WorldWideScience

Sample records for ccl20 pathways regulates

  1. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    Highlights: • Alterations in mitochondrial DNA are commonly found in various human cancers. • Mutations in BALB mitochondrial DNA induce up-regulation of chemokine CCL20. • Increased growth and motility of mtBALB cells is associated with CCL20 levels. • mtDNA changes in BALB induce in vivo tumor growth through CCL20 up-regulation. • Mutations in mitochondrial DNA play important roles in keratinocyte neoplasia. - Abstract: mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF

  2. Transforming Growth Factor-β and Interleukin-1β Signaling Pathways Converge on the Chemokine CCL20 Promoter.

    Science.gov (United States)

    Brand, Oliver J; Somanath, Sangeeta; Moermans, Catherine; Yanagisawa, Haruhiko; Hashimoto, Mitsuo; Cambier, Stephanie; Markovics, Jennifer; Bondesson, Andrew J; Hill, Arthur; Jablons, David; Wolters, Paul; Lou, Jianlong; Marks, James D; Baron, Jody L; Nishimura, Stephen L

    2015-06-05

    CCL20 is the only chemokine ligand for the chemokine receptor CCR6, which is expressed by the critical antigen presenting cells, dendritic cells. Increased expression of CCL20 is likely involved in the increased recruitment of dendritic cells observed in fibroinflammatory diseases such as chronic obstructive pulmonary disease (COPD). CCL20 expression is increased by the proinflammatory cytokine IL-1β. We have determined that IL-1β-dependent CCL20 expression is also dependent on the multifunctional cytokine TGF-β. TGF-β is expressed in a latent form that must be activated to function, and activation is achieved through binding to the integrin αvβ8 (itgb8). Here we confirm correlative increases in αvβ8 and IL-1β with CCL20 protein in lung parenchymal lysates of a large cohort of COPD patients. How IL-1β- and αvβ8-mediated TGF-β activation conspire to increase fibroblast CCL20 expression remains unknown, because these pathways have not been shown to directly interact. We evaluate the 5'-flanking region of CCL20 to determine that IL-1β-driven CCL20 expression is dependent on αvβ8-mediated activation of TGF-β. We identify a TGF-β-responsive element (i.e. SMAD) located on an upstream enhancer of the human CCL20 promoter required for efficient IL-1β-dependent CCL20 expression. By chromatin immunoprecipitation, this upstream enhancer complexes with the p50 subunit of NF-κB on a NF-κB-binding element close to the transcriptional start site of CCL20. These interactions are confirmed by electromobility shift assays in nuclear extracts from human lung fibroblasts. These data define a mechanism by which αvβ8-dependent activation of TGF-β regulates IL-1β-dependent CCL20 expression in COPD. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Cyr61/CCN1 induces CCL20 production by keratinocyte via activating p38 and JNK/AP-1 pathway in psoriasis.

    Science.gov (United States)

    Li, Huidan; Li, Haichuan; Huo, Rongfen; Wu, Pinru; Shen, Zhengyu; Xu, Hui; Shen, Baihua; Li, Ningli

    2017-10-01

    Psoriasis is a common chronic skin disease characterized by epidermal hyperplasia and inflammation. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) has recently been implicated in psoriasis pathogenesis by promoting keratinocyte activation. However, the mechanisms by which CCN1 enhances cutaneous inflammation are not fully understood. In this study, we investigated the role of CCN1 on the expression of CCL20 in human keratinocyte. By double-label immunofluorescence staining, we first identified that the expression of CCN1 colocalized well with CCL20 production in the epidermis of psoriasis skin lesion. Furthermore, in vivo, blocking or knockdown CCN1 expression ameliorated skin inflammation and reduced the expression of CCL20 in both imiquimod and IL-23-induced psoriasis-like mouse models, which indicated that CCN1 might be involved in the regulation of CCL20 production in psoriasis. Next, in vitro, we stimulated primary normal human epidermal keratinocyte (NHEK) with exogenous protein CCN1 and found that CCN1 directly upregulated CCL20 production independent of TNF-α, IL-22 and IL-17 pathway. Lastly, the signaling pathway study showed that CCN1 enhanced the binding of AP-1 to the CCL20 promoter via crosstalk with p38 and JNK. Our study demonstrates that CCN1 stimulates CCL20 production in vitro and in vivo, and thus supports the notion that overexpressed CCN1 in hyperproliferating keratinocyte is functionally involved in the recruitment of inflammatory cells to skin lesions affected by psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  4. The chemokines CCL11, CCL20, CCL21, and CCL24 are preferentially expressed in polarized human secondary lymphoid follicles.

    Science.gov (United States)

    Buri, Caroline; Gutersohn, Andreas; Hauser, Chantal; Kappeler, Andreas; Mueller, Christoph

    2004-10-01

    Chemokines regulate cellular trafficking to and from lymphoid follicles. Here, the distribution pattern of four CCL chemokines is defined by in situ hybridization in human lymphoid follicles from tonsils and lymph nodes (LNs) of newborns and adults. Cells expressing CCL11 (eotaxin) and CCL20 (Exodus) were preferentially located within follicles, while cells expressing CCL21 (secondary lymphoid-tissue chemokine) and CCL24 (eotaxin-2) mRNA were almost exclusively found in the perifollicular areas. Hence, the two CCR3-binding chemokines, CCL11 and CCL24, showed a mutually exclusive expression pattern in the intra- and extra-follicular areas, respectively. Chemokine gene expression paralleled follicular maturation: in tonsils, where approximately 80% of follicles are polarized, CCL11 and CCL20 mRNA-positive cells were detected more frequently than in lymph nodes from adults, where about half of follicles are non-polarized. No intrafollicular chemokine expression was detectable in the primary follicles from newborns. Extrafollicular cells expressing CCL21 and CCL24 were again more frequent in tonsils than in LNs from adults. The observed preferential presence of cells expressing CC chemokines in polarized human lymphoid follicles indicates that chemokines are not only instrumental in the induction of follicle formation, but may also be involved in their further differentiation.

  5. Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakatsumi

    2017-11-01

    Full Text Available C-C chemokine ligand 2 (CCL2 plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF-κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1 but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1 as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1, resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB and that CCL2 produced by this pathway contributes to tumor progression.

  6. Transgenic Mouse Model Harboring the Transcriptional Fusion Ccl20-Luciferase as a Novel Reporter of Pro-Inflammatory Response

    Science.gov (United States)

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691

  7. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  8. Tanshinol ameliorates CCl4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang R

    2018-05-01

    Full Text Available Rong Wang,* Jing Wang,* Fuxing Song, Shengnan Li, Yongfang Yuan Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Tanshinol, a water-soluble component isolated from Salvia miltiorrhiza Bunge, has a variety of biological activities involving anti-fibrotic effect. However, the exact role and the underlying mechanisms remain largely unclear. This study mainly focused on the anti-hepatic fibrotic activities and mechanisms of tanshinol on carbon tetrachloride (CCl4-induced liver fibrosis in rats via anti-oxidative and anti-inflammation pathways. The rats were divided into 4 groups as follows: control, model, tanshinol 20 mg/kg, and tanshinol 40 mg/kg. Except for the control group, CCl4 was used to induce liver fibrosis processing for 8 weeks, meanwhile rats in tanshinol groups were intraperitoneally injected with additional tanshinol. Control group simultaneously received the same volumes of olive oil and saline. The potentially protective effect and mechanisms of tanshinol on liver fibrosis in rats were evaluated. The serum levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin were obviously lower in the tanshinol treatment groups related to model group. Compared with the model group, the levels of hyaluronic acid, type IV collagen, Laminin (LN, and procollagen III peptide (PIIIP in serum were significantly decreased after tanshinol treatment. Furthermore, tanshinol could regulate Nrf2/HO-1 signaling pathway and increase the level of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px, and also decrease the level of malondialdehyde (MDA to against damage induced by oxidative stress. Simultaneously tanshinol could regulate nuclear factor kappa B signaling pathway to inhibit expression of inflammation factors, including transforming growth factor-β, tumor necrosis factor-α, Cox-2

  9. Chemokine (C-C motif ligand 20, a potential biomarker for Graves' disease, is regulated by osteopontin.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available CONTEXT: Graves' disease (GD is a common autoimmune disease involving the thyroid gland. The altered balance of pro- and anti-inflammatory cytokines plays an important role in the pathogenesis of GD. Chemokine (C-C motif ligand 20 (CCL20 is important for interleukin-17 (IL-17 signal activation and a potent chemoattractant for Th17 cells. Meanwhile, Osteopontin (OPN, a broadly expressed pleiotropic cytokine, has been implicated in GD through inducing Th1-involved response to enhance the production of proinflammatory cytokines and chemokines, but little is known about the role of OPN in regulating CCL20 and IL-17 signaling. OBJECTIVE: This study sought to explore the possibility of CCL20 level as a biomarker for GD, as well as investigate the role of OPN in regulating CCL20 production. METHODS: Fifty untreated GD patients, fifteen euthyroid GD patients, twelve TRAb-negative GD patients and thirty-five healthy control donors were recruited. OPN, CCL20 and other clinical GD diagnosis parameters were measured. CD4+T cells were isolated from peripheral blood mononuclear cells (PBMCs using antibody-coated magnetic beads. Enzyme-linked immune-sorbent assay and quantitative polymerase chain reaction were used to determine CCL20 expression level. RESULTS: We found that the plasma CCL20 level was enhanced in GD patients and decreased in euthyroid and TRAb-negative GD patients. In addition, CCL20 level correlated with GD clinical diagnostic parameters and plasma OPN level. Moreover, we demonstrated that recombinant OPN and plasma from untreated GD patients increased the expression of CCL20 in CD4+T cells, which could be blocked by OPN antibody. Furthermore, we found that the effect of OPN on CCL20 expression was mediated by β3 integrin receptor, IL-17, NF-κB and MAPK pathways. CONCLUSIONS: These results demonstrated that CCL20 might serve as a biomarker for GD and suggested the possible role of OPN in induction of CCL20 expression.

  10. Intrapulmonary Human Cytomegalovirus Replication in Lung Transplant Recipients Is Associated With a Rise of CCL-18 and CCL-20 Chemokine Levels.

    Science.gov (United States)

    Weseslindtner, Lukas; Görzer, Irene; Roedl, Kevin; Küng, Erik; Jaksch, Peter; Klepetko, Walter; Puchhammer-Stöckl, Elisabeth

    2017-01-01

    In lung transplant recipients (LTRs), human cytomegalovirus (HCMV) DNA detection in the bronchoalveolar lavage fluid (BALF) indicates HCMV replication in the pulmonary compartment. Such local HCMV replication episodes may remain asymptomatic or may lead to symptomatic HCMV disease. Here, we investigated LTRs with intrapulmonary HCMV replication for the chemokines CCL-18 and CCL-20. In particular, we analyzed whether these chemokines rise in the allograft and/or the blood and are associated with HCMV disease. CCL-18 and CCL-20 levels were quantitated by ELISA in BALF and serum samples from 60 LTRs. During the posttransplant follow-up, these LTRs displayed HCMV DNA detection in the BALF by PCR, whereas other infectious agents were undetectable. Furthermore, we investigated samples from 10 controls who did not display any HCMV replication episode during the follow-up. HCMV replication in the allograft was associated with a significant increase of CCL-18 and CCL-20 BALF levels (P Wilcoxon signed-rank test) and a significant rise of CCL-20 (P Wilcoxon signed-rank test) but not of CCL-18 in the blood. In controls, no such chemokine increase was observed. Furthermore, CCL-18 BALF levels were significantly higher in 8 LTRs who additionally developed HCMV disease, as compared with the other 52 patients in whom HCMV replication remained asymptomatic (P test). HCMV replication in the allograft causes an intrapulmonary increase of CCL-18 and CCL-20 and a systemic rise of CCL-20 serum levels. Strong intrapulmonary CCL-18 responses are associated with symptomatic HCMV disease, proposing that CCL-18 BALF levels could serve as a marker.

  11. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model

    DEFF Research Database (Denmark)

    Getschman, A E; Imai, Y; Larsen, O

    2017-01-01

    signaling. When given in an IL-23-dependent mouse model for psoriasis, CCL20 S64C prevented psoriatic inflammation and the up-regulation of IL-17A and IL-22. Our results validate CCR6 as a tractable therapeutic target for psoriasis and demonstrate the value of CCL20 S64C as a lead compound....

  12. Intrinsic renal cells induce lymphocytosis of Th22 cells from IgA nephropathy patients through B7-CTLA-4 and CCL-CCR pathways.

    Science.gov (United States)

    Gan, Lu; Zhou, Qiaoling; Li, Xiaozhao; Chen, Chen; Meng, Ting; Pu, Jiaxi; Zhu, Mengyuan; Xiao, Chenggen

    2018-04-01

    IgA nephropathy (IgAN), the most common glomerulonephritis, has an unclear pathogenesis. The role of Th22 cells, which are intimately related to proteinuria and progression in IgAN, in mediating infection-related IgAN is unclear. This study aimed to characterize the association between intrinsic renal cells (tubular epithelial cells and mesangial cells) and Th22 cells in immune regulation of infection-related IgAN and to elucidate the impact of Th22 lymphocytosis; the proinflammatory cytokines IL-1, IL-6, and TNF-α; and CCL chemokines on kidney fibrosis. Hemolytic streptococcus infection induced an increase in IL-1, IL-6, and TNF-α, resulting in Th22 cell differentiation from T lymphocytes obtained from patients with IgAN, and the CCL20-CCR6, CCL22-CCR4, and/or CCL27-CCR10 axes facilitated Th22 cell chemotaxis. The increased amount of Th22 cells caused an increase in TGF-β1 levels, and anti-CD80, anti-CD86, and CTLA-4Ig treatment reduced TGF-β1 levels by inhibiting Th22 lymphocytosis and secretion of cytokines and chemokines, thus potentially relieving kidney fibrosis. Our data suggest that Th22 cells might be recruited into the kidneys via the CCL20-CCR6, CCL22-CCR4, and/or CCL27-CCR10 axes by mesangial cells and tubular epithelial cells in infection-related IgAN. Th22 cell overrepresentation was attributed to stimulation of the B7-CTLA-4Ig antigen-presenting pathway and IL-1, IL-6, and TNF-α.

  13. CCL19/CCR7 contributes to the pathogenesis of endometriosis via PI3K/Akt pathway by regulating the proliferation and invasion of ESCs.

    Science.gov (United States)

    Diao, Ruiying; Wei, Weixia; Zhao, Jinghui; Tian, Fuying; Cai, Xueyong; Duan, Yong-Gang

    2017-11-01

    The level of CCL19 increased in the peritoneal fluid of women with endometriosis, but the precise mechanism of CCL19/CCR7 in the pathogenesis of endometriosis remains unknown. ELISA and immunohistochemistry were performed to analyze CCL19/CCR7 expressions in peritoneal fluid and endometrium from women with endometriosis (n = 38) and controls (n = 32). Cell proliferation and transwell invasion assays were applied to detect proliferation and invasion of human endometrial stromal cells (ESCs). Expressions of Bcl2, MMP2, MMP9, and p-AKT/AKT were analyzed by Western blot. Peritoneal fluid concentration of CCL19 in patients with endometriosis was higher than that in controls. Those patients with moderate/severe endometriosis had significantly higher peritoneal fluid concentrations of CCL19 compared to those with minimal/mild endometriosis. Higher CCL19 and CCR7 were found in the endometrium with endometriosis compared to control. CCL19 significantly enhanced ESC proliferation and invasion through CCR7 via activating PI3K/Akt signal pathways. CCL19/CCR7 interaction significantly enhanced phosphorylation of Akt, Bcl2, MMP2, and MMP9 in ESCs. These data indicate CCL19/CCR7 contributes to proliferation and invasion of ESCs, which are conducive to the pathogenesis of endometriosis through activating PI3K/Akt pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Lycium barbarum polysaccharides improve CCl4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in wistar rats.

    Science.gov (United States)

    Gan, Fang; Liu, Qing; Liu, Yunhuan; Huang, Da; Pan, Cuiling; Song, Suquan; Huang, Kehe

    2018-01-01

    Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl 4 )-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl 4 and CCl 4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl 4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl 4 -induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl 4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1β, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl 4 -induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl 4 -induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment.

    Science.gov (United States)

    Wunderlich, Claudia M; Ackermann, P Justus; Ostermann, Anna Lena; Adams-Quack, Petra; Vogt, Merly C; Tran, My-Ly; Nikolajev, Alexei; Waisman, Ari; Garbers, Christoph; Theurich, Sebastian; Mauer, Jan; Hövelmeyer, Nadine; Wunderlich, F Thomas

    2018-04-25

    Colorectal cancer (CRC) is one of the most lethal cancers worldwide in which the vast majority of cases exhibit little genetic risk but are associated with a sedentary lifestyle and obesity. Although the mechanisms underlying CRC and colitis-associated colorectal cancer (CAC) remain unclear, we hypothesised that obesity-induced inflammation predisposes to CAC development. Here, we show that diet-induced obesity accelerates chemically-induced CAC in mice via increased inflammation and immune cell recruitment. Obesity-induced interleukin-6 (IL-6) shifts macrophage polarisation towards tumour-promoting macrophages that produce the chemokine CC-chemokine-ligand-20 (CCL-20) in the CAC microenvironment. CCL-20 promotes CAC progression by recruiting CC-chemokine-receptor-6 (CCR-6)-expressing B cells and γδ T cells via chemotaxis. Compromised cell recruitment as well as inhibition of B and γδ T cells protects against CAC progression. Collectively, our data reveal a function for IL-6 in the CAC microenvironment via lymphocyte recruitment through the CCL-20/CCR-6 axis, thereby implicating a potential therapeutic intervention for human patients.

  16. CCR4 agonists CCL22 and CCL17 are elevated in pediatric OMS sera: rapid and selective down-regulation of CCL22 by ACTH or corticosteroids.

    Science.gov (United States)

    Pranzatelli, Michael R; Tate, Elizabeth D; McGee, Nathan R; Colliver, Jerry A; Ransohoff, Richard M

    2013-05-01

    To study the role of Th2-attracting chemokines in opsoclonus-myoclonus syndrome (OMS), a serious neurological paraneoplastic disorder in need of better immunological understanding and therapy. The CCR4 agonists CCL22 and CCL17 were measured in serum by ELISA in children with OMS (238 and 260, respectively), pediatric controls (115 and 143), and other inflammatory neurological disorders (33 and 24). Both CCL22 (+55 %) and CCL17 (+121 %) were significantly elevated in untreated OMS compared to controls and inter-correlated (p OMS also were higher than in OIND (21 %, 41 %). The concentration of CCL22 in ACTH and steroids groups (not IVIg) was 51 % lower than in controls, but only a smaller effect of ACTH on CCL17 was found. Prospective longitudinal studies revealed a precipitous 81 % drop in CCL22 even by the first week of high-dose ACTH therapy, staying below control mean for at least 12 weeks, and a 34 % reduction after 8 months of combined treatment. Response to ACTH was dose-related (r = -0.50, p OMS. Marked and rapid reduction in CCL22, not CCL17, with either ACTH or steroid therapy suggests differential regulation and cellular sources of CCR4 ligands, and CCL22 as a potential candidate biomarker for ACTH or corticosteroid effect.

  17. Regulation of CCL5 expression in smooth muscle cells following arterial injury.

    Directory of Open Access Journals (Sweden)

    Huan Liu

    Full Text Available Chemokines play a crucial role in inflammation and in the pathophysiology of atherosclerosis by recruiting inflammatory immune cells to the endothelium. Chemokine CCL5 has been shown to be involved in atherosclerosis progression. However, little is known about how CCL5 is regulated in vascular smooth muscle cells. In this study we report that CCL5 mRNA expression was induced and peaked in aorta at day 7 and then declined after balloon artery injury, whereas IP-10 and MCP-1 mRNA expression were induced and peaked at day 3 and then rapidly declined.The expression of CCL5 receptors (CCR1, 3 & 5 were also rapidly induced and then declined except CCR5 which expression was still relatively high at day 14 after balloon injury. In rat smooth muscle cells (SMCs, similar as in aorta CCL5 mRNA expression was induced and kept increasing after LPS plus IFN-gamma stimulation, whereas IP-10 mRNA expression was rapidly induced and then declined. Our data further indicate that induction of CCL5 expression in SMCs was mediated by IRF-1 via binding to the IRF-1 response element in CCL5 promoter. Moreover, p38 MAPK was involved in suppression of CCL5 and IP-10 expression in SMCs through common upstream molecule MKK3. The downstream molecule MK2 was required for p38-mediated CCL5 but not IP-10 inhibition. Our findings indicate that CCL5 induction in aorta and SMCs is mediated by IRF-1 while activation of p38 MAPK signaling inhibits CCL5 and IP-10 expression. Methods targeting MK2 expression could be used to selectively regulate CCL5 but not IP-10 expression in SMCs.

  18. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  19. Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis

    NARCIS (Netherlands)

    Klein, Matthias; Brouwer, Matthijs C.; Angele, Barbara; Geldhoff, Madelijn; Marquez, Gabriel; Varona, Rosa; Häcker, Georg; Schmetzer, Helga; Häcker, Hans; Hammerschmidt, Sven; van der Ende, Arie; Pfister, Hans-Walter; van de Beek, Diederik; Koedel, Uwe

    2014-01-01

    We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels

  20. A novel role of Yin-Yang-1 in pulmonary tuberculosis through the regulation of the chemokine CCL4.

    Science.gov (United States)

    Rangel-Santiago, Jesus F; Baay-Guzman, Guillermina J; Duran-Padilla, Marco A; Lopez-Bochm, Karla A; Garcia-Romero, Beatriz L; Hernandez-Cueto, Daniel D; Pantoja-Escobar, Gerardo; Vega, Mario I; Hernandez-Pando, Rogelio; Huerta-Yepez, Sara

    2016-01-01

    Mycobacterium tuberculosis (M. tb) is the etiological agent of pulmonary tuberculosis (TB); this disease remains a worldwide health problem. Yin-Yang-1 (YY1) plays a major role in the maintenance and progression of some pulmonary diseases, including pulmonary fibrosis. However, the role of YY1 in TB remains unknown. The aim of this study was to elucidate the role of YY1 in the regulation of CCL4 and its implication in TB. We determined whether YY1 regulates CCL4 using reporter plasmids, ChIP and siRNA assays. Immunohistochemistry and digital pathology were used to measure the expression of YY1 and CCL4 in a mouse model of TB. A retrospective comparison of patients with TB and control subjects was used to measure the expression of YY1 and CCL4 using tissue microarrays. Our results showed that YY1 regulates the transcription of CCL4; moreover, YY1, CCL4 and TGF-β were overexpressed in the lung tissues of mice with TB during the late stages of the disease and the tissues of TB patients. The expression of CCL4 and TGF-β correlated with YY1 expression. In conclusion, YY1 regulates CCL4 transcription; moreover, YY1 is overexpressed in experimental and human TB and is positively correlated with CCL4 and TGF-β expression. Therefore, treatments that decrease YY1 expression may be a new therapeutic strategy against TB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21.

    Directory of Open Access Journals (Sweden)

    Ana B Sanz

    2010-01-01

    Full Text Available TWEAK is a member of the TNF superfamily of cytokines that contribute to kidney tubulointerstitial injury. It has previously been reported that TWEAK induces transient nuclear translocation of RelA and expression of RelA-dependent cytokines in renal tubular cells. Additionally, TWEAK induced long-lasting NFkappaB activation suggestive of engagement of the non-canonical NFkappaB pathway. We now explore TWEAK-induced activation of NFkappaB2 and RelB, as well as expression of CCL21, a T-cell chemotactic factor, in cultured murine tubular epithelial cells and in healthy kidneys in vivo. In cultured tubular cells, TWEAK and TNFalpha activated different DNA-binding NFkappaB complexes. TWEAK-induced sustained NFkappaB activation was associated with NFkappaB2 p100 processing to p52 via proteasome and nuclear translocation and DNA-binding of p52 and RelB. TWEAK, but not TNFalpha used as control, induced a delayed increase in CCL21a mRNA (3.5+/-1.22-fold over control and CCL21 protein (2.5+/-0.8-fold over control, which was prevented by inhibition of the proteasome, or siRNA targeting of NIK or RelB, but not by RelA inhibition with parthenolide. A second NFkappaB2-dependent chemokine, CCL19, was upregulates by TWEAK, but not by TNFalpha. However, both cytokines promoted chemokine RANTES expression (3-fold mRNA at 24 h. In vivo, TWEAK induced nuclear NFkappaB2 and RelB translocation and CCL21a mRNA (1.5+/-0.3-fold over control and CCL21 protein (1.6+/-0.5-fold over control expression in normal kidney. Increased tubular nuclear RelB and tubular CCL21 expression in acute kidney injury were decreased by neutralization (2+/-0.9 vs 1.3+/-0.6-fold over healthy control or deficiency of TWEAK (2+/-0.9 vs 0.8+/-0.6-fold over healthy control. Moreover, anti-TWEAK treatment prevented the recruitment of T cells to the kidney in this model (4.1+/-1.4 vs 1.8+/-1-fold over healthy control. Our results thus identify TWEAK as a regulator of non-canonical NFkappa

  2. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection

    Science.gov (United States)

    Fernández, Andrea G.; Bonetto, Josefina; Giambartolomei, Guillermo H.; Fossati, Carlos A.; Baldi, Pablo C.

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site. PMID:26448160

  3. Up-regulation of the chemokine CCL21 in the skin of subjects exposed to irritants

    Directory of Open Access Journals (Sweden)

    Kuznitzky Raquel

    2004-04-01

    Full Text Available Abstract Background Expression of murine CCL21 by dermal lymphatic endothelial cells (LEC has been demonstrated to be one of the most important steps in Langerhans cell emigration from skin. Previously, our group and others have found that this chemokine is up-regulated in different human inflammatory skin diseases mediated by diverse specific immune responses. This study was carried out to investigate the involvement of CCL21 in human skin after challenge with irritant agents responsible for inducing Irritant Contact Dermatitis (ICD. Results Eleven normal individuals were challenged with different chemical or physical irritants. Two patients with Allergic Contact Dermatitis (ACD were also challenged with the relevant antigen in order to have a positive control for CCL21 expression. Macroscopic as well as microscopic responses were evaluated. We observed typical ICD responses with mostly mononuclear cells in perivascular areas, but a predominance of polymorphonuclear cells away from the inflamed blood vessels and in the epidermis at 24 hours. Immunohistochemical studies showed up-regulation of CCL21 by lymphatic endothelial cells in all the biopsies taken from ICD and ACD lesions compared to normal skin. Kinetic study at 10, 48, 96 and 168 hours after contact with a classical irritant (sodium lauryl sulphate showed that the expression of CCL21 was increased in lymphatic vessels at 10 hours, peaked at 48 hours, and then gradually declined. There was a strong correlation between CCL21 expression and the macroscopic response (r = 0.69; p = 0.0008, but not between CCL21 and the number of infiltrating cells in the lesions. Conclusions These results provide new evidence for the role of CCL21 in inflammatory processes. Since the up-regulation of this chemokine was observed in ICD and ACD, it is tempting to speculate that this mechanism operates independently of the type of dermal insult, facilitating the emigration of CCR7+ cells.

  4. The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Roedel, F. [Dept. of Radiotherapy and Oncology, Univ. of Frankfurt/Main (Germany); Hofmann, D.; Auer, J.; Roellinghoff, M.; Beuscher, H.U. [Inst. of Microbiology and Immunology, Univ. of Erlangen-Nuremberg, Erlangen (Germany); Keilholz, L. [Dept. of Radiotherapy, Clinical Center Bayreuth (Germany); Sauer, R. [Dept. of Radiooncology, Univ. of Erlangen-Nuremberg, Erlangen (Germany)

    2008-01-15

    Background and purpose: low-dose radiotherapy (LD-RT) is known to exert an anti-inflammatory effect, however, the underlying molecular mechanisms are not fully understood. The manipulation of polymorphonuclear neutrophil (PMN) function and/or recruitment may be one mechanism. Chemokines contribute to this process by creating a chemotactic gradient and by activating integrins. This study aimed to characterize the effect of LD-RT on CCL20 chemokine production and PMN/endothelial cell (EC) adhesion. Material and methods: the EC line EA.hy.926 was irradiated with doses ranging from 0 to 3 Gy and was co-cultured with PMNs from healthy donors either by direct cell contact or separated by transwell membrane chambers. CXCL8, CCL18, CCL20 chemokine and tumor necrosis factor-(TNF-){alpha} cytokine levels in supernatants were determined by ELISA and adhesion assays were performed. The functional impact of the cytokines transforming growth factor-(TGF-){beta}{sub 1} and TNF-{alpha} and of the intercellular adhesion molecule-(ICAM-)1 on CCL20 expression was analyzed by using neutralizing antibodies. Results: as compared to CXCL8 and CCL18, CCL20 chemokine secretion was found to be exclusively induced by a direct cell-cell contact between PMNs and EA.hy.926 ECs in a TNF-{alpha}-dependent, but ICAM-1-independent manner. Furthermore, irradiation with doses between 0.5 and 1 Gy resulted in a significant reduction of CCL20 release which was dependent on TGF-{beta}{sub 1} (p < 0.01). The decrease of CCL20 paralleled with a significant reduction in PMN/EA.hy.926 EC adhesion (p < 0.001). Conclusion: the modulation of CCL20 chemokine expression and PMN/EC adhesion adds a further facet to the plethora of mechanisms contributing to the anti-inflammatory efficacy of LD-RT. (orig.)

  5. CCL2 binding is CCR2 independent in primary adult human astrocytes.

    Science.gov (United States)

    Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N

    2012-02-09

    Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The β-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    International Nuclear Information System (INIS)

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-01-01

    β-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of β-chemokines in midbrain development. Here we report that two β-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of β-chemokines in the developing brain and identify β-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that β-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  7. Epstein-Barr virus EBNA2 directs doxorubicin resistance of B cell lymphoma through CCL3 and CCL4-mediated activation of NF-κB and Btk.

    Science.gov (United States)

    Kim, Joo Hyun; Kim, Won Seog; Hong, Jung Yong; Ryu, Kung Ju; Kim, Seok Jin; Park, Chaehwa

    2017-01-17

    Epstein-Barr virus (EBV)-encoded nuclear antigen, EBNA2, expressed in EBV-infected B lymphocytes is critical for lymphoblastoid cell growth. Microarray profiling and cytokine array screening revealed that EBNA2 is associated with upregulation of the chemokines CCL3 and CCL4 in lymphoma cells. Depletion or inactivation of CCL3 or CCL4 sensitized DLBCL cells to doxorubicin. Our results indicate that EBV influences cell survival via an autocrine mechanism whereby EBNA2 increases CCL3 and CCL4, which in turn activate the Btk and NF-κB pathways, contributing to doxorubicin resistance of B lymphoma cells. Western blot data further confirmed that CCL3 and CCL4 direct activation of Btk and NF-κB. Based on these findings, we propose that a pathway involving EBNA2/Btk/NF-κB/CCL3/CCL4 plays a key role in doxorubicin resistance, and therefore, inhibition of specific components of this pathway may sensitize lymphoma cells to doxorubicin. Evaluation of the relationship between CCL3 expression and EBV infection revealed high CCL3 levels in EBV-positive patients. Our data collectively suggest that doxorubicin treatment for EBNA2-positive DLBCL cells may be effectively complemented with a NF-κB or Btk inhibitor. Moreover, evaluation of the CCL3 and CCL4 levels may be helpful for selecting DLBCL patients likely to benefit from doxorubicin treatment in combination with the velcade or ibrutinib.

  8. The Increased Expression of CCL20 and CCR6 in Rectal Mucosa Correlated to Severe Inflammation in Pediatric Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Keiichi Uchida

    2015-01-01

    Full Text Available Background/Aims. The aim of this study is to clarify the differences of CCL20 and CCR6 expression, chemokine correlated to intestinal homeostasis, between pediatric and adult ulcerative colitis (UC patients. Methods. Onehundred forty-one patients who underwent proctocolectomy were divided to two groups including childhood-onset UC (CUC, <16 years old, n=24 and adult-onset UC (AUC, ≧16 years old, n=117. A total of 141 formalin-fixed, paraffin-embedded tissue samples of rectum were obtained from these patients. Histological inflammation of rectum in resected specimen was evaluated by using Geboes histological assessment. In immunohistochemistry study, the CCL20 expression was evaluated by intensity and the stained area, and the CCR6 expression was evaluated by lymphocytes infiltration pattern. Results. CCL20 score and CCR6 positive lymphocytes infiltration pattern were statistically significantly correlated with histological inflammation severity of UC in all patients (P<0.05. CCL20 and CCR6 expression in CUC were statistically significantly higher than that in AUC in all or pathologically severe cases (P<0.05. Conclusions. CCL20 and CCR6 may play a significant role in local damage and pathological changes in UC especially pediatric patients. In the future, our understanding of the differences in CCL-CCR6 interaction between adults and children may lead to the pathogenesis of IBD.

  9. CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Shih-Wei Wang

    Full Text Available BACKGROUND: Osteosarcoma is characterized by a high malignant and metastatic potential. CCL5 (previously called RANTES was originally recognized as a product of activated T cells, and plays a crucial role in the migration and metastasis of human cancer cells. It has been reported that the effect of CCL5 is mediated via CCR receptors. However, the effect of CCL5 on migration activity and integrin expression in human osteosarcoma cells is mostly unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that CCL5 increased the migration and expression of αvβ3 integrin in human osteosarcoma cells. Stimulation of cells with CCL5 increased CCR5 but not CCR1 and CCR3 expression. CCR5 mAb, inhibitor, and siRNA reduced the CCL5-enhanced the migration and integrin up-regulation of osteosarcoma cells. Activations of MEK, ERK, and NF-κB pathways after CCL5 treatment were demonstrated, and CCL5-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK, and NF-κB cascades. In addition, over-expression of CCL5 shRNA inhibited the migratory ability and integrin expression in osteosarcoma cells. CONCLUSIONS/SIGNIFICANCE: CCL5 and CCR5 interaction acts through MEK, ERK, which in turn activates NF-κB, resulting in the activations of αvβ3 integrin and contributing the migration of human osteosarcoma cells.

  10. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.

    Science.gov (United States)

    Wang, Li-Hong; Lin, Chih-Yang; Liu, Shih-Chia; Liu, Guan-Ting; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-06-14

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.

  11. Preliminary report on electron energy-loss measurements for CCl3, CCl2F2, CCl3F

    International Nuclear Information System (INIS)

    Bushnell, D.L. Jr.; Huebner, R.H.; Celotta, R.J.; Mielczarek, S.R.

    1975-01-01

    Currently, nation-wide research efforts are devoted to studying the possible ozone (O 3 ) depletion in the stratosphere by the chemical action of chlorine atoms released from CCl 2 F 2 or CCl 3 F upon absorption of ultraviolet radiation. Since electron-impact data taken in the forward scattering direction can be used to derive oscillator strengths and thus to yield apparent photoabsorption cross sections, such an analysis for CCl 2 F 2 , CCLl 3 F, and CClF 3 was carried out. Oscillator-strength distributions were obtained between 5 and 20 eV and are compared to available photoabsorption data. Certain photoabsorption values agree very well with these electron-impact data, but other optical studies deviate in some spectral regions by as much as a factor of 5. Also, the electron energy-loss spectrum reveals electronic transitions previously undetected by photoabsorption

  12. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate

    Directory of Open Access Journals (Sweden)

    Ju-Ri Sim

    2018-01-01

    Full Text Available Short-chain fatty acids (SCFAs, such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP. Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.

  13. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    Science.gov (United States)

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  14. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    International Nuclear Information System (INIS)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-01-01

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  15. Pathway Processor 2.0: a web resource for pathway-based analysis of high-throughput data.

    Science.gov (United States)

    Beltrame, Luca; Bianco, Luca; Fontana, Paolo; Cavalieri, Duccio

    2013-07-15

    Pathway Processor 2.0 is a web application designed to analyze high-throughput datasets, including but not limited to microarray and next-generation sequencing, using a pathway centric logic. In addition to well-established methods such as the Fisher's test and impact analysis, Pathway Processor 2.0 offers innovative methods that convert gene expression into pathway expression, leading to the identification of differentially regulated pathways in a dataset of choice. Pathway Processor 2.0 is available as a web service at http://compbiotoolbox.fmach.it/pathwayProcessor/. Sample datasets to test the functionality can be used directly from the application. duccio.cavalieri@fmach.it Supplementary data are available at Bioinformatics online.

  16. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    Science.gov (United States)

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Relevance of CCL3/CCR5 axis in oral carcinogenesis.

    Science.gov (United States)

    da Silva, Janine Mayra; Moreira Dos Santos, Tálita Pollyanna; Sobral, Lays Martin; Queiroz-Junior, Celso Martins; Rachid, Milene Alvarenga; Proudfoot, Amanda E I; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; Teixeira, Mauro Martins; Leopoldino, Andréia Machado; Russo, Remo Castro; Silva, Tarcília Aparecida

    2017-08-01

    The chemokine CCL3 is a chemotactic cytokine crucial for inflammatory cell recruitment in homeostatic and pathological conditions. CCL3 might stimulate cancer progression by promoting leukocyte accumulation, angiogenesis and tumour growth. The expression of CCL3 and its receptors CCR1 and CCR5 was demonstrated in oral squamous cell carcinoma (OSCC), but their role was not defined. Here, the functions of CCL3 were assessed using a model of chemically induced tongue carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). Lineages of OSCC were used to analyse the effects of CCL3 in vitro . The 4NQO-induced lesions exhibited increased expression of CCL3, CCR1 and CCR5. CCL3 -/- and CCR5 -/- mice presented reduced incidence of tongue tumours compared to wild-type (WT) and CCR1 -/- mice. Consistently, attenuated cytomorphological atypia and reduced cell proliferation were observed in lesions of CCL3 -/- and CCR5 -/- mice. OSCC from CCL3 -/- mice exhibited lower infiltration of eosinophils and reduced expression of Egf, Fgf1, Tgf-β1, Vegfa, Vegfb, Itga-4, Vtn, Mmp-1a, Mmp-2 and Mmp-9 than WT mice. In vitro , CCL3 induced invasion and production of CCL5, IL-6, MMP -2, -8, -9. Blockage of CCL3 in vitro using α-CCL3 or Evasin-1 (a CCL3-binding protein) impaired tumour cell invasion. In conclusion, CCL3/CCR5 axis has pro-tumourigenic effects in oral carcinogenesis. The induction of inflammatory and angiogenic pathways and eosinophils recruitment appear to be the underlying mechanism explaining these effects. These data reveal potential protective effects of CCL3 blockade in oral cancer.

  18. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  19. Targeted knock down of CCL22 and CCL17 by siRNA during DC differentiation and maturation affects the recruitment of T subsets.

    Science.gov (United States)

    Kang, Shijun; Xie, Jianmin; Ma, Shudong; Liao, Wangjun; Zhang, Junyi; Luo, Rongcheng

    2010-01-01

    Chemokines secreted by DC are instrumental for DC to regulate their own migratory capacities and to recruit T lymphocytes during local tumour immune response. Using the recently developed chemokine protein arrays, we analyzed 38 chemokines associated with monocyte-derived DC (MoDC), including the CC family (CCL2, CCL3, CCL4, CCL17, CCL18, CCL22, CCL23, CCL24, CCL27) and the CXC family (CXCL3, CXCL5, CXCL7, CXCL8, CXCL16) chemokines. Our results indicate that MoDC largely inherit the chemokines constitutively expressed by monocytes, with a significant induction of CCL17, CCL22 and CCL23. Spent culture supernatant collected from MoDC exhibited chemotatic abilities to activate CD4(+), CD8(+), and CD25(+) Foxp3(+) regulatory T cells (Tregs). Selective knock down of CCL22 and CCL17 expression by siRNA decreased the ratios of CD4(+) to CD8(+), as well as the frequency of Tregs recruited by MoDC. Intratumoural injection of MoDC transfected with siCCL22 and siCCL17, significantly reduced the number of Tregs while increasing the number of infiltrating CD8(+) T cells in human tumour xenografts in athymic nude mice. This study demonstrates that chemokine expression of MoDC is complex and may change dynamically. Using siRNA to selectively knock down chemokines which are highly chemoattractive to Tregs may consequentially alter the lymphocyte populations recruited into the tumour microenvironment, therefore has the potency to provide insight into cellular interactions in cancer immunology. This may lead to a new strategy for DC vaccine development to improve cancer immunobiotherapy.

  20. TPL-2 restricts Ccl24-dependent immunity to Heligmosomoides polygyrus

    Science.gov (United States)

    Kannan, Yashaswini; Entwistle, Lewis J.; Pelly, Victoria S.; Perez-Lloret, Jimena; Ley, Steven C.

    2017-01-01

    TPL-2 (COT, MAP3K8) kinase activates the MEK1/2-ERK1/2 MAPK signaling pathway in innate immune responses following TLR, TNFR1 and IL-1R stimulation. TPL-2 contributes to type-1/Th17-mediated autoimmunity and control of intracellular pathogens. We recently demonstrated TPL-2 reduces severe airway allergy to house dust mite by negatively regulating type-2 responses. In the present study, we found that TPL-2 deficiency resulted in resistance to Heligmosomoides polygyrus infection, with accelerated worm expulsion, reduced fecal egg burden and reduced worm fitness. Using co-housing experiments, we found resistance to infection in TPL-2 deficient mice (Map3k8–/–) was independent of microbiota alterations in H. polygyrus infected WT and Map3k8–/–mice. Additionally, our data demonstrated immunity to H. polygyrus infection in TPL-2 deficient mice was not due to dysregulated type-2 immune responses. Genome-wide analysis of intestinal tissue from infected TPL-2-deficient mice identified elevated expression of genes involved in chemotaxis and homing of leukocytes and cells, including Ccl24 and alternatively activated genes. Indeed, Map3k8–/–mice had a significant influx of eosinophils, neutrophils, monocytes and Il4GFP+ T cells. Conditional knockout experiments demonstrated that specific deletion of TPL-2 in CD11c+ cells, but not Villin+ epithelial cells, LysM+ myeloid cells or CD4+ T cells, led to accelerated resistance to H. polygyrus. In line with a central role of CD11c+ cells, CD11c+ CD11b+ cells isolated from TPL-2-deficient mice had elevated Ccl24. Finally, Ccl24 neutralization in TPL-2 deficient mice significantly decreased the expression of Arg1, Retnla, Chil3 and Ear11 correlating with a loss of resistance to H. polygyrus. These observations suggest that TPL-2-regulated Ccl24 in CD11c+CD11b+ cells prevents accelerated type-2 mediated immunity to H. polygyrus. Collectively, this study identifies a previously unappreciated role for TPL-2 controlling immune

  1. ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium

    NARCIS (Netherlands)

    Post, S.; Rozeveld, D.; Jonker, M. R.; Bischoff, R.; van Oosterhout, A. J.; Heijink, I. H.

    2015-01-01

    Background: House dust mite (HDM) acts on the airway epithelium to induce airway inflammation in asthma. We previously showed that the ability of HDM to induce allergic sensitization in mice is related to airway epithelial CCL20 secretion. Objective: As a disintegrin and metalloprotease (ADAM)s have

  2. Electron-impact dissociative ionization of CClF3 and CCl3F

    International Nuclear Information System (INIS)

    Martinez, Roberto; Sierra, Borja; Basterretxea, Francisco J.; Sanchez Rayo, Maria N.; Castano, Fernando

    2006-01-01

    A crossed-beam experiment of well characterized kinetic energy (KE) electrons and supersonic halomethanes CCl 3 F and CClF 3 in Ar carrier has been carried out in order to quantify the kinetic energy distributions (KEDs), the appearance energies (AEs) and the channels involved in the production of nascent ions. The ion KEDs were derived from the band profiles of the time-of-flight mass spectrum and the total KEDs computed using conservation laws. Heavier ions are created with KED peaked at thermal energies in contrast with low mass atoms or other fragments, where the distribution is broader and the maximum is at much higher energies. A discussion of the dissociative ionization pathways derived from the appearance energies, total average KEDs, thermodynamic enthalpies and computed electron dissociation energies is reported. The role of the vibrational and rotational energies into the dissociative processes is also discussed

  3. Oligonol Ameliorates CCl4-Induced Liver Injury in Rats via the NF-Kappa B and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jeonghyeon Bak

    2016-01-01

    Full Text Available Oxidative stress is thought to be a key risk factor in the development of hepatic diseases. Blocking or retarding the reactions of oxidation and the inflammatory process by antioxidants could be a promising therapeutic intervention for prevention or treatment of liver injuries. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from lychee fruit. In this study, we investigated the anti-inflammatory effect of oligonol on carbon tetrachloride- (CCl4- induced acute hepatic injury in rats. Oral administration of oligonol (10 or 50 mg/kg reduced CCl4-induced abnormalities in liver histology and serum AST and serum ALT levels. Oligonol treatment attenuated the CCl4-induced production of inflammatory mediators, including TNF-α, IL-1β, cyclooxygenase-2 (COX-2, and inducible nitric oxide synthase (iNOS mRNA levels. Western blot analysis showed that oligonol suppressed proinflammatory nuclear factor-kappa B (NF-κB p65 activation, phosphorylation of extracellular signal-regulated kinase (ERK, c-Jun NH2-terminal kinase (JNK, and p38 mitogen-activated protein kinases (MAPKs as well as Akt. Oligonol exhibited strong antioxidative activity in vitro and in vivo, and hepatoprotective activity against t-butyl hydroperoxide-induced HepG2 cells. Taken together, oligonol showed antioxidative and anti-inflammatory effects in CCl4-intoxicated rats by inhibiting oxidative stress and NF-κB activation via blockade of the activation of upstream kinases including MAPKs and Akt.

  4. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.

    Science.gov (United States)

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-10-29

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.

  5. Higher expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 chemokines in the skin associated with parasite density in canine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Daniel Menezes-Souza

    Full Text Available BACKGROUND: The immune response in the skin of dogs infected with Leishmania infantum is poorly understood, and limited studies have described the immunopathological profile with regard to distinct levels of tissue parasitism and the clinical progression of canine visceral leishmaniasis (CVL. METHODOLOGY/PRINCIPAL FINDINGS: A detailed analysis of inflammatory cells (neutrophils, eosinophils, mast cells, lymphocytes, and macrophages as well as the expression of chemokines (CCL2, CCL4, CCL5, CCL13, CCL17, CCL21, CCL24, and CXCL8 was carried out in dermis skin samples from 35 dogs that were naturally infected with L. infantum. The analysis was based on real-time polymerase chain reaction (PCR in the context of skin parasitism and the clinical status of CVL. We demonstrated increased inflammatory infiltrate composed mainly of mononuclear cells in the skin of animals with severe forms of CVL and high parasite density. Analysis of the inflammatory cell profile of the skin revealed an increase in the number of macrophages and reductions in lymphocytes, eosinophils, and mast cells that correlated with clinical progression of the disease. Additionally, enhanced parasite density was correlated with an increase in macrophages and decreases in eosinophils and mast cells. The chemokine mRNA expression demonstrated that enhanced parasite density was positively correlated with the expression of CCL2, CCL4, CCL5, CCL21, and CXCL8. In contrast, there was a negative correlation between parasite density and CCL24 expression. CONCLUSIONS/SIGNIFICANCE: These findings represent an advance in the knowledge about skin inflammatory infiltrates in CVL and the systemic consequences. Additionally, the findings may contribute to the design of new and more efficient prophylactic tools and immunological therapies against CVL.

  6. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1–infected individuals

    Science.gov (United States)

    Ahuja, Sunil K; Kulkarni, Hemant; Catano, Gabriel; Agan, Brian K; Camargo, Jose F; He, Weijing; O'Connell, Robert J; Marconi, Vincent C; Delmar, Judith; Eron, Joseph; Clark, Robert A; Frost, Simon; Martin, Jeffrey; Ahuja, Seema S; Deeks, Steven G; Little, Susan; Richman, Douglas; Hecht, Frederick M; Dolan, Matthew J

    2008-01-01

    The basis for the extensive variability seen in the reconstitution of CD4+ T cell counts in HIV-infected individuals receiving highly active antiretroviral therapy (HAART) is not fully known. Here, we show that variations in CCL3L1 gene dose and CCR5 genotype, but not major histocompatibility complex HLA alleles, influence immune reconstitution, especially when HAART is initiated at <350 CD4+ T cells/mm3. The CCL3L1-CCR5 genotypes favoring CD4+ T cell recovery are similar to those that blunted CD4+ T cell depletion during the time before HAART became available (pre-HAART era), suggesting that a common CCL3L1-CCR5 genetic pathway regulates the balance between pathogenic and reparative processes from early in the disease course. Hence, CCL3L1-CCR5 variations influence HIV pathogenesis even in the presence of HAART and, therefore, may prospectively identify subjects in whom earlier initiation of therapy is more likely to mitigate immunologic failure despite viral suppression by HAART. Furthermore, as reconstitution of CD4+ cells during HAART is more sensitive to CCL3L1 dose than to CCR5 genotypes, CCL3L1 analogs might be efficacious in supporting immunological reconstitution. PMID:18376407

  7. Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway

    Directory of Open Access Journals (Sweden)

    Gili Ben-Nissan

    2014-09-01

    Full Text Available For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.

  8. Beneficial impact of CCL2 and CCL12 neutralization on experimental malignant pleural effusion.

    Directory of Open Access Journals (Sweden)

    Antonia Marazioti

    Full Text Available Using genetic interventions, we previously determined that C-C motif chemokine ligand 2 (CCL2 promotes malignant pleural effusion (MPE formation in mice. Here we conducted preclinical studies aimed at assessing the specific therapeutic potential of antibody-mediated CCL2 blockade against MPE. For this, murine MPEs or skin tumors were generated in C57BL/6 mice by intrapleural or subcutaneous delivery of lung (LLC or colon (MC38 adenocarcinoma cells. Human lung adenocarcinoma cells (A549 were used to induce MPEs in severe combined immunodeficient mice. Intraperitoneal antibodies neutralizing mouse CCL2 and/or CCL12, a murine CCL2 ortholog, were administered at 10 or 50 mg/kg every three days. We found that high doses of CCL2/12 neutralizing antibody treatment (50 mg/kg were required to limit MPE formation by LLC cells. CCL2 and CCL12 blockade were equally potent inhibitors of MPE development by LLC cells. Combined CCL2 and CCL12 neutralization was also effective against MC38-induced MPE and prolonged the survival of mice in both syngeneic models. Mouse-specific CCL2-blockade limited A549-caused xenogeneic MPE, indicating that host-derived CCL2 also contributes to MPE precipitation in mice. The impact of CCL2/12 antagonism was associated with inhibition of immune and vascular MPE-related phenomena, such as inflammation, new blood vessel assembly and plasma extravasation into the pleural space. We conclude that CCL2 and CCL12 blockade are effective against experimental MPE induced by murine and human adenocarcinoma in mice. These results suggest that CCL2-targeted therapies may hold promise for future use against human MPE.

  9. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  10. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF-β1/Smad3 and NF-ĸB/IĸB Pathways.

    Science.gov (United States)

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF-β1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF-β1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF-β1/Smad3 and NF-ĸB)/IĸB signaling pathways. © 2015 S. Karger AG, Basel.

  11. Tumor-Associated Macrophages Recruit CCR6+ Regulatory T Cells and Promote the Development of Colorectal Cancer via Enhancing CCL20 Production in Mice

    Science.gov (United States)

    Li, Qun; Zhang, Weiwei; Ke, Fang; Leng, Qibin; Wang, Hong; Chen, Jinfei; Wang, Honglin

    2011-01-01

    Background Tumor-associated macrophages (TAMs) remodel the colorectal cancer (CRC) microenvironment. Yet, findings on the role of TAMs in CRC seem to be contradictory compared with other cancers. FoxP3+ regulatory T (Treg)-cells dominantly infiltrate CRC. However, the underlying molecular mechanism in which TAMs may contribute to the trafficking of Treg-cells to the tumor mass remains unknown. Methodology/Principal Findings CRC was either induced by N-methyl-N-nitrosourea (MNU) and H. pylori or established by subcutaneous injection of mouse colorectal tumor cell line (CMT93) in mice. CMT93 cells were co-cultured with primary macrophages in a transwell apparatus. Recruitment of FoxP3 green fluorescence protein positive (FoxP3GFP+) Treg-cells was assessed using the IVIS Imaging System or immunofluorescence staining. A role for macrophages in trafficking of Treg-cells and in the development of CRC was investigated in CD11b diphtheria toxin receptor (CD11b-DTR) transgenic C57BL/6J mice in which macrophages can be selectively depleted. Treg-cells remarkably infiltrated solid tumor, and predominantly expressed the homing chemokine receptor (CCR) 6 in the induced CRC model. Both CMT93 cancer cells and macrophages produced a large amount of CCL20, the sole ligand of CCR6 in vitro and in vivo. Injection of recombinant mouse CCL20 into tumor sites promoted its development with a marked recruitment of Treg-cells in the graft CRC model. Conditional macrophage ablation decreased CCL20 levels, blocked Treg-cell recruitment and inhibited tumor growth in CD11b-DTR mice grafted with CMT93. Conclusions/Significance TAMs recruit CCR6+ Treg-cells to tumor mass and promote its development via enhancing the production of CCL20 in a CRC mouse model. PMID:21559338

  12. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

    Directory of Open Access Journals (Sweden)

    Erdenebileg Uyangaa

    Full Text Available Type I interferon (IFN-I-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV. However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

  13. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  14. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma

    Science.gov (United States)

    2013-01-01

    Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437

  15. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    International Nuclear Information System (INIS)

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-01-01

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  16. Immune response CC Chemokines, CCL2 and CCL5 are associated with Pulmonary Sarcoidosis

    LENUS (Irish Health Repository)

    Palchevskiy, Vyacheslav

    2011-04-04

    Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  17. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis.

    Science.gov (United States)

    Palchevskiy, Vyacheslav; Hashemi, Nastran; Weigt, Stephen S; Xue, Ying Ying; Derhovanessian, Ariss; Keane, Michael P; Strieter, Robert M; Fishbein, Michael C; Deng, Jane C; Lynch, Joseph P; Elashoff, Robert; Belperio, John A

    2011-04-04

    Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  18. Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort.

    Science.gov (United States)

    Vega, Jorge A; Villegas-Ospina, Simón; Aguilar-Jiménez, Wbeimar; Rugeles, María T; Bedoya, Gabriel; Zapata, Wildeman

    2017-06-01

    Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p' value ;0.05 after Bonferroni correction was considered significant. Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. The haplotypes C-C and T-T in CCL3 were associated with susceptibility (p'=0.016) and resistance (p';0.0001) to HIV-1 infection, respectively. Finally, in multilocus analysis, the haplotype combinations formed by HHC in CCR5-CCR2, T-T in CCL3 and G-C in CCL5 were associated with resistance (p'=0.006). Our results suggest that specific combinations of variants in genes from the same signaling pathway can define an HIV-1 resistant phenotype. Despite our small sample size, our statistically significant associations suggest strong effects; however, these results should be further validated in larger cohorts.

  19. Serum amyloid P down-regulates CCL-1 expression, and inhibits ...

    African Journals Online (AJOL)

    Differentially expressed proteins in SAP-Tg and C57BL/6 serum were analyzed, and further determined by enzymelinked immunosorbent assay (ELISA) and ... SAP recombinant protein, ELISA results showed that CCL-1 secretion significantly ...

  20. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

    Science.gov (United States)

    2012-01-01

    Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798

  1. 15 CFR 738.2 - Commerce Control List (CCL) structure.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Commerce Control List (CCL) structure. 738.2 Section 738.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS...

  2. CCl4 distribution derived from MIPAS ESA v7 data: intercomparisons, trend, and lifetime estimation

    Science.gov (United States)

    Valeri, Massimo; Barbara, Flavio; Boone, Chris; Ceccherini, Simone; Gai, Marco; Maucher, Guido; Raspollini, Piera; Ridolfi, Marco; Sgheri, Luca; Wetzel, Gerald; Zoppetti, Nicola

    2017-08-01

    Atmospheric emissions of carbon tetrachloride (CCl4) are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule has been the subject of recent increased interest as a consequence of the so-called mystery of CCl4, the discrepancy between atmospheric observations and reported production and consumption. Surface measurements of CCl4 atmospheric concentrations have declined at a rate almost 3 times lower than its lifetime-limited rate, suggesting persistent atmospheric emissions despite the ban. In this paper, we study CCl4 vertical and zonal distributions in the upper troposphere and lower stratosphere (including the photolytic loss region, 70-20 hPa), its trend, and its stratospheric lifetime using measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which operated onboard the ENVISAT satellite from 2002 to 2012. Specifically, we use the MIPAS data product generated with Version 7 of the Level 2 algorithm operated by the European Space Agency.The CCl4 zonal means show features typical of long-lived species of anthropogenic origin that are destroyed primarily in the stratosphere, with larger quantities in the troposphere and a monotonic decrease with increasing altitude in the stratosphere. MIPAS CCl4 measurements have been compared with independent measurements from other satellite and balloon-borne remote sounders, showing a good agreement between the different datasets.CCl4 trends are calculated as a function of both latitude and altitude. Negative trends of about text">-10 to -15 pptv decade-1 (-10 to -30 % decade-1) are found at all latitudes in the upper troposphere-lower stratosphere region, apart from a region in the southern midlatitudes between 50 and 10 hPa where the trend is positive with values around 5-10 pptv decade-1 (15-20 % decade-1). At the lowest altitudes sounded by MIPAS, we find trends consistent with those determined on the basis of long-term ground

  3. Identification of CCL5/RANTES as a novel contraction-reducible myokine in mouse skeletal muscle.

    Science.gov (United States)

    Ishiuchi, Yuri; Sato, Hitoshi; Komatsu, Narumi; Kawaguchi, Hideo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi; Nedachi, Taku

    2018-03-17

    Skeletal muscle is an endocrine organ that secretes several proteins, which are collectively termed myokines. Although many studies suggest that exercise regulates myokine secretion, the underlying mechanisms remain unclear and all the exercise-dependent myokines have not yet been identified. Therefore, in this study, we attempted to identify novel exercise-dependent myokines by using our recently developed in vitro contractile model. Differentiated C2C12 myotubes were cultured with or without electrical pulse stimulation (EPS) for 24 h to induce cell contraction, and the myokines secreted in conditioned medium were analyzed using a cytokine array. Although most myokine secretions were not affected by EPS, the secretion of Chemokine (C-C motif) ligand 5 (CCL5) (regulated on activation, normal T cell expressed and secreted (RANTES)) was significantly reduced by EPS. This was further confirmed by ELISA and quantitative PCR. Contraction-dependent calcium transients and activation of 5'-AMP activating protein kinase (AMPK) appears to be involved in this decrease, as the chelating Ca 2+ by EGTA blocked contraction-dependent CCL5 reduction, whereas the pharmacological activation of AMPK significantly reduced it. However, Ccl5 gene expression was increased by AMPK activation, suggesting that AMPK-dependent CCL5 decrease occurred via post-transcriptional regulation. Finally, mouse experiments revealed that voluntary wheel-running exercise reduced serum CCL5 levels and Ccl5 gene expression in the fast-twitch muscles. Overall, our study provides the first evidence of an exercise-reducible myokine, CCL5, in the mouse skeletal muscle. Although further studies are required to understand the precise roles of the skeletal muscle cell contraction-induced decrease in CCL5, this decrease may explain some exercise-dependent physiological changes such as those in immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Serum PARC/CCL-18 concentrations and health outcomes in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Sin, Don D; Miller, Bruce E; Duvoix, Annelyse; Man, S F Paul; Zhang, Xuekui; Silverman, Edwin K; Connett, John E; Anthonisen, Nicholas A; Wise, Robert A; Tashkin, Donald; Celli, Bartolome R; Edwards, Lisa D; Locantore, Nicholas; Macnee, William; Tal-Singer, Ruth; Lomas, David A

    2011-05-01

    There are no accepted blood-based biomarkers in chronic obstructive pulmonary disease (COPD). Pulmonary and activation-regulated chemokine (PARC/CCL-18) is a lung-predominant inflammatory protein that is found in serum. To determine whether PARC/CCL-18 levels are elevated and modifiable in COPD and to determine their relationship to clinical end points of hospitalization and mortality. PARC/CCL-18 was measured in serum samples from individuals who participated in the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) and LHS (Lung Health Study) studies and a prednisolone intervention study. Serum PARC/CCL-18 levels were higher in subjects with COPD than in smokers or lifetime nonsmokers without COPD (105 vs. 81 vs. 80 ng/ml, respectively; P < 0.0001). Elevated PARC/CCL-18 levels were associated with increased risk of cardiovascular hospitalization or mortality in the LHS cohort and with total mortality in the ECLIPSE cohort. Serum PARC/CCL-18 levels are elevated in COPD and track clinical outcomes. PARC/CCL-18, a lung-predominant chemokine, could be a useful blood biomarker in COPD.

  5. Blood expression levels of chemokine receptor CCR3 and chemokine CCL11 in age-related macular degeneration

    DEFF Research Database (Denmark)

    Falk, Mads Krüger; Singh, Amardeep; Faber, Carsten

    2014-01-01

    Dysregulation of the CCR3/CCL11 pathway has been implicated in the pathogenesis of choroidal neovascularisation, a common feature of late age-related macular degeneration (AMD). The aim of this study was to investigate the expression of CCR3 and its ligand CCL11 in peripheral blood in patients...

  6. Rhizoma coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFB-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Andrew Remppis

    2010-01-01

    Full Text Available Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP-1 production in RAW cells. Activation of the transcription factors AP-1 and NFB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine.

  7. Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages.

    Science.gov (United States)

    Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N

    2004-12-01

    The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.

  8. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2012-06-01

    Full Text Available Abstract Introduction Adipose derived mesenchymal stem cells (ADMSCs, carrying the similar characteristics to bone marrow mesenchymal stem cells, only much more abundant and easier to obtain, may be a promising treatment for liver fibrosis. We aim to investigate the therapeutic potential of ADMSCs transplantation in liver fibrosis caused by carbon tetrachloride (CCl4 in rats as well as its underlying mechanism, and to further explore the appropriate infusion pathway. Methods ADMSCs were isolated, cultured and identified. Placebo and ADMSCs were transplanted via portal vein and tail vein respectively into carbon tetrachloride (CCl4-induced liver fibrosis rats. Computed tomography (CT perfusion scan and microvessel counts were performed to measure the alteration of liver microcirculation after therapy. Liver function tests and histological findings were estimated. Results CT perfusion scan shown significant decrease of hepatic arterial perfusion index, significant increased portal vein perfusion, total liver perfusion in rats receiving ADMSCs from portal vein, and Factor VIII (FVIII immunohistochemical staining shown significant decrease of microvessels in rats receiving ADMSCs from portal vein, indicating microcirculation improvement in portal vein group. Vascular endothelial growth Factor (VEGF was significantly up-regulated in fibrosis models, and decreased after ADMSCs intraportal transplantation. A significant improvement of liver functional test and histological findings in portal vein group were observed. No significance was found in rats receiving ADMSCs from tail vein. Conclusions ADMSCs have a therapeutic effect against CCl4-mediated liver fibrosis. ADMSCs may benefit the fibrotic liver through alteration of microcirculation, evidenced by CT perfusion scan and down-regulation of VEGF. Intraportal transplantation is a better pathway than tail vein transplantation.

  9. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    Science.gov (United States)

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  10. Serum PARC/CCL-18 Concentrations and Health Outcomes in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Sin, Don D.; Miller, Bruce E.; Duvoix, Annelyse; Man, S. F. Paul; Zhang, Xuekui; Silverman, Edwin K.; Connett, John E.; Anthonisen, Nicholas A.; Wise, Robert A.; Tashkin, Donald; Celli, Bartolome R.; Edwards, Lisa D.; Locantore, Nicholas; MacNee, William; Tal-Singer, Ruth; Lomas, David A.

    2011-01-01

    Rationale: There are no accepted blood-based biomarkers in chronic obstructive pulmonary disease (COPD). Pulmonary and activation-regulated chemokine (PARC/CCL-18) is a lung-predominant inflammatory protein that is found in serum. Objectives: To determine whether PARC/CCL-18 levels are elevated and modifiable in COPD and to determine their relationship to clinical end points of hospitalization and mortality. Methods: PARC/CCL-18 was measured in serum samples from individuals who participated in the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) and LHS (Lung Health Study) studies and a prednisolone intervention study. Measurements and Main Results: Serum PARC/CCL-18 levels were higher in subjects with COPD than in smokers or lifetime nonsmokers without COPD (105 vs. 81 vs. 80 ng/ml, respectively; P LHS cohort and with total mortality in the ECLIPSE cohort. Conclusions: Serum PARC/CCL-18 levels are elevated in COPD and track clinical outcomes. PARC/CCL-18, a lung-predominant chemokine, could be a useful blood biomarker in COPD. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552). PMID:21216880

  11. Steatosis induced CCL5 contributes to early-stage liver fibrosis in nonalcoholic fatty liver disease progress.

    Science.gov (United States)

    Li, Bing-Hang; He, Fang-Ping; Yang, Xin; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-02-01

    The rapidly increasing prevalence of nonalcoholic fatty liver disease (NAFLD) has become one of the major public health threats in China and worldwide. However, during the development of NAFLD, the key mechanism underlying the progression of related fibrosis remains unclear, which greatly impedes the development of optimal NAFLD therapy. In the current study, we were endeavored to characterize a proinflammatory cytokine, CCL5, as a major contributor for fibrosis in NAFLD. The results showed that CCL5 was highly expressed in fatty liver and NASH patients. In NAFLD rats induced by 8-week-HFD, CCL5 and its receptor, CCR5, were significantly up-regulated and liver fibrosis exclusively occurred in this group. In addition, we showed that hepatocytes are the major source contributing to this CCL5 elevation. Interestingly, a CCL5 inhibitor Met-CCL5, significantly decreased liver fibrosis but not hepatic steatosis. Using a cell model of hepatic steatosis, we found that the conditioned medium of lipid-overloaded hepatocytes (Fa2N-4 cells) which produced excessive CCL5 stimulated the profibrotic activities of hepatic stellate cells (LX-2) as manifested by increased migration rate, proliferation and collagen production of LX-2 cells. CCL5 knockdown in Fa2N-4 cells, Met-CCL5 or CCR5 antibody treatment on LX-2 cells all significantly inhibited the conditioned medium of FFA-treated Fa2N-4 cells to exert stimulatory effects on LX-2 cells. Consistently, the conditioned medium of Fa2N-4 cells with CCL5 over-expression significantly enhanced migration rate, cell proliferation and collagen production of LX-2 cells. All these results support that CCL5 produced by steatotic hepatocytes plays an essential role in fibrotic signaling machinery of NAFLD. In addition, we were able to identify C/EBP-β as the up-stream regulator of CCL5 gene transcription in hepatocytes treated with free fatty acid (FFA). Our data strongly supported that CCL5 plays a pivotal regulatory role in

  12. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    Science.gov (United States)

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine. PMID:20652055

  13. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.

    Science.gov (United States)

    Tang, Shu; Xiang, Tong; Huang, Shuo; Zhou, Jie; Wang, Zhongyu; Xie, Rongkai; Long, Haixia; Zhu, Bo

    2016-06-28

    Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Peripheral Neuropathic Facial/Trigeminal Pain and RANTES/CCL5 in Jawbone Cavitation

    Directory of Open Access Journals (Sweden)

    Johann Lechner

    2015-01-01

    Full Text Available Introduction. In this study, we elucidate the possible causative role of chronic subclinical inflammation in jawbone of patients with atypical facial pain (AFP and trigeminal neuralgia (TRN in the local overexpression of the chemokine regulated on activation and normal T-cell expressed and secreted (RANTES/C-C motif ligand 5 CCL5. Neurons contain opioid receptors that transmit antipain reactions in the peripheral and central nervous system. Proinflammatory chemokines like RANTES/CCL5 desensitize μ-opioid receptors in the periphery sensory neurons and it has been suggested that RANTES modifies the nociceptive reaction. Materials and Methods. In 15 patients with AFP/TRN, we examined fatty degenerated jawbone (FDOJ samples for the expression of seven cytokines by multiplex analysis and compared these results with healthy jawbones. Results. Each of these medullary jawbone samples exhibited RANTES as the only highly overexpressed cytokine. The FDOJ cohort with AFP/TRN showed a mean 30-fold overexpression of RANTES compared to healthy jawbones. Conclusions. To the best of our knowledge, no other research has identified RANTES overexpression in silent inflamed jawbones as a possible cause for AFP/TRN. Thus, we hypothesize that the surgical clearing of FDOJ might diminish RANTES signaling pathways in neurons and contribute to resolving chronic neurological pain in AFP/TRN patients.

  15. Flavanones from Sedum sarmentosum Bunge Alleviate CCl4-Induced Liver Fibrosis in Rats by Targeting TGF-β1/TβR/Smad Pathway In Turn Inhibiting Epithelial Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Yuancan Lin

    2018-01-01

    Full Text Available Objective. The aim of the study is to evaluate the therapeutic effects of flavanones from Sedum sarmentosum Bunge (FSSB on CCl4-induced liver fibrosis in rats and the underlying mechanisms of action. Methods. An experimental model of liver fibrosis was established by subcutaneous injection of rats with CCl4 (40% v/v, 3 ml/kg twice per week for six weeks. FSSB (100, 200, and 400 mg/kg was intragastrically administered once per day consecutively for five weeks. Results. Our results showed that FSSB significantly attenuated CCl4-induced liver fibrosis as evidenced by reducing the elevated levels of serum biochemical indexes and improving the histological changes, including decreasing the elevation in serum alanine transaminase (ALT, aspartate transaminase (AST, hyaluronic acid (HA, and laminin (LN level, reducing infiltration of inflammatory cells and collagen fibers in liver tissue. In addition, compared to the model group, FSSB markedly downregulated the protein and mRNA expression of TGF-β1, TGF-β1 receptors I and II (TβRI and TβRII, Smad2, Smad3, and Vimentin in liver tissue, at the mean time upregulating the expression of Smad7 and E-cadherin. Conclusions. The results suggest that FSSB alleviated CCl4-induced liver fibrosis probably through inhibition of TGF-β/TβR/Smad pathway in turn inhibiting epithelial mesenchymal transition.

  16. The Formation and Motion of CCl4- in CCl4 - Ar Mixture

    International Nuclear Information System (INIS)

    Martinez, H.; Yousif, F. B.

    2006-01-01

    This article deals with the measurement of the mobility of negative ions in the mixtures of CCl4 with Ar with the CCl4 ratio up to 33.3%. The Pulsed Townsend Technique was employed to produce an integrated ionic avalanches over a range of the density-reduced electric field E/N for which ionization is either negligible or absent, and attachment processes are dominant, leading to the formation of mostly CCl 4 - . The E/N range of measurement was 1 to 50 Td (1Td = 10-17 Vcm2). Our measurements strongly suggest that attachment is the dominant process and only negative ions are formed

  17. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  18. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Donna eGruol

    2014-04-01

    Full Text Available Chronic exposure to ethanol produces a number of detrimental effects on behavior. Neuroadaptive changes in brain structure or function underlie these behavioral changes and may be transient or persistent in nature. Central to the functional changes are alterations in the biology of neuronal and glial cells of the brain. Recent data show that ethanol induces glial cells of the brain to produce elevated levels of neuroimmune factors including CCL2, a key innate immune chemokine. Depending on the conditions of ethanol exposure, the upregulated levels of CCL2 can be transient or persistent and outlast the period of ethanol exposure. Importantly, results indicate that the upregulated levels of CCL2 may lead to CCL2-ethanol interactions that mediate or regulate the effects of ethanol on the brain. Glial cells are in close association with neurons and regulate many neuronal functions. Therefore, effects of ethanol on glial cells may underlie some of the effects of ethanol on neurons. To investigate this possibility, we are studying the effects of chronic ethanol on hippocampal synaptic function in a transgenic mouse model that expresses elevated levels of CCL2 in the brain through enhanced glial expression, a situation know to occur in alcoholics. Both CCL2 and ethanol have been reported to alter synaptic function in the hippocampus. In the current study, we determined if interactions are evident between CCL2 and ethanol at level of hippocampal synaptic proteins. Two ethanol exposure paradigms were used; the first involved ethanol exposure by drinking and the second involved ethanol exposure in a paradigm that combines drinking plus ethanol vapor. The first paradigm does not produce dependence on ethanol, whereas the second paradigm is commonly used to produce ethanol dependence. Results show modest effects of both ethanol exposure paradigms on the level of synaptic proteins in the hippocampus of CCL2 transgenic mice compared with their non

  19. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1–regulated pathways in mice

    Science.gov (United States)

    Meenhuis, Annemarie; van Veelen, Peter A.; de Looper, Hans; van Boxtel, Nicole; van den Berge, Iris J.; Sun, Su M.; Taskesen, Erdogan; Stern, Patrick; de Ru, Arnoud H.; van Adrichem, Arjan J.; Demmers, Jeroen; Jongen-Lavrencic, Mojca; Löwenberg, Bob; Touw, Ivo P.; Sharp, Phillip A.

    2011-01-01

    MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1), an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation, as a major target for these miRNAs in myeloid progenitors. In addition, we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further, SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment, but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion, replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways. PMID:21628417

  20. Systemic levels of CCL2, CCL3, CCL4 and CXCL8 differ according to age, time period and season among children newly diagnosed with type 1 diabetes and their healthy siblings

    DEFF Research Database (Denmark)

    Thorsen, S U; Eising, S; Mortensen, H B

    2014-01-01

    The mechanisms by which antigen-specific T cells migrate to the islets of Langerhans in type 1 diabetes (T1D) are largely unknown. Chemokines attract immune cells to sites of inflammation. The aim was to elucidate the role of inflammatory chemokines in T1D at time of diagnosis. From a population......-based registry of children diagnosed with T1D from 1997 to 2005, we studied five different inflammatory chemokines (CCL2, CCL3, CCL4, CCL5 and CXCL8). Four hundred and eighty-two cases and 479 sibling frequencies matched on age and sample year distribution were included. Patients showed lower levels of CCL4...... compared to siblings, but this result was not significant after correction for multiple testing. CCL2, CCL3, CCL4 and CXCL8 levels were highest in the most recent cohorts (P

  1. Mineralization of CCl4 and CCl2F2 on solid surfaces

    International Nuclear Information System (INIS)

    Gaeb, S.; Schmitzer, J.; Turner, W.V.; Korte, F.; Technische Univ. Muenchen, Freising

    1980-01-01

    The mineralization of 14 CCl 4 and 14 CCl 2 F 2 in the dark is shown to be greatly dependent on the nature of the solid surfaces to which they are exposed, alumina being more effective than silica gel and a number of natural sands. Activation of the solids by drying or mechanically by tumbling leads to increased mineralization rates. (orig.)

  2. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation.

    Science.gov (United States)

    Liu, Yu; Wen, Pei-Hao; Zhang, Xin-Xue; Dai, Yang; He, Qiang

    2018-05-02

    Acute liver injury is characterized by fibrosis, inflammation and apoptosis, leading to liver failure, cirrhosis or cancer and affecting the clinical outcome in the long term. However, no effective therapeutic strategy is currently available. Breviscapine, a mixture of flavonoid glycosides, has been reported to have multiple biological functions. The present study aimed to investigate the effects of breviscapine on acute liver injury induced by CCl4 in mice. C57BL/6 mice were subjected to intraperitoneal injection with CCl4 for 8 weeks with or without breviscapine (15 or 30 mg/kg). Mice treated with CCl4 developed acute liver injury, as evidenced by histological analysis, Masson trichrome and Sirius Red staining, accompanied with elevated levels of alanine aminotransferase and aspartate aminotransferase. Furthermore, increases in pro‑inflammatory cytokines, chemokines and apoptotic factors, including caspase‑3 and poly(ADP ribose) polymerase‑2 (PARP‑2), were observed. Breviscapine treatment significantly and dose‑dependently reduced collagen deposition and the fibrotic area. Inflammatory cytokines were downregulated by breviscapine through inactivating Toll‑like receptor 4/nuclear factor-κB signaling pathways. In addition, co‑administration of breviscapine with CCl4 decreased the apoptotic response by enhancing B‑cell lymphoma-2 (Bcl‑2) levels, while reducing Bcl‑2‑associated X protein, apoptotic protease activating factor 1, caspase‑3 and PARP activity. Furthermore, CCl4‑induced oxidative stress was blocked by breviscapine through improving anti‑oxidants and impeding mitogen‑activated protein kinase pathways. The present study highlighted that breviscapine exhibited liver‑protective effects against acute hepatic injury induced by CCl4 via suppressing inflammation and apoptosis.

  3. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Bergot

    2014-10-01

    Full Text Available Human Papillomavirus (HPV 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.

  4. Fine structure of the CCl3 UV absorption spectrum and CCl3 kinetics

    DEFF Research Database (Denmark)

    Ellermann, T.

    1992-01-01

    The UV gas-phase spectrum of CCl3 was recorded in the range 220-300 nm using pulse radiolysis of CHCl3/SF6 or CCl4/Ar gas mixtures. The UV spectrum exhibits a pronounced vibrational fine structure which is assigned to transition into the (C2A1'(3s)) Rydberg state. The vibronic progression has...

  5. Chemokines CXCL10 and CCL2

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F; Jensen, C V

    2001-01-01

    leukocyte count, the CSF concentration of neopterin, matrix metalloproteinase (MMP)-9, and intrathecal IgG and IgM synthesis. The concentration of CCL2 increased between baseline for 3 weeks in both groups, more distinctly so in patients treated with methylprednisolone. CCL2 correlated negatively with MMP-9...... patients in relapse, whilst levels of CCL2 (MCP-1) were reduced. Here, we report a serial analysis of CSF CXCL10 and CCL2 concentrations in 22 patients with attacks of MS or acute optic neuritis (ON) treated with methylprednisolone, and 26 patients treated with placebo in two randomized controlled trials....... Chemokine concentrations were measured by enzyme linked immunosorbent assay (ELISA) in CSF obtained at baseline and after 3 weeks, and were compared with other measures of intrathecal inflammation. At baseline CSF concentrations of CCL2 were significantly lower in the patient group than in controls...

  6. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  7. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages.

    Science.gov (United States)

    Abrial, C; Grassin-Delyle, S; Salvator, H; Brollo, M; Naline, E; Devillier, P

    2015-09-01

    15-Lipoxygenase (15-LOX) activity is associated with inflammation and immune regulation. The objectives of the present study were to investigate the expression of 15-LOX-1 and 15-LOX-2 and evaluate the enzymes' roles in the polarization of human lung macrophages (LMs) in response to LPS and Th2 cytokines (IL-4/-13). LMs were isolated from patients undergoing surgery for carcinoma. The cells were cultured with a 15-LOX inhibitor (PD146176 or ML351), a COX inhibitor (indomethacin), a 5-LOX inhibitor (MK886) or vehicle and then stimulated with LPS (10 ng · mL(-1)), IL-4 (10 ng · mL(-1)) or IL-13 (50 ng · mL(-1)) for 24 h. Levels of ALOX15 (15-LOX-1) and ALOX15B (15-LOX-2) transcripts were determined by real-time quantitative PCR. Immunoassays were used to measure levels of LPS-induced cytokines (TNF-α, CCL2, CCL3, CCL4, CXCL1, CXCL8 and CXCL10) and Th2 cytokine-induced chemokines (CCL13, CCL18 and CCL22) in the culture supernatant. Stimulation of LMs with LPS was associated with increased expression of ALOX15B, whereas stimulation with IL-4/IL-13 induced the expression of ALOX15. PD146176 and ML351 (10 μM) reduced the release of the chemokines induced by LPS and Th2 cytokines. The effects of these 15-LOX inhibitors were maintained in the presence of indomethacin and MK886. Furthermore, indomethacin revealed the inhibitory effect of PD146176 on TNF-α release. Inhibition of the 15-LOX pathways is involved in the down-regulation of the in vitro production of chemokines in LMs. Our results suggest that the 15-LOX pathways have a role in the pathogenesis of inflammatory lung disorders and may thus constitute a potential drug target. © 2015 The British Pharmacological Society.

  8. Otitis Media and Nasopharyngeal Colonization in ccl3-/- Mice.

    Science.gov (United States)

    Deniffel, Dominik; Nuyen, Brian; Pak, Kwang; Suzukawa, Keigo; Hung, Jun; Kurabi, Arwa; Wasserman, Stephen I; Ryan, Allen F

    2017-11-01

    We previously found CC chemokine ligand 3 (CCL3) to be a potent effector of inflammation during otitis media (OM): exogenous CCL3 rescues the OM phenotype of tumor necrosis factor-deficient mice and the function of macrophages deficient in several innate immune molecules. To further delineate the role of CCL3 in OM, we evaluated middle ear (ME) responses of ccl3 -/- mice to nontypeable Haemophilus influenzae (NTHi). CCL chemokine gene expression was evaluated in wild-type (WT) mice during the complete course of acute OM. OM was induced in ccl3 -/- and WT mice, and infection and inflammation were monitored for 21 days. Phagocytosis and killing of NTHi by macrophages were evaluated by an in vitro assay. The nasopharyngeal bacterial load was assessed in naive animals of both strains. Many CCL genes showed increased expression levels during acute OM, with CCL3 being the most upregulated, at levels 600-fold higher than the baseline. ccl3 -/- deletion compromised ME bacterial clearance and prolonged mucosal hyperplasia. ME recruitment of leukocytes was delayed but persisted far longer than in WT mice. These events were linked to a decrease in the macrophage capacity for NTHi phagocytosis and increased nasopharyngeal bacterial loads in ccl3 -/- mice. The generalized impairment in inflammatory cell recruitment was associated with compensatory changes in the expression profiles of CCL2, CCL7, and CCL12. CCL3 plays a significant role in the clearance of infection and resolution of inflammation and contributes to mucosal host defense of the nasopharyngeal niche, a reservoir for ME and upper respiratory infections. Therapies based on CCL3 could prove useful in treating or preventing persistent disease. Copyright © 2017 American Society for Microbiology.

  9. Serum CCL-18 level is a risk factor for COPD exacerbations requiring hospitalization

    Science.gov (United States)

    Dilektasli, Asli Gorek; Demirdogen Cetinoglu, Ezgi; Uzaslan, Esra; Budak, Ferah; Coskun, Funda; Ursavas, Ahmet; Ercan, Ilker; Ege, Ercument

    2017-01-01

    Introduction Chemokine (C-C motif) ligand 18 (CCL-18) has been shown to be elevated in chronic obstructive pulmonary disease (COPD) patients. This study primarily aimed to evaluate whether the serum CCL-18 level differentiates the frequent exacerbator COPD phenotype from infrequent exacerbators. The secondary aim was to investigate whether serum CCL-18 level is a risk factor for exacerbations requiring hospitalization. Materials and methods Clinically stable COPD patients and participants with smoking history but normal spirometry (NSp) were recruited for the study. Modified Medical Research Council Dyspnea Scale, COPD Assessment Test, spirometry, and 6-min walking test were performed. Serum CCL-18 levels were measured with a commercial ELISA Kit. Results Sixty COPD patients and 20 NSp patients were recruited. Serum CCL-18 levels were higher in COPD patients than those in NSp patients (169 vs 94 ng/mL, PCOPD (168 vs 196 ng/mL) subgroups did not achieve statistical significance (P=0.09). Serum CCL-18 levels were significantly higher in COPD patients who had experienced at least one exacerbation during the previous 12 months. Overall, ROC analysis revealed that a serum CCL-18 level of 181.71 ng/mL could differentiate COPD patients with hospitalized exacerbations from those who were not hospitalized with a 88% sensitivity and 88.2% specificity (area under curve: 0.92). Serum CCL-18 level had a strong correlation with the frequency of exacerbations requiring hospitalization (r=0.68, PCOPD, as it is associated with frequency of exacerbations, particularly with severe COPD exacerbations requiring hospitalization, as well as with functional parameters and symptom scores. PMID:28115842

  10. Urinary and Serum Metabolomics Analyses Uncover That Total Glucosides of Paeony Protect Liver against Acute Injury Potentially via Reprogramming of Multiple Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Haojie Li

    2017-01-01

    Full Text Available Total glucosides of paeony (TGP have been confirmed to be hepatoprotective. However, the underlying mechanism is largely unclear. In this study, we investigated the metabolic profiles of urine and serum in rats with carbon tetrachloride- (CCl4- induced experimental liver injury and TGP administration by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS. The vehicle or a single dose of TGP was intragastrically administered to Wistar rats once a day for 14 consecutive days. To induce ALI, 50% CCl4 was injected intraperitoneally into these rats 2 hours after the last time administration of saline of TGP at the 14th day. The results indicated that TGP administration could protect rats from CCl4-induced ALI and alanine aminotransferase (ALT and aspartate aminotransferase (AST elevation, as well as hepatocyte apoptosis and inflammation. Furthermore, metabolomics analysis showed that TGP treatment significantly attenuated CCl4-triggered deregulation of multiple metabolites in both urine and serum, including glycine, alanine, proline, and glutamine. Metabolite set enrichment and pathway analyses demonstrated that amino acid cycling and glutathione metabolism were two main pathways involved in CCl4-induced experimental liver injury and TGP administration. Taken together, these findings revealed that regulation of metabolites potentially plays a pivotal role in the protective effect of TGP on ALI.

  11. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Modularized Smad-regulated TGFβ signaling pathway.

    Science.gov (United States)

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  13. BMP15 Prevents Cumulus Cell Apoptosis Through CCL2 and FBN1 in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Bo Zhai

    2013-07-01

    Full Text Available Background: Bone morphogenetic protein-15 (BMP15 is a maternal gene necessary for mammalian reproduction. BMP15 expression increased in oocytes accompanied by follicle growth and development. The function and regulation mechanism of BMP15 in porcine cumulus cell apoptosis process is still unclear now. Methods: In this study, flow cytometry (FCM was used to analyze the effects of BMP15 with different concentrations to cumulus cell apoptosis. High-throughput sequencing technology was carried out to screen regulatory genes linked closely with BMP15. In order to confirm the function of (MCP-1/CCL2 and FBN1 in cumulus cell apoptosis, RNA interference (RNAi method was used to inhibit the expression of (MCP-1/CCL2 and FBN1. Apoptosis and proliferation of cumulus cell treated with siRNA transfection technology were measured by FCM, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, quantitative real time-PCR (RT-qPCR and western blotting. Results: The results showed that the apoptosis levels of cumulus cell treated by BMP15 decreased significantly in a dose-dependent manner. The expression of related genes protein 1 (MCP-1/CCL2 and fibrillin1 (FBN1 were both regulated by BMP15. After transfection, the proliferation of porcine cumulus cells increased significantly and apoptosis of cumulus cells was prevented while FBN1 was silenced after BMP15 treatment. The proliferation of cumulus cells decreased significantly and apoptosis rate of cumulus cells increased significantly while CCL2 was silenced. Conclusion: The results obtained in this study firstly demonstrated that CCL2 and FBN1 are important regulatory factors of BMP15 in preventing cumulus cell apoptosis in porcine ovaries.

  14. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway.

    Science.gov (United States)

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D'Andrea, Alan D

    2015-04-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4-mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.

  15. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway

    Directory of Open Access Journals (Sweden)

    Xinyan Peng

    2018-01-01

    Full Text Available This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl4-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl4 exposure. At 24 h, curcumin-attenuated CCl4 induced elevated serum transaminase activities and histopathological damage in the mouse’s liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl4-induced oxidative stress, characterized by decreased malondialdehyde (MDA formations, and increased superoxide dismutase (SOD, catalase (CAT activities and glutathione (GSH content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl4-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01, and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2 and HO-1 mRNA (both p < 0.01 in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl4-induced acute liver injury. Given these outcomes, curcumin could protect against CCl4-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.

  16. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity.

    Science.gov (United States)

    Ding, Mei; Wang, Xin

    2017-12-01

    The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.

  17. DMPD: The negative regulation of Toll-like receptor and associated pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17621314 The negative regulation of Toll-like receptor and associated pathways. Lan...) Show The negative regulation of Toll-like receptor and associated pathways. PubmedID 17621314 Title The ne...gative regulation of Toll-like receptor and associated pathways. Authors Lang T,

  18. Vapor pressure isotope effect in 13CClF3/12CClF3 by cryogenic distillation kinetics

    International Nuclear Information System (INIS)

    Wieck, H.J.; Ishida, T.

    1975-08-01

    The vapor pressure of 13 CClF 3 relative to the vapor pressure of 12 CClF 3 was measured as a function of temperature between 169 0 and 206 0 K by using a modified Bigeleisen distillation column. The transient build-up of the isotopic concentration gradient along the length of the packed column during the start-up period was monitored by taking samples from the condenser section as a function of time. The gaseous samples were completely oxidized to carbon dioxide in the presence of a platinum catalyst and a large excess of oxygen at temperatures between 1050 and 1100 0 C. The combustion products were purified by means of gas chromatography, and the purified carbon dioxide samples were analyzed in a Nier-type isotope-ratio mass spectrometer. The data of each distillation run were reduced in the light of Cohen's theory of the kinetics of square cascade of close-separation stages. The vapor pressure isotope effect for the carbon substitution in CClF 3 at temperatures between 169 0 and 206 0 K was found to be an inverse effect and to be rather insensitive to changes in temperature. The relative vapor pressure may be expressed 1n(P'/P) = [(1.5 +- 14.1)/T 2 ] - [(0.159 +- 0.076)/T], or 1n(P'/P) = [(0.173 +- 0.098)/T] - [(0.11 +- 0.53) x 10 -3 ], where P' and P are the vapor pressures of 12 CClF 3 and 13 CClF 3 , respectively. To the first-order, the presence of chlorine isotopes would not affect the fractionation of carbon isotopes by the distillation of CClF 3

  19. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika

    2006-01-01

    /chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis......, the authors found down regulation of the mRNA expression of the inflammatory chemokine receptors CCR1 and CXCR3 and their ligands CXCL9, CXCL10, CCL5, and CCL7. Also the transcripts for CCR9, CCL25, CCL17, and CXCL1 are found down regulated in protected compared with colitic animals. In addition, the authors......' results suggest that CCL20 is used by CCR6 regulatory T cells in the complex process of controlling colitis because transcripts for this chemokine were expressed to a higher level in protected animals. The chemokine pathways identified in the present study may be of importance for the development of new...

  20. Significance of CCL2, CCL5 and CCR2 polymorphisms for adverse prognosis of Japanese encephalitis from an endemic population of India.

    Science.gov (United States)

    Chowdhury, Purvita; Khan, Siraj Ahmed

    2017-10-20

    Japanese encephalitis (JE) is a major contributor for viral encephalitis in Asia. Vaccination programme has limited success for largely populated JE endemic countries like India and disease exposure is unavoidable. Involvement of chemokines and its co-receptors for adverse prognosis of JE have been documented both in vitro and in vivo. Identification of the genetic predisposing factor for JE infection in humans is crucial but not yet established. Therefore, we investigated the association of single nucleotide polymorphisms (SNPs) in chemokines (CCL2 and CCL5) and its co-receptors (CCR2 and CCR5) with their protein level for JE. The study enrolled 87 symptomatic JE cases (mild: severe = 24:63) and 94 asymptomatic controls. Our study demonstrated that CCL2 (rs1024611G), CCL5 (rs2280788G) and CCR2 (rs1799864A) significantly associated with JE (Odds ratio = 1.63, 2.95 and 2.62, respectively and P = 0.045, P = 0.05 and P = 0.0006, respectively). The study revealed that rs1024611G allele was associated with elevated level of CCL2. CCL5 elevation associated with JE mortality having a Cox proportional hazard of 1.004 (P = 0.033). In conclusion, SNPs of chemokine viz. CCL2 (rs1024611G) and its receptor CCR2 (rs1799864A) significantly associated with JE which may serve as possible genetic predisposing factor and CCL5 protein level may act as marker for disease survival.

  1. A novel, non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3)

    OpenAIRE

    Fuller, Stephen J; McGuffin, Liam J; Marshall, Andrew K; Giraldo, Alejandro; Pikkarainen, Sampsa; Clerk, Angela; Sugden, Peter

    2012-01-01

    The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily thro...

  2. Effect of budesonide and cetirizine hydrochloride on neurotrophic factor, airway function and chemokines CCL17 and CCL22 in patients with allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    2017-11-01

    Full Text Available Objective: To investigate the effect of budesonide combined with cetirizine hydrochloride on neurotrophic factor, airway function and chemokines CCL17 and CCL12 in patients with allergic rhinitis. Methods: A total of 123 patients with Allergic Rhinitis were randomly divided into three groups, A group treated with budesonide nasal spray, B group treated with cetirizine hydrochloride, C group treated with budesonide combined with cetirizine hydrochloride, then the Neurotrophic factors, airway function indexes and chemokines CCL17 and CCL12 levels in three groups were compared. Results: Before the treatments, the three groups of patients in neurotrophic factor, airway function index and chemokines CCL17, CCL22 have no differences, Compared with before the treatments, after receiving different treatments, the three groups of patients in all indicators were Showed significant differences. In the indexes of neurotrophic factor (NGF, BDNF, NT-3mRNA expression, there was no significant difference between group A and group B, and group C was lower than group A and B. In airway function indexes (FVC, FEV1 and PEF, A group was significantly higher than B group, C group was significantly higher than A group; In the chemokines CCL17 and CCL22 indicators, C group was lower than A group, A group was lower than B group, the difference was significant. Conclusions: Budesonide combined with cetirizine hydrochloride in the treatment of Allergic Rhinitis, can effectively control the patients' neurotrophic factor, pulmonary ventilation and chemokine CC17, CCL22 indicators, the effect is better than Budesonide alone or Cetirizine hydrochloride.

  3. Kaposi sarcoma-associated herpes virus targets the lymphotactin receptor with both a broad spectrum antagonist vCCL2 and a highly selective and potent agonist vCCL3

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Johnsen, Anders H; Jurlander, Jesper

    2007-01-01

    virus (KSHV) encodes three chemokine-like proteins named vCCL1, vCCL2, and vCCL3. In this study vCCL3 was probed in parallel with vCCL1 and vCCL2 against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCCL1 acted as a selective CCR8 agonist, whereas vCCL2......Large DNA viruses such as herpesvirus and poxvirus encode proteins that target and exploit the chemokine system of their host. These proteins have the potential to block or change the orchestrated recruitment of leukocytes to sites of viral infection. The genome of Kaposi sarcoma-associated herpes...... was found to act as a broad spectrum chemokine antagonist of human chemokine receptors, including the lymphotactin receptor. In contrast vCCL3 was found to be a highly selective agonist for the human lymphotactin receptor XCR1. The potency of vCCL3 was found to be 10-fold higher than the endogenous human...

  4. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, CCl3CF3 (CFC-113a, and CCl2FCF3 (CFC-114a

    Directory of Open Access Journals (Sweden)

    M. E. Davis

    2016-07-01

    Full Text Available The potential impact of CCl2FCF3 (CFC-114a and the recently observed CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, and CCl3CF3 (CFC-113a chlorofluorocarbons (CFCs on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235 nm over the temperature range 207–323 K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs, and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years of 63.6 (61.9–64.7, 51.5 (50.0–52.6, 55.4 (54.3–56.3, and 105.3 (102.9–107.4 for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2σ uncertainty in the UV absorption spectra and O(1D rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs were estimated to be 4260 (CFC-112, 3330 (CFC-112a, 3650 (CFC-113a, and 6510 (CFC-114a for the 100-year time horizon.

  5. CCL5–Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Pittaluga

    2017-09-01

    Full Text Available The immune system (IS and the central nervous system (CNS are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5 and the principal neurotransmitter in CNS (i.e., glutamate in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS, but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.

  6. CCL19 as a Chemokine Risk Factor for Posttreatment Lyme Disease Syndrome: a Prospective Clinical Cohort Study

    Science.gov (United States)

    Soloski, Mark J.; Rebman, Alison W.; Crowder, Lauren A.; Wagner, Catriona A.; Robinson, William H.; Bechtold, Kathleen T.

    2016-01-01

    Approximately 10% to 20% of patients optimally treated for early Lyme disease develop persistent symptoms of unknown pathophysiology termed posttreatment Lyme disease syndrome (PTLDS). The objective of this study was to investigate associations between PTLDS and immune mediator levels during acute illness and at several time points following treatment. Seventy-six participants with physician-documented erythema migrans and 26 healthy controls with no history of Lyme disease were enrolled. Sixty-four cytokines, chemokines, and inflammatory markers were measured at each visit for a total of 6 visits over 1 year. An operationalized definition of PTLDS incorporating symptoms and functional impact was applied at 6 months and 1 year following treatment completion, and clinical outcome groups were defined as the return-to-health, symptoms-only, and PTLDS groups. Significance analysis of microarrays identified 7 of the 64 immune mediators to be differentially regulated by group. Generalized logit regressions controlling for potential confounders identified posttreatment levels of the T-cell chemokine CCL19 to be independently associated with clinical outcome group. Receiver operating characteristic analysis identified a CCL19 cutoff of >111.67 pg/ml at 1 month following treatment completion to be 82% sensitive and 83% specific for later PTLDS. We speculate that persistently elevated CCL19 levels among participants with PTLDS may reflect ongoing, immune-driven reactions at sites distal to secondary lymphoid tissue. Our findings suggest the relevance of CCL19 both during acute infection and as an immunologic risk factor for PTLDS during the posttreatment phase. Identification of a potential biomarker predictor for PTLDS provides the opportunity to better understand its pathophysiology and to develop early interventions in the context of appropriate and specific clinical information. PMID:27358211

  7. Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway.

    Science.gov (United States)

    Bongiorni, Silvia; Pasqualini, Barbara; Taranta, Monia; Singh, Prim B; Prantera, Giorgio

    2007-03-15

    Using RNA interference (RNAi) we have conducted a functional analysis of the HP1-like chromobox gene pchet2 during embryogenesis of the mealybug Planococcus citri. Knocking down pchet2 expression results in decondensation of the male-specific chromocenter that normally arises from the developmentally-regulated facultative heterochromatinisation of the paternal chromosome complement. Together with the disappearance of the chromocenter the staining levels of two associated histone modifications, tri-methylated lysine 9 of histone H3 [Me(3)K9H3] and tri-methylated lysine 20 of histone H4 [Me(3)K20H4], are reduced to undetectable levels. Embryos treated with double-stranded RNA (dsRNA) targeting pchet2 also exhibit chromosome abnormalities, such as aberrant chromosome condensation, and also the presence of metaphases that contain 'lagging' chromosomes. We conclude that PCHET2 regulates chromosome behavior during metaphase and is a crucial component of a Me(3)K9H3-HP1-Me(3)K20H4 pathway involved in the facultative heterochromatinisation of the (imprinted) paternal chromosome set.

  8. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    International Nuclear Information System (INIS)

    Chou, Debbie L.; Gerriets, Joan E.; Schelegle, Edward S.; Hyde, Dallas M.; Miller, Lisa A.

    2011-01-01

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: ► Ozone can modulate the localization of eosinophils in infant allergic airways. ► Expression of eotaxins within the lung is affected by ozone and allergen exposure. ► CCL24 induction by ozone and allergen exposure is not linked to eosinophilia.

  9. High Levels of Chemokine C-C Motif Ligand 20 in Human Milk and Its Production by Oral Keratinocytes.

    Science.gov (United States)

    Lourenço, Alan G; Komesu, Marilena C; Duarte, Geraldo; Del Ciampo, Luiz A; Mussi-Pinhata, Marisa M; Yamamoto, Aparecida Y

    2017-03-01

    Chemokine C-C motif ligand 20 (CCL20) is implicated in the formation and function of mucosal lymphoid tissues. Although CCL20 is secreted by many normal human tissues, no studies have evaluated the presence of CCL20 in human milk or its production by oral keratinocytes stimulated by human milk. To evaluate the presence of CCL20 in breast milk and verify CCL20 secretion in vitro by oral keratinocytes stimulated with human and bovine milk, as well as its possible association with breast milk lactoferrin levels. The levels of CCL20 and lactoferrin were measured by enzyme-linked immunosorbent assay in human milk at three different stages of maturation from 74 healthy breastfeeding mothers. In vitro, oral keratinocytes were stimulated with human and bovine milk, and CCL20 was measured in their supernatant. High concentrations of CCL20 were detected in the human breast milk samples obtained during the first week (1,777.07 pg/mL) and second week postpartum (1,523.44 pg/mL), with a significantly low concentration in samples at 3-6 weeks postpartum (238.42 pg/mL; p stimulated higher CCL20 secretion by oral keratinocytes compared with bovine milk (p stimulation had no association with breast milk lactoferrin concentration. CCl20 is present at high levels in human milk, predominantly in the first and second week postpartum, but at significantly lower levels at 3-6 weeks postpartum. Human milk is capable of stimulating CCL20 secretion by oral keratinocytes, and this induction had no association with breast milk lactoferrin concentration.

  10. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  11. Constraining the carbon tetrachloride (CCl4) budget using its global trend and inter-hemispheric gradient

    Science.gov (United States)

    Liang, Qing; Newman, Paul A.; Daniel, John S.; Reimann, Stefan; Hall, Bradley D.; Dutton, Geoff; Kuijpers, Lambert J. M.

    2014-07-01

    Carbon tetrachloride (CCl4) is a major anthropogenic ozone-depleting substance and greenhouse gas and has been regulated under the Montreal Protocol. However, the near-zero 2007-2012 emissions estimate based on the UNEP reported production and feedstock usage cannot be reconciled with the observed slow decline of atmospheric concentrations and the inter-hemispheric gradient (IHG) for CCl4. Our 3-D model simulations suggest that the observed IHG (1.5 ± 0.2 ppt for 2000-2012) is primarily caused by ongoing current emissions, while ocean and soil losses and stratosphere-troposphere exchange together contribute a small negative gradient (~0 - -0.3 ppt). Using the observed CCl4 global trend and IHG, we deduce that the mean global emissions for the 2000-2012 period are 393445 Gg/yr (~30% of the peak 1980s emissions) and a corresponding total lifetime of 353732 years.

  12. TNF-α and IL-1β Dependent Induction of CCL3 Expression by Nucleus Pulposus Cells Promotes Macrophage Migration through CCR1

    Science.gov (United States)

    Wang, Jianru; Tian, Ye; Phillips, Kate L.E.; Chiverton, Neil; Haddock, Gail; Bunning, Rowena A.; Cross, Alison K.; Shapiro, Irving M.; LeMaitre, Christine L.; Risbud, Makarand V.

    2012-01-01

    Objective To investigate TNF-α and IL-1β regulation of CCL3 expression in nucleus pulposus (NP) cells and in macrophage migration. Methods qRT-PCR and immunohistochemistry were used to measure CCL3 expression in NP cells. Transfections were used to determine the role of NF-κB, C/EBP-β and MAPK on cytokine mediated CCL3 promoter activity. Effect of NP-conditioned medium on macrophage migration was measured using a transwell system. Results An increase in CCL3 expression and promoter activity was observed in NP cells after TNF-α or IL-1β treatment. Treatment of cells with NF-κB and MAPK inhibitors abolished the effect of the cytokines on CCL3 expression. The inductive effect of p65 and C/EBP-β on CCL3 promoter was confirmed through gain- and loss-of-function studies. Noteworthy, co-transfection of p50 completely blocked cytokine and p65 dependent induction. In contrast, c-Rel and RelB had little effect on promoter activity. Lentiviral transduction with Sh-p65 and Sh-Ikkβ significantly decreased TNF-α dependent increase in CCL3 expression. Analysis of degenerate human NP tissues showed that CCL3, but not CCL4 expression correlated positively with the grade of tissue degeneration. Importantly, treatment of macrophages with conditioned medium of NP cells treated with TNF-α or IL-1β promoted their migration; pretreatment of macrophages with antagonist to CCR1, primary receptor for CCL3 and CCL4, blocked cytokine mediated migration. Conclusions By controlling the activation of MAPK, NF-κB and C/EBPβ signaling, TNF-α and IL-1β modulate the expression of CCL3 in NP cells. The CCL3-CCR1 axis may play an important role in promoting macrophage infiltration in degenerate, herniated discs. PMID:23233369

  13. Inflammatory mediators in breast cancer: Coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition

    International Nuclear Information System (INIS)

    Soria, Gali; Gutman, Mordechai; Ben-Baruch, Adit; Ofri-Shahak, Maya; Haas, Ilana; Yaal-Hahoshen, Neora; Leider-Trejo, Leonor; Leibovich-Rivkin, Tal; Weitzenfeld, Polina; Meshel, Tsipi; Shabtai, Esther

    2011-01-01

    The inflammatory chemokines CCL2 (MCP-1) & CCL5 (RANTES) and the inflammatory cytokines TNFα & IL-1β were shown to contribute to breast cancer development and metastasis. In this study, we wished to determine whether there are associations between these factors along stages of breast cancer progression, and to identify the possible implications of these factors to disease course. The expression of CCL2, CCL5, TNFα and IL-1β was determined by immunohistochemistry in patients diagnosed with: (1) Benign breast disorders (=healthy individuals); (2) Ductal Carcinoma In Situ (DCIS); (3) Invasive Ducal Carcinoma without relapse (IDC-no-relapse); (4) IDC-with-relapse. Based on the results obtained, breast tumor cells were stimulated by the inflammatory cytokines, and epithelial-to-mesenchymal transition (EMT) was determined by flow cytometry, confocal analyses and adhesion, migration and invasion experiments. CCL2, CCL5, TNFα and IL-1β were expressed at very low incidence in normal breast epithelial cells, but their incidence was significantly elevated in tumor cells of the three groups of cancer patients. Significant associations were found between CCL2 & CCL5 and TNFα & IL-1β in the tumor cells in DCIS and IDC-no-relapse patients. In the IDC-with-relapse group, the expression of CCL2 & CCL5 was accompanied by further elevated incidence of TNFα & IL-1β expression. These results suggest progression-related roles for TNFα and IL-1β in breast cancer, as indeed indicated by the following: (1) Tumors of the IDC-with-relapse group had significantly higher persistence of TNFα and IL-1β compared to tumors of DCIS or IDC-no-relapse; (2) Continuous stimulation of the tumor cells by TNFα (and to some extent IL-1β) has led to EMT in the tumor cells; (3) Combined analyses with relevant clinical parameters suggested that IL-1β acts jointly with other pro-malignancy factors to promote disease relapse. Our findings suggest that the coordinated expression of CCL2 & CCL5

  14. CCL2 is critical for immunosuppression to promote cancer metastasis.

    Science.gov (United States)

    Kudo-Saito, Chie; Shirako, Hiromi; Ohike, Misa; Tsukamoto, Nobuo; Kawakami, Yutaka

    2013-04-01

    We previously found that cancer metastasis is accelerated by immunosuppression during Snail-induced epithelial-to-mesenchymal transition (EMT). However, the molecular mechanism still remained unclear. Here, we demonstrate that CCL2 is a critical determinant for both tumor metastasis and immunosuppression induced by Snail(+) tumor cells. CCL2 is significantly upregulated in various human tumor cells accompanied by Snail expression induced by snail transduction or TGFβ treatment. The Snail(+) tumor-derived CCL2 amplifies EMT events in other cells including Snail(-) tumor cells and epithelial cells within tumor microenvironment. CCL2 secondarily induces Lipocalin 2 (LCN2) in the Snail(+) tumor cells in an autocrine manner. CCL2 and LCN2 cooperatively generate immunoregulatory dendritic cells (DCreg) having suppressive activity accompanied by lowered expression of costimulatory molecules such as HLA-DR but increased expression of immunosuppressive molecules such as PD-L1 in human PBMCs. The CCL2/LCN2-induced DCreg cells subsequently induce immunosuppressive CD4(+)FOXP3(+) Treg cells, and finally impair tumor-specific CTL induction. In murine established tumor model, however, CCL2 blockade utilizing the specific siRNA or neutralizing mAb significantly inhibits Snail(+) tumor growth and metastasis following systemic induction of anti-tumor immune responses in host. These results suggest that CCL2 is more than a chemoattractant factor that is the significant effector molecule responsible for immune evasion of Snail(+) tumor cells. CCL2 would be an attractive target for treatment to eliminate cancer cells via amelioration of tumor metastasis and immunosuppression.

  15. Laser capture microdissection and cDNA array analysis of endometrium identify CCL16 and CCL21 as epithelial-derived inflammatory mediators associated with endometriosis

    Directory of Open Access Journals (Sweden)

    Jones Rebecca L

    2007-05-01

    Full Text Available Abstract Background Understanding the pathophysiology of chemokine secretion in endometriosis may offer a novel area of therapeutic intervention. This study aimed to identify chemokines differentially expressed in epithelial glands in eutopic endometrium from normal women and those with endometriosis, and to establish the expression profiles of key chemokines in endometriotic lesions. Methods Laser capture microdissection isolated epithelial glands from endometrial eutopic tissue from women with and without endometriosis in the mid-secretory phase of their menstrual cycles. Gene profiling of the excised glands used a human chemokine and receptor cDNA array. Selected chemokines were further examined using real-time PCR and immunohistochemistry. Results 22 chemokine/receptor genes were upregulated and two downregulated in pooled endometrial epithelium of women with endometriosis compared with controls. CCL16 and CCL21 mRNA was confirmed as elevated in some women with endometriosis compared to controls on individual samples. Immunoreactive CCL16 and CCL21 were predominantly confined to glands in eutopic and ectopic endometrium: leukocytes also stained. Immunoreactive CCL16 was overall higher in glands in ectopic vs. eutopic endometrium from the same woman (P Conclusion This study provides novel candidate molecules and suggests a potential local role for CCL16 and CCL21 as mediators contributing to the inflammatory events associated with endometriosis.

  16. Chemokine MCP1/CCL2 and RANTES/CCL5 gene polymorphisms influence Henoch–Schönlein purpura susceptibility and severity

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Yu

    2015-04-01

    Conclusion: Our results support the fact that chemokines play important roles in the pathogenesis of HSP. MCP1/CCL2 gene polymorphisms were associated with susceptibility for HSP. RANTES/CCL5 gene polymorphisms may be related to disease severity and HSP nephritis.

  17. Tanshinone IIA Inhibits Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Modulation of STAT3-CCL2 Signaling

    Directory of Open Access Journals (Sweden)

    Sung-Ying Huang

    2017-07-01

    Full Text Available Tanshinone IIA (Tan-IIA is an extract from the widely used traditional Chinese medicine (TCM Danshen (Salvia miltiorrhiza, and has been found to attenuate the proliferation of bladder cancer (BCa cells (The IC50 were: 5637, 2.6 μg/mL; BFTC, 2 μg/mL; T24, 2.7 μg/mL, respectively.. However, the mechanism of the effect of Tan-IIA on migration inhibition of BCa cells remains unclear. This study investigates the anti-metastatic effect of Tan-IIA in human BCa cells and clarifies its molecular mechanism. Three human BCa cell lines, 5637, BFTC and T24, were used for subsequent experiments. Cell migration and invasion were evaluated by transwell assays. Real-time RT-PCR and western blotting were performed to detect epithelial-mesenchymal transition (EMT-related gene expression. The enzymatic activity of matrix metalloproteinases (MMP was evaluated by zymography assay. Tan-IIA inhibited the migration and invasion of human BCa cells. Tan-IIA suppressed both the protein expression and enzymatic activity of MMP-9/-2 in human BCa cells. Tan-IIA up-regulated the epithelial marker E-cadherin and down-regulated mesenchymal markers such as N-cadherin and Vimentin, along with transcription regulators such as Snail and Slug in BCa cells in a time- and dose-dependent manner. Mechanism dissection revealed that Tan-IIA-inhibited BCa cell invasion could function via suppressed chemokine (C-C motif ligand 2 (CCL2 expression, which could be reversed by the addition of CCL2 recombinant protein. Furthermore, Tan-IIA could inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3 (Tyr705, which cannot be restored by the CCL2 recombinant protein addition. These data implicated that Tan-IIA might suppress EMT on BCa cells through STAT3-CCL2 signaling inhibition. Tan-IIA inhibits EMT of BCa cells via modulation of STAT3-CCL2 signaling. Our findings suggest that Tan-IIA can serve as a potential anti-metastatic agent in BCa therapy.

  18. Mechanism of the Inhibitory Effects of Eucommia ulmoides Oliv. Cortex Extracts (EUCE in the CCl4-Induced Acute Liver Lipid Accumulation in Rats

    Directory of Open Access Journals (Sweden)

    Chang-Feng Jin

    2013-01-01

    Full Text Available Eucommia ulmoides Oliv. (EU has been used for treatment of liver diseases. The protective effects of Eucommia Ulmoides Oliv. cortex extracts (EUCE on the carbon tetrachloride- (CCl4- induced hepatic lipid accumulation were examined in this study. Rats were orally treated with EUCE in different doses prior to an intraperitoneal injection of 1 mg/kg CCl4. Acute injection of CCl4 decreased plasma triglyceride but increased hepatic triglyceride and cholesterol as compared to control rats. On the other hand, the pretreatment with EUCE diminished these effects at a dose-dependent manner. CCl4 treatment decreased glutathione (GSH and increased malondialdehyde (MDA accompanied by activated P450 2E1. The pretreatment with EUCE significantly improved these deleterious effects of CCl4. CCl4 treatment increased P450 2E1 activation and ApoB accumulation. Pretreatment with EUCE reversed these effects. ER stress response was significantly increased by CCl4, which was inhibited by EUCE. One of the possible ER stress regulatory mechanisms, lysosomal activity, was examined. CCl4 reduced lysosomal enzymes that were reversed with the EUCE. The results indicate that oral pretreatment with EUCE may protect liver against CCl4-induced hepatic lipid accumulation. ER stress and its related ROS regulation are suggested as a possible mechanism in the antidyslipidemic effect of EUCE.

  19. Didymin Alleviates Hepatic Fibrosis Through Inhibiting ERK and PI3K/Akt Pathways via Regulation of Raf Kinase Inhibitor Protein

    Directory of Open Access Journals (Sweden)

    Xing Lin

    2016-12-01

    Full Text Available Background: Didymin has been reported to have anti-cancer potential. However, the effect of didymin on liver fibrosis remains illdefined. Methods: Hepatic fibrosis was induced by CCl4 in rats. The effects of didymin on liver pathology and collagen accumulation were observed by hematoxylin-eosin and Masson's trichrome staining, respectively. Serum transaminases activities and collagen-related indicators levels were determined by commercially available kits. Moreover, the effects of didymin on hepatic stellate cell apoptosis and cell cycle were analyzed by flow cytometry. Mitochondrial membrane potential was detected by using rhodamine-123 dye. The expression of Raf kinase inhibitor protein (RKIP and the phosphorylation of the ERK/MAPK and PI3K/Akt pathways were assessed by Western blot. Results: Didymin significantly ameliorated chronic liver injury and collagen deposition. It strongly inhibited hepatic stellate cells proliferation, induced apoptosis and caused cell cycle arrest in G2/M phase. Moreover, didymin notably attenuated mitochondrial membrane potential, accompanied by release of cytochrome C. Didymin significantly inhibited the ERK/MAPK and PI3K/Akt pathways. The effects of didymin on the collagen accumulation in rats and on the biological behaviors of hepatic stellate cells were largely abolished by the specific RKIP inhibitor locostatin. Conclusion: Didymin alleviates hepatic fibrosis by inhibiting ERK/MAPK and PI3K/Akt pathways via regulation of RKIP expression.

  20. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Debbie L.; Gerriets, Joan E. [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Schelegle, Edward S.; Hyde, Dallas M. [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616 (United States); Miller, Lisa A., E-mail: lmiller@ucdavis.edu [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616 (United States)

    2011-12-15

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: Black-Right-Pointing-Pointer Ozone can modulate the localization of eosinophils in infant allergic airways. Black-Right-Pointing-Pointer Expression of eotaxins within the lung is affected by ozone and allergen exposure. Black-Right-Pointing-Pointer CCL24 induction by

  1. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  2. Hepatoprotective effect of basil ( Ocimum basilicum L.) on CCl 4 ...

    African Journals Online (AJOL)

    The hepatoprotective effect of basil (Ocimum basilicum) extract against liver fibrosis-induced by carbon tetrachloride (CCl4) was studied in rats. Rats were allocated into five groups: Group I (control group); Group II [CCl4 group; rats were injected subcutaneously with CCl4 (1 ml/kg b.w.) twice weekly for 4 weeks ...

  3. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP.

    Science.gov (United States)

    Page, Stephen H; Wright, Edward K; Gama, Lucio; Clements, Janice E

    2011-01-01

    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.

  4. CpG-ODNs induces up-regulated expression of chemokine CCL9 in mouse macrophages and microglia

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Cheng, Y.-C.; Liang, S.-M.

    G-ODNs on macrophage/microglial cells are investigated. CpG-ODNs enhanced the expression of TLR9 mRNA of RAW264.7 macrophage and BV2 microglia cells time dependently. The expression of CCL9 of macrophages/microglia showed different responsiveness upon stimulation...

  5. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways.

    Science.gov (United States)

    Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C

    2014-01-01

    Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  6. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP and CCL11/eotaxin-1 in human asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Gustavo Nino

    Full Text Available Thymic stromal lymphoproetin (TSLP is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state.Primary human bronchial epithelial cells (HBEC from control (n = 3 and asthmatic (n = 3 donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI conditions and treated apically with dsRNA (viral surrogate or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC from normal (n = 3 and asthmatic (n = 3 donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20 vs. non-asthmatic uninfected controls (n = 20. Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay.Our data demonstrate that: 1 Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2 TSLP exposure induces unidirectional (apical secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3 Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1.There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  7. The MCP-1, CCL-5 and SDF-1 chemokines as pro-inflammatory markers in generalized anxiety disorder and personality disorders.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Moś, Danuta M; Araszkiewicz, Aleksander

    2015-02-01

    The co-occurrence of generalized anxiety disorder and personality disorders suggests the existence of association between the neurobiological predispositions leading to the development of these disorders and activation of cytokine system. Pro-inflammatory chemokines such as CCL-5/RANTES (regulated upon activation normal T cell expressed and secreted) and CXCL12/SDF-1 (stromal derived factor) play an important role in immune response. A total of 160 participants were enrolled in the study, 120 of whom comprised the study group (people with the dual diagnosis of personality disorder and generalized anxiety disorder). The mean age was 41.4 ± 3.5 years (range: 20-44 years). The control group consisted of 40 healthy individuals in the mean age of 40.8 ± 3.1 years (range: 20-43 years). A blood sample was collected from each participant and the plasma levels of the CCL-2/MCP-1 (monocyte chemoattractant protein-1), RANTES and SDF-1 chemokines were determined by ELISA. Increased levels of MCP-1 and SDF-1 were found both in women and in men versus the control group for all types of personality disorders. The levels of CCL-5 in men were significantly increased versus the control group and significantly higher in women than in men. Neither women nor men with avoidant or obsessive-compulsive personality disorder showed any significant differences in MCP-1 or SFD-1 levels. In subjects with borderline personality disorder, the levels of the study chemokines were higher in women than in men. Our study has shown the need for determination of proinflammatory interleukins which are considered as biomarkers of personality disorders and generalized anxiety disorders. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies

    OpenAIRE

    Kathiresan, Sekar; Reilly, Muredach; Samani, Nilesh; Schunkert, Heribert; Erdmann, Jeanette; Moll, Frans; Boerwinkle, Eric; Hall, Anne; Hengstenberg, Christian; König, Inke; Laaksonen, Reijo; McPherson, Ruth; Thompson, John; Thorsteinsdottir, Unnur; Ziegler, Andreas

    2011-01-01

    textabstractBackground: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study withi...

  9. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  10. Protective effect of Cucurbita pepo fruit peel against CCl4 induced neurotoxicity in rat.

    Science.gov (United States)

    Zaib, Sania; Khan, Muhammad Rashid

    2014-11-01

    Cucurbita pepo is a common vegetable used all over the world. In folk medicine it is used in gastroenteritis, hepatorenal and in brain anomalies. In the present study, protective effect of Cucurbita pepo fruit peel against CCl4-induced neurotoxicity in rats was investigated. In this study, 36 Sprague-Dawley female rats (190±15 g) were randomly divided into 6 groups of 6 rats each. Group I was given 1 ml/kg bw (body weight) of corn oil intraperotoneally (i.p); Group II, III and IV were treated with 20% CCl4 in corn oil (1ml/kg bw i.p.). However, animals of Group III and IV were also treated with CPME (methanol extract of C. pepo fruit peel) at 200 and 400mg/kg bw respectively. Animals of Group V and VI were administered only with CPME at 200 and 400mg/kg bw respectively. These treatments were administered 3 days a week for two weeks. Administration of CCl4 cause acute neurotoxicity as depicted by significant depletion (p<0.05) in the activities of antioxidant enzymes; catalase, superoxide dismutase, peroxidase, glutathione reductase, glutathione-S-transferase, glutathione peroxidase, quinone reductase, while enhanced the γ-glutamyl transferase level in brain samples. CCl4 intoxication decreased the reduced glutathione (GSH) level whereas markedly (p<0.05) enhanced lipid peroxidation in brain samples. Co-treatment of CPME significantly (p<0.05) protected the brain tissues against CCl4 constituted injuries by restoring activities of antioxidant enzymes and ameliorated lipid peroxidation in a dose dependent fashion. These neuroprotective effects might be due to the presence of antioxidant constituents.

  11. CCL2 responses to Mycobacterium tuberculosis are associated with disease severity in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Zahra Hasan

    Full Text Available BACKGROUND: Leucocyte activating chemokines such as CCL2, CCL3, and CXCL8 together with proinflammatory IFNgamma, TNFalpha and downmodulatory IL10 play a central role in the restriction of M. tuberculosis infections, but is unclear whether these markers are indicative of tuberculosis disease severity. METHODOLOGY: We investigated live M. tuberculosis- and M. bovis BCG-induced peripheral blood mononuclear cell responses in patients with tuberculosis (TB and healthy endemic controls (ECs, n = 36. TB patients comprised pulmonary (PTB, n = 34 and extrapulmonary groups, subdivided into those with less severe localized extrapulmonary TB (L-ETB, n = 16 or severe disseminated ETB (D-ETB, n = 16. Secretion of CCL2, IFNgamma, IL10 and CCL3, and mRNA expression of CCL2, TNFalpha, CCL3 and CXCL8 were determined. RESULTS: M. tuberculosis- and BCG-induced CCL2 secretion was significantly increased in both PTB and D-ETB (p<0.05, p<0.01 as compared with L-ETB patients. CCL2 secretion in response to M. tuberculosis was significantly greater than to BCG in the PTB and D-ETB groups. M. tuberculosis-induced CCL2 mRNA transcription was greater in PTB than L-ETB (p = 0.023, while CCL2 was reduced in L-ETB as compared with D-ETB (p = 0.005 patients. M. tuberculosis-induced IFNgamma was greater in L-ETB than PTB (p = 0.04, while BCG-induced IFNgamma was greater in L-ETB as compared with D-ETB patients (p = 0.036. TNFalpha mRNA expression was raised in PTB as compared with L-ETB group in response to M. tuberculosis (p = 0.02 and BCG (p = 0.03. Mycobacterium-induced CCL3 and CXCL8 was comparable between TB groups. CONCLUSIONS: The increased CCL2 and TNFalpha in PTB patients may support effective leucocyte recruitment and M. tuberculosis localization. CCL2 alone is associated with severity of TB, possibly due to increased systemic inflammation found in severe disseminated TB or due to increased monocyte infiltration to lung parenchyma in pulmonary disease.

  12. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  13. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  14. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  15. Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, Özcan; Larsen, Niels Bent

    2016-01-01

    Background aims. Maturation of dendritic cells (DCs) induces their homing from peripheral to lymphatic tissues guided by CCL21. However, in vitro matured human monocyte-derived DC cancer vaccines injected intradermally migrate poorly to lymph nodes (LNs). In vitro maturation protocols generate DCs...

  16. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  17. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    International Nuclear Information System (INIS)

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-01-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  18. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    Science.gov (United States)

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.

  19. Solving the carbon tetrachloride (CCl4) budget mystery using surface observations

    Science.gov (United States)

    Liang, Q.; Newman, P. A.; Daniel, J. S.; Reimann, S.; Hall, B. D.; Dutton, G. S.; Kuijpers, L. J. M.

    2014-12-01

    Carbon tetrachloride (CCl4) is a major anthropogenic ozone-depleting substance, with an ozone depletion potential (with respect to CFC-11) of 0.82. CCl4 is also a greenhouse gas and the 100-yr global warming potential is 1,400. In 1987, the Montreal Protocol (MP) included CCl4, and production and consumption were phased out for developed countries in 1996. Developing countries were allowed a delayed reduction, but CCl4 was fully phased out from emissive uses in 2010. However, the near-zero 2007-2012 emissions estimate based on the UNEP reported production and feedstock usage cannot be reconciled with the observed slow decline of atmospheric concentrations, year-to-year variability, and the inter-hemispheric gradient (IHG). We use available source and sink data in the NASA 3-Dimensional (3-D) Chemistry Climate Model, GEOSCCM, to test existing emissions and lifetime estimates against CCl4 mixing ratio observations. Our model results show that the IHG and global trend provide useful information for quantitatively constraining CCl4 emissions and lifetime estimates. The observed IHG (1.5±0.2 ppt for 2000-2012) is primarily caused by ongoing current emissions, while ocean and soil losses and stratosphere-troposphere exchange together contribute a small negative gradient (~0 - -0.3 ppt). Using the observed CCl4 global trend and IHG from the National Oceanic and Atmospheric Administration - Global Monitoring Division (NOAA-GMD) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks, we deduce the mean global emissions for the 2000-2012 period are 39 (34-45, lower-upper limit emission estimates) Gg/yr (~ 30% of the peak 1980s emissions) and a corresponding total lifetime of 35 (37-32, upper-lower limit lifetime estimates) years. These results point to the need for a more accurate bottom-up estimate of CCl4 emissions as well as re-evaluation of the CCl4 best estimate lifetime (currently 25 years).

  20. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  1. ideal hepatotoxicity model in rats using carbon tetrachloride (ccl4)

    African Journals Online (AJOL)

    DR. AMINU

    various concentrations of CCl4 had mean serum activities/ levels of AST, ... biological degenerative reaction, and may be an ... determine the dose range of the concentration of CCl4 ... total protein and albumin assessed by Biuret and BCG.

  2. Role of suppressed hepatocellular regeneration and Ca2+ in chlordecone-potentiated CCl4 hepatotoxicity

    International Nuclear Information System (INIS)

    Bell, A.N.

    1987-01-01

    The mechanism by which the chlorinated pesticide chlordecone (CD; Kepone) potentiates CCl 4 -induced hepatotoxicity and lethality was investigated. It was hypothesized that perturbations in Ca 2+ homeostasis, greater than those observed with a low dose of CCl 4 alone, in concert with a suppression of hepatocellular regeneration induced by CD alone or by CD + CCl 4 are responsible, at least in part, for CD-potentiated CCl 4 hepatotoxicity. Ca 2+ homeostasis was evaluated by measuring total cell Ca 2+ and 45 Ca 2+ uptake in viable isolated hepatocyte suspension obtained from normal and CD-pretreated rats receiving CCl 4 in vivo. In the normal rats in vivo CCL challenge did not affect 45 Ca 2+ uptake by viable isolated hepatocytes. In contrast, 45 Ca 2+ uptake was inhibited in viable isolated hepatocytes obtained from rats exposed to CD + CCl 4

  3. PLAG (1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol Modulates Eosinophil Chemotaxis by Regulating CCL26 Expression from Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Jinseon Jeong

    Full Text Available Increased number of eosinophils in the circulation and sputum is associated with the severity of asthma. The respiratory epithelium produces chemokine (C-C motif ligands (CCL which recruits and activates eosinophils. A chemically synthesized monoacetyl-diglyceride, PLAG (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol is a major constituent in the antlers of Sika deer (Cervus nippon Temminck which has been used in oriental medicine. This study was aimed to investigate the molecular mechanism of PLAG effect on the alleviation of asthma phenotypes. A549, a human alveolar basal epithelial cell, and HaCaT, a human keratinocyte, were activated by the treatment of interleukin-4 (IL-4, and the expression of chemokines, known to be effective on the induction of eosinophil migration was analyzed by RT-PCR. The expression of IL-4 induced genes was modulated by the co-treatment of PLAG. Especially, CCL26 expression from the stimulated epithelial cells was significantly blocked by PLAG, which was confirmed by ELISA. The transcriptional activity of signal transducer and activator of transcription 6 (STAT6, activated by IL-4 mediated phosphorylation and nuclear translocation, was down-regulated by PLAG in a concentration-dependent manner. In ovalbumin-induced mouse model, the infiltration of immune cells into the respiratory tract was decreased by PLAG administration. Cytological analysis of the isolated bronchoalveolar lavage fluid (BALF cells proved the infiltration of eosinophils was significantly reduced by PLAG. In addition, PLAG inhibited the migration of murine bone marrow-derived eosinophils, and human eosinophil cell line, EoL-1, which was induced by the addition of A549 culture medium.

  4. Chlorination of uranium oxides with CCl4 using a mechanochemical method

    Science.gov (United States)

    Kitawaki, Shinichi; Nagai, Takayuki; Sato, Nobuaki

    2013-08-01

    A chlorination method for uranium oxides at low temperature was investigated by using a mechanochemical method. In particular, the possibility of the chlorination of uranium oxides, such as UO2 and U3O8, via mechanochemical reaction with CCl4 was studied using a planetary ball mill. Mechanochemical experiments were conducted to evaluate the effect of milling time, CCl4/uranium oxide molar ratio, and revolution speed on the reaction. The synthesized products were then subjected to X-ray diffraction analysis, and it was found that the chlorination of U3O8 with CCl4 to UOCl2, UCl4, and U2O2Cl5 proceeded. However, the chlorination reaction could not be observed when using UO2 powder as the raw material. The chlorination reaction could not be observed when using UO2 powder as the raw material. The chlorination of U3O8 with CCl4 to form UOCl2, UCl4, and U2O2Cl5 via mechanochemical reaction occurs at room temperature. The ratio of chlorination increases with milling time when the appropriate amount of CCl4 is employed. However, the use of excess liquid CCl4 decreases the mechanochemical effect.

  5. In vivo metabolism of CCl4 by gerbils pretreated with chlordecone, phenobarbital, or mirex

    International Nuclear Information System (INIS)

    Cai, Z.; Mehendale, H.M.

    1990-01-01

    Gerbils are known to be much more sensitive to CCl 4 lethality than rats as indicated by 48 hours LD 50 (0.08 vs 2.8 ml/kg). On the other hand, gerbils are refractory to chlordecone (CD) potentiation of CCl 4 toxicity. To investigate the possible mechanism underlying gerbil's high sensitivity to CCl 4 lethality, the authors studied in vivo metabolism of CCl 4 in gerbils pretreated with dietary CD (10 ppm), phenobarbital (PB, 225 ppm) or mirex (M, 10 ppm). The hepatic content of CCl 4 , the expiration of 14 CCl 4 and 14 CCl 4 -derived Co 2 , and lipid peroxidation were measured and the results were compared with our previous data for rats. After 15-day dietary pretreatment, male gerbils (60-80 g) received 14 CCl 4 (80 ml/kg; sp act: 0.04 mCi/mmol) ip in corn oil and the expired air was collected for 6 hours. More than 80% of the dose administered was expired as parent compound in 6 hours regardless of pretreatments. Expiration of 14 CCl 4 derived 14 CO 2 in control gerbils was 3.5-fold more than in control rats and was increased significantly in pretreated gerbils (M>PB>CD). PB and M pretreatments resulted in significant increase of 14 C label bound to non-lipid fraction of hepatic content as compared with CD or control gerbils. The radiolabel present in hepatic content of control gerbils was 5-fold higher than that of control rats. In vivo liquid peroxidation measured as diene conjugation in lipid extracts from the livers was lower in gerbils than in rats, and there were no significant differences among control and pretreated gerbils. These data indicate that the more extensive metabolism of CCl 4 in gerbils may partially explain their high sensitivity to CCl 4 toxicity. However, the significantly enhanced metabolism of CCl 4 found in CD, PB, or M pretreated gerbils did not lead to amplification of CCl 4 hepatotoxic and lethal effects

  6. Rat Plasma Oxidation Status After Nigella Sativa L. Botanical Treatment in CCL(4)-Treated Rats.

    Science.gov (United States)

    Soleimani, Hengameh; Ranjbar, Akram; Baeeri, Maryam; Mohammadirad, Azadeh; Khorasani, Reza; Yasa, Narguess; Abdollahi, Mohammad

    2008-01-01

    ABSTRACT Nigella sativa Linn. (family Ranunculaceae), commonly known as black cumin, is native to the Mediterranean area and has been used for thousands of years as a health and beauty aid. The present study investigated the protective effects of Nigella sativa (NS) extract (NSE) and oil (NSO) on CCl(4)-induced nitrosative stress and protein oxidation in rat. CCl(4) (0.8 mg/kg) was used as an aid for induction of nitrosative stress. In vitro antioxidant potential was tested in the presence of 2,4-dinitrophenylhyrdazine (DPPH) as an organic nitrogen radical. Doses of 0.2, 0.3, and 1 mg/kg of the NS extract and oil were administered to CCL(4)-treated rats for 10 days. At the end of treatment, blood was taken from rats under anesthesia and plasma was separated. The concentration of nitric oxide (NO), total antioxidant power (TAP), carbonyl molecules (CM) as measure of protein oxidation (PO), tumor necrosis factor-alpha (TNF-alpha), and total thiol molecules (TTM) were measured in plasma. In vitro evaluation of antioxidant effects of NSE and NSO showed that the highest antioxidant activity (80%) was observed with the concentration of 10 and 20 mg/ml, respectively, that were equal to vitamin E (200 mg/ml). Administration of CCL(4) increased plasma PO, NO, TNF-alpha and decreased TAP and TTM. Both NSE and NSO showed significant protection against CCl(4)-induced changes in biochemical parameters, but not dose-dependently. Doses of 0.3 and 1 mg/kg were more effective than doses of 0.2 mg/kg for both NSE and NSO, but dose of 1 mg/kg was the most effective one. The results indicate the potential of NS in preventing CCL(4)-induced toxic nitrosative stress. It is concluded that NS has marked antioxidant potentials that may be beneficial in alleviating complications of many illnesses related to oxidative/nitrosative stress in humans, but preclinical safety measures should be completed before clinical trials.

  7. miR-181a regulates multiple pathways in hypopharyngeal ...

    African Journals Online (AJOL)

    Expression of four pathway reporters were significantly increased (p53/DNA damage, TGFβ, MAPK/ERK and MAPK/JNK), while expression of two pathway reporters were decreased (Wnt and NFkB) upon miR-181a down-regulation. Notch, Myc/Max, hypoxia and cell cycle/pRB-E2F pathways were not significantly affected ...

  8. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

    Science.gov (United States)

    Morosky, Stefanie; Lennemann, Nicholas J; Coyne, Carolyn B

    2016-05-15

    Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression

  9. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    Science.gov (United States)

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of

  10. [CCL21 promotes the metastasis of human pancreatic cancer Panc-1 cells via epithelial- mesenchymal transition].

    Science.gov (United States)

    Liu, Qing; Chen, Fangfang; Duan, Tanghai; Zhu, Haitao; Xie, Xiaodong; Wu, Yingying; Zhang, Zhijian; Wang, Dongqing

    2015-01-01

    To investigate the mechanism underlying that chemokine (C-C motif) ligand 21 (CCL21) promotes the metastasis ability of human pancreatic cancer Panc-1 cells. Transwell(TM) was used to access the chemotaxis effect of CCL21 on Panc-1 cells. Real-time quantitative PCR was performed to detect the expression of C-C chemokine receptor type 7 (CCR7) mRNA in the upper and lower chambers. Immunofluorescence staining and Western blotting were employed to examine the expressions of the epithelial-mesenchymal transition (EMT)-related proteins and CD133 of Panc-1 cells in the lower chamber, which were compared with those of the upper chamber as the control. The numbers of the Panc-1 cells induced by 0, 50, 100, 200 ng/mL CCL21 were 13.00 ± 3.00, 78.00 ± 9.00, 161.00 ± 11.00, 281.00 ± 17.00, respectively; with the increase of the concentration of CCL21, there were more cells migrating from the upper to the lower chamber; and the cells in the lower chamber expressed higher level of CCR7 mRNA than the ones staying in the upper chamber. The relative protein expressions of MMP-9, vimentin, E-cadherin and CD133 in the lower chamber were 0.42 ± 0.04, 0.36 ± 0.03, 0.12 ± 0.02, 0.46 ± 0.03, respectively, which were statistically significantly different from those in the upper chamber (0.15 ± 0.02, 0.25 ± 0.02, 0.25 ± 0.03, 0.13 ± 0.02, respectively). CCL21/CCR7 axis maybe play an important role in the metastasis of pancreatic cancer stem cells by EMT and up-regulation of MMP-9.

  11. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy

    Directory of Open Access Journals (Sweden)

    Ryosuke Sakumoto

    2017-03-01

    Full Text Available The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3 were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15 and myxovirus-resistance gene 1 (MX1 expression in these tissues. Cyclooxygenase 2 (COX2 expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.

  12. Radioresistance-related signaling pathways in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Guo Ya; Zhu Xiaodong; Qu Song; Su Fang; Wang Qi; Zhang Wei

    2011-01-01

    Objective: To study the difference of gene expression profile between the radioresistant human nasopharyngeal carcinoma cell line CNE-2R and CNE-2, and to screen the signaling pathway associated with radioresistance of nasopharyngeal carcinoma. Methods: The radioresistant nasopharyngeal carcinoma cell line CNE-2R was constructed from the original cell line CNE-2. CNE-2R and CNE-2 cells were cultured and administered with 60 Co γ-ray irradiation at the dose of 400 cGy for 15 times. Human-6v 3.0 whole genome expression profile was used to screen the differentially expressed genes. Bioinformatic analysis was used to identify the pathways related to radioresistance. Results: The number of the differentially expressed genes that were found in these 2 experiments was 374. The Kegg pathway and Biocarta pathway analysis of the differentially expressed genes showed the biological importance of Toll-like receptor signaling pathway and IL-1 R-mediated signal transduction pathway to the radioresistance of the CNE-2R cells and the significant differences of 13 genes in these 2 pathways,including JUN, MYD88, CCL5, CXCL10, STAT1, LY96, FOS, CCL3, IL-6, IL-8, IL-1α, IL-1β, and IRAK2 (t=13.47-66.57, P<0.05). Conclusions: Toll-like receptor signaling pathway and IL-1R-mediated signal transduction pathway might be related to the occurrence of radioresistance. (authors)

  13. Insulin-like growth factor (IGF)-like peptide and 20-hydroxyecdysone regulate the growth and development of the male genital disk through different mechanisms in the silkmoth, Bombyx mori.

    Science.gov (United States)

    Fujinaga, Daiki; Kohmura, Yusuke; Okamoto, Naoki; Kataoka, Hiroshi; Mizoguchi, Akira

    2017-08-01

    It is well established that ecdysteroids play pivotal roles in the regulation of insect molting and metamorphosis. However, the mechanisms by which ecdysteroids regulate the growth and development of adult organs after pupation are poorly understood. Recently, we have identified insulin-like growth factor (IGF)-like peptides (IGFLPs), which are secreted after pupation under the control of 20-hydroxyecdysone (20E). In the silkmoth, Bombyx mori, massive amounts of Bombyx-IGFLP (BIGFLP) are present in the hemolymph during pupal-adult development, suggesting its importance in the regulation of adult tissue growth. Thus, we hypothesized that the growth and development of adult tissues including imaginal disks are regulated by the combined effects of BIGFLP and 20E. In this study, we investigated the growth-promoting effects of BIGFLP and 20E using the male genital disks of B. mori cultured ex vivo, and further analyzed the cell signaling pathways mediating hormone actions. We demonstrate that 20E induces the elongation of genital disks, that both hormones stimulate protein synthesis in an additive manner, and that BIGFLP and 20E exert their effects through the insulin/IGF signaling pathway and mitogen-activated protein kinase pathway, respectively. These results show that the growth and development of the genital disk are coordinately regulated by both BIGFLP and 20E. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. CCl4 cirrhosis in rats

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Poulsen, H E; Hansen, B A

    1991-01-01

    Cirrhosis of the rat liver was induced by a 12 week individualized CCl4/phenobarbital treatment. After treatment, all surviving animals (81%) showed cirrhosis of the liver. The cirrhosis induced was irreversible when evaluated 24 weeks after cessation of treatment. Quantitative liver function...

  15. 21 CFR 71.20 - Publication of regulation.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Publication of regulation. 71.20 Section 71.20... ADDITIVE PETITIONS Administrative Action on Petitions § 71.20 Publication of regulation. The Commissioner will forward for publication in the Federal Register, within 90 days after filing of the petition (or...

  16. DMPD: Convergence of the NF-kappaB and IRF pathways in the regulation of the innateantiviral response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17706453 Convergence of the NF-kappaB and IRF pathways in the regulation of the innatea... (.png) (.svg) (.html) (.csml) Show Convergence of the NF-kappaB and IRF pathways in the regulation of the innatea... IRF pathways in the regulation of the innateantiviral response. Authors Hiscott J. Publication Cytokine Gro

  17. Chlorination of uranium oxides with CCl4 using a mechanochemical method

    International Nuclear Information System (INIS)

    Kitawaki, Shinichi; Nagai, Takayuki; Sato, Nobuaki

    2013-01-01

    Highlights: • UCl 4 or UOCl 2 could be synthesized from U 3 O 8 with CCl 4 by using a planetary ball mill. • The chlorination could not be observed when using UO 2 powder as the starting material. • Extension of milling time was effective for chlorinating U 3 O 8 with the appropriate amount of CCl 4 . -- Abstract: A chlorination method for uranium oxides at low temperature was investigated by using a mechanochemical method. In particular, the possibility of the chlorination of uranium oxides, such as UO 2 and U 3 O 8 , via mechanochemical reaction with CCl 4 was studied using a planetary ball mill. Mechanochemical experiments were conducted to evaluate the effect of milling time, CCl 4 /uranium oxide molar ratio, and revolution speed on the reaction. The synthesized products were then subjected to X-ray diffraction analysis, and it was found that the chlorination of U 3 O 8 with CCl 4 to UOCl 2 , UCl 4 , and U 2 O 2 Cl 5 proceeded. However, the chlorination reaction could not be observed when using UO 2 powder as the raw material

  18. Fraxinus rhynchophylla ethanol extract attenuates carbon tetrachloride-induced liver fibrosis in rats via down-regulating the expressions of uPA, MMP-2, MMP-9 and TIMP-1.

    Science.gov (United States)

    Peng, Wen-Huang; Tien, Yun-Chen; Huang, Chih-Yang; Huang, Tai-Hung; Liao, Jung-Chun; Kuo, Chao-Lin; Lin, Ying-Chih

    2010-02-17

    To investigate the effect of Fraxinus rhynchophylla ethanol extract (FR(EtOH)) on liver fibrosis induced by carbon tetrachloride (CCl(4)) in rats. Rat hepatic fibrosis was induced by oral administration of CCl(4). Sixty SD rats were divided randomly into 6 groups: control, CCl(4) group, silymarin group and three FR(EtOH)-treated groups. Except for the rats in control group, all rats were administered orally with CCl(4) (20%, 0.2 mL/100g body weight) twice a week for 8 weeks. Rats in FR(EtOH) groups were treated daily with FR(EtOH) (0.1, 0.5 and 1.0 g/kg, p.o.) throughout the whole experimental period. Liver function parameters (such as activities of serum GOT and GPT levels), activities of liver anti-oxidant enzymes (such as catalase, SOD, GPx) and expressions of uPA, tPA, MMP-2, MMP-9 and TIMP-1, -2, -3, -4 in the liver fibrosis pathway were detected. The results showed that FR(EtOH) (0.1, 0.5 and 1.0 g/kg BW) significantly reduced the elevated activities of sGOT and sGPT caused by CCl(4). FR(EtOH) (0.1 and 0.5 g/kg BW) and significantly increased the activities of GSH-Px. The histopathological study showed that FR(EtOH) (0.1 and 0.5 g/kg BW) reduced the incidence of liver lesions, including hepatic cells cloudy swelling, lymphocytes infiltration, cytoplasm vacuolization hepatic necrosis and fibrous connective tissue proliferated induced by CCl(4) in rats. In our study it was showed that CCl(4)-treated group significantly increased the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. FR(EtOH) (0.1 and 0.5 g/kg BW) could inhibit the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. Finally, the amount of esculetin in the FR(EtOH) was 33.54 mg/g extract. Oral administration of FR(EtOH) significantly reduces CCl(4)-induced hepatic fibrosis in rats, probably by exerting a protective effect against hepatocellular fibrosis by its free radical scavenging ability. FR(EtOH) down-regulated the expressions of uPA, MMP-2 and MMP-9 in CCl(4)-induced liver fibrosis in rats

  19. CCl 4 chemistry on the magnetite selvedge of single-crystal hematite: competitive surface reactions

    Science.gov (United States)

    Adib, K.; Camillone, N., III; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M., Jr.

    2002-01-01

    Temperature programmed reaction/desorption (TPR/D) studies were undertaken to characterize the surface chemistry which occurs between CCl 4 and the Fe 3O 4 (1 1 1) selvedge of single crystal α-Fe 2O 3 (0 0 0 1). Six separate desorption events are clearly observed and four desorbing species are identified: CCl 4, OCCl 2, C 2Cl 4 and FeCl 2. It is proposed that OCCl 2, CCl 4 and C 2Cl 4 are produced in reactions involving the same precursor, CCl 2. Three reaction paths compete for the CCl 2 precursor: oxygen atom abstraction (for OCCl 2), molecular recombinative desorption (for CCl 4) and associative desorption (for C 2Cl 4). During the TPR/D temperature ramp, the branching ratio is observed to depend upon temperature and the availability of reactive sites. The data are consistent with a rich site-dependent chemistry.

  20. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    International Nuclear Information System (INIS)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-01-01

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: ► YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. ► YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. ► Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. ► Knockdown of Gli2 rescues the Yap

  1. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  2. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  3. CCL8 BASED IMMUNOLOGICAL MONITORING

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to an immunological method and, more particularly, a method for measuring cell-mediated immune reactivity (CMI) in mammals based on the production of CCL8.The invention further discloses an assay and a kit for measuring CMI to an antigen using whole blood or other...

  4. Hepatoprotective effects of Portulaca oleracea extract against CCl4-induced damage in rats.

    Science.gov (United States)

    Eidi, Akram; Mortazavi, Pejman; Moghadam, Jalal Zarringhalam; Mardani, Parisa Mousavi

    2015-07-01

    Purslane (Portulaca oleracea L., Portulacaceae) has been traditionally used in folk medicine to afford protection against liver injury, although its actual efficacy remains uncertain. To evaluate purslane as a hepatoprotective agent, we investigated the protective effect of its ethanol extract against carbon tetrachloride (CCl4)-induced hepatic toxicity in rats. A total of 108 male Wistar rats were randomly divided into 12 groups. The first group was maintained as normal control, whereas CCl4 (0.5 ml/kg bw, 50% CCl4 in olive oil, i.p.), purslane extract (0.005, 0.01, 0.05, 0.1, and 0.15 g/kg bw, intragastrically), and purslane extract (five doses as above) along with CCl4 were administered to the Groups II, III-VII, and VIII-XII, respectively. The rats were sacrificed on the 30th day, and blood was withdrawn by cardiac puncture. Liver damage was assessed by measuring hepatic marker enzymes (ALT, AST, ALP, GGT, and SOD) and histopathological observation. Treatment with CCl4 resulted in increased serum activities of marker enzymes with a concomitant decrease in SOD. Histological alterations were also observed in the liver tissue upon CCl4 treatment. Administration of purslane extract (0.01, 0.05, 0.1, and 0.15 g/kg b.w.) significantly showed a marked tendency towards normalization of all measured biochemical parameters in CCl4-treated rats. Histopathological changes also paralleled the detected alteration in markers of liver function. These results demonstrate that purslane exerts protective effects against CCl4-induced damage in rat liver and supports a potential therapeutic use of purslane as an alternative for patients with liver diseases.

  5. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  6. In vivo metabolism of CCl4 by rats pretreated with chlordecone, mirex, or phenobarbital

    International Nuclear Information System (INIS)

    Mehendale, H.M.; Klingensmith, J.S.

    1988-01-01

    The propensity of chlordecone (CD) to potentiate hepatotoxic and lethal effects of CCl4 is well established. Mirex (M), a close structural analogue of CD, or phenobarbital (PB), powerful inducers of hepatic microsomal drug metabolizing enzymes, are much weaker potentiators of CCl4 toxicity. The purpose of this study was to test the possibility that CD potentiates the toxicity of CCl4 by increasing the metabolism of CCl4 to a greater degree than either PB or M. We compared the in vivo metabolism of CCl4 in rats pretreated with CD, M, or PB, by measuring the hepatic content of 14CCl4, the expiration of 14CCl4, expiration of 14CCl4-derived 14CO2, and lipid peroxidation. Male Sprague-Dawley rats (250-270 g) were pretreated with a single oral dose of CD (10 mg/kg), M (10 mg/kg), or corn oil vehicle (1 ml/kg). PB pretreatment consisted of an ip injection of sodium PB (80 mg/kg) in saline (0.9%) for 2 successive days. Twenty-four hours later, 14CCl4 (0.1 ml/kg; sp act: 0.04 mCi/mmol) was administered ip in corn oil and the radioactivity present in the expired air was collected for 6 hr. Excretion of the parent compound as represented by the 14C label in the toluene trap was unchanged by any of the pretreatments. Expiration of 14CO2 measured during the 6 hr after CCl4 administration was increased in animals pretreated with PB or CD. In vivo lipid peroxidation measured as diene conjugation in lipids extracted from the livers was increased to a similar extent in animals pretreated with PB and CD, whereas the serum transaminases (ALT, AST) were significantly elevated only in animals pretreated with CD.M did not affect 14CO2 production and was without a significant effect on the lipid peroxidation

  7. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  8. Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Strieter, R M

    2004-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1/CCL2 and its receptor CCR2 have been strongly implicated in disease pathogenesis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), whereas data on the CCL2-CCR2 axis are scarce in MS. We studied...... the expression of CCR2 on leukocytes in blood and cerebrospinal fluid (CSF) from patients with monosymptomatic optic neuritis and MS, and the concentration of CCL2 in the CSF from these patients. Results were compared with the results in non-inflammatory neurological controls and were correlated with other...... parameters (magnetic resonance imaging and CSF data). Our findings suggest a limited role for CCL2/CCR2 in early active MS....

  9. [Effects of intrathecal administration of AM22-52 on mechanical allodynia and CCL2 expression in DRG in bone cancer rats].

    Science.gov (United States)

    Chen, Ya-Juan; Huo, Yuan-Hui; Hong, Yanguo

    2017-02-25

    The pain peptide adrenomedullin (AM) plays a pivotal role in pathological pain. The present study was designed to investigate the effect of blockade of AM receptor on bone cancer pain (BCP) and its mechanism. BCP was developed by inoculation of Walker 256 mammary gland carcinoma cells in the tibia medullary cavity of Sprague Dawley rats. The selective AM receptor antagonist AM 22-52 was administered intrathecally on 15 d after the inoculation. Quantitative real-time PCR was used to detect mRNA level of CC chemokine ligand 2 (CCL2) in dorsal root ganglion (DRG). Double immunofluorescence staining was used to analyze the localizations of CCL2 and AM in DRG of normal rats. The results showed that, from 6 to15 d after the inoculation, the animals showed significant reduction in the mechanical pain threshold in the ipsilateral hindpaw, companied by the decline in bone density of tibia bone. The expression of CCL2 mRNA in DRG of BCP rats was increased by 3 folds (P DRG neurons. These results suggest that AM may play a role in the pathogenesis of BCP. The increased AM bioactivity up-regulates CCL2 expression in DRG, which may contribute to the induction of pain hypersensitivity in bone cancer.

  10. The positive correlation of the CCL2-CCR2 axis with the disease activity may indicate the fundamental role in the pathogenesis of oral lichen planus.

    Science.gov (United States)

    Yin, Jingfang; Yang, Xi; Zeng, Qi; Yang, Linglan; Cheng, Bin; Tao, Xiaoan

    2016-01-01

    The important roles of CCL2 and its receptor CCR2 had been reported in a series of inflammatory disorders. However, few studies investigated the potential role of CCL2/CCR2 axis in oral lichen planus (OLP). Therefore, this study aimed to detect the expression of CCL2 and CCR2 in OLP lesions and compare their changes before and after treatment. CCL2 and CCR2 expression was investigated using immunohistochemical staining and real-time RT-PCR in 32 patients with OLP and eight controls. Moreover, changes in their expression after treatment with triamcinolone acetonide were assessed in lesions from three patients. CCL2+ and CCR2+ cells were few in the controls and remarkably increased in the epithelial and subepithelial layers of lesions (n = 32, all P < 0.001). However, the densities of CCL2+ and CCR2+ cells were not significantly different between reticular (n = 12) and erythematous/erosive lesions (n = 20), although they significantly decreased after treatment (627.7 ± 108.2 vs. 258.3 ± 148.3, P = 0.017; 1034.7 ± 74.6 vs. 648 ± 77.6, P = 0.003, respectively). CCL2+/CCR2+ cell numbers were positively correlated with disease activity (correlation coefficient, 0.588; P < 0.001; correlation coefficient, 0.409; P = 0.02, respectively). The results of this study indicated that the CCL2-CCR2 axis was involved in the pathogenesis of OLP and was positively correlated with disease activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Ccl22/MDC, is a prostaglandin dependent pyrogen, acting in the anterior hypothalamus to induce hyperthermia via activation of brown adipose tissue.

    Science.gov (United States)

    Osborn, Olivia; Sanchez-Alavez, Manuel; Dubins, Jeffrey S; Gonzalez, Alejandro Sanchez; Morrison, Brad; Hadcock, John R; Bartfai, Tamas

    2011-03-01

    CC Chemokine ligand 22 (Ccl22) is a selective, high affinity ligand at the CC chemokine receptor 4 (Ccr4). We have identified cDNAs encoding both ligand and receptor of the Ccl22-Ccr4 pair in cDNA libraries of the anterior hypothalamus/pre-optic area (AH/POA) by PCR. The AH/POA is the key brain region where endogenous pyrogens have been shown to act on warm sensitive neurons to affect thermogenesis in brown adipose tissue (BAT) and other thermogenically responsive tissues. We show that functional Ccr4 receptors are present in the AH/POA neurons as injection of Ccl22 into the POA but not to other hypothalamic nuclei induces an increase in core body temperature as measured by radiotelemetry. Indomethacin (5 mg/kg s.c) pre-treatment markedly reduced the hyperthermia evoked by POA injection of Ccl22 (10 ng/0.5 ul) and thus suggests that this hyperthermia is mediated through cyclooxygenase activation and thus likely through the formation and action of the pyrogen prostaglandin E2. The temperature elevation involves a decrease in the respiratory exchange ratio and increased activation of the brown adipose tissue as demonstrated by ¹⁸F-FDG-PET imaging. We describe a novel role to the ligand Ccl22 and its receptor Ccr4 in the anterior hypothalamus in temperature regulation that depends on the synthesis of the endogenous pyrogen, prostaglandin E2. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling.

    Science.gov (United States)

    Zhang, Jin-fang; Fu, Wei-ming; He, Ming-liang; Xie, Wei-dong; Lv, Qing; Wan, Gang; Li, Guo; Wang, Hua; Lu, Gang; Hu, Xiang; Jiang, Su; Li, Jian-na; Lin, Marie C M; Zhang, Ya-ou; Kung, Hsiang-fu

    2011-01-01

    Osteogenic differentiation of mesenchymal stem cells (MSCs) is a complex process, which is regulated by various factors including microRNAs. Our preliminary data showed that the expression of endogenous miR-20a was increased during the course of osteogenic differentiation. Simultaneously, the expression of osteoblast markers and regulators BMP2, BMP4, Runx2, Osx, OCN and OPN was also elevated whereas adipocyte markers PPARγ and osteoblast antagonist, Bambi and Crim1, were downregulated, thereby suggesting that miR-20a plays an important role in regulating osteoblast differentiation. To validate this hypothesis, we tested its effects on osteogenic differentiation by introducing miR-20a mimics and lentiviral-miR20a-expression vectors into hMSCs. We showed that miR-20a promoted osteogenic differentiation by the upregulation of BMP/Runx2 signaling. We performed bioinformatics analysis and predicted that PPARγ, Bambi and Crim1 would be potential targets of miR-20a. PPARγ is a negative regulator of BMP/Runx2 signaling whereas Bambi or Crim1 are antagonists of the BMP pathway. Furthermore, we confirmed that all these molecules were indeed the targets of miR-20a by luciferase reporter, quantitative RT-PCR and western blot assays. Similarly to miR-20a overexpression, the osteogenesis was enhanced by the silence of PPARγ, Bambi or Crim1 by specific siRNAs. Taken together, for the first time, we demonstrated that miR-20a promoted the osteogenesis of hMSCs in a co-regulatory pattern by targeting PPARγ, Bambi and Crim1, the negative regulators of BMP signaling.

  13. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease.

    Science.gov (United States)

    Zhang, Yan; Liu, Dianming; Wang, Lihong; Wang, Shuyuan; Yu, Xuexin; Dai, Enyu; Liu, Xinyi; Luo, Shanshun; Jiang, Wei

    2015-12-01

    Coronary artery disease (CAD) is the most common type of heart disease. However, the molecular mechanisms of CAD remain elusive. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, inferring risk regulatory pathways is an important step toward elucidating the mechanisms underlying CAD. With advances in high-throughput data, we developed an integrated systems approach to identify CAD risk regulatory pathways and key regulators. Firstly, a CAD-related core subnetwork was identified from a curated transcription factor (TF) and microRNA (miRNA) regulatory network based on a random walk algorithm. Secondly, candidate risk regulatory pathways were extracted from the subnetwork by applying a breadth-first search (BFS) algorithm. Then, risk regulatory pathways were prioritized based on multiple CAD-associated data sources. Finally, we also proposed a new measure to prioritize upstream regulators. We inferred that phosphatase and tensin homolog (PTEN) may be a key regulator in the dysregulation of risk regulatory pathways. This study takes a closer step than the identification of disease subnetworks or modules. From the risk regulatory pathways, we could understand the flow of regulatory information in the initiation and progression of the disease. Our approach helps to uncover its potential etiology. We developed an integrated systems approach to identify risk regulatory pathways. We proposed a new measure to prioritize the key regulators in CAD. PTEN may be a key regulator in dysregulation of the risk regulatory pathways.

  14. Local elevation of CCL22: A new trend in immunotherapy (skin model

    Directory of Open Access Journals (Sweden)

    Omer Yahia Elhussein Mohamed

    2016-11-01

    Full Text Available Many evidences supported the suggestion that one of the reasons for the failure of immunosuppressant like Corticosteroides, Calcinurine inhibitors and VitD3 in reestablishing skin immune tolerance is relying on inhibition of CCL22 expression from skin dendritic cells. Inhibition of CCL22 decreases CD4+ CD25+ FoxP3+ regulatory T cells homing to macular area and reduces the suppression capacity of these cells that make a sort of an imbalance between effector and regulatory T cells. Addition of CCL22 into the skin lesion from external sources could change the ratio between effector and regulatory T cells which dramatically alter immune system and reestablish immune tolerance. This action can't be established by the later immunosuppressant (e.g. corticosteroids and calcinurine inhibitors alone which give CCL22 an important role in the treatment of skin autoimmune and graft rejection diseases.

  15. Downregulation of MIP-1alpha/CCL3 with praziquantel treatment in Schistosoma haematobium and HIV-1 co-infected individuals in a rural community in Zimbabwe

    DEFF Research Database (Denmark)

    Zinyama-Gutsire, Rbl; Gomo, E.; Kallestrup, P

    2009-01-01

    influence. METHODS: To determine levels of MIP-1alpha/CCL3 chemokine in plasma of S. haematobium and HIV-1 co-infected and uninfected individuals in a rural black Zimbabwean community.A cohort was established of HIV-1 and schistosomiasis infection and co-infection comprising 379 participants. Outcome...... measures consisted of HIV-1 and schistosomiasis status and levels of MIP-1alpha/CCL3 in plasma at baseline and three months post treatment. An association was established between MIP-1alpha/CCL3 plasma levels with HIV-1 and S. haematobium infections. RESULTS: A total of 379 adults formed the established...... cohort comprising 76 (20%) men and 303 (80%) women. Mean age was 33.25, range 17 - 62 years. The median MIP-1alpha/CCL3 plasma concentration was significantly higher in S. haematobium infected compared with uninfected individuals (p = 0.029). In contrast, there was no difference in the median MIP-1alpha...

  16. Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, T.L.; Sellebjerg, F; Jensen, C.V.

    2001-01-01

    leukocyte count, the CSF concentration of neopterin, matrix metalloproteinase (MMP)-9, and intrathecal IgG and IgM synthesis. The concentration of CCL2 increased between baseline for 3 weeks in both groups, more distinctly so in patients treated with methylprednisolone. CCL2 correlated negatively with MMP-9...... patients in relapse, whilst levels of CCL2 (MCP-1) were reduced. Here, we report a serial analysis of CSF CXCL10 and CCL2 concentrations in 22 patients with attacks of MS or acute optic neuritis (ON) treated with methylprednisolone, and 26 patients treated with placebo in two randomized controlled trials....... Chemokine concentrations were measured by enzyme linked immunosorbent assay (ELISA) in CSF obtained at baseline and after 3 weeks, and were compared with other measures of intrathecal inflammation. At baseline CSF concentrations of CCL2 were significantly lower in the patient group than in controls...

  17. RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies

    NARCIS (Netherlands)

    S. Kathiresan (Sekar); M.P. Reilly (Muredach); N.J. Samani (Nilesh); H. Schunkert (Heribert); J. Erdmann (Jeanette); F.L. Moll (Frans); E.A. Boerwinkle (Eric); A. Hall (Anne); C. Hengstenberg (Christian); I.R. König (Inke); R. Laaksonen (Reijo); R. McPherson (Ruth); J.R. Thompson (John); U. Thorsteinsdottir (Unnur); A. Ziegler (Andreas); W. Koenig (Wolfgang); L. Chen (Li); L.A. Cupples (Adrienne); E. Halperin (Eran); X. Li (Xiaohui); K. Musunuru (Kiran); M. Preuss (Michael); A. Schillert (Arne); G. Thorleifsson (Gudmar); B.F. Voight (Benjamin); G.A. Wells (George); P. Deloukas (Panagiotis); H. Holm (Hilma); R. Roberts (Robert); A.F.R. Stewart (Alexandre); S.P. Fortmann (Stephen); A. Go (Attie); M.A. Hlatky (Mark); C. Iribarren (Carlos); J.W. Knowles (Joshua); R.H. Myers (Richard); T. Quertermous (Thomas); S. Sidney (Steven); N. Risch; H. Tang (Hui); S. Blankenberg (Stefan); T. Zeller (Tanja); P.S. Wild (Philipp); R.B. Schnabel (Renate); C. Sinning (Christoph); K.J. Lackner (Karl); L. Tiret (Laurence); V. Nicaud; F. Cambien (François); H. Bickel (Horst); H.J. Rupprecht; C. Perret (Claire); C. Proust (Carole); T. Munzel (Thomas); M. Barbalic (maja); J.C. Bis (Joshua); I.Y.-D. Chen (Ida Yii-Der); A. Dehghan (Abbas); S. Demissie-Banjaw (Serkalem); A.R. Folsom (Aaron); N.L. Glazer (Nicole); V. Gudnason (Vilmundur); T.B. Harris (Tamara); S.R. Heckbert (Susan); D. Levy (Daniel); T. Lumley (Thomas); K. Marciante (Kristin); A.C. Morrison (Alanna); C.J. O'Donnell (Christopher); B.M. Psaty (Bruce); K. Rice (Kenneth); J.I. Rotter (Jerome); D.S. Siscovick (David); N.L. Smith (Nicholas); G.D. Smith; K.D. Taylor (Kent); C.M. van Duijn (Cornelia); K.A. Volcik (Kelly); J. Whitteman (Jaqueline); V.S. Ramachandran (Vasan); A. Hofman (Albert); A.G. Uitterlinden (André); S. Gretarsdottir (Solveig); J.R. Gulcher (Jeffrey); A. Kong (Augustine); J-A. Zwart (John-Anker); G. Thorgeirsson (Gudmundur); K.K. Andersen (Karl); M. Fischer (Marcus); A. Großhennig (Anika); W. Lieb (Wolfgang); P. Linsel-Nitschke (Patrick); K. Stark (Klaus); S. Schreiber (Stefan); H.E. Wichmann (Heinz Erich); Z. Aherrahrou (Zouhair); P. Bruse (Petra); A. Doering (Angela); T. Illig (Thomas); N. Klopp (Norman); C. Loley (Christina); A. Medack (Anja); C. Meisinger (Christa); T. Meitinger (Thomas); J. Nahrstedt (Janja); A. Peters (Annette); A.K. Wagner (Arnika); C. Willenborg (Christina); B. Böhm; H. Dobnig (Harald); T.B. Grammer (Tanja); M.M. Hoffmann (Michael); M. Kleber (Martina); W. März (Winfried); A. Meinitzer (Andreas); B. Winkelmann; D.T. Pilz (Daniela); W. Renner (Wilfried); H. Scharnagl (Hubert); T. Stojakovic (Tatjana); A. Tomaschitz (Andreas); K. Winkler (Karl); C. Guiducci (Candace); N.P. Burtt (Noël); S.B. Gabriel (Stacey); R. Elosua (Roberto); L. Peltonen (Leena Johanna); V. Salomaa (Veikko); S.M. Schwartz (Stephen); O. Melander (Olle); D. Altshuler (David); S. Dandona (Sonny); O. Jarinova (Olga); L. Qu (Liming); A. Wilensky (Asaf); W. Matthai (William); H. Hakonarson (Hakon); J. Devaney (Joseph); M.S. Burnett; A.D. Pichard; K.M. Kent (Kenneth); L.F. Satler; J.M. Lindsay (Joseph); R. Waksman (Ron); C.W. Knouff (Christopher); D. Waterworth (Dawn); M.C. Walker (Max); V. Mooser (Vincent); S.E. Epstein (Stephen); D.J. Rader (Daniel); P.S. Braund (Peter); C.P. Nelson (Christopher P.); B.J. Wright (Benjamin); A.J. Balmforth (Anthony); S.G. Ball (Stephen)

    2011-01-01

    textabstractBackground: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by

  18. Prevention of CCl4 induced hypogonadism with Raphanus sativus seeds in rat.

    Science.gov (United States)

    Tabassum, Farhana; Khan, Muhammad Rashid

    2017-03-01

    Raphanus sativus seeds are used as condiment and to treat hypogonadism, various ailments of liver and kidneys. The aim of this study was to evaluate the potential protective effects of methanol extract of R. sativus seeds (RSME) against hypogonadism induced with carbon tetrachloride (CCl 4 ) in Sprague-Dawley male rats. Thirty six rats were divided in to six groups with six animals in each. Animals of Group I were control and treated with saline, Group II, III and IV were given orally CCl 4 (1 ml/kg bw; 10% in corn oil). Rats of Group III and IV were also simultaneously given RSME at 100 mg/kg bw and 200 mg/kg bw respectively. However, Group V and VI received RSME (100; 200 mg/kg bw, respectively) alone. All treatments were given at alternate days for 15 days. Treatment of CCl4 to rats decreased (P < 0.001) the level of CAT, POD, SOD, GST, GSH-Px and GSR antioxidant enzymes in testes of rat. Concentration of lipid peroxides (TBARS) was increased (P < 0.001) whereas concentration of GSH was decreased (P < 0.001) in testes of CCl4 treated animals. Concentration of testosterone, FSH and LH in serum was decreased (P < 0.001) while the level of estradiol and prolactin was increased (P < 0.001) in CCl4 treated rats. Injuries in seminiferous tubules were determined in histopathology of testes. Administration of RSME, dose dependently, markedly ameliorated the oxidative stress of CCl4 thereby restoring the level of antioxidant enzymes, lipid peroxides, reduced glutathione, male hormones and alterations in histopathology.

  19. CCL2 recruits T cells into the brain in a CCR2-independent manner

    DEFF Research Database (Denmark)

    Cédile, Oriane; Wlodarczyk, Agnieszka; Owens, Trevor

    2017-01-01

    CCR2, a receptor for CCL2. Expression of another receptor for CCL2, CCR4, and CXCR3, a receptor for CXCL10, which was also induced, were both increased in CCL2-treated CNS. CCR4 was expressed by neurons and astrocytes as well as CD4 T cells, and CXCR3 was expressed by CD4 and CD8 T cells. Chemokine...

  20. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as

  1. Chlorination of uranium oxides with CCl{sub 4} using a mechanochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kitawaki, Shinichi, E-mail: kitawaki.shinichi@jaea.go.jp [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai, Naka, Ibaraki 319-1194 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Nagai, Takayuki [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai, Naka, Ibaraki 319-1194 (Japan); Sato, Nobuaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan)

    2013-08-15

    Highlights: • UCl{sub 4} or UOCl{sub 2} could be synthesized from U{sub 3}O{sub 8} with CCl{sub 4} by using a planetary ball mill. • The chlorination could not be observed when using UO{sub 2} powder as the starting material. • Extension of milling time was effective for chlorinating U{sub 3}O{sub 8} with the appropriate amount of CCl{sub 4}. -- Abstract: A chlorination method for uranium oxides at low temperature was investigated by using a mechanochemical method. In particular, the possibility of the chlorination of uranium oxides, such as UO{sub 2} and U{sub 3}O{sub 8}, via mechanochemical reaction with CCl{sub 4} was studied using a planetary ball mill. Mechanochemical experiments were conducted to evaluate the effect of milling time, CCl{sub 4}/uranium oxide molar ratio, and revolution speed on the reaction. The synthesized products were then subjected to X-ray diffraction analysis, and it was found that the chlorination of U{sub 3}O{sub 8} with CCl{sub 4} to UOCl{sub 2}, UCl{sub 4}, and U{sub 2}O{sub 2}Cl{sub 5} proceeded. However, the chlorination reaction could not be observed when using UO{sub 2} powder as the raw material.

  2. Expression of L-CCR in HEK 293 cells reveals functional responses to CCL2, CCL5, CCL7, and CCL8

    NARCIS (Netherlands)

    Biber, K; Zuurman, MW; Homan, H; Boddeke, HWGM

    It has become clear in the past years that chemokines and chemokine receptors are pivotal regulators of cellular communication and trafficking. In addition to the similar to20 chemokine receptors that have been cloned and described, various orphan receptors with a chemokine receptor-like structure

  3. The relationship between nasopharyngeal CCL5 and microbiota on disease severity among infants with bronchiolitis.

    Science.gov (United States)

    Hasegawa, K; Mansbach, J M; Ajami, N J; Petrosino, J F; Freishtat, R J; Teach, S J; Piedra, P A; Camargo, C A

    2017-11-01

    Emerging evidence suggests that the airway microbiota plays an important role in viral bronchiolitis pathobiology. However, little is known about the combined role of airway microbiota and CCL5 in infants with bronchiolitis. In this multicenter prospective cohort study of 1005 infants (age microbiota profiles with regard to the risk of both intensive care use (P interaction =.02) and hospital length-of-stay ≥3 days (P interaction =.03). Among infants with lower CCL5 levels, the Haemophilus-dominant microbiota profile was associated with a higher risk of intensive care use (OR, 3.20; 95%CI, 1.18-8.68; P=.02) and hospital length-of-stay ≥3 days (OR, 4.14; 95%CI, 2.08-8.24; Pmicrobiota profiles and these severity outcomes (all P≥.10). © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  4. Experimental determination of CCl4 hydrate phase equlibria up to high pressures

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Lameris, G.H.; Peters, C.J.

    2015-01-01

    A number of hydrate phase boundaries of the binary system of tetrachloromethane (CCl4) + water were measured experimentally at several temperatures and from low pressures up to 89.25 MPa. These hydrate phase boundaries included hydrate–ice–vapor, hydrate–liquid CCl4–vapor, hydrate–water–vapor,

  5. Docosahexaenoyl serotonin emerges as most potent inhibitor of IL-17 and CCL-20 released by blood mononuclear cells from a series of N-acyl serotonins identified in human intestinal tissue.

    Science.gov (United States)

    Wang, Ya; Balvers, Michiel G J; Hendriks, Henk F J; Wilpshaar, Tessa; van Heek, Tjarda; Witkamp, Renger F; Meijerink, Jocelijn

    2017-09-01

    Fatty acid amides (FAAs), conjugates of fatty acids with ethanolamine, mono-amine neurotransmitters or amino acids are a class of molecules that display diverse functional roles in different cells and tissues. Recently we reported that one of the serotonin-fatty acid conjugates, docosahexaenoyl serotonin (DHA-5-HT), previously found in gut tissue of mouse and pig, attenuates the IL-23-IL-17 signaling axis in LPS-stimulated mice macrophages. However, its presence and effects in humans remained to be elucidated. Here, we report for the first time its identification in human intestinal (colon) tissue, along with a series of related N-acyl serotonins. Furthermore, we tested these fatty acid conjugates for their ability to inhibit the release of IL-17 and CCL-20 by stimulated human peripheral blood mononuclear cells (PBMCs). Serotonin conjugates with palmitic acid (PA-5-HT), stearic acid (SA-5-HT) and oleic acid (OA-5-HT) were detected in higher levels than arachidonoyl serotonin (AA-5-HT) and DHA-5-HT, while eicosapentaenoyl serotonin (EPA-5-HT) could not be quantified. Among these, DHA-5-HT was the most potent in inhibiting IL-17 and CCL-20, typical Th17 pro-inflammatory mediators, by Concanavalin A (ConA)-stimulated human PBMCs. These results underline the idea that DHA-5-HT is a gut-specific endogenously produced mediator with the capacity to modulate the IL-17/Th17 signaling response. Our findings may be of relevance in relation to intestinal inflammatory diseases like Crohn's disease and Ulcerative colitis. Copyright © 2017. Published by Elsevier B.V.

  6. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    David Bauer

    Full Text Available Mortality associated with breast cancer is attributable to aggressive metastasis, to which TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking the release of chemotactic proteins (e.g. MCP-1/CCL2. These proteins direct inward infiltration/migration of tumor-associated macrophages (TAMs, tumor-associated neutrophils (TANs, myeloid-derived suppressor cells (MDSCs, T-regulatory cells (Tregs, T helper IL-17-producing cells (Th17s, metastasis-associated macrophages (MAMs and cancer-associated fibroblasts (CAFs. Tumor embedded infiltrates collectively enable immune evasion, tumor growth, angiogenesis, and metastasis. In the current study, we investigate the potential of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells. The results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage colony-stimulating factor (GMCSF, IL-1α and IL-6, all suppressed by apigenin. While many aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling patterns associated with CCL2 were blocked by apigenin and mediated through suppressed mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated extracellular signal-regulated kinase 1 (ERK 1/ 2. In summary, the obtained findings suggest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines from human breast cancer cells, which can be attenuated by apigenin.

  7. The in vitro NADPH-dependent inhibition by CCl4 of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl3 radical

    International Nuclear Information System (INIS)

    Srivastava, S.P.; Chen, N.Q.; Holtzman, J.L.

    1990-01-01

    The hepatotoxicity of CCl4 is mediated through its initial reduction by cytochrome P-450 to the CCl3 radical. This radical then damages important metabolic systems such as the ATP-dependent microsomal Ca2+ pump. Previous studies from our laboratory on isolated microsomes have shown that NADPH in the absence of toxic agents inhibits this pump. We have now found in in vitro incubations that CCl4 (0.5-2.5 mM) enhanced the NADPH-dependent inhibition of Ca2+ uptake from 28% without CCl4 to a maximum of 68%. These concentrations are in the range found in the livers and blood of lethally intoxicated animals and are toxic to cultured hepatocytes. The inhibition of Ca2+ uptake was due both to a decrease in the Ca2(+)-dependent ATPase and to an enhanced release of Ca2+ from the microsomes. The NADPH-dependent CCl4 inhibition was greater under N2 and was totally prevented by CO. GSH (1-10 mM) added during the incubation with CCl4 prevented the inhibition. This protection was also seen when the incubations were performed under nitrogen. When samples were preincubated with CCl4, the CCl4 metabolism was stopped, and then the Ca2+ uptake was determined; GSH reversed the CCl4 inhibition of Ca2+ uptake. This reversal showed saturation kinetics for GSH with two Km values of 0.315 and 93 microM when both the preincubation and the Ca2+ uptake were performed under air, and 0.512 and 31 microM when both were performed under nitrogen. Cysteine did not prevent the NADPH-dependent CCl4 inhibition of Ca2+ uptake. CCl4 increased lipid peroxidation in air, but no lipid peroxidation was seen under nitrogen. Lipid peroxidation was only modestly reversed by GSH. GSH did not remove 14C bound to samples preincubated with the 14CCl4

  8. dRYBP contributes to the negative regulation of the Drosophila Imd pathway.

    Directory of Open Access Journals (Sweden)

    Ricardo Aparicio

    Full Text Available The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response.

  9. Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations

    Directory of Open Access Journals (Sweden)

    C. Servais

    2008-10-01

    Full Text Available Hydrogen chloride (HCl and hydrogen fluoride (HF are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F and CFC-12 (CCl2F2, during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10–50 km altitude range for HCl and HF, and in the 7–20 and 7–25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5–10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences

  10. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice

    NARCIS (Netherlands)

    J.C.M. Meenhuis (Annemarie); P. van Veelen (Peter); H. de Looper (Hans); N. van Boxtel (Nicole); I.J. van den Berge (Iris); S.M. Sun; E. Taskesen (Erdogan); P. Stern (Patrick); A. de Ru (Arnoud); A.J. van Adrichem (Arjan); J.A.A. Demmers (Jeroen); M. Jongen-Lavrencic (Mojca); B. Löwenberg (Bob); I.P. Touw (Ivo); P.A. Sharp (Phillip); S.J. Erkeland (Stefan)

    2011-01-01

    textabstractMicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of

  11. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation

    Science.gov (United States)

    Esser, Dominik; Rauch, Bernadette

    2014-01-01

    SUMMARY The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many “classical” pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of “new,” unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented. PMID:24600042

  12. Ethanol extract and its dichloromethane fraction of Alpinia oxyphylla Miquel exhibited hepatoprotective effects against CCl4-induced oxidative damage in vitro and in vivo with the involvement of Nrf2.

    Science.gov (United States)

    Zhang, Qiao; Hu, Xiaolong; Hui, Fuhai; Song, Qi; Cui, Can; Wang, Changli; Zhao, Qingchun

    2017-07-01

    Alpinia oxyphylla Miq. (A. oxyphylla), as a kind of medicine which also be used as food, is widely used in East Asian for the treatment of dyspepsia, diarrhea, abdominal pain and deficiency cold of spleen and stomach. This study aimed to investigate the protective effects of ethanol extract (EE) and its dichloromethane fraction (DM) of A. oxyphylla, which are rich in phenolic compounds, against CCl 4 -induced hepatic injury in vitro and in vivo. EE, DM and silymarin ameliorated CCl 4 -induced decrease of cell viability and increase of reactive oxygen species (ROS) in HepG2 cells. The CCl 4 -induced changes of glutathione (GSH) and methane dicarboxylic aldehyde (MDA) levels, and the decrease of superoxide dismutase (SOD) and catalase (CAT) activities were all restored with the pretreatment of EE, DM and silymarin. The results in liver injury model in rats showed that EE, DM and silymarin could significant decrease the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and total bilirubin than the model group. Liver histopathology revealed that EE and DM attenuated the incidence of liver lesions triggered by CCl 4 intoxication. They also effectively relieved CCl 4 -induced oxidative damage. Western blot analysis indicated NF-E2-related factor (Nrf2) pathway played an critical role in the protection of EE and DM against CCl 4 -induced oxidative stress. In conclusion, the extracts from A. oxyphylla might be used as hepatoprotective agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  14. Association of CCL11 promoter polymorphisms with schizophrenia in a Korean population.

    Science.gov (United States)

    Kang, Won Sub; Kim, Young Jong; Park, Hae Jeong; Kim, Su Kang; Paik, Jong-Woo; Kim, Jong Woo

    2018-05-20

    Immunological alterations and dysregulation of the inflammatory response have been suggested to play a crucial role in schizophrenia pathophysiology. Growing evidence supports the involvement of chemokines in brain development, thus many chemokines have been studied in relation with schizophrenia. The C-C motif chemokine ligand 11 (CCL11) has been shown to be related with synaptic plasticity and neurogenesis. Moreover, altered levels of CCL11 have been observed in schizophrenia patients. Therefore, we examined whether single nucleotide polymorphisms (SNPs) of the CCL11 in the promoter region contribute to susceptibility to schizophrenia. Four promoter SNPs [rs17809012 (-384T>C), rs16969415 (-426C>T), rs17735961 (-488C>A), and rs4795896 (576G>A)] were genotyped in 254 schizophrenia patients and 405 control subjects using Fluidigm SNPtype assays. The genotype frequency of CCL11 rs4795896 (-576G>A) showed significant association with schizophrenia in a recessive model (AA vs. GG/AG, p schizophrenia (p schizophrenia (p = 0.0044, p schizophrenia in a Korean population. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Current sources of carbon tetrachloride (CCl4) in our atmosphere

    Science.gov (United States)

    Sherry, David; McCulloch, Archie; Liang, Qing; Reimann, Stefan; Newman, Paul A.

    2018-02-01

    Carbon tetrachloride (CCl4 or CTC) is an ozone-depleting substance whose emissive uses are controlled and practically banned by the Montreal Protocol (MP). Nevertheless, previous work estimated ongoing emissions of 35 Gg year-1 of CCl4 into the atmosphere from observation-based methods, in stark contrast to emissions estimates of 3 (0-8) Gg year-1 from reported numbers to UNEP under the MP. Here we combine information on sources from industrial production processes and legacy emissions from contaminated sites to provide an updated bottom-up estimate on current CTC global emissions of 15-25 Gg year-1. We now propose 13 Gg year-1 of global emissions from unreported non-feedstock emissions from chloromethane and perchloroethylene plants as the most significant CCl4 source. Additionally, 2 Gg year-1 are estimated as fugitive emissions from the usage of CTC as feedstock and possibly up to 10 Gg year-1 from legacy emissions and chlor-alkali plants.

  16. Regulation of Intrinsic and Extrinsic Apoptotic Pathways in Osteosarcoma Cells Following Oleandrin Treatment.

    Science.gov (United States)

    Ma, Yunlong; Zhu, Bin; Yong, Lei; Song, Chunyu; Liu, Xiao; Yu, Huilei; Wang, Peng; Liu, Zhongjun; Liu, Xiaoguang

    2016-11-23

    Our previous study has reported the anti-tumor effect of oleandrin on osteosarcoma (OS) cells. In the current study, we mainly explored its potential regulation on intrinsic and extrinsic apoptotic pathway in OS cells. Cells apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected using fluorescence staining and flow cytometry. Caspase-3 activity was detected using a commercial kit. The levels of cytoplasmic cytochrome c, mitochondrial cytochrome c, bcl-2, bax, caspase-9, Fas, FasL, caspase-8 and caspase-3 were detected by Western blotting. z-VAD-fmk was applied to block both intrinsic and extrinsic apoptosis pathways, and cells apoptosis was also tested. Furthermore, we used z-LEHD-fmk and Fas blocking antibody to inhibit intrinsic and extrinsic pathways, separately, and the selectivity of oleandrin on these pathways was explored. Results showed that oleandrin induced the apoptosis of OS cells, which was accompanied by an increase in ROS and a decrease in MMP. Furthermore, cytochrome c level was reduced in mitochondria but elevated in the cytoplasm. Caspase-3 activity was enhanced by oleandrin in a concentration- and time-dependent manner. Oleandrin also down-regulated the expression of bcl-2, but up-regulated bax, caspase-9, Fas, FasL, caspase-8 and caspase-3. In addition, the suppression of both apoptotic pathways by z-VAD-fmk greatly reverted the oleandrin-induced apoptosis. Moreover, the suppression of one pathway by a corresponding inhibitor did not affect the regulation of oleandrin on another pathway. Taken together, we concluded that oleandrin induced apoptosis of OS cells via activating both intrinsic and extrinsic apoptotic pathways.

  17. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    Directory of Open Access Journals (Sweden)

    Jessica L Williams

    2014-05-01

    Full Text Available In the adult central nervous system (CNS, chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.

  18. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  19. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22

    NARCIS (Netherlands)

    Hammad, Hamida; Smits, Hermelijn H.; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A.; Stewart, Geoffrey A.; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T

  20. Regulated degradation of the APC coactivator Cdc20

    Directory of Open Access Journals (Sweden)

    Robbins Jonathan A

    2010-09-01

    Full Text Available Abstract Background Cdc20 is a highly conserved activator of the anaphase-promoting complex (APC, promoting cell-cycle-regulated ubiquitination and proteolysis of a number of critical cell-cycle-regulatory targets including securin and mitotic cyclins. APC-Cdc20 activity is tightly regulated, and this regulation is likely important for accurate cell cycle control. One significant component of Cdc20 regulation is thought to be Cdc20 proteolysis. However, published literature suggests different mechanisms and requirements for Cdc20 proteolysis. The degree to which Cdc20 proteolysis is cell-cycle regulated, the dependence of Cdc20 proteolysis on Cdc20 destruction boxes (recognition sequences for APC-mediated ubiqutination, either by Cdc20 or by the related Cdh1 APC activator, and the need for APC itself for Cdc20 proteolysis all have been disputed to varying extents. In animals, Cdc20 proteolysis is thought to be mediated by Cdh1, contributing an intrinsic order of APC activation by Cdc20 and then by Cdh1. One report suggests a Cdh1 requirement for Cdc20 proteolysis in budding yeast; this idea has not been tested further. Results We characterized Cdc20 proteolysis using Cdc20 expressed from its endogenous locus; previous studies generally employed strongly overexpressed Cdc20, which can cause significant artifacts. We analyzed Cdc20 proteolysis with or without mutations in previously identified destruction box sequences, using varying methods of cell cycle synchronization, and in the presence or absence of Cdh1. Cdc20 instability is only partially dependent on destruction boxes. A much stronger dependence on Cdh1 for Cdc20 proteolysis was observed, but Cdh1-independent proteolysis was also clearly observed. Cdc20 proteolysis independent of both destruction boxes and Cdh1 was especially detectable around the G1/S transition; Cdh1-dependent proteolysis was most notable in late mitosis and G1. Conclusions Cdc20 proteolysis is under complex control

  1. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  2. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation

    Directory of Open Access Journals (Sweden)

    Sagar Divya

    2012-10-01

    Full Text Available Abstract Background Transmigration of circulating dendritic cells (DCs into the central nervous system (CNS across the blood–brain barrier (BBB has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2 is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. Methods Experimental autoimmune encephalomyelitis (EAE was induced in C57BL/6 mice by injection of MOG35–55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. Results Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. Conclusion CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB

  3. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.

    Directory of Open Access Journals (Sweden)

    Kyler B Pallister

    Full Text Available In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.

  4. KFC, a Ste20-like kinase with mitogenic potential and capability to activate the SAPK/JNK pathway.

    Science.gov (United States)

    Yustein, J T; Li, D; Robinson, D; Kung, H J

    2000-02-03

    The Sterile-20 (Ste20) family of serine-threonine kinases has been implicated in the activation of the stress-activated protein kinase pathways. However, the physiological role has remained ambiguous for most of the investigated mammalian Ste20's. Here we report the cloning of a novel Ste20-like kinase, from chicken embryo fibroblast (CEF) cells, which we have named KFC, for Kinase From Chicken. The 898 amino acid full-length KFC protein contains an amino-terminal kinase domain, an adjacent downstream serine-rich region, and a C-terminal tail containing a coiled-coil domain. Here we show that the coiled-coil domain of KFC negatively regulates the intrinsic kinase activity. We have also identified a splice variant of KFC in which there is a 207 nucleotide in-frame deletion. This deletion of 69 amino acids encompasses the serine-rich region. These two isoforms, called KFCL, for full-length, and KFCS for spliced (or short) form, not only differ in structure, but also in biological properties. Stable CEF cells overexpressing KFCL, but not KFCS, have a significant increase in growth rate when compared to parental cells. This mitogenic effect is the first such reported for this family of kinases. Finally, we found that KFC, when activated by truncation of the regulatory C-terminus, has a specific activation of the stress-activated protein kinase (SAPK/JNK) pathway.

  5. CCL21 Cancer Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuanlin@mednet.ucla.edu [Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); UCLA Head and Neck Cancer Program, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Sharma, Sherven [Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Veterans’ Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073 (United States); John, Maie St. [Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); UCLA Head and Neck Cancer Program, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)

    2014-05-07

    Cancer, a major health problem, affects 12 million people worldwide every year. With surgery and chemo-radiation the long term survival rate for the majority of cancer patients is dismal. Thus novel treatments are urgently needed. Immunotherapy, the harnessing of the immune system to destroy cancer cells is an attractive option with potential for long term anti-tumor benefit. Cytokines are biological response modifiers that stimulate anti-tumor immune responses. In this review, we discuss the anti-tumor efficacy of the chemotactic cytokine CCL21 and its pre-clinical and clinical application in cancer.

  6. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    Science.gov (United States)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  7. PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism.

    Directory of Open Access Journals (Sweden)

    Sri Devi Narasimhan

    2011-04-01

    Full Text Available The insulin/IGF-1 signaling (IIS pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase, AGE-1 (PI 3-kinase, and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-β signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-β signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.

  8. CCL5 rs2107538 Polymorphism Increased the Risk of Tuberculosis in a Sample of Iranian Population

    Directory of Open Access Journals (Sweden)

    Hamid Reza Kouhpayeh

    2016-01-01

    Full Text Available Cysteine-cysteine chemokine ligand 5 (CCL5 with immunoregulatory and inflammatory activities has an important role in granuloma formations that activates and stimulates T-cells and macrophages. Cysteine-cysteine chemokine receptor 5 (CCR5 is a chemokine receptor, which is important for migration of immune cells to site of infection. In the present study we investigated the possible association between CCL5 –403G/A (rs2107538, CCL5 –28C/G (rs2280788 and CCR5 Δ32 polymorphisms and pulmonary tuberculosis (PTB in an Iranian population. This case-control study was performed on 160 patients with pulmonary tuberculosis and 160 unrelated healthy subjects. The CCL5 –403G/A, CCL5 –28C/G and CCR5 Δ32 polymorphisms were genotyped by allele-specific polymerase chain reaction (AS-PCR, tetra amplification refractory mutation system polymerase chain reaction (T-ARMS PCR and PCR, respectively. Our results showed that GA as well as GA+AA genotypes of CCL5 –403G/A (rs2107538 increased the risk of PTB in comparison with GG genotype (OR=1.70, 95% CI=1.03–2.81, P=0.038 and OR=1.64, 95% CI=1.00–2.68, P=0.049, respectively. No significant association was found between CCL5 –28C/G as well as CCR5 Δ32 polymorphism and PTB risk. In conclusion, our findings proposed that CCL5 –403G>A polymorphism may be a risk factor for susceptibility to PTB in our population. Larger sample sizes with different ethnicities are required to validate our findings.

  9. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum.

    Science.gov (United States)

    Yu, Fangwei; Gu, Qin; Yun, Yingzi; Yin, Yanni; Xu, Jin-Rong; Shim, Won-Bo; Ma, Zhonghua

    2014-07-01

    The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    Science.gov (United States)

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-05-29

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.

  11. The 20-hydroxyecdysone-induced signalling pathway in G2/M arrest of Plodia interpunctella imaginal wing cells.

    Science.gov (United States)

    Siaussat, David; Bozzolan, Françoise; Porcheron, Patrick; Debernard, Stéphane

    2008-05-01

    The mechanisms involved in the control of cellular proliferation by the steroid hormone 20-hydroxyecdysone (20E) in insects are not known. We dissected the 20E signalling pathway responsible for G2/M arrest of imaginal cells from the IAL-PID2 cells of the Indian meal moth Plodia interpunctella. We first used a 5'-3' RACE-based strategy to clone a 4479bp cDNA encoding a putative P. interpunctella HR3 transcription factor named PiHR3. The deduced amino acid sequence of PiHR3 was highly similar to those of HR3 proteins from other lepidopterans, e.g. Manduca sexta and Bombyx mori. Using double-stranded RNA-mediated interference (dsRNAi), we then succeeded in blocking the ability of 20E to induce the expression of PiEcR-B1, PiUSP-2 and PiHR3 genes that encode the P. interpunctella ecdysone receptor B1-isoform, Ultraspiracle-2 isoform, the insect homologue of the vertebrate retinoid X receptor, and the HR3 transcription factor. We showed that inhibiting the 20E induction of PiEcR-B1, PiUSP-2 and PiHR3 mRNAs prevented the decreased expression of B cyclin and consequently the G2/M arrest of IAL-PID2 cells. Using this functional approach, we revealed the participation of EcR, USP and HR3 in a 20E signalling pathway that controls the proliferation of imaginal cells by regulating the expression of B cyclin.

  12. The essential oil of Artemisia capillaris protects against CCl4-induced liver injury in vivo

    Directory of Open Access Journals (Sweden)

    Qinghan Gao

    Full Text Available Abstract To study the hepatoprotective effect of the essential oil of Artemisia capillaris Thunb., Asteraceae, on CCl4-induced liver injury in mice, the levels of serum aspartate aminotransferase and alanine aminotransferase, hepatic levels of reduced glutathione, activity of glutathione peroxidase, and the activities of superoxide dismutase and malondialdehyde were assayed. Administration of the essential oil of A. capillaris at 100 and 50 mg/kg to mice prior to CCl4 injection was shown to confer stronger in vivo protective effects and could observably antagonize the CCl4-induced increase in the serum alanine aminotransferase and aspartate aminotransferase activities and malondialdehyde levels as well as prevent CCl4-induced decrease in the antioxidant superoxide dismutase activity, glutathione level and glutathione peroxidase activity (p < 0.01. The oil mainly contained β-citronellol, 1,8-cineole, camphor, linalool, α-pinene, β-pinene, thymol and myrcene. This finding demonstrates that the essential oil of A. capillaris can protect hepatic function against CCl4-induced liver injury in mice.

  13. USP21 regulates Hippo pathway activity by mediating MARK protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Loya, Anand Chainsukh

    2017-01-01

    observed in cancer and often correlates with worse survival. The activity and stability of Hippo pathway components, including YAP/TAZ, AMOT and LATS1/2, are regulated by ubiquitin-mediated protein degradation. Aberrant expression of ubiquitin ligase complexes that regulate the turnover of Hippo components...

  14. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  15. CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer's disease.

    Science.gov (United States)

    Cherry, Jonathan D; Stein, Thor D; Tripodis, Yorghos; Alvarez, Victor E; Huber, Bertrand R; Au, Rhoda; Kiernan, Patrick T; Daneshvar, Daniel H; Mez, Jesse; Solomon, Todd M; Alosco, Michael L; McKee, Ann C

    2017-01-01

    CCL11, a protein previously associated with age-associated cognitive decline, is observed to be increased in the brain and cerebrospinal fluid (CSF) in chronic traumatic encephalopathy (CTE) compared to Alzheimer's disease (AD). Using a cohort of 23 deceased American football players with neuropathologically verified CTE, 50 subjects with neuropathologically diagnosed AD, and 18 non-athlete controls, CCL11 was measured with ELISA in the dorsolateral frontal cortex (DLFC) and CSF. CCL11 levels were significantly increased in the DLFC in subjects with CTE (fold change = 1.234, p history of head trauma. This increase was also seen to correlate with years of exposure to American football (β = 0.426, p = 0.048) independent of age (β = -0.046, p = 0.824). Preliminary analyses of a subset of subjects with available post-mortem CSF showed a trend for increased CCL11 among individuals with CTE (p = 0.069) mirroring the increase in the DLFC. Furthermore, an association between CSF CCL11 levels and the number of years exposed to football (β = 0.685, p = 0.040) was observed independent of age (β = -0.103, p = 0.716). Finally, a receiver operating characteristic (ROC) curve analysis demonstrated CSF CCL11 accurately distinguished CTE subjects from non-athlete controls and AD subjects (AUC = 0.839, 95% CI 0.62-1.058, p = 0.028). Overall, the current findings provide preliminary evidence that CCL11 may be a novel target for future CTE biomarker studies.

  16. Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin.

    Science.gov (United States)

    Chang, Kai-Wei; Huang, Nancy A; Liu, I-Hsuan; Wang, Yi-Hui; Wu, Ping; Tseng, Yen-Tzu; Hughes, Michael W; Jiang, Ting Xin; Tsai, Mong-Hsun; Chen, Chien-Yu; Oyang, Yen-Jen; Lin, En-Chung; Chuong, Cheng-Ming; Lin, Shau-Ping

    2015-01-23

    Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study

  17. MIPAS IMK/IAA carbon tetrachloride (CCl4) retrieval and first comparison with other instruments

    Science.gov (United States)

    Eckert, Ellen; von Clarmann, Thomas; Laeng, Alexandra; Stiller, Gabriele P.; Funke, Bernd; Glatthor, Norbert; Grabowski, Udo; Kellmann, Sylvia; Kiefer, Michael; Linden, Andrea; Babenhauserheide, Arne; Wetzel, Gerald; Boone, Christopher; Engel, Andreas; Harrison, Jeremy J.; Sheese, Patrick E.; Walker, Kaley A.; Bernath, Peter F.

    2017-07-01

    MIPAS thermal limb emission measurements were used to derive vertically resolved profiles of carbon tetrachloride (CCl4). Level-1b data versions MIPAS/5.02 to MIPAS/5.06 were converted into volume mixing ratio profiles using the level-2 processor developed at Karlsruhe Institute of Technology (KIT) Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). Consideration of peroxyacetyl nitrate (PAN) as an interfering species, which is jointly retrieved, and CO2 line mixing is crucial for reliable retrievals. Parts of the CO2 Q-branch region that overlap with the CCl4 signature were omitted, since large residuals were still found even though line mixing was considered in the forward model. However, the omitted spectral region could be narrowed noticeably when line mixing was accounted for. A new CCl4 spectroscopic data set leads to slightly smaller CCl4 volume mixing ratios. In general, latitude-altitude cross sections show the expected CCl4 features with highest values of around 90 pptv at altitudes at and below the tropical tropopause and values decreasing with altitude and latitude due to stratospheric decomposition. Other patterns, such as subsidence in the polar vortex during winter and early spring, are also visible in the distributions. The decline in CCl4 abundance during the MIPAS Envisat measurement period (July 2002 to April 2012) is clearly reflected in the altitude-latitude cross section of trends estimated from the entire retrieved data set.

  18. MIPAS IMK/IAA carbon tetrachloride (CCl4 retrieval and first comparison with other instruments

    Directory of Open Access Journals (Sweden)

    E. Eckert

    2017-07-01

    Full Text Available MIPAS thermal limb emission measurements were used to derive vertically resolved profiles of carbon tetrachloride (CCl4. Level-1b data versions MIPAS/5.02 to MIPAS/5.06 were converted into volume mixing ratio profiles using the level-2 processor developed at Karlsruhe Institute of Technology (KIT Institute of Meteorology and Climate Research (IMK and Consejo Superior de Investigaciones Científicas (CSIC, Instituto de Astrofísica de Andalucía (IAA. Consideration of peroxyacetyl nitrate (PAN as an interfering species, which is jointly retrieved, and CO2 line mixing is crucial for reliable retrievals. Parts of the CO2 Q-branch region that overlap with the CCl4 signature were omitted, since large residuals were still found even though line mixing was considered in the forward model. However, the omitted spectral region could be narrowed noticeably when line mixing was accounted for. A new CCl4 spectroscopic data set leads to slightly smaller CCl4 volume mixing ratios. In general, latitude–altitude cross sections show the expected CCl4 features with highest values of around 90 pptv at altitudes at and below the tropical tropopause and values decreasing with altitude and latitude due to stratospheric decomposition. Other patterns, such as subsidence in the polar vortex during winter and early spring, are also visible in the distributions. The decline in CCl4 abundance during the MIPAS Envisat measurement period (July 2002 to April 2012 is clearly reflected in the altitude–latitude cross section of trends estimated from the entire retrieved data set.

  19. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice.

    Science.gov (United States)

    Qin, Xue; Liu, Jun Hua; Zhao, Wen Sheng; Chen, Xu Jun; Guo, Ze Jian; Peng, You Liang

    2013-02-01

    Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA(1) and GA(4) were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA(3) and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.

  20. CC-Chemokine CCL15 Expression and Possible Implications for the Pathogenesis of IgE-Related Severe Asthma

    Directory of Open Access Journals (Sweden)

    Yasuo Shimizu

    2012-01-01

    Full Text Available Airway inflammation is accompanied by infiltration of inflammatory cells and an abnormal response of airway smooth muscle. These cells secrete chemokines and express the cell surface chemokine receptors that play an important role in the migration and degranulation of inflammatory cells. Omalizumab is a monoclonal antibody directed against immunoglobulin E, and its blocking of IgE signaling not only reduces inflammatory cell infiltration mediated by the Th2 immune response but also inhibits other immune responses. The chemokine CCL15 is influenced by omalizumab, and the source of CCL15 has been reported to be airway smooth muscle cells and basophils. CCL15 binds to its receptor CCR1, which has been reported to be expressed by various inflammatory cells and also by airway smooth muscle cells. Therefore, CCL15/CCR1 signaling could be a target for the treatment of asthma. We review the role of CCL15 in the pathogenesis of asthma and also discuss the influence of IgE-mediated immunomodulation via CCL15 and its receptor CCR1.

  1. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chun-Hsu [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Kuo, Yueh-Hsiung, E-mail: kuoyh@mail.cmu.edu.tw [Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Wu, Chieh-Hsi, E-mail: chhswu@tmu.edu.tw [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  2. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization.

    Science.gov (United States)

    Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil

    2018-05-01

    Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.

  3. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish.

    Science.gov (United States)

    Aquilino, Carolina; Granja, Aitor G; Castro, Rosario; Wang, Tiehui; Abos, Beatriz; Parra, David; Secombes, Christopher J; Tafalla, Carolina

    2016-04-05

    CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages.

  4. Amino acids as regulators and components of nonproteinogenic pathways

    NARCIS (Netherlands)

    Meijer, Alfred J.

    2003-01-01

    Amino acids are not only important precursors for the synthesis of proteins and other N-containing compounds, but also participate in the regulation of major metabolic pathways. Glutamate and aspartate, for example, are components of the malate/aspartate shuttle and their concentrations control the

  5. CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jonathan D Cherry

    Full Text Available CCL11, a protein previously associated with age-associated cognitive decline, is observed to be increased in the brain and cerebrospinal fluid (CSF in chronic traumatic encephalopathy (CTE compared to Alzheimer's disease (AD. Using a cohort of 23 deceased American football players with neuropathologically verified CTE, 50 subjects with neuropathologically diagnosed AD, and 18 non-athlete controls, CCL11 was measured with ELISA in the dorsolateral frontal cortex (DLFC and CSF. CCL11 levels were significantly increased in the DLFC in subjects with CTE (fold change = 1.234, p < 0.050 compared to non-athlete controls and AD subjects with out a history of head trauma. This increase was also seen to correlate with years of exposure to American football (β = 0.426, p = 0.048 independent of age (β = -0.046, p = 0.824. Preliminary analyses of a subset of subjects with available post-mortem CSF showed a trend for increased CCL11 among individuals with CTE (p = 0.069 mirroring the increase in the DLFC. Furthermore, an association between CSF CCL11 levels and the number of years exposed to football (β = 0.685, p = 0.040 was observed independent of age (β = -0.103, p = 0.716. Finally, a receiver operating characteristic (ROC curve analysis demonstrated CSF CCL11 accurately distinguished CTE subjects from non-athlete controls and AD subjects (AUC = 0.839, 95% CI 0.62-1.058, p = 0.028. Overall, the current findings provide preliminary evidence that CCL11 may be a novel target for future CTE biomarker studies.

  6. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome. © 2015. Published by The Company of Biologists Ltd.

  7. The Protective Effect of Liquorice Plant Extract on CCl4-Induced Hepatotoxicity in Common Carp (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Hassan Malekinejad

    2010-12-01

    Full Text Available The protective effect of liquorice plant extract (LPE on CCl4-induced hepatotoxicity in common carp was evaluated using fifty adult carps. The fish were cultured in a standard environment in terms of water flow rate, oxygen, pH, food and temperature. The fish were assigned into 5 groups (N = 10 as control, sham, and tests. The test groups were pre-treated for 3 h with various concentrations of LPE, 3 days before CCl4 exposure. The control and sham groups received normal saline before and after CCl4 exposure. To induce hepatotoxicity, animals in the sham and test groups were exposed against 100 l L-1 CCl4 for 45 min. The fish in all groups 1 h after CCl4 exposure were anesthetized and the blood samples were collected. Immediately the liver specimens were dissected out and were stored in 10 % formalin for further pathological studies. Determination of serum level of ALP and SGOT revealed that acute form of CCl4 exposure elevated significantly (P < 0.05 the serum level of either tested hepatic marker enzymes. While 3 days pretreatment with LPE prevented from ALP and SGOT enhancement. The pathological evaluation revealed that the CCl4 exposure resulted in a minor pathologic manifestation such as slight congestion, which the LPE pretreated groups showed the remarkable improvement. The anti-oxidant capacity of LPE was assayed by FRAP and DPPH methods. Both provided techniques showed that LPE exerts an excellent anti-oxidant effect. This data suggest that LPE exerts protective effect against CCl4-induced hepatotoxicity. Moreover, the hepatoprotective effect of LPE may attribute to its antioxidant capacity.

  8. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  9. Prevention of carbon tetrachloride (CCl4)-induced toxicity in testes of rats treated with Physalis peruviana L. fruit.

    Science.gov (United States)

    Abdel Moneim, Ahmed E

    2016-06-01

    Treatment of rats with carbon tetrachloride (CCl4; 2 ml/kg body weight) once a week for 12 weeks caused a significant decrease in serum levels of testosterone, luteinizing hormone, and follicle-stimulating hormone. These decreases in sex hormones were reduced with Physalis peruviana L. (Cape gooseberry) juice supplementation. In addition, testicular activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase suppressed with CCl4 were elevated after P. peruviana juice supplements. P. peruviana juice supplementation significantly increased the testicular glutathione and significantly decreased the level of lipid peroxidation and the nitric oxide production compared with the CCl4 group. In addition, the decline in the activity of antioxidant enzymes after CCl4 was ameliorated by P. peruviana Moreover, degeneration of germ and Leydig cells along with deformities in spermatogenesis induced after CCl4 injections were prevented with the supplementation of P. peruviana juice. Furthermore, P. peruviana juice attenuated CCl4-induced apoptosis in testes tissue by inhibition of caspase-3 activity. The results clearly demonstrate that P. peruviana juice augments the antioxidants defense mechanism against CCl4-induced reproductive toxicity and provides evidence that the juice may have a therapeutic role in free radical-mediated diseases and infertility. © The Author(s) 2014.

  10. Leukotactin-1/CCL15 induces cell migration and differentiation of human eosinophilic leukemia EoL-1 cells through PKCdelta activation.

    Science.gov (United States)

    Lee, Ji-Sook; Kim, In Sik

    2010-06-01

    Leukotactin-1 (Lkn-1)/CCL15 is a CC chemokine that binds to the CCR1 and CCR3. Lkn-1 functions as an essential factor in the migration of monocytes, lymphocytes, and neutrophils. Although eosinophils express both receptors, the role of Lkn-1 in immature eosinophils remains to be elucidated. In this present study, we investigated the contribution of the CCR1-binding chemokines to chemotactic activity and in the differentiation in the human eosinophilic leukemia cell line EoL-1. Lkn-1 induced the stronger migration of EoL-1 cells than other CCR1-binding chemokines such as RANTES/CCL5, MIP-1alpha/CCL3 and HCC-4/CCL16. Lkn-1-induced chemotaxis was inhibited by pertussis toxin, an inhibitor of G(i)/G(o) protein; U73122, an inhibitor of phospholipase C and rottlerin, an inhibitor of protein kinase C delta (PKCdelta). Lkn-1 increased PKCdelta activity, which was partially blocked by the pertussis toxin and U73122. Lkn-1 enhanced the butyric acid-induced differentiation via PKCdelta after binding to the increased CCR1 because Lkn-1 caused EoL-1 cells to change morphologically into mature eosinophil-like cells. Likewise, Lkn-1 increased the expression of both eosinophil peroxidase (EPO) and the major basic protein (MBP). PKCdelta activation due to Lkn-1 is involved in migration, as well as the butyric acid-induced differentiation. This finding contributes to an understanding of CC chemokines in eosinophil biology and to the development of novel therapies for the treatment of eosinophilic disorders. This study suggests the pivotal roles of Lkn-1 in the regulation of the movement and development of eosinophils.

  11. [Review for treatment effect and signaling pathway regulation of kidney-tonifying traditional Chinese medicine on osteoporosis].

    Science.gov (United States)

    Xiao, Ya-Ping; Zeng, Jie; Jiao, Lin-Na; Xu, Xiao-Yu

    2018-01-01

    The treatment effect and signaling pathway regulation effects of kidney-tonifying traditional Chinese medicine on osteoporosis have been widely studied, but there is no systematic summary currently. This review comprehensively collected and analyzed the traditional Chinese medicines on the treatment and signaling pathway regulation of osteoporosis in recent ten years, such as Epimedii Folium, Drynariae Rhizoma, Cnidii Fructus, Eucommiae Cortex, Psoraleae Fructus and Dipsaci Radix. Based on the existing findings, the following conclusions were obtained: ①kidney-tonifying traditional Chinese medicine treated osteoporosis mainly through BMP-Smads, Wnt/ β -catenin, MAPK, PI3K/AKT signaling pathway to promote osteoblast bone formation and through OPG/RANKL/ RANK, estrogen, CTSK signaling pathway to inhibit osteoclasts of bone resorption. Epimedii Folium, Drynariae Rhizoma, Cnidii Fructus and Psoraleae Fructus up-regulated the expression of key proteins and genes of BMP-Smads and Wnt/ β -catenin signaling pathways to promote bone formation. Epimedii Folium, Drynariae Rhizoma, Cnidii Fructus, Eucommiae Cortex, Psoraleae Fructus and Dipsaci Radix inhibited the bone resorption by mediating the OPG/RANKL/RANK signaling pathway. ②Kidney-tonifying traditional Chinese medicine prevented and treated osteoporosis through a variety of ways: icariin in Epimedii Folium, naringin in Drynariae Rhizoma, osthole in Cnidii Fructus and psoralen in Psoraleae Fructus can regulate BMP-Smads, Wnt/ β -catenin signaling pathway to promote bone formation, but also activate OPG/RANKL/RANK, CTSK and other signaling pathways to inhibit bone resorption. ③The crosstalk of the signaling pathways and the animal experiments of the traditional Chinese medicine on the prevention and treatment of osteoporosis as well as their multi-target mechanism and comprehensive regulation need further clarification. Copyright© by the Chinese Pharmaceutical Association.

  12. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Science.gov (United States)

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  13. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Brenden Chen

    Full Text Available Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167 or mTORC1 inhibitor (rapamycin induced AKT phosphorylation (pAKT and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2 and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  14. 20-HETE and EETs in Diabetic Nephropathy: A Novel Mechanistic Pathway

    Science.gov (United States)

    Eid, Stephanie; Maalouf, Rita; Jaffa, Ayad A.; Nassif, Joseph; Hamdy, Ahmed; Rashid, Awad; Ziyadeh, Fuad N.; Eid, Assaad A.

    2013-01-01

    Diabetic nephropathy (DN), a major complication of diabetes, is characterized by hypertrophy, extracellular matrix accumulation, fibrosis and proteinuria leading to loss of renal function. Hypertrophy is a major factor inducing proximal tubular epithelial cells injury. However, the mechanisms leading to tubular injury is not well defined. In our study, we show that exposure of rats proximal tubular epithelial cells to high glucose (HG) resulted in increased extracellular matrix accumulation and hypertrophy. HG treatment increased ROS production and was associated with alteration in CYPs 4A and 2C11 expression concomitant with alteration in 20-HETE and EETs formation. HG-induced tubular injury were blocked by HET0016, an inhibitor of CYPs 4A. In contrast, inhibition of EETs promoted the effects of HG on cultured proximal tubular cells. Our results also show that alteration in CYPs 4A and 2C expression and 20HETE and EETs formation regulates the activation of the mTOR/p70S6Kinase pathway, known to play a major role in the development of DN. In conclusion, we show that hyperglycemia in diabetes has a significant effect on the expression of Arachidonic Acid (AA)-metabolizing CYPs, manifested by increased AA metabolism, and might thus alter kidney function through alteration of type and amount of AA metabolites. PMID:23936373

  15. Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl(4)-induced liver injury in rats.

    Science.gov (United States)

    Jayakumar, T; Ramesh, E; Geraldine, P

    2006-12-01

    This study was undertaken to investigate the putative antioxidant activity of the oyster mushroom Pleurotus ostreatus on CCl(4)-induced liver damage in male Wistar rats. Intraperitoneal administration of CCl(4) (2ml/kg) to rats for 4 days resulted in significantly elevated (pSALP) compared to controls. In the liver, significantly elevated levels (pSALP levels reverted to near normal, while the hepatic concentration of GSH, CAT, SOD and Gpx were significantly increased (p<0.05) and that of MDA significantly (p<0.05) lowered, when compared to CCl(4)-exposed untreated rats. Histopathological studies confirmed the hepatoprotective effect conferred by the extract of P. ostreatus. These results suggest that an extract of P. ostreatus is able to significantly alleviate the hepatotoxicity induced by CCl(4) in the rat.

  16. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters.

    Science.gov (United States)

    Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong; Alexandre, Gladys

    2016-06-15

    The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways.

    Directory of Open Access Journals (Sweden)

    Zheng Pang

    Full Text Available Toll-like receptors (TLRs recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88 and/or TIR-domain-containing adapter-inducing interferon-β (TRIF pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1, a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2, whereas TRIF-interferon-stimulated response elements (ISRE-mediated cytokine production (IFNβ, RANTES and IP-10 was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.

  18. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  19. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  20. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Beard, Peter

    2012-01-01

    Highlights: ► Unknown cellular mutations complement papillomavirus-induced carcinogenesis. ► Hedgehog pathway components are expressed by cervical cancer cells. ► Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. ► Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  1. 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol negatively regulates activation of STAT3 and ERK pathways and exhibits anti-cancer effects in HepG2 cells.

    Science.gov (United States)

    Ai, Hui-Han; Zhou, Zi-Long; Sun, Lu-Guo; Yang, Mei-Ting; Li, Wei; Yu, Chun-Lei; Song, Zhen-Bo; Huang, Yan-Xin; Wu, Yin; Liu, Lei; Yang, Xiao-Guang; Zhao, Yu-Qing; Bao, Yong-Li; Li, Yu-Xin

    2017-11-01

    The pro-inflammatory cytokine interleukin 6 (IL-6), via activating its downstream JAK/STAT3 and Ras/ERK signaling pathways, is involved in cell growth, proliferation and anti-apoptotic activities in various malignancies. To screen inhibitors of IL-6 signaling, we constructed a STAT3 and ERK dual-pathway responsive luciferase reporter vector (Co.RE). Among several candidates, the natural compound 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH 3 -PPD, GS25) was identified to clearly inhibit the luciferase activity of Co.RE. GS25 was confirmed to indeed inhibit activation of both STAT3 and ERK pathways and expression of downstream target genes of IL-6, and to predominantly decrease the viability of HepG2 cells via induction of cell cycle arrest and apoptosis. Interestingly, GS25 showed preferential inhibition of HepG2 cell viability relative to normal liver L02 cells. Further investigation showed that GS25 could not induce apoptosis and block activation of STAT3 and ERK pathways in L02 cells as efficiently as in HepG2 cells, which may result in differential effects of GS25 on malignant and normal liver cells. In addition, GS25 was found to potently suppress the expression of endogenous STAT3 at a higher concentration and dramatically induce p38 phosphorylation in HepG2 cells, which could mediate its anti-cancer effects. Finally, we demonstrated that GS25 also inhibited tumor growth in HepG2 xenograft mice. Taken together, these findings indicate that GS25 elicits its anti-cancer effects on HepG2 cells through multiple mechanisms and has the potential to be used as an inhibitor of IL-6 signaling. Thus, GS25 may be developed as a treatment for hepatocarcinoma with low toxicity on normal liver tissues as well as other inflammation-associated diseases.

  2. Effects of venom immunotherapy on serum level of CCL5/RANTES in patients with Hymenoptera venom allergy.

    Science.gov (United States)

    Gawlik, Radoslaw; Glück, Joanna; Jawor, Barbara; Rogala, Barbara

    2015-01-01

    Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Venom immunotherapy is a recommended treatment of insect allergy with still the mechanism not being completely understood. We decided to assess the serum CCL5/RANTES level in patients who experienced severe anaphylactic reaction to Hymenoptera venom and to find out changes in the course of immunotherapy. Twenty patients (9 men, 11 women, mean age: 31.91 ± 7.63 years) with history of anaphylactic reaction after insect sting were included into the study. Diagnosis was made according to sIgE and skin tests. All of them were enrolled into rush venom immunotherapy with bee or wasp venom extracts (Pharmalgen, ALK-Abello, Horsholm, Denmark). Serum levels of CCL5/RANTES were measured using a commercially available ELISA kit (R&D Systems, Minneapolis, MN). CCL5/RANTES serum concentration are higher in insect venom allergic patients than in healthy controls (887.5 ± 322.77 versus 387.27 ± 85.11 pg/ml). Serum concentration of CCL5/RANTES in insect venom allergic patient was significantly reduced in the course of allergen immunotherapy already after 6 days of vaccination (887.5 ± 322.77 versus 567.32 ± 92.16 pg/ml). CCL5/RANTES serum doesn't correlate with specific IgE. Chemokine CCL5/RANTES participates in allergic inflammation induced by Hymenoptera venom allergens. Specific immunotherapy reduces chemokine CCL5/RANTES serum level already after initial days of venom immunotherapy.

  3. Low intraprostatic DHT promotes the infiltration of CD8+ T cells in BPH tissues via modulation of CCL5 secretion.

    Science.gov (United States)

    Fan, Yu; Hu, Shuai; Liu, Jie; Xiao, Fei; Li, Xin; Yu, Wei; Cui, Yun; Sun, Mengkui; Lv, Tianjing; He, Qun; Jin, Jie

    2014-01-01

    Clinical studies suggested thatandrogen might be associated with infiltrating T cells in prostate of benign prostatic hyperplasia (BPH) patients, but detail of T-cell subset and mechanism still remained unclear. The present study tested the hypothesis that intraprostatic 5 α -dihydrotestosterone (DHT) exerts effects on T cells recruitment by BPH epithelial cells. Prostate tissues from 64 cases of BPH patients after transurethral resection of prostate (TURP) were divided into 2 groups: (1) no medication history; (2) administration of 5 α -reductase type II inhibitor-finasteride 5 mg daily for at least 6 months before surgery. Group 2 presented significantly higher CD8+ T cells infiltration than group 1, but no changes in CD4+ T cells (immunohistochemistry and flow cytometry). In vitro study more CD8+ T cell migrated to the prostate tissue lysates from group 2 and BPH-1 cells in low DHT condition. Transcription of chemokine (C-C motif) Ligand 5 (CCL5) mRNA in BPH-1 cells and chemokine (C-C motif) receptor 5 (CCR5) mRNA in CD8+ T cells were upregulated in low DHT condition (q-PCR). CCL5 expression was also identified to be higher in group 2 prostate tissues by IHC. This study suggested that intraprostatic DHT may participate in regulating inflammatory response which was induced by human prostatic epithelial cell, via modulating CCL5 secretion.

  4. Low Intraprostatic DHT Promotes the Infiltration of CD8+ T Cells in BPH Tissues via Modulation of CCL5 Secretion

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2014-01-01

    Full Text Available Clinical studies suggested thatandrogen might be associated with infiltrating T cells in prostate of benign prostatic hyperplasia (BPH patients, but detail of T-cell subset and mechanism still remained unclear. The present study tested the hypothesis that intraprostatic 5α-dihydrotestosterone (DHT exerts effects on T cells recruitment by BPH epithelial cells. Prostate tissues from 64 cases of BPH patients after transurethral resection of prostate (TURP were divided into 2 groups: (1 no medication history; (2 administration of 5α-reductase type II inhibitor-finasteride 5 mg daily for at least 6 months before surgery. Group 2 presented significantly higher CD8+ T cells infiltration than group 1, but no changes in CD4+ T cells (immunohistochemistry and flow cytometry. In vitro study more CD8+ T cell migrated to the prostate tissue lysates from group 2 and BPH-1 cells in low DHT condition. Transcription of chemokine (C-C motif Ligand 5 (CCL5 mRNA in BPH-1 cells and chemokine (C-C motif receptor 5 (CCR5 mRNA in CD8+ T cells were upregulated in low DHT condition (q-PCR. CCL5 expression was also identified to be higher in group 2 prostate tissues by IHC. This study suggested that intraprostatic DHT may participate in regulating inflammatory response which was induced by human prostatic epithelial cell, via modulating CCL5 secretion.

  5. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer.

    Science.gov (United States)

    Pasquier, Jennifer; Gosset, Marie; Geyl, Caroline; Hoarau-Véchot, Jessica; Chevrot, Audrey; Pocard, Marc; Mirshahi, Massoud; Lis, Raphael; Rafii, Arash; Touboul, Cyril

    2018-02-19

    Minimal residual disease is the main issue of advanced ovarian cancer treatment. According to the literature and previous results, we hypothesized that Mesenchymal Stromal Cells (MSC) could support this minimal residual disease by protecting ovarian cancer cells (OCC) from chemotherapy. In vitro study confirmed that MSC could induce OCC chemoresistance without contact using transwell setting. Further experiments showed that this induced chemoresistance was dependent on IL-6 OCC stimulation. We combined meticulous in vitro profiling and tumor xenograft models to study the role of IL-6 in MSC/OCC intereactions. We demonstrated that Tocilizumab® (anti-IL-6R therapy) in association with chemotherapy significantly reduced the peritoneal carcinosis index (PCI) than chemotherapy alone in mice xenografted with OCCs+MSCs. Further experiments showed that CCL2 and CCL5 are released by MSC in transwell co-culture and induce OCCs IL-6 secretion and chemoresistance. Finally, we found that IL-6 induced chemoresistance was dependent on PYK2 phosphorylation. These findings highlight the potential key role of the stroma in protecting minimal residual disease from chemotherapy, thus favoring recurrences. Future clinical trials targeting stroma could use anti-IL-6 therapy in association with chemotherapy.

  6. Hepatoprotective effect of Opuntia dillenii seed oil on CCl4 induced acute liver damage in rat

    Directory of Open Access Journals (Sweden)

    Mohamed Bouhrim

    2018-01-01

    Full Text Available Objective: To investigate the hepatoprotective effect of Opuntia dillenii seed oil (ODSO on CCl4 provoked liver injury in rat. Methods: Animals were treated orally with ODSO at a concentration of 2 mL/kg, once daily for one week before the first intraperitoneal injection of CCl4, and thereafter the administration of the oil was continued for 7 days until the introduction of the second injection of CCl4. Fourteen hours after the last dose of CCl4, rats were sacrificed, and the relative liver weight, weight gain, alkaline phosphatase, aspartate amino transferase, alanine aminotransferase, direct bilirubin, total bilirubin, triglycerides, total cholesterol, very low density lipoprotein, low density lipoprotein, high density lipoprotein, plasmatic glucose, urea, creatinine, acid uric and malondialdehyde were determined. Results: The significant increase was found in relative liver weight and plasma levels of alanine aminotransferase, aspartate amino transferase, alkaline phosphatase, total bilirubin, direct bilirubin, triglycerides, very low-density lipoprotein, urea, uric acid and malondialdehyde. Likewise, the significant decrease was indicated in the weight gain and the level of glucose plasmatic, and high-density lipoprotein levels in CCl4 produced liver injury in rats were re-established to normal levels when treated with ODSO. While, no change was observed in the total cholesterol, low-density lipoprotein and creatinine in all animals. Conclusions: We conclude that the ODSO has a protective effect on CCl4-mediated liver injury. Hence, we suggest its inclusion as a preventive control of liver disorders.

  7. Profile of circulating levels of IL-1Ra, CXCL10/IP-10, CCL4/MIP-1β and CCL2/MCP-1 in dengue fever and parvovirosis

    Directory of Open Access Journals (Sweden)

    Luzia Maria de-Oliveira-Pinto

    2012-02-01

    Full Text Available Dengue virus (DENV and parvovirus B19 (B19V infections are acute exanthematic febrile illnesses that are not easily differentiated on clinical grounds and affect the paediatric population. Patients with these acute exanthematic diseases were studied. Fever was more frequent in DENV than in B19V-infected patients. Arthritis/arthralgias with DENV infection were shown to be significantly more frequent in adults than in children. The circulating levels of interleukin (IL-1 receptor antagonist (Ra, CXCL10/inducible protein-10 (IP-10, CCL4/macrophage inflammatory protein-1 beta and CCL2/monocyte chemotactic protein-1 (MCP-1 were determined by multiplex immunoassay in serum samples obtained from B19V (37 and DENV-infected (36 patients and from healthy individuals (7. Forward stepwise logistic regression analysis revealed that circulating CXCL10/IP-10 tends to be associated with DENV infection and that IL-1Ra was significantly associated with DENV infection. Similar analysis showed that circulating CCL2/MCP-1 tends to be associated with B19V infection. In dengue fever, increased circulating IL-1Ra may exert antipyretic actions in an effort to counteract the already increased concentrations of IL-1β, while CXCL10/IP-10 was confirmed as a strong pro-inflammatory marker. Recruitment of monocytes/macrophages and upregulation of the humoral immune response by CCL2/MCP-1 by B19V may be involved in the persistence of the infection. Children with B19V or DENV infections had levels of these cytokines similar to those of adult patients.

  8. Targeting chemokine (C-C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic.

    Science.gov (United States)

    Zhang, Jian; Patel, Lalit; Pienta, Kenneth J

    2010-01-01

    Chemokines are a family of small and secreted proteins that play pleiotropic roles in inflammation-related pathological diseases, including cancer. Among the identified 50 human chemokines, chemokine (C-C motif) ligand 2 (CCL2) is of particular importance in cancer development since it serves as one of the key mediators of interactions between tumor and host cells. CCL2 is produced by cancer cells and multiple different host cells within the tumor microenvironment. CCL2 mediates tumorigenesis in many different cancer types. For example, CCL2 has been reported to promote prostate cancer cell proliferation, migration, invasion, and survival, via binding to its functional receptor CCR2. Furthermore, CCL2 induces the recruitment of macrophages and induces angiogenesis and matrix remodeling. Targeting CCL2 has been demonstrated as an effective therapeutic approach in preclinical prostate cancer models, and currently, neutralizing monoclonal antibody against CCL2 has entered into clinical trials in prostate cancer. In this chapter, targeting CCL2 in prostate cancer will be used as an example to show translation of laboratory findings from cancer molecular biology to the clinic. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-induced liver injury in low-protein fed rats.

    Science.gov (United States)

    Nkosi, C Z; Opoku, A R; Terblanche, S E

    2006-11-01

    The effects of pumpkin seed (Cucurbita pepo) protein isolate on the plasma activity levels of catalase (CA), superoxide dismutase (SOD), glutathione peroxidase (GSHpx) and total antioxidant capacity (TAC) as well as glucose-6-phosphatase (G6Pase) in liver homogenates and lipid peroxidation (LPO-malondialdehyde-MDA) levels in liver homogenates and liver microsomal fractions against carbon tetrachloride (CCl(4))-induced acute liver injury in low-protein fed Sprague-Dawley rats (Rattus norvegicus) were investigated. A group of male Sprague-Dawley rats maintained on a low-protein diet for 5 days were divided into three subgroups. Two subgroups were injected with carbon tetrachloride and the other group with an equivalent amount of olive oil. Two hours after CCl(4) intoxication one of the two subgroups was administered with pumpkin seed protein isolate and thereafter switched onto a 20% pumpkin seed protein isolate diet. The other two groups of rats were maintained on the low-protein diet for the duration of the investigation. Groups of rats from the different subgroups were killed at 24, 48 and 72 h after their respective treatments. After 5 days on the low-protein diet the activity levels of all the enzymes as well as antioxidant levels were significantly lower than their counterparts on a normal balanced diet. However, a low-protein diet resulted in significantly increased levels of lipid peroxidation. The CCl(4) intoxicated rats responded in a similar way, regarding all the variables investigated, to their counterparts on a low-protein diet. The administration of pumpkin seed protein isolate after CCl(4) intoxication resulted in significantly increased levels of all the variables investigated, with the exception of the lipid peroxidation levels which were significantly decreased. From the results of the present study it is concluded that pumpkin seed protein isolate administration was effective in alleviating the detrimental effects associated with protein

  10. CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4: Infrared spectra, radiative efficiencies, and global warming potentials

    International Nuclear Information System (INIS)

    Wallington, Timothy J.; Pivesso, Bruno Pasquini; Lira, Alane Moura; Anderson, James E.; Nielsen, Claus Jørgen; Andersen, Niels Højmark; Hodnebrog, Øivind

    2016-01-01

    Infrared spectra for the title compounds were measured experimentally in 700 Torr of air at 295 K and systematically modeled in B3LYP, M06-2X and MP2 calculations employing various basis sets. Calibrated infrared spectra over the wavenumber range 600–3500 cm"−"1 are reported and combined with literature data to provide spectra for use in experimental studies and radiative transfer calculations. Integrated absorption cross sections are (units of cm"−"1 molecule"−"1): CH_3Cl, 660–780 cm"−"1, (3.89±0.19)×10"−"1"8; CH_2Cl_2, 650–800 cm"−"1, (2.16±0.11)×10"−"1"7; CHCl_3, 720–810 cm"−"1, (4.08±0.20)×10"−"1"7; and CCl_4, 730–825 cm"−"1, (6.30±0.31)×10"−"1"7. CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 have radiative efficiencies of 0.004, 0.028, 0.070, and 0.174 W m"−"2 ppb"−"1 and global warming potentials (100 year horizon) of 5, 8, 15, and 1775, respectively. Quantum chemistry calculations generally predict larger band intensities than the experimental values. The best agreement with experiments is obtained in MP2(Full) calculations employing basis sets of at least triple-zeta quality augmented by diffuse functions. The B3LYP functional is found ill-suited for calculating vibrational frequencies and infrared intensities of halocarbons. - Highlights: • Infrared spectra reported for CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4. • REs of CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 are 0.004, 0.028, 0.070, and 0.174 W m"−"2 ppb"−"1, respectively. • GWPs of CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 are 5, 8, 15, and 1775, respectively.

  11. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    Science.gov (United States)

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  12. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE-/- Mice through the ROS/MAPK/NF-κB Pathway.

    Science.gov (United States)

    Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei

    2015-08-24

    In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE(-/-) mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis.

  13. Eight paths of ERK1/2 signalling pathway regulating hepatocyte ...

    Indian Academy of Sciences (India)

    2011-12-05

    Dec 5, 2011 ... This study aims at exploring which paths of ERK1/2 signalling pathway participate in the regulation of rat .... total RNA was used to synthesize the first strand of cDNA. ..... stem cells contribute to regeneration of injured liver.

  14. Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats

    Directory of Open Access Journals (Sweden)

    Yavar Mahmoodzadeh

    Full Text Available The purpose of this study was to investigate the effects of Tanacetum Parthenium Extract (TPE on Lipid peroxidation, antioxidant enzymes, biochemical factors, and liver enzymes in the rats damaged by Carbon Tetrachloride (CCl4.54 male Wistar rats were divided into 9 groups each consisting of 6 rats. Two of the groups were control groups (normal and damage control groups, 4 of them were exposure groups which were respectively administered with 40, 80, and 120 mg/kg of TPE and silymarin for 14 days before being damaged by CCl4, and the other 3 groups were post-treatment groups which received 80 and 120 mg/kg of TPE and silymarin 2, 6, 24, and 48 h after being injected with CCl4. At the end of the study, biochemical factors, serum liver enzymes, malondialdehyde level, antioxidant enzymes, and liver morphology were assayed.Pre- and post-treatment with TPE could significantly decrease ALT, AST, ALP, TG, LDL, TC, and glucose levels and increase HDL, and albumin levels and catalase, SOD, and GPx activities compared to the CCl4-damaged control group.The results of this study are indicative of the antioxidant activity of TPE, its potential hepatoprotective effects, and its probable therapeutic properties for laboratory animals damaged by CCl4. Keywords: Tanacetum parthenium, Carbon tetrachloride, Oxidative stress, Antioxidant enzymes, Liver damage

  15. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization.

    Science.gov (United States)

    Tejchman, Anna; Lamerant-Fayel, Nathalie; Jacquinet, Jean-Claude; Bielawska-Pohl, Aleksandra; Mleczko-Sanecka, Katarzyna; Grillon, Catherine; Chouaib, Salem; Ugorski, Maciej; Kieda, Claudine

    2017-05-09

    Podoplanin (PDPN), an O-glycosylated, transmembrane, mucin-type glycoprotein, is expressed by cancer associated fibroblasts (CAFs). In malignant transformation, PDPN is subjected to changes and its role is yet to be established. Here we show that it is involved in modulating the activity of the CCL21/CCR7 chemokine/receptor axis in a hypoxia-dependent manner. In the present model, breast cancer MDA-MB-231 cells and NKL3 cells express the surface CCR7 receptor for CCL21 chemokine which is a potent chemoattractant able to bind to PDPN. The impact of the CCL21/CCR7 axis in the molecular mechanism of the adhesion of NKL3 cells and of MDA-MB-231 breast cancer cells was reduced in a hypoxic tumor environment. In addition to its known effect on migration, CCL21/CCR7 interaction was shown to allow NK cell adhesion to endothelial cells (ECs) and its reduction by hypoxia. A PDPN expressing model of CAFs made it possible to demonstrate the same CCL21/CCR7 axis involvement in the tumor cells to CAFs recognition mechanism through PDPN binding of CCL21. PDPN was induced by hypoxia and its overexpression undergoes a reduction of adhesion, making it an anti-adhesion molecule in the absence of CCL21, in the tumor. CCL21/CCR7 modulated NK cells/ECs and MDA-MB-231 cells/CAF PDPN-dependent interactions were further shown to be linked to hypoxia-dependent microRNAs as miRs: miR-210 and specifically miR-21, miR-29b which influence PDPN expression.

  16. RANTES/CCL5 and risk for coronary events: results from the MONICA/KORA Augsburg case-cohort, Athero-Express and CARDIoGRAM studies.

    Directory of Open Access Journals (Sweden)

    Christian Herder

    Full Text Available The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events.We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±4.8 years. Cox proportional hazard models adjusting for age, sex, body mass index, metabolic factors and lifestyle factors revealed no significant association between RANTES and incident coronary events (HR [95% CI] for increasing RANTES tertiles 1.0, 1.03 [0.75-1.42] and 1.11 [0.81-1.54]. None of six CCL5 single nucleotide polymorphisms and no common haplotype showed significant associations with coronary events. Also in the CARDIoGRAM study (>22,000 cases, >60,000 controls, none of these CCL5 SNPs was significantly associated with coronary artery disease. In the prospective Athero-Express biobank study, RANTES plaque levels were measured in 606 atherosclerotic lesions from patients who underwent carotid endarterectomy. RANTES content in atherosclerotic plaques was positively associated with macrophage infiltration and inversely associated with plaque calcification. However, there was no significant association between RANTES content in plaques and risk for coronary events (mean follow-up 2.8±0.8 years.High RANTES plaque levels were associated with an unstable plaque phenotype. However, the absence of associations between (i RANTES serum levels, (ii CCL5 genotypes and (iii RANTES content in carotid plaques and either coronary artery disease or incident coronary events in our cohorts suggests that RANTES may not be a

  17. Elucidating a Key Anti-HIV-1 and Cancer-Associated Axis: The Structure of CCL5 (Rantes) in Complex with CCR5

    Science.gov (United States)

    Tamamis, Phanourios; Floudas, Christodoulos A.

    2014-06-01

    CCL5 (RANTES) is an inflammatory chemokine which binds to chemokine receptor CCR5 and induces signaling. The CCL5:CCR5 associated chemotactic signaling is of critical biological importance and is a potential HIV-1 therapeutic axis. Several studies provided growing evidence for the expression of CCL5 and CCR5 in non-hematological malignancies. Therefore, the delineation of the CCL5:CCR5 complex structure can pave the way for novel CCR5-targeted drugs. We employed a computational protocol which is primarily based on free energy calculations and molecular dynamics simulations, and report, what is to our knowledge, the first computationally derived CCL5:CCR5 complex structure which is in excellent agreement with experimental findings and clarifies the functional role of CCL5 and CCR5 residues which are associated with binding and signaling. A wealth of polar and non-polar interactions contributes to the tight CCL5:CCR5 binding. The structure of an HIV-1 gp120 V3 loop in complex with CCR5 has recently been derived through a similar computational protocol. A comparison between the CCL5 : CCR5 and the HIV-1 gp120 V3 loop : CCR5 complex structures depicts that both the chemokine and the virus primarily interact with the same CCR5 residues. The present work provides insights into the blocking mechanism of HIV-1 by CCL5.

  18. Biglycan- and Sphingosine Kinase-1 Signaling Crosstalk Regulates the Synthesis of Macrophage Chemoattractants

    Directory of Open Access Journals (Sweden)

    Louise Tzung-Harn Hsieh

    2017-03-01

    Full Text Available In its soluble form, the extracellular matrix proteoglycan biglycan triggers the synthesis of the macrophage chemoattractants, chemokine (C-C motif ligand CCL2 and CCL5 through selective utilization of Toll-like receptors (TLRs and their adaptor molecules. However, the respective downstream signaling events resulting in biglycan-induced CCL2 and CCL5 production have not yet been defined. Here, we show that biglycan stimulates the production and activation of sphingosine kinase 1 (SphK1 in a TLR4- and Toll/interleukin (IL-1R domain-containing adaptor inducing interferon (IFN-β (TRIF-dependent manner in murine primary macrophages. We provide genetic and pharmacological proof that SphK1 is a crucial downstream mediator of biglycan-triggered CCL2 and CCL5 mRNA and protein expression. This is selectively driven by biglycan/SphK1-dependent phosphorylation of the nuclear factor NF-κB p65 subunit, extracellular signal-regulated kinase (Erk1/2 and p38 mitogen-activated protein kinases. Importantly, in vivo overexpression of soluble biglycan causes Sphk1-dependent enhancement of renal CCL2 and CCL5 and macrophage recruitment into the kidney. Our findings describe the crosstalk between biglycan- and SphK1-driven extracellular matrix- and lipid-signaling. Thus, SphK1 may represent a new target for therapeutic intervention in biglycan-evoked inflammatory conditions.

  19. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob

    2011-01-01

    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  20. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    Science.gov (United States)

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  1. The porcine skin associated T-cell homing chemokine CCL27: molecular cloning and mRNA expression in piglets infected experimentally with Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Johnsen, C. K.; Jensen, Annette Nygaard; Ahrens, P.

    2003-01-01

    CCL27 (also named CTACK, ALP, ILC and ESkine) is a CC chemokine primarily expressed by keratinocytes of the skin. The cognate receptor of CCL27 named CCR10 (GPR-2), is also expressed in skin-derived cells, and in addition by a subset of peripheral blood T-cells and in a variety of other tissues....... In this paper, we report the cloning of porcine CCL27 cDNA and investigation of CCL27 mRNA expression in Staphylococcus hyicus infected piglets. At the protein level, 77 and 74% homology was found to human and mouse CCL27 sequences, respectively. The results of the expression analyses show that CCL27 m...

  2. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    Science.gov (United States)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  3. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE−/− Mice through the ROS/MAPK/NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Zhe-Rong Xu

    2015-08-01

    Full Text Available In this study, we examined the effects of apple polyphenols (APs on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE−/− mice were fed a western-type diet and orally treated with APs (100 mg/kg or atorvastatin (10 mg/kg for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL cholesterol and markedly up-regulated the glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs. Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis.

  4. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hepatoprotective activity of Mentha arvensis Linn. leaves against CCL4 induced liver damage in rats

    Directory of Open Access Journals (Sweden)

    Kalpana Patil

    2012-05-01

    Full Text Available Objective: To study the Hepatoprotective activity of ethanol, chloroform and aqueous extracts of Mentha arvensis leaves against CCL4 induced liver damage in rats. Methods: Hepatotoxicity was induced by CCL4 and the biochemical parameters such as serum glutamate pyruvate transminase (sGPT, serum glutamate oxaloacetate transaminase (sGOT, alkaline phosphatase (sALP, serum bilirubin (sB and histopathological changes in liver were studied along with silymarin as standard Hepatoprotective agents. Results: The Phytochemical investigation of the extracts showed presence of flavonoids, steroids, triterpenoids, alkaloids, glycosides, carbohydrates, tannins, phenolic compounds. Treatment of the rats with chloroform, ethanol and aqueous extract with CCL 4 administration caused a significant reduction in the values of sGOT, sGPT, sALP and sB (P<0.01 almost comparable to the silymarin. The Hepatoprotective was confirmed by histopathological examination of the liver tissue of control and treated animals. Conclusions: From the results it can be concluded that Mentha arvensis possesses Hepatoprotective effect against CCL4 induced liver damage in rats.

  6. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    Science.gov (United States)

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where

  7. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat

    Directory of Open Access Journals (Sweden)

    Sumaira Sahreen

    2015-09-01

    Full Text Available Background: Carbon tetrachloride (CCl4 is a potent nephrotoxin, as it causes acute as well as chronic toxicity in kidneys. Therefore, this study was carried out to assess the pharmacological potential of different fractions of Carissa opaca fruits on CCl4-induced oxidative trauma in the kidney. Methods: The parameters studied in this respect were the kidney function tests viz, serum profile, urine profile, genotoxicity, characteristic morphological findings, and antioxidant enzymatic level of kidneys. Result: The protective effects of various fractions of C. opaca fruits against CCl4 administration were reviewed by rat renal function alterations. Chronic toxicity caused by 8-week treatment of CCl4 to the rats significantly decreased the pH level, activities of antioxidant enzymes, and glutathione contents, whereas a significant increase was found in the case of specific gravity, red blood cells, white blood cells, level of urea, and lipid peroxidation in comparison to control group. Administration of various fractions of C. opaca fruit with CCl4 showed protective ability against CCl4 intoxication by restoring the urine profile, activities of antioxidant enzymes, and lipid peroxidation in rat. CCl4 induction in rats also caused DNA fragmentation and glomerular atrophy by means of dilation, disappearance of Bowmen's space, congestion in the capillary loops, dilation in renal tubules, and foamy look of epithelial cells of tubular region, which were restored by co-admiration of various fractions of C. opaca. Conclusion: Results revealed that the methanolic fractions of C. opaca are the most potent and helpful in kidney trauma.

  8. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  9. The DAF-7/TGF-β signaling pathway regulates abundance of the C. elegans glutamate receptor GLR-1

    Science.gov (United States)

    McGehee, Annette M.; Moss, Benjamin J.; Juo, Peter

    2015-01-01

    Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the C. elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior. PMID:26054666

  10. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1.

    Science.gov (United States)

    McGehee, Annette M; Moss, Benjamin J; Juo, Peter

    2015-07-01

    Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the Caenorhabditis elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Castelo-Branco, Morgana TL; Pizzatti, Luciana; Abdelhay, Eliana

    2012-01-01

    The advanced phases of chronic myeloid leukemia (CML) are known to be more resistant to therapy. This resistance has been associated with the overexpression of ABCB1, which gives rise to the multidrug resistance (MDR) phenomenon. MDR is characterized by resistance to nonrelated drugs, and P-glycoprotein (encoded by ABCB1) has been implicated as the major cause of its emergence. Wnt signaling has been demonstrated to be important in several aspects of CML. Recently, Wnt signaling was linked to ABCB1 regulation through its canonical pathway, which is mediated by β-catenin, in other types of cancer. In this study, we investigated the involvement of the Wnt/β-catenin pathway in the regulation of ABCB1 transcription in CML, as the basal promoter of ABCB1 has several β-catenin binding sites. β-catenin is the mediator of canonical Wnt signaling, which is important for CML progression. In this work we used the K562 cell line and its derived MDR-resistant cell line Lucena (K562/VCR) as CML study models. Real time PCR (RT-qPCR), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), flow cytometry (FACS), western blot, immunofluorescence, RNA knockdown (siRNA) and Luciferase reporter approaches were used. β-catenin was present in the protein complex on the basal promoter of ABCB1 in both cell lines in vitro, but its binding was more pronounced in the resistant cell line in vivo. Lucena cells also exhibited higher β-catenin levels compared to its parental cell line. Wnt1 and β-catenin depletion and overexpression of nuclear β-catenin, together with TCF binding sites activation demonstrated that ABCB1 is positively regulated by the canonical pathway of Wnt signaling. These results suggest, for the first time, that the Wnt/β-catenin pathway regulates ABCB1 in CML

  12. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    Science.gov (United States)

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  13. Neuronal CCL2 is upregulated during hepatic encephalopathy and contributes to microglia activation and neurological decline.

    Science.gov (United States)

    McMillin, Matthew; Frampton, Gabriel; Thompson, Michelle; Galindo, Cheryl; Standeford, Holly; Whittington, Eric; Alpini, Gianfranco; DeMorrow, Sharon

    2014-07-10

    Acute liver failure leads to systemic complications with one of the most dangerous being a decline in neurological function, termed hepatic encephalopathy. Neurological dysfunction is exacerbated by an increase of toxic metabolites in the brain that lead to neuroinflammation. Following various liver diseases, hepatic and circulating chemokines, such as chemokine ligand 2 (CCL2), are elevated, though their effects on the brain following acute liver injury and subsequent hepatic encephalopathy are unknown. CCL2 is known to activate microglia in other neuropathies, leading to a proinflammatory response. However, the effects of CCL2 on microglia activation and the pathogenesis of hepatic encephalopathy following acute liver injury remain to be determined. Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) in the presence or absence of INCB 3284 dimesylate (INCB), a chemokine receptor 2 inhibitor, or C 021 dihydrochloride (C021), a chemokine receptor 4 inhibitor. Mice were monitored for neurological decline and time to coma (loss of all reflexes) was recorded. Tissue was collected at coma and used for real-time PCR, immunoblots, ELISA, or immunostaining analyses to assess the activation of microglia and consequences on pro-inflammatory cytokine expression. Following AOM administration, microglia activation was significantly increased in AOM-treated mice compared to controls. Concentrations of CCL2 in the liver, serum, and cortex were significantly elevated in AOM-treated mice compared to controls. Systemic administration of INCB or C021 reduced liver damage as assessed by serum liver enzyme biochemistry. Administration of INCB or C021 significantly improved the neurological outcomes of AOM-treated mice, reduced microglia activation, reduced phosphorylation of ERK1/2, and alleviated AOM-induced cytokine upregulation. These findings suggest that CCL2 is elevated systemically following acute liver injury and that CCL2 is involved in both the

  14. Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sung Yun Kim

    Full Text Available In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum, an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE-like sequences in their 3'UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.

  15. Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte.

    Science.gov (United States)

    Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J

    2013-01-01

    The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kg•d−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases.

  16. Broadleaf Mahonia attenuates granulomatous lobular mastitis-associated inflammation by inhibiting CCL-5 expression in macrophages

    Science.gov (United States)

    Wang, Zhiyu; Wang, Neng; Liu, Xiaoyan; Wang, Qi; Xu, Biao; Liu, Pengxi; Zhu, Huayu; Chen, Jianping; Situ, Honglin; Lin, Yi

    2018-01-01

    Granulomatous lobular mastitis (GLM) is a type of chronic mammary inflammation with unclear etiology. Currently systematic corticosteroids and methitrexate are considered as the main drugs for GLM treatment, but a high toxicity and risk of recurrence greatly limit their application. It is therefore an urgent requirement that safe and efficient natural drugs are found to improve the GLM prognosis. Broadleaf Mahonia (BM) is a traditional Chinese herb that is believed to have anti-inflammatory properties according to ancient records of traditional Chinese medicine. The present study investigated this belief and demonstrated that BM significantly inhibited the expression of interleukin-1β (IL-1β), IL-6, cyclooxygenase-2 and inducible nitric oxide synthase in RAW264.7 cells, but had little influence on the cell viability, cell cycle and apoptosis. Meanwhile, the lipopolysaccharide-induced elevation of reactive oxygen species and nitric oxide was also blocked following BM treatment, accompanied with decreased activity of nuclear factor-κB and MAPK signaling. A cytokine array further validated that BM exhibited significant inhibitory effects on several chemoattractants, including chemokine (C-C motif) ligand (CCL)-2, CCL-3, CCL-5 and secreted tumor necrosis factor receptor 1, among which CCL-5 exhibited the highest inhibition ratio in cell and clinical GLM specimens. Collectively, the results show that BM is a novel effective anti-inflammatory herb in vitro and ex vivo, and that CCL-5 may be closely associated with GLM pathogenesis. PMID:29138800

  17. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Science.gov (United States)

    Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A

    2014-01-01

    The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by

  18. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Directory of Open Access Journals (Sweden)

    Sarah R Calabro

    Full Text Available The classical paradigm of liver injury asserts that hepatic stellate cells (HSC produce, remodel and turnover the abnormal extracellular matrix (ECM of fibrosis via matrix metalloproteinases (MMPs. In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14 increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be

  19. Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1

    Science.gov (United States)

    van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.

    1999-01-01

    Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218

  20. Hepatoprotective effect of ethanol extract from Berchemia lineate against CCl4-induced acute hepatotoxicity in mice.

    Science.gov (United States)

    Li, Cong; Yi, Li-Tao; Geng, Di; Han, Yuan-Yuan; Weng, Lian-Jin

    2015-05-01

    The roots of Berchemia lineate (L.) DC. (Rhamnaceae) have been long used as a remedy for the treatment of some diseases in Guangxi Province, China. The present study investigates the hepatoprotective effect of Berchemia lineate ethanol extract (BELE) on CCl4-induced acute liver damage in mice. Effect of BELE administrated for 7 consecutive days was evaluated in mice by the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), albulin (ALB), globulin (GLB), and total protein (TP) levels, as well as liver superoxide dismutase (SOD) activity and malondialdehyde (MDA) level. Moreover, histopathological examinations were also taken. Compared with the model group, administration of 400 mg/kg BELE for 7 d in mice significantly decreased the serum ALT (56.25 U/L), AST (297.67 U/L), ALP (188.20 U/L), and TBIL (17.90 mol/L), along with the elevation of TP (64.67 g/L). In addition, BELE (100, 200, and 400 mg/kg, i.g.) treated mice recorded a dose-dependent increment of SOD (291.17, 310.32, and 325.67 U/mg prot) and reduction of MDA (7.27, 6.77, and 5.33 nmol/mg prot) levels. Histopathological examinations also confirmed that BELE can ameliorate CCl4-induced liver injuries, characterized by extensive hepatocellular degeneration/necrosis, inflammatory cell infiltration, congestion, and sinusoidal dilatation. The results indicated that BELE possessed remarkable protective effect against acute hepatotoxicity and oxidative injuries induced by CCl4, and that the hepatoprotective effects of BELE may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.

  1. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Shengyan Xi

    2016-01-01

    Full Text Available Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren and Flos Carthami (Honghua are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4. Mice were randomly divided into seven groups: (1 blank, (2 model, (3 control (colchicine, 0.1 mg/kg, (4 THHP (5.53, 2.67, and 1.33 g/kg, and (5 Tao Hong Siwu Decoction (THSWD (8.50 g/kg. Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR, Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways.

  2. Mitochondrial apoptotic pathways induced by Drosophila programmed cell death regulators

    International Nuclear Information System (INIS)

    Claveria, Cristina; Torres, Miguel

    2003-01-01

    Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway

  3. CD147 regulates extrinsic apoptosis in spermatocytes by modulating NFκB signaling pathways.

    Science.gov (United States)

    Wang, Chaoqun; Fok, Kin Lam; Cai, Zhiming; Chen, Hao; Chan, Hsiao Chang

    2017-01-10

    CD147 null mutant male mice are infertile with arrested spermatogenesis and increased apoptotic germ cells. Our previous studies have shown that CD147 prevents apoptosis in mouse spermatocytes but not spermatogonia. However, the underlying mechanism remains elusive. In the present study, we aim to determine the CD147-regulated apoptotic pathway in mouse spermatocytes. Our results showed that immunodepletion of CD147 triggered apoptosis through extrinsic apoptotic pathway in mouse testis and spermatocyte cell line (GC-2 cells), accompanied by activation of non-canonical NFκB signaling and suppression of canonical NFκB signaling. Furthermore, CD147 was found to interact with TRAF2, a factor known to regulate NFκB and extrinsic apoptotic signaling, and interfering CD147 led to the decrease of TRAF2. Consistently, depletion of CD147 by CRISPR/Cas9 technique in GC-2 cells down-regulated TRAF2 and resulted in cell death with suppressed canonical NFκB and activated non-canonical NFκB signaling. On the contrary, interfering of CD147 had no effect on NFκB signaling pathways as well as TRAF2 protein level in mouse spermatogonia cell line (GC-1 cells). Taken together, these results suggested that CD147 plays a key role in reducing extrinsic apoptosis in spermatocytes, but not spermatogonia, through modulating NFκB signaling pathway.

  4. Regulation of insect behavior via the insulin-signaling pathway

    Directory of Open Access Journals (Sweden)

    Renske eErion

    2013-12-01

    Full Text Available The insulin/insulin-like growth factor signaling (IIS pathway is well established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs, the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.

  5. CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Frederick Allen

    2017-10-01

    Full Text Available Lymph node (LN plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2. Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5. In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs of a CCL3-secreting CT26 colon tumor (L3TU as compared to wild-type tumor (WTTU during the priming phase of an antitumor response (≤10 days. In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3 secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs, and CD49b+ natural killer (NK cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.

  6. Role of CCL-2, CCR-2 and CCR-4 in cerulein-induced acute pancreatitis and pancreatitis-associated lung injury.

    Science.gov (United States)

    Frossard, Jean Louis; Lenglet, Sébastien; Montecucco, Fabrizio; Steffens, Sabine; Galan, Katia; Pelli, Graziano; Spahr, Laurent; Mach, Francois; Hadengue, Antoine

    2011-05-01

    Acute pancreatitis is an inflammatory process of variable severity. Leucocytes are thought to play a key role in the development of pancreatitis and pancreatitis-associated lung injury. The interactions between inflammatory cells and their mediators are crucial for determining tissue damage. Monocyte chemoattractant protein-1 (or CCL-2), CCR-2 and CCR-4 are chemokines and chemokine receptors involved in leucocyte trafficking. The aim of the study was to evaluate the role of the CCL-2, CCR-2 and CCR-4 chemokine receptors in the pathogenesis of cerulein-induced pancreatitis and pancreatitis-associated lung injury. To address the role of CCL-2, CCR-2 and CCR-4 that attracts leucocytes cells in inflamed tissues, pancreatitis was induced by administering supramaximal doses of cerulein in mice that do not express CCL-2, CCR-2 or CCR-4. The severity of pancreatitis was measured by serum amylase, pancreatic oedema and acinar cell necrosis. Lung injury was quantitated by evaluating lung microvascular permeability and lung myeloperoxidase activity. Chemokine and chemokine-receptor expression were quantitated by real-time PCR. The nature of inflammatory cells invading the pancreas and lungs was studied by immunostaining. The authors have found that pancreas CCL-2 and CCR-2 levels rise during pancreatitis. Both pancreatitis and the associated lung injury are blunted, but not completely prevented, in mice deficient in CCL-2, whereas the deficiency in either CCR-2 or CCR-4 does not reduce the severity of both the pancreatitis and the lung injury. The amounts of neutrophils and monocyte/macrophages (MOMA)-2 cells were significantly lower in mice deficient in CCL-2 compared with their sufficient littermates. These results suggest that CCL-2 plays a key role in pancreatitis by modulating the infiltration by neutrophils and MOMA-2 cells, and that its deficiency may improve the outcome of the disease.

  7. Pistacia chinensis: A Potent Ameliorator of CCl4 Induced Lung and Thyroid Toxicity in Rat Model

    Directory of Open Access Journals (Sweden)

    Kiran Naz

    2014-01-01

    Full Text Available In the current study protective effect of ethanol extract of Pistacia chinensis bark (PCEB was investigated in rats against CCl4 induced lung and thyroid injuries. PCEB dose dependently inhibited the rise of thiobarbituric acid-reactive substances, hydrogen peroxide, nitrite, and protein content and restored the levels of antioxidant enzymes, that is, catalase, peroxidase, superoxide dismutase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, γ-glutamyl transpeptidase, and quinone reductase in both lung and thyroid tissues of CCl4 treated rats. Decrease in number of leukocytes, neutrophils, and hemoglobin and T3 and T4 content as well as increase in monocytes, eosinophils, and lymphocytes count with CCl4 were restored to normal level with PCEB treatment. Histological study of CCl4 treated rats showed various lung injuries like rupture of alveolar walls and bronchioles, aggregation of fibroblasts, and disorganized Clara cells. Similarly, histology of CCl4 treated thyroid tissues displayed damaged thyroid follicles, hypertrophy, and colloidal depletion. However, PCEB exhibited protective behaviour for lungs and thyroid, with improved histological structure in a dose dependant manner. Presence of three known phenolic compounds, that is, rutin, tannin, and gallic acid, and three unknown compounds was verified in thin layer chromatographic assessment of PCEB. In conclusion, P. chinensis exhibited antioxidant activity by the presence of free radical quenching constituents.

  8. lgl Regulates the Hippo Pathway Independently of Fat/Dachs, Kibra/Expanded/Merlin and dRASSF/dSTRIPAK

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Linda M., E-mail: parsonsl@unimelb.edu.au [Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Department of Genetics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Grzeschik, Nicola A. [Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Richardson, Helena E., E-mail: n.a.grzeschik@umcg.nl [Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010 (Australia); Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010 (Australia); Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010 (Australia); Present address: Department of Cell Biology, University Medical Centre Groningen, Groningen (Netherlands)

    2014-04-16

    In both Drosophila and mammalian systems, the Hippo (Hpo) signalling pathway controls tissue growth by inhibiting cell proliferation and promoting apoptosis. The core pathway consists of a protein kinase Hpo (MST1/2 in mammals) that is regulated by a number of upstream inputs including Drosophila Ras Association Factor, dRASSF. We have previously shown in the developing Drosophila eye epithelium that loss of the apico-basal cell polarity regulator lethal-(2)-giant-larvae (lgl), and the concomitant increase in aPKC activity, results in ectopic proliferation and suppression of developmental cell death by blocking Hpo pathway signalling. Here, we further explore how Lgl/aPKC interacts with the Hpo pathway. Deregulation of the Hpo pathway by Lgl depletion is associated with the mislocalization of Hpo and dRASSF. We demonstrate that Lgl/aPKC regulate the Hpo pathway independently of upstream inputs from Fat/Dachs and the Kibra/Expanded/Merlin complex. We show depletion of Lgl also results in accumulation and mislocalization of components of the dSTRIPAK complex, a major phosphatase complex that directly binds to dRASSF and represses Hpo activity. However, depleting dSTRIPAK components, or removal of dRASSF did not rescue the lgl{sup −/−} or aPKC overexpression phenotypes. Thus, Lgl/aPKC regulate Hpo activity by a novel mechanism, independently of dRASSF and dSTRIPAK. Surprisingly, removal of dRASSF in tissue with increased aPKC activity results in mild tissue overgrowth, indicating that in this context dRASSF acts as a tumor suppressor. This effect was independent of the Hpo and Ras Mitogen Activated Protein Kinase (MAPK) pathways, suggesting that dRASSF regulates a novel pathway to control tissue growth.

  9. Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway

    Science.gov (United States)

    Mauser, Jonathon F.; Prehoda, Kenneth E.

    2012-01-01

    During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744

  10. Protective effect of Curcuma longa L. extract on CCl4-induced acute hepatic stress.

    Science.gov (United States)

    Lee, Geum-Hwa; Lee, Hwa-Young; Choi, Min-Kyung; Chung, Han-Wool; Kim, Seung-Wook; Chae, Han-Jung

    2017-02-01

    The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl 4 )-induced liver stress model. Acute hepatic stress was induced by a single intraperitoneal injection of CCl 4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl 4 -treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl 4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl 4 -treated group (p < 0.05), leading to a reduced lipid peroxidase level. Our data suggested that CLL extract and curcumin protect the liver from acute CCl 4 -induced injury in a rodent model by suppressing

  11. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  12. An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1α, IL-1β, IL-12b, and CCL4 from differentiated HL-60 cells.

    Science.gov (United States)

    Naegelen, Isabelle; Plançon, Sébastien; Nicot, Nathalie; Kaoma, Tony; Muller, Arnaud; Vallar, Laurent; Tschirhart, Eric J; Bréchard, Sabrina

    2015-03-01

    Besides their roles in the killing of pathogens, neutrophils have the capacity to package a variety of cytokines into cytoplasmic granules for subsequent release upon inflammatory conditions. Because the rapid secretion of cytokines orchestrates the action of other immune cells at the infection site and thus, can contribute to the development and chronicity of inflammatory diseases, we aimed to determine the intracellular SNARE machinery responsible for the regulation of cytokine secretion and degranulation. From a constructed gene-expression network, we first selected relevant cytokines for functional validation by the CBA approach. We established a cytokine-secretion profile for human neutrophils and dHL-60 cells, underlining their similar ability to secrete a broad variety of cytokines within proinflammatory conditions mimicked by LPS stimulation. Secondly, after screening of SNARE genes by microarray experiments, we selected STX3 for further functional studies. With the use of a siRNA strategy, we show that STX3 is clearly required for the maximal release of IL-1α, IL-1β, IL-12b, and CCL4 without alteration of other cytokine secretion in dHL-60 cells. In addition, we demonstrate that STX3 is involved in MMP-9 exocytosis from gelatinase granules, where STX3 is partly localized. Our results suggest that the secretion of IL-1α, IL-1β, IL-12b, and CCL4 occurs during gelatinase degranulation, a process controlled by STX3. In summary, these findings provide first evidence that STX3 has an essential role in trafficking pathways of cytokines in neutrophil granulocytes. © Society for Leukocyte Biology.

  13. Prevention of CCl4-induced liver damage by ginger, garlic and vitamin E.

    Science.gov (United States)

    Patrick-Iwuanyanwu, K C; Wegwu, M O; Ayalogu, E O

    2007-02-15

    The hepatoprotective effects of garlic (Allium sativum), ginger (Zingiber officinale) and vitamin E pre-treatment against carbon tetrachloride (CCl4)-induced liver damage in male wistar albino rats were investigated. Carbon tetrachloride (0.5 mL kg(-1) body weight) was administered after 28 days of feeding animals with diets containing ginger, garlic, vitamin E and various mixtures of ginger and garlic. Serum alanine amino transferase, aspartate amino transferase and alkaline phosphatase levels, 24 h after CCl4 administration, decreased significantly (p hepatic cells decreased remarkably in pre-treated rats.

  14. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process

    International Nuclear Information System (INIS)

    Park, Jeehye; Lee, Gina; Chung, Jongkyeong

    2009-01-01

    The two Parkinson's disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.

  15. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    Science.gov (United States)

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  16. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1.

    Science.gov (United States)

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-02-10

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering.

  17. Basophils, high-affinity IgE receptors, and CCL2 in human anaphylaxis.

    Science.gov (United States)

    Korosec, Peter; Turner, Paul J; Silar, Mira; Kopac, Peter; Kosnik, Mitja; Gibbs, Bernhard F; Shamji, Mohamed H; Custovic, Adnan; Rijavec, Matija

    2017-09-01

    The role of basophils in anaphylaxis is unclear. We sought to investigate whether basophils have an important role in human anaphylaxis. In an emergency department study we recruited 31 patients with acute anaphylaxis, predominantly to Hymenoptera venom. We measured expression of basophil activation markers (CD63 and CD203c); the absolute number of circulating basophils; whole-blood FCER1A, carboxypeptidase A3 (CPA3), and L-histidine decarboxylase (HDC) gene expression; and serum markers (CCL2, CCL5, CCL11, IL-3, and thymic stromal lymphopoietin) at 3 time points (ie, during the anaphylactic episode and in convalescent samples 7 and 30 days later). We recruited 134 patients with Hymenoptera allergy and 76 healthy control subjects for comparison. We then investigated whether the changes observed during venom-related anaphylaxis also occur during allergic reactions to food in 22 patients with peanut allergy undergoing double-blind, placebo-controlled food challenge to peanut. The number of circulating basophils was significantly lower during anaphylaxis (median, 3.5 cells/μL) than 7 and 30 days later (17.5 and 24.7 cells/μL, P < .0001) and compared with those in patients with venom allergy and healthy control subjects (21 and 23.4 cells/μL, P < .0001). FCER1A expression during anaphylaxis was also significantly lower than in convalescent samples (P ≤ .002) and control subjects with venom allergy (P < .0001). CCL2 levels (but not those of other serum markers) were significantly higher during anaphylaxis (median, 658 pg/mL) than in convalescent samples (314 and 311 pg/mL at 7 and 30 days, P < .001). Peanut-induced allergic reactions resulted in a significant decrease in circulating basophil counts compared with those in prechallenge samples (P = .016), a decrease in FCER1A expression (P = .007), and an increase in CCL2 levels (P = .003). Our findings imply an important and specific role for basophils in the pathophysiology of human

  18. Effects of Nigella sativa L. and Urtica dioica L. on selected mineral status and hematological values in CCl4-treated rats.

    Science.gov (United States)

    Meral, Ismail; Kanter, Mehmet

    2003-01-01

    This study was designed to investigate the effects of Nigella sativa L. (NS), known as black seed, or/and Urtica dioica L. (UD), known as stinging nettle root, treatments on serum Na, K, Cl, and Ca levels and some hematological values of CCl4-treated rats. Sixty healthy male Sprague-Dawley rats, weighing 250-300 g, were randomly allotted into 1 of 4 experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated), and D (CCl4+UD+NS treated), each containing 15 animals. All groups received CCl4 (0.8 mL/kg of body weight, subcutaneously, twice a week for 90 d starting d 1). In addition, B, C, and D groups also received the daily ip injection of 0.2 mL/kg NS and/or 2 mL/kg UD oils for 45 d starting d 46. Group A, on the other hand, received only 2 mL/kg normal saline solution for 45 d starting d 46. Blood samples for the biochemical analysis were taken by cardiac puncture from five randomly chosen rats in each treatment group at the beginning, d 45, and d 90 of the experiment. The CCl4 treatment for 45 d significantly (p0.05) the serum Na and Cl levels. NS or UD treatments (alone or combination) for 45 d starting d 46 significantly (p<0.05) decreased the elevated serum K and Ca levels and also increased (p<0.05) the reduced RBC, WBC, PCV, and Hb levels. It is concluded that NS and/or UD treatments might ameliorate the CCl4-induced disturbances of anemia, some minerals, and body's defense mechanism in CCl4-treated rats.

  19. Elevated plasma chemokine CCL18/PARC in beta-thalassemia

    NARCIS (Netherlands)

    Dimitriou, E.; Verhoek, M.; Altun, S.; Karabatsos, F.; Moraitou, M.; Youssef, J.; Boot, R.; Sarafidou, J.; Karagiorga, M.; Aerts, H.; Michelakakis, H.

    2005-01-01

    Plasma CCL18/PARC, a member of the CC chemokine family, has been found to be several ten-fold increased in symptomatic Gaucher type I patients. Elevated plasma chitotriosidase levels are a well-known abnormality in Gaucher patients, however, its diagnostic use is limited by the frequent genetic

  20. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Louise von Stechow

    Full Text Available The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways. These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether, our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules in the DDR in pluripotent stem cells.

  1. HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways

    Directory of Open Access Journals (Sweden)

    Robert eCurrer

    2012-11-01

    Full Text Available Human T cell lymphotropic virus type 1 (HTLV-1 has been identified as the causative agent of adult T cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The virus infects between 15 and 20 million people worldwide of which approximately 2 to 5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications of Tax and sub-cellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.

  2. HTLV Tax: A Fascinating Multifunctional Co-Regulator of Viral and Cellular Pathways

    Science.gov (United States)

    Currer, Robert; Van Duyne, Rachel; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Das, Ravi; Narayanan, Aarthi; Kashanchi, Fatah

    2012-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2–5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis. PMID:23226145

  3. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    Science.gov (United States)

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  4. The Spectrin cytoskeleton regulates the Hippo signalling pathway.

    Science.gov (United States)

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-04-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Hepatic mitochondrial and microsomal recovery of rats intoxicated with CCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirai, Y.; Koga, N.; Tomokuni, K.

    1983-01-01

    The hepatic mitochondrial and microsomal recovery of rats intoxicated with CCl/sub 4/ was investigated with specific reference to the oxygen utilization of liver slices. In control rats, the major oxygen utilization of the liver slices was attributed to mitochondrial particles. Since the mitochondrial oxygen utilization was inhibited by cyanide, the microsomal oxygen utilization was induced by NADPH and phenobarbital (a substrate for microsomal mixed function oxidase). Changes in oxygen utilization were observed in the recovery course of rats intoxicated with CCl/sub 4/, and the recovery of mitochondria was found to be faster than that of microsomes. A sex difference was present in the recovery mechanism of the microsomes.

  6. A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3).

    Science.gov (United States)

    Fuller, Stephen J; McGuffin, Liam J; Marshall, Andrew K; Giraldo, Alejandro; Pikkarainen, Sampsa; Clerk, Angela; Sugden, Peter H

    2012-03-15

    The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr(178)), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative 'non-canonical' pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein GOLGA2/gm130 (golgin A2/Golgi matrix protein 130). Activation of MST3 by calyculin A (a protein serine/threonine phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr(178)) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr(328)) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr(178)) phosphorylation increased MST3 kinase activity, but this activity was independent of MST3(Thr(328)) phosphorylation. Interestingly, MST3(Thr(328)) lies immediately C-terminal to a STRAD (Sterile20-related adaptor) pseudokinase-like site identified recently as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr(178)/Thr(328)) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr(328)) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.

  7. HIF-1α pathway: role, regulation and intervention for cancer therapy

    Directory of Open Access Journals (Sweden)

    Georgina N. Masoud

    2015-09-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 has been recognized as an important cancer drug target. Many recent studies have provided convincing evidences of strong correlation between elevated levels of HIF-1 and tumor metastasis, angiogenesis, poor patient prognosis as well as tumor resistance therapy. It was found that hypoxia (low O2 levels is a common character in many types of solid tumors. As an adaptive response to hypoxic stress, hypoxic tumor cells activate several survival pathways to carry out their essential biological processes in different ways compared with normal cells. Recent advances in cancer biology at the cellular and molecular levels highlighted the HIF-1α pathway as a crucial survival pathway for which novel strategies of cancer therapy could be developed. However, targeting the HIF-1α pathway has been a challenging but promising progresses have been made in the past twenty years. This review summarizes the role and regulation of the HIF-1α in cancer, and recent therapeutic approaches targeting this important pathway.

  8. Modulatory effects of Echinacea purpurea extracts on human dendritic cells: a cell- and gene-based study.

    Science.gov (United States)

    Wang, Chien-Yu; Chiao, Ming-Tsang; Yen, Po-Jen; Huang, Wei-Chou; Hou, Chia-Chung; Chien, Shih-Chang; Yeh, Kuo-Chen; Yang, Wen-Ching; Shyur, Lie-Fen; Yang, Ning-Sun

    2006-12-01

    Echinacea spp. are popularly used as an herbal medicine or food supplement for enhancing the immune system. This study shows that plant extracts from root [R] and stem plus leaf [S+L] tissues of E. purpurea exhibit opposite (enhancing vs inhibitory) modulatory effects on the expression of the CD83 marker in human dendritic cells (DCs), which are known as professional antigen-presenting cells. We developed a function-targeted DNA microarray system to characterize the effects of phytocompounds on human DCs. Down-regulation of mRNA expression of specific chemokines (e.g., CCL3 and CCL8) and their receptors (e.g., CCR1 and CCR9) was observed in [S+L]-treated DCs. Other chemokines and regulatory molecules (e.g., CCL4 and CCL2) involved in the c-Jun pathway were found to be up-regulated in [R]-treated DCs. This study, for the first time, demonstrates that E. purpurea extracts can modulate DC differentiation and expression of specific immune-related genes in DCs.

  9. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu; Wu, Xiaoqin; Yang, Yang; Li, Xiaofeng; Huang, Cheng; Meng, Xiaoming; Ma, Taotao; Li, Jun, E-mail: lj@ahmu.edu.cn

    2017-02-15

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl{sub 4}-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl{sub 4}-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantly decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis. - Highlights: • CCl{sub 4} treatment triggered a mixed M1/M2 macrophage phenotype in fibrosis. • Lower expression of PTEN in murine M2 macrophages in vivo and vitro. • PTEN modulates M2 macrophages activation via PI3K/Akt/STAT6 signaling. • Provide a new cellular target modulate macrophage mediated hepatic fibrosis.

  10. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Inesta-Vaquera, Francisco A. [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain); Campbell, David G.; Arthur, J. Simon C. [MRC Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee, Dundee DD1 5EH (United Kingdom); Cuenda, Ana, E-mail: acuenda@cnb.csic.es [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain)

    2010-08-13

    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  11. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    International Nuclear Information System (INIS)

    Inesta-Vaquera, Francisco A.; Campbell, David G.; Arthur, J. Simon C.; Cuenda, Ana

    2010-01-01

    Research highlights: → hDlg is phosphorylated during mitosis in multiple residues. → Prospho-hDlg is excluded from the midbody during mitosis. → hDlg is not phosphorylated by p38γ or JNK1/2 during mitosis. → ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  12. Comparison of hepatic fibrosis models and associated hepatic fibronectin expression in Wistar rats treated by bile duct ligation and CCl4

    Directory of Open Access Journals (Sweden)

    LIU Xiaoya

    2015-02-01

    Full Text Available ObjectiveTo compare serum biochemical parameters, liver pathology, and fibronectin (FN expression in Wister rats with hepatic fibrosis induced by bile duct ligation (BDL and carbon tetrachloride (CCl4. MethodsNinety healthy male Wister rats were assigned to CCl4 model (n=44, CCl4 control (n=6, BDL model (n=30, and BDL control groups (n=10. Animal models of hepatic fibrosis were established by intraperitoneal injection of olive oil solution containing 50% CCl4 in the CCl4 model group and by BDL in the BDL group. General conditions of rats were examined. Expression of serum alanine aminotransferase (ALT, serum aspartate aminotransferase (AST, total bilirubin (TBil, and direct bilirubin (DBil was measured by biochemical analysis. Expression of serum hyaluronic acid (HA and laminin (LN was measured by ELISA assay. Pathological changes in liver tissue were examined through hematoxylin-eosin and Masson staining. Expression of FN was assayed by immunohistochemistry. Comparison between groups was made by t test. ResultsSerum biochemical analysis showed that TBil and DBil levels in BDL model rats increased to and maintained at relatively high levels from day 7 after surgery (P<0.05; these two parameters in CCl4 model rats increased gradually from week 2 and peaked at week 8 after injection (P<0.05. The indicators of hepatic fibrosis, i.e., HA and LN levels, were significantly higher in the BDL model group than in the CCl4 model group. Pathologically, the CCl4 model group showed diffuse fatty degeneration of liver cells, with extremely significant fiber interval formation in the portal area - portal area or the portal area - central vein; the BDL model group showed coexistence of significant intrahepatic bile duct hyperplasia, inflammatory cell infiltration, and fiber interval formation. In the BDL model group, FN expression was dispersive and irregular with thin fibrous tissues; in the CCl4 model group, FN was mostly expressed in the interlobular septa

  13. Identification of DreI as an antiviral factor regulated by RLR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Shun Li

    Full Text Available BACKGROUND: Retinoic acid-inducible gene I (RIG-I-like receptors (RLRs had been demonstrated to prime interferon (IFN response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV-induced gene 2 (Gig2, had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI, and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV and recombinant IFN (rIFN, showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV infection in EPC (Epithelioma papulosum cyprinid cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.

  14. The silent information regulator 1 (Sirt1) is a positive regulator of the Notch pathway in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Horváth, Matěj; Mihajlović, Zorana; Slaninová, Věra; Perez-Gomez, Raquel; Moshkin, Y.; Krejčí, Alena

    2016-01-01

    Roč. 473, č. 22 (2016), s. 4129-4143 ISSN 0264-6021 R&D Projects: GA ČR(CZ) GA14-08583S Institutional support: RVO:60077344 Keywords : Drosophila * silent information regulator 1 * Notch pathway Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.797, year: 2016

  15. Age-related differences in anxiety-like behavior and amygdalar CCL2 responsiveness to stress following alcohol withdrawal in male Wistar rats.

    Science.gov (United States)

    Harper, Kathryn M; Knapp, Darin J; Park, Meredith A; Breese, George R

    2017-01-01

    Behavioral and neuroimmune vulnerability to withdrawal from chronic alcohol varies with age. The relation of anxiety-like behavior to amygdalar CCL2 responses following stress after withdrawal from chronic intermittent alcohol (CIA) was investigated in adolescent and adult rats. Adolescent and adult Wistar rats were exposed to CIA (three 5-day blocks of dietary alcohol separated by 2 days of withdrawal) at concentrations that created similar blood alcohol levels across age. Twenty-four hours into the final withdrawal, half of the rats were exposed to 1 h of restraint stress. Four hours post-stress, rats were used for behavior or tissue assays. Anxiety-like behavior was increased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 mRNA was increased versus controls by CIA in adolescents and by CIA and CIA + stress in adults. CCL2 co-localization with neuronal marker NeuN was decreased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 co-localization with astrocytic marker GFAP was decreased versus controls by CIA and CIA + stress in adolescents, but experimental groups did not differ from controls in adults. CCL2 co-localization with microglial marker Iba1 was decreased versus controls by stress alone in adolescents and by CIA + stress in adults. Changes in CCL2 protein might control behavior at either age but are particularly associated with CIA alone in adolescents and with CIA + stress in adults. That the number of CeA neurons expressing CCL2 was altered after CIA and stress is consistent with CCL2 involvement in neural function.

  16. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast.

    Science.gov (United States)

    Isom, Daniel G; Page, Stephani C; Collins, Leonard B; Kapolka, Nicholas J; Taghon, Geoffrey J; Dohlman, Henrik G

    2018-02-16

    The yeast Saccharomyces cerevisiae employs multiple pathways to coordinate sugar availability and metabolism. Glucose and other sugars are detected by a G protein-coupled receptor, Gpr1, as well as a pair of transporter-like proteins, Rgt2 and Snf3. When glucose is limiting, however, an ATP-driven proton pump (Pma1) is inactivated, leading to a marked decrease in cytoplasmic pH. Here we determine the relative contribution of the two sugar-sensing pathways to pH regulation. Whereas cytoplasmic pH is strongly dependent on glucose abundance and is regulated by both glucose-sensing pathways, ATP is largely unaffected and therefore cannot account for the changes in Pma1 activity. These data suggest that the pH is a second messenger of the glucose-sensing pathways. We show further that different sugars differ in their ability to control cellular acidification, in the manner of inverse agonists. We conclude that the sugar-sensing pathways act via Pma1 to invoke coordinated changes in cellular pH and metabolism. More broadly, our findings support the emerging view that cellular systems have evolved the use of pH signals as a means of adapting to environmental stresses such as those caused by hypoxia, ischemia, and diabetes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. 20 CFR 222.3 - Other regulations related to this part.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Other regulations related to this part. 222.3 Section 222.3 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT FAMILY RELATIONSHIPS General § 222.3 Other regulations related to this part. This part is related to a...

  18. Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2

    Science.gov (United States)

    Saheb, Vahid; Maleki, Samira

    2018-03-01

    The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2 d,2 p) basis set and MP2 method along with 6-311+G( d, p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2 d,2 p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2 d,2 p) and MP2/6-311+G( d, p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.

  19. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury.

    Science.gov (United States)

    Liu, Jun; Lu, Jian-feng; Wen, Xiao-yuan; Kan, Juan; Jin, Chang-hai

    2015-01-01

    In this study, the antioxidant activity and hepatoprotective effect of inulin and catechin grafted inulin (catechin-g-inulin) against carbon tetrachloride (CCl4)-induced acute liver injury were investigated. Results showed that both inulin and catechin-g-inulin had moderate scavenging activity on superoxide radical, hydroxyl radical and H2O2, as well as lipid peroxidation inhibition effect. The antioxidant activity decreased in the order of Vc > catechin >catechin-g-inulin > inulin. Administration of inulin and catechin-g-inulin could significantly reduce the elevated levels of serum aspartate transaminase, alanine transaminase and alkaline phosphatase as compared to CCl4 treatment group. Moreover, inulin and catechin-g-inulin significantly increased the levels of hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and total antioxidant capacity, whereas markedly decreased the malondialdehyde level when compared with CCl4 treatment group. Notably, catechin-g-inulin showed higher hepatoprotective effect than inulin. In addition, the hepatoprotective effect of catechin-g-inulin was comparable to positive standard of silymarin. Our results suggested that catechin-g-inulin had potent antioxidant activity and potential protective effect against CCl4-induced acute liver injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl4-Oxidative Stress in Several Rat Tissues

    Science.gov (United States)

    Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Cárdenas-Rodríguez, Noemí; Huerta-Gertrudis, Bernardino; García-Cruz, Mercedes Edna; Montesinos-Correa, Hortencia; Sánchez-González, Dolores Javier; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2013-01-01

    The present study was designed to test the hypothesis that the acetonic and methanolic extracts of H. inuloides prevent carbon tetrachloride-(CCl4) induced oxidative stress in vital tissues. Pretreatment with both H. inuloides extracts or quercetin attenuated the increase in serum activity of alkaline phosphatase (ALP), total bilirubin (BB), creatinine (CRE), and creatine kinase (CK), and impeded the decrease of γ-globulin (γ-GLOB) and albumin (ALB) observed in CCl4-induced tissue injury. The protective effect was confirmed by histological analysis with hematoxylin-eosin and periodic acid/Schiff's reagent. Level of lipid peroxidation was higher in the organs of rats exposed to CCl4 than in those of the animals treated with Heterohteca extracts or quercetin, and these showed levels similar to the untreated group. Pretreatment of animals with either of the extracts or quercetin also prevented the increase of 4-hydroxynonenal and 3-nitrotyrosine. Pretreatment with the plant extracts or quercetin attenuated CCl4 toxic effects on the activity of several antioxidant enzymes. The present results strongly suggest that the chemopreventive effect of the extracts used and quercetin, against CCl4 toxicity, is associated with their antioxidant properties and corroborated previous results obtained in liver tissue. PMID:23365610

  1. The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine.

    Directory of Open Access Journals (Sweden)

    Katarina Radulovic

    Full Text Available Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+ T cells and/or CD4(- cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/- CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/- CD4 T cell accumulation in colonic lamina propria (cLP was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/- mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/- CD45RB(high CD4 T cells into RAG(-/- hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

  2. CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II

    Directory of Open Access Journals (Sweden)

    Prasse Antje

    2005-07-01

    Full Text Available Abstract The attraction of leukocytes from circulation to inflamed lungs depends on the activation of both the leukocytes and the resident cells within the lung. In this study we determined gene expression and secretion patterns for monocyte chemoattractant protein-1 (MCP-1/CCL2 and T-cell specific CXCR3 agonistic chemokines (Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11 in TNF-α-, IFN-γ-, and IL-1β-stimulated human alveolar epithelial cells type II (AEC-II. AEC-II constitutively expressed high level of CCL2 mRNA in vitro and in situ , and released CCL2 protein in vitro . Treatment of AEC-II with proinflammatory cytokines up-regulated both CCL2 mRNA expression and release of immunoreactive CCL2, whereas IFN-γ had no effect on CCL2 release. In contrast, CXCR3 agonistic chemokines were not detected in freshly isolated AEC-II or in non-stimulated epithelial like cell line A549. IFN-γ, alone or in combination with IL-1β and TNF-α resulted in an increase in CXCL10, CXCL11, and CXCL9 mRNA expression and generation of CXCL10 protein by AEC-II or A549 cells. CXCL10 gene expression and secretion were induced in dose-dependent manner after cytokine-stimulation of AEC-II with an order of potency IFN-γ>>IL-1β ≥ TNF-α. Additionally, we localized the CCL2 and CXCL10 mRNAs in human lung tissue explants by in situ hybridization, and demonstrated the selective effects of cytokines and dexamethasone on CCL2 and CXCL10 expression. These data suggest that the regulation of the CCL2 and CXCL10 expression exhibit significant differences in their mechanisms, and also demonstrate that the alveolar epithelium contributes to the cytokine milieu of the lung, with the ability to respond to locally generated cytokines and to produce potent mediators of the local inflammatory response.

  3. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  4. CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine/Chemokine Receptor Complex in Patients with AMD

    DEFF Research Database (Denmark)

    Falk, Mads Krüger; Singh, Amardeep; Faber, Carsten

    2014-01-01

    PURPOSE: The chemokine receptors CX3CR1 and CCR2 have been implicated in the development of age-related macular degeneration (AMD). The evidence is mainly derived from experimental cell studies and murine models of AMD. The purpose of this study was to investigate the association between expression...... of CX3CR1 and CCR2 on different leukocyte subsets and AMD. Furthermore we measured the plasma levels of ligands CX3CL1 and CCL2. METHODS: Patients attending our department were asked to participate in the study. The diagnosis of AMD was based on clinical examination and multimodal imaging techniques...... positive correlation between CCR2 and CX3CR1 expression on CD8+ cells (r = 0.727, p = 0.0001). We found no difference in plasma levels of CX3CL1 and CCL2 among the groups. CONCLUSIONS: Our results show a down regulation of CX3CR1 on CD8+ cells; this correlated to a low expression of CCR2 on CD8+ cells...

  5. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12.

    Science.gov (United States)

    Akcora, Büsra Öztürk; Storm, Gert; Bansal, Ruchi

    2018-03-01

    Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl 4 -induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The regulation of ras-raf signaling pathway on G1 phase of the irradiated cells

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Liu Nongle; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    Objective: To investigate the way of ras-raf signaling pathway which regulate the G 1 phase in irradiated KG-1 cells. Methods: Blocked the GM-CSF signaling pathway by transfected DN-ras and then momentary transfected cyclin D1 into irradiated KG-1 cells, the effects of cyclin D1 on G 1 phase was examined. Results: The irradiated KG-1 cells transfected DN-ras can't recover form G 1 phase arrest even though the GM-CSF was given,momentary transfected cyclin D1 promote the irradiated KG-1 cells from G 1 arrest. Conclusion: Activation of ras-raf signaling pathway regulate the cell cycle of the irradiated KG-1 cells through promotion the expression of the cyclin D1

  7. Preventive and curative effects of Cocculus hirsutus (Linn. Diels leaves extract on CCl4 provoked hepatic injury in rats

    Directory of Open Access Journals (Sweden)

    Lavanya Goodla

    2017-12-01

    Full Text Available The present study was designed to estimate the protective or curative potency of an extract from Cocculus hirsutus leaves against CCl4 intoxication via its antioxidant property in rats. Liver enzyme markers (SGOT, SGPT, ALP, LDH, and bilirubin and oxidative stress markers {lipid peroxidation (LPO, enzymatic antioxidants [superoxide dismutase, catalase and glutathione peroxidase] and non-enzymatic antioxidants [reduced glutathione, vitamin C and E]} were analyzed by spectrophotometry. Histopathological studies on hepatic tissue were also performed by the method of Hematoxylin and Eosin staining. Rats administrated with 30% CCl4 in olive oil intraperitoneally resulted in significant increase in the levels of SGOT, SGPT, ALP, LDH, and bilirubin compared to control rats. Significant elevation of hepatic LPO and depletion of enzymatic and non-enzymatic antioxidants levels were observed in CCl4 induced rats. When CCl4 induced rats were co-treated with C. hirsutus at doses of 250 and 500 mg/kg b·wt, all the altered levels of liver marker enzymes and oxidative stress markers were restored to near control values. Histopathological studies provided direct evidence of the hepatoprotective effect of C. hirsutus. In conclusion, extract from C. hirsutus could protect the liver from CCl4-induced oxidative damage, by scavenging the free radicals generated during the metabolism of CCl4. Keywords: Antioxidants, Carbon tetrachloride, Cocculus hirsutus, Hepatoprotective effect, Lipid peroxidation

  8. Regulation of Inflammatory Pathways in Cancer and Infectious Disease of the Cervix

    Directory of Open Access Journals (Sweden)

    Anthonio Adefuye

    2012-01-01

    Full Text Available Cervical cancer is one of the leading gynaecological malignancies worldwide. It is an infectious disease of the cervix, associated with human papillomavirus infection (HPV, infection with bacterial agents such as Chlamydia trachomatis and Neisseria gonorrhoea as well as human immunodeficiency virus (HIV. Furthermore, it is an AIDS-defining disease with an accelerated mortality in HIV-infected women with cervical cancer. With the introduction of robust vaccination strategies against HPV in the developed world, it is anticipated that the incidence of cervical cancer will decrease in the coming years. However, vaccination has limited benefit for women already infected with high-risk HPV, and alternative therapeutic intervention strategies are needed for these women. Many pathological disorders, including cervical cancer, are characterised by the exacerbated activation and maintenance of inflammatory pathways which are considered to be regulated by infectious agents. In cervical cancer, hyperactivation of these inflammatory pathways and regulation of immune infiltrate into tissues can potentially play a role not only in tumorigenesis but also in HIV infection. In this paper we will discuss the contribution of inflammatory pathways to cervical cancer progression and HIV infection and the role of HIV in cervical cancer progression.

  9. Regulation of Inflammatory Pathways in Cancer and Infectious Disease of the Cervix

    Science.gov (United States)

    Adefuye, Anthonio; Sales, Kurt

    2012-01-01

    Cervical cancer is one of the leading gynaecological malignancies worldwide. It is an infectious disease of the cervix, associated with human papillomavirus infection (HPV), infection with bacterial agents such as Chlamydia trachomatis and Neisseria gonorrhoea as well as human immunodeficiency virus (HIV). Furthermore, it is an AIDS-defining disease with an accelerated mortality in HIV-infected women with cervical cancer. With the introduction of robust vaccination strategies against HPV in the developed world, it is anticipated that the incidence of cervical cancer will decrease in the coming years. However, vaccination has limited benefit for women already infected with high-risk HPV, and alternative therapeutic intervention strategies are needed for these women. Many pathological disorders, including cervical cancer, are characterised by the exacerbated activation and maintenance of inflammatory pathways which are considered to be regulated by infectious agents. In cervical cancer, hyperactivation of these inflammatory pathways and regulation of immune infiltrate into tissues can potentially play a role not only in tumorigenesis but also in HIV infection. In this paper we will discuss the contribution of inflammatory pathways to cervical cancer progression and HIV infection and the role of HIV in cervical cancer progression. PMID:24278714

  10. MicroRNA-221 and -222 Regulate Radiation Sensitivity by Targeting the PTEN Pathway

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Wang Ping; Cao Yongzhen; Lv Zhonghong; Yu Shizhu; Wang Guangxiu; Zhang Anling; Jia Zhifan; Han Lei; Yang Chunying; Ishiyama, Hiromichi; Teh, Bin S.; Xu Bo; Pu Peiyu

    2011-01-01

    Purpose: MicroRNAs (miRNAs) are noncoding RNAs inhibiting expression of numerous target genes by posttranscriptional regulation. miRNA-221 and miRNA-222 (miRNA-221/-222) expression is elevated in radioresistant tumor cell lines; however, it is not known whether and how miRNAs control cellular responses to ionizing irradiation. Methods and Materials: We used bioinformatic analyses, luciferase reporter assay, and genetic knockdown and biochemical assays to characterize the regulation pathways of miRNA-221/-222 in response to radiation treatment. Results: We identified the PTEN gene as a target of miRNA-221/-222. Furthermore, we found that knocking down miRNA-221/-222 by antisense oligonucleotides upregulated PTEN expression. Upregulated PTEN expression suppressed AKT activity and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in tumor cells. Conclusions: miRNA-221/-222 control radiation sensitivity by regulating the PTEN/AKT pathway and can be explored as novel targets for radiosensitization.

  11. The Drosophila T-box transcription factor Midline functions within the Notch–Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc

    Science.gov (United States)

    Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.

    2014-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751

  12. Oral Delivery of Curcumin Polymeric Nanoparticles Ameliorates CCl4-Induced Subacute Hepatotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Gregory Marslin

    2018-05-01

    Full Text Available Curcumin is the major bioactive compound of Curcuma longa, an important medicinal plant used in traditional herbal formulations since ancient times. In the present study, we report that curcumin nanoparticles (ηCur protects Wistar rats against carbon tetrachloride (CCl4-induced subacute hepatotoxicity. Nanoparticles of sizes less than 220 nm with spherical shape were prepared using PLGA and PVA respectively as polymer and stabilizer. Test animals were injected via intraperitoneal route with 1 mL/kg CCl4 (8% in olive oil twice a week over a period of 8 weeks to induce hepatotoxicity. On the days following the CCl4 injection, test animals were orally administered with either curcumin or its equivalent dose of ηCur. Behavioural observation, biochemical analysis of serum and histopathological examination of liver of the experimental animals indicated that ηCur offer significantly higher hepatoprotection compared to curcumin.

  13. The extraction behaviour of As(III) and As(V) in APDC-CCl4 system

    International Nuclear Information System (INIS)

    Yang Ruiying; Zhu Xuping

    1997-01-01

    The extraction and back-extraction behaviour of As(III) and As(V) in APDC-CCl 4 system have been studied by using 76 As trace technique. As(III) can be extracted quantitatively by APDC-CCl 4 system at pH = 1-3. As(V) can be extracted after being reduced to As(III) by Na 2 S 2 O 3 . Water with high pH value can be used for back-extraction. The method can be applied in the separation of inorganic As(III) and As(V) in water quality inspection

  14. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors

    Science.gov (United States)

    Sugathan, Aarathi; Biagioli, Marta; Golzio, Christelle; Erdin, Serkan; Blumenthal, Ian; Manavalan, Poornima; Ragavendran, Ashok; Brand, Harrison; Lucente, Diane; Miles, Judith; Sheridan, Steven D.; Stortchevoi, Alexei; Kellis, Manolis; Haggarty, Stephen J.; Katsanis, Nicholas; Gusella, James F.; Talkowski, Michael E.

    2014-01-01

    Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. PMID:25294932

  15. Effect of Calitropis Procera Aqueous Root Extract Against CCL4 ...

    African Journals Online (AJOL)

    ABUBAKAR

    ABSTRACT. The hepatocurative effect of aqueous root extract of Calitropis Procera on CCl4 induced hepatotoxicity in rabbits was studied in groups of rabbit and the levels of liver enzymes; aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP). Serum concentrations of total ...

  16. Effect of extracts from araticum (Annona crassiflora on CCl4-induced liver damage in rats

    Directory of Open Access Journals (Sweden)

    Roberta Roesler

    2011-03-01

    Full Text Available The influence of ethanolic extracts of Annona crassiflora on the activities of hepatic antioxidant enzymes was examined. Extracts of A. crassiflora seeds and peel were administered orally (50 mg of galic acid equivalents.kg-1 to Wistar rats for 14 consecutive days followed by a single oral dose of carbon tetrachloride (CCl4, 2 g.kg-1. Lipid peroxidation and the activities of hepatic catalase (CAT, cytochromes P450 (CP450 and b5, glutathione peroxidase (GPx, glutathione reductase (GRed, superoxide dismutase (SOD, and the content of glutathione equivalents (GSH were evaluated. The treatment with CCl4 increased lipid peroxidation, the level of GSH equivalents and the content of cytochrome b5 by 44, 140 and 32%, respectively, with concomitant reductions of 23, 34 and 39% in the activities of CAT, SOD, and CP450, respectively. The treatment with A. crassiflora seeds and peel extracts alone inhibited lipid peroxidation by 27 and 22%, respectively without affecting the CP450 content. The pretreatment with the A. crassiflora extracts prevented the lipid peroxidation, the increase in GSH equivalents and the decrease in CAT activity caused by CCl4, but it had no effect on the CCl4-mediated changes in CP450 and b5 and SOD. These results show that A. crassiflora seeds and peel contain antioxidant activity in vivo that could be of potential therapeutic use.

  17. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing.

    Science.gov (United States)

    Chen, Qi; Sun, Lijun; Chen, Zhijian J

    2016-09-20

    The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogens. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses through production of the second messenger cGAMP, which activates the adaptor STING. The cGAS-STING pathway not only mediates protective immune defense against infection by a large variety of DNA-containing pathogens but also detects tumor-derived DNA and generates intrinsic antitumor immunity. However, aberrant activation of the cGAS pathway by self DNA can also lead to autoimmune and inflammatory disease. Thus, the cGAS pathway must be properly regulated. Here we review the recent advances in understanding of the cGAS-STING pathway, focusing on the regulatory mechanisms and roles of this pathway in heath and disease.

  18. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  19. Demodex canis regulates cholinergic system mediated immunosuppressive pathways in canine demodicosis.

    Science.gov (United States)

    Kumari, P; Nigam, R; Singh, A; Nakade, U P; Sharma, A; Garg, S K; Singh, S K

    2017-09-01

    Demodex canis infestation in dogs remains one of the main challenges in veterinary dermatology. The exact pathogenesis of canine demodicosis is unknown but an aberration in immune status is considered very significant. No studies have underpinned the nexus between induction of demodicosis and neural immunosuppressive pathways so far. We have evaluated the involvement of cholinergic pathways in association with cytokines regulation as an insight into the immuno-pathogenesis of canine demodicosis in the present study. Remarkable elevations in circulatory immunosuppressive cytokine interleukin-10 and cholinesterase activity were observed in dogs with demodicosis. Simultaneously, remarkable reduction in circulatory pro-inflammatory cytokine tumour necrosis factor-alpha level was observed in dogs with demodicosis. Findings of the present study evidently suggest that Demodex mites might be affecting the cholinergic pathways to induce immunosuppression in their host and then proliferate incessantly in skin microenvironment to cause demodicosis.

  20. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins

    Directory of Open Access Journals (Sweden)

    Jesus Omar Muñoz Bello

    2015-08-01

    Full Text Available Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. Viruses 2015, 7 4735 This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway.

  1. Rare genomic variants link bipolar disorder to CREB regulated intracellular signaling pathways

    Directory of Open Access Journals (Sweden)

    Berit eKerner

    2013-11-01

    Full Text Available Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood stabilizing drugs, such as tricyclic antidepressants, lithium and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.

  2. Nitric oxide production by Biomphalaria glabrata haemocytes: effects of Schistosoma mansoni ESPs and regulation through the extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Kirk Ruth S

    2009-04-01

    Full Text Available Abstract Background Schistosoma mansoni uses Biomphalaria glabrata as an intermediate host during its complex life cycle. In the snail, the parasite initially transforms from a miracidium into a mother sporocyst and during this process excretory-secretory products (ESPs are released. Nitric oxide (NO and its reactive intermediates play an important role in host defence responses against pathogens. This study therefore aimed to determine the effects of S. mansoni ESPs on NO production in defence cells (haemocytes from schistosome-susceptible and schistosome-resistant B. glabrata strains. As S. mansoni ESPs have previously been shown to inhibit extracellular signal-regulated kinase (ERK phosphorylation (activation in haemocytes from susceptible, but not resistant, B. glabrata the regulation of NO output by ERK in these cells was also investigated. Results Haemocytes from resistant snails challenged with S. mansoni ESPs (20 μg/ml over 5 h displayed an increase in NO production that was 3.3 times greater than that observed for unchallenged haemocytes; lower concentrations of ESPs (0.1–10 μg/ml did not significantly increase NO output. In contrast, haemocytes from susceptible snails showed no significant change in NO output following challenge with ESPs at any concentration used (0.1–20 μg/ml. Western blotting revealed that U0126 (1 μM or 10 μM blocked the phosphorylation (activation status of ERK in haemocytes from both snail strains. Inhibition of ERK signalling by U0126 attenuated considerably intracellular NO production in haemocytes from both susceptible and resistant B. glabrata strains, identifying ERK as a key regulator of NO output in these cells. Conclusion S. mansoni ESPs differentially influence intracellular NO levels in susceptible and resistant B. glabrata haemocytes, possibly through modulation of the ERK signalling pathway. Such effects might facilitate survival of S. mansoni in its intermediate host.

  3. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses

    Energy Technology Data Exchange (ETDEWEB)

    Snyder-Talkington, Brandi N. [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Dymacek, Julian [Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506-6070 (United States); Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Porter, Dale W.; Wolfarth, Michael G.; Mercer, Robert R. [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Pacurari, Maricica [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Denvir, James [Department of Biochemistry and Microbiology, Marshall University, Huntington, WV 25755 (United States); Castranova, Vincent [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Qian, Yong, E-mail: yaq2@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Guo, Nancy L., E-mail: lguo@hsc.wvu.edu [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States)

    2013-10-15

    The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts. - Highlights: • A novel computational model identified toxicity pathways matching in vivo pathology. • Systematic identification of MWCNT-induced biological processes in mouse lungs • MWCNT-induced functional networks of lung

  4. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses

    International Nuclear Information System (INIS)

    Snyder-Talkington, Brandi N.; Dymacek, Julian; Porter, Dale W.; Wolfarth, Michael G.; Mercer, Robert R.; Pacurari, Maricica; Denvir, James; Castranova, Vincent; Qian, Yong; Guo, Nancy L.

    2013-01-01

    The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts. - Highlights: • A novel computational model identified toxicity pathways matching in vivo pathology. • Systematic identification of MWCNT-induced biological processes in mouse lungs • MWCNT-induced functional networks of lung

  5. The CCL3L1-CCR5 genotype influences the development of AIDS, but not HIV susceptibility or the response to HAART

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Tanmoy [Los Alamos National Laboratory; Stanton, Jennifer [NORTHWESTERN UNIV; Kim, Eun - Young [NORTHWESTERN UNIV; Kunstman, Kevin [NORTHWESTERN UNIV; Phair, John [NORTHWESTERN UNIV; Jacobson, Lisa P [JOHNS HOPKINS UNIV; Wolinsky, Steven M [NORTHWESTERN UNIV

    2008-01-01

    A selective advantage against infectious diseases such as HIV/AIDS is associated with differences in the genes relevant to immunity and virus replication. The CC chemokine receptor 5 (CCR5), the principal coreceptor for HIV, and its chemokine ligands, including CCL3L1, influences the CD4+ target cells susceptibility to infection. The CCL3L1 gene is in a region of segmental duplication on the q-arm of human chromosome 17. Increased numbers of CCL3L1 gene copies that affect the gene expression phenotype might have substantial protective effects. Here we show that the population-specific CCL3L1 gene copy number and the CCR5 {Delta}32 protein-inactivating deletion that categorizes the CCL3L1-CCR5 genotype do not influence HIV/AIDS susceptibility or the robustness of immune recovery after the initiation of highly active antiretroviral therapy (HAART).

  6. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders.

    Science.gov (United States)

    Carpenter, Danielle; Walker, Susan; Prescott, Natalie; Schalkwijk, Joost; Armour, John Al

    2011-08-18

    Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.

  7. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders

    Directory of Open Access Journals (Sweden)

    Carpenter Danielle

    2011-08-01

    Full Text Available Abstract Background Copy number variation (CNV contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. Results We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Conclusions Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.

  8. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in Caenorhabditis elegans.

    Science.gov (United States)

    Kitazono, Tomohiro; Hara-Kuge, Sayuri; Matsuda, Osamu; Inoue, Akitoshi; Fujiwara, Manabi; Ishihara, Takeshi

    2017-10-18

    Forgetting memories is important for animals to properly respond to continuously changing environments. To elucidate the mechanisms of forgetting, we used one of the behavioral plasticities of Caenorhabditis elegans hermaphrodite, olfactory adaptation to an attractive odorant, diacetyl, as a simple model of learning. In C. elegans, the TIR-1/JNK-1 pathway accelerates forgetting of olfactory adaptation by facilitating neural secretion from AWC sensory neurons. In this study, to identify the downstream effectors of the TIR-1/JNK-1 pathway, we conducted a genetic screen for suppressors of the gain-of-function mutant of tir-1 ( ok1052 ), which shows excessive forgetting. Our screening showed that three proteins-a membrane protein, MACO-1; a receptor tyrosine kinase, SCD-2; and its putative ligand, HEN-1-regulated forgetting downstream of the TIR-1/JNK-1 pathway. We further demonstrated that MACO-1 and SCD-2/HEN-1 functioned in parallel genetic pathways, and only MACO-1 regulated forgetting of olfactory adaptation to isoamyl alcohol, which is an attractive odorant sensed by different types of sensory neurons. In olfactory adaptation, odor-evoked Ca 2+ responses in olfactory neurons are attenuated by conditioning and recovered thereafter. A Ca 2+ imaging study revealed that this attenuation is sustained longer in maco-1 and scd-2 mutant animals than in wild-type animals like the TIR-1/JNK-1 pathway mutants. Furthermore, temporal silencing by histamine-gated chloride channels revealed that the neuronal activity of AWC neurons after conditioning is important for proper forgetting. We propose that distinct signaling pathways, each of which has a specific function, may coordinately and temporally regulate forgetting by controlling sensory responses. SIGNIFICANCE STATEMENT Active forgetting is an important process to understand the whole mechanisms of memories. Recent papers have reported that the noncell autonomous regulations are required for proper forgetting in

  9. Antifibrotic Mechanism of Pinocembrin: Impact on Oxidative Stress, Inflammation and TGF-β /Smad Inhibition in Rats.

    Science.gov (United States)

    Said, Marwa M; Azab, Samar S; Saeed, Noha M; El-Demerdash, Ebtehal

    2018-03-01

    The present study aimed to elucidate the potential antifibrotic effects of pinocembrin (PIN), a flavanone found abundantly in honey and propolis, by studying its effect on different oxidative stress, inflammatory and fibrosis markers in an experimental model of CCl4-induced liver fibrosis. PIN (20 mg/kg) was given orally 3 times/week for 6 consecutive weeks alternating with CCl4 (0.5 mL/kg, 1:1 mixture with corn oil, i. p.) twice weekly. Different hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. PIN significantly restored liver transaminases and total cholesterol to normal levels. Also, PIN ameliorated oxidative stress injury evoked by CCl4 as evidenced by inhibition of reduced glutathione depletion and lipid peroxidation as well as elevation of antioxidant enzyme superoxide dismutase (SOD). Further, PIN upregulated the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective enzyme hemeoxygenase-1 (HO-1). Moreover, PIN alleviated pro-inflammatory cytokines such as TNF-α via inhibiting nuclear factor-κB (NF-κB) activation. As markers of fibrosis, collagen and α-SMA expression increased markedly in the CCl4 group and PIN prevented these alterations. In addition, PIN down-regulated TGFβ1 and p-Smad2/3, thereby inhibiting TGFβ1/Smad signaling pathway. These results suggest that PIN possess potent antifibrotic effects that can be explained on its antioxidant properties. It ameliorates oxidative stress and inflammation during induction of fibrogenesis via its ability to augment celular antioxidant defenses, activating Nrf2-mediated HO-1 expression and modulating NF-κB and TGF-β1/Smad signaling pathway.

  10. BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines

    OpenAIRE

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F.; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamy...

  11. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana

    Science.gov (United States)

    Stiller, Jiri; Davoine, Celine; Björklund, Stefan; Manners, John M.; Kazan, Kemal; Schenk, Peer M.

    2017-01-01

    The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways. PMID:28441405

  12. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  13. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  14. Antifibrotic effects of D-limonene (5(1-methyl-4-[1-methylethenyl]) cyclohexane) in CCl4 induced liver toxicity in Wistar rats.

    Science.gov (United States)

    Ahmad, Sheikh Bilal; Rehman, Muneeb U; Fatima, Bilques; Ahmad, Bilal; Hussain, Ishraq; Ahmad, Sheikh Pervaiz; Farooq, Adil; Muzamil, Showkeen; Razzaq, Rahil; Rashid, Shahzada Mudasir; Ahmad Bhat, Showkat; Mir, Manzoor Ur Rahman

    2018-03-01

    This study was designed to assess the potential antifibrotic effect of D-Limonene-a component of volatile oils extracted from citrus plants. D-limonene is reported to have numerous therapeutic properties. CCl 4 -intduced model of liver fibrosis in Wistar rats is most widely used model to study chemopreventive studies. CCl 4 -intoxication significantly increased serum aminotransferases and total cholesterol these effects were prevented by cotreatment with D-Limonene. Also, CCl 4 -intoxication caused depletion of glutathione and other antioxidant enzymes while D-Limonene preserved them within normal values. Hydroxyproline and malondialdehyde content was increased markedly by CCl 4 treatment while D-Limonene prevented these alterations. Levels of TNF-α, TGF-β, and α-SMA were also assessed; CCl 4 increased the expression of α-SMA, NF-κB and other downstream inflammatory cascade while D-Limonene co-treatment inhibited them. Collectively these findings indicate that D-Limonene possesses potent antifibrotic effect which may be attributed to its antioxidant and anti-inflammatory properties. © 2017 Wiley Periodicals, Inc.

  15. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  16. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Mythili Dileepan

    Full Text Available Airway smooth muscle (ASM cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.

  17. Hsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway

    Directory of Open Access Journals (Sweden)

    Bingwu Zhong

    2015-01-01

    Full Text Available Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.

  18. Construction of an miRNA-Regulated Pathway Network Reveals Candidate Biomarkers for Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Min Shao

    2017-01-01

    Full Text Available We aimed to identify risk pathways for postmenopausal osteoporosis (PMOP via establishing an microRNAs- (miRNA- regulated pathway network (MRPN. Firstly, we identified differential pathways through calculating gene- and pathway-level statistics based on the accumulated normal samples using the individual pathway aberrance score (iPAS. Significant pathways based on differentially expressed genes (DEGs using DAVID were extracted, followed by identifying the common pathways between iPAS and DAVID methods. Next, miRNAs prediction was implemented via calculating TargetScore values with precomputed input (log fold change (FC, TargetScan context score (TSCS, and probabilities of conserved targeting (PCT. An MRPN construction was constructed using the common genes in the common pathways and the predicted miRNAs. Using false discovery rate (FDR < 0.05, 279 differential pathways were identified. Using the criteria of FDR < 0.05 and log⁡FC≥2, 39 DEGs were retrieved, and these DEGs were enriched in 64 significant pathways identified by DAVID. Overall, 27 pathways were the common ones between two methods. Importantly, MAPK signaling pathway and PI3K-Akt signaling pathway were the first and second significantly enriched ones, respectively. These 27 common pathways separated PMOP from controls with the accuracy of 0.912. MAPK signaling pathway and PI3K/Akt signaling pathway might play crucial roles in PMOP.

  19. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    Science.gov (United States)

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of

  20. Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors

    DEFF Research Database (Denmark)

    Damgaard, C; Kantarci, A; Holmstrup, P

    2017-01-01

    BACKGROUND AND OBJECTIVES: Porphyromonas gingivalis is regarded as a significant contributor in the pathogenesis of periodontitis and certain systemic diseases, including atherosclerosis. P. gingivalis occasionally translocates from periodontal pockets into the circulation, where it adheres to red...... (ROS) in response to challenge with P. gingivalis. In addition, the impact of RBC interaction with P. gingivalis was investigated. The actions of resolvin E1 (RvE1), a known regulator of P. gingivalis induced neutrophil responses, on the cytokine and ROS responses elicited by P. gingivalis in cultures...... of neutrophils were investigated. RESULTS: Upon stimulation with P. gingivalis, neutrophils from subjects with LAgP and healthy controls released similar quantities of IL-6, TNF-α, CXCL8, CCL2 and intracellular ROS. The presence of RBCs amplified the release of IL-6, TNF-α and CCL2 statistically significant...

  1. A cross-sectional study: serum CCL3/MIP-1α levels may reflect lumbar intervertebral disk degeneration in Han Chinese people

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2018-03-01

    Full Text Available Yi-Li Zhang,1,2,* Bei Li,1,2,* Zeng-Huan Zhou1 1School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China; 2School of Health Services Management, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China *These authors contributed equally to this work Background: The macrophage inflammatory protein-1α (MIP-1α, also named chemokine cytokine ligand 3 (CCL3, has been detected in nucleus pulposus and increased following cytokine stimulation. Objective: The current study was performed to explore the relationship between serum CCL3/MIP-1α levels with lumbar intervertebral disk degeneration (IDD. Patients and methods: A total of 132 disk degeneration patients confirmed by magnetic resonance imaging and 126 healthy controls were enrolled in the current study. Radiological evaluation of the IDD was conducted using a 3.0-T magnetic resonance imaging scanner for entire lumbar vertebra region. Degeneration of intervertebral disk was assessed by Schneiderman criteria. Serum CCL3/MIP-1α levels were investigated using a sandwich enzyme-linked immunosorbent assay. The Visual Analog Scale scores and Oswestry Disability Index index were recorded for clinical severity. Results: Elevated concentrations of CCL3 in serum were found in IDD patients compared with asymptomatic volunteers. The case group included 49 IDD patients with grade 1, 42 with grade 2, and 41 with grade 3. Grade 3 and 2 had significantly higher CCL3 concentrations in serum compared with those with grade 1. The serum CCL3 levels were positively related to the degree of disk degeneration. In addition, the serum CCL3 levels also demonstrated a significant correlation with the clinical severity determined by Visual Analog Scale scores and Oswestry Disability Index index. Conclusion: Serum CCL3 may serve as a biomarker of IDD. Keywords: chemokine cytokine ligand 3, intervertebral disk degeneration, cross

  2. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway.

    Science.gov (United States)

    Kumar, Manish; Sahu, Sanjaya Kumar; Kumar, Ranjeet; Subuddhi, Arijita; Maji, Ranjan Kumar; Jana, Kuladip; Gupta, Pushpa; Raffetseder, Johanna; Lerm, Maria; Ghosh, Zhumur; van Loo, Geert; Beyaert, Rudi; Gupta, Umesh D; Kundu, Manikuntala; Basu, Joyoti

    2015-03-11

    The outcome of the interaction between Mycobacterium tuberculosis (Mtb) and a macrophage depends on the interplay between host defense and bacterial immune subversion mechanisms. MicroRNAs critically regulate several host defense mechanisms, but their role in the Mtb-macrophage interplay remains unclear. MicroRNA profiling of Mtb-infected macrophages revealed the downregulation of miR-let-7f in a manner dependent on the Mtb secreted effector ESAT-6. We establish that let-7f targets A20, a feedback inhibitor of the NF-κB pathway. Expression of let-7f decreases and A20 increases with progression of Mtb infection in mice. Mtb survival is attenuated in A20-deficient macrophages, and the production of TNF, IL-1β, and nitrite, which are mediators of immunity to Mtb, is correspondingly increased. Further, let-7f overexpression diminishes Mtb survival and augments the production of cytokines including TNF and IL-1β. These results uncover a role for let-7f and its target A20 in regulating immune responses to Mtb and controlling bacterial burden. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Epidermal wound repair is regulated by the planar cell polarity signaling pathway.

    Science.gov (United States)

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M

    2010-07-20

    The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.

  4. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc.

    Science.gov (United States)

    Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M

    2013-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  6. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia

    Directory of Open Access Journals (Sweden)

    Victor Manuel Blanco-Alvarez

    2015-01-01

    Full Text Available Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO. Male rats were grouped as follows: (1 Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days; (2 Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3 CCAO, rats with CCAO only; (4 Sham group, rats with mock CCAO; and (5 untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.

  7. Computer simulation and cold model testing of CCL cavities

    International Nuclear Information System (INIS)

    Chang, C.R.; Yao, C.G.; Swenson, D.A.; Funk, L.W.

    1993-01-01

    The SSC coupled-cavity-linac (CCL) consists of nine modules with eight tanks in each module. Multicavity magnetically coupled bridge couplers are used to couple the eight tanks within a module into one RF resonant chain. The operating frequency is 1282.851 MHz. In this paper the authors discuss both computer calculations and cold model measurements to determine the geometry dimension of the RF structure

  8. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  9. 20 CFR 229.3 - Other regulations related to this part.

    Science.gov (United States)

    2010-04-01

    ... family relationships which may cause an annuity to be increased under this part. Part 225 explains how... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Other regulations related to this part. 229.3 Section 229.3 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT...

  10. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation

    Science.gov (United States)

    Tokunaga, Fuminori; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Goto, Eiji; Noguchi, Takuya; Mio, Kazuhiro; Kamei, Kiyoko; Ma, Averil; Iwai, Kazuhiro; Nureki, Osamu

    2012-01-01

    LUBAC (linear ubiquitin chain assembly complex) activates the canonical NF-κB pathway through linear polyubiquitination of NEMO (NF-κB essential modulator, also known as IKKγ) and RIP1. However, the regulatory mechanism of LUBAC-mediated NF-κB activation remains elusive. Here, we show that A20 suppresses LUBAC-mediated NF-κB activation by binding linear polyubiquitin via the C-terminal seventh zinc finger (ZF7), whereas CYLD suppresses it through deubiquitinase (DUB) activity. We determined the crystal structures of A20 ZF7 in complex with linear diubiquitin at 1.70–1.98 Å resolutions. The crystal structures revealed that A20 ZF7 simultaneously recognizes the Met1-linked proximal and distal ubiquitins, and that genetic mutations associated with B cell lymphomas map to the ubiquitin-binding sites. Our functional analysis indicated that the binding of A20 ZF7 to linear polyubiquitin contributes to the recruitment of A20 into a TNF receptor (TNFR) signalling complex containing LUBAC and IκB kinase (IKK), which results in NF-κB suppression. These findings provide new insight into the regulation of immune and inflammatory responses. PMID:23032187

  11. Collagenolytic protease expression in cranial cruciate ligament and stifle synovial fluid in dogs with cranial cruciate ligament rupture.

    Science.gov (United States)

    Muir, Peter; Danova, Nichole A; Argyle, David J; Manley, Paul A; Hao, Zhengling

    2005-01-01

    To determine expression of collagenolytic genes and collagen degradation in stifle tissues of dogs with ruptured cranial cruciate ligament (CCL). Six dogs with CCL rupture and 11 dogs with intact CCL. Gene expression in CCL tissue and synovial fluid cells was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). Collagen degradation was studied using CCL explant cultures and a synovial fluid bioassay. Expression of matrix metalloproteases (MMP) was not found in young Beagles with intact CCL; however, increased expression of MMP-3 was found in CCL tissue from older hounds with intact CCL, when compared with young Beagles. In dogs with ruptured CCL, expression of MMP-2 and -9 was increased in stifle tissues, when compared with dogs with intact CCL. Similar to MMP-9, expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin S was only found in stifle tissues from dogs with ruptured CCL; in contrast, expression of cathepsin K was found in all ruptured and intact CCL. Collagen degradation was increased in ruptured CCL, when compared with intact CCL. Rupture of the CCL is associated with up-regulation of expression of MMP-2 and -9 (gelatinase A and B), TRAP, and cathepsin S, and increased degradation of collagen. These findings suggest that MMP-2, -9, cathepsin S, and TRAP may be important mediators of progressive joint destruction in dogs with CCL rupture. These genes are markers for macrophages and dendritic cells. MMP and cathepsin S pathways may offer novel targets for anti-inflammatory medical therapy aimed at ameliorating joint degradation associated with inflammatory arthritis.

  12. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    Science.gov (United States)

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  13. THE E2/FRB PATHWAY REGULATION OF DNA REPLICATION AND PROTEIN BIOSYNTHESIS

    Science.gov (United States)

    The E2F/Rb pathway plays a pivotal role in the control of cell cycle progression and regulates the expression of genes required for Gl/S transition. Our study examines the genomic response in Drosophila embryos after overexpression and mutation of E2F/Rb pathway molecules. Hierar...

  14. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    Renal toxicity can commonly occur after exposure to xenobiotics, pharmaceutical agents or environmental pollutants. Changes in the gene expression in kidney parenchymal cells that precede and/or accompany renal injury may be hallmark critical events in the onset of pathologic changes of renal functions. Over the last several years, transcriptomic analysis has evolved to enable simultaneous analysis of the expression profiles of tens of thousands of genes in response to various endogenous and exogenous stimuli. In this study, we investigated gene expression changes in the kidney after acute exposure to a nephrotoxin, D-serine, which targets the proximal tubule of the kidney. Male F-344 rats injected intraperitoneally with a single dose of D-serine (5, 20, 50, 200 or 500 mg/kg), and gene expression profiles in the kidney were determined using the Affymetrix RAE230A gene arrays at 96 h post-dosing. D-Serine treatment resulted in the up- and down-regulation of 1158 and 749 genes, respectively, over the entire dose range based on the intersection of the results of t-test, p < 0.01 over two consecutive doses, and ANOVA with Bonferonni correction for multiple testing. Interestingly, both the up-and down-regulated genes show a unified dose response pattern as revealed in the self-organized map clustering analysis using the expression profiles of the 1907 differentially expressed genes as input data. There appears to be minimal changes in the expression level of these genes in the dose range of 5-50 mg/kg, while the most prominent changes were observed at the highest doses tested, i.e. 200 and 500 mg/kg. Pathway analysis of the differentially expressed genes showed perturbation of a large number of biological processes/pathways after D-serine exposure. Among the up-regulated pathways are actin cytoskeleton biogenesis and organization, apoptosis, cell cycle regulation, chromatin assembly, excision repair of damaged DNA, DNA replication and packaging, protein biosynthesis

  15. Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    2016-12-01

    Full Text Available Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS and glucosamine-6-phosphate deaminase (NagB have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans.

  16. 67Ga in transferrin-unbound form is taken up by inflamed liver of mouse treated with CCl4

    International Nuclear Information System (INIS)

    Ohkubo, Yasuhito; Sasayama, Akio; Takegahara, Ikumi; Katoh, Shinsuke; Abe, Kenichi; Kohno, Hiroyuki; Kubodera, Akiko.

    1990-01-01

    In order to investigate whether or not transferrin is involved in the uptake of 67 Ga by inflamed liver (acute inflammatory tissues) the uptake of 67 Ga by the liver of mice treated with carbon tetrachloride (CCl 4 ) was studied. The serum GPT value reached its maximum on the 1st day after the CCl 4 treatment. The uptake of 67 Ga by the liver also reached its maximum on the 1st day after the CCl-4 treatment and the amount uptake into inflamed liver was about 6 times that uptaken into normal liver. On the other hand, the uptake of 125 I-transferrin into inflamed liver on the 1st day after CCl 4 treatment was only about 1.6 times that into normal liver. Moreover, cold Fe 3+ decreased the uptake of 67 Ga by normal liver but increased the uptake of 67 Ga by inflamed liver. These results show that transferrin plays an important role in the uptake of 67 Ga by normal liver but not by inflamed liver, i.e. 67 Ga in the transferrin-unbound form is preferentially taken up by inflamed liver. (author)

  17. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  18. Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice

    International Nuclear Information System (INIS)

    Randle, Laura E.; Goldring, Chris E.P.; Benson, Craig A.; Metcalfe, Peter N.; Kitteringham, Neil R.; Park, B. Kevin; Williams, Dominic P.

    2008-01-01

    The Keap1-Nrf2-ARE signalling pathway has emerged as an important regulator of the mammalian defence system to enable detoxification and clearance of foreign chemicals. Recent studies by our group using paracetamol (APAP), diethylmaleate and buthionine sulphoximine have shown that for a given xenobiotic molecule, Nrf2 induction in the murine liver is associated with protein reactivity and glutathione depletion. Here, we have investigated, in vivo, whether the ability of four murine hepatotoxins, paracetamol, bromobenzene (BB), carbon tetrachloride (CCl 4 ) and furosemide (FS) to deplete hepatic glutathione (GSH) is related to induction of hepatic Nrf2 nuclear translocation and Nrf2-dependent gene expression. Additionally, we studied whether hepatic Nrf2 nuclear translocation is a general response during the early stages of acute hepatic chemical stress in vivo. Male CD-1 mice were administered APAP (3.5 mmol/kg), FS (1.21 mmol/kg), BB (4.8 mmol/kg) and CCl 4 (1 mmol/kg) for 1, 5 and 24 h. Each compound elicited significant serum ALT increases after 24 h (ALT U/L: APAP, 3036 ± 1462; BB, 5308 ± 2210; CCl 4 , 5089 ± 1665; FS, 2301 ± 1053), accompanied by centrilobular damage as assessed by histopathology. Treatment with APAP also elicited toxicity at a much earlier time point (5 h) than the other hepatotoxins (ALT U/L: APAP, 1780 ± 661; BB, 161 ± 15; CCl 4 , 90 ± 23; FS, 136 ± 27). Significant GSH depletion was seen with APAP (9.6 ± 1.7% of control levels) and BB (52.8 ± 6.2% of control levels) 1 h after administration, but not with FS and CCl 4 . Western Blot analysis revealed an increase in nuclear Nrf2, 1 h after administration of BB (209 ± 10% control), CCl 4 (146 ± 3% control) and FS (254 ± 41% control), however this was significantly lower than the levels observed in the APAP-treated mice (462 ± 36% control). The levels of Nrf2-dependent gene induction were also analysed by quantitative real-time PCR and Western blotting. Treatment with APAP for 1

  19. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    Energy Technology Data Exchange (ETDEWEB)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  20. Rac1 plays a role in CXCL12 but not CCL3-induced chemotaxis and Rac1 GEF inhibitor NSC23766 has off target effects on CXCR4.

    Science.gov (United States)

    Mills, Shirley C; Howell, Lesley; Beekman, Andrew; Stokes, Leanne; Mueller, Anja

    2018-01-01

    Cell migration towards a chemotactic stimulus relies on the re-arrangement of the cytoskeleton, which is triggered by activation of small G proteins RhoA, Rac1 and Cdc42, and leads to formation of lamellopodia and actin polymerisation amongst other effects. Here we show that Rac1 is important for CXCR4 induced chemotaxis but not for CCR1/CCR5 induced chemotaxis. For CXCL12-induced migration via CXCR4, breast cancer MCF-7 cells are reliant on Rac1, similarly to THP-1 monocytes and Jurkat T-cells. For CCL3-induced migration via CCR1 and/or CCR5, Rac1 signalling does not regulate cell migration in either suspension or adherent cells. We have confirmed the involvement of Rac1 with the use of a specific Rac1 blocking peptide. We also used a Rac1 inhibitor EHT 1864 and a Rac1-GEF inhibitor NSC23766 to probe the importance of Rac1 in chemotaxis. Both inhibitors did not block CCL3-induced chemotaxis, but they were able to block CXCL12-induced chemotaxis. This confirms that Rac1 activation is not essential for CCL3-induced migration, however NSC23766 might have secondary effects on CXCR4. This small molecule exhibits agonistic features in internalisation and cAMP assays, whereas it acts as an antagonist for CXCR4 in migration and calcium release assays. Our findings strongly suggest that Rac1 activation is not necessary for CCL3 signalling, and reveal that NSC23766 could be a novel CXCR4 receptor ligand. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  1. CCL28 induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Veronica Rainone

    Full Text Available Mucosae-associated epithelial chemokine (MEC or CCL28 binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB Virus-like particles (VLPs. Mice receiving either HIV-1(IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+ splenocytes of HIV-1(IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.

  2. Assessment of CCL2 and CXCL8 chemokines in serum, bronchoalveolar lavage fluid and lung tissue samples from dogs affected with canine idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Roels, Elodie; Krafft, Emilie; Farnir, Frederic; Holopainen, Saila; Laurila, Henna P; Rajamäki, Minna M; Day, Michael J; Antoine, Nadine; Pirottin, Dimitri; Clercx, Cecile

    2015-10-01

    Canine idiopathic pulmonary fibrosis (CIPF) is a progressive disease of the lung parenchyma that is more prevalent in dogs of the West Highland white terrier (WHWT) breed. Since the chemokines (C-C motif) ligand 2 (CCL2) and (C-X-C motif) ligand 8 (CXCL8) have been implicated in pulmonary fibrosis in humans, the aim of the present study was to investigate whether these same chemokines are involved in the pathogenesis of CIPF. CCL2 and CXCL8 concentrations were measured by ELISA in serum and bronchoalveolar lavage fluid (BALF) from healthy dogs and WHWTs affected with CIPF. Expression of the genes encoding CCL2 and CXCL8 and their respective receptors, namely (C-C motif) receptor 2 (CCR2) and (C-X-C motif) receptor 2 (CXCR2), was compared in unaffected lung tissue and biopsies from dogs affected with CIPF by quantitative PCR and localisation of CCL2 and CXCL8 proteins were determined by immunohistochemistry. Significantly greater CCL2 and CXCL8 concentrations were found in the BALF from WHWTs affected with CIPF, compared with healthy dogs. Significantly greater serum concentrations of CCL2, but not CXCL8, were found in CIPF-affected dogs compared with healthy WHWTs. No differences in relative gene expression for CCL2, CXCL8, CCR2 or CXCR2 were observed when comparing lung biopsies from control dogs and those affected with CIPF. In affected lung tissues, immunolabelling for CCL2 and CXCL8 was observed in bronchial airway epithelial cells in dogs affected with CIPF. The study findings suggest that both CCL2 and CXCL8 are involved in the pathogenesis of CIPF. Further studies are required to determine whether these chemokines might have a clinical use as biomarkers of fibrosis or as targets for therapeutic intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Jun

    2012-07-01

    Full Text Available Abstract Background Neuropathic pain in the trigeminal system is frequently observed in clinic, but the mechanisms involved are largely unknown. In addition, the function of immune cells and related chemicals in the mechanism of pain has been recognized, whereas few studies have addressed the potential role of chemokines in the trigeminal system in chronic pain. The present study was undertaken to test the hypothesis that chemokine C-C motif ligand 2 (CCL2-chemokine C-C motif receptor 2 (CCR2 signaling in the trigeminal nucleus is involved in the maintenance of trigeminal neuropathic pain. Methods The inferior alveolar nerve and mental nerve transection (IAMNT was used to induce trigeminal neuropathic pain. The expression of ATF3, CCL2, glial fibrillary acidic protein (GFAP, and CCR2 were detected by immunofluorescence histochemical staining and western blot. The cellular localization of CCL2 and CCR2 were examined by immunofluorescence double staining. The effect of a selective CCR2 antagonist, RS504393 on pain hypersensitivity was checked by behavioral testing. Results IAMNT induced persistent (>21 days heat hyperalgesia of the orofacial region and ATF3 expression in the mandibular division of the trigeminal ganglion. Meanwhile, CCL2 expression was increased in the medullary dorsal horn (MDH from 3 days to 21 days after IAMNT. The induced CCL2 was colocalized with astroglial marker GFAP, but not with neuronal marker NeuN or microglial marker OX-42. Astrocytes activation was also found in the MDH and it started at 3 days, peaked at 10 days and maintained at 21 days after IAMNT. In addition, CCR2 was upregulated by IAMNT in the ipsilateral medulla and lasted for more than 21 days. CCR2 was mainly colocalized with NeuN and few cells were colocalized with GFAP. Finally, intracisternal injection of CCR2 antagonist, RS504393 (1, 10 μg significantly attenuated IAMNT-induced heat hyperalgesia. Conclusion The data suggest that CCL2-CCR

  4. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  5. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways.

    Science.gov (United States)

    Singh, Noopur; Sharma, Ashok

    Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  6. Plasma Chemokines in Patients with Alcohol Use Disorders: Association of CCL11 (Eotaxin-1) with Psychiatric Comorbidity

    Science.gov (United States)

    García-Marchena, Nuria; Araos, Pedro Fernando; Barrios, Vicente; Sánchez-Marín, Laura; Chowen, Julie A.; Pedraz, María; Castilla-Ortega, Estela; Romero-Sanchiz, Pablo; Ponce, Guillermo; Gavito, Ana L.; Decara, Juan; Silva, Daniel; Torrens, Marta; Argente, Jesús; Rubio, Gabriel; Serrano, Antonia; de Fonseca, Fernando Rodríguez; Pavón, Francisco Javier

    2017-01-01

    Recent studies have linked changes in peripheral chemokine concentrations to the presence of both addictive behaviors and psychiatric disorders. The present study further explore this link by analyzing the potential association of psychiatry comorbidity with alterations in the concentrations of circulating plasma chemokine in patients of both sexes diagnosed with alcohol use disorders (AUD). To this end, 85 abstinent subjects with AUD from an outpatient setting and 55 healthy subjects were evaluated for substance and mental disorders. Plasma samples were obtained to quantify chemokine concentrations [C–C motif (CC), C–X–C motif (CXC), and C–X3–C motif (CX3C) chemokines]. Abstinent AUD patients displayed a high prevalence of comorbid mental disorders (72%) and other substance use disorders (45%). Plasma concentrations of chemokines CXCL12/stromal cell-derived factor-1 (p < 0.001) and CX3CL1/fractalkine (p < 0.05) were lower in AUD patients compared to controls, whereas CCL11/eotaxin-1 concentrations were strongly decreased in female AUD patients (p < 0.001). In the alcohol group, CXCL8 concentrations were increased in patients with liver and pancreas diseases and there was a significant correlation to aspartate transaminase (r = +0.456, p < 0.001) and gamma-glutamyltransferase (r = +0.647, p < 0.001). Focusing on comorbid psychiatric disorders, we distinguish between patients with additional mental disorders (N = 61) and other substance use disorders (N = 38). Only CCL11 concentrations were found to be altered in AUD patients diagnosed with mental disorders (p < 0.01) with a strong main effect of sex. Thus, patients with mood disorders (N = 42) and/or anxiety (N = 16) had lower CCL11 concentrations than non-comorbid patients being more evident in women. The alcohol-induced alterations in circulating chemokines were also explored in preclinical models of alcohol use with male Wistar rats. Rats exposed to

  7. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  8. Protective Effect of γ-Irradiated Dried Powder of Artichoke Leaves against CCl4 Oxidative Stress Induced in Rat Liver

    International Nuclear Information System (INIS)

    Hamza, R.G.; El shahat, A.N.; Mekawey, H.M.S.

    2012-01-01

    Liver injuries are one of the most degenerative worldwide diseases and can lead to different complications. Artichoke (Cynara scolymus L.) is full of natural antioxidants and has hepato protective effect against liver toxicity. Gamma irradiation has been widely used as a first choice sterilization method of raw medicinal plants to be used in the phytotherapic industry worldwide .This study was designed to investigate the effect of dietary supplementation with γ- irradiated artichoke against carbon tetrachloride (CCl 4 )-induced oxidative stress and hepatotoxicity. The results of high performance liquid chromatography (HPLC) analysis of artichoke leaves indicated that the value of some of the main phenolic constituents was elevated under the effect of γ-irradiation (10 KGy). CCl 4 administration resulted in significant increase in the activity of serum alkaline phosphatase, gamma glutamyl transferase and transaminase in addition to an increase in the level of total bilirubine, malondialdehyde (MDA), glucose and the concentration of some lipid contents. Furthermore, CCl 4 administration reduced glutathione content, superoxides dismutase (SOD) and catalase (CAT) activity as well as a remarkable decrease in the level of insulin and high density lipoprotein-cholesterol was observed. In CCl 4 -treated rats dietary supplemented with either raw or γ-irradiated artichoke, a significant amelioration was observed on the adverse effects of the above mentioned parameters induced by CCl 4 administration. The present findings concluded that artichoke may be useful, as dietary supplement and possess phenolic compounds, for the prevention of oxidative stress-induced hepatotoxicity

  9. CCL18: a urinary marker of Gaucher cell burden in Gaucher patients

    NARCIS (Netherlands)

    Boot, Rolf G.; Verhoek, Marri; Langeveld, Mirjam; Renkema, G. Herma; Hollak, Carla E. M.; Weening, Jan J.; Donker-Koopman, Wilma E.; Groener, Johanna E.; Aerts, Johannes M. F. G.

    2006-01-01

    Glucosylceramide-laden tissue macrophages in Gaucher patients secrete large quantities of chitotriosidase and CC chemokine ligand 18 (CCL18), resulting in markedly increased plasma levels. We have comparatively investigated the occurrence of both parameters in plasma and urine samples of Gaucher

  10. The CCl4 action upon physiological indices in Lepus timidus and the protective role of some substances

    Directory of Open Access Journals (Sweden)

    Alina PAUNESCU

    2009-11-01

    Full Text Available Aim of this study is to demonstrate the hepatoprotective role of grape seed oil and Cynara scolymus leaf extract. This experiment lasted for 12 days performed on male and female rabbit. The animals were intoxicated in the latest day of experiment (day 12th with CCl4 in a dose of 30μl/100g body weight and a group of them was treated for 12 days with 0.4 mg/kg body weight/day of Cynara scolymus (artichoke leaf extract while another group was treated with grape seed oil (1ml/kg body weight/day. Intoxication with CCl4 caused an increase a glycemia and a number of leukocytes, decrease cholesterol, triglycerides value, and a number of erythrocytes. We observed that the extract of Cynara scolymus leaf and the grape seed oil had a protective effect against CCl4 intoxication.

  11. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    Science.gov (United States)

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  12. SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival

    Science.gov (United States)

    Becatti, Matteo; Fiorillo, Claudia; Barygina, Victoria; Cecchi, Cristina; Lotti, Torello; Prignano, Francesca; Silvestro, Agrippino; Nassi, Paolo; Taddei, Niccolò

    2014-01-01

    Vitiligo is an acquired and progressive hypomelanotic disease that manifests as circumscribed depigmented patches on the skin. The aetiology of vitiligo remains unclear, but recent experimental data underline the interactions between melanocytes and other typical skin cells, particularly keratinocytes. Our previous results indicate that keratinocytes from perilesional skin show the features of damaged cells. Sirtuins (silent mating type information regulation 2 homolog) 1, well-known modulators of lifespan in many species, have a role in gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection and healthy ageing. In the literature there is no evidence for SIRT1 signalling in vitiligo and its possible involvement in disease progression. Here, biopsies were taken from the perilesional skin of 16 patients suffering from non-segmental vitiligo and SIRT1 signalling was investigated in these cells. For the first time, a new SIRT1/Akt, also known as Protein Kinase B (PKB)/mitogen-activated protein kinase (MAPK) signalling has been revealed in vitiligo. SIRT1 regulates MAPK pathway via Akt-apoptosis signal-regulating kinase-1 and down-regulates pro-apoptotic molecules, leading to decreased oxidative stress and apoptotic cell death in perilesional vitiligo keratinocytes. We therefore propose SIRT1 activation as a novel way of protecting perilesional vitiligo keratinocytes from damage. PMID:24410795

  13. PcaO Positively Regulates pcaHG of the β-Ketoadipate Pathway in Corynebacterium glutamicum▿

    OpenAIRE

    Zhao, Ke-Xin; Huang, Yan; Chen, Xi; Wang, Nan-Xi; Liu, Shuang-Jiang

    2010-01-01

    We identified a new regulator, PcaO, which is involved in regulation of the protocatechuate (PCA) branch of the β-ketoadipate pathway in Corynebacterium glutamicum. PcaO is an atypical large ATP-binding LuxR family (LAL)-type regulator and does not have a Walker A motif. A mutant of C. glutamicum in which pcaO was disrupted (RES167ΔpcaO) was unable to grow on PCA, and growth on PCA was restored by complementation with pcaO. Both an enzymatic assay of PCA 3,4-dioxygenase activity (encoded by p...

  14. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway

    International Nuclear Information System (INIS)

    Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George; Zhang, Lianwen

    2016-01-01

    O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. - Highlights: • Reduced NEDD4-1 correlates with increased overall O-GlcNAc level. • OGT negatively regulates NEDD4-1 stability. • O-GlcNAc regulates NEDD4-1 through caspase-mediated pathway.

  15. Pseudogenization of the MCP-2/CCL8 chemokine gene in European rabbit (genus Oryctolagus, but not in species of Cottontail rabbit (Sylvilagus and Hare (Lepus

    Directory of Open Access Journals (Sweden)

    van der Loo Wessel

    2012-08-01

    Full Text Available Abstract Background Recent studies in human have highlighted the importance of the monocyte chemotactic proteins (MCP in leukocyte trafficking and their effects in inflammatory processes, tumor progression, and HIV-1 infection. In European rabbit (Oryctolagus cuniculus one of the prime MCP targets, the chemokine receptor CCR5 underwent a unique structural alteration. Until now, no homologue of MCP-2/CCL8a, MCP-3/CCL7 or MCP-4/CCL13 genes have been reported for this species. This is interesting, because at least the first two genes are expressed in most, if not all, mammals studied, and appear to be implicated in a variety of important chemokine ligand-receptor interactions. By assessing the Rabbit Whole Genome Sequence (WGS data we have searched for orthologs of the mammalian genes of the MCP-Eotaxin cluster. Results We have localized the orthologs of these chemokine genes in the genome of European rabbit and compared them to those of leporid genera which do (i.e. Oryctolagus and Bunolagus or do not share the CCR5 alteration with European rabbit (i.e. Lepus and Sylvilagus. Of the Rabbit orthologs of the CCL8, CCL7, and CCL13 genes only the last two were potentially functional, although showing some structural anomalies at the protein level. The ortholog of MCP-2/CCL8 appeared to be pseudogenized by deleterious nucleotide substitutions affecting exon1 and exon2. By analyzing both genomic and cDNA products, these studies were extended to wild specimens of four genera of the Leporidae family: Oryctolagus, Bunolagus, Lepus, and Sylvilagus. It appeared that the anomalies of the MCP-3/CCL7 and MCP-4/CCL13 proteins are shared among the different species of leporids. In contrast, whereas MCP-2/CCL8 was pseudogenized in every studied specimen of the Oryctolagus - Bunolagus lineage, this gene was intact in species of the Lepus - Sylvilagus lineage, and was, at least in Lepus, correctly transcribed. Conclusion The biological function of a gene was often

  16. Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.

    Science.gov (United States)

    Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying

    2017-06-01

    Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RPpathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RPpathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017

  17. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Zhou, Xiuping; Meng, Qingming; Xu, Xuebin; Zhi, Tongle; Shi, Qiong; Wang, Yong; Yu, Rutong

    2012-01-01

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  18. Ab initio ro-vibronic spectroscopy of SiCCl (X{sup ~2}Π)

    Energy Technology Data Exchange (ETDEWEB)

    Brites, Vincent [Université d’Evry Val d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR 8587, Boulevard F. Mitterrand, 91025 Evry Cedex (France); Mitrushchenkov, Alexander O.; Léonard, Céline, E-mail: celine.leonard@u-pem.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States)

    2014-07-21

    The full dimensional potential energy surfaces of the {sup 2}A{sup ′} and {sup 2}A{sup ′′} electronic components of X{sup ~2}Π SiCCl have been computed using the explicitly correlated coupled cluster method, UCCSD(T)-F12b, combined with a composite approach taking into account basis set incompleteness, core-valence correlation, scalar relativity, and higher order excitations. The spin-orbit and dipole moment surfaces have also been computed ab initio. The ro-vibronic energy levels and absorption spectrum at 5 K have been determined from variational calculations. The influence of each correction on the fundamental frequencies is discussed. An assignment is proposed for bands observed in the LIF experiment of Smith et al. [J. Chem. Phys. 117, 6446 (2002)]. The overall agreement between the experimental and calculated ro-vibronic levels is better than 7 cm{sup −1} which is comparable with the 10–20 cm{sup −1} resolution of the emission spectrum.

  19. Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Jan A Mennigen

    Full Text Available Rainbow trout are carnivorous fish and poor metabolizers of carbohydrates, which established this species as a model organism to study the comparative physiology of insulin. Following the recent characterisation of key roles of several miRNAs in the insulin action on hepatic intermediary metabolism in mammalian models, we investigated the hypothesis that hepatic miRNA expression is postprandially regulated in the rainbow trout and temporally coordinated in the context of insulin-mediated regulation of metabolic gene expression in the liver. To address this hypothesis, we used a time-course experiment in which rainbow trout were fed a commercial diet after short-term fasting. We investigated hepatic miRNA expression, activation of the insulin pathway, and insulin regulated metabolic target genes at several time points. Several miRNAs which negatively regulate hepatic insulin signaling in mammalian model organisms were transiently increased 4 h after the meal, consistent with a potential role in acute postprandial negative feed-back regulation of the insulin pathway and attenuation of gluconeogenic gene expression. We equally observed a transient increase in omy- miRNA-33 and omy-miRNA-122b 4 h after feeding, whose homologues have potent lipogenic roles in the liver of mammalian model systems. A concurrent increase in the activity of the hepatic insulin signaling pathway and the expression of lipogenic genes (srebp1c, fas, acly was equally observed, while lipolytic gene expression (cpt1a and cpt1b decreased significantly 4 h after the meal. This suggests lipogenic roles of omy-miRNA-33 and omy-miRNA-122b may be conserved between rainbow trout and mammals and that these miRNAs may furthermore contribute to acute postprandial regulation of de novo hepatic lipid synthesis in rainbow trout. These findings provide a framework for future research of miRNA regulation of hepatic metabolism in trout and will help to further elucidate the metabolic

  20. Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    International Nuclear Information System (INIS)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-01-01

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE −/− ) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE −/− mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. -- Graphical abstract: Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. Highlights: ► OPN–CD44 pathway plays a critical role in the development of atherosclerosis. ► We examine lesion area, OPN and CD44 changes after kaempferol treatment. ► Kaempferol treatment decreased atherosclerotic lesion area in ApoE −/− mice. ► Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE −/− mice. ► Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis.

  1. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com [College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128 (China); Lu, Xiang-Yang; Sun, Zhi-Liang [Hunan Agricultural University, Changsha 410128 (China); Zhang, Heng-Bo [Furong District Red Cross Hospital, Changsha 410126 (China)

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  2. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  3. Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury.

    Directory of Open Access Journals (Sweden)

    Arya J Bahrami

    Full Text Available Liver fibrosis is mediated by hepatic stellate cells (HSCs, which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR-mediated signaling, via endothelin-1 (ET-1 and angiotensin II (AngII, increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5, an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs. Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.

  4. Why are SiX5(-) and GeX5(-) (X = F, Cl) stable but not CF5(-) and CCl5(-)?

    Science.gov (United States)

    Marchaj, Marzena; Freza, Sylwia; Skurski, Piotr

    2012-03-01

    The possible existence of the CF(5)(-), CCl(5)(-), SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions has been investigated using ab initio methods. The species containing Si and Ge as central atoms were found to adopt the D(3h)-symmetry trigonal bipyramidal equilibrium structures whose thermodynamic stabilities were confirmed by examining the most probable fragmentation channels. The ab initio re-examination of the electronic stabilities of the SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions [using the OVGF(full) method with the 6-311+G(3df) basis set] led to the very large vertical electron detachment (VDE) energies of 9.316 eV (SiF(5)(-)) and 9.742 eV (GeF(5)(-)), whereas smaller VDEs of 6.196 and 6.452 eV were predicted for the SiCl(5)(-) and GeCl(5)(-) species, respectively. By contrast, the high-symmetry and structurally compact anionic CF(5)(-) and CCl(5)(-) systems cannot exist due to the strongly repulsive potential predicted for the X(-) (F(-) or Cl(-)) approaching the CX(4) (CF(4) or CCl(4)). The formation of weakly bound CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) anionic complexes (consisting of pseudotetrahedral neutral CX(4) with the weakly tethered X(-)) might be expected at low temperatures (approaching 0 K), whereas neither CX(5)(-) (CF(5)(-), CCl(5)(-)) systems nor CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) complexes can exist in the elevated temperatures (above 0K) due to their susceptibility to the fragmentation (leading to the X(-) loss). © 2012 American Chemical Society

  5. The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins.

    Science.gov (United States)

    Nolin, James D; Tully, Jane E; Hoffman, Sidra M; Guala, Amy S; van der Velden, Jos L; Poynter, Matthew E; van der Vliet, Albert; Anathy, Vikas; Janssen-Heininger, Yvonne M W

    2014-08-01

    Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A. Copyright © 2014 Elsevier Inc

  6. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2.

    Science.gov (United States)

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng

    2011-12-15

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Regulation of PGE2 signaling pathways and TNF-alpha signaling pathways on the function of bone marrow-derived dendritic cells and the effects of CP-25.

    Science.gov (United States)

    Li, Ying; Sheng, Kangliang; Chen, Jingyu; Wu, Yujing; Zhang, Feng; Chang, Yan; Wu, Huaxun; Fu, Jingjing; Zhang, Lingling; Wei, Wei

    2015-12-15

    This study was to investigate PGE2 and TNF-alpha signaling pathway involving in the maturation and activation of bone marrow dendritic cells (DCs) and the effect of CP-25. Bone marrow DCs were isolated and stimulated by PGE2 and TNF-alpha respectively. The markers of maturation and activation expressed on DCs, such as CD40, CD80, CD83, CD86, MHC-II, and the ability of antigen uptake of DCs were analyzed by flow cytometry. The proliferation of T cells co-cultured with DCs, the signaling pathways of PGE2-EP4-cAMP and TNF-alpha-TRADD-TRAF2-NF-κB in DCs were analyzed. The results showed that both PGE2 and TNF-alpha up-regulated the expressions of CD40, CD80, CD83, CD86, and MHC-II, decreased the antigen uptake of DCs, and DCs stimulated by PGE2 or TNF-alpha could increase T cell proliferation. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased significantly the expressions of CD40, CD80, CD83, CD86 and MHC-II, increased the antigen uptake of DCs, and suppressed T cell proliferation induced by DCs. PGE2 increased the expressions of EP4, NF-κB and down-regulated cAMP level of DCs. TNF-alpha could also up-regulate TNFR1, TRADD, TRAF2, and NF-κB expression of DCs. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased the expressions of EP4 and NF-κB, increased cAMP level in DCs stimulated by PGE2. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) also could down-regulate significantly TNFR1, TRADD, TRAF2, and NF-κB expression in DCs stimulated by TNF-alpha. These results demonstrate that PGE2 and TNF-alpha could enhance DCs functions by mediating PGE2-EP4-cAMP pathway, TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathway respectively. CP-25 might inhibit the function of DCs through regulating PGE2-EP4-cAMP and TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A fast transient response low dropout regulator with current control methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ma Zhuo; Guo Yang; Duan Zhikui; Xie Lunguo; Chen Jihua; Yu Jinshan, E-mail: guoyang@nudt.edu.cn [School of Computer, National University of Defense Technology, Changsha 410073 (China)

    2011-08-15

    A transient performance optimized CCL-LDO regulator is proposed. In the CCL-LDO, the control method of the charge pump phase-locked loop is adopted. A current control loop has the feedback signal and reference current to be compared, and then a loop filter generates the gate voltage of the power MOSFET by integrating the error current. The CCL-LDO has the optimized damping coefficient and natural resonant frequency, while its output voltage can be sub-1-V and is not restricted by the reference voltage. With a 1 {mu}F decoupling capacitor, the experimental results based on a 0.13 {mu}m CMOS process show that the output voltage is 1.0 V; when the workload changes from 100 {mu}A to 100 mA transiently, the stable dropout is 4.25 mV, the settling time is 8.2 {mu}s and the undershoot is 5.11 mV; when the workload changes from 100 mA to 100 {mu}A transiently, the stable dropout is 4.25 mV, the settling time is 23.3 {mu}s and the overshoot is 6.21 mV. The PSRR value is more than -95 dB. Most of the attributes of the CCL-LDO are improved rapidly with a FOM value of 0.0097.

  9. A fast transient response low dropout regulator with current control methodology

    International Nuclear Information System (INIS)

    Ma Zhuo; Guo Yang; Duan Zhikui; Xie Lunguo; Chen Jihua; Yu Jinshan

    2011-01-01

    A transient performance optimized CCL-LDO regulator is proposed. In the CCL-LDO, the control method of the charge pump phase-locked loop is adopted. A current control loop has the feedback signal and reference current to be compared, and then a loop filter generates the gate voltage of the power MOSFET by integrating the error current. The CCL-LDO has the optimized damping coefficient and natural resonant frequency, while its output voltage can be sub-1-V and is not restricted by the reference voltage. With a 1 μF decoupling capacitor, the experimental results based on a 0.13 μm CMOS process show that the output voltage is 1.0 V; when the workload changes from 100 μA to 100 mA transiently, the stable dropout is 4.25 mV, the settling time is 8.2 μs and the undershoot is 5.11 mV; when the workload changes from 100 mA to 100 μA transiently, the stable dropout is 4.25 mV, the settling time is 23.3 μs and the overshoot is 6.21 mV. The PSRR value is more than -95 dB. Most of the attributes of the CCL-LDO are improved rapidly with a FOM value of 0.0097.

  10. Polyphenolic screening and protective properties of some vegetables against CCl4 liver damage

    International Nuclear Information System (INIS)

    Salawu, S.O.; Akindahunsi, A.A.

    2007-12-01

    In the present study, we screened for the polyphenolic compounds present in some selected tropical vegetables and the protective effect of the vegetable extract against CCl 4 -induced hepatotoxicity in rats as a way of evaluating their medicinal potential in addition to their nutritional values. The use of HPLC/DAD/MS revealed the presence of some phenolic compounds in the studied vegetables. Crassocephalum crepidioides; caffeoyl derivatives, Talinum triangulare; rutin and kaempferol derivatives, Amaranthus hybridus; caffeoyl derivative, rutin and kaempferol derivative, Hibiscus esculentus; caffeoyl derivative, quercetin derivative and an unidentified flavonoid, Xanthosoma mafaffa; six unidentified flavonoids with similar absorption maximum at different retention times) and Celocia argentia (luteolin derivative and four unidentified flavonoids. Carbon tetrachloride at a dose of 0.5ml/kg body weight (b.w) produced liver damage in rats as manifested by the rise in the levels of ALT (IU/l), AST (IU/l) and total protein (g/l) in the serum (40.60 ± 3.50, 80.60 ± 5.10, 73.20 ± 1.87), in the liver homogenate (1300.00 ± 7.38, 1660.00 ± 13.69, 250.00 ± 7.51) and MDA content (nmol TBARS/mg Liver Protein) in the liver homogenate (82.00 ± 0.02, 82.00 ± 0.07) compared to the control. The result revealed a reduction of the serum marker enzymes (ALT, AST and Total protein), compared with the CCl 4 treated group after the administration of the various polyphenolic extract. In a similar manner, the extract brings about a reduction of the MDA content. It could be concluded that the protective properties exhibited by the vegetables could be amongst other factor due to the presence of some polyphenols. (author)

  11. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  12. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia

    Czech Academy of Sciences Publication Activity Database

    Špicarová, Diana; Adámek, Pavel; Kalynovska, Nataliia; Mrózková, Petra; Paleček, Jiří

    2014-01-01

    Roč. 81, JUN (2014), s. 75-84 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GPP303/12/P510; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LH12058 Grant - others:Univerzita Karlova(CZ) 253154 Institutional support: RVO:67985823 Keywords : pain * spinal cord * synaptic transmission * CCL2 * TRPV1 * EPSC Subject RIV: FH - Neurology Impact factor: 5.106, year: 2014

  13. Affected pathways and transcriptional regulators in gene expression response to an ultra-marathon trail: Global and independent activity approaches.

    Directory of Open Access Journals (Sweden)

    Maria Maqueda

    Full Text Available Gene expression (GE analyses on blood samples from marathon and half-marathon runners have reported significant impacts on the immune and inflammatory systems. An ultra-marathon trail (UMT represents a greater effort due to its more testing conditions. For the first time, we report the genome-wide GE profiling in a group of 16 runners participating in an 82 km UMT competition. We quantified their differential GE profile before and after the race using HuGene2.0st microarrays (Affymetrix Inc., California, US. The results obtained were decomposed by means of an independent component analysis (ICA targeting independent expression modes. We observed significant differences in the expression levels of 5,084 protein coding genes resulting in an overrepresentation of 14% of the human biological pathways from the Kyoto Encyclopedia of Genes and Genomes database. These were mainly clustered on terms related with protein synthesis repression, altered immune system and infectious diseases related mechanisms. In a second analysis, 27 out of the 196 transcriptional regulators (TRs included in the Open Regulatory Annotation database were overrepresented. Among these TRs, we identified transcription factors from the hypoxia-inducible factors (HIF family EPAS1 (p< 0.01 and HIF1A (p<0.001, and others jointly described in the gluconeogenesis program such as HNF4 (p< 0.001, EGR1 (p<0.001, CEBPA (p< 0.001 and a highly specific TR, YY1 (p<0.01. The five independent components, obtained from ICA, further revealed a down-regulation of 10 genes distributed in the complex I, III and V from the electron transport chain. This mitochondrial activity reduction is compatible with HIF-1 system activation. The vascular endothelial growth factor (VEGF pathway, known to be regulated by HIF, also emerged (p<0.05. Additionally, and related to the brain rewarding circuit, the endocannabinoid signalling pathway was overrepresented (p<0.05.

  14. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program.We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators.This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further investigations of the contributions of miRNAs to mast cell differentiation and

  15. Amelioration effects against N-nitrosodiethylamine and CCl(4)-induced hepatocarcinogenesis in Swiss albino rats by whole plant extract of Achyranthes aspera.

    Science.gov (United States)

    Kartik, R; Rao, Ch V; Trivedi, S P; Pushpangadan, P; Reddy, G D

    2010-12-01

    The prevalence of oxidative stress may be implicated in the etiology of many pathological conditions. Protective antioxidant action imparted by many plant extracts and plant products make them a promising therapeutic drug for free-radical-induced pathologies. In this study, we assessed the antioxidant potential and suppressive effects of Achyranthes aspera by evaluating the hepatic diagnostic markers on chemical-induced hepatocarcinogenesis. The in vivo model of hepatocarcinogenesis was studied in Swiss albino rats. Experimental rats were divided into five groups: control, positive control (NDEA and CCl(4)), A. aspera treated (100, 200, and 400 mg/kg b.w.). At 20 weeks after the administration of NDEA and CCl(4), treated rats received A. aspera extract (AAE) at a dose of 100, 200, and 400 mg/kg once daily route. At the end of 24 weeks, the liver and relative liver weight and body weight were estimated. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH) were assayed. The hepatic diagnostic markers namely serum glutamic oxaloacetic transminase (AST), serum glutamic pyruvate transminase (ALT), serum alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT), and bilirubin (BL) were also assayed, and the histopathological studies were investigated in control, positive control, and experimental groups. The extract did not show acute toxicity and the per se effect of the extract showed decrease in LPO, demonstrating antioxidant potential and furthermore no change in the hepatic diagnosis markers was observed. Administration of AAE suppressed hepatic diagnostic and oxidative stress markers as revealed by decrease in NDEA and CCl(4) -induced elevated levels of SGPT, SGOT, SALP, GGT, bilirubin, and LPO. There was also a significant elevation in the levels of SOD, CAT, GPx, GST, and GSH as observed after AAE treatment. The liver and relative liver weight were

  16. Effect of different levels of marigold (Calendula officinails oil extract on performance, blood parameters and immune response of broiler chickens challenged with CCl4

    Directory of Open Access Journals (Sweden)

    Reyhaneh Vahed

    2016-04-01

    Full Text Available Introduction Although use of antibiotic as growth promoter in poultry and animal nutrition have led to positive effects, researches indicated that antibiotic residues in animal and poultry products caused resistance of bacteria and fungi strains and a resistance to antibiotics as a treatment tool for human diseases. Herbal extracts, probiotics and enzymes are suggested as replacers for antibiotics in animal and poultry nutrition. Plants and their active substances with their variety of functions are used as medicinal plants for years to prevent and treat many diseases in human, animal and poultry. Oil extracts of marigold has many active substances such as saponins, flavonoids and antioxidants and serve as a strong antioxidant to control free radicals. Therefore, the extract of marigold was used to test its curing effects on challenged birds with tetra hydrochloride (CCl4, an inducer for liver damage. Material and methods This experiment was conducted to evaluate the effects of marigold oil extracts (MOE on performance, blood parameters and immune response of broiler chickens in a 42-day period. A total of 200 Ross 308 male broiler chickens were allocated to five dietary treatments with four replicates of 10 birds each. Treatments consisted of 1 control (without marigold extract and CCl4, 2 CCl4, 3-5 150, 300, and 450 mg/kg marigold oil extract as supplement + CCl4 (1 mg/kg body weight. CCl4 was injected intraperitoneally from 21 to 30 days of age in a 2- day intervals. During this period sodium chloride (0.9% was added to control group. At day 33, one chick from each replicate of treatments was selected, and their blood and internal organs were used for different bio assays. Results and Discussion No significant differences detected among treatments for performance. However, the highest and the lowest feed intake at starter and grower periods obtained from the treatments used MOE and control groups, respectively (table 2. The highest and the

  17. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    OpenAIRE

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial ou...

  18. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium

    KAUST Repository

    Cheung, Lydia W T; Walkiewicz, Katarzyna Wiktoria; Besong, Tabot M.D.; Guo, Huifang; Hawke, David H.; Arold, Stefan T.; Mills, Gordon B.

    2015-01-01

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomerdimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development. © Cheung et al.

  19. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Myoung Sook Kim

    2010-02-01

    Full Text Available Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH in a significant proportion of primary esophageal squamous cell carcinoma (ESCC samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/beta-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of beta-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/beta-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.

  20. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium

    KAUST Repository

    Cheung, Lydia W T

    2015-07-29

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomerdimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development. © Cheung et al.

  1. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    Science.gov (United States)

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  2. DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway.

    Science.gov (United States)

    Zhou, Ting-Ting; Ma, Fei; Shi, Xiao-Fan; Xu, Xin; Du, Te; Guo, Xiao-Dan; Wang, Gai-Hong; Yu, Liang; Rukachaisirikul, Vatcharin; Hu, Li-Hong; Chen, Jing; Shen, Xu

    2017-08-01

    Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4( 1H )-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in db/db mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca 2+ )/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM. © 2017 Society for Endocrinology.

  3. MIPAS IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) measurements: accuracy, precision and long-term stability

    Science.gov (United States)

    Eckert, E.; Laeng, A.; Lossow, S.; Kellmann, S.; Stiller, G.; von Clarmann, T.; Glatthor, N.; Höpfner, M.; Kiefer, M.; Oelhaf, H.; Orphal, J.; Funke, B.; Grabowski, U.; Haenel, F.; Linden, A.; Wetzel, G.; Woiwode, W.; Bernath, P. F.; Boone, C.; Dutton, G. S.; Elkins, J. W.; Engel, A.; Gille, J. C.; Kolonjari, F.; Sugita, T.; Toon, G. C.; Walker, K. A.

    2016-07-01

    Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MIPAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). These profiles have been compared to measurements taken by the balloon-borne cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS-STRatospheric aircraft (MIPAS-STR), the satellite-borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS), as well as the ground-based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005-April 2012) of MIPAS. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (full resolution, FR: July 2002-March 2004) and were used to validate MIPAS CFC-11 and CFC-12 products during that time, as well as profiles from the Improved Limb Atmospheric Spectrometer, ILAS-II. In general, we find that MIPAS shows slightly higher values for CFC-11 at the lower end of the profiles (below ˜ 15 km) and in a comparison of HATS ground-based data and MIPAS measurements at 3 km below the tropopause. Differences range from approximately 10 to 50 pptv ( ˜ 5-20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11 and is not as obvious in the relative differences between MIPAS and any of the comparison instruments. Differences at the lower end of the profile (below ˜ 15 km) and in

  4. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1 from Epimedium sagittatum (Sieb. Et Zucc. Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR and anthocyanidin synthase (ANS. In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  5. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Huang, Wenjun; Sun, Wei; Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying

    2013-01-01

    Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  6. VDR Activation Reduces Proteinuria and High-Glucose-Induced Injury of Kidneys and Podocytes by Regulating Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-08-01

    Full Text Available Background: Diabetic nephropathy (DN is a major cause of end-stage renal disease and proteinuria is one of the most prominent clinical manifestations. The expression of Vitamin D receptor (VDR in patients with chronic kidney diseases was decreased, while VDR agonists could partially alleviate the proteinuria of DN in animal models. The present study was designed to determine the expression of VDR in renal tissues and its relationship with proteinuria the diabetic model db/db mice. Methods: The regulation effects of VDR on the Wnt signaling pathway were analyzed using RNA interference and VDR agonist paricalcitol. Results: With the increase in age of the db/db mice, the VDR protein and mRNA levels in renal tissues were decreased, proteinuria increased, and the protein and mRNA levels of GSK-3β of and β-catenin increased. Paricalcitol treatment resulted in the up-regulation of VDR and down-regulation of GSK-3β and β-catenin, indicating that VDR had a regulatory effect on the Wnt signaling pathway. Conclusion: VDR activation could reduce proteinuria of DN mice and alleviate high-glucose-induced injury of kidneys and podocytes by regulating the key molecules of Wnt signaling pathway.

  7. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  8. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation

    Science.gov (United States)

    Fuchs, Gilad; Shema, Efrat; Vesterman, Rita; Kotler, Eran; Wolchinsky, Zohar; Wilder, Sylvia; Golomb, Lior; Pribluda, Ariel; Zhang, Feng; Haj-Yahya, Mahmood; Feldmesser, Ester; Brik, Ashraf; Yu, Xiaochun; Hanna, Jacob; Aberdam, Daniel; Domany, Eytan; Oren, Moshe

    2012-01-01

    Summary Embryonic stem cells (ESC) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner. PMID:22681888

  9. Nicaraven reduces cancer metastasis to irradiated lungs by decreasing CCL8 and macrophage recruitment.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng

    2018-04-01

    Radiotherapy for cancer patients damages normal tissues, thereby inducing an inflammatory response and promoting cancer metastasis. We investigated whether nicaraven, a compound with radioprotective and anti-inflammatory properties, could attenuate radiation-induced cancer metastasis to the lungs of mice. Nicaraven and amifostine, another commercial radioprotective agent, had limited effects on both the radiosensitivity of Lewis lung carcinoma cells in vitro and radiation-induced tumor growth inhibition in vivo. Using experimental and spontaneous metastasis models, we confirmed that thorax irradiation with 5 Gy X-rays dramatically increased the number of tumors in the lungs. Interestingly, the number of tumors in the lungs was significantly reduced by administering nicaraven but not by administering amifostine daily after radiation exposure. Furthermore, nicaraven administration effectively inhibited CCL8 expression and macrophage recruitment in the lungs 1 day after thorax irradiation. Our data suggest that nicaraven attenuates radiation-induced lung metastasis, likely by regulating the inflammatory response after radiation exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. NLRC5 promotes cell proliferation via regulating the AKT/VEGF-A signaling pathway in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    He, Ying-hua; Li, Ming-fang; Zhang, Xing-yan; Meng, Xiao-ming; Huang, Cheng; Li, Jun

    2016-01-01

    NLRC5, a newly found member of the NLR family and the largest member of nucleotide-binding, has been reported to regulate immune responses and is associated with hepatocellular carcinoma (HCC). We investigated the mechanisms and signaling pathways of NLRC5 in HCC progression. Increased expression of NLRC5, vascular endothelial growth factor-A (VEGF-A) were found in human HCC tissue. There was a positive correlation between NLRC5 and VEGF-A expression and cell proliferation were enhanced in NLRC5-overexpressing HepG2 cells, but inhibited in cells with NLRC5 silencing treatment. Interestingly, we found that up-regulation of NLRC5 also coordinated the activation of PI3K/AKT signaling pathway. An AKT inhibitor LY294002 blocked VEGF-A expression and AKT phosphorylation in HepG2 cells and NLRC5-overexpressing HepG2 cells. These results demonstrate that NLRC5 promotes HCC progression via the AKT/VEGF-A signaling pathway.

  11. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways.

    Directory of Open Access Journals (Sweden)

    Jonathan D Stoltzfus

    Full Text Available The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i. The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP signaling, insulin/IGF-1-like signaling (IIS, transforming growth factor β (TGFβ signaling, and biosynthesis of dafachronic acid (DA ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between

  12. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  13. A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus Egg Extracts

    OpenAIRE

    Thorne, Curtis A.; Lafleur, Bonnie; Lewis, Michelle; Hanson, Alison J.; Jernigan, Kristin K.; Weaver, David C.; Huppert, Kari A.; Chen, Tony W.; Wichadiit, Chonlarat; Cselenyi, Christopher S.; Tahinci, Emilios; Meyers, Kelly C.; Waskow, Emily; Orton, Darren; Salic, Adrian

    2011-01-01

    Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the...

  14. The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp.

    Science.gov (United States)

    Gong, Yi; Ju, Chenyu; Zhang, Xiaobo

    2015-10-01

    The p53 protein plays an important role in apoptosis which is involved in the immunity of animals. However, effects of the miRNA-mediated regulation of p53 expression on apoptosis and virus infection are not extensively investigated. To address this issue, the miRNA-mediated p53-dependent apoptotic pathway was explored in this study. The results indicated that p53 could regulate the apoptotic activity of Marsupenaeus japonicas shrimp and influence the infection of white spot syndrome virus (WSSV). The further data presented that miR-1000 could target the 3'-untranslated region (3'UTR) of p53 gene. The results of in vivo experiments showed that the miR-1000 overexpression led to significant decreases of shrimp apoptotic activity and the capacity of WSSV infection, while the miR-1000 silencing resulted in significant increases of apoptotic activity and virus infection, indicating that miR-1000 took great effects on apoptosis and virus infection by targeting p53. Therefore, our study revealed a novel mechanism that the miR-1000-p53 pathway regulated apoptosis and virus infection in shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  16. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran.

    Science.gov (United States)

    Fisher, Katherine H; Stec, Wojciech; Brown, Stephen; Zeidler, Martin P

    2016-02-01

    Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms. © 2016 Fisher et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    Science.gov (United States)

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  18. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kotani Hidehito

    2009-07-01

    Full Text Available Abstract Background The Hedgehog (HH pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3β, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC. Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3β, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3β (Ser9 was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3β followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway.

  19. Aberrant Regulation of Notch3 Signaling Pathway in Polycystic Kidney Disease.

    Science.gov (United States)

    Idowu, Jessica; Home, Trisha; Patel, Nisha; Magenheimer, Brenda; Tran, Pamela V; Maser, Robin L; Ward, Christopher J; Calvet, James P; Wallace, Darren P; Sharma, Madhulika

    2018-02-20

    Polycystic kidney disease (PKD) is a genetic disorder characterized by fluid-filled cysts in the kidney and liver that ultimately leads to end-stage renal disease. Currently there is no globally approved therapy for PKD. The Notch signaling pathway regulates cellular processes such as proliferation and de-differentiation, which are cellular hallmarks of PKD. Thus we hypothesized that the Notch pathway plays a critical role in PKD. Evaluation of protein expression of Notch signaling components in kidneys of Autosomal Recessive PKD (ARPKD) and Autosomal Dominant PKD (ADPKD) mouse models and of ADPKD patients revealed that Notch pathway members, particularly Notch3, were consistently upregulated or activated in cyst-lining epithelial cells. Notch3 expression correlated with rapidly growing cysts and co-localized with the proliferation marker, PCNA. Importantly, Notch inhibition significantly decreased forskolin-induced Notch3 activation and proliferation of primary human ADPKD cells, and significantly reduced cyst formation and growth of human ADPKD cells cultured in collagen gels. Thus our data indicate that Notch3 is aberrantly activated and facilitates epithelial cell proliferation in PKD, and that inhibition of Notch signaling may prevent cyst formation and growth.

  20. Attenuation of CCl4-Induced Oxidative Stress and Hepatonephrotoxicity by Saudi Sidr Honey in Rats

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Yahya

    2013-01-01

    Full Text Available The present study was undertaken to investigate the possible protective effect of Saudi Sidr honey (SSH on carbon tetrachloride (CCl4 induced oxidative stress and liver and kidney damage in rat. Moreover, the antioxidant activity and the phenolic and flavonoidal contents were determined. The hepatorenal protective activity of the SSH was determined by assessing biochemical, hematological, and histological parameters. Serum transaminases, ALP, GGT, creatinine, bilirubin urea, uric acid, and MDA level in liver and kidney tissues were significantly elevated, and the antioxidant status of nonprotein sulfhydryls, albumin, and total protein levels in liver and kidney were declined significantly in CCl4 alone treated animals. Pretreatment with SSH and silymarin prior to the administration of CCl4 significantly prevented the increase of the serum levels of enzyme markers and reduced oxidative stress. SSH also exhibited a significant lipid-lowering effect and caused an HDL-C enhanced level in serum. The histopathological evaluation of the liver and kidney also revealed that honey protected incidence of both liver and kidney lesions. Moreover, SSH showed a strong antioxidant activity in DPPH and β-carotene-linoleic acid assays. SSH was found to contain phenolic compounds. Additionally, the SSH supplementation restored the hepatocytes viability against 2′,7′-dichlorofluorescein (DCF toxicity in ex vivo test.

  1. Danqi Pill regulates lipid metabolism disorder induced by myocardial ischemia through FATP-CPTI pathway.

    Science.gov (United States)

    Wang, Yong; Li, Chun; Wang, Qiyan; Shi, Tianjiao; Wang, Jing; Chen, Hui; Wu, Yan; Han, Jing; Guo, Shuzhen; Wang, Yuanyuan; Wang, Wei

    2015-02-21

    Danqi Pill (DQP), which contains Chinese herbs Salvia miltiorrhiza Bunge and Panax notoginseng, is widely used in the treatment of myocardial ischemia (MI) in China. Its regulatory effects on MI-associated lipid metabolism disorders haven't been comprehensively studied so far. We aimed to systematically investigate the regulatory mechanism of DQP on myocardial ischemia-induced lipid metabolism disorders. Myocardial ischemia rat model was induced by left anterior descending coronary artery ligation. The rat models were divided into three groups: model group with administration of normal saline, study group with administration of DanQi aqueous solution (1.5 mg/kg) and positive-control group with administration of pravastatin aqueous solution (1.2 mg/kg). In addition, another sham-operated group was set as negative control. At 28 days after treatment, cardiac function and degree of lipid metabolism disorders in rats of different groups were measured. Plasma lipid disorders were induced by myocardial ischemia, with manifestation of up-regulation of triglyceride (TG), low density lipoprotein (LDL), Apolipoprotein B (Apo-B) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR). DQP could down-regulate the levels of TG, LDL, Apo-B and HMGCR. The Lipid transport pathway, fatty acids transport protein (FATP) and Carnitine palmitoyltransferase I (CPTI) were down-regulated in model group. DQP could improve plasma lipid metabolism by up-regulating this lipid transport pathway. The transcription factors peroxisome proliferator-activated receptor α (PPARα) and retinoid X receptors (RXRs), which regulate lipid metabolism, were also up-regulated by DQP. Furthermore, DQP was able to improve heart function and up-regulate ejection fraction (EF) by increasing the cardiac diastolic volume. Our study reveals that DQP would be an ideal alternative drug for the treatment of dyslipidemia which is induced by myocardial ischemia.

  2. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells.

    Science.gov (United States)

    Hsiang, Chien-Yun; Lin, Li-Jen; Kao, Shung-Te; Lo, Hsin-Yi; Chou, Shun-Ting; Ho, Tin-Yun

    2015-07-15

    Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome.

    Science.gov (United States)

    Vuong, Bao Q; Arenzana, Teresita L; Showalter, Brian M; Losman, Julie; Chen, X Peter; Mostecki, Justin; Banks, Alexander S; Limnander, Andre; Fernandez, Neil; Rothman, Paul B

    2004-10-01

    The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.

  4. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1.

    Science.gov (United States)

    Lee, Seung Baek; Kim, Jung Jin; Nam, Hyun-Ja; Gao, Bowen; Yin, Ping; Qin, Bo; Yi, Sang-Yeop; Ham, Hyoungjun; Evans, Debra; Kim, Sun-Hyun; Zhang, Jun; Deng, Min; Liu, Tongzheng; Zhang, Haoxing; Billadeau, Daniel D; Wang, Liewei; Giaime, Emilie; Shen, Jie; Pang, Yuan-Ping; Jen, Jin; van Deursen, Jan M; Lou, Zhenkun

    2015-10-01

    Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Functional role of CCL5/RANTES for HCC progression during chronic liver disease

    NARCIS (Netherlands)

    Mohs, Antje; Kuttkat, Nadine; Reissing, Johanna; Zimmermann, Henning Wolfgang; Sonntag, Roland; Proudfoot, Amanda; Youssef, Sameh A.; de Bruin, Alain; Cubero, Francisco Javier; Trautwein, Christian

    Background & Aims: During liver inflammation, triggering fibrogenesis and carcinogenesis immune cells play a pivotal role. In the present study we investigated the role of CCL5 in human and in murine models of chronic liver inflammation leading to hepatocellular carcinoma (HCC) development. Methods:

  6. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas' Heart Disease: Antagonistic Participation of CCR1+ and CCR5+ Cells in Chronic Chagasic Cardiomyopathy.

    Science.gov (United States)

    Batista, Angelica Martins; Alvarado-Arnez, Lucia Elena; Alves, Silvia Marinho; Melo, Gloria; Pereira, Isabela Resende; Ruivo, Leonardo Alexandre de Souza; da Silva, Andrea Alice; Gibaldi, Daniel; da Silva, Thayse do E S Protásio; de Lorena, Virginia Maria Barros; de Melo, Adriene Siqueira; de Araújo Soares, Ana Karine; Barros, Michelle da Silva; Costa, Vláudia Maria Assis; Cardoso, Cynthia C; Pacheco, Antonio G; Carrazzone, Cristina; Oliveira, Wilson; Moraes, Milton Ozório; Lannes-Vieira, Joseli

    2018-01-01

    Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD), a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC) is a fibrogenic inflammation mainly composed of CD8 + and CD4 + T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs) in CC-chemokine ligand and receptor genes may determine protein expression. Herein, we evaluated the association of SNPs in the CC-chemokines CCL2 (rs1024611) and CCL5 (rs2107538, rs2280788) and the CCL5/RANTES receptors CCR1 (rs3181077, rs1491961, rs3136672) and CCR5 (rs1799987) with risk and progression toward CCC. We performed a cross-sectional association study of 406 seropositive patients from endemic areas for CD in the State of Pernambuco, Northeast Brazil. The patients were classified as non-cardiopathic (A, n  = 110) or cardiopathic (mild, B1, n  = 163; severe, C, n  = 133). Serum levels of CCL5 and CCL2/MCP-1 were elevated in CD patients but were neither associated with risk/severity of CCC nor with SNP genotypes. After logistic regression analysis with adjustment for the covariates gender and ethnicity, CCL5 -403 (rs2107538) CT heterozygotes (OR = 0.5, P -value = 0.04) and T carriers (OR = 0.5, P -value = 0.01) were associated with protection against CCC. To gain insight into the participation of the CCL5-CCR5/CCR1 axis in CCC, mice were infected with the Colombian T. cruzi strain. Increased CCL5 concentrations were detected in cardiac tissue. In spleen, frequencies of CCR1 + CD8 + T cells and CD14 + macrophages were decreased, while frequencies of CCR5 + cells were increased. Importantly, CCR1 + CD14 + macrophages were mainly IL-10 + , while CCR5 + cells were mostly TNF + . CCR5-deficient infected mice presented reduced TNF concentrations and injury in heart tissue. Selective blockade of CCR1 (Met

  7. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas’ Heart Disease: Antagonistic Participation of CCR1+ and CCR5+ Cells in Chronic Chagasic Cardiomyopathy

    Science.gov (United States)

    Batista, Angelica Martins; Alvarado-Arnez, Lucia Elena; Alves, Silvia Marinho; Melo, Gloria; Pereira, Isabela Resende; Ruivo, Leonardo Alexandre de Souza; da Silva, Andrea Alice; Gibaldi, Daniel; da Silva, Thayse do E. S. Protásio; de Lorena, Virginia Maria Barros; de Melo, Adriene Siqueira; de Araújo Soares, Ana Karine; Barros, Michelle da Silva; Costa, Vláudia Maria Assis; Cardoso, Cynthia C.; Pacheco, Antonio G.; Carrazzone, Cristina; Oliveira, Wilson; Moraes, Milton Ozório; Lannes-Vieira, Joseli

    2018-01-01

    Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD), a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC) is a fibrogenic inflammation mainly composed of CD8+ and CD4+ T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs) in CC-chemokine ligand and receptor genes may determine protein expression. Herein, we evaluated the association of SNPs in the CC-chemokines CCL2 (rs1024611) and CCL5 (rs2107538, rs2280788) and the CCL5/RANTES receptors CCR1 (rs3181077, rs1491961, rs3136672) and CCR5 (rs1799987) with risk and progression toward CCC. We performed a cross-sectional association study of 406 seropositive patients from endemic areas for CD in the State of Pernambuco, Northeast Brazil. The patients were classified as non-cardiopathic (A, n = 110) or cardiopathic (mild, B1, n = 163; severe, C, n = 133). Serum levels of CCL5 and CCL2/MCP-1 were elevated in CD patients but were neither associated with risk/severity of CCC nor with SNP genotypes. After logistic regression analysis with adjustment for the covariates gender and ethnicity, CCL5 −403 (rs2107538) CT heterozygotes (OR = 0.5, P-value = 0.04) and T carriers (OR = 0.5, P-value = 0.01) were associated with protection against CCC. To gain insight into the participation of the CCL5–CCR5/CCR1 axis in CCC, mice were infected with the Colombian T. cruzi strain. Increased CCL5 concentrations were detected in cardiac tissue. In spleen, frequencies of CCR1+ CD8+ T cells and CD14+ macrophages were decreased, while frequencies of CCR5+ cells were increased. Importantly, CCR1+CD14+ macrophages were mainly IL-10+, while CCR5+ cells were mostly TNF+. CCR5-deficient infected mice presented reduced TNF concentrations and injury in heart tissue. Selective blockade of CCR1 (Met-RANTES therapy) in

  8. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas’ Heart Disease: Antagonistic Participation of CCR1+ and CCR5+ Cells in Chronic Chagasic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Angelica Martins Batista

    2018-04-01

    Full Text Available Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD, a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC is a fibrogenic inflammation mainly composed of CD8+ and CD4+ T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs in CC-chemokine ligand and receptor genes may determine protein expression. Herein, we evaluated the association of SNPs in the CC-chemokines CCL2 (rs1024611 and CCL5 (rs2107538, rs2280788 and the CCL5/RANTES receptors CCR1 (rs3181077, rs1491961, rs3136672 and CCR5 (rs1799987 with risk and progression toward CCC. We performed a cross-sectional association study of 406 seropositive patients from endemic areas for CD in the State of Pernambuco, Northeast Brazil. The patients were classified as non-cardiopathic (A, n = 110 or cardiopathic (mild, B1, n = 163; severe, C, n = 133. Serum levels of CCL5 and CCL2/MCP-1 were elevated in CD patients but were neither associated with risk/severity of CCC nor with SNP genotypes. After logistic regression analysis with adjustment for the covariates gender and ethnicity, CCL5 −403 (rs2107538 CT heterozygotes (OR = 0.5, P-value = 0.04 and T carriers (OR = 0.5, P-value = 0.01 were associated with protection against CCC. To gain insight into the participation of the CCL5–CCR5/CCR1 axis in CCC, mice were infected with the Colombian T. cruzi strain. Increased CCL5 concentrations were detected in cardiac tissue. In spleen, frequencies of CCR1+ CD8+ T cells and CD14+ macrophages were decreased, while frequencies of CCR5+ cells were increased. Importantly, CCR1+CD14+ macrophages were mainly IL-10+, while CCR5+ cells were mostly TNF+. CCR5-deficient infected mice presented reduced TNF concentrations and injury in heart tissue. Selective blockade of CCR1 (Met-RANTES therapy

  9. 20-hydroxyecdysone positively regulates the transcription of the antimicrobial peptide, lebocin, via BmEts and BmBR-C Z4 in the midgut of Bombyx mori during metamorphosis.

    Science.gov (United States)

    Mai, Taoyi; Chen, Shuna; Lin, Xianyu; Zhang, Xiaojuan; Zou, Xiaopeng; Feng, Qili; Zheng, Sichun

    2017-09-01

    Metamorphosis is an essential physiological process in insects. This process is triggered by 20-hydroxyecydsone (20E). Lebocin, an antimicrobial peptide of Lepidoptera insects, was significantly up-regulated in the midgut, but not in the fat body of Bombyx mori during metamorphosis. In this study, the expression regulation of lebocin in B. mori midgut was studied. The results showed that B. mori lebocin and its activator BmEts were not responsive to bacterial infection in the midgut, instead, the expression of both genes was up-regulated by 20E treatment. The transcription factor BR-C Z4 in the 20E signal pathway enhanced lebocin promoter activity by directly binding to an upstream cis-response element of the promoter. In the fat body, the mRNA level of B. mori lebocin was decreased when the insect transformed from larval to pupal stage and was increased by immune challenge. The expression profiles of lebocin in Lepidopteran Spodoptera litura was also analyzed and the similar results were observed, S. litura lebocin was significantly up-regulated during midgut regeneration and mainly present in the new-formed intestinal cells of the midgut. All results together suggest that during metamorphosis 20E may activate lebocin expression via BmBR-C Z4 and BmEts in the midgut, where the antimicrobial peptide was produced to protect the midgut from infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Regulation of autophagy by AMP-activated protein kinase/sirtuin 1 pathway reduces spinal cord neurons damage.

    Science.gov (United States)

    Yan, Peng; Bai, Liangjie; Lu, Wei; Gao, Yuzhong; Bi, Yunlong; Lv, Gang

    2017-09-01

    AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI) in vitro . The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro , indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro . Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  11. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. UV Absorption Cross Sections of Nitrous Oxide (N2O) and Carbon Tetrachloride (CCl4) Between 210 and 350 K and the Atmospheric Implications

    Science.gov (United States)

    Carlon, Nabilah Rontu; Papanastasiou, Dimitrios K.; Fleming, Eric L.; Jackman, Charles H.; Newman, Paul A.; Burkholder, James B.

    2010-01-01

    Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at 27 temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in 37 atmospheric model calculations is presented.

  13. Mechanisms of regulation in the interferon factor 3 (IRF- 3) pathway

    OpenAIRE

    Limmer, Kirsten

    2008-01-01

    Interferon regulatory factor 3 (IRF-3) plays a critical role in the host cell response to both bacterial and viral infection. IRF-3 is activated by Toll-like receptors (TLRs) and cytoplasmic nucleic acid sensors, and serves to upregulate interferon beta and interferon stimulated genes (ISGs), thereby providing a quick and effective response to infection. In this work, two novel mechanisms of regulation in the IRF-3 pathway are revealed. The first part of this thesis work shows that upon bindi...

  14. Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension.

    Science.gov (United States)

    Zheng, Lei; Qin, Jun; Sun, Longci; Gui, Liang; Zhang, Chihao; Huang, Yijun; Deng, Wensheng; Huang, An; Sun, Dong; Luo, Meng

    2017-06-01

    Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. Portal hypertension was induced in rats via an injection of CCl 4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. Upregulation of MRTF-A protein expression in the livers of rats with CCl 4 -induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. Increased intrahepatic resistance in rats with CCl 4 -induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl 4 -induced portal hypertension. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion.

    Science.gov (United States)

    Dresselhaus, Erica; Duerr, James M; Vincent, Fabien; Sylvain, Emily K; Beyna, Mercedes; Lanyon, Lorraine F; LaChapelle, Erik; Pettersson, Martin; Bales, Kelly R; Ramaswamy, Gayathri

    2018-01-01

    Despite the important role of apolipoprotein E (apoE) secretion from astrocytes in brain lipid metabolism and the strong association of apoE4, one of the human apoE isoforms, with sporadic and late onset forms of Alzheimer's disease (AD) little is known about the regulation of astrocytic apoE. Utilizing annotated chemical libraries and a phenotypic screening strategy that measured apoE secretion from a human astrocytoma cell line, inhibition of pan class I histone deacetylases (HDACs) was identified as a mechanism to increase apoE secretion. Knocking down select HDAC family members alone or in combination revealed that inhibition of the class I HDAC family was responsible for enhancing apoE secretion. Knocking down LXRα and LXRβ genes revealed that the increase in astrocytic apoE in response to HDAC inhibition occurred via an LXR-independent pathway. Collectively, these data suggest that pan class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion.

  16. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules

    DEFF Research Database (Denmark)

    Bech, Rikke; Jalilian, Babak; Agger, Ralf

    2016-01-01

    BACKGROUND: Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part...... influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. METHODS: Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed...

  17. Small RNA-Seq analysis reveals microRNA-regulation of the Imd pathway during Escherichia coli infection in Drosophila.

    Science.gov (United States)

    Li, Shengjie; Shen, Li; Sun, Lianjie; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-05-01

    Drosophila have served as a model for research on innate immunity for decades. However, knowledge of the post-transcriptional regulation of immune gene expression by microRNAs (miRNAs) remains rudimentary. In the present study, using small RNA-seq and bioinformatics analysis, we identified 67 differentially expressed miRNAs in Drosophila infected with Escherichia coli compared to injured flies at three time-points. Furthermore, we found that 21 of these miRNAs were potentially involved in the regulation of Imd pathway-related genes. Strikingly, based on UAS-miRNAs line screening and Dual-luciferase assay, we identified that miR-9a and miR-981 could both negatively regulate Drosophila antibacterial defenses and decrease the level of the antibacterial peptide, Diptericin. Taken together, these data support the involvement of miRNAs in the regulation of the Drosophila Imd pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Regulation of the PI3K pathway through a p85a monomer-homodimer equilibrium

    KAUST Repository

    Aljedani, Safia Salim Eid

    2017-01-08

    The phosphatidylinositol-3-kinase a (PI3Ka) is heterodimeric enzyme that is composed of p85a regulatory subunit and a p110a catalytic subunit. PI3Ka plays a key role in cell survival, growth and differentation. Owing to its role as a key regulator, the PI3Ka pathway is the most frequently mutated pathway in human cancers, and is targeted by many viruses to insure their survival and successful reproduction. Previous studies have shown that the equilibrium of p85 monomers and dimers regulates the PI3K pathway, suggesting that interrupting this equilibrium could lead to disease development. Moreover, studies suggest that the p85a monomers and dimers have opposing effects on PI3Ka signaling as only the p85a dimers bind to the PTEN phosphatase, whereas p85a monomers bind to the catalytic p110 subunit. However, the mechanism for dimerisation is controversial, and it is unknown why PTEN or p110a bind only dimer or monomer. Therefore, we combine molecular biology, biophsical, computational and structural methods to investigate the suprosingly complex p85 dimerisation mechanism and its control by ligands. Results may inspire novel theraputic approaches.

  19. Antihepatotoxic effect of golden berry (Physalis peruviana Linn.) in carbon tetrachloride (CCl4) intoxicated rats.

    Science.gov (United States)

    Taj, Darakhshan; Khan, Hira; Sultana, Viqar; Ara, Jehan; Ehteshamul-Haque, Syed

    2014-05-01

    Liver is the main site in the body for intense metabolism and excretion. A number of chemicals and drugs which are used routinely cause liver damage. The present study investigates the antihepatotoxic effect of Physalis peruviana whole ripe fruit, water and ethanol extracts of fruit in normal as well as in carbon tetrachloride (CCl(4)) intoxicated rats. The CCl(4) treated rats showed marked elevation in liver enzymes: alanine transaminse, aspratate transaminase, alkaline phosphatase, lactate dehydrogenase and other biochemical parameters: bilirubin, creatinine and urea, thus indicating liver injury. Whereas animal treated/fed with various preparations of Physalis peruviana showed significant lowering effect (pPhysalis peruviana showed highest activity in both rat models while ripe fruit and ethanol extract showed moderate activity compared to standard drug.

  20. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    Science.gov (United States)

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  1. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  2. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway

    Directory of Open Access Journals (Sweden)

    Valentina Rapisarda

    2017-03-01

    Full Text Available Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or β3 is regulated by the Polycomb protein CBX7. β3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor β (TGF-β pathway in a cell-autonomous and non-cell-autonomous manner. β3 levels are dynamically increased during oncogene-induced senescence (OIS through CBX7 Polycomb regulation, and downregulation of β3 levels overrides OIS and therapy-induced senescence (TIS, independently of its ligand-binding activity. Moreover, cilengitide, an αvβ3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP without affecting proliferation. Finally, we show an increase in β3 levels in a subset of tissues during aging. Altogether, our data show that integrin β3 subunit is a marker and regulator of senescence.

  3. CCl 4 chemistry on the reduced selvedge of a α-Fe 2O 3(0 0 0 1) surface: a scanning tunneling microscopy study

    Science.gov (United States)

    Rim, Kwang Taeg; Fitts, Jeffrey P.; Müller, Thomas; Adib, Kaveh; Camillone, Nicholas; Osgood, Richard M.; Joyce, S. A.; Flynn, George W.

    2003-09-01

    Scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) were used to study the degradation of CCl 4 on the reduced selvedge of a natural single crystal α-Fe 2O 3(0 0 0 1) surface in ultrahigh vacuum. Before exposure to CCl 4, STM images indicate that approximately 85% of the reduced surface exhibits a Fe 3O 4(1 1 1) 2 × 2 termination, while the remaining 15% is terminated by 1 × 1 and superstructure phases. Images obtained after room temperature dosing with CCl 4 and subsequent flashing to 600 K reveal that chlorine atoms are adsorbed only on surface regions with the Fe 3O 4(1 1 1) 2 × 2 termination, not on 1 × 1 and superstructure regions. Chlorine atoms from dissociative adsorption of CCl 4 are observed to occupy two distinct positions located atop lattice protrusions and in threefold oxygen vacancy sites. However, in companion chemical labeling experiments, chlorine atoms provided by room temperature, dissociative Cl 2 adsorption on this surface are found to occupy sites atop lattice protrusions exclusively. The clear dissimilarity in STM feature shape and brightness at the two distinct chlorine adsorption sites arising from CCl 4 dissociation as well as the results of the Cl 2 chemical labeling experiments are best explained via reactions on a Fe 3O 4(1 1 1) 2 × 2 selvedge terminated by a 1/4 monolayer of tetrahedrally coordinated iron atoms. On this surface, adsorption atop an iron atom occurs for both the CCl 4 and Cl 2 dissociative reactions. A second adsorption site, assigned as binding to second layer iron atoms left exposed following surface oxygen atom abstraction resulting in the formation of phosgene (COCl 2), only appears in the case of reaction with CCl 4. The reaction mechanism and active site requirements for CCl 4 degradation on iron oxide surfaces are discussed in light of this evidence and in the context of our previously reported results from Auger electron spectroscopy (AES), LEED, temperature-programmed desorption

  4. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats.

    Science.gov (United States)

    Chowdhury, Mohammed Riaz Hasan; Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Hossain, Hemayet; Alam, Md Ashraful

    2015-01-01

    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (-)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats.

  5. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4 Treated Rats

    Directory of Open Access Journals (Sweden)

    Mohammed Riaz Hasan Chowdhury

    2015-01-01

    Full Text Available Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (−-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4 treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA, nitric oxide, advanced protein oxidation products level (APOP, and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats.

  6. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid

    2017-10-10

    Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

  7. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio)

    International Nuclear Information System (INIS)

    Jia, Rui; Cao, Li-Ping; Du, Jin-Liang; Wang, Jia-Hao; Liu, Ying-Juan; Jeney, Galina; Xu, Pao; Yin, Guo-Jun

    2014-01-01

    Highlights: • We explored the underlying toxicology of CCl 4 at the cellular and molecular levels. • QRT-PCR detected the gene expression of NF-κB and inflammatory cytokines. • The apoptosis and necrosis occurred simultaneously in carp liver damage. • CCl 4 activated the TNF-α/NF-κB and TRL4/NF-κB signaling pathways. - Abstract: In the present study, the cellular and molecular mechanism of carbon tetrachloride (CCl 4 )-induced hepatotoxicity in fish was investigated by studying the effects of CCl 4 on the oxidative stress, inflammatory response and hepatocyte apoptosis. Common carp were given an intraperitoneal injection of 30% CCl 4 in arachis oil (0.5 ml/kg body weight). At 72 h post-injection, blood were collected to measure glutamate pyruvate transaminase (GPT), glutamate oxalate transaminase (GOT), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) and malondialdehyde (MDA), liver samples were taken to analyze toll-like receptor 4 (TLR4), cytochrome P450 2E1 (CYP2E1) and gene expressions of inflammatory cytokines and nuclear factor-κB (NF-κB/cREL). Cell viability and apoptosis were analyzed after treatment of the primary hepatocytes with CCl 4 at 8 mM. The results showed that CCl 4 significantly increased the levels of GPT, GOT, MDA, TLR4 and CYP2E1, reduced the levels of SOD, GPx, CAT, GSH and T-AOC, and up-regulated the gene expressions of NF-κB/cREL and inflammatory cytokines including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and IL-12. In vitro, CCl 4 caused a dramatic loss in cell viability and induced hepatocyte apoptosis. Overall results suggest that oxidative stress lipid peroxidation, and TNF-α/NF-κB and TRL4/NF-κB signaling pathways play important roles in CCl 4 -induced hepatotoxicity in fish

  8. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio)

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Rui [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); Cao, Li-Ping; Du, Jin-Liang [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); Wang, Jia-Hao; Liu, Ying-Juan [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Jeney, Galina [National Agricultural Research Center, Research Institute for Fisherie and, Aquaculture, Anna Light 8, Szarvas 5440 (Hungary); Xu, Pao, E-mail: xup@ffrc.cn [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); Yin, Guo-Jun, E-mail: yingj@ffrc.cn [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China)

    2014-07-01

    Highlights: • We explored the underlying toxicology of CCl{sub 4} at the cellular and molecular levels. • QRT-PCR detected the gene expression of NF-κB and inflammatory cytokines. • The apoptosis and necrosis occurred simultaneously in carp liver damage. • CCl{sub 4} activated the TNF-α/NF-κB and TRL4/NF-κB signaling pathways. - Abstract: In the present study, the cellular and molecular mechanism of carbon tetrachloride (CCl{sub 4})-induced hepatotoxicity in fish was investigated by studying the effects of CCl{sub 4} on the oxidative stress, inflammatory response and hepatocyte apoptosis. Common carp were given an intraperitoneal injection of 30% CCl{sub 4} in arachis oil (0.5 ml/kg body weight). At 72 h post-injection, blood were collected to measure glutamate pyruvate transaminase (GPT), glutamate oxalate transaminase (GOT), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) and malondialdehyde (MDA), liver samples were taken to analyze toll-like receptor 4 (TLR4), cytochrome P450 2E1 (CYP2E1) and gene expressions of inflammatory cytokines and nuclear factor-κB (NF-κB/cREL). Cell viability and apoptosis were analyzed after treatment of the primary hepatocytes with CCl{sub 4} at 8 mM. The results showed that CCl{sub 4} significantly increased the levels of GPT, GOT, MDA, TLR4 and CYP2E1, reduced the levels of SOD, GPx, CAT, GSH and T-AOC, and up-regulated the gene expressions of NF-κB/cREL and inflammatory cytokines including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and IL-12. In vitro, CCl{sub 4} caused a dramatic loss in cell viability and induced hepatocyte apoptosis. Overall results suggest that oxidative stress lipid peroxidation, and TNF-α/NF-κB and TRL4/NF-κB signaling pathways play important roles in CCl{sub 4}-induced hepatotoxicity in fish.

  9. Hepatoprotective and antioxidant effects of single clove garlic against CCl4-induced hepatic damage in rabbits.

    Science.gov (United States)

    Naji, Khalid Mohammed; Al-Shaibani, Elham Shukri; Alhadi, Fatima A; Al-Soudi, Safa'a Abdulrzaq; D'souza, Myrene R

    2017-08-17

    The increase in demand and consumption of single clove garlic or 'Solo garlic' (Allium sativum) has resulted in an increase in research on its therapeutic properties. The present study aims to evaluate the antioxidant activities, oxidant-scavenging efficiency and preventive effects of SCG (single clove garlic) and MCG (multi clove garlic) on CCl 4 -induced acute hepatotoxicity in male rabbits. For this purpose, rabbits were orally administered with 3 ml of CCl 4 /kg of body weight, followed by 0.8 g of MCG or SCG/kg twice a week for three successive weeks. Oxidative hepatotoxicity was then assessed. SCG extracts exhibited higher antioxidant capacity than the MCG extract. Scavenging ability of SCG showed significant (p garlic storage constituents varies with the number of cloves present. CCl 4 -induced hepatotoxicity demonstrated histological changes including severe damage in the structure of liver tissues which correlated well to oxidative stress levels. Simultaneously, administration of SCG resulted in a significant reduction of serum alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TB) levels in addition to improvement in some histological parameters. Low levels of lipid peroxidation (malondialdehyde, MDA) (p < 0.001), along with a huge reduction in peroxidase (POx) (p < 0.001) revealed protection against oxidative toxicity in the liver homogenate. Higher levels of catalase (CAT) (p < 0.001) and superoxide dismutase (SOD) (p < 0.05) when compared to the MCG test (TM) group indicates that removal of H 2 O 2 is based on CAT activity in SCG test (TS) group rather than the POx activity demonstrated in the former group. The present study indicates that SCG possesses more protective ability than MCG against CCl 4 -induced liver injury and might be an effective alternative medicine against acute oxidative liver toxicity.

  10. CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-infected individuals.

    Science.gov (United States)

    Kulkarni, Hemant; Agan, Brian K; Marconi, Vincent C; O'Connell, Robert J; Camargo, Jose F; He, Weijing; Delmar, Judith; Phelps, Kenneth R; Crawford, George; Clark, Robert A; Dolan, Matthew J; Ahuja, Sunil K

    2008-09-08

    Whether vexing clinical decision-making dilemmas can be partly addressed by recent advances in genomics is unclear. For example, when to initiate highly active antiretroviral therapy (HAART) during HIV-1 infection remains a clinical dilemma. This decision relies heavily on assessing AIDS risk based on the CD4+ T cell count and plasma viral load. However, the trajectories of these two laboratory markers are influenced, in part, by polymorphisms in CCR5, the major HIV coreceptor, and the gene copy number of CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine. Therefore, we determined whether accounting for both genetic and laboratory markers provided an improved means of assessing AIDS risk. In a prospective, single-site, ethnically-mixed cohort of 1,132 HIV-positive subjects, we determined the AIDS risk conveyed by the laboratory and genetic markers separately and in combination. Subjects were assigned to a low, moderate or high genetic risk group (GRG) based on variations in CCL3L1 and CCR5. The predictive value of the CCL3L1-CCR5 GRGs, as estimated by likelihood ratios, was equivalent to that of the laboratory markers. GRG status also predicted AIDS development when the laboratory markers conveyed a contrary risk. Additionally, in two separate and large groups of HIV+ subjects from a natural history cohort, the results from additive risk-scoring systems and classification and regression tree (CART) analysis revealed that the laboratory and CCL3L1-CCR5 genetic markers together provided more prognostic information than either marker alone. Furthermore, GRGs independently predicted the time interval from seroconversion to CD4+ cell count thresholds used to guide HAART initiation. The combination of the laboratory and genetic markers captures a broader spectrum of AIDS risk than either marker alone. By tracking a unique aspect of AIDS risk distinct from that captured by the laboratory parameters, CCL3L1-CCR5 genotypes may have utility in HIV clinical management

  11. Rate constant for the reaction of OH with CH3CCl2F (HCFC-141b) determined by relative rate measurements with CH4 and CH3CCl3

    Science.gov (United States)

    Huder, Karin; Demore, William B.

    1993-01-01

    Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.

  12. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Zhang, Yuqin; Zheng, Lin; Ding, Yi; Li, Qi; Wang, Rong; Liu, Tongxin; Sun, Quanquan; Yang, Hua; Peng, Shunli; Wang, Wei; Chen, Longhua

    2015-01-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC

  13. The cross-pathway control system regulates production of the secondary metabolite toxin, sirodesmin PL, in the ascomycete, Leptosphaeria maculans

    Directory of Open Access Journals (Sweden)

    Fox Ellen M

    2011-07-01

    Full Text Available Abstract Background Sirodesmin PL is a secondary metabolite toxin made by the ascomycetous plant pathogen, Leptosphaeria maculans. The sirodesmin biosynthetic genes are clustered in the genome. The key genes are a non-ribosomal peptide synthetase, sirP, and a pathway-specific transcription factor, sirZ. Little is known about regulation of sirodesmin production. Results Genes involved in regulation of sirodesmin PL in L. maculans have been identified. Two hundred random insertional T-DNA mutants were screened with an antibacterial assay for ones producing low levels of sirodesmin PL. Three such mutants were isolated and each transcribed sirZ at very low levels. One of the affected genes had high sequence similarity to Aspergillus fumigatus cpcA, which regulates the cross-pathway control system in response to amino acid availability. This gene was silenced in L. maculans and the resultant mutant characterised. When amino acid starvation was artificially-induced by addition of 3-aminotriazole for 5 h, transcript levels of sirP and sirZ did not change in the wild type. In contrast, levels of sirP and sirZ transcripts increased in the silenced cpcA mutant. After prolonged amino acid starvation the silenced cpcA mutant produced much higher amounts of sirodesmin PL than the wild type. Conclusions Production of sirodesmin PL in L. maculans is regulated by the cross pathway control gene, cpcA, either directly or indirectly via the pathway-specific transcription factor, sirZ.

  14. Insulin/IGF-I regulation of necdin and brown adipocyte differentiation via CREB- and FoxO1-associated pathways

    DEFF Research Database (Denmark)

    Cypess, Aaron M; Zhang, Hongbin; Schulz, Tim J

    2011-01-01

    is regulated by the phosphoinositide 3 kinase-Akt pathway, increased necdin promoter activity. Based on reporter gene assays using truncations of the necdin promoter and chromatin immunoprecipitation studies, we demonstrated that CREB and FoxO1 are recruited to the necdin promoter, likely interacting......Brown adipose tissue plays an important role in obesity, insulin resistance, and diabetes. We have previously shown that the transition from brown preadipocytes to mature adipocytes is mediated in part by insulin receptor substrate (IRS)-1 and the cell cycle regulator protein necdin. In this study...... with specific consensus sequences in the proximal region. Based on these results, we propose that insulin/IGF-I act through IRS-1 phosphorylation to stimulate differentiation of brown preadipocytes via two complementary pathways: 1) the Ras-ERK1/2 pathway to activate CREB and 2) the phosphoinositide 3 kinase-Akt...

  15. Purification and crystallization of a putative transcriptional regulator of the benzoate oxidation pathway in Burkholderia xenovorans LB400

    International Nuclear Information System (INIS)

    Law, Adrienne M.; Bains, Jasleen; Boulanger, Martin J.

    2009-01-01

    The X-ray diffraction and preliminary phasing of the putative transcriptional regulator Bxe-C0898 from B. xenovorans LB400 are reported. Burkholderia xenovorans LB400 harbours two paralogous copies of the recently discovered benzoate oxidation (box) pathway. While both copies are functional, the paralogues are differentially regulated and flanked by putative transcriptional regulators from distinct families. The putative LysR-type transcriptional regulator (LTTR) adjacent to the megaplasmid-encoded box enzymes, Bxe-C0898, has been produced recombinantly in Escherichia coli and purified to homogeneity. Gel-filtration studies show that Bxe-C0898 is a tetramer in solution, consistent with previously characterized LTTRs. Bxe-C0898 crystallized with four molecules in the asymmetric unit of the P4 3 2 1 2/P4 1 2 1 2 unit cell with a solvent content of 61.19%, as indicated by processing of the X-ray diffraction data. DNA-protection assays are currently under way in order to identify potential operator regions for this LTTR and to define its role in regulation of the box pathway

  16. Chemokine CCL2–CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus

    Science.gov (United States)

    Tian, Dai-Shi; Feng, Li-Jie; Liu, Jun-Li

    2017-01-01

    Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2–CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2–CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2–CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy. SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2–CCR2 signaling is

  17. Preparation of ThO2 sols suitable for gelation into microspheres in CCl4-ammonia media

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1985-01-01

    Production conditions of ThO 2 sols are studied for satisfactorily gelling them into microspheres in CCl 4 -ammonia media, which result gel-spheres with good sphericities but need high-quality source-sols for crackfree gelation. Two-stage pH-setting techniques were added to the previously reported method, which had been developed to produce ThO 2 sols suitable for gelation in hexone-ammonia media and was characterized by preneutralization followed by neutralization under pH-control. As a result, colloid fractions of Th in sols were increased without decreasing colloid size. This enabled one to obtain crackfree, large, spherical ThO 2 particles by gelation in the CCl 4 -ammonia media. (author)

  18. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Lillard James W

    2011-05-01

    Full Text Available Abstract Background Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have recently shown that CCR9-CCL25 interactions promote BrCa cell migration and invasion, while others have shown that this axis play important role in T cell survival. In this study we have shown potential role of CCR9-CCL25 axis in breast cancer cell survival and therapeutic efficacy of cisplatin. Methods Bromodeoxyuridine (BrdU incorporation, Vybrant apoptosis and TUNEL assays were performed to ascertain the role of CCR9-CCL25 axis in cisplatin-induced apoptosis of BrCa cells. Fast Activated Cell-based ELISA (FACE assay was used to quantify In situ activation of PI3Kp85, AktSer473, GSK-3βSer9 and FKHRThr24 in breast cancer cells with or without cisplatin treatment in presence or absence of CCL25. Results CCR9-CCL25 axis provides survival advantage to BrCa cells and inhibits cisplatin-induced apoptosis in a PI3K-dependent and focal adhesion kinase (FAK-independent fashion. Furthermore, CCR9-CCL25 axis activates cell-survival signals through Akt and subsequent glycogen synthase kinase-3 beta (GSK-3β and forkhead in human rhabdomyosarcoma (FKHR inactivation. These results show that CCR9-CCL25 axis play important role in BrCa cell survival and low chemotherapeutic efficacy of cisplatin primarily through PI3K/Akt dependent fashion.

  19. Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

    Directory of Open Access Journals (Sweden)

    Peng Yan

    2017-09-01

    Full Text Available Objective(s: AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1 signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI. Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI in vitro. The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. Results: We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro, indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro. Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Conclusion: Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  20. 20 CFR 626.2 - Format of the Job Training Partnership Act regulations.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Format of the Job Training Partnership Act regulations. 626.2 Section 626.2 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INTRODUCTION TO THE REGULATIONS UNDER THE JOB TRAINING PARTNERSHIP ACT § 626.2 Format of the Job...

  1. Interleukin-1β: A New Regulator of the Kynurenine Pathway Affecting Human Hippocampal Neurogenesis

    Science.gov (United States)

    Zunszain, Patricia A; Anacker, Christoph; Cattaneo, Annamaria; Choudhury, Shanas; Musaelyan, Ksenia; Myint, Aye Mu; Thuret, Sandrine; Price, Jack; Pariante, Carmine M

    2012-01-01

    Increased inflammation and reduced neurogenesis have been associated with the pathophysiology of major depression. Here, we show for the first time how IL-1β, a pro-inflammatory cytokine shown to be increased in depressed patients, decreases neurogenesis in human hippocampal progenitor cells. IL-1β was detrimental to neurogenesis, as shown by a decrease in the number of doublecortin-positive neuroblasts (−28%), and mature, microtubule-associated protein-2-positive neurons (−36%). Analysis of the enzymes that regulate the kynurenine pathway showed that IL-1β induced an upregulation of transcripts for indolamine-2,3-dioxygenase (IDO), kynurenine 3-monooxygenase (KMO), and kynureninase (42-, 12- and 30-fold increase, respectively, under differentiating conditions), the enzymes involved in the neurotoxic arm of the kynurenine pathway. Moreover, treatment with IL-1β resulted in an increase in kynurenine, the catabolic product of IDO-induced tryptophan metabolism. Interestingly, co-treatment with the KMO inhibitor Ro 61-8048 reversed the detrimental effects of IL-1β on neurogenesis. These observations indicate that IL-1β has a critical role in regulating neurogenesis whereas affecting the availability of tryptophan and the production of enzymes conducive to toxic metabolites. Our results suggest that inhibition of the kynurenine pathway may provide a new therapy to revert inflammatory-induced reduction in neurogenesis. PMID:22071871

  2. Protective effect of Sida cordata leaf extract against CCl(4) induced acute liver toxicity in rats.

    Science.gov (United States)

    Mistry, Sunil; Dutt, K R; Jena, J

    2013-04-13

    To investigate the hepatoprotective potential of Sida cordata (Malvaceae) (S. cordata) in experimental rats to validate its traditional claim. Wister albino rats were divided into 6 groups: Group I served as control; Group II served as hepatotoxic (CCl(4) treated) group; Group III, IV and V served as (100, 200 and 400 mg/kg b.w.) S. cordata leaf extract (SCLE) treated groups; Group VI served as positive control (Silymarin) treated group. Liver marker enzymes serum glutamate oxyloacetic transaminase, serum glutamic pyruvic transaminase, pancreatic enzymatic antioxidants superoxide dismutase (SOD), lipid peroxidation, catalase (CAT), reduced glutathione (GSH) were measured and compared along with histopathological studies. Obtained results show that the treatment with SCLE significantly (P<0.05-<0.001) and dose-dependently reduced CCl4 induced elevated serum level of hepatic enzymes. Furthermore, SCLE significantly (up to P<0.001) reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes GSH, SOD and CAT towards normal levels, which was confirmed by the histopathological studies. The results of this study strongly indicate the protective effect of SCLE against CCl(4) induced acute liver toxicity in rats and thereby scientifically support its traditional use. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  3. Amelioration effects against N-nitrosodiethylamine and CCl4-induced hepatocarcinogenesis in Swiss albino rats by whole plant extract of Achyranthes aspera

    Science.gov (United States)

    Kartik, R.; Rao, Ch. V.; Trivedi, S.P.; Pushpangadan, P.; Reddy, G.D.

    2010-01-01

    Objective: The prevalence of oxidative stress may be implicated in the etiology of many pathological conditions. Protective antioxidant action imparted by many plant extracts and plant products make them a promising therapeutic drug for free-radical-induced pathologies. In this study, we assessed the antioxidant potential and suppressive effects of Achyranthes aspera by evaluating the hepatic diagnostic markers on chemical-induced hepatocarcinogenesis. Materials and Methods: The in vivo model of hepatocarcinogenesis was studied in Swiss albino rats. Experimental rats were divided into five groups: control, positive control (NDEA and CCl4), A. aspera treated (100, 200, and 400 mg/kg b.w.). At 20 weeks after the administration of NDEA and CCl4, treated rats received A. aspera extract (AAE) at a dose of 100, 200, and 400 mg/kg once daily route. At the end of 24 weeks, the liver and relative liver weight and body weight were estimated. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH) were assayed. The hepatic diagnostic markers namely serum glutamic oxaloacetic transminase (AST), serum glutamic pyruvate transminase (ALT), serum alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT), and bilirubin (BL) were also assayed, and the histopathological studies were investigated in control, positive control, and experimental groups. Results: The extract did not show acute toxicity and the per se effect of the extract showed decrease in LPO, demonstrating antioxidant potential and furthermore no change in the hepatic diagnosis markers was observed. Administration of AAE suppressed hepatic diagnostic and oxidative stress markers as revealed by decrease in NDEA and CCl4 -induced elevated levels of SGPT, SGOT, SALP, GGT, bilirubin, and LPO. There was also a significant elevation in the levels of SOD, CAT, GPx, GST, and GSH as observed after AAE treatment. The

  4. 12 CFR 723.20 - How can a state supervisory authority develop and enforce a member business loan regulation?

    Science.gov (United States)

    2010-01-01

    ... state regulation minimizes the risk and accomplishes the overall objectives of NCUA's member business... and enforce a member business loan regulation? 723.20 Section 723.20 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MEMBER BUSINESS LOANS § 723.20 How can a state...

  5. Identification and Characterization of EctR1, a New Transcriptional Regulator of the Ectoine Biosynthesis Genes in the Halotolerant Methanotroph Methylomicrobium alcaliphilum 20Z▿ †

    OpenAIRE

    Mustakhimov, Ildar I.; Reshetnikov, Alexander S.; Glukhov, Anatoly S.; Khmelenina, Valentina N.; Kalyuzhnaya, Marina G.; Trotsenko, Yuri A.

    2009-01-01

    Genes encoding key enzymes of the ectoine biosynthesis pathway in the halotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z have been shown to be organized into an ectABC-ask operon. Transcription of the ect operon is initiated from two promoters, ectAp1 and ectAp2 (ectAp1p2), similar to the σ70-dependent promoters of Escherichia coli. Upstream of the gene cluster, an open reading frame (ectR1) encoding a MarR-like transcriptional regulator was identified. Investigation of the ...

  6. Calcitonin gene-related peptide regulates type IV hypersensitivity through dendritic cell functions.

    Directory of Open Access Journals (Sweden)

    Norihisa Mikami

    Full Text Available Dendritic cells (DCs play essential roles in both innate and adaptive immune responses. In addition, mutual regulation of the nervous system and immune system is well studied. One of neuropeptides, calcitonin gene-related peptide (CGRP, is a potent regulator in immune responses; in particular, it has anti-inflammatory effects in innate immunity. For instance, a deficiency of the CGRP receptor component RAMP 1 (receptor activity-modifying protein 1 results in higher cytokine production in response to LPS (lipopolysaccharide. On the other hand, how CGRP affects DCs in adaptive immunity is largely unknown. In this study, we show that CGRP suppressed Th1 cell differentiation via inhibition of IL-12 production in DCs using an in vitro co-culture system and an in vivo ovalbumin-induced delayed-type hypersensitivity (DTH model. CGRP also down-regulated the expressions of chemokine receptor CCR2 and its ligands CCL2 and CCL12 in DCs. Intriguingly, the frequency of migrating CCR2(+ DCs in draining lymph nodes of RAMP1-deficient mice was higher after DTH immunization. Moreover, these CCR2(+ DCs highly expressed IL-12 and CD80, resulting in more effective induction of Th1 differentiation compared with CCR2(- DCs. These results indicate that CGRP regulates Th1 type reactions by regulating expression of cytokines, chemokines, and chemokine receptors in DCs.

  7. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia

    Science.gov (United States)

    Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-01-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  8. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.

    Science.gov (United States)

    Schofield, Alice V; Steel, Rohan; Bernard, Ora

    2012-12-21

    The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.

  9. 15 CFR 20.2 - Programs or activities to which these regulations apply.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Programs or activities to which these regulations apply. 20.2 Section 20.2 Commerce and Foreign Trade Office of the Secretary of Commerce... adopted by an elected, general purpose legislative body which: (i) Provides benefits or assistance to...

  10. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    Science.gov (United States)

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  11. Somatic ACE regulates self-renewal of mouse spermatogonial stem cells via the MAPK signaling pathway.

    Science.gov (United States)

    Gao, Tingting; Zhao, Xin; Liu, Chenchen; Shao, Binbin; Zhang, Xi; Li, Kai; Cai, Jinyang; Wang, Su; Huang, Xiaoyan

    2018-05-24

    Spermatogonial stem cell (SSC) self-renewal is an indispensable part of spermatogenesis. Angiotensin I-converting enzyme (ACE) is a zinc dipeptidyl carboxypeptidase that plays a critical role in regulation of the renin-angiotensin system. Here, we used RT-PCR and Western blot analysis to confirm that somatic ACE (sACE) but not testicular ACE (tACE) is highly expressed in mouse testis before postpartum day 7 and in cultured SSCs. Our results revealed that sACE is located on the membrane of SSCs. Treating cultured SSCs with the ACE competitive inhibitor captopril was found to inhibit sACE activity, and significantly reduced the proliferation rate of SSCs. Microarray analysis identified 651 genes with significant differential expression. KEGG pathway analysis showed that these differentially expressed genes are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway and cell cycle. sACE was found to play an important role in SSC self-renewal via the regulation of MAPK-dependent cell proliferation.

  12. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade.

    Science.gov (United States)

    Wang, Chen; He, Xiaowen; Li, Yuzhen; Wang, Lijun; Guo, Xulei; Guo, Xingqi

    2017-11-02

    Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen-activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus-induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)-mediated defence pathway. More importantly, an F. oxysporum-induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4-GhMPK20 was shown to be essential for F. oxysporum-induced GhWRKY40 expression. Together, our results indicate that the GhMKK4-GhMPK20-GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  13. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola Bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis.

    Science.gov (United States)

    Wu, Fang; Zheng, Hua; Yang, Zheng-Teng; Cheng, Bang; Wu, Jin-Xia; Liu, Xu-Wen; Tang, Chao-Ling; Lu, Shi-Yin; Chen, Zhao-Ni; Song, Fang-Ming; Ruan, Jun-Xiang; Zhang, Hong-Ye; Liang, Yong-Hong; Song, Hui; Su, Zhi-Heng

    2017-06-05

    Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl 4 )-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance ( 1 H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl 4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl 4 -induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl 4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl 4 -induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the

  14. Hyperglycemia regulates TXNIP/TRX/ROS axis via p38 MAPK and ERK pathways in pancreatic cancer.

    Science.gov (United States)

    Li, Wei; Wu, Zheng; Ma, Qingyong; Liu, Jiangbo; Xu, Qinhong; Han, Liang; Duan, Wanxing; Lv, Yunfu; Wang, Fengfei; Reindl, Katie M; Wu, Erxi

    2014-01-01

    Approximately 85% of pancreatic cancer patients suffer from glucose intolerance or even diabetes because high glucose levels can contribute to oxidative stress which promotes tumor development. As one of the reactive oxygen species (ROS)-regulating factors, thioredoxin-interacting protein (TXNIP), is involved in the maintenance of thioredoxin (TRX)-mediated redox regulation. In this study, we demonstrated that high glucose levels increased the expression of TXNIP in time- and concentration-dependent manners and modulated the activity of TRX and ROS production in pancreatic cancer cells, BxPC-3 and Panc-1. We also found that glucose activated both p38 MAPK and ERK pathways and inhibitors of these pathways impaired the TXNIP/TRX/ROS axis. Knockdown of TXNIP restored TRX activity and decreased ROS production under high glucose conditions. Moreover, we observed that the integrated optical density (IOD) of TXNIP staining as well as the protein and mRNA expression levels of TXNIP were higher in the tumor tissues of pancreatic cancer patients with diabetes. Taken together, these results indicate that hyperglycemia-induced TXNIP expression is involved in diabetes-mediated oxidative stress in pancreatic cancer via p38 MAPK and ERK pathways.

  15. Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant in CCl4 challenged rats

    Directory of Open Access Journals (Sweden)

    Bhuwan Chandra Joshi

    2015-01-01

    Full Text Available The aim of the present study was to isolate hepatoprotective component from Urtica dioica Linn. (whole plant against CCl4-induced hepatotoxicity in-vitro (HepG2 cells and in-vivo (rats model. Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF, ethyl acetate fraction (EAF, n-butanol fraction (NBF and aqueous fraction (AF were determined by DPPH and NO radicals scavenging assay. Fractions were subjected to in-vitro HepG2 cell line study. Further, the most potent fraction (EAF was subjected to in-vivo hepatoprotective potential against CCl4 challenged rats. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s. Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Ethyl acetate fraction (EAF of hydro-alcoholic extract of U. dioica possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 μg/ml and NO (IC50101.39 ± 0.30 μg/ml. The in-vitro HepG2 cell line study showed that the EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and oxidative parameters in tissue of CCl4-induced rats, suggesting hepatoprotective and anti-oxidant action respectively. Column chromatography of most potent antioxidant fraction (EAF lead to the isolation of 4-hydroxy-3-methoxy cinnamic acid (ferulic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF of hydro-alcoholic extract has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo.

  16. Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant) in CCl4 challenged rats.

    Science.gov (United States)

    Joshi, Bhuwan Chandra; Prakash, Atish; Kalia, Ajudhia N

    2015-01-01

    The aim of the present study was to isolate hepatoprotective component from Urtica dioica Linn. (whole plant) against CCl 4 -induced hepatotoxicity in-vitro (HepG2 cells) and in-vivo (rats) model. Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n -butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH and NO radicals scavenging assay. Fractions were subjected to in-vitro HepG2 cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo hepatoprotective potential against CCl 4 challenged rats. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1 H NMR, 13 C NMR and MS spectroscopy. Ethyl acetate fraction (EAF) of hydro-alcoholic extract of U. dioica possessed the potent antioxidant activity viz. DPPH (IC 50 78.99 ± 0.17 μg/ml) and NO (IC 50 101.39 ± 0.30 μg/ml). The in-vitro HepG2 cell line study showed that the EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and oxidative parameters in tissue of CCl 4 -induced rats, suggesting hepatoprotective and anti-oxidant action respectively. Column chromatography of most potent antioxidant fraction (EAF) lead to the isolation of 4-hydroxy-3-methoxy cinnamic acid (ferulic acid) which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF of hydro-alcoholic extract has significant antioxidant and hepatoprotective potential on CCl 4 induced hepatotoxicity in-vitro and in-vivo .

  17. Role of estrogen receptor β selective agonist in ameliorating portal hypertension in rats with CCl4-induced liver cirrhosis.

    Science.gov (United States)

    Zhang, Cheng-Gang; Zhang, Bin; Deng, Wen-Sheng; Duan, Ming; Chen, Wei; Wu, Zhi-Yong

    2016-05-14

    To investigate the role of diarylpropionitrile (DPN), a selective agonist of estrogen receptor β (ERβ), in liver cirrhosis with portal hypertension (PHT) and isolated hepatic stellate cells (HSCs). Female Sprague-Dawley rats were ovariectomized (OVX), and liver cirrhosis with PHT was induced by CCl4 injection. DPN and PHTPP, the selective ERβ agonist and antagonist, were used as drug interventions. Liver fibrosis was assessed by hematoxylin and eosin (HE) and Masson's trichrome staining and by analyzing smooth muscle actin expression. Hemodynamic parameters were determined in vivo using colored microspheres technique. Protein expression and phosphorylation were determined by immunohistochemical staining and Western blot analysis. Messenger RNA levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Collagen gel contraction assay was performed using gel lattices containing HSCs treated with DPN, PHTPP, or Y-27632 prior to ET-1 addition. Treatment with DPN in vivo greatly lowered portal pressure and improved hemodynamic parameters without affecting mean arterial pressure, which was associated with the attenuation of liver fibrosis and intrahepatic vascular resistance (IHVR). In CCl4-treated rat livers, DPN significantly decreased the expression of RhoA and ROCK II, and even suppressed ROCK II activity. Moreover, DPN remarkedly increased the levels of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS, and promoted the activities of protein kinase G (PKG), which is an NO effector in the liver. Furthermore, DPN reduced the contractility of activated HSCs in the 3-dimensional stress-relaxed collagen lattices, and decreased the ROCK II activity in activated HSCs. Finally, in vivo/in vitro experiments demonstrated that MLC activity was inhibited by DPN. For OVX rats with liver cirrhosis, DPN suppressed liver RhoA/ROCK signal, facilitated NO/PKG pathways, and decreased IHVR, giving rise to reduced portal pressure. Therefore, DPN

  18. ErbB2 regulates NHEJ repair pathway by affecting erbB1-triggered IR-induced Akt activity

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Peter Rodemann, H.

    2009-01-01

    We have already reported that erbBl-PI3K-AKT signaling is an important pathway in regulating radiation sensitivity and DNA double strand break repair of human tumor cells. In the present study using small interfering RNA and pharmacological inhibitors in non-small cell lung cancer cell lines we investigated the role of Aktl on radiation-induced DNA-PKcs activity and DNA-double strand break (DNA-DSB) repair. Likewise, the function of erbB2 as hetrodimerization partner of erbBl in radiation-induced Akt activity and regulation of DNA-dsb repair through DNA-PKcs was evaluated. In A549 and H460 transfected with AKTl-siRNA radiation-induced phosphorylation of DNA-PKcs the key enzyme regulating NHEJ repair pathway was markedly inhibited. In both cell lines downregulation of Aktl led to a significant enhancement of residual DNA-DSB, i.e. impaired DNA-DSB repair. Interestingly, in cells transfected with DNA-PKcs-siRNA a lack of effect of AKTl-siRNA on enhancement of residual DNA-DSBs was observed. This results indicate that Aktl regulates NHEJ repair in a DNA-PKcs dependent manner

  19. [Wnt/β-catenin pathway involved in the regulation of rat mesangial cell proliferation by adipose-derived mesenchymal stem cells].

    Science.gov (United States)

    Li, Zhi; Zhang, Mengying; Li, Xueqin; Lu, Jinming; Xu, Liang

    2016-11-01

    Objective To investigate the effect of adipose-derived mesenchymal stem cells (ADSCs) on glomerular mesangial cell proliferation via Wnt/β-catenin pathway. Methods The rat glomerular mesangial cells (HBZY-1) were incubated in conditioned ADSC medium. Cell cycle was analyzed with flow cytometry; the proliferation rate of HBZY-1 and the expression levels of relative genes and proteins of Wnt signaling pathway were measured using RNA interference, quantitative real-time PCR and Western blotting, respectively. Results HBZY-1 proliferation was significantly inhibited under the action of conditioned ADSC medium, whereas dickkopf WNT signaling pathway inhibitor 1 (DKK1) mRNA level was up-regulated. Fibronectin and TGF-β1 mRNA expression as well as β-catenin and Bcl-2 protein levels of HBZY-1 were significantly down-regulated. DKK1 gene expression level in ADSCs was significantly higher than that of HBZY-1. After RNA interference, DKK1 expression level in ADSCs was markedly inhibited, yet the β-catenin protein level was notably elevated. The β-catenin and Bcl-2 protein levels of HBZY-1 were also significantly raised in HBZY-1 after cultured with conditioned medium containing ADSCs treated with RNA interference. Conclusion Wnt/β-catenin may be a potential signaling pathway involved in the regulative effect of ADSCs on glomerular mesangial cell proliferation.

  20. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway

    International Nuclear Information System (INIS)

    Zhu, Hongxue; Li, Xuechao; Song, Yarong; Zhang, Peng; Xiao, Yajun; Xing, Yifei

    2015-01-01

    Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cell apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.