroc: 1.13, 0.58, 0.48 and 0.68 nM, respectively. Maximum percentages of inhibition (MPI) of cenicriviroc were 94, 94, 93 and 98%, similar to those observed with maraviroc (93, 90, 82, 100%, respectively). The dual- and X4-tropic HIV-2 strains were resistant to cenicriviroc with EC50 >1000 nM and MPI at 33% and 4%, respectively. In this first study assessing HIV-2 susceptibility to cenicriviroc, we observed an in vitro activity against HIV-2 R5-tropic strains similar to that observed with maraviroc. Thus, cenicriviroc may offer a once-daily treatment opportunity in the limited therapeutic arsenal for HIV-2. Clinical studies are warranted.

  19. Human CCL3L1 copy number variation, gene expression, and the role of the CCL3L1-CCR5 axis in lung function [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Adeolu B. Adewoye

    2018-02-01

    Full Text Available Background: The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic monoclonal antibodies are in development. Repositioning of drugs and targets into new disease areas can accelerate the availability of new therapies and substantially reduce costs. As it has been shown that drug targets with genetic evidence supporting their involvement in the disease are more likely to be successful in clinical development, using genetic association studies to identify new target repurposing opportunities could be fruitful. Here we investigate the potential of perturbation of the CCL3L1-CCR5 axis as treatment for respiratory disease. Europeans typically carry between 0 and 5 copies of CCL3L1 and this multi-allelic variation is not detected by widely used genome-wide single nucleotide polymorphism studies.  Methods: We directly measured the complex structural variation of CCL3L1 using the Paralogue Ratio Test and imputed (with validation CCR5del32 genotypes in 5,000 individuals from UK Biobank, selected from the extremes of the lung function distribution, and analysed DNA and RNAseq data for CCL3L1 from the 1000 Genomes Project. Results: We confirmed the gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA expression levels.  We found no evidence for association of CCL3L1 copy number or CCR5del32 genotype with lung function. Conclusions: These results suggest that repositioning CCR5 antagonists is unlikely to be successful for the treatment of airflow obstruction.

  20. CCR5Δ32 (rs333) polymorphism is associated with decreased risk of chronic and aggressive periodontitis: A case-control analysis based in disease resistance and susceptibility phenotypes.

    Science.gov (United States)

    Cavalla, Franco; Biguetti, Claudia C; Dionisio, Thiago J; Azevedo, Michelle C S; Martins, Walter; Santos, Carlos F; Trombone, Ana Paula F; Silva, Renato M; Letra, Ariadne; Garlet, Gustavo P

    2018-03-01

    Chronic and aggressive periodontitis are infectious diseases characterized by the irreversible destruction of periodontal tissues, which is mediated by the host inflammatory immune response triggered by periodontal infection. The chemokine receptor CCR5 play an important role in disease pathogenesis, contributing to pro-inflammatory response and osteoclastogenesis. CCR5Δ32 (rs333) is a loss-of-function mutation in the CCR5 gene, which can potentially modulate the host response and, consequently periodontitis outcome. Thus, we investigated the effect of the CCR5Δ32 mutation over the risk to suffer periodontitis in a cohort of Brazilian patients (total N=699), representative of disease susceptibility (chronic periodontitis, N=197; and aggressive periodontitis, N=91) or resistance (chronic gingivitis, N=193) phenotypes, and healthy subjects (N=218). Additionally, we assayed the influence of CCR5Δ32 in the expression of the biomarkers TNFα, IL-1β, IL-10, IL-6, IFN-γ and T-bet, and key periodontal pathogens P. gingivalis, T. forsythia, and T. denticola. In the association analysis of resistant versus susceptible subjects, CCR5Δ32 mutant allele-carriers proved significantly protected against chronic (OR 0.49; 95% CI 0.29-0.83; p-value 0.01) and aggressive (OR 0.46; 95% CI 0.22-0.94; p-value 0.03) periodontitis. Further, heterozygous subjects exhibited significantly decreased expression of TNFα in periodontal tissues, pointing to a functional effect of the mutation in periodontal tissues during the progression of the disease. Conversely, no significant changes were observed in the presence or quantity of the periodontal pathogens P. gingivalis, T. forsythia, and T. denticola in the subgingival biofilm that could be attributable to the mutant genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Transcriptional coactivator NT-PGC-1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis.

    Science.gov (United States)

    Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung

    2016-10-01

    The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. HIV-infected individuals with the CCR delta32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. Copenhagen AIDS Cohort Study Group

    DEFF Research Database (Denmark)

    Katzenstein, T L; Eugen-Olsen, J; Hofmann, B

    1997-01-01

    The relations among serum HIV RNA levels, CD4 cell counts, presence of the mutant CCR5-allele in heterozygous form, and clinical outcome was analyzed in 96 patients from the Copenhagen AIDS Cohort. In the early years of the infection, patients with the CCR5 delta32/CCR5 genotype had significantly...... lower HIV RNA levels (p = 0.005) and higher CD4 cell counts (p ... heterozygous seems to be mediated by events in the early stages of the HIV infection....

  3. Characteristics of core promoter and precore stop codon mutants of hepatitis B virus in Vietnam.

    Science.gov (United States)

    Huy, Tran Thien Tuan; Ushijima, Hiroshi; Quang, Vo Xuan; Ngoc, Trinh Thi; Hayashi, Shigeki; Sata, Tetsutaro; Abe, Kenji

    2004-10-01

    In Asia, genotypes B and C are the most common genotypes of hepatitis B virus (HBV); and genotype C causes more severe liver disease. Core promoter/precore (CP/PC) mutants, known to be linked to these genotypes, could have an impact on the progression and severity of liver disease. Sera of 115 patients, including 39 acute and 76 chronic Vietnamese HBV infected patients, were tested for their liver profile, HBeAg, HBV genotypes, and HBV DNA level. Fragments of 282 nucleotides covering CP/PC were amplified, sequenced, and analysed. In the acute group, CP/PC mutants accounted for 38.4 and 25.6%, respectively. Genotype B was found to be predominant (74.3%, P Vietnam, which carried high rate of C-1858 (70%), could play an important role in causing severe chronic liver disease.

  4. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    Science.gov (United States)

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis.

  5. Hepatic overexpression of Abcb11 in mice promotes the conservation of bile acids within the enterohepatic circulation

    NARCIS (Netherlands)

    Henkel, Anne S.; Gooijert, Karin E. R.; Havinga, Rick; Boverhof, Renze; Green, Richard M.; Verkade, Henkjan J.

    Henkel AS, Gooijert KE, Havinga R, Boverhof R, Green RM, Verkade HJ. Hepatic overexpression of Abcb11 in mice promotes the conservation of bile acids within the enterohepatic circulation. Am J Physiol Gastrointest Liver Physiol 304: G221-G226, 2013. First published November 8, 2012;

  6. Characterizing the Diverse Mutational Pathways Associated with R5-Tropic Maraviroc Resistance: HIV-1 That Uses the Drug-Bound CCR5 Coreceptor.

    Science.gov (United States)

    Jiang, Xiaowei; Feyertag, Felix; Meehan, Conor J; McCormack, Grace P; Travers, Simon A; Craig, Charles; Westby, Mike; Lewis, Marilyn; Robertson, David L

    2015-11-01

    Entry inhibitors represent a potent class of antiretroviral drugs that target a host cell protein, CCR5, an HIV-1 entry coreceptor, and not viral protein. Lack of sensitivity can occur due to preexisting virus that uses the CXCR4 coreceptor, while true resistance occurs through viral adaptation to use a drug-bound CCR5 coreceptor. To understand this R5 resistance pathway, we analyzed >500 envelope protein sequences and phenotypes from viruses of 20 patients from the clinical trials MOTIVATE 1 and 2, in which treatment-experienced patients received maraviroc plus optimized background therapy. The resistant viral population was phylogenetically distinct and associated with a genetic bottleneck in each patient, consistent with de novo emergence of resistance. Recombination analysis showed that the C2-V3-C3 region tends to genotypically correspond to the recombinant's phenotype, indicating its primary importance in conferring resistance. Between patients, there was a notable lack of commonality in the specific sites conferring resistance, confirming the unusual nature of R5-tropic resistance. We used coevolutionary and positive-selection analyses to characterize the genotypic determinants of resistance and found that (i) there are complicated covariation networks, indicating frequent coevolutionary/compensatory changes in the context of protein structure; (ii) covarying sites under positive selection are enriched in resistant viruses; (iii) CD4 binding sites form part of a unique covariation network independent of the V3 loop; and (iv) the covariation network formed between the V3 loop and other regions of gp120 and gp41 intersects sites involved in glycosylation and protein secretion. These results demonstrate that while envelope sequence mutations are the key to conferring maraviroc resistance, the specific changes involved are context dependent and thus inherently unpredictable. The entry inhibitor drug maraviroc makes the cell coreceptor CCR5 unavailable for use by

  7. Frequency of the CCR5-delta32 mutation in the Atlantic island populations of Madeira, the Azores, Cabo Verde, and São Tomé e Príncipe.

    Science.gov (United States)

    Freitas, Tamira; Brehm, António; Fernandes, Ana Teresa

    2006-12-01

    There is evidence that the CCR5-delta32 mutation confers protection against HIV-1 infection to homozygous individuals. It is believed that this mutation spread through Europe with the Vikings and that it has been subjected to positive selection, leading to a high frequency in Europe (approximately 10%). We carried out the present study to determine the 32-bp deletion allele and genotype frequencies of the CCR5 gene (CCR5-delta32) in the Atlantic island populations of Madeira, the Azores, Cabo Verde, and São Tomé e Principe. These Atlantic archipelagos were all colonized by the Portuguese in the 15th and 16th centuries, but the latter two received most of their settlers from the West African coast. The frequency of the CCR5-delta32 mutation varies between 0% in São Tomé e Príncipe and 16.5% in the Azores. The Azores Islands have one of the highest frequencies of homozygotes found in Europe (4.8%). There are significant differences (P < 0.05) between some of these populations, for example, between São Tomé e Príncipe and Cabo Verde, and even within populations (e.g., Portugal, Madeira, and the Azores).

  8. No evidence for an effect of the CCR5 delta32/+ and CCR2b 64I/+ mutations on human immunodeficiency virus (HIV)-1 disease progression among HIV-1-infected injecting drug users

    NARCIS (Netherlands)

    Schinkel, J.; Langendam, M. W.; Coutinho, R. A.; Krol, A.; Brouwer, M.; Schuitemaker, H.

    1999-01-01

    The relationship between CCR5 and CCR2b genotypes and human immunodeficiency virus (HIV)-1 disease progression was studied among the 108 seroconverters of the Amsterdam cohort of injecting drug users (IDUs). In contrast to earlier studies among homosexual men, no effect on disease progression of the

  9. Development and Validation of an Online Program for Promoting Self-Management among Korean Patients with Chronic Hepatitis B

    Directory of Open Access Journals (Sweden)

    Jinhyang Yang

    2013-01-01

    Full Text Available The hepatitis B virus is second only to tobacco as a known human carcinogen. However, chronic hepatitis B usually does not produce symptoms and people feel healthy even in the early stages of live cancer. Therefore, chronically infected people should perceive it as a serious health problem and move on to appropriate health behaviour. The purpose of this paper is to develop and validate an online program for promoting self-management among Korean patients with chronic hepatitis B. The online program was developed using a prototyping approach and system developing life cycle method, evaluated by users for their satisfaction with the website and experts for the quality of the site. To evaluate the application of the online program, knowledge and self-management compliance of the subjects were measured and compared before and after the application of the online program. There were statistically significant increases in knowledge and self-management compliance in the user group. An online program with high accessibility and applicability including information, motivation, and behavior skill factors can promote self-management of the patient with chronic hepatitis B. Findings from this study allow Korean patients with chronic hepatitis B to engage in proactive and effective health management in the community or clinical practice.

  10. Single-Cell Tracking Reveals a Role for Pre-Existing CCR5+ Memory Th1 Cells in the Control of Rhinovirus-A39 After Experimental Challenge in Humans.

    Science.gov (United States)

    Muehling, Lyndsey M; Turner, Ronald B; Brown, Kenneth B; Wright, Paul W; Patrie, James T; Lahtinen, Sampo J; Lehtinen, Markus J; Kwok, William W; Woodfolk, Judith A

    2018-01-17

    Little is known about T cells that respond to human rhinovirus in vivo, due to timing of infection, viral diversity, and complex T-cell specificities. We tracked circulating CD4+ T cells with identical epitope specificities that responded to intranasal challenge with rhinovirus (RV)-A39, and we assessed T-cell signatures in the nose. Cells were monitored using a mixture of 2 capsid-specific major histocompatibility complex II tetramers over a 7-week period, before and after RV-A39 challenge, in 16 human leukocyte antigen-DR4+ subjects who participated in a trial of Bifidobacterium lactis (Bl-04) supplementation. Pre-existing tetramer+ T cells were linked to delayed viral shedding, enriched for activated CCR5+ Th1 effectors, and included a minor interleukin-21+ T follicular helper cell subset. After RV challenge, expansion and activation of virus-specific CCR5+ Th1 effectors was restricted to subjects who had a rise in neutralizing antibodies, and tetramer-negative CCR5+ effector memory types were comodulated. In the nose, CXCR3-CCR5+ T cells present during acute infection were activated effector memory type, whereas CXCR3+ cells were central memory type, and cognate chemokine ligands were elevated over baseline. Probiotic had no T-cell effects. We conclude that virus-specific CCR5+ effector memory CD4+ T cells primed by previous exposure to related viruses contribute to the control of rhinovirus. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  11. Humanized mice dually challenged with R5 and X4 HIV-1 show preferential R5 viremia and restricted X4 infection of CCR5(+)CD4(+) T cells.

    Science.gov (United States)

    Terahara, Kazutaka; Ishige, Masayuki; Ikeno, Shota; Okada, Seiji; Kobayashi-Ishihara, Mie; Ato, Manabu; Tsunetsugu-Yokota, Yasuko

    2015-05-01

    CCR5-tropic (R5) immunodeficiency virus type 1 (HIV-1) strains are highly transmissible during the early stage of infection in humans, whereas CXCR4-tropic (X4) strains are less transmissible. This study aimed to explore the basis for early phase R5 and X4 HIV-1 infection in vivo by using humanized mice dually challenged with R5 HIV-1NLAD8-D harboring DsRed and X4 HIV-1(NL-E) harboring EGFP. Whereas R5 HIV-1 replicated well, X4 HIV-1 caused only transient viremia with variable kinetics; however, this was distinct from the low level but persistent viremia observed in mice challenged with X4 HIV-1 alone. Flow cytometric analysis of HIV-1-infected cells revealed that X4 HIV-1 infection of CCR5(+)CD4(+) T cells was significantly suppressed in the presence of R5 HIV-1. X4 HIV-1 was more cytopathic than R5 HIV-1; however, this was not the cause of restricted X4 HIV-1 infection because there were no significant differences in the mortality rates of CCR5(+) and CCR5(-) cells within the X4 HIV-1-infected cell populations. Taken together, these results suggest that restricted infection of CCR5(+)CD4(+) T cells by X4 HIV-1 (occurring via a still-to-be-identified mechanism) might contribute to the preferential transmission of R5 HIV-1 during the early phase of infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative analysis.

    Science.gov (United States)

    Lucotte, Gérard

    2002-05-01

    The CCR5 gene encodes for the co-receptor for the major macrophage-tropics strains of human immunodeficiency virus (HIV-1), and a mutant allele of this gene (Delta 32) provide to homozygotes a strong resistance against infection by HIV. The frequency of the Delta 32 allele was investigated in 40 populations of 8842 non-infected subjects coming from Europe, the Middle-East and North Africa. A clear north-south decreasing gradient was evident for Delta 32 frequencies, with a significant correlation coefficient (r=0.83). The main frequency value of Delta 32 for Sweden, Norway, Denmark, Finland and Iceland (0.134) is significantly (chi(2)=63.818, PVikings might have been instrumental in disseminating the Delta 32 allele during the eighth to the tenth centuries during historical times. Possibly variola virus has discriminated the Delta 32 carriers in Europe since the eighth century AD, explaining the high frequency of the Delta 32 allele in Europe today.

  13. Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer's and Parkinson's disease.

    Science.gov (United States)

    Huerta, Cecilia; Alvarez, Victoria; Mata, Ignacio F; Coto, Eliecer; Ribacoba, René; Martínez, Carmen; Blázquez, Marta; Guisasola, Luis M; Salvador, Carlos; Lahoz, Carlos H; Peña, Joaquín

    2004-11-11

    Parkinson's disease (PD) is a complex disorder characterized by the progressive degeneration of dopaminergic neurons in the midbrain. Late-onset Alzheimer's disease (LOAD) is the most common cause of dementia in the elderly, affecting about 5% of the population older than 65 years. Several works have demonstrated the involvement of inflammation in the pathogenesis of both, PD and LOAD. Genetic susceptibility to develop PD and LOAD has also been widely recognised. Thus, functional polymorphisms at the genes encoding inflammatory proteins could influence the overall risk of developing these neurodegenerative disorders. We examined whether DNA-polymorphisms at the genes encoding chemokines MCP-1 (-2518 A/G) and RANTES (-403 A/G), and chemokine receptors 5 (CCR5, Delta32) and 2 (CCR2,V64I), were associated with the risk and/or the clinical outcome of LOAD and PD. A total of 200 PD, 326 LOAD, and 370 healthy controls were genotyped for the four polymorphisms, and genotype frequencies statistically compared. We did not find significant differences in the frequencies of the different genotypes between both groups of patients and controls. We conclude that the four DNA polymorphisms, which have been associated with several immuno-modulated diseases, did not contribute to the risk of PD or LOAD.

  14. Pathogenic infection of Rhesus macaques by an evolving SIV-HIV derived from CCR5-using envelope genes of acute HIV-1 infections.

    Science.gov (United States)

    Asmal, Mohammed; Lane, Sophie; Tian, Meijuan; Nickel, Gabrielle; Venner, Colin; Dirk, Brennan; Dikeakos, Jimmy; Luedemann, Corinne; Mach, Linh; Balachandran, Harikrishnan; Buzby, Adam; Rao, Srinivas; Letvin, Norman; Gao, Yong; Arts, Eric J

    2016-12-01

    For studies on vaccines and therapies for HIV disease, SIV-HIV chimeric viruses harboring the HIV-1 env gene (SHIVenv) remain the best virus in non-human primate models. However, there are still very few SHIVenv viruses that can cause AIDS in non-CD8-depleted animals. In the present study, a recently created CCR5-using SHIVenv_B3 virus with env gene derived from acute/early HIV-1 infections (AHI) successfully established pathogenic infection in macaques. Through a series of investigations on the evolution, mutational profile, and phenotype of the virus and the resultant humoral immune response in infected rhesus macaques, we found that the E32K mutation in the Env C1 domain was associated with macaque pathogenesis, and that the electrostatic interactions in Env may favor E32K at the gp120 N terminus and "lock" the binding to heptad repeat 1 of gp41 in the trimer and produce a SHIVenv with increased fitness and pathogenesis during macaque infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naïve Subjects with Progressive HIV-1 Subtype C Infection

    DEFF Research Database (Denmark)

    Jakobsen, Martin R; Cashin, Kieran; Roche, Michael

    2013-01-01

    infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from......HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV...... chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an "Ile-Gly" insertion in the gp120 V3 loop...

  16. A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans.

    Science.gov (United States)

    Sok, Devin; Pauthner, Matthias; Briney, Bryan; Lee, Jeong Hyun; Saye-Francisco, Karen L; Hsueh, Jessica; Ramos, Alejandra; Le, Khoa M; Jones, Meaghan; Jardine, Joseph G; Bastidas, Raiza; Sarkar, Anita; Liang, Chi-Hui; Shivatare, Sachin S; Wu, Chung-Yi; Schief, William R; Wong, Chi-Huey; Wilson, Ian A; Ward, Andrew B; Zhu, Jiang; Poignard, Pascal; Burton, Dennis R

    2016-07-19

    The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the (324)GDIR(327) peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both (324)GDIR(327) peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Rie Ibusuki

    Full Text Available Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1.Transgenic (TG mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro.After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro.HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.

  18. Telemedicine Specialty Support Promotes Hepatitis C Treatment by Primary Care Providers in the Department of Veterans Affairs.

    Science.gov (United States)

    Beste, Lauren A; Glorioso, Thomas J; Ho, P Michael; Au, David H; Kirsh, Susan R; Todd-Stenberg, Jeffrey; Chang, Michael F; Dominitz, Jason A; Barón, Anna E; Ross, David

    2017-04-01

    The Department of Veterans Affairs is the largest US provider of hepatitis C treatment. Although antiviral regimens are becoming simpler, hepatitis C antivirals are not typically prescribed by primary care providers. The Veterans Affairs Extension for Community Health Outcomes (VA-ECHO) program was launched to promote primary care-based hepatitis C treatment using videoconferencing-based specialist support. We aimed to assess whether primary care provider participation in VA-ECHO was associated with hepatitis C treatment and sustained virologic response. We identified 4173 primary care providers (n = 152 sites) responsible for 38,753 patients with chronic hepatitis C infection. A total of 6431 patients had a primary care provider participating in VA-ECHO; 32,322 patients had an unexposed primary care provider. Exposure was modeled as a patient-level time-varying covariate. Patients became exposed after primary care provider participation in ≥1 VA-ECHO session. Multivariable Cox proportional hazards frailty modeling assessed the association between VA-ECHO exposure and hepatitis C treatment. Among treated patients, modified Poisson regression assessed the relationship between exposure and sustained virologic response. After adjustment, exposed patients received significantly higher rates of antiviral treatment compared with unexposed patients (adjusted hazard ratio, 1.20; 95% confidence interval, 1.10-1.32; P <.01). The rate of primary care provider-initiated antiviral medication was 21.4% among treated patients reviewed on VA-ECHO teleconferences compared with 2.5% among unexposed patients (P <.01). No difference in adjusted rates of sustained virologic response was observed for patients with exposed primary care providers (P = .32), with similar crude rates for primary care providers versus specialists. National implementation of VA-ECHO was positively associated with hepatitis C treatment initiation by primary care providers, without differences in sustained

  19. Upregulated Expression of a Unique Gene by Hepatitis B x Antigen Promotes Hepatocellular Growth and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhaorui Lian

    2003-05-01

    Full Text Available Hepatitis B x antigen (HBxAg is a trans-activating protein that may be involved in hepatocarcinogenesis, although few natural effectors of HBxAg that participate in this process have been identified. To identify additional effectors, whole cell RNA isolated from HBxAg-positive and HBxAg-negative HepG2 cells were compared by polymerase chain reaction select cDNA subtraction, and one clone, upregulated gene, clone 11 (URG11, was chosen for further characterization. Elevated levels of URG11 mRNA and protein were observed in HBxAg-positive compared to HBxAg-negative HepG2 cells. Costaining was observed in infected liver (P<.01. URG11 stimulated cell growth in culture (P<.01, anchorage-independent growth in soft agar (P<.001, and accelerated tumor formation (P<.01, and yielded larger tumors (P<.02 in SCID mice injected subcutaneously with HepG2 cells. These data suggest that URG11 is a natural effector of HBxAg that may promote the development of hepatocellular carcinoma.

  20. Monophylogenetic HIV-1C epidemic in Ethiopia is dominated by CCR5-tropic viruses-an analysis of a prospective country-wide cohort.

    Science.gov (United States)

    Kalu, Amare Worku; Telele, Nigus Fikrie; Gebreselasie, Solomon; Fekade, Daniel; Abdurahman, Samir; Marrone, Gaetano; Sönnerborg, Anders

    2017-01-06

    CCR5 coreceptor using HIV-1 subtype C (HIV-1C) has been reported to dominate the Ethiopian epidemic. However, almost all data have been obtained from two large cities in the central and north-west regions and recent data is lacking. Plasma were obtained from 420 treatment-naïve patients recruited 2009-2011 to a large country-wide Ethiopian cohort. The V3 region was sequenced and the co-receptor tropism was predicted by the clinical and clonal models of the geno2pheno tool at different false positive rates (fpr) and for subtype. In an intention to treat analysis the impact of baseline tropism on outcome of antiretroviral therapy was evaluated. V3 loop sequencing was successful in 352 (84%) patients. HIV-1C was found in 350 (99.4%) and HIV-1A in two (0.6%) patients. When comparing the geno2pheno fpr10% clonal and clinical models, 24.4% predictions were discordant. X4-virus was predicted in 17.0 and 19.0%, respectively, but the predictions were concordant in only 6%. At fpr5%, concordant X4-virus predictions were obtained in 3.1%. The proportion of X4-tropic virus (clonal fpr10%) increased from 5.6 to 17.3% (p HIV-1C epidemic is monophylogenetic in all regions of Ethiopia and R5-tropic virus dominates, even in patients with advanced immunodeficiency, although the proportion of X4-tropic virus seems to have increased over the last two decades. Geno2pheno clinical and clonal prediction models show a large discrepancy at fpr10%, but not at fpr5%. Hence further studies are needed to assess the utility of genotypic tropism testing in HIV-1C. In ITT analysis only age and not tropism influenced the outcome.

  1. Expression of scavenger receptor‐AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis

    Science.gov (United States)

    Labonte, Adam C.; Sung, Sun‐Sang J.; Jennelle, Lucas T.; Dandekar, Aditya P.

    2016-01-01

    The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that expression of C‐type lectin receptor scavenger receptor‐AI (SR‐AI) is crucial for promoting M2‐like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely up‐regulated SR‐AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers, such as YM‐1, arginase‐1, and interleukin‐10 by activation of mer receptor tyrosine kinase associated with inhibition of mammalian target of rapamycin. Expression of these molecules was reduced on Mϕ obtained from livers of infected mice deficient for the gene encoding SR‐AI (msr1). Furthermore, in vitro studies using an SR‐AI‐deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild‐type (WT) cell line, but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR‐AI–/– mice following hepatic infection and adoptive transfer of WT bone‐marrow–derived Mϕ conferred protection against fibrosis in these mice. Conclusion: SR‐AI expression on liver Mϕ promotes recovery from infection‐induced tissue damage by mediating a switch to a proresolving Mϕ polarization state. (Hepatology 2017;65:32‐43). PMID:27770558

  2. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2.

    Directory of Open Access Journals (Sweden)

    Geon-Woo Kim

    2016-07-01

    Full Text Available The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV. Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt prototype miR-122 is modified at its 3' end by 3'-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3'-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3' end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation.

  3. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2.

    Science.gov (United States)

    Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Hee; Kim, Minwoo; Shin, Eui-Cheol; Oh, Jong-Won

    2016-07-01

    The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV). Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A) polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt) prototype miR-122 is modified at its 3' end by 3'-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3'-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3' end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation.

  4. Combined therapy of interferon plus ribavirin promotes multiple adaptive solutions in hepatitis C virus.

    Science.gov (United States)

    Cuevas, José M; Torres-Puente, Manuela; Jiménez-Hernández, Nuria; Bracho, María A; García-Robles, Inmaculada; Carnicer, Fernando; Olmo, Juan Del; Ortega, Enrique; González-Candelas, Fernando; Moya, Andrés

    2009-04-01

    Hepatitis C virus (HCV) presents several regions involved potentially in evading antiviral treatment and host immune system. Two regions, known as PKR-BD and V3 domains, have been proposed to be involved in resistance to interferon. Additionally, hypervariable regions in the envelope E2 glycoprotein are also good candidates to participate in evasion from the immune system. In this study, we have used a cohort of 22 non-responder patients to combined therapy (interferon alpha-2a plus ribavirin) for which samples obtained just before initiation of therapy and after 6 or/and 12 months of treatment were available. A range of 25-100 clones per patient, genome region and time sample were obtained. The predominant amino acid sequences for each time sample and patient were determined. Next, the sequences of the PKR-BD and V3 domains and the hypervariable regions from different time samples were compared for each patient. The highest levels of variability were detected at the three hypervariable regions of the E2 protein and, to a lower extent, at the V3 domain of the NS5A protein. However, no clear patterns of adaptation to the host immune system or to antiviral treatment were detected. In summary, although high levels of variability are correlated to viral adaptive response, antiviral treatment does not seem to promote convergent adaptive changes. Consequently, other regions must be involved in evasion strategies likely based on a combination of multiple mechanisms, in which pools of changes along the HCV genome could confer viruses the ability to overcome strong selective pressures. (c) 2009 Wiley-Liss, Inc.

  5. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    Science.gov (United States)

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  6. Melatonin promotes hepatic differentiation of human dental pulp stem cells: clinical implications for the prevention of liver fibrosis.

    Science.gov (United States)

    Cho, Young-Ah; Noh, Kwantae; Jue, Seong-Suk; Lee, So-Youn; Kim, Eun-Cheol

    2015-01-01

    Melatonin's effect on hepatic differentiation of stem cells remains unclear. The aim of this study was to investigate the action of melatonin on hepatic differentiation as well as its related signaling pathways of human dental pulp stem cells (hDPSCs) and to examine the therapeutic effects of a combination of melatonin and hDPSC transplantation on carbon tetrachloride (CCl4 )-induced liver fibrosis in mice. In vitro hepatic differentiation was assessed by periodic acid-Schiff (PAS) staining and mRNA expression for hepatocyte markers. Liver fibrosis model was established by injecting 0.5 mL/kg CCl4 followed by treatment with melatonin (5 mg/kg, twice a week) and hDPSCs. In vivo therapeutic effects were evaluated by histopathology and by means of liver function tests including measurement of alanine transaminase (ALT), aspartate transaminase (AST), and ammonia levels. Melatonin promoted hepatic differentiation based on mRNA expression of differentiation markers and PAS-stained glycogen-laden cells. In addition, melatonin increased bone morphogenic protein (BMP)-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. Furthermore, melatonin activated p38, extracellular signal-regulated kinase (ERK), and nuclear factor-κB (NF-κB) in hDPSCs. Melatonin-induced hepatic differentiation was attenuated by inhibitors of BMP, p38, ERK, and NF-κB. Compared to treatment of CCl4 -injured mice with either melatonin or hDPSC transplantation alone, the combination of melatonin and hDPSC significantly suppressed liver fibrosis and restored ALT, AST, and ammonia levels. For the first time, this study demonstrates that melatonin promotes hepatic differentiation of hDPSCs by modulating the BMP, p38, ERK, and NF-κB pathway. Combined treatment of grafted hDPSCs and melatonin could be a viable approach for the treatment of liver cirrhosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development

    Directory of Open Access Journals (Sweden)

    Nadia Boudaba

    2018-02-01

    Full Text Available Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepatic lipid homeostasis and are not prone to fatty liver development, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Mechanistically, AMPK activation reduces hepatic triglyceride content both by inhibiting lipid synthesis and by stimulating fatty acid oxidation in an LKB1-dependent manner, through a transcription-independent mechanism. Furthermore, the effect of the antidiabetic drug metformin on lipogenesis inhibition and fatty acid oxidation stimulation was enhanced by combination treatment with small-molecule AMPK activators in primary hepatocytes from mice and humans. Overall, these results demonstrate that AMPK downregulation is not a triggering factor in fatty liver development but in contrast, establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease.

  8. [Hepatitis B virus X protein promotes insulin-like growth factor II gene expression by inducing hypomethylation of the P3 promoter in hepatocellular carcinoma].

    Science.gov (United States)

    Tang, Shaohui; Zhang, Shaohua; Zhang, Xiaojuan; Wu, Shenglan; Li, Junfeng; Jiang, Xiangwu; Zhou, Hongke; Luo, Yuhong; Cao, Mingrong

    2014-04-01

    To explore the involvement of hepatitis B X protein (HBx) in promoter 3 (P3)-driven mRNA overexpression of the insulin-like growth factor II gene (IGF-II) and investigate the underlying epigenetic mechanism. Levels of P3 and HBx mRNA and status of P3 methylation were analyzed in human hepatocellular carcinoma (HCC) samples, with and without hepatitis B virus (HBV) infection, using quantitative reverse transcription-PCR and bisulfite sequencing. In addition, the levels of P3 mRNA and P3 methylation were examined in HepG2 cells stably overexpressing HBx (HepG2-HBx). Finally, P3 promoter-luciferase constructs were cotransfected into HepG2 cells along with an HBx-expressing plasmid, and the effects of HBx on transcriptional activity and methylation of P3 were analyzed. Statistical analyses of the data were conducted by chi square test, Fisher's exact test, Student's t-test, Marn-Whitney U test, and Pearson's correlation coefficient test. The HBV-positive HCC specimens had significantly higher levels of P3 mRNA than the HBV-negative HCC specimens (-9.59 ± 3.22 vs. -12.97 ± 3.08 delta CT; P=0.006) but significantly lower levels of P3 methylation (mean values for the 17 CpG sites (36.9% ± 15.5% vs. 52.1% ± 19.1%; P=0.025). The P3 transcript abundance was positively correlated with the level of HBx expression and negatively correlated with the level of P3 methylation. The epigenetic results from experiments with the HepG2-HBx cells were similar. Transfection of HBx significantly decreased P3 methylation level and increased its activity. HBx expression may promote IGF-II expression by inducing hypomethylation of its P3 promoter in hepatocellular carcinoma.

  9. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  10. Influence of the CCR2-V64I Polymorphism on Human Immunodeficiency Virus Type 1 Coreceptor Activity and on Chemokine Receptor Function of CCR2b, CCR3, CCR5, and CXCR4

    OpenAIRE

    Lee, Benhur; Doranz, Benjamin J.; Rana, Shalini; Yi, Yanji; Mellado, Mario; Frade, Jose M. R.; Martinez-A., Carlos; O’Brien, Stephen J.; Dean, Michael; Collman, Ronald G.; Doms, Robert W.

    1998-01-01

    The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism in CCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor ...

  11. HIV-2 interaction with cell coreceptors: amino acids within the V1/V2 region of viral envelope are determinant for CCR8, CCR5 and CXCR4 usage.

    Science.gov (United States)

    Santos-Costa, Quirina; Lopes, Maria Manuel; Calado, Marta; Azevedo-Pereira, José Miguel

    2014-11-25

    Human immunodeficiency virus 1 and 2 (HIV-1 and HIV-2) use cellular receptors in distinct ways. Besides a more promiscuous usage of coreceptors by HIV-2 and a more frequent detection of CD4-independent HIV-2 isolates, we have previously identified two HIV-2 isolates (HIV-2MIC97 and HIV-2MJC97) that do not use the two major HIV coreceptors: CCR5 and CXCR4. All these features suggest that in HIV-2 the Env glycoprotein subunits may have a different structural organization enabling distinct - although probably less efficient - interactions with cellular receptors. By infectivity assays using GHOST cell line expressing CD4 and CCR8 and blocking experiments using CCR8-specific ligand, I-309, we show that efficient replication of HIV-2MIC97 and HIV-2MJC97 requires the presence of CCR8 at plasma cell membrane. Additionally, we disclosed the determinants of chemokine receptor usage at the molecular level, and deciphered the amino acids involved in the usage of CCR8 (R8 phenotype) and in the switch from CCR8 to CCR5 or to CCR5/CXCR4 usage (R5 or R5X4 phenotype). The data obtained from site-directed mutagenesis clearly indicates that the main genetic determinants of coreceptor tropism are located within the V1/V2 region of Env surface glycoprotein of these two viruses. We conclude that a viral population able to use CCR8 and unable to infect CCR5 or CXCR4-positive cells, may exist in some HIV-2 infected individuals during an undefined time period, in the course of the asymptomatic stage of infection. This suggests that in vivo alternate molecules might contribute to HIV infection of natural target cells, at least under certain circumstances. Furthermore we provide direct and unequivocal evidence that the usage of CCR8 and the switch from R8 to R5 or R5X4 phenotype is determined by amino acids located in the base and tip of V1 and V2 loops of HIV-2 Env surface glycoprotein.

  12. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben

    2016-03-22

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  13. Hepatitis B virus basal core promoter/precore mutants and association with liver cirrhosis in children with chronic hepatitis B virus infection.

    Science.gov (United States)

    Zhong, Y W; Di, F L; Liu, C; Zhang, X C; Bi, J F; Li, Y L; Wu, S Q; Dong, H; Liu, L M; He, J; Shi, Y M; Zhang, H F; Zhang, M

    2016-04-01

    We investigated 168 children and analysed the virological characterization and association with disease progression in children with hepatitis B virus (HBV) basal core promoter/precore (BCP/PC) mutants. Among 168 patients with HBV infection (aged 0.5-18 years old, mean 10.1), 86 of them had HBV-related liver cirrhosis (LC) and 82 had HBV-related chronic hepatitis B (CHB). A direct sequencing method was employed to determine the HBV genotypes and the mutations in BCP/PC regions. In all, 133 of them were infected with genotype C viruses (79.17%); only 35 patients (20.83%) were infected with genotype B viruses. Both LC patients and CHB patients had significantly higher ratios of genotype C when compared with the ratios of genotype B (83.7%-16.3% versus 74.4%-25.6%). For patients with CHB, the prevalence of BCP/PC wild-type viruses was 52.4%; but this was only 4.7% in patients with LC. The C1653T, T1753C, A1762T/G1764A and G1896A mutations had a significantly higher prevalence in patients with LC. Among all the patients with genotype B viruses, those with LC had lower HBV DNA levels and higher G1899A mutation frequency than patients with CHB. Among all the patients with genotype C viruses, the patients with LC had higher prevalence of C1653T, A1762T/G1764A and G1896A mutation frequency, higher hepatitis B e antigen (HBeAg) -negative rates, lower viral load, lower elevated alanine aminotransferase and lower anti-HBe positive rates than CHB patients. The HBV BCP/PC variants were more common in HBeAg-negative LC patients than in the CHB group (BCP, 53.4% versus 15.6%; PC, 18.6% versus 3.7%, respectively, p viruses, high viral load and C1653T, A1762T/G1764A, G1896A mutant viruses, were more susceptible to developing LC. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1.

    Science.gov (United States)

    Yan, Gangli; Li, Binbin; Xin, Xuan; Xu, Midie; Ji, Guoqing; Yu, Hongyu

    2015-10-06

    The incidence of liver fibrosis remains high due to the lack of effective therapies. Our previous work found that microRNA (miR)-34a expression was increased, while acy1-CoA synthetase long-chain family member1 (ACSL1) was decreased, in a dimethylnitrosamine (DNS)-induced hepatic fibrosis rat model. We hypothesized that miR-34a may play a role in the process of hepatic fibrosis by targeting ACSL1. From days 2 to 14, cultured primary hepatic stellate cells (HSCs) underwent cell morphology, immunocytochemical staining, and quantitative reverse transcription PCR (RT-qPCR) for alpha smooth muscle actin (a-SMA), desmin, rno-miR-34a, and ACSL1 expression. Wild-type and mutant luciferase reporter plasmids were constructed according to the predicted miR-34a binding site on the 3'-untranslated region (UTR) of the ACSL1 mRNA and then transfected into HEK293 cells. rno-miR-34a was silenced in HSCs to confirm that rno-miR-34a negatively regulates ACSL1 expression. mRNA and protein expression of α-SMA, type I collagen, and desmin were assayed in miR-34a-silenced HSCs. HSCs were deemed quiescent during the first 3 days and activated after 10 days. rno-miR-34a expression increased, and ACSL1 expression decreased, from day 2 to 7 to 14. rno-miR-34a was shown to specifically bind to the 3'-UTR of ACSL1. miR-34a-silenced HSCs showed higher ACSL1and lower α-SMA, type I collagen, and desmin expression than that of matching negative controls and non-transfected cells. miR-34a appears to play an important role in the process of liver fibrosis by targeting ACSL1 and may show promise as a therapeutic molecular target for hepatic fibrosis.

  15. Community-engaged strategies to promote hepatitis B testing and linkage to care in immigrants

    Directory of Open Access Journals (Sweden)

    Jevetta Stanford

    2016-12-01

    Full Text Available To improve early identification and linkage to treatment and preventive services for hepatitis B virus (HBV in persons born in countries with intermediate or high (>2% HBV prevalence, the University of Florida Center for HIV/AIDS Research, Education, and Services (UF CARES employed community-engaged strategies to implement the Hepatitis B Awareness and Service Linkage (HBASL program. In this brief report, we present a summary of program components, challenges, and successes. Faith and community-based networks were established to improve HBV testing and screening and to increase foreign born nationals (FBNs access to HBV care. A total of 1516 FBNs were tested and screened for hepatitis B. The majority were females (50.4%, Asians (62.8%, non-Hispanic (87.2%, and they also received post-test counseling (54.8%. Noted program advantages included the development of community networks and outreach to a large population of FBNs. The major challenges were institutional delays, pressures related to meeting program deliverables, and diversity within FBNs populations. Community health workers in the United States can replicate this program in their respective communities and ensure success by maintaining a strong community presence, establishing partnerships and linkage processes, developing a sustainability plan, and ensuring the presence of dedicated program staff.

  16. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    International Nuclear Information System (INIS)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-01-01

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response

  17. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation.

    Science.gov (United States)

    Mock, Kaitlin; Lateef, Sundus; Benedito, Vagner A; Tou, Janet C

    2017-01-01

    High-fructose corn syrup-55 (HFCS-55) has been suggested to be more lipogenic than sucrose, which increases the risk for nonalcoholic fatty liver disease (NAFLD) and dyslipidemia. The study objectives were to determine the effects of drinking different sugar-sweetened solutions on hepatic gene expression in relation to liver fatty acid composition and risk of NAFLD. Female rats were randomly assigned (n=7 rats/group) to drink water or water sweetened with 13% (w/v) HFCS-55, sucrose or fructose for 8 weeks. Rats drinking HFCS-55 solution had the highest (P=.03) hepatic total lipid and triglyceride content and histological evidence of fat infiltration. Rats drinking HFCS-55 solution had the highest hepatic de novo lipogenesis indicated by the up-regulation of stearoyl-CoA desaturase-1 and the highest (Ptriglyceride-rich lipoprotein from the liver was increased as shown by up-regulation of gene expression of microsomal triglyceride transfer protein in rats drinking sucrose, but not HFCS-55 solution. The observed lipogenic effects were attributed to the slightly higher fructose content of HFCS-55 solution in the absence of differences in macronutrient and total caloric intake between rats drinking HFCS-55 and sucrose solution. Results from gene expression and fatty acid composition analysis showed that, in a hypercaloric state, some types of sugars are more detrimental to the liver. Based on these preclinical study results, excess consumption of caloric sweetened beverage, particularly HFCS-sweetened beverages, should be limited. Published by Elsevier Inc.

  18. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation

    Directory of Open Access Journals (Sweden)

    Kostadinova Radina

    2012-10-01

    Full Text Available Abstract Background After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs, which produce extracellular matrix (ECM proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4 treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. Results We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. Conclusions This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.

  19. Interleukin-7 augments CD8+T cells function and promotes viral clearance in chronic hepatitis C virus infection.

    Science.gov (United States)

    Hou, Huanrong; Kang, Yi; Zeng, Yanli; Li, Yukui; Shang, Jia

    2018-02-01

    Interleukin (IL)-7 is a potent proliferation, activation, and survival cytokine for CD8 + T cells to improve viral and tumor specific CD8 + T cell responses. However, the role of IL-7 in regulation of dysfunctional hepatitis C virus (HCV)-specific CD8 + T cells was not fully elucidated. Thus, a total of 53 patients with chronic hepatitis C and 24 healthy individuals were enrolled in the current study. Serum IL-7 and its receptor α chain CD127 expression was measured. The modulatory function of IL-7 to CD8 + T cells was investigated in both direct and indirect contact co-culture with HCVcc-infected Huh7.5 cells. Both serum IL-7 and CD127 expression on CD8 + T cells was significantly reduced in chronic HCV-infected patients, which was negatively correlated with HCV RNA. Stimulation of IL-7 promoted both cytotoxicity and cytokines (interferon-γ, tumor necrosis factor-α, and IL-2) production of CD8 + T cells from patients with chronic hepatitis C. Moreover, IL-7 increased proliferation of CD8 + T cells, while downregulated a critical repressor of cytokine signaling, suppressor of cytokine signaling 3 (SOCS3). The IL-7-mediated enhancement effects to CD8 + T cells were dependent on IL-6 production. The current data suggested that IL-7 induced both cytolytic and noncytolytic functions of CD8 + T cells probably via repression of SOCS3. IL-7 might be considered as one of the therapeutic candidates for treatment of chronic HCV infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Moderate physical activity promotes basal hepatic autophagy in diet-induced obese mice.

    Science.gov (United States)

    Rosa-Caldwell, Megan E; Lee, David E; Brown, Jacob L; Brown, Lemuel A; Perry, Richard A; Greene, Elizabeth S; Carvallo Chaigneau, Francisco R; Washington, Tyrone A; Greene, Nicholas P

    2017-02-01

    Obesity is a known risk factor for the development of hepatic disease; obesity-induced fatty liver can lead to inflammation, steatosis, and cirrhosis and is associated with degeneration of the mitochondria. Lifestyle interventions such as physical activity may ameliorate this condition. The purpose of this study was to investigate regulation of mitochondrial and autophagy quality control in liver following Western diet-induced obesity and voluntary physical activity. Eight-week-old C57BL/6J mice were fed a Western diet (WD) or normal chow (NC, control) for 4 weeks; afterwards, groups were divided into voluntary wheel running (VWR) or sedentary (SED) conditions for an additional 4 weeks. WD-SED animals had a median histology score of 2, whereas WD-VWR was not different from NC groups (median score 1). There was no difference in mRNA of inflammatory markers Il6 and Tnfa in WD animals. WD animals had 50% lower mitochondrial content (COX IV and Cytochrome C proteins), 50% lower Pgc1a mRNA content, and reduced content of mitochondrial fusion and fission markers. Markers of autophagy were increased in VWR animals, regardless of obesity, as measured by 50% greater LC3-II/I ratio and 40% lower p62 protein content. BNIP3 protein content was 30% less in WD animals compared with NC animals, regardless of physical activity. Diet-induced obesity results in derangements in mitochondrial quality control that appear to occur prior to the onset of hepatic inflammation. Moderate physical activity appears to enhance basal autophagy in the liver; increased autophagy may provide protection from hepatic fat accumulation.

  1. JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity.

    Science.gov (United States)

    Litwak, Sara A; Pang, Lokman; Galic, Sandra; Igoillo-Esteve, Mariana; Stanley, William J; Turatsinze, Jean-Valery; Loh, Kim; Thomas, Helen E; Sharma, Arpeeta; Trepo, Eric; Moreno, Christophe; Gough, Daniel J; Eizirik, Decio L; de Haan, Judy B; Gurzov, Esteban N

    2017-12-01

    The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function. © 2017 by the American Diabetes Association.

  2. Gene polymorphisms and febrile neutropenia in acute leukemia--no association with IL-4, CCR-5, IL-1RA, but the MBL-2, ACE, and TLR-4 are associated with the disease in Turkish patients: a preliminary study.

    Science.gov (United States)

    Pehlivan, Mustafa; Sahin, Handan Haydaroğlu; Ozdilli, Kurşat; Onay, Hüseyin; Ozcan, Ali; Ozkinay, Ferda; Pehlivan, Sacide

    2014-07-01

    The aim of this study was to investigate the mannose-binding lectin 2 (MBL-2), interleukin (IL)-4, Toll-like receptor 4 (TLR-4), angiotensin converting enzyme (ACE), chemokine receptor 5 (CCR-5), and IL-1 receptor antagonist (RA) gene polymorphisms (GPs) in acute leukemias (ALs) and to evaluate their roles in febrile neutropenia (FN) resulting from chemotherapy. The study included 60 AL patients hospitalized between the period of July 2001 and August 2006. Polymorphisms for the genes ACE(I/D), CCR-5, IL-1RA, MBL-2, TLR-4, and IL-4 were typed by polymerase chain reaction (PCR) and/or PCR-restriction fragment length polymerase. Genotype frequencies for these genes were compared in the patient and control groups. The relationships between the genotypes and the body distribution of infections, pathogens, the duration of neutropenia, and febrile episodes in AL patients were evaluated. No significant differences in either the genotype distribution or the allelic frequencies of TLR-4, IL-4, CCR-5, IL-1RN GPs were observed between patients and healthy controls. The AB/BB genotype (53.3%) in the MBL-2 gene was found to be significantly higher in the AL patients compared with control groups. There were correlations between the presence of MBL-2, TLR-4, and ACE polymorphisms and clinical parameters due to FN. Overall, bacteremia was more common in MBL BB and ACE DD. Gram-positive bacteremia was more common in ACE for ID versus DD genotype. Gram-negative bacteremia was more common for both the MBL-2 AB/BB genotype and TLR-4 AG genotype. Median durations of febrile episodes were significantly shorter in ACE DD and MBL AB/BB. Although TLR-4, ACE, and MBL-2 GPs have been extensively investigated in different clinical pictures, this is the first study to evaluate the role of these polymorphisms in the genetic etiopathogenesis of FN in patients with ALs. As a conclusion, TLR-4, ACE, and MBL-2 genes might play roles in the genetic etiopathogenesis of FN in patients with ALs.

  3. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin α4β7.

    Directory of Open Access Journals (Sweden)

    Nicholas F Parrish

    Full Text Available Sexual transmission of human immunodeficiency virus type 1 (HIV-1 most often results from productive infection by a single transmitted/founder (T/F virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20 and chronic (n = 20 Env constructs as well as full-length T/F (n = 6 and chronic (n = 4 infectious molecular clones (IMCs. We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.

  4. Hepatic Stellate Cells Alter Liver Immune Environment to Promote Cancer | Center for Cancer Research

    Science.gov (United States)

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for up to 90 percent of cases, and is the second most common cause of cancer-related deaths worldwide according to the World Health Organization’s 2014 World Cancer Report. Even when caught early, HCC often recurs, either from intra-liver metastases or new primary tumors, and recurrence is the leading cause of death for patients with HCC. The liver microenvironment is an important contributor to HCC initiation and progression and also likely plays a role in tumor recurrence. Xin Wei Wang, Ph.D., of CCR’s Laboratory of Human Carcinogenesis, and his colleagues wondered whether activated hepatic stellate cells (A-HSCs), stromal cells in the liver known to participate in repair following injury and in the development of fibrosis, contribute directly to HCC recurrence.

  5. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production

    DEFF Research Database (Denmark)

    Lee, Ying Shiuan; De Vadder, Filipe; Tremaroli, Valentina

    2016-01-01

    OBJECTIVE: Insulin-like peptide 5 (INSL5) is a recently identified gut hormone that is produced predominantly by L-cells in the colon, but its function is unclear. We have previously shown that colonic expression of the gene for the L-cell hormone GLP-1 is high in mice that lack a microbiota...... expression in the brain was higher in CONV-R versus GF mice. We also observed that colonic Insl5 expression was suppressed by increasing the energy supply in GF mice by colonization or high-fat feeding. We did not observe any differences in food intake, gut transit or oral glucose tolerance between Insl5......-/- and wild-type mice. However, we showed impaired intraperitoneal glucose tolerance in Insl5-/- mice. We also observed improved insulin tolerance and reduced hepatic glucose production in Insl5-/- mice. CONCLUSIONS: We have shown that colonic Insl5 expression is regulated by the gut microbiota and energy...

  6. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Yesol; Shin, Hye-jun; Bak, In seon [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Yoon, Do-young [Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Yu, Dae-Yeul, E-mail: dyyu10@kribb.re.kr [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of)

    2015-10-30

    Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression. - Highlights: • NUPR1 is overexpressed in HBx transgenic mouse and HCC patients. • NUPR1 inactivation hampers the HBx induced growth, VM formation, and migration of HepG2 cells in vitro. • NUPR1 has a role for survival of HCC and mechanistically NUPR1 is activated by HBx-Smad4 axis.

  7. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid β-oxidation and ketogenesis via activating XBP1 signaling in liver.

    Science.gov (United States)

    Zhang, Meiyuan; Sun, Weilan; Qian, Jin; Tang, Yan

    2018-02-01

    Liver coordinates a series of metabolic adaptations to maintain systemic energy balance and provide adequate nutrients for critical organs, tissues and cells during starvation. However, the mediator(s) implicated in orchestrating these fasting-induced adaptive responses and the underlying molecular mechanisms are still obscure. Here we show that hepatic growth differentiation factor 15 (GDF15) is regulated by IRE1α-XBP1s branch and promotes hepatic fatty acids β-oxidation and ketogenesis upon fasting. GDF15 expression was exacerbated in liver of mice subjected to long-term fasted or ketogenic diet feeding. Abrogation of hepatic Gdf15 dramatically attenuated hepatic β-oxidation and ketogenesis in fasted mice or mice with STZ-initiated type I diabetes. Further study revealed that XBP1s activated Gdf15 transcription via binding to its promoter. Elevated GDF15 in liver reduced lipid accumulation and impaired NALFD development in obese mice through enhancing fatty acids oxidation in liver. Therefore, our results demonstrate a novel and critical role of hepatic GDF15 activated by IRE1α-XBP1s branch in regulating adaptive responses of liver upon starvation stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases

    Science.gov (United States)

    Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar

    2014-01-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  9. Hepatitis B virus X protein amplifies TGF-β promotion on HCC motility through down-regulating PPM1a.

    Science.gov (United States)

    Liu, Yuan; Xu, Yong; Ma, Hongxin; Wang, Bo; Xu, Leiqi; Zhang, Hualin; Song, Xiaojia; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2016-05-31

    Over-activation of transforming growth factor-β (TGF-β) signaling pathway promotes cell migration and invasion in hepatocellular carcinoma (HCC). The Hepatitis B virus X protein (HBx) is involved in the enhancement of TGF-β signaling pathway in HCC while the mechanism remains unclear. Protein phosphatase magnesium dependent 1A (PPM1a) functions as a phosphatase essential for terminating the TGF-β signaling pathway by dephosphorylating p-Smad2/3. In this study, we found that HBx dose-dependently downregulated PPM1a protein level in the presence of TGF-β, while having no effect on its mRNA level. Further study showed that HBx increased the ubiquitination of PPM1a and accelerated its proteasomal degradation. Restoration of PPM1a almost completely abrogated HBx mediated promotion on HCC migration and invasion. This involvement of PPM1a in HBx-related HCC was further confirmed with immunohistochemical analysis in HCC tissue. Compared with paired pericarcinous tissue, HCC tissue showed decreased PPM1a level. Besides, PPM1a level is negatively correlated with HBx expression. Taken together, our present study suggests that HBx-induced degradation of PPM1a is a novel mechanism for over-activation of TGF-β pathway in HCC development, which might provide potential candidates for clinical diagnosis and treatment.

  10. Reduced Frequencies and Activation of Regulatory T Cells After the Treatment of HIV-1-Infected Individuals with the CCR5 Antagonist Maraviroc Are Associated with a Reduction in Viral Loads Rather Than a Direct Effect of the Drug on Regulatory T Cells.

    Science.gov (United States)

    Joedicke, Jara J; Dirks, Miriam; Esser, Stefan; Verheyen, Jens; Dittmer, Ulf

    2016-04-01

    Regulatory T cells (Tregs) play an important role in the pathogenesis of HIV-1 infection and they frequently express the chemokine receptor CCR5. We therefore investigated whether antiretroviral treatment with the CCR5 antagonist Maraviroc affected Tregs in chronically HIV-1-infected individuals. HIV-1-infected patients with high viral loads had elevated frequencies of activated Tregs in the peripheral blood compared with healthy controls. In patients successfully treated with antiretroviral drugs (undetectable viral loads), the frequency and the activation status of Tregs were comparable with healthy controls without any specific effect related to the treatment with Maraviroc. These results indicate that the control of viral replication in general rather than a direct binding of Maraviroc to CCR5-positive Tregs influences Treg responses in successfully treated chronically HIV-1-infected individuals.

  11. Frequencies of CCR5-D32, CCR2-64I and SDF1-3’A mutations in Human Immunodeficiency Virus (HIV seropositive subjects and seronegative individuals from the state of Pará in Brazilian Amazonia

    Directory of Open Access Journals (Sweden)

    Fernanda Andreza de Pinho Lott Carvalhaes

    2005-12-01

    Full Text Available The distribution of genetic polymorphisms of chemokine receptors CCR5-delta32, CCR2-64I and chemokine (SDF1-3’A mutations were studied in 110 Human Immunodeficiency Virus type 1 (HIV-1 seropositive individuals (seropositive group and 139 seronegative individuals (seronegative group from the population of the northern Brazilian city of Belém which is the capital of the state of Pará in the Brazilian Amazon. The CCR5-delta32 mutation was found in the two groups at similar frequencies, i.e. 2.2% for the seronegative group and 2.7% for the seropositive group. The frequencies of the SDF1-3’A mutation were 21.0% for the seronegative group and 15.4% for the seropositive group, and the CCR2-64I allele was found at frequencies of 12.5% for the seronegative group and 5.4% for the seropositive group. Genotype distributions were consistent with Hardy-Weinberg expectations in both groups, suggesting that none of the three mutations has a detectable selective effect. Difference in the allelic and genotypic frequencies was statistically significant for the CCR2 locus, the frequency in the seronegative group being twice that found in the seropositive group. This finding may indicate a protective effect of the CCR2-64I mutation in relation to HIV transmission. However, considering that the CCR2-64I mutation has been more strongly associated with a decreased risk for progression for AIDS than to the resistance to the HIV infection, this could reflect an aspect of population structure or a Type I error.

  12. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Moś, Danuta M; Araszkiewicz, Aleksander; Szromek, Adam R

    2015-12-01

    Posttraumatic stress disorder (PTSD) can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the neurochemical and neuroendocrine functions of the body play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 220 men and women were enrolled in the study. 180 of them constituted the study group. The studied groups consisted of: 60 patients with a diagnosed avoidant personality disorders (APD), 60 patients with a diagnosed APD and with PTSD and of 60 patients with PTSD but without a APD. There were 30 women and 30 men in each group of 60 subjects. The control group consisted of 40 healthy individuals. The plasma levels of chemokines and their receptors (CCL-5, CXCR-5, CXCL-12 and CXCR-4), as well as IL-6, were assessed by ELISA. There was an increase in the CXCL-12 and CCL-5 levels in women and men with the PTSD versus the control group. Also, increased levels of IL-6 and the receptors CXCR-4, CCR-5 were observed in women and men with PTSD. The levels of CXCL-12 and CCL-5 chemokines, as well as CCR-5 and CXCR4 receptors were higher in women than in men. The results of this study indicate a need for assessment of the CCL-5 and CXCL-12 chemokine levels, as they are likely markers of PTSD. Measurement of the concentrations of chemokines, chemokine receptors and IL-6 in women and men with PTSD along with concomittant APD may be useful for early detection of mental disorders. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of a Chemokine Receptor 5 (CCR5) Antagonist to Decrease the Occurrence of Immune Reconstitution Inflammatory Syndrome in HIV-Infection: The CADIRIS Study

    Science.gov (United States)

    Sierra-Madero, Juan G.; Ellenberg, Susan; Rassool, Mohammed S.; Tierney, Ann; Belaunzarán-Zamudio, Pablo F.; López-Martínez, Alondra; Piñeirúa-Menéndez, Alicia; Montaner, Luis J.; Azzoni, Livio; Benítez, César Rivera; Sereti, Irini; Andrade-Villanueva, Jaime; Mosqueda-Gómez, Juan L.; Rodriguez, Benigno; Sanne, Ian; Lederman, Michael M.

    2015-01-01

    Background Immune Reconstitution Inflammatory Syndrome (IRIS) is a common complication of antiretroviral therapy (ART) in HIV-infected patients. IRIS is associated with an increased risk of hospitalization and death. We ascertained whether CCR5 blockade using maraviroc reduces the risk of IRIS. Methods The CADIRIS study was a randomized, double-blind, placebo-controlled, clinical trial that accrued subjects from five clinical sites in Mexico and one in South Africa between November 2009 and January 2012, and followed them for one year. The primary outcome was occurrence of IRIS by 24 weeks. HIV-infected adults, naïve to ART, with CD4 cells 1,000 copies/mL were eligible. We screened 362 subjects; 279 met inclusion criteria, 3 refused participation, and 276 were randomized. Participants received maraviroc 600 mg twice daily or placebo added to an ART regimen that included tenofovir, emtricitabine, and efavirenz for 48 weeks. Findings There were 276 patients randomized (140 received maraviroc and 136 placebo). There was no difference in the time to IRIS events between treatment arms (HR 1·08, 95% CI (0·66, 1·77), log-rank test p=0·743). In total, 64 (23%) patients had IRIS events, 33 (24%) in the maraviroc arm and 31 (23%) in the placebo arm (p=0·88). Interpretation Maraviroc had no significant effect on frequency, time or severity of IRIS events after ART initiation. Including a CCR5 inhibitor in an initial treatment regimen does not confer a meaningful protection from the occurrence of IRIS in persons with advanced HIV infection. Funding The trial was funded as investigator initiated research by Pfizer Inc, New York, NY, USA. Trial Registration ClinicalTrials.gov. ID: NCT00988780 (http://clinicaltrials.gov/ct2/show/NCT00988780) PMID:26366430

  14. Isolation of an HIV-1 neutralizing peptide mimicking the CXCR4 and CCR5 surface from the heavy-chain complementary determining region 3 repertoire of a viremic controller.

    Science.gov (United States)

    Chevigne, Andy; Delhalle, Sylvie; Counson, Manuel; Beaupain, Nadia; Rybicki, Arkadiusz; Verschueren, Charlène; Staub, Thérèse; Schmit, Jean-Claude; Seguin-Devaux, Carole; Deroo, Sabrina

    2016-01-28

    The recent identification of neutralizing antibodies able to prevent viral rebound reemphasized the interest in humoral immune responses to control HIV-1 infection. In this study, we characterized HIV-1-inhibiting sequences from heavy-chain complementary determining region 3 (HCDR3) repertoires of a viremic controller. IgM and IgG-derived HCDR3 repertoires of a viremic controller presenting plasma-neutralizing activity and characterized by over 20 years of infection with a stable CD4 T-cell count were displayed on filamentous phage to identify HCDR3 repertoire-derived peptides inhibiting HIV-1 entry. Screening of phage libraries against recombinant gp120 led to the identification of an HCDR3-derived peptide sequence (LRTV-1) displaying antiviral properties against both X4 and R5 viruses. The interaction of LRTV-1 with gp120 was enhanced upon CD4 binding and sequence comparison revealed homology between LRTV-1 and the second extracellular loop of C-X-C chemokine receptor type 4 (CXCR4) (11/23) and the N-terminus of C-C chemokine receptor type 5 (CCR5) (7/23). Alanine scanning experiments identified different clusters of residues critical for interaction with the viral envelope protein. LRTV-1 peptide is to date the smallest human HCDR3 repertoire-derived peptide identified by phage display inhibiting HIV entry of R5 and X4 viruses. This peptide recognizes a CD4-dependent gp120 epitope critical for coreceptor binding and mimics the surface of CXCR4 and CCR5. Our data emphasize the potential of human HCDR3 immune repertoires as sources of small biologically active peptides for HIV cure.

  15. Impact of determination of hepatitis B virus subgenotype and pre-core/core-promoter mutation for the prediction of acute exacerbation of asymptomatic carriers.

    Science.gov (United States)

    Ikegami, Tadashi; Matsuki, Yasuhiko; Tanaka, Yasuhito; Mizokami, Masashi; Honda, Akira; Hirayama, Takeshi; Saito, Yoshifumi; Matsuzaki, Yasushi

    2009-04-01

    A large cohort study in Japan revealed that the specific viral profile may influence the fulminant outcome in acute hepatitis B virus (HBV) infections, while the genetic influence on outcome has not been clarified in patients with acute exacerbation of chronic liver disease caused by HBV. We experienced a case of fatal liver failure that developed as the result of chronic HBV infection. To determine possible genetic factor involving acute exacerbation, genetic analysis of serum from the patient and his siblings was performed. HBV subgenotype as well as pre-core/core-promoter mutations of samples mentioned above were determined. Patient had HBV-Bj with pre-core (1896/1899) and core-promoter (1762/1764) mutations, the genomic profile frequently seen in fulminant hepatitis caused by acute HBV infection. This result suggests that determination of the HBV subgenotype and pre-core/core promoter mutations could provide a rationale for development of a treatment strategy in asymptomatic HBV carriers.

  16. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    that PlGF plays an important role in liver inflammation, angiogenesis, and fibrosis by promoting hepatic macrophage recruitment and activation, and suggest that blockage of PlGF could be a promising novel therapy for chronic fibrotic liver diseases.

  17. Camel milk inhibits murine hepatic carcinogenesis, initiated by diethylnitrosamine and promoted by phenobarbitone

    Directory of Open Access Journals (Sweden)

    Hala M.F. El Miniawy

    2014-12-01

    Full Text Available This study was carried out in order to investigate the possible inhibitory effect of camel milk (CM on induced hepatocarcinogenesis in rats. Twenty-eight male rats were assigned into 4 groups (7 rats per group. Group I served as control negative. Group II treated with camel milk. Group III was injected I/P with diethylnitrosamine (DENA (200 mg/kg as a single dose and after one week received 500 ppm phenobarbitone in drinking water. Group IV injected with DENA as group III and treated with camel milk. Estimation of AST, ALT, albumin, total protein and alpha fetoprotein (AFP in the serum of euthanized rats was performed. Histopathological examination and immunohistochemical staining of AFP and placental glutathione s transferase of the liver were carried out. Biochemical result at 38th week revealed an increase in serum AFP and a decrease in serum albumin on group III although no significance was detected. Histopathologically, the size of altered hepatic foci was smaller in the milk treated group (group IV. The number of mitotic figures observed in group IV was lower than group III. Hepatocellular carcinoma developed only in group III but not group IV. Immunohistochemical staining of AFP demonstrated an intense positive staining in group III and a weak positive staining in group IV. Similarly, the area percent of preneoplastic P-GST positive foci in liver was higher in group III than group IV. In conclusion, camel milk halted the progression of hepatocellular carcinoma.

  18. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication

    Directory of Open Access Journals (Sweden)

    Christopher M. Murphy

    2016-09-01

    Full Text Available The hepatitis B virus (HBV regulatory protein X (HBx activates gene expression from the HBV covalently closed circular DNA (cccDNA genome. Interaction of HBx with the DDB1-CUL4-ROC1 (CRL4 E3 ligase is critical for this function. Using substrate-trapping proteomics, we identified the structural maintenance of chromosomes (SMC complex proteins SMC5 and SMC6 as CRL4HBx substrates. HBx expression and HBV infection degraded the SMC5/6 complex in human hepatocytes in vitro and in humanized mice in vivo. HBx targets SMC5/6 for ubiquitylation by the CRL4HBx E3 ligase and subsequent degradation by the proteasome. Using a minicircle HBV (mcHBV reporter system with HBx-dependent activity, we demonstrate that SMC5/6 knockdown, or inhibition with a dominant-negative SMC6, enhance HBx null mcHBV-Gluc gene expression. Furthermore, SMC5/6 knockdown rescued HBx-deficient HBV replication in human hepatocytes. These results indicate that a primary function of HBx is to degrade SMC5/6, which restricts HBV replication by inhibiting HBV gene expression.

  19. The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats

    International Nuclear Information System (INIS)

    Bunaciu, Rodica Petruta; Tharappel, Job C.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela; Robertson, Larry W.; Srinivasan, Cidambi; Spear, Brett T.; Glauert, Howard P.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague-Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O-dealkylase (BROD

  20. Single nucleotide polymorphism rs1800872 in the promoter region of the IL10 gene is associated with predisposition to chronic hepatitis C in Russian population.

    Science.gov (United States)

    Barkhash, Andrey V; Kochneva, Galina V; Chub, Elena V; Romaschenko, Aida G

    2018-03-01

    Previously, we studied an association of two IL28B gene single nucleotide polymorphisms (SNPs) and three IL10 gene SNPs with predisposition to tick-borne encephalitis in a Russian population. In this study, a possible involvement of these SNPs in the development of predisposition to chronic hepatitis C (caused by structurally similar, related virus from the Flaviviridae family) was investigated in the same population. Only the IL10 promoter rs1800872 SNP was associated with predisposition to chronic hepatitis C. This SNP seems to be a common genetic marker of predisposition to two diseases caused by hepatitis C and tick-borne encephalitis viruses in Russian population. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis.

    Science.gov (United States)

    Locatelli, Luigi; Cadamuro, Massimiliano; Spirlì, Carlo; Fiorotto, Romina; Lecchi, Silvia; Morell, Carola Maria; Popov, Yury; Scirpo, Roberto; De Matteis, Maria; Amenduni, Mariangela; Pietrobattista, Andrea; Torre, Giuliano; Schuppan, Detlef; Fabris, Luca; Strazzabosco, Mario

    2016-03-01

    Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local transforming growth factor-β1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time. © 2015 by the American Association for the Study of Liver Diseases.

  2. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway.

    Science.gov (United States)

    Yang, Weili; Wang, Junpei; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Chen, Liming; Chang, Yongsheng; Geng, Bin; Sun, Libo; Dou, Lin; Li, Jian; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2017-07-01

    Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway. © 2017 by the American Diabetes Association.

  3. Retinoic Acid Receptor β Stimulates Hepatic Induction of Fibroblast Growth Factor 21 to Promote Fatty Acid Oxidation and Control Whole-body Energy Homeostasis in Mice*

    Science.gov (United States)

    Li, Yu; Wong, Kimberly; Walsh, Kenneth; Gao, Bin; Zang, Mengwei

    2013-01-01

    Activation of retinoic acid receptor (RAR) with all-trans-retinoic acid (RA) ameliorates glucose intolerance and insulin resistance in obese mice. The recently discovered fibroblast growth factor 21 (FGF21) is a hepatocyte-derived hormone that restores glucose and lipid homeostasis in obesity-induced diabetes. However, whether hepatic RAR is linked to FGF21 in the control of lipid metabolism and energy homeostasis remains elusive. Here we identify FGF21 as a direct target gene of RARβ. The gene transcription of Fgf21 is increased by the RAR agonist RA and by overexpression of RARα and RARβ, but it is unaffected by RARγ in HepG2 cells. Promoter deletion analysis characterizes a putative RA-responsive element (RARE) primarily located in the 5′-flanking region of the Fgf21 gene. Disruption of the RARE sequence abolishes RA responsiveness. In vivo adenoviral overexpression of RARβ in the liver enhances production and secretion of FGF21, which in turn promotes hepatic fatty acid oxidation and ketogenesis and ultimately leads to increased energy expenditure in mice. The metabolic effects of RA or RARβ are mimicked by FGF21 overexpression and largely abolished by FGF21 knockdown. Moreover, hepatic RARβ is bound to the putative RAREs of the Fgf21 promoter in a fasting-inducible manner in vivo, which contributes to FGF21 induction and the metabolic adaptation to prolonged fasting. In addition to other nuclear receptors, such as peroxisome proliferator-activated receptor α and retinoic acid receptor-related receptor α, RAR may act as a novel component to induce hepatic FGF21 in the regulation of lipid metabolism. The hepatic RAR-FGF21 pathway may represent a potential drug target for treating metabolic disorders. PMID:23430257

  4. Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression.

    Science.gov (United States)

    Chen, Zhiao; Lu, Xinyuan; Jia, Deshui; Jing, Ying; Chen, Di; Wang, Qifeng; Zhao, Fangyu; Li, Jinjun; Yao, Ming; Cong, Wenming; He, Xianghuo

    2018-01-19

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is typically diagnosed at advanced stages. Identification and characterisation of genes within amplified and deleted chromosomal loci can provide new insights into the pathogenesis of cancer and lead to new approaches for diagnosis and therapy. In our previous study, we found a recurrent region of copy number amplification at 19p13.2 in hepatocellular carcinoma (HCC). In the present study, we performed integrated copy number analysis and expression profiling at this locus and a putative cancer gene, SMARCA4/BRG1, was uncovered in this region. BRG1 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF. The function of BRG1 in various cancers is unclear, including its role in HCC tumorigenesis. Here, we found that BRG1 is upregulated in HCC and that its level significantly correlates with cancer progression in HCC patients. Importantly, we also found that nuclear expression of BRG1 predicts early recurrence for HCC patients. Furthermore, we demonstrated that BRG1 promotes HCC cell proliferation in vitro and in vivo. BRG1 was observed not only to facilitate S-phase entry but also to attenuate cell apoptosis. Finally, we discovered that one of the mechanisms by which BRG1 promotes cell proliferation is the upregulation of SMAD6. These findings highlight the important role of BRG1 in the regulation of HCC proliferation and provide valuable information for cancer prognosis and treatment.

  5. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation.

    Directory of Open Access Journals (Sweden)

    Keith C Summa

    Full Text Available The circadian clock orchestrates temporal patterns of physiology and behavior relative to the environmental light:dark cycle by generating and organizing transcriptional and biochemical rhythms in cells and tissues throughout the body. Circadian clock genes have been shown to regulate the physiology and function of the gastrointestinal tract. Disruption of the intestinal epithelial barrier enables the translocation of proinflammatory bacterial products, such as endotoxin, across the intestinal wall and into systemic circulation; a process that has been linked to pathologic inflammatory states associated with metabolic, hepatic, cardiovascular and neurodegenerative diseases - many of which are commonly reported in shift workers. Here we report, for the first time, that circadian disorganization, using independent genetic and environmental strategies, increases permeability of the intestinal epithelial barrier (i.e., gut leakiness in mice. Utilizing chronic alcohol consumption as a well-established model of induced intestinal hyperpermeability, we also found that both genetic and environmental circadian disruption promote alcohol-induced gut leakiness, endotoxemia and steatohepatitis, possibly through a mechanism involving the tight junction protein occludin. Circadian organization thus appears critical for the maintenance of intestinal barrier integrity, especially in the context of injurious agents, such as alcohol. Circadian disruption may therefore represent a previously unrecognized risk factor underlying the susceptibility to or development of alcoholic liver disease, as well as other conditions associated with intestinal hyperpermeability and an endotoxin-triggered inflammatory state.

  6. Kmt5a Controls Hepatic Metabolic Pathways by Facilitating RNA Pol II Release from Promoter-Proximal Regions.

    Science.gov (United States)

    Nikolaou, Kostas C; Moulos, Panagiotis; Harokopos, Vangelis; Chalepakis, George; Talianidis, Iannis

    2017-07-25

    H4K20 monomethylation maintains genome integrity by regulating proper mitotic condensation, DNA damage response, and replication licensing. Here, we show that, in non-dividing hepatic cells, H4K20Me1 is specifically enriched in active gene bodies and dynamically regulated by the antagonistic action of Kmt5a methylase and Kdm7b demethylase. In liver-specific Kmt5a-deficient mice, reduced levels of H4K20Me 1 correlated with reduced RNA Pol II release from promoter-proximal regions. Genes regulating glucose and fatty acid metabolism were most sensitive to impairment of RNA Pol II release. Downregulation of glycolytic genes resulted in an energy starvation condition partially compensated by AMP-activated protein kinase (AMPK) activation and increased mitochondrial activity. This metabolic reprogramming generated a highly sensitized state that, upon different metabolic stress conditions, quickly aggravated into a senescent phenotype due to ROS overproduction-mediated oxidative DNA damage. The results illustrate how defects in the general process of RNA Pol II transition into a productive elongation phase can trigger specific metabolic changes and genome instability. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Kmt5a Controls Hepatic Metabolic Pathways by Facilitating RNA Pol II Release from Promoter-Proximal Regions

    Directory of Open Access Journals (Sweden)

    Kostas C. Nikolaou

    2017-07-01

    Full Text Available H4K20 monomethylation maintains genome integrity by regulating proper mitotic condensation, DNA damage response, and replication licensing. Here, we show that, in non-dividing hepatic cells, H4K20Me1 is specifically enriched in active gene bodies and dynamically regulated by the antagonistic action of Kmt5a methylase and Kdm7b demethylase. In liver-specific Kmt5a-deficient mice, reduced levels of H4K20Me1 correlated with reduced RNA Pol II release from promoter-proximal regions. Genes regulating glucose and fatty acid metabolism were most sensitive to impairment of RNA Pol II release. Downregulation of glycolytic genes resulted in an energy starvation condition partially compensated by AMP-activated protein kinase (AMPK activation and increased mitochondrial activity. This metabolic reprogramming generated a highly sensitized state that, upon different metabolic stress conditions, quickly aggravated into a senescent phenotype due to ROS overproduction-mediated oxidative DNA damage. The results illustrate how defects in the general process of RNA Pol II transition into a productive elongation phase can trigger specific metabolic changes and genome instability.

  8. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice

    Directory of Open Access Journals (Sweden)

    Matthew McMillin

    2017-07-01

    Full Text Available Hepatic encephalopathy (HE is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA, can activate sphingosine-1-phosphate receptor 2 (S1PR2, which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid

  10. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Yuichi Hirata

    Full Text Available Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2 encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.

  11. Effects of Combined CCR5/Integrase Inhibitors-Based Regimen on Mucosal Immunity in HIV-Infected Patients Naïve to Antiretroviral Therapy: A Pilot Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Sergio Serrano-Villar

    2016-01-01

    Full Text Available Whether initiation of antiretroviral therapy (ART regimens aimed at achieving greater concentrations within gut associated lymphoid tissue (GALT impacts the level of mucosal immune reconstitution, inflammatory markers and the viral reservoir remains unknown. We included 12 HIV- controls and 32 ART-naïve HIV patients who were randomized to efavirenz, maraviroc or maraviroc+raltegravir, each with fixed-dose tenofovir disoproxil fumarate/emtricitabine. Rectal and duodenal biopsies were obtained at baseline and at 9 months of ART. We performed a comprehensive assay of T-cell subsets by flow cytometry, T-cell density in intestinal biopsies, plasma and tissue concentrations of antiretroviral drugs by high-performance liquid chromatography/mass spectroscopy, and plasma interleukin-6 (IL-6, lipoteichoic acid (LTA, soluble CD14 (sCD14 and zonulin-1 each measured by ELISA. Total cell-associated HIV DNA was measured in PBMC and rectal and duodenal mononuclear cells. Twenty-six HIV-infected patients completed the follow-up. In the duodenum, the quadruple regimen resulted in greater CD8+ T-cell density decline, greater normalization of mucosal CCR5+CD4+ T-cells and increase of the naïve/memory CD8+ T-cell ratio, and a greater decline of sCD14 levels and duodenal HIV DNA levels (P = 0.004 and P = 0.067, respectively, with no changes in HIV RNA in plasma or tissue. Maraviroc showed the highest drug distribution to the gut tissue, and duodenal concentrations correlated well with other T-cell markers in duodenum, i.e., the CD4/CD8 ratio, %CD4+ and %CD8+ HLA-DR+CD38+ T-cells. Maraviroc use elicited greater activation of the mucosal naïve CD8+ T-cell subset, ameliorated the distribution of the CD8+ T-cell maturational subsets and induced higher improvement of zonulin-1 levels. These data suggest that combined CCR5 and integrase inhibitor based combination therapy in ART treatment naïve patients might more effectively reconstitute duodenal immunity, decrease

  12. Prevalence of R5 strains in multi-treated HIV subjects and impact of new regimens including maraviroc in a selected group of patients with CCR5-tropic HIV-1 infection.

    Science.gov (United States)

    Bon, Isabella; Clò, Alberto; Borderi, Marco; Colangeli, Vincenzo; Calza, Leonardo; Morini, Silvia; Miserocchi, Anna; Cricca, Monica; Gibellini, Davide; Re, Maria Carla

    2013-10-01

    Maraviroc currently represents an important antiretroviral drug for multi-experienced and viremic HIV patients. This study focused on two main points: (1) determining the prevalence of R5 and X4 HIV strains in antiretroviral-experienced patients using two main tests currently in use to determine viral tropism, and (2) the follow-up to 3 years of a limited number of patients who started a new antiretroviral protocol including maraviroc. A group of 56 HIV patients, previously multi-treated, were first analyzed by genotyping assay and Trofile™ to establish their eligibility for maraviroc treatment. In addition, 25 subjects selected to follow a new therapeutic protocol including a CCR5 antagonist were monitored by HIV RNA viral load and CD4+ cell count. The determination of viral tropism showed a large percentage of patients with an R5 profile (72% by genotyping assay and 74% by Trofile). The follow-up of most (21 out 25) patients who started the new antiretroviral protocol showed an undetectable viral load throughout the observation period, accompanied by a major improvement in CD4 cell count (cells/mm(3)) (baseline: median CD4 cell count 365, interquartile range (IQR) 204-511; 12 months: median value 501, IQR 349-677, p=0.042; 24 months: median value 503, IQR 386-678, p=0.026; 36 months: median value 601, IQR 517-717, p=0.001). Among the four non-responder subjects, two showed a lack of drug compliance and two switched from R5 to X4. Although our patient cohort was small, the results showed a high prevalence of R5 viral strains in multi-experienced patients. As well as showing the advantages of genotyping, which can be performed in plasma samples with low viral load replication, the follow-up of HIV patients selected for an alternative drug protocol, including a CCR5 antagonist, showed a persistent undetectable viral replication and a good recovery of CD4 cell count in most treated HIV patients. Copyright © 2013 International Society for Infectious Diseases

  13. In vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoA reductase by T{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Lindsey R.; Niesen, Melissa I. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States); Jaroszeski, Mark [Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL (United States); Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States)

    2009-07-31

    The promoter elements and transcription factors necessary for triiodothyronine (T{sub 3}) induction of hepatic HMG-CoA reductase (HMGR) were investigated by transfecting rat livers with wild type and mutant HMGR promoter-luciferase constructs using in vivo electroporation. Mutations in the sterol response element (SRE), nuclear factor-y (NF-Y) site, and the newly identified upstream transcription factor-2 (USF-2) site essentially abolished the T{sub 3} response. Chromatin immunoprecipitation (ChIP) analysis demonstrated that T{sub 3} treatment caused a 4-fold increase in in vivo binding of USF-2 to the HMGR promoter. Co-transfection of the wild type HMGR promoter with siRNAs to USF-2, SREBP-2, or NF-Y nearly abolished the T{sub 3} induction, as measured by promoter activity. These data provide in vivo evidence for functional roles for USF-2, SREBP-2, and NF-Y in mediating the T{sub 3}-induction of hepatic HMGR transcription.

  14. Hepatic stellate cell-derived PDGFRα-enriched extracellular vesicles promote liver fibrosis in mice through SHP2.

    Science.gov (United States)

    Kostallari, Enis; Hirsova, Petra; Prasnicka, Alena; Verma, Vikas K; Yaqoob, Usman; Wongjarupong, Nicha; Roberts, Lewis R; Shah, Vijay H

    2018-01-23

    Liver fibrosis is characterized by the activation and migration of hepatic stellate cells (HSCs) followed by matrix deposition. Recently, several studies have shown the importance of extracellular vesicles (EVs) derived from liver cells, such as hepatocytes and endothelial cells, in liver pathobiology. While most of the studies describe how liver cells modulate HSC behavior, an important gap exists in the understanding of HSC-derived signals and more specifically HSC-derived EVs in liver fibrosis. Here, we investigated the molecules released through HSC-derived EVs, the mechanism of their release and the role of these EVs in fibrosis. Mass spectrometry analysis showed that platelet-derived growth factor (PDGF) receptor α (PDGFRα) was enriched in EVs derived from PDGF-BB-treated HSCs. Moreover, patients with liver fibrosis had increased PDGFRα levels in serum EVs compared to healthy individuals. Mechanistically, in vitro tyrosine720-to-phenylalanine mutation (Y720F) on PDGFRα sequence abolished enrichment of PDGFRα in EVs and redirected the receptor towards degradation. Congruently, the inhibition of Src homology 2 domain tyrosine phosphatase 2 (SHP2), the regulatory binding partner of phosphorylated Y720, also inhibited PDGFRα enrichment in EVs. EVs derived from PDGFRα-overexpressing cells promoted in vitro HSC migration and in vivo liver fibrosis. Finally, administration of SHP2 inhibitor, SHP099, to carbon tetrachloride-administered mice inhibited PDGFRα enrichment in serum EVs and reduced liver fibrosis. PDGFRα is enriched in EVs derived from PDGF-BB-treated HSCs in an SHP2-dependent manner and these PDGFRα-enriched EVs participate in development of liver fibrosis. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  15. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway.

    Science.gov (United States)

    Liu, Wei; Guo, Teng-Fei; Jing, Zhen-Tang; Yang, Zhi; Liu, Lei; Yang, Yuan-Ping; Lin, Xu; Tong, Qiao-Yun

    2018-01-17

    Hepatitis B virus core protein (HBc) is expressed preferentially in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). HBc can function as an oncogene arising from its gene regulatory properties, but how it contributes functionally to hepatocarcinogenesis remains unclear. In this study, we determined the molecular and functional roles of HBc during HBV-associated hepatocellular tumorigenesis. HBc increased tumor formation of hepatoma cells. Moreover, expression of HBc specifically promoted proliferation of hepatoma cells in vitro. Mechanistic investigations revealed that these effects were caused by activation of the Src/PI3K/Akt pathway through proximal switch from inactive Src to the active form of the kinase by HBc. HBc-mediated sarcoma (Src) kinase activation was associated with down-regulation of C-terminal Src kinase (Csk). In addition, HBc enhances Src expression by activation of alternative Src 1A promoter in an Sp1 transcription factor-dependent manner. Proliferation induced by stable HBc expression was associated with increased G 1 -S cell cycle progression mediated by Src kinase activation. HBc-induced cellular proliferation and tumor formation were reversed by administration of the Src inhibitor saracatinib. Together, our findings suggest that HBc promotes tumorigenesis of hepatoma cells by enhancing the expression of total Src and the active form of the kinase and subsequently activates Src/PI3K/Akt signaling pathway, revealing novel insights into the underlying mechanisms of HBV-associated hepatocarcinogenesis.-Liu, W., Guo, T.-F., Jing, Z.-T., Yang, Z., Liu, L., Yang, Y.-P., Lin, X., Tong, Q.-Y. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway.

  16. I prostanoid receptor-mediated inflammatory pathway promotes hepatic gluconeogenesis through activation of PKA and inhibition of AKT.

    Science.gov (United States)

    Yan, Shuai; Zhang, Qianqian; Zhong, Xiaojing; Tang, Juan; Wang, Yuanyang; Yu, Junjie; Zhou, Yi; Zhang, Jian; Guo, Feifan; Liu, Yi; FitzGerald, Garret A; Yu, Ying

    2014-09-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs), including acetylsalicylic acid (ASA), improve glucose metabolism in diabetic subjects, although the underlying mechanisms remain unclear. In this study, we observed dysregulated expression of cyclooxygenase-2, prostacyclin biosynthesis, and the I prostanoid receptor (IP) in the liver's response to diabetic stresses. High doses of ASA reduced hepatic prostaglandin generation and suppressed hepatic gluconeogenesis in mice during fasting, and the hypoglycemic effect of ASA could be restored by IP agonist treatment. IP deficiency inhibited starvation-induced hepatic gluconeogenesis, thus inhibiting the progression of diabetes, whereas hepatic overexpression of IP increased gluconeogenesis. IP deletion depressed cAMP-dependent CREB phosphorylation and elevated AKT phosphorylation by suppressing PI3K-γ/PKC-ζ-mediated TRB3 expression, which subsequently downregulated the gluconeogenic genes for glucose-6-phosphatase (G6Pase) and phosphoenol pyruvate carboxykinase 1 in hepatocytes. We therefore conclude that suppression of IP modulation of hepatic gluconeogenesis through the PKA/CREB and PI3K-γ/PKC-ζ/TRB3/AKT pathways contributes to the effects of NSAIDs in diabetes. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. A stable CC-chemokine receptor (CCR)-5 tropic virus is correlated with the persistence of HIV RNA at less than 2.5 copies in successfully treated naïve subjects.

    Science.gov (United States)

    Parisi, Saverio Giuseppe; Andreis, Samantha; Mengoli, Carlo; Scaggiante, Renzo; Cruciani, Mario; Ferretto, Roberto; Manfrin, Vinicio; Panese, Sandro; Basso, Monica; Boldrin, Caterina; Bressan, Stefania; Sarmati, Loredana; Andreoni, Massimo; Palù, Giorgio

    2013-07-11

    To determine if tropism for CXCR4 or CCR5 correlates with cellular HIV DNA load, residual viraemia and CD4 count in 219 successfully treated naive subjects with HIV infection enrolled in five infectious diseases units in Northeastern Italy. A subset of subjects, achieving plasma HIV RNA level <50 copies/ml after initiation of first-line therapy and maintaining it until follow-up time points, was retrospectively selected from a prospective cohort. Blood samples were collected before the beginning of therapy (T0), at the first follow-up time (T1) and, when available, at a second (T2) follow-up time. HIV DNA, CD4 count and plasma viraemia were available from all 219 patients at T0 and T1, and in 86 subjects at T2, while tropism determinations were available from 109 subjects at T0, 219 at T1, and from 86 subjects at T2. Achieving residual viraemia <2.5 copies/ml at T1 correlated with having the same condition at T2 (p = 0.0007). X4 tropism at T1 was negatively correlated with the possibility of achieving viraemia<2.5 copies/ml at T2 (p = 0.0076). T1-T2 tropism stability was significant (p <0.0001). T0 tropism correlated with T1 and T2 tropism (p < 0.001); therefore the stability of the tropism over the two follow-up periods was significant (p = 0.0003). An effective viremic suppression (viraemia<2.5 copies/ml) correlated with R5 coreceptor affinity (p= 0.047). The tropism of archived virus was stable during an effective treatment, with 15-18% of subjects switching over time, despite a viraemia<50 copies/ml. R5 tropism and its stability were related to achieving and maintaining viraemia<2.5 copies/ml.

  18. A Low-Molecular-Weight Entry Inhibitor of both CCR5- and CXCR4-Tropic Strains of Human Immunodeficiency Virus Type 1 Targets a Novel Site on gp41▿

    Science.gov (United States)

    Murray, Edward J.; Leaman, Daniel P.; Pawa, Nishant; Perkins, Hannah; Pickford, Chris; Perros, Manos; Zwick, Michael B.; Butler, Scott L.

    2010-01-01

    A low-molecular-weight human immunodeficiency virus type 1 (HIV-1) inhibitor, PF-68742 (molecular weight, 573), has been identified in a high-throughput screen for compounds that block HIV-1 envelope glycoprotein (Env)-mediated fusion. The compound is shown to be potent against R5 and X4 isolates in both cell-cell fusion and antiviral assays (50% effective concentrations of ∼0.1 to 1 μM). Postfusion and HIV-1 pseudotyping control experiments confirm that PF-68742 is an entry inhibitor with Env as the specific target for antiviral action. PF-68742 was not able to block binding of monomeric gp120 to soluble CD4 or the binding of gp120:CD4 complexes to cell-associated CCR5, thus distinguishing PF-68742 from described gp120 antagonists and coreceptor binders. Escape variants of HIV-1NL4-3 were selected, and all resistant viruses were found to contain a common G514R (HxB2 numbering) mutation in Env, located proximal to the furin cleavage site in the fusion peptide of gp41. When introduced into wild-type NL4-3 gp41, G514R conferred resistance to PF-68742. Resistance via G514R is shown to be associated with enhancement of virion infectivity by PF-68742 that may result from altered properties of inhibitor-bound Env, rather than from a loss of compound binding. Wild-type viruses and those with substitutions in the disulfide loop (DSL) region of gp41 were also examined for PF-68742 sensitivity. Here, complete resistance to PF-68742 was found to occur through changes outside of position 514, including in the gp41 DSL region. The results highlight PF-68742 as a starting point for novel therapies against HIV-1 and provide new insights into models of Env-mediated fusion. PMID:20427524

  19. Herpes Simplex Virus Hepatitis: A Presentation of Multi-Institutional Cases to Promote Early Diagnosis and Management of the Disease

    Directory of Open Access Journals (Sweden)

    Ashwinee Natu

    2017-01-01

    Full Text Available Objective. To compare three cases of Herpes simplex virus (HSV hepatitis to increase early diagnosis of the disease. Case  1. A 23-year-old man with Crohn’s disease and oral HSV. HSV hepatitis was diagnosed clinically and he improved with acyclovir. Case  2. An 18-year-old G1P0 woman with transaminitis. Despite early empiric acyclovir therapy, she died due to fulminant liver failure. Case  3. A 65-year-old woman who developed transaminitis after liver transplant. Diagnosis was confirmed by biopsy and she had resolution of acute liver failure with acyclovir. Conclusion. It is imperative that clinicians be aware of patients at high risk for developing HSV hepatitis to increase timely diagnosis and prevent morbidity and fatality.

  20. A single dose of inactivated hepatitis A vaccine promotes HAV-specific memory cellular response similar to that induced by a natural infection.

    Science.gov (United States)

    Melgaço, Juliana Gil; Morgado, Lucas Nóbrega; Santiago, Marta Almeida; Oliveira, Jaqueline Mendes de; Lewis-Ximenez, Lia Laura; Hasselmann, Bárbara; Cruz, Oswaldo Gonçalves; Pinto, Marcelo Alves; Vitral, Claudia Lamarca

    2015-07-31

    Based on current studies on the effects of single dose vaccines on antibody production, Latin American countries have adopted a single dose vaccine program. However, no data are available on the activation of cellular response to a single dose of hepatitis A. Our study investigated the functional reactivity of the memory cell phenotype after hepatitis A virus (HAV) stimulation through administration of the first or second dose of HAV vaccine and compared the response to that of a baseline group to an initial natural infection. Proliferation assays showed that the first vaccine dose induced HAV-specific cellular response; this response was similar to that induced by a second dose or an initial natural infection. Thus, from the first dose to the second dose, increase in the frequencies of classical memory B cells, TCD8 cells, and central memory TCD4 and TCD8 cells were observed. Regarding cytokine production, increased IL-6, IL-10, TNF, and IFNγ levels were observed after vaccination. Our findings suggest that a single dose of HAV vaccine promotes HAV-specific memory cell response similar to that induced by a natural infection. The HAV-specific T cell immunity induced by primary vaccination persisted independently of the protective plasma antibody level. In addition, our results suggest that a single dose immunization system could serve as an alternative strategy for the prevention of hepatitis A in developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Successful promotion of hepatitis B vaccinations among Vietnamese-American children ages 3 to 18: results of a controlled trial.

    Science.gov (United States)

    McPhee, Stephen J; Nguyen, Thoa; Euler, Gary L; Mock, Jeremiah; Wong, Ching; Lam, Tram; Nguyen, Walter; Nguyen, Sang; Huynh Ha, Martin Quach; Do, Son T; Buu, Chau

    2003-06-01

    Chronic infection with the hepatitis B virus is endemic in Southeast Asian populations, including Vietnamese. Previous research has documented low rates of hepatitis B vaccine coverage among Vietnamese-American children and adolescents ages 3 to 18. To address this problem, we designed and tested in a controlled trial 2 public health outreach "catch-up" campaigns for this population. In the Houston, Texas metropolitan area, we mounted a media-led information and education campaign, and in the Dallas metropolitan area, we organized a community mobilization strategy. We evaluated the success of these interventions in a controlled trial, using the Washington, DC metropolitan area as a control site. To do so, we conducted computer-assisted telephone interviews with random samples of approximately 500 Vietnamese-American households in each of the 3 study sites both before and after the interventions. We assessed respondents' awareness and knowledge of hepatitis B and asked for hepatitis B vaccination dates for a randomly selected child in each household. When possible, we validated vaccination dates through direct contact with each child's providers. Awareness of hepatitis B increased significantly between the pre- and postintervention surveys in all 3 areas, and the increase in the media education area (+21.5 percentage points) was significantly larger than in the control area (+9.0 percentage points). At postintervention, significantly more parents knew that free vaccines were available for children in the media education (+31.9 percentage points) and community mobilization (+16.7 percentage points) areas than in the control area (+4.7 percentage points). An increase in knowledge of sexual transmission of hepatitis B virus was significant in the media education area (+14.0 percentage points) and community mobilization (+13.6 percentage points) areas compared with the control area (+5.2 percentage points). Parent- or provider-reported data (n = 783 for pre- and n = 784

  2. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    Science.gov (United States)

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity

    NARCIS (Netherlands)

    Stienstra, Rinke; Saudale, Fredy; Duval, Caroline; Keshtkar, Shohreh; Groener, Johanna E. M.; van Rooijen, Nico; Staels, Bart; Kersten, Sander; Müller, Michael

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  4. Kupffer cells promote hepatic steatosis via interleukin-1-dependent suppression of peroxisome proliferator-activated receptor activity

    NARCIS (Netherlands)

    Stienstra, R.; Saudale, F.; Duval, C.N.C.; Keshtkar, S.; Groener, C.; Rooijen, van N.; Staels, B.; Kersten, A.H.; Müller, M.R.

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  5. The -94Ins/DelATTG polymorphism in NFκB1 promoter modulates chronic hepatitis C and liver disease progression.

    Science.gov (United States)

    Fakhir, Fatima-Zohra; Lkhider, Mustapha; Badre, Wafaa; Alaoui, Rhimou; Pineau, Pascal; Ezzikouri, Sayeh; Benjelloun, Soumaya

    2016-04-01

    Infection with Hepatitis C Virus (HCV) is one of the most important risk factor of hepatocellular carcinoma (HCC). HCV is suspected to induce HCC primarily through chronic inflammation and promotion of cirrhosis, a well-known pre-neoplastic condition. The NF-κB pathway is a key regulator of immune and inflammatory processes and plays a pivotal role in oncogenesis. Genetic variations affecting the pathway may alter NF-κB activity in response to HCV infection and contribute to liver tumorigenesis. The present study aims to evaluate the association between -94Ins/DelATTG (rs28362491) polymorphism in NF-κB1 gene promoter region and 2758G>A (rs696) single nucleotide polymorphism in the 3'UTR region of NFκBIA and the outcomes of HCV infection. In this case-control study, 559 subjects (343 patients with HCV infection including 237 mild chronic hepatitis patients and 106 patients with Advanced Liver Disease (AdLD), 78 individuals who naturally cleared HCV and 138 healthy subjects) were genotyped for the NFκB1 and NFκBIA SNPs using PCR-RFLP. Logistic regression was used to assess the association between polymorphisms and the outcome and progression of the infection. Variation at rs696 was not associated with HCV resolution or progression (P>0.05). By contrast, the Ins/Ins genotype was associated with a 4-fold increase of AdLD risk when compared to mild chronic hepatitis C (OR=4.69; 95% CI, 2.15-10.19; P=0.0001) and the risk was more pronounced when compared to healthy controls (OR=5.02; 95% CI, 2.30-10.98; P=0.00005). Furthermore, carriage of Ins allele at rs28362491 was significantly associated with higher viral loads (P=0.003). Our results suggest that variation in NFκB1 gene promoter modulates the progression of chronic hepatitis C toward advanced liver disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Hepatitis B spliced protein (HBSP) promotes the carcinogenic effects of benzo [alpha] pyrene by interacting with microsomal epoxide hydrolase and enhancing its hydrolysis activity

    International Nuclear Information System (INIS)

    Chen, Jin-Yan; Chen, Wan-Nan; Jiao, Bo-Yan; Lin, Wan-Song; Wu, Yun-Li; Liu, Ling-Ling; Lin, Xu

    2014-01-01

    The risk of hepatocellular carcinoma (HCC) increases in chronic hepatitis B surface antigen (HBsAg) carriers who often have concomitant increase in the levels of benzo[alpha]pyrene-7,8-diol-9,10-epoxide(±) (BPDE)-DNA adduct in liver tissues, suggesting a possible co-carcinogenesis of Hepatitis B virus (HBV) and benzo[alpha]pyrene in HCC; however the exact mechanisms involved are unclear. The interaction between hepatitis B spliced protein (HBSP) and microsomal epoxide hydrolase (mEH) was confirmed using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assay; the effects of HBSP on mEH-mediated B[alpha]P metabolism was examined by high performance liquid chromatography (HPLC); and the influences of HBSP on B[alpha]P carcinogenicity were evaluated by bromodeoxyuridine cell proliferation, anchorage-independent growth and tumor xenograft. HBSP could interact with mEH in vitro and in vivo, and this interaction was mediated by the N terminal 47 amino acid residues of HBSP. HBSP could greatly enhance the hydrolysis activity of mEH in cell-free mouse liver microsomes, thus accelerating the metabolism of benzo[alpha]pyrene to produce more ultimate carcinnogen, BPDE, and this effect of HBSP requires the intact HBSP molecule. Expression of HBSP significantly increased the formation of BPDE-DNA adduct in benzo[alpha]pyrene-treated Huh-7 hepatoma cells, and this enhancement was blocked by knockdown of mEH. HBSP could enhance the cell proliferation, accelerate the G1/S transition, and promote cell transformation and tumorigenesis of B[alpha]P-treated Huh-7 hepatoma cells. Our results demonstrated that HBSP could promote carcinogenic effects of B[alpha]P by interacting with mEH and enhancing its hydrolysis activity

  7. Community-engaged strategies to promote hepatitis B testing and linkage to care in immigrants of Florida.

    Science.gov (United States)

    Stanford, Jevetta; Biba, Alma; Khubchandani, Jagdish; Webb, Fern; Rathore, Mobeen H

    2016-12-01

    To improve early identification and linkage to treatment and preventive services for hepatitis B virus (HBV) in persons born in countries with intermediate or high (>2%) HBV prevalence, the University of Florida Center for HIV/AIDS Research, Education, and Services (UF CARES) employed community-engaged strategies to implement the Hepatitis B Awareness and Service Linkage (HBASL) program. In this brief report, we present a summary of program components, challenges, and successes. Faith and community-based networks were established to improve HBV testing and screening and to increase foreign born nationals (FBNs) access to HBV care. A total of 1516 FBNs were tested and screened for hepatitis B. The majority were females (50.4%), Asians (62.8%), non-Hispanic (87.2%), and they also received post-test counseling (54.8%). Noted program advantages included the development of community networks and outreach to a large population of FBNs. The major challenges were institutional delays, pressures related to meeting program deliverables, and diversity within FBNs populations. Community health workers in the United States can replicate this program in their respective communities and ensure success by maintaining a strong community presence, establishing partnerships and linkage processes, developing a sustainability plan, and ensuring the presence of dedicated program staff. Copyright © 2016 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  8. Hepatitis C virus induced miR200c down modulates FAP-1, a negative regulator of Src signaling and promotes hepatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Sabarinathan Ramachandran

    Full Text Available Hepatitis C virus (HCV induced liver disease is the leading indication for liver transplantation (LTx. Reinfection and accelerated development of fibrosis is a universal phenomenon following LTx. The molecular events that lead to fibrosis following HCV infection still remains poorly defined. In this study, we determined microRNA (miRNA and mRNA expression profiles in livers from chronic HCV patients and normals using microarrays. Using Genego software and pathway finder we performed an interactive analysis to identify target genes that are modulated by miRNAs. 22 miRNAs were up regulated (>2 fold and 35 miRNAs were down regulated (>2fold compared to controls. Liver from HCV patients demonstrated increased expression of 306 genes (>3 fold and reduced expression of 133 genes (>3 fold. Combinatorial analysis of the networks modulated by the miRNAs identified regulation of the phospholipase C pathway (miR200c, miR20b, and miR31through cellular proto-oncogene tyrosine-protein kinase Src (cSrc, response to growth factors and hormones (miR141, miR107 and miR200c through peroxisome proliferator-activated receptor alpha and extracellular-signal-regulated kinases, and regulation of cellular proliferation (miR20b, miR10b, and miR141 through cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1 p21. Real time PCR (RT-PCR validation of the miRNA in HCV infected livers demonstrated a 3.3 ±0.9 fold increase in miR200c. In vitro transfection of fibroblasts with miR200c resulted in a 2.2 fold reduction in expression of tyrosine-protein phosphatase non-receptor type 13 or FAS associated phosphatase 1 (FAP-1 and 2.3 fold increase in expression of cSrc. miR200c transfection resulted in significant increases in expression of collagen and fibroblast growth factor (2.8 and 3.4 fold, p<0.05. Therefore, we propose that HCV induced increased expression of miR200c can down modulate the expression of FAP1, a critical regulator of Src and MAP kinase pathway that

  9. The role of chicken ovalbumin upstream promoter transcription factor II in the regulation of hepatic fatty acid oxidation and gluconeogenesis in newborn mice.

    Science.gov (United States)

    Planchais, Julien; Boutant, Marie; Fauveau, Véronique; Qing, Lou Dan; Sabra-Makke, Lina; Bossard, Pascale; Vasseur-Cognet, Mireille; Pégorier, Jean-Paul

    2015-05-15

    Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor involved in the control of numerous functions in various organs (organogenesis, differentiation, metabolic homeostasis, etc.). The aim of the present work was to characterize the regulation and contribution of COUP-TFII in the control of hepatic fatty acid and glucose metabolisms in newborn mice. Our data show that postnatal increase in COUP-TFII mRNA levels is enhanced by glucagon (via cAMP) and PPARα. To characterize COUP-TFII function in the liver of suckling mice, we used a functional (dominant negative form; COUP-TFII-DN) and a genetic (shRNA) approach. Adenoviral COUP-TFII-DN injection induces a profound hypoglycemia due to the inhibition of gluconeogenesis and fatty acid oxidation secondarily to reduced PEPCK, Gl-6-Pase, CPT I, and mHMG-CoA synthase gene expression. Using the crossover plot technique, we show that gluconeogenesis is inhibited at two different levels: 1) pyruvate carboxylation and 2) trioses phosphate synthesis. This could result from a decreased availability in fatty acid oxidation arising cofactors such as acetyl-CoA and reduced equivalents. Similar results are observed using the shRNA approach. Indeed, when fatty acid oxidation is rescued in response to Wy-14643-induced PPARα target genes (CPT I and mHMG-CoA synthase), blood glucose is normalized in COUP-TFII-DN mice. In conclusion, this work demonstrates that postnatal increase in hepatic COUP-TFII gene expression is involved in the regulation of liver fatty acid oxidation, which in turn sustains an active hepatic gluconeogenesis that is essential to maintain an appropriate blood glucose level required for newborn mice survival. Copyright © 2015 the American Physiological Society.

  10. TNF Receptor-2 Facilitates an Immunosuppressive Microenvironment in the Liver to Promote the Colonization and Growth of Hepatic Metastases

    DEFF Research Database (Denmark)

    Ham, Boram; Wang, Ni; D'Costa, Zarina

    2015-01-01

    Successful colonization by a cancer cell of a distant metastatic site requires immune escape in the new microenvironment. TNF signaling has been implicated broadly in the suppression of immune surveillance that prevents colonization at the metastatic site and therefore must be blocked...... chemotherapy-naïve colon cancer patients confirmed the presence of CD33(+)HLA-DR(-)TNFR2(+) myeloid cells in the periphery of hepatic metastases. Overall, our findings implicate TNFR2 in supporting MDSC-mediated immune suppression and metastasis in the liver, suggesting the use of TNFR2 inhibitors...... as a strategy to prevent metastatic progression to liver in colon, lung, and various other types of cancer....

  11. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Zhi-Ming; Zhou, Le-Yuan; Liu, Bin-Bin; Jia, Qin-An; Dong, Yin-Ying; Xia, Yun-Hong; Ye, Sheng-Long

    2014-10-01

    The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investigated. Non-contact co-culture altered the expression of 573 HCC genes by >2-fold of the control levels. Among the six selected genes, ELISA revealed increased protein levels of hepatic growth factor, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9). Incubation of HCC cells with medium conditioned by activated HSCs significantly increased the proliferation rate (Pexpression profile of HCC cells and affected their growth, migration and invasiveness. The results from the present study indicate that the interaction between the activated HSCs and HCC has an important role in the development of HCC.

  12. Downregulation of MicroRNA-145 Caused by Hepatitis B Virus X Protein Promotes Expression of CUL5 and Contributes to Pathogenesis of Hepatitis B Virus-Associated Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2015-10-01

    Full Text Available Background: Hepatitis B viral infection-induced hepatocellular carcinoma (HCC is a major threat to human health in China. Hepatitis B virus X protein (HBX, an HBV protein, has been reported to be involved in regulating the cellular activities of the host cells and is responsible for HCC oncogenesis. Methods and Results: In this study, we performed real-time PCR in tumor tissue samples collected from 53 HCC patients (25 HBV-positive cases and 28 HBV-negative cases to screen the candidate miRNAs that have previously been reported to be aberrantly expressed in HBV-associated HCC and found that miR-145 was significantly downregulated. The following computational analysis identified CUL5 and RAB5C as virtual targets of miR-145, whereas only CUL5 was verified as a validated target gene of miR-145 in liver cells via luciferase reporter assay. In line with this result, we found that both the mRNA and protein expression levels of CUL5 were significantly higher in HBV-positive than in HBV-negative HCC. An in vitro experiment demonstrated a significant decrease in the expression of miRNA-145, a substantial increase in the mRNA and protein expression of CUL5, and an enhanced proliferation of HBX over-expressing HepG2 cells compared with the control. In HepG2.2.15, we found significant decreases in both the expression of CUL5 and the cell growth rate of H cells transfected with 60 nM miR-145 mimics compared with the scramble controls. Conclusion: HBV infection promotes cell growth, at least partially, through the HBX-induced downregulation of miRNA-145 expression, which is responsible for the oncogenesis of HBV-associated HCC.

  13. Design and Elaboration of a Tractable Tricyclic Scaffold To Synthesize Druglike Inhibitors of Dipeptidyl Peptidase-4 (DPP-4), Antagonists of the C-C Chemokine Receptor Type 5 (CCR5), and Highly Potent and Selective Phosphoinositol-3 Kinase δ (PI3Kδ) Inhibitors.

    Science.gov (United States)

    Schwehm, Carolin; Kellam, Barrie; Garces, Aimie E; Hill, Stephen J; Kindon, Nicholas D; Bradshaw, Tracey D; Li, Jin; Macdonald, Simon J F; Rowedder, James E; Stoddart, Leigh A; Stocks, Michael J

    2017-02-23

    A novel molecular scaffold has been synthesized, and its incorporation into new analogues of biologically active molecules across multiple target classes will be discussed. In these studies, we have shown use of the tricyclic scaffold to synthesize potent inhibitors of the serine peptidase DPP-4, antagonists of the CCR5 receptor, and highly potent and selective PI3K δ isoform inhibitors. We also describe the predicted physicochemical properties of the resulting inhibitors and conclude that the tractable molecular scaffold could have potential application in future drug discovery programs.

  14. Low frequency of mutations in the core promoter and precore regions of hepatitis B virus in anti-HBe positive Brazilian carriers

    Directory of Open Access Journals (Sweden)

    Niel Christian

    2001-07-01

    Full Text Available Abstract Background Mutations in the core promoter and precore regions of the hepatitis B virus (HBV genome, notably the double substitution (AGG to TGA at nt positions 1762-1764 in the core promoter, and the precore stop codon mutation G to A at nt 1896, can often explain the anti-HBe phenotype in chronic carriers. However, the A1896 mutation is restricted to HBV isolates that have T at nt 1858. The double substitution at positions 1762-1764 has been described to occur preferentially in patients infected with strains showing C instead of T at nt 1858. Results HBV DNAs from 29 anti-HBe Brazilian samples were characterized by nucleotide sequencing of PCR products from precore region. Among them, 18 isolates presented C at nt 1858 (mostly genotype A strains. The 11 remaining isolates (genotypes D and F had T1858. The stop codon mutation at nt 1896 was found in seven isolates (24% of the total and 63% of the isolates that had T1858. The frequency of the double substitution at positions 1762-1764 was surprisingly low (20% among C1858 isolates. An association between A1896 and TGA 1762-1764 mutations was observed among genotype D isolates: these showed either none of the two mutations or both. Furthermore, strains mutated at positions 1896 and/or 1762-1764 also presented an elevated number of other, less common substitutions in the core promoter and precore regions. Conclusions The data reported here are not in accordance with some reports from other parts of the world. In half of the isolates, none of the mutations previously described could explain the anti-HBe phenotype.

  15. Alcoholic Hepatitis

    Science.gov (United States)

    ... avoid all alcohol. Protect yourself from hepatitis C. Hepatitis C is an infectious liver disease caused by a virus. Untreated, it can lead to cirrhosis. If you have hepatitis C and drink alcohol, you're far more likely ...

  16. Hepatitis Vaccines

    OpenAIRE

    Sina Ogholikhan; Kathleen B. Schwarz

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  17. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fabao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); You, Xiaona [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chi, Xiumei [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Wang, Tao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Niu, Junqi, E-mail: junqiniu@yahoo.com.cn [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  18. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors

    International Nuclear Information System (INIS)

    Zhao Lanjuan; Wang Lu; Ren Hao; Cao Jie; Li Li; Ke Jinshan; Qi Zhongtian

    2005-01-01

    Dysregulation of mitogen-activated protein kinase (MAPK) signaling pathways by various viruses has been shown to be responsible for viral pathogenicity. The molecular mechanism by which hepatitis C virus (HCV) infection caused human liver diseases has been investigated on the basis of abnormal intracellular signal events. Current data are very limited involved in transmembrane signal transduction triggered by HCV E2 protein. Here we explored regulation of the MAPK/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway by E2 expressed in Chinese hamster oval cells. In human hepatoma Huh-7 cells, E2 specifically activated the MAPK/ERK pathway including downstream transcription factor ATF-2 and greatly promoted cell proliferation. CD81 and low density lipoprotein receptor (LDLR) on the cell surface mediated binding of E2 to Huh-7 cells. The MAPK/ERK activation and cell proliferation driven by E2 were suppressed by blockage of CD81 as well as LDLR. Furthermore, pretreatment with an upstream kinase MEK1/2 inhibitor U0126 also impaired the MAPK/ERK activation and cell proliferation induced by E2. Our results suggest that the MAPK/ERK signaling pathway triggered by HCV E2 via its receptors maintains survival and growth of target cells

  19. The HBx oncoprotein of hepatitis B virus deregulates the cell cycle by promoting the intracellular accumulation and re-compartmentalization of the cellular deubiquitinase USP37.

    Directory of Open Access Journals (Sweden)

    Nehul Saxena

    Full Text Available The HBx oncoprotein of hepatitis B Virus has been accredited as one of the protagonists in driving hepatocarcinogenesis. HBx exerts its influence over the cell cycle progression by potentiating the activity of cyclin A/E-CDK2 complex, the Cyclin A partner of which is a well-known target of cellular deubiquitinase USP37. In the present study, we observed the intracellular accumulation of cyclin A and USP37 proteins under the HBx microenvironment. Flow cytometry analysis of the HBx-expressing cells showed deregulation of cell cycle apparently due to the enhanced gene expression and stabilization of USP37 protein and deubiquitination of Cyclin A by USP37. Our co-immunoprecipitation and confocal microscopic studies suggested a direct interaction between USP37 and HBx. This interaction promoted the translocation of USP37 outside the nucleus and prevented its association and ubiquitination by E3 ubiquitin ligases - APC/CDH1 and SCF/β-TrCP. Thus, HBx seems to control the cell cycle progression via the cyclin A-CDK2 complex by regulating the intracellular distribution and stability of deubiquitinase USP37.

  20. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Promotes Hepatic Stellate Cells Migration via Canonical NF-κB/MMP9 Pathway.

    Directory of Open Access Journals (Sweden)

    Mingcui Xu

    Full Text Available In the liver, the signal and function of tumor necrosis factor-like weak inducer of apoptosis (TWEAK have mainly been assessed in association with liver regeneration. However, the effects of TWEAK on liver fibrosis have not been fully elucidated. To investigate the effects of TWEAK on human hepatic stellate cells (HSCs and to explore the relevant potential mechanisms, human HSCs line-LX-2 were cultured with TWEAK. Cell migration was detected by transwell assay; cell viability was evaluated by Cell Counting Kit-8; the expression of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13 gene was identified by quantitative real-time polymerase chain reaction and western blotting; the activity of matrix metalloproteinases (MMPs was tested by enzyme-linked immuno sorbent assay; small interfering RNA transfection was applied for depletion of MMP9 and p65. The result of transwell assay revealed that TWEAK promoted LX-2 migration. Subsequently, our data testified that the expression and activity of MMP9 was induced by TWEAK in LX-2 cells, which enhanced the migration. Furthermore, our findings showed that TWEAK upregulated the phosphorylation of IκBα and p65 protein to increase MMP9 expression in LX-2 cells. Meanwhile, the alpha-smooth muscle actin, vimentin and desmin expression were upregulated following TWEAK treatment. The results in the present study revealed that TWEAK promotes HSCs migration via canonical NF-κB/MMP9 pathway, which possibly provides a molecular basis targeting TWEAK for the therapy of liver fibrosis.

  1. Tumour necrosis factor -308 and -238 promoter polymorphisms are predictors of a null virological response in the treatment of Brazilian hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Tarciana Grandi

    2014-06-01

    Full Text Available Certain host single nucleotide polymorphisms (SNPs affect the likelihood of a sustained virological response (SVR to treatment in subjects infected with hepatitis C virus (HCV. SNPs in the promoters of interleukin (IL-10 (-1082 A/G, rs1800896, myxovirus resistance protein 1 (-123 C/A, rs17000900 and -88 G/T, rs2071430 and tumour necrosis factor (TNF (-308 G/A, rs1800629 and -238 G/A, rs361525 genes and the outcome of PEGylated α-interferon plus ribavirin therapy were investigated. This analysis was performed in 114 Brazilian, HCV genotype 1-infected patients who had a SVR and in 85 non-responders and 64 relapsers. A significantly increased risk of having a null virological response was observed in patients carrying at least one A allele at positions -308 [odds ratios (OR = 2.58, 95% confidence intervals (CI = 1.44-4.63, p = 0.001] or -238 (OR = 7.33, 95% CI = 3.59-14.93, p < 0.001 in the TNF promoter. The risk of relapsing was also elevated (-308: OR = 2.87, 95% CI = 1.51-5.44, p = 0.001; -238: OR = 4.20, 95% CI = 1.93-9.10, p < 0.001. Multiple logistic regression of TNF diplotypes showed that patients with at least two copies of the A allele had an even higher risk of having a null virological response (OR = 16.43, 95% CI = 5.70-47.34, p < 0.001 or relapsing (OR = 6.71, 95% CI = 2.18-20.66, p = 0.001. No statistically significant association was found between the other SNPs under study and anti-HCV therapy response.

  2. Dysregulated Response of Follicular Helper T cells to Hepatitis B Surface Antigen Promotes HBV Persistence in Mice and Associates With Outcomes of Patients.

    Science.gov (United States)

    Wang, Xiaowen; Dong, Qingyang; Li, Qian; Li, Yuanyuan; Zhao, Dianyuan; Sun, Jinjie; Fu, Junliang; Meng, Fanping; Lin, Hu; Luan, Junjie; Liu, Biao; Wang, Min; Wang, Fusheng; He, Fuchu; Tang, Li

    2018-03-12

    Production of neutralizing antibodies against hepatitis B surface antigen (HBsAg) is dysregulated in patients with persistent hepatitis V virus (HBV) infection. We investigated mechanisms by which this immune response to the virus is disrupted and whether it can be restored to promote clearance of HBV. Immune-competent C57BL/6N and C57BL/6J, as well as mice deficient in follicular helper T cells (Tfh cell-deficient), B cells, or Foxp3 + T-regulatory cells (Treg cell-deficient), were given hydrodynamic injections of pAAV/HBV1.2 plasmids. Some mice were given injections of sorted Tfh cells, pan-B cells, Treg cells, or a blocking antibody against CTLA4. Production of antibodies against HBsAg and clearance of HBV were assessed by flow cytometry, ELISA, PCR and immunohistochemical analyses. We obtained blood samples from patients with HBV infection and isolated Treg cells. We measured the ability of Treg cells to suppress production of interleukin 21 (IL21) in CD4 + T cells. Immune-competent C57BL/6N and C57BL/6J mice transfected with the plasmid encoding HBV had features of viral clearance and viral persistence observed in humans. A Tfh-cell response to HBsAg was required for clearance of HBV and was suppressed by Treg cells in mice with persistent HBV infection. Depletion of Treg cells or inhibition of Treg-cell function (with blocking antibody against CTLA4) restored the Tfh-cell response against HBsAg and clearance of HBV in mice. Impaired Tfh cell response to HBsAg was observed in blood from patients with chronic HBV infection, responsiveness was restored by depletion of Treg cells or blocking antibody against CTLA4. In studies of HBV-infected mice and blood from patients with chronic HBV infection, we found a Tfh-cell response to HBsAg of to be required for HBV clearance, and that this response was blocked by Treg cells. Inhibiting Treg cell activity using neutralizing antibody against CTLA4 restored the ability of Tfh cells to clear HBV infection; this approach

  3. Hepatitis C virus core+1/ARFP modulates Cyclin D1/pRb pathway and promotes carcinogenesis.

    Science.gov (United States)

    Moustafa, Savvina; Karakasiliotis, Ioannis; Mavromara, Penelope

    2018-02-14

    Viruses often encompass overlapping reading frames and unconventional translation mechanisms in order to maximize the output from a minimum genome and to orchestrate timely their gene expression. HCV possesses such an unconventional open reading frame (ORF) within the core-coding region, encoding an additional protein designated initially as ARFP or F or core+1. Two predominant isoforms of core+1/ARFP have been reported, core+1/L initiating from codon 26 and core+1/S initiating from codons 85/87 of the polyprotein coding region, respectively. The biological significance of core+1/ARFP expression remains elusive. The aim of the present study was to gain insight into the functional and pathological properties of core+1/ARFP through its interaction with the host cell combining in vitro and in vivo approaches. Our data provide strong evidence that the core+1/ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing either core+1/S or core+1/L isoforms and in transgenic liver disease mouse models expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the cell cycle. In addition, core+1/S was found to enhance liver regeneration and oncogenesis in transgenic mice. The induction of the cell cycle together with increased mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/ARFP proteins argue for an oncogenic potential of these proteins and an important role in HCV-associated pathogenesis. IMPORTANCE This study sheds light on the biological importance of a unique HCV protein. We show here that core+1/ARFP of HCV-1a interacts with the host machinery leading to acceleration of cell cycle and enhancement of liver carcinogenesis. This pathological mechanism(s) may complement the action of other viral proteins with oncogenic properties leading to the development of hepatocellular carcinoma. In addition, given that immunological

  4. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Osawa

    Full Text Available Tumor necrosis factor (TNF-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α(-/- mice and TNF-α(+/+ mice after bile duct ligation (BDL. Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL. TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I mRNA, transforming growth factor (TGF-β mRNA, and α-smooth muscle actin (αSMA protein by CBDL+CDL in the livers of TNF-α(-/- mice were comparable to those in TNF-α(+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α(-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α(-/- mice than in TNF-α(+/+ mice. Fibrosis in the lobe of TIMP-1(-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.

  5. Autoimmune Hepatitis

    Science.gov (United States)

    ... with type 1 autoimmune hepatitis commonly have other autoimmune disorders, such as celiac disease, an autoimmune disease in ... 2 can also have any of the above autoimmune disorders. What are the symptoms of autoimmune hepatitis? The ...

  6. Hepatitis A

    Science.gov (United States)

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  7. Hepatitis (For Parents)

    Science.gov (United States)

    ... to prevent HBV infection. Read more about hepatitis B . What Is Hepatitis C? Like hepatitis B, the hepatitis C virus (HCV) ... It Possible to Donate Blood After Having Hepatitis B? Hepatitis C Hand Washing Immunizations Blood Transfusions Blood Test: Liver ...

  8. Hepatitis C and Incarceration

    Science.gov (United States)

    HEPATITIS C & INCARCERATION What is hepatitis? “Hepatitis” means inflammation or swelling of the liver. The liver is an ... of viral hepatitis: Hepatitis A, Hepatitis B, and Hepatitis C. They are all different from each other and ...

  9. [Relationship between hepatitis B virus polymerase gene mutation patterns of rtM204I/V and pre-core/basal core promoter mutations].

    Science.gov (United States)

    Yan, Li; Wang, Jie-Fei; Wang, Zhan-Hui; Sun, Jian; Zhou, Bin; Hou, Jinlin

    2014-12-01

    To investigate the relationship between mutations of rtM204V/I (methionine to valine or isoleucine at position rt204 of reverse transcriptase domain) in the hepatitis B virus (HBV) polymerase gene and the G1896A and G1899A single mutations in the pre-eore (PC) region and the A1762T and G1764A double-mutations in the basal core promoter (BCP) region. A total of 2,849 hepatitis B complete genome sequences were retrieved from the GenBank/EMBL/DDBJ. The amino acid sequence of the of reverse transcriptase domain and genome sequences of the PC region and the BCP region were aligned using MEGA4 software. Data were calculated using Microsoft Excel and evaluated using SPSS 13.0 statistical software. Among the 2, 849 HBV complete genome sequences, 217 (8%) strains were identified with Y(I/V) DD and 120 of those had the YIDD mutation and 97 had the YVDD mutation. Of the 1543 strains (54.2%) with PC-BCP mutations, seven mutation patterns of G 1896A-G 1899A-G 1896A-G 1899A-A 1762T/G 1764A, A 1762T/G 1764AG 1896A, A 1762T/G 1764A-G 1899A, and A 1762T/G 1764A-G 1896A-G 1899A were identified. of YMDD and PC-BCP had a higher incidence than the single YMDD mutation (76% vs 24.0%, x2=45.283, P=0.000). The double-mutations of YIDD and PC-BCP had a higher incidence than the double-mutation of YVDD and PC-BCP (85% vs 64.9%, x2=11.836, P=0.000). The double-mutation for lamivudine resistance of YMDD and PC-BCP had a higher incidence than the double pre-existent YMDD and PC-BCP mutations (89.3% vs 58.9%, x2=27.084, P=0.000). The three mutation patterns of G1896A-G1899A (P=0.000, OR=7.573), A1762T/G1764A-G1899A (P=0.000, OR=6.539) and A1762T/G1764A-G1896A-G1899A (P=0.000, OR=6.596) were associated with a greater risk of developing the YIDD mutation, according to binary logistic analysis. There is a relationship between the HBV YI/VDD mutation and PC-BCP mutations. Different PC-BCP mutation patterns have different effects on the YI/VDD mutation.

  10. Hepatitis Panel

    Science.gov (United States)

    ... others, the virus can cause long-term, chronic liver disease . Hepatitis C is most often spread by contact with infected ... contact with an infected person. Many people with hepatitis C develop chronic liver disease and cirrhosis . A hepatitis panel includes tests for ...

  11. Hepatitis C

    Science.gov (United States)

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  12. Hypoksisk hepatitis

    DEFF Research Database (Denmark)

    Amadid, Hanan; Schiødt, Frank Vinholt

    2014-01-01

    Hypoxic hepatitis (HH), also known as ischaemic hepatitis or shock liver, is an acute liver injury caused by hepatic hypoxia. Cardiac failure, respiratory failure and septic shock are the main underlying conditions. In each of these conditions, several haemodynamic mechanisms lead to hepatic...... hypoxia. A shock state is observed in only 50% of cases. Thus, shock liver and ischaemic hepatitis are misnomers. HH can be a diagnostic pitfall but the diagnosis can be established when three criteria are met. Prognosis is poor and prompt identification and treatment of the underlying conditions...

  13. Hepatitis Vaccines

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  14. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    Science.gov (United States)

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu, E-mail: 1293363632@QQ.com [Faculty of Graduate Studies of Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region (China); Deng, Xin, E-mail: Hendly@163.com [Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning 530011, Guangxi Zhuang Autonomous Region (China); Liang, Jian, E-mail: lj99669@163.com [Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region (China)

    2017-03-15

    Hepatic fibrosis (HF) is the pathological component of a variety of chronic liver diseases. Hepatic stellate cells (HSC) are the main collagen-producing cells in the liver and their activation promotes HF. If HSC activation and proliferation can be inhibited, HF occurrence and development can theoretically be reduced and even reversed. Over the past ten years, a number of studies have addressed this process, and here we present a review of HSC modulation and HF reversal. - Highlights: • We present a review of the modulation of hepatic stellate cells (HSC) and reversibility of hepatic fibrosis (HF). • HSC are the foci of HF occurrence and development, HF could be prevented and treated by modulating HSC. • If HSC activation and proliferation can be inhibited, HF could theoretically be inhibited and even reversed. • Prevention or reversal of HSC activation, or promotion of HSC apoptosis, immune elimination, and senescence may prevent, inhibit or reverse HF.

  16. Hepatitis amebiana

    OpenAIRE

    Cortés Mendoza, Eduardo

    2011-01-01

    Se ha considerado habitualmente la hepatitis amebiana como una inflamación del parénquima hepático causada por localización del parásito mismo en el hígado, distinguiéndose la forma supurada o absceso y el estado presupurativo o hepatitis aguda.

  17. Hepatitis A

    Science.gov (United States)

    ... 간염: 아시아 또는 태평양군도 계 미국인의 숙지 사항 (Korean) Hepatitis B: Mga Tip para sa mga Amerikano ... hepatitis A virus typically spreads through contact with food or water that has been contaminated by an ...

  18. Simvastatin reduces atherogenesis and promotes the expression of hepatic genes associated with reverse cholesterol transport in apoE-knockout mice fed high-fat diet

    Directory of Open Access Journals (Sweden)

    Tian Hua

    2011-01-01

    Full Text Available Abstract Background Statins are first-line pharmacotherapeutic agents for hypercholesterolemia treatment in humans. However the effects of statins on atherosclerosis in mouse models are very paradoxical. In this work, we wanted to evaluate the effects of simvastatin on serum cholesterol, atherogenesis, and the expression of several factors playing important roles in reverse cholesterol transport (RCT in apoE-/- mice fed a high-fat diet. Results The atherosclerotic lesion formation displayed by oil red O staining positive area was reduced significantly by 35% or 47% in either aortic root section or aortic arch en face in simvastatin administrated apoE-/- mice compared to the control. Plasma analysis by enzymatic method or ELISA showed that high-density lipoprotein-cholesterol (HDL-C and apolipoprotein A-I (apoA-I contents were remarkably increased by treatmen