WorldWideScience

Sample records for ccd focal plane

  1. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  2. Focal plane scanner with reciprocating spatial window

    Science.gov (United States)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  3. Ballistic Target PHD Filter Based on Infrared Focal Plane Ambiguous Observation

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2017-01-01

    Full Text Available Space-based early warning system, the main detection means of which is passive detection based on focal plane, is an important part of ballistic missile defense system. The focal plane is mainly composed of CCD, and its size can reach the micron level, so the pixel is often regarded as point of no area in image postprocessing. The design of traditional tracking methods is based on this, and the observation based on the focal plane is modeled as the azimuth with random noise. However, this modeling is inaccurate. In the context of space-based detection, CCD cannot be simplified as a point, and its size should be considered. And the corresponding observation cannot be treated as azimuth with random noise. In this paper, the observation based on focal plane is modeled as Unambiguously Generated Ambiguous (UGA measurement. The PHD filter algorithm is redesigned and simplified. The simulation results show that the algorithm based on UGA measurement observation model has better tracking effect compared with that based on traditional observation model. This method provides technical support for more accurate target tracking for space-based early warning system.

  4. METHOD FOR DETERMINATION OF FOCAL PLANE LOCATION OF FOCUSING COMPONENTS

    Directory of Open Access Journals (Sweden)

    A. I. Ivashko

    2017-01-01

    Full Text Available Mass-production of different laser systems often requires utilization of the focal spot size method for determination of output laser beam spatial characteristics. The main challenge of this method is high accuracy maintenance of a CCD camera beam profiler in the collecting lens focal plane. The aim of our work is development of new method for placing of photodetector array in the collecting lens focal plane with high accuracy.Proposed technique is based on focusing of several parallel laser beams. Determination of the focal plane position requires only longitudinal translation of the CCD-camera to find a point of laser beams intersection. Continuous-wave (CW diode-pumped laser emitting in the spectral region near 1μm was created to satisfy the requirements of the developed technique. Designed microchip laser generates two stigmatic Gaussian beams with automatically parallel beam axes due to independent pumping of different areas of the one microchip crystal having the same cavity mirrors.It was theoretically demonstrated that developed method provides possibility of the lenses focal plane determination with 1 % accuracy. The microchip laser generates two parallel Gaussian beams with divergence of about 10 mrad. Laser output power can be varied in the range of 0.1–1.5 W by changing the pumping laser diode electrical current. The distance between two beam axes can be changed in the range of 0.5–5.0 mm.We have proposed method for determination of positive lens focal plane location by using of CCDcamera and two laser beams with parallel axes without utilization of additional optical devices. We have developed CW longitudinally diode pumped microchip laser emitting in the 1-μm spectral region that can be used in the measuring instrument that doesn’t require precision mechanical components for determination of focal plane location with 1 % accuracy. The overall dimensions of laser head was 70 × 40 × 40 mm3 and maximum power consumption was

  5. Thermomechanical architecture of the VIS focal plane for Euclid

    International Nuclear Information System (INIS)

    Martignac, Jerome; Carty, Michael; Tourette, Thierry; Bachet, Damien; Berthe, Michel; Augueres, Jean-Louis; Amiaux, Jerome; Fontignie, Jean; Horeau, Benoit; Renaud, Diana

    2014-01-01

    One of the main challenges for current and near future space experiments is the increase of focal plane complexity in terms of amount of pixels. In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. CEA has developed the thermomechanical architecture of that Focal Plane taking into account all the very stringent performance and mission related requirements. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150 K) connected to their front end electronics (operated at 280 K) as to obtain one of the largest focal plane (0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the e2v company under ESA contract, front end electronics is studied and provided by MSSL. In this paper we first recall the specific requirements that have driven the overall architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally. The mechanical structure based on SiC material used for the cold sub assembly supporting the CCDs is detailed. We describe also the modular architecture concept that we have selected taking into account AIT-AIV and programmatic constraints. (authors)

  6. A 1.3 giga pixels focal plane for GAIA

    Science.gov (United States)

    Laborie, Anouk; Pouny, Pierre; Vetel, Cyril; Collados, Emmanuel; Rougier, Gilles; Davancens, Robert; Zayer, Igor; Perryman, Michael; Pace, Oscar

    2004-06-01

    The astrometric mission GAIA is a cornerstone mission of the European Space Agency, due for launch in the 2010 time frame. Requiring extremely demanding performance GAIA calls for the development of an unprecedented large focal plane featuring innovative technologies. For securing the very challenging GAIA development, a significant number of technology activities have been initiated by ESA through a competitive selection process. In this context, an industrial consortium led by EADS-Astrium (France) with e2v technologies (UK) as major subcontractor was selected for the GAIA CCD and Focal Plane Technology Demonstrators programme, which is by far the most significant and the most critical GAIA pre-development for all aspects: science performance, development schedule and cost. This programme has started since August 2002 and will end early 2005 prior to commencement of the GAIA Phase B. While the GAIA payload will host three instruments and related focal planes, the major mission objectives are assigned to the Astrometric (ASTRO) Focal Plane, which is the subject of this presentation.

  7. Infrared detectors and focal plane arrays; Proceedings of the Meeting, Orlando, FL, Apr. 18, 19, 1990

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    1990-09-01

    The papers contained in this volume provide an overview of recent advances and the current state of developments in the field of infrared detectors and focal plane arrays. Topics discussed include nickel silicide Schottky-barrier detectors for short-wavelength infrared applications; high performance PtSi linear and focal plane arrays; and multispectral band Schottky-barrier IRSSD for remote-sensing applications. Papers are also presented on the performance of an Insi hybrid focal array; characterization of IR focal plane test stations; GaAs CCD readout for engineered bandgap detectors; and fire detection system for aircraft cargo bays.

  8. Focal plane AIT sequence: evolution from HRG-Spot 5 to Pleiades HR

    Science.gov (United States)

    Le Goff, Roland; Pranyies, Pascal; Toubhans, Isabelle

    2017-11-01

    Optical and geometrical image qualities of Focal Planes, for "push-broom" high resolution remote sensing satellites, require the implementation of specific means and methods for the AIT sequence. Indeed the geometric performances of the focal plane mainly axial focusing and transverse registration, are duly obtained on the basis of adjustment, setting and measurement of optical and CCD components with an accuracy of a few microns. Since the end of the 1970s, EADS-SODERN has developed a series of detection units for earth observation instruments like SPOT and Helios. And EADS-SODERN is now responsible for the development of the Pleiades High Resolution Focal Plane assembly. This paper presents the AIT sequences. We introduce all the efforts, innovative solutions and improvements made on the assembly facilities to match the technical evolutions and breakthrough of the Pleiades HR FP concept in comparison with the previous High Resolution Geometric SPOT 5 Focal Plane. The main evolution drivers are the implementation of strip filters and the realization of 400 mm continuous retinas. For Pleiades HR AIT sequence, three specific integration and measuring benches, corresponding with the different assembly stages, are used: a 3-D non-contact measurement machine for the assembly of detection module, a 3-D measurement machine for mirror integration on the main Focal Plane SiC structure, and a 3-D geometric coordinates control bench to focus detection module lines and to ensure they are well registered together.

  9. Infrared detectors, focal plane arrays, and imaging sensors; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert T.

    1989-10-01

    The present conference on advancements in IR detectors, Schottky-barrier focal plane arrays, CCD image analysis, and HgCdTe materials gives attention to a 256 x 256 PtSi array for IR astronomy, proposals for a second-generation meteosat's advanced optical payload, cryogenic bipolar technology for on-focal-plane signal processing, a parallel cellular processing system for fast generation of perspective plots, and ultrahigh-speed CCD image sensors for scanning applications. Also discussed are MBE GaAs rib waveguide experiments at 10.6 microns, an interferometric thermal detector, the development status of superconducting IR detector research, the absorption coefficients of n-type Hg(1-x)Cd(x)Te samples, and the influence of the surface channel on crosstalk in HgCdTe photovoltaic arrays.

  10. Systems considerations in mosaic focal planes

    Science.gov (United States)

    White, K. P., III

    1983-08-01

    Two key reasons for pursuing the development of mosaic focal planes are reviewed and it is shown that rapid frame repetition rate is the only requirement that can be solved no other way than through mosaic focal planes. With the view that spaceborne mosaic focal plane sensors are necessarily 'smart sensors' requiring a lot of onboard processing just to function, it is pointed out that various artificial intelligence techniques may be the most appropriate to incorporate in the data processing. Finally, a novel mosaic focal plane design is proposed, termed a virtual mosaic focal plane, in response to other system constraints.

  11. The Sentinel-4 UVN focal plane assemblies

    Science.gov (United States)

    Hinger, Jürgen; Hohn, Rüdiger; Gebhardt, Eyk; Reichardt, Jörg

    2017-09-01

    The Sentinel-4 UVN Instrument is a dispersive imaging spectrometer covering the UV-VIS and the NIR wavelength. It is developed and built under an ESA contract by an industrial consortium led by Airbus Defence and Space. It will be accommodated on board of the MTG-S (Meteosat Third Generation - Sounder) satellite that will be placed in a geostationary orbit over Europe sampling data for generating two-dimensional maps of a number of atmospheric trace gases. The incoming light is dispersed by reflective gratings and detected by the two (UVVIS and NIR) CCDs mounted inside the focal plane assemblies. Both CCD detectors acquire spectral channels and spatial sampling in two orthogonal directions and will be operated at about 215 K mainly to minimize random telegraph signal effects and to reduce dark current. Stringent detector temperature as well as alignment stability requirements of less than +/-0.1 K per day respectively of less than 2 micrometers/2 arcseconds from ground to orbit are driving the FPA thermo-mechanical design. A specific FPA design feature is the redundant LED-calibration system for bad pixel detection as well as pixel gain and linearity monitoring. This paper reports on the design and qualification of the Focal Plane Assemblies with emphasis on thermo-mechanical as well as alignment stability verification.

  12. High-performance visible/UV CCD focal plane technology for spacebased applications

    Science.gov (United States)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  13. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  14. Multispectral linear array (MLA) focal plane mechanical and thermal design

    Science.gov (United States)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  15. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    Science.gov (United States)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  16. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  17. NeuroSeek dual-color image processing infrared focal plane array

    Science.gov (United States)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  18. Low-Noise CMOS Circuits for On-Chip Signal Processing in Focal-Plane Arrays

    Science.gov (United States)

    Pain, Bedabrata

    The performance of focal-plane arrays can be significantly enhanced through the use of on-chip signal processing. Novel, in-pixel, on-focal-plane, analog signal-processing circuits for high-performance imaging are presented in this thesis. The presence of a high background-radiation is a major impediment for infrared focal-plane array design. An in-pixel, background-suppression scheme, using dynamic analog current memory circuit, is described. The scheme also suppresses spatial noise that results from response non-uniformities of photo-detectors, leading to background limited infrared detector readout performance. Two new, low-power, compact, current memory circuits, optimized for operation at ultra-low current levels required in infrared-detection, are presented. The first one is a self-cascading current memory that increases the output impedance, and the second one is a novel, switch feed-through reducing current memory, implemented using error-current feedback. This circuit can operate with a residual absolute -error of less than 0.1%. The storage-time of the memory is long enough to also find applications in neural network circuits. In addition, a voltage-mode, accurate, low-offset, low-power, high-uniformity, random-access sample-and-hold cell, implemented using a CCD with feedback, is also presented for use in background-suppression and neural network applications. A new, low noise, ultra-low level signal readout technique, implemented by individually counting photo-electrons within the detection pixel, is presented. The output of each unit-cell is a digital word corresponding to the intensity of the photon flux, and the readout is noise free. This technique requires the use of unit-cell amplifiers that feature ultra-high-gain, low-power, self-biasing capability and noise in sub-electron levels. Both single-input and differential-input implementations of such amplifiers are investigated. A noise analysis technique is presented for analyzing sampled

  19. Deriving the effective focal plane for the CBM-RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Kres, Ievgenii [Wuppertal University (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100). A central component of the proposed detector setup is a ring imaging Cherenkov detector (RICH) using CO2 as radiator gas, and a focussing optic with a large spherical mirror. In the present design, the optimal focal plane is approximated using four individual, flat detection surfaces. However, the exact shape and position of the ideal focal plane is subject to further optimization due to effects from tilting the focussing mirror and from momentum dependant deflection of the electron tracks in the magnetic stray field. In this talk, we present a new approach to derive the effective 3-dimensional shape of the focal plane based on a set of Monte Carlo simulations, comparing the ring sharpness at each point of a preliminary focal plane as function of z-position.

  20. Focal plane detector for QDD spectrography in Institute of Nuclear Study and detector for SMART 2nd focal plane in RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Fuchi, Yoshihide [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1996-09-01

    The focal plane detector for QDD spectrography in Institute of Nuclear Study was composed of drift space and a proportional counter tube, and the latter is composed of position detector and two delta E detector for recognizing the particles. In this detector, a uniform parallel electric field can be obtained by placing a guard plate at the same height as that of a drift plate outer place of the detector. On the other hand, the detector for SMART 2nd focal plate in RIKEN is composed of drift space and a single wire proportional counter, and has two cathode read out single wire drift counters set so as to hold the focal plane. (G.K.)

  1. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    Science.gov (United States)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  2. Performance of an optical filter for the XMM focal plane CCD camera EPIC

    Science.gov (United States)

    Stephan, Karl-Heinz; Reppin, C.; Hirschinger, M.; Maier, H. J.; Frischke, D.; Fuchs, Detlef; Mueller, Peter; Guertler, Peter

    1996-10-01

    We have been developing optical filters for ESA's x-ray astronomy project XMM (x-ray multi mirror mission). Specific CCDs will be used as detectors in the focal plane on board the observatory. Since these detectors are sensitive from the x-ray to the NIR (near infrared) spectral range, x-ray observations require optical filters, which combine a high transparency for photon energies in the soft x-ray region and a high opacity for UV (ultraviolet) and VIS (visible) radiation as well. With respect to the mission goal in orbit three types of flight model filters are designed having different spectral transmittance functions. We report on one of these types, a so-called 'thick' filter, which has been realized within the EQM (electrical qualification model)- phase of the project. The filter features a cut-off in the EUV (extreme ultraviolet) spectral range and suppresses radiation below 10 eV photon energy by more than 8 orders of magnitude. It has an effective aperture of 73 mm without any support structure. A 0.35 micrometer thick polypropylene carrier foil is coated with metallic films of Al and Sn. The manufacturing process, the qualification measurements and the environmental tests are described, and the resulting performance data is presented.

  3. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  4. Flux dynamics in ultrasensitive superconducting focal planes

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance of superconducting focal planes will drive the achievable specifications of ultrasensitive instruments for NASA astrophysics missions, yet they have...

  5. Physical Limitations To Nonuniformity Correction In IR Focal Plane Arrays

    Science.gov (United States)

    Scribner, D. A.; Kruer, M. R.; Gridley, J. C.; Sarkady, K.

    1988-05-01

    Simple nonuniformity correction algorithms currently in use can be severely limited by nonlinear response characteristics of the individual pixels in an IR focal plane array. Although more complicated multi-point algorithms improve the correction process they too can be limited by nonlinearities. Furthermore, analysis of single pixel noise power spectrums usually show some level of 1 /f noise. This in turn causes pixel outputs to drift independent of each other thus causing the spatial noise (often called fixed pattern noise) of the array to increase as a function of time since the last calibration. Measurements are presented for two arrays (a HgCdTe hybrid and a Pt:Si CCD) describing pixel nonlinearities, 1/f noise, and residual spatial noise (after nonuniforming correction). Of particular emphasis is spatial noise as a function of the lapsed time since the last calibration and the calibration process selected. The resulting spatial noise is examined in terms of its effect on the NEAT performance of each array tested and comparisons are made. Finally, a discussion of implications for array developers is given.

  6. Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering

    Science.gov (United States)

    Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.

    1993-08-01

    An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.

  7. Focal plane for the next generation of earth observation instruments

    Science.gov (United States)

    Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis

    2017-09-01

    Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.

  8. The Sentinel 4 focal plane subsystem

    Science.gov (United States)

    Hohn, Rüdiger; Skegg, Michael P.; Hermsen, Markus; Hinger, Jürgen; Williges, Christian; Reulke, Ralf

    2017-09-01

    The Sentinel 4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program with the objective of monitoring trace gas concentrations. Sentinel 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Sentinel 4 is unique in being the first geostationary UVN mission. The SENTINEL 4 space segment will be integrated on EUMETSAT's Meteosat Third Generation Sounder satellite (MTG-S). Sentinel 4 will provide coverage of Europe and adjacent regions. The Sentinel 4 instrument comprises as a major element two Focal Plane Subsystems (FPS) covering the wavelength ranges 305 nm to 500 nm (UVVIS) and 750 nm to 775 nm (NIR) respectively. The paper describes the Focal Plane Subsystems, comprising the detectors, the optical bench and the control electronics. Further the design and development approach will be presented as well as first measurement results of FPS Qualification Model.

  9. Continuous contour phase plates for tailoring the focal plane irradiance profile

    International Nuclear Information System (INIS)

    Dixit, S.N.; Rushford, M.C.; Thomas, I.M.; Perry, M.D.

    1995-01-01

    We present fully continuous phase screens for producing super-Gaussian focal-plane irradiance profiles. Such phase screens are constructed with the assumption of either circular symmetric near-field and far-field profiles or a separable phase screen in Cartesian co-ordinates. In each case, the phase screen is only a few waves deep. Under illumination by coherent light, such phase screens produce high order super-Gaussian profiles in the focal plane with high energy content effects of beam aberrations on the focal profiles and their energy content are also discussed

  10. Fabrication of Transition Edge Sensor Microcalorimeters for X-Ray Focal Planes

    Science.gov (United States)

    Chervenak, James A.; Adams, Joseph S.; Audley, Heather; Bandler, Simon R.; Betancourt-Martinez, Gabriele; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline; Lee, Sang Jun; hide

    2015-01-01

    Requirements for focal planes for x-ray astrophysics vary widely depending on the needs of the science application such as photon count rate, energy band, resolving power, and angular resolution. Transition edge sensor x-ray calorimeters can encounter limitations when optimized for these specific applications. Balancing specifications leads to choices in, for example, pixel size, thermal sinking arrangement, and absorber thickness and material. For the broadest specifications, instruments can benefit from multiple pixel types in the same array or focal plane. Here we describe a variety of focal plane architectures that anticipate science requirements of x-ray instruments for heliophysics and astrophysics. We describe the fabrication procedures that enable each array and explore limitations for the specifications of such arrays, including arrays with multiple pixel types on the same array.

  11. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  12. The Simbol-X Focal Plane

    Science.gov (United States)

    Laurent, P.

    2009-05-01

    The Simbol-X focal plane is designed to detect photons focused by the mirror in the 0.5 to 100 keV energy band. Composed of two detectors, it will measure the position, energy, and arrival time of each incoming X-ray. On top of it will be a collimator to shield all photons not coming from the mirror field of view. The whole system is surrounded by an active and passive shielding in order to ensure the required very low background.

  13. Landsat 9 OLI 2 focal plane subsystem: design, performance, and status

    Science.gov (United States)

    Malone, Kevin J.; Schrein, Ronald J.; Bradley, M. Scott; Irwin, Ronda; Berdanier, Barry; Donley, Eric

    2017-09-01

    The Landsat 9 mission will continue the legacy of Earth remote sensing that started in 1972. The Operational Land Imager 2 (OLI 2) is one of two instruments on the Landsat 9 satellite. The OLI 2 instrument is essentially a copy of the OLI instrument flying on Landsat 8. A key element of the OLI 2 instrument is the focal plane subsystem, or FPS, which consists of the focal plane array (FPA), the focal plane electronics (FPE) box, and low-thermal conductivity cables. This paper presents design details of the OLI 2 FPS. The FPA contains 14 critically-aligned focal plane modules (FPM). Each module contains 6 visible/near-IR (VNIR) detector arrays and three short-wave infrared (SWIR) arrays. A complex multi-spectral optical filter is contained in each module. Redundant pixels for each array provide exceptional operability. Spare detector modules from OLI were recharacterized after six years of storage. Radiometric test results are presented and compared with data recorded in 2010. Thermal, optical, mechanical and structural features of the FPA will be described. Special attention is paid to the thermal design of the FPA since thermal stability is crucial to ensuring low-noise and low-drift operation of the detectors which operate at -63°C. The OLI 2 FPE provides power, timing, and control to the focal plane modules. It also digitizes the video data and formats it for the solid-state recorder. Design improvements to the FPA-FPE cables will be discussed and characterization data will be presented. The paper will conclude with the status of the flight hardware assembly and testing.

  14. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  15. HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS

    International Nuclear Information System (INIS)

    Guyon, Olivier; Martinache, Frantz; Belikov, Ruslan; Soummer, Remi

    2010-01-01

    We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 λ/D while providing total extinction of an on-axis point source. This performance is very close to the 'fundamental performance limit' of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at ∼1.2 λ/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at 'low' contrast (below ∼ 10 8 ), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging systems in the near-IR, where

  16. Materials, devices, techniques, and applications for Z-plane focal plane array technology; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Carson, John C.

    1989-09-01

    The papers contained in this volume focus on the implementation and application of Z-plane focal array technology. Topics discussed include civil and military applications of Z-plane technology, electronic design and technology for on-scale plane signal processing, detector development and fabrication technology, and Z-plane module development and producibility. Papers are presented on future capabilities of Z-plane technology, comparison of planar and Z-plane focal plane technologies for dim target detection, Z-plane modules as target extraction engines, and high complexity tape automated bonding application for space hardware.

  17. SNAP Satellite Focal Plane Development

    International Nuclear Information System (INIS)

    Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez, D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher, A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.

    2003-01-01

    The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R and D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics

  18. Technology for advanced focal plane arrays of HgCdTe and AIGaN

    CERN Document Server

    He, Li; Ni, Guoqiang

    2016-01-01

    This book introduces the basic framework of advanced focal plane technology based on the third-generation infrared focal plane concept. The essential concept, research advances, and future trends in advanced sensor arrays are comprehensively reviewed. Moreover, the book summarizes recent research advances in HgCdTe/AlGaN detectors for the infrared/ultraviolet waveband, with a particular focus on the numerical method of detector design, material epitaxial growth and processing, as well as Complementary Metal-Oxide-Semiconductor Transistor readout circuits. The book offers a unique resource for all graduate students and researchers interested in the technologies of focal plane arrays or electro-optical imaging sensors.

  19. Infrared MUSIC from Z technology focal planes

    International Nuclear Information System (INIS)

    Waters, C.R.; Sommese, A.; Johnston, D.; Landau, H.

    1989-01-01

    Presented is the Multiple Signal Classification (MUSIC) algorithm which uses the high frequency differences in sensed time signals to discriminate, count, and accurately locate closely spaced targets. Z technology focal planes allow the implementation of this algorithm and the trade-off between finer spatial resolution systems and systems with coarser resolution but higher sampling rates

  20. Axial and focal-plane diffraction catastrophe integrals

    International Nuclear Information System (INIS)

    Berry, M V; Howls, C J

    2010-01-01

    Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X 9 diffraction catastrophes. These representations reveal unexpected relations between the integrals.

  1. Uncooled infrared focal plane array imaging in China

    Science.gov (United States)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  2. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  3. Kalman Filter for Calibrating a Telescope Focal Plane

    Science.gov (United States)

    Kang, Bryan; Bayard, David

    2006-01-01

    The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.

  4. Large-format InGaAs focal plane arrays for SWIR imaging

    Science.gov (United States)

    Hood, Andrew D.; MacDougal, Michael H.; Manzo, Juan; Follman, David; Geske, Jonathan C.

    2012-06-01

    FLIR Electro Optical Components will present our latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. FLIR will present imaging from their latest small pitch (15 μm) focal plane arrays in VGA and High Definition (HD) formats. FLIR will present characterization of the FPA including dark current measurements as well as the use of correlated double sampling to reduce read noise. FLIR will show imagery as well as FPA-level characterization data.

  5. High operating temperature interband cascade focal plane arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S. [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  6. High operating temperature interband cascade focal plane arrays

    International Nuclear Information System (INIS)

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-01-01

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10 −7 A/cm 2 at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications

  7. Segmented focal plane detector for light and heavy ions

    International Nuclear Information System (INIS)

    Wolfs, F.L.H.; Bryan, D.C.; Kurz, K.L.; Herrick, D.M.; Perera, P.A.A.; White, C.A.

    1992-01-01

    A segmented focal plane detector for an Enge split-pole spectrograph has been developed for the study of breakup reactions at very low relative energies. It consists of a 61 cm long segmented position-sensitive parallel plate avalanche counter backed by a large Bragg curve detector. A segmented plastic scintillator is mounted behind the anode of the Bragg curve detector and is used for particle identification of low-ionizing particles. The dead space between the two sections of the focal plane detector is 2.5 mm. The intrinsic position resolution of the detector is 1 mm. The intrinsic energy resolution depends on the energy of the incident ion and can be as good as 0.55%. The nuclear charge and mass resolutions are 0.3 e and 0.3 u, respectively. (orig.)

  8. Automatic test comes to focal plane array production

    Science.gov (United States)

    Skaggs, Frank L.; Barton, T. D.

    1992-08-01

    To meet the needs of military and commercial markets, the infrared focal plane array industry must develop new, effective and low cost methods of fabricating and testing imaging detectors. This paper describes Texas Instruments new concepts in automated testing and cold probe technology as they apply to volume production.

  9. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  10. Characterization of DECam focal plane detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.

    2008-06-01

    DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.

  11. An ionization-chamber type of focal-plane detector for heavy ions

    International Nuclear Information System (INIS)

    Erskine, J.R.; Braid, T.H.; Stolfzfus, J.C.

    1976-01-01

    A focal-plane detector for heavy ions is described in which energy loss and total energy are measured with a gridded ionization chamber, and position along the focal plane and angle of incidence are measured with two resistive-wire proportional counters. The clean geometry of the detector makes it especially attractive for use with heavy ions of high specific ionization. Typical position resolutions of 1.0-1.5mm (fwhm) were observed over a 50 cm length of the detector in the focal plane of a split-pole magnetic spectrograph. Special tests were made which suggest that the limiting position resolution is 0.76 mm or better. The resolution of the energy-loss signal was typically 4.5% (fwhm). The resolution of the total energy signal was 1.0-1.5% (fwhm) for small entrance apertures of the spectrograph, although 0.7% resolution was observed under special circumstances. The angle of incidence was measured with an uncertainty of about 1.2% (fwhm). The availability of the many parameters needed for particle identification makes this detector especially useful for the study of weak reaction channels in heavy-ion-induced reactions. (Auth.)

  12. Development of the focal plane PNCCD camera system for the X-ray space telescope eROSITA

    International Nuclear Information System (INIS)

    Meidinger, Norbert; Andritschke, Robert; Ebermayer, Stefanie; Elbs, Johannes; Haelker, Olaf; Hartmann, Robert; Herrmann, Sven; Kimmel, Nils; Schaechner, Gabriele; Schopper, Florian; Soltau, Heike; Strueder, Lothar; Weidenspointner, Georg

    2010-01-01

    A so-called PNCCD, a special type of CCD, was developed twenty years ago as focal plane detector for the XMM-Newton X-ray astronomy mission of the European Space Agency ESA. Based on this detector concept and taking into account the experience of almost ten years of operation in space, a new X-ray CCD type was designed by the 'MPI semiconductor laboratory' for an upcoming X-ray space telescope, called eROSITA (extended Roentgen survey with an imaging telescope array). This space telescope will be equipped with seven X-ray mirror systems of Wolter-I type and seven CCD cameras, placed in their foci. The instrumentation permits the exploration of the X-ray universe in the energy band from 0.3 up to 10 keV by spectroscopic measurements with a time resolution of 50 ms for a full image comprising 384x384 pixels. Main scientific goals are an all-sky survey and investigation of the mysterious 'Dark Energy'. The eROSITA space telescope, which is developed under the responsibility of the 'Max-Planck-Institute for extraterrestrial physics', is a scientific payload on the new Russian satellite 'Spectrum-Roentgen-Gamma' (SRG). The mission is already approved by the responsible Russian and German space agencies. After launch in 2012 the destination of the satellite is Lagrange point L2. The planned observational program takes about seven years. We describe the design of the eROSITA camera system and present important test results achieved recently with the eROSITA prototype PNCCD detector. This includes a comparison of the eROSITA detector with the XMM-Newton detector.

  13. Focal plane instrumentation: a very high resolution MWPC system for inclined tracks

    International Nuclear Information System (INIS)

    Bertozzi, W.; Hynes, M.V.; Sargent, C.P.; Creswell, C.; Dunn, P.C.; Hirsch, A.; Leitch, M.; Norum, B.; Rad, F.N.; Sasanuma, T.

    1977-01-01

    A focal plane system has been developed for the MIT energy-loss spectrometer. The arrival time information from adjacent wires of one MWPC (s=2mm), is used to trace particle trajectories with a position resolution of 120μm (2sigma) and an angular resolution of less than 17 mrad (2sigma). The tracks are inclined to the MWPC at about 45 0 . The readout uses 3 delay lines connected to successive sense wires in a cyclical pattern. Coarse wire positions are determined by differences and drift times by sums of signal arrival times at the ends of the delays lines. A Cherenkov counter provides a fiducial signal. Interpolation is independent of drift velocity since the drift is normal to the sense plane. A similar readout with a second chamber provides position information perpendicular to momentum plane. This information is used to correct on-line for focal plane curvatures and other spectrometer aberrations. Final momentum resolution is about 10 -4 . (Auth.)

  14. Reproducibility of temporomandibular joint tomography. Influence of shifted X-ray beam and tomographic focal plane on reproducibility

    International Nuclear Information System (INIS)

    Saito, Masashi

    1999-01-01

    Proper tomographic focal plane and x-ray beam direction are the most important factors to obtain accurate images of the temporomandibular joint (TMJ). In this study, to clarify the magnitude of effect of these two factors on the image quality. We evaluated the reproducibility of tomograms by measuring the distortion when the x-ray beam was shifted from the correct center of the object. The effects of the deviation of the tomographic focal plane on image quality were evaluated by the MTF (Modulation Transfer Function). Two types of tomograms, one the plane type, the other the rotational type were used in this study. A TMJ model was made from Teflon for the purpose of evaluation by shifting the x-ray beam. The x-ray images were obtained by tilting the model from 0 to 10 degrees 2-degree increments. These x-ray images were processed for computer image analysis, and then the distance between condyle and the joint space was measured. To evaluate the influence of the shifted tomographic focal plane on image sharpness, the x-ray images from each setting were analyzed by MTF. To obtain the MTF, ''knife-edge'' made from Pb was used. The images were scanned with a microdensitometer at the central focal plane, and 0, 0.5, 1 mm away respectively. The density curves were analyzed by Fourier analysis and the MTF was calculated. The reproducibility of images became worse by shifting the x-ray beam. This tendency was similar for both tomograms. Object characteristics such as anterior and posterior portion of the joint space affected the deterioration of reproducibility of the tomography. The deviation of the tomographic focal plane also decreased the reproducibility of the x-ray images. The rotational type showed a better MTF, but it became seriously unfavorable with slight changes of the tomographic focal plane. Contrarily, the plane type showed a lower MTF, but the image was stable with shifting of the tomographic focal plane. (author)

  15. Focal plane subsystem design and performance for atmospheric chemistry from geostationary orbit tropospheric emissions monitoring of pollution

    Science.gov (United States)

    Gilmore, A. S.; Philbrick, R. H.; Funderburg, J.

    2017-09-01

    Remote sensing of pollutants are enabled from a satellite in a geostationary orbit containing an imaging spectrometer encompassing the wavelength ranges of 290 - 490 nm and 540 - 740 nm. As the first of NASA's Earth Venture Instrument Program, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) program will utilize this instrument to measure hourly air quality over a large portion of North America. The focal plane subsystem (FPS) contains two custom designed and critically aligned full frame transfer charge coupled devices (active area: 1028 x 2048, 18 μm) within a focal plane array package designed for radiation tolerance and space charging rejection. In addition, the FPS contains custom distributed focal plane electronics that provide all necessary clocks and biases to the sensors, receives all analog data from the sensors and performs 14 bit analog to digital conversion for upstream processing. Finally, the FPS encompasses custom low noise cables connecting the focal plane array and associated electronics. This paper discusses the design and performance of this novel focal plane subsystem with particular emphasis on the optical performance achieved including alignment, quantum efficiency, and modulation transfer function.

  16. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J., E-mail: jft@hll.mpg.d [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Solar System Research, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Andricek, L. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany); Aschauer, F. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Heinzinger, K. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); PNSensor GmbH, Roemerstrasse 28, 80803 Munich (Germany); Herrmann, S. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Hilchenbach, M. [MPI for Solar System Research, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Lauf, T. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Lechner, P.; Lutz, G.; Majewski, P. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); PNSensor GmbH, Roemerstrasse 28, 80803 Munich (Germany); Porro, M. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Richter, R.H. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Schnecke, M. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany)

    2010-12-11

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300x300{mu}m{sup 2}. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5x0.5 mm{sup 2}. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  17. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    International Nuclear Information System (INIS)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R.H.; Schaller, G.; Schnecke, M.

    2010-01-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300x300μm 2 . Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5x0.5 mm 2 . Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  18. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    Science.gov (United States)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R. H.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Stefanescu, A.; Strüder, L.; de Vita, G.

    2010-12-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300×300μm2. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5×0.5 mm2. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  19. VERIFICATION OF THE SENTINEL-4 FOCAL PLANE SUBSYSTEM

    Directory of Open Access Journals (Sweden)

    C. Williges

    2017-05-01

    Full Text Available The Sentinel-4 payload is a multi-spectral camera system which is designed to monitor atmospheric conditions over Europe. The German Aerospace Center (DLR in Berlin, Germany conducted the verification campaign of the Focal Plane Subsystem (FPS on behalf of Airbus Defense and Space GmbH, Ottobrunn, Germany. The FPS consists, inter alia, of two Focal Plane Assemblies (FPAs, one for the UV-VIS spectral range (305 nm … 500 nm, the second for NIR (750 nm … 775 nm. In this publication, we will present in detail the opto-mechanical laboratory set-up of the verification campaign of the Sentinel-4 Qualification Model (QM which will also be used for the upcoming Flight Model (FM verification. The test campaign consists mainly of radiometric tests performed with an integrating sphere as homogenous light source. The FPAs have mainly to be operated at 215 K ± 5 K, making it necessary to exploit a thermal vacuum chamber (TVC for the test accomplishment. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Furthermore selected test analyses and results will be presented, showing that the Sentinel-4 FPS meets specifications.

  20. Verification of the Sentinel-4 focal plane subsystem

    Science.gov (United States)

    Williges, Christian; Uhlig, Mathias; Hilbert, Stefan; Rossmann, Hannes; Buchwinkler, Kevin; Babben, Steffen; Sebastian, Ilse; Hohn, Rüdiger; Reulke, Ralf

    2017-09-01

    The Sentinel-4 payload is a multi-spectral camera system, designed to monitor atmospheric conditions over Europe from a geostationary orbit. The German Aerospace Center, DLR Berlin, conducted the verification campaign of the Focal Plane Subsystem (FPS) during the second half of 2016. The FPS consists, of two Focal Plane Assemblies (FPAs), two Front End Electronics (FEEs), one Front End Support Electronic (FSE) and one Instrument Control Unit (ICU). The FPAs are designed for two spectral ranges: UV-VIS (305 nm - 500 nm) and NIR (750 nm - 775 nm). In this publication, we will present in detail the set-up of the verification campaign of the Sentinel-4 Qualification Model (QM). This set up will also be used for the upcoming Flight Model (FM) verification, planned for early 2018. The FPAs have to be operated at 215 K +/- 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. The test campaign consists mainly of radiometric tests. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Selected test analyses and results will be presented.

  1. Infrared detectors and focal plane arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 23, 24, 1992

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    The present conference discusses Schottky-barrier IR image sensors, SWIR and MWIR Schottky-barrier imagers, a 640 x 640 PtSi, models of nonlinearities in focal plane arrays, retinal function relative to IRT focal plane arrays, a solid-state pyroelectric imager, and electrolyte electroreflectance spectroscopies for the ion-implanted HgCdTe with thermal annealing. Also discussed are HgCdTe hybrid focal plane arrays for thermoelectrically cooled applications, a novel IR detector plasma-edge detector, and IR detector circuits using monolithic CMOS amps with InSb detectors. (No individual items are abstracted in this volume)

  2. Innovative compact focal plane array for wide field vis and ir orbiting telescopes

    Science.gov (United States)

    Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried

    2017-11-01

    The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.

  3. Planck 2015 results: XII. Full focal plane simulations

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, compris...

  4. CCD developed for scientific application by Hamamatsu

    CERN Document Server

    Miyaguchi, K; Dezaki, J; Yamamoto, K

    1999-01-01

    We have developed CCDs for scientific applications that feature a low readout noise of less than 5 e-rms and low dark current of 10-25 pA/cm sup 2 at room temperature. CCDs with these characteristics will prove extremely useful in applications such as spectroscopic measurement and dental radiography. In addition, a large-area CCD of 2kx4k pixels and 15 mu m square pixel size has recently been completed for optical use in astronomical observations. Applications to X-ray astronomy require the most challenging device performance in terms of deep depletion, high CTE, and focal plane size, among others. An abuttable X-ray CCD, having 1024x1024 pixels and 24 mu m square pixel size, is to be installed in an international space station (ISS). We are now striving to achieve the lowest usable cooling temperature by means of a built-in TEC with limited power consumption. Details on the development status are described in this report. We would also like to present our future plans for a large active area and deep depleti...

  5. Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays

    Science.gov (United States)

    Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.; hide

    2004-01-01

    This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.

  6. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun; Kavusi, Sam; Salama, Khaled N.

    2012-01-01

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo

  7. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  8. Focal-plane change triggered video compression for low-power vision sensor systems.

    Directory of Open Access Journals (Sweden)

    Yu M Chi

    Full Text Available Video sensors with embedded compression offer significant energy savings in transmission but incur energy losses in the complexity of the encoder. Energy efficient video compression architectures for CMOS image sensors with focal-plane change detection are presented and analyzed. The compression architectures use pixel-level computational circuits to minimize energy usage by selectively processing only pixels which generate significant temporal intensity changes. Using the temporal intensity change detection to gate the operation of a differential DCT based encoder achieves nearly identical image quality to traditional systems (4dB decrease in PSNR while reducing the amount of data that is processed by 67% and reducing overall power consumption reduction of 51%. These typical energy savings, resulting from the sparsity of motion activity in the visual scene, demonstrate the utility of focal-plane change triggered compression to surveillance vision systems.

  9. Near infrared focal plane for the ISOCAM camera

    International Nuclear Information System (INIS)

    Epstein, G.; Stefanovitch, D.; Tiphene, D.; Carpentier, Y.; Lorans, D.

    1988-01-01

    ISOCAM is one of the science instruments in the Infrared Space Observatory. It is a 2-channel IR Astronomical Imager intended to observe at very low flux levels, thanks to the use of a liquid helium cooled telescope. This paper describes the Focal Plane Assembly design of the short wavelength channel. The operation of a 32 x 32 InSb CID-SAT array detector has been demonstrated. The problems encountered in the design of the cooled electronics and the component selection process are discussed in the light of specific ISO constraints, such as thermal control and radiation shielding. 6 references

  10. Multiscale multichroic focal planes for measurements of the cosmic microwave background

    Science.gov (United States)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-01-01

    We report on the development of multiscale multichroic focal planes for measurements of the cosmic microwave background (CMB). A multichroic focal plane, i.e., one that consists of pixels that are simultaneously sensitive in multiple frequency bands, is an efficient architecture for increasing the sensitivity of an experiment as well as for disentangling the contamination due to galactic foregrounds, which is increasingly becoming the limiting factor in extracting cosmological information from CMB measurements. To achieve these goals, it is necessary to observe across a broad frequency range spanning roughly 30-350 GHz. For this purpose, the Berkeley CMB group has been developing multichroic pixels consisting of planar superconducting sinuous antennas coupled to extended hemispherical lenslets, which operate at sub-Kelvin temperatures. The sinuous antennas, microwave circuitry and the transition-edge-sensor (TES) bolometers to which they are coupled are integrated in a single lithographed wafer.We describe the design, fabrication, testing and performance of multichroic pixels with bandwidths of 3:1 and 4:1 across the entire frequency range of interest. Additionally, we report on a demonstration of multiscale pixels, i.e., pixels whose effective size changes as a function of frequency. This property keeps the beam width approximately constant across all frequencies, which in turn allows the sensitivity of the experiment to be optimal in every frequency band. We achieve this by creating phased arrays from neighboring lenslet-coupled sinuous antennas, where the size of each phased array is chosen independently for each frequency band. We describe the microwave circuitry in detail as well as the benefits of a multiscale architecture, e.g., mitigation of beam non-idealities, reduced readout requirements, etc. Finally, we discuss the design and fabrication of the detector modules and focal-plane structures including cryogenic readout components, which enable the

  11. Cooling System for a Frame-Store PN-CCD Detector for Low Background Application

    CERN Document Server

    Pereira, H; Santos Silva, P; Kuster, M; Lang, P

    2012-01-01

    The astroparticle physics experiment CERN Axion Solar Telescope (CAST) aims to detect hypothetical axions or axion-like particles produced in the Sun by the Primakoff process. A Large Hadron Collider (LHC) prototype superconducting dipole magnet provides a 9 T transverse magnetic field for the conversion of axions into detectable X-ray photons. These photons are detected with an X-ray telescope and a novel type of frame-store CCD detector built from radio-pure materials, installed in the optics focal plane. A novel type of cooling system has been designed and built based on krypton-filled cryogenic heat pipes, made out of oxygen-free radiopure copper, and a Stirling cryocooler as cold source. The heat pipes provide an efficient thermal coupling between the cryocooler and the CCD which is kept at stable temperatures between 150 and 230 K within an accuracy of 0.1 K. A graded-Z radiation shield, also serving as a gas cold-trap operated at 120 K, is implemented to reduce the surface contamination of the CCD wind...

  12. Experimental research on energy circled fraction of continuous phase plates in focal spot

    International Nuclear Information System (INIS)

    Zhang Yuanhang; Yang Chunlin; Wen Shenglin; Shi Qikai; Wang Jian

    2013-01-01

    In inertial confinement fusion (ICF) research process, the form of focal spot is extremely crucial. Especially in the indirect driven implosion, energy circled fraction is higher than 95% in focal spot. Based on the offline test platform, the focusing spot of continuous phase plates with different application error is clearly imaged on CCD. By experimental analysis, it is found that the beam rotation error, caliber error, translational error and inclination error have a high tolerance in affecting focal plane of CPP. Energy circled fraction is higher than 95%, the range is less than 0.5%. Nevertheless, the waterfront aberration seriously affects the shaping ability of the CPP. Clearly, the main factor of reducing energy circled fraction to less than 90% is waterfront aberration. (authors)

  13. Improvement of the focal-plane detector system for medium heavy ions

    International Nuclear Information System (INIS)

    Wan Yude; Li Zhongzhen

    1992-01-01

    An improved medium heavy ion focal-plane detector system (500 mm long) was tested with beam and has been used in nuclear physics experiment. The measured results at tandem accelerator with 66 MeV 12 C beam are: the energy resolution of the residual energy E detector is about 7%. The experiment of particle discrimination has been performed

  14. A focal plane detector design for a wide-band Laue-lens telescope

    DEFF Research Database (Denmark)

    Caroli, E.; Auricchio, N.; Amati, L.

    2005-01-01

    , and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600 keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector...... should have high detection efficiency over the entire operative range, a spatial resolution of about 1 mm, an energy resolution of a few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers......The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra...

  15. Digital mammography with high-resolution storage plates (CR) versus full-field digital mammography (CCD) (DR) for microcalcifications and focal lesions - a retrospective clinical histologic analysis (n = 102)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Lell, M.; Wenkel, E.; Boehner, C.; Dassel, M.S.; Bautz, W.

    2005-01-01

    Purpose: to determine the diagnostic accuracy of microcalcifications and focal lesions in a retrospective clinical-histological study using high-resolution digital phosphor storage plates (hard copy) and full-field digital mammography (hard copy). Materials and methods: from May 2003 to September 2003, 102 patients underwent digital storage plate mammography (CR), using a mammography unit (Mammomat 3000 N, Siemens) in combination with a high resolution (9 lp/mm) digital storage phosphor plate system (pixel size 50 μm) (Fuji/Siemens). After diagnosis and preoperative wire localization, full-field digital mammography (CCD) (DR) was performed with the same exposure parameters. The full-field digital mammography used a CCD-detector (SenoScan) (fisher imaging) with a resolution of 10 Ip/mm and a pixel size of 50 μm. Five investigators determined the diagnosis (BI-RADS trademark I-V) retrospectively after the operation from randomly distributed mediolateral views (hard copy reading). These results were correlated with the final histology. Results: the diagnostic accuracy of digital storage plate mammography (CR) and full-field digital mammography (CCD) (DR) was 73% and 71% for all findings (n = 102), 73% and 71% for microcalcifications (n = 51), and 72% and 70% for focal lesions (n = 51). The overall results showed no difference. Conclusion: our findings indicate the equivalence of high-resolution digital phosphor storage plate mammography (CR) and full-field digital mammography (CCD) (DR). (orig.)

  16. A focal plane detector for both light and heavy ions

    International Nuclear Information System (INIS)

    Ophel, T.R.; Johnston, A.

    1978-05-01

    The characteristics of a multi-element, ionization-type focal plane detector with an effective length of 53 cm have been evaluated for various ions ranging between protons and 32 S. The position resolution obtained is typically 1 mm. Excellent energy (0.49% for 16 O) and angular resolution (0.2 degrees with respect to beam direction for 7 Li) have been obtained enabling clean separation of ion species at essentially full angular acceptance of a split-pole spectrograph

  17. Self-Calibration Method Based on Surface Micromaching of Light Transceiver Focal Plane for Optical Camera

    Directory of Open Access Journals (Sweden)

    Jin Li

    2016-10-01

    Full Text Available In remote sensing photogrammetric applications, inner orientation parameter (IOP calibration of remote sensing camera is a prerequisite for determining image position. However, achieving such a calibration without temporal and spatial limitations remains a crucial but unresolved issue to date. The accuracy of IOP calibration methods of a remote sensing camera determines the performance of image positioning. In this paper, we propose a high-accuracy self-calibration method without temporal and spatial limitations for remote sensing cameras. Our method is based on an auto-collimating dichroic filter combined with a surface micromachining (SM point-source focal plane. The proposed method can autonomously complete IOP calibration without the need of outside reference targets. The SM procedure is used to manufacture a light transceiver focal plane, which integrates with point sources, a splitter, and a complementary metal oxide semiconductor sensor. A dichroic filter is used to fabricate an auto-collimation light reflection element. The dichroic filter, splitter, and SM point-source focal plane are integrated into a camera to perform an integrated self-calibration. Experimental measurements confirm the effectiveness and convenience of the proposed method. Moreover, the method can achieve micrometer-level precision and can satisfactorily complete real-time calibration without temporal or spatial limitations.

  18. An efficient shutter-less non-uniformity correction method for infrared focal plane arrays

    Science.gov (United States)

    Huang, Xiyan; Sui, Xiubao; Zhao, Yao

    2017-02-01

    The non-uniformity response in infrared focal plane array (IRFPA) detectors has a bad effect on images with fixed pattern noise. At present, it is common to use shutter to prevent from radiation of target and to update the parameters of non-uniformity correction in the infrared imaging system. The use of shutter causes "freezing" image. And inevitably, there exists the problems of the instability and reliability of system, power consumption, and concealment of infrared detection. In this paper, we present an efficient shutter-less non-uniformity correction (NUC) method for infrared focal plane arrays. The infrared imaging system can use the data gaining in thermostat to calculate the incident infrared radiation by shell real-timely. And the primary output of detector except the shell radiation can be corrected by the gain coefficient. This method has been tested in real infrared imaging system, reaching high correction level, reducing fixed pattern noise, adapting wide temperature range.

  19. An unified approach for the design of focal-plane arrays in satellite communication

    NARCIS (Netherlands)

    Zamanifekri, A.; Smolders, A.B.

    2012-01-01

    The aim of this paper is to present a hybrid approach for designing focal plane arrays using commercially available software, considering the fact that the main trade-off in the EM simulation is the accuracy versus computational power. The presented approach is hybrid method based on FDTD/PO. The

  20. New focal plane detector system for the broad range spectrometer

    International Nuclear Information System (INIS)

    Sjoreen, T.P.

    1984-01-01

    A focal plane detector system consisting of a vertical drift chamber, parallel plate avalanche counters, and an ionization chamber with segmented anodes has been installed in the Broad Range Spectrometer at the Holifield Facility at Oak Ridge. The system, which has been designed for use with light-heavy ions with energies ranging from 10 to 25 MeV/amu, has a position resolution of approx. 0.1 mm, a scattering angle resolution of approx. 3 mrad, and a mass resolution of approx. 1/60

  1. High Resolution, Radiation Tolerant Focal Plane Array for Lunar And Deep Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerius Photonics and its partners propose the development of a high resolution, radiation hardened 3-D FLASH Focal Plane Array (FPA), with performance expected to be...

  2. Spatial noise in staring IR focal plane arrays

    International Nuclear Information System (INIS)

    Scribner, D.A.; Kruer, M.R.; Sarkady, K.; Gridley, J.C.

    1988-01-01

    Problems with nonuniformity correction algorithms due to nonlinear pixel response and 1/f noise have been shown previously to cause spatial noise which can be significantly greater than temporal noise. The residual spatial noise after correction cannot be reduced with time averaging. Because of spatial noise the sensitivity of staring FPA sensors is often less than predicted on the basis of the temporal noise of the individual elements. A review is given of methods for measuring and analyzing spatial noise (after nonuniformity correction) in staring infrared focal plane arrays. Automated measurement techniques are described briefly, including necessary equipment and data reduction procedures. An example of spatial noise measurements is given using a staring InSb Charge Injection Device (CID) array

  3. Third-generation intelligent IR focal plane arrays

    Science.gov (United States)

    Caulfield, H. John; Jack, Michael D.; Pettijohn, Kevin L.; Schlesselmann, John D.; Norworth, Joe

    1998-03-01

    SBRC is at the forefront of industry in developing IR focal plane arrays including multi-spectral technology and '3rd generation' functions that mimic the human eye. 3rd generation devices conduct advanced processing on or near the FPA that serve to reduce bandwidth while performing needed functions such as automatic target recognition, uniformity correction and dynamic range enhancement. These devices represent a solution for processing the exorbitantly high bandwidth coming off large area FPAs without sacrificing systems sensitivity. SBRC's two-color approach leverages the company's HgCdTe technology to provide simultaneous multiband coverage, from short through long wave IR, with near theoretical performance. IR systems that are sensitive to different spectral bands achieve enhanced capabilities for target identification and advanced discrimination. This paper will provide a summary of the issues, the technology and the benefits of SBRC's third generation smart and two-color FPAs.

  4. Smart trigger logic for focal plane arrays

    Science.gov (United States)

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  5. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    International Nuclear Information System (INIS)

    Preston, M.F.; Myers, L.S.; Annand, J.R.M.; Fissum, K.G.; Hansen, K.; Isaksson, L.; Jebali, R.; Lundin, M.

    2014-01-01

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system

  6. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, M.F. [Lund University, SE-221 00 Lund (Sweden); Myers, L.S. [Duke University, Durham, NC 27708 (United States); Annand, J.R.M. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Fissum, K.G., E-mail: kevin.fissum@nuclear.lu.se [Lund University, SE-221 00 Lund (Sweden); Hansen, K.; Isaksson, L. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Jebali, R. [Arktis Radiation Detectors Limited, 8045 Zürich (Switzerland); Lundin, M. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden)

    2014-04-21

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system.

  7. Infrared focal plane array producibility and related materials; Proceedings of the Meeting, Orlando, FL, Apr. 20, 21, 1992

    Science.gov (United States)

    Balcerak, Ray; Pellegrini, Paul W.; Scribner, Dean A.

    The present conference discusses the commercial diversification of the U.S. IR detector industry's commercial diversification, HgCdTe focal-plane array (FPAs) manufacture, LPE of (Hg,Cd)Te FPAs, uncooled IR FPA detector producibility, a high performance staring IR camera, and novel technologies for FPA dewars. Also discussed are hybridizing FPAs, cryoprober test development, HgCdTe on Si for monolithic focal plane arrays, popcorn noise in linear InGaAs detector arrays, and the use of narrowband laser speckle for MTF characterization of CCDs. (No individual items are abstracted in this volume)

  8. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  9. A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

    Directory of Open Access Journals (Sweden)

    Moon-Hee Chung

    2006-03-01

    Full Text Available The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory, which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

  10. Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband focal plane arrays, operating in UV-to-SWIR wavelength range, are required for atmospheric monitoring of greenhouse gases. Currently, separate image...

  11. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays For Satellite-Based Wildfire Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dualband focal plane arrays (FPAs) based on gallium-free Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. We...

  12. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types

    Science.gov (United States)

    Wassell, Edward J.; Adams, Joseph S.; Bandler, Simon R.; Betancour-Martinez, Gabriele L; Chiao, Meng P.; Chang, Meng Ping; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.; hide

    2016-01-01

    We develop superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting the specifications of X-ray imaging spectrometers, including high count rate, high energy resolution, and large field of view. In particular, a focal plane composed of two subarrays: one of fine pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit Instrument on the European Space Agencys ATHENA mission. We have based the subarrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all-gold X-ray absorber on 50 and 75 micron pitch, where the Mo/Au TES sits atop a thick metal heatsinking layer, have shown high resolution and can accommodate high count rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au, and an added bismuth layer in a 250-sq micron absorber. To tune the parameters of each subarray requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single-ion milling step. We demonstrate methods for integrating the heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each subarray, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (T(sub c)) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these 'hybrid' arrays will be presented.

  13. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays for Satellite-Based Wildfire Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Infrared focal plane arrays (FPAs) based on Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. In Phase I we...

  14. Hyperspectral Longwave Infrared Focal Plane Array and Camera Based on Quantum Well Infrared Photodetectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a hyperspectral focal plane array and camera imaging in a large number of sharp hyperspectral bands in the thermal infrared. The camera is...

  15. Removing defocused objects from single focal plane scans of cytological slides

    Directory of Open Access Journals (Sweden)

    David Friedrich

    2016-01-01

    Full Text Available Background: Virtual microscopy and automated processing of cytological slides are more challenging compared to histological slides. Since cytological slides exhibit a three-dimensional surface and the required microscope objectives with high resolution have a low depth of field, these cannot capture all objects of a single field of view in focus. One solution would be to scan multiple focal planes; however, the increase in processing time and storage requirements are often prohibitive for clinical routine. Materials and Methods: In this paper, we show that it is a reasonable trade-off to scan a single focal plane and automatically reject defocused objects from the analysis. To this end, we have developed machine learning solutions for the automated identification of defocused objects. Our approach includes creating novel features, systematically optimizing their parameters, selecting adequate classifier algorithms, and identifying the correct decision boundary between focused and defocused objects. We validated our approach for computer-assisted DNA image cytometry. Results and Conclusions: We reach an overall sensitivity of 96.08% and a specificity of 99.63% for identifying defocused objects. Applied on ninety cytological slides, the developed classifiers automatically removed 2.50% of the objects acquired during scanning, which otherwise would have interfered the examination. Even if not all objects are acquired in focus, computer-assisted DNA image cytometry still identified more diagnostically or prognostically relevant objects compared to manual DNA image cytometry. At the same time, the workload for the expert is reduced dramatically.

  16. Closed-loop focal plane wavefront control with the SCExAO instrument

    Science.gov (United States)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  17. Focal plane based wavefront sensing with random DM probes

    Science.gov (United States)

    Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.

    2017-09-01

    An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.

  18. Hydrogenation of Very Long Wavelength Infrared Focal Plane Arrays Based on Type II Superlattices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to advance the Ga-free InAs/InAsSb type II superlattice (T2SL) materials technology for very long wavelength infrared (VLWIR) focal plane arrays (FPAs) by...

  19. Polarimeter on a Chip: Antenna-Coupled Microbolometers and Polarimeters for Submillimeterwave and Millimeterwave Focal Planes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to study astrophysical sources at millimeter and submillimeter wavelengths require focal planes of 1000's of detectors that must operate at the...

  20. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  1. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  2. pnCCD for photon detection from near-infrared to X-rays

    International Nuclear Information System (INIS)

    Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strueder, Lothar

    2006-01-01

    A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This 'frame-store pnCCD' shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-K α line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-K α line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 deg. C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical

  3. Radionuclide imaging with coded apertures and three-dimensional image reconstruction from focal-plane tomography

    International Nuclear Information System (INIS)

    Chang, L.T.

    1976-05-01

    Two techniques for radionuclide imaging and reconstruction have been studied;; both are used for improvement of depth resolution. The first technique is called coded aperture imaging, which is a technique of tomographic imaging. The second technique is a special 3-D image reconstruction method which is introduced as an improvement to the so called focal-plane tomography

  4. Development and construction of a focal-plane detector for the Munich Q3D spectrograph

    International Nuclear Information System (INIS)

    Lindner, H.

    1989-01-01

    For the Munich Q3D magnet spectrograph a focal-plane detector was developed, constructed, and taken in operation. It is primary layed out for light ions like p, d, t 3 He, and 4 He, but can be also applied for heavy ions. The position resolution amounts to about 0.1 mm at counting rates of about 10 kHz. In the detector filled with counting gas on anode wires along the focal plane charge avalanches are formed, which influence in several neighbouring cathode stripes of the dimension (3x25) mm 2 signals. These signals are singularily read out and digitized, i.e. to each of the at the whole 114 cathode strips is assigned an own preamplifier, puls shaper, peak detector, and analog-to-digital converter (ADC). After the digitization in a hardware-like constructed calculator unit the center of mass of the charge distribution influenced by the charge avalanche is calculated, the position of the incident particle is obtained. The detector yields beyond the position signal yet also a signal ΔE form the anode wires, which gives the energy loss of the particle in the gas space, as well as a residual-energy signal E rest from a scintillator, in which the particles are stopped. By this the radiation background (γ's and n) can be separated very well from the required particles. With the focal-plane detector the 103 Rh(d, p) 104 Rh transfer reaction was measured at three different spectrograph angles. The measured level energies and angular momentum transfers are compared with (n, γ) data and discussed. (orig.) [de

  5. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  6. Upgrade of the TAMU MDM-focal plane detector with MicroMegas technology

    Energy Technology Data Exchange (ETDEWEB)

    Spiridon, A., E-mail: aspiridon@comp.tamu.edu [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Pollacco, E. [IRFU, CEA Saclay, Gif-sur-Yvette (France); Roeder, B.T.; Saastamoinen, A.; Chyzh, R.; Dag, M.; Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Trache, L.; Pascovici, G. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele RO-077125 (Romania); De Oliveira, R. [CERN, Geneva (Switzerland)

    2016-06-01

    A gridded ionization chamber used as a focal plane detector at the back of the TAMU-MDM spectrometer was modified to use MicroMegas technology for the purpose of improving energy resolution and particle identification. The upgraded system was tested in experimental conditions with several heavy-ion beams at 12 MeV/u and found to achieve resolutions between 3.2% and 4.8%. This is a significant improvement over the previous performance of 10–15% obtained using the existing, conventional ionization chambers.

  7. Upgrade of the TAMU MDM-focal plane detector with MicroMegas technology

    International Nuclear Information System (INIS)

    Spiridon, A.; Pollacco, E.; Roeder, B.T.; Saastamoinen, A.; Chyzh, R.; Dag, M.; Tribble, R.E.; Trache, L.; Pascovici, G.; De Oliveira, R.

    2016-01-01

    A gridded ionization chamber used as a focal plane detector at the back of the TAMU-MDM spectrometer was modified to use MicroMegas technology for the purpose of improving energy resolution and particle identification. The upgraded system was tested in experimental conditions with several heavy-ion beams at 12 MeV/u and found to achieve resolutions between 3.2% and 4.8%. This is a significant improvement over the previous performance of 10–15% obtained using the existing, conventional ionization chambers.

  8. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    Science.gov (United States)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  9. Status and Integrated Focal Plane Characterization of Simons Array - Cosmic Microwave Background Polarimetry Experiment

    Science.gov (United States)

    Roberts, Hayley; POLARBEAR

    2018-06-01

    Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.

  10. InGaAs focal plane arrays for low-light-level SWIR imaging

    Science.gov (United States)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan

    2011-06-01

    Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.

  11. Calibration of optical tweezers with positional detection in the back focal plane

    DEFF Research Database (Denmark)

    Tolic-Nørrelykke, S.F.; Schäffer, E.; Howard, J.

    2006-01-01

    We explain and demonstrate a new method of force and position calibrations for optical tweezers with back-focal-plane photodetection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use...... and precise: true values are returned, with small error bars. We tested this experimentally, near and far from surfaces in the lateral directions. Both position and force calibrations were accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but the laser beam could...

  12. Image interpolation and denoising for division of focal plane sensors using Gaussian processes.

    Science.gov (United States)

    Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor

    2014-06-16

    Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.

  13. Paraxial design of an optical element with variable focal length and fixed position of principal planes.

    Science.gov (United States)

    Mikš, Antonín; Novák, Pavel

    2018-05-10

    In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.

  14. Modulation Transfer Function of Infrared Focal Plane Arrays

    Science.gov (United States)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Hoglund, L.; Luong, E. M.

    2015-01-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid -wavelength and long- wavelength quantum well infrared photodetector, and 320x256 pixels long- wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NE delta T of the 8.8 micron cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  15. Laboratory simulation of Euclid-like sky images to study the impact of CCD radiation damage on weak gravitational lensing

    Science.gov (United States)

    Prod'homme, T.; Verhoeve, P.; Oosterbroek, T.; Boudin, N.; Short, A.; Kohley, R.

    2014-07-01

    Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way - and for the first time - we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.

  16. Measurement, characterization, and modeling of noise in staring infrared focal plane arrays

    International Nuclear Information System (INIS)

    Scribner, D.A.; Kruer, M.R.; Gridley, C.J.; Sarkady, K.

    1987-01-01

    An account is given of selected methods for the measurement and characterization of spatial and temporal noise in staring focal plane arrays (FPAs), in order to demonstrate how these results can be used in simulations and analytic models to predict the performance of selected staring sensors. Attention is given to MIR FPAs applicable to the detection and tracking of point sources, and to the ways in which these spatial and temporal noise measurements can be incorporated into simulations and sensors having staring FPAs. Methods for predicting the performance of selected staring sensor systems are derivable from spatial and temporal noise values. 13 references

  17. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  18. A new focal plane detector for the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Gorshkov, Alexander

    2010-01-01

    Superheavy elements (SHE) exist solely because of enhanced nuclear stability due to shell effects. The production cross sections for the synthesis of SHE decrease continuously, thus, exploration of SHE nuclei is close to the border of present technical limitation. To increase the efficiency and sensitivity in SHE experiments, highly efficient recoil separators with state-of-the-art detection systems are required. In the framework of this thesis, the new focal plane detection system with the dedicated electronics have been developed for the gas-filled recoil separator TASCA at the GSI Helmholtzzentrum for Schwerionenforschung GmbH. The new detection system has been successfully used in recent experiments on synthesis of the E114.

  19. An efficient and novel computation method for simulating diffraction patterns from large-scale coded apertures on large-scale focal plane arrays

    Science.gov (United States)

    Shrekenhamer, Abraham; Gottesman, Stephen R.

    2012-10-01

    A novel and memory efficient method for computing diffraction patterns produced on large-scale focal planes by largescale Coded Apertures at wavelengths where diffraction effects are significant has been developed and tested. The scheme, readily implementable on portable computers, overcomes the memory limitations of present state-of-the-art simulation codes such as Zemax. The method consists of first calculating a set of reference complex field (amplitude and phase) patterns on the focal plane produced by a single (reference) central hole, extending to twice the focal plane array size, with one such pattern for each Line-of-Sight (LOS) direction and wavelength in the scene, and with the pattern amplitude corresponding to the square-root of the spectral irradiance from each such LOS direction in the scene at selected wavelengths. Next the set of reference patterns is transformed to generate pattern sets for other holes. The transformation consists of a translational pattern shift corresponding to each hole's position offset and an electrical phase shift corresponding to each hole's position offset and incoming radiance's direction and wavelength. The set of complex patterns for each direction and wavelength is then summed coherently and squared for each detector to yield a set of power patterns unique for each direction and wavelength. Finally the set of power patterns is summed to produce the full waveband diffraction pattern from the scene. With this tool researchers can now efficiently simulate diffraction patterns produced from scenes by large-scale Coded Apertures onto large-scale focal plane arrays to support the development and optimization of coded aperture masks and image reconstruction algorithms.

  20. Multispectral Thermal Imager Optical Assembly Performance and Integration of the Flight Focal Plane Assembly

    International Nuclear Information System (INIS)

    Blake, Dick; Byrd, Don; Christensen, Wynn; Henson, Tammy; Krumel, Les; Rappoport, William; Shen, Gon-Yen

    1999-01-01

    The Multispectral Thermal Imager Optical Assembly (OA) has been fabricated, assembled, successfully performance tested, and integrated into the flight payload structure with the flight Focal Plane Assembly (FPA) integrated and aligned to it. This represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. The OA consists of an off-axis three mirror anastigmatic (TMA) telescope with a 36 cm unobscured clear aperture, a wide-field-of-view (WFOV) of 1.82 along the direction of spacecraft motion and 1.38 across the direction of spacecraft motion. It also contains a comprehensive on-board radiometric calibration system. The OA is part of a multispectral pushbroom imaging sensor which employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 m. The OA achieves near diffraction-limited performance from visible to the long-wave infrared (LWIR) wavelengths. The two major design drivers for the OA are 80% enpixeled energy in the visible bands and radiometric stability. Enpixeled energy in the visible bands also drove the alignment of the FPA detectors to the OA image plane to a requirement of less than 20 m over the entire visible detector field of view (FOV). Radiometric stability requirements mandated a cold Lyot stop for stray light rejection and thermal background reduction. The Lyot stop is part of the FPA assembly and acts as the aperture stop for the imaging system. The alignment of the Lyot stop to the OA drove the centering and to some extent the tilt alignment requirements of the FPA to the OA

  1. Photonic antenna enhanced middle wave and longwave infrared focal plane array with low noise and high operating temperature, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Photodetectors and focal plane arrays (FPAs) covering the middle-wave and longwave infrared (MWIR/LWIR) are of great importance in numerous NASA applications,...

  2. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  3. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    Science.gov (United States)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  4. The investigation of properties of short-lived SF isotopes (Z > 100 at the focal plane of VASSILISSA separator

    Directory of Open Access Journals (Sweden)

    Svirikhin Alexandr

    2013-12-01

    Full Text Available For experiments aimed at the study of spontaneous fission of transfermium nuclei improvements in the focal plane detector system of recoil separator VASSILISSA have been made. A neutron detector consisting of 54 3He-filled counters has been mounted around the focal-plane detector chamber. The reaction 48Ca + 206Pb = 2n + 252No is used for tuning the separator settings and calibrating the detector system with the spontaneous fission of the 252No. The average neutron number per 252No spontaneous fission event is as large as ν̅ = 4.06 ± 0.12. The short-lived heavy isotopes 244,246Fm, produced in the complete fusion reactions 40Ar + 206,208Pb, are investigated. The average number of neutrons per spontaneous fission of 244,246Fm from the experimental data were (ν̅ = 3.3 ± 0.3 and (ν̅ = 3.55 ± 0.50, respectively. Both values are determined for the first time.

  5. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    Science.gov (United States)

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  6. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  7. Optimization of exit-plane waves restored from HRTEM through-focal series

    International Nuclear Information System (INIS)

    Erni, Rolf; Rossell, Marta D.; Nakashima, Philip N.H.

    2010-01-01

    Atomic-resolution transmission electron microscopy has largely benefited from the implementation of aberration correctors in the imaging part of the microscope. Though the dominant geometrical axial aberrations can in principle be corrected or suitably adjusted, the impact of higher-order aberrations, which are mainly due to the implementation of non-round electron optical elements, on the imaging process remains unclear. Based on a semi-empirical criterion, we analyze the impact of residual aperture aberrations on the quality of exit-plane waves that are retrieved from through-focal series recorded using an aberration-corrected and monochromated instrument which was operated at 300 kV and enabled for an information transfer of ∼0.05 nm. We show that the impact of some of the higher-order aberrations in retrieved exit-plane waves can be balanced by a suitable adjustment of symmetry equivalent lower-order aberrations. We find that proper compensation and correction of 1st and 2nd order aberrations is critical, and that the required accuracy is difficult to achieve. This results in an apparent insensitivity towards residual higher-order aberrations. We also investigate the influence of the detector characteristics on the image contrast. We find that correction for the modulation transfer function results in a contrast gain of up to 40%.

  8. Multi-spectral CCD camera system for ocean water color and seacoast observation

    Science.gov (United States)

    Zhu, Min; Chen, Shiping; Wu, Yanlin; Huang, Qiaolin; Jin, Weiqi

    2001-10-01

    One of the earth observing instruments on HY-1 Satellite which will be launched in 2001, the multi-spectral CCD camera system, is developed by Beijing Institute of Space Mechanics & Electricity (BISME), Chinese Academy of Space Technology (CAST). In 798 km orbit, the system can provide images with 250 m ground resolution and a swath of 500 km. It is mainly used for coast zone dynamic mapping and oceanic watercolor monitoring, which include the pollution of offshore and coast zone, plant cover, watercolor, ice, terrain underwater, suspended sediment, mudflat, soil and vapor gross. The multi- spectral camera system is composed of four monocolor CCD cameras, which are line array-based, 'push-broom' scanning cameras, and responding for four spectral bands. The camera system adapts view field registration; that is, each camera scans the same region at the same moment. Each of them contains optics, focal plane assembly, electrical circuit, installation structure, calibration system, thermal control and so on. The primary features on the camera system are: (1) Offset of the central wavelength is better than 5 nm; (2) Degree of polarization is less than 0.5%; (3) Signal-to-noise ratio is about 1000; (4) Dynamic range is better than 2000:1; (5) Registration precision is better than 0.3 pixel; (6) Quantization value is 12 bit.

  9. Detector system of the first focal plane of the spectrometer SMART at RIKEN

    International Nuclear Information System (INIS)

    Okamura, H.; Izshida, S.; Sakamoto, N.; Otsu, H.; Uesaka, T.; Wakasa, T.; Satou, Y.; Sakai, H.; Ichihara, T.

    1998-01-01

    A detector system of the first focal plane of SMART, the 135 MeV/u high-resolution spectrometer at RIKEN accelerator research facility, is described. It consists of a pair of multi-wire drift chambers and a trigger scintillator hodoscope contained in a He-filled detector box. A major subject using this system is the measurement of the (d, 2 He) reaction making the most of its large angular and momentum acceptances. Without seriously sacrificing the detection efficiency, reasonably good energy and angular resolutions for 2 He, 460 keV and 9 mrad (FWHM), respectively, have been achieved after optimizing the optics property of the spectrometer. (orig.)

  10. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    Science.gov (United States)

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  11. Focal plane mechanical design of the NISP/Euclid instrument

    Science.gov (United States)

    Bonnefoi, Anne; Bon, William; Niclas, Mathieu; Solheim, Bjarte G. B.; Torvanger, Oyvind; Schistad, Robert; Foulon, Benjamin; Garcia, José; Vives, Sébastien

    2016-07-01

    Currently in phase C, the Euclid mission selected by ESA in the Cosmic Vision program is dedicated to understand dark energy and dark matter. NISP (standing for Near Infrared Spectro-Photometer) is one of the two instruments of the mission. NISP will combine a photometer and a spectrometer working in the near-IR (0.9-2 microns). Its detection subsystem (called NI-DS) is based on a mosaic of 16 IR detectors cooled down to 90K which are supported by a molybdenum plate. The front-end readout electronics (working at 130K) are supported by another structure in Aluminum. The NI-DS is mounted on the rest of the instrument thanks to a panel in Silicon Carbide (SiC). Finally an optical baffle in Titanium will prevent the rogue light to reach the detectors. On top of the complexity due to the wide range of temperatures and the various materials imposed at the interfaces; the NI-DS has also to incorporate an internal adjustment capability of the position of the focal plane in tip/tilt and focus. This article will present current status of the development of the detection system of NISP.

  12. An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; hide

    2011-01-01

    Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.

  13. The design and development of low- and high-voltage ASICs for space-borne CCD cameras

    Science.gov (United States)

    Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.

    2017-12-01

    replaces the many discrete components required in current cameras. We also describe a CCD clock driver ASIC that provides six independent and programmable drivers with high-current capacity. The device enables various CCD clock parameters to be programmed independently, for example the clock-low and clock-high voltage levels, and the clock-rise and clock-fall times, allowing configuration for serial clock frequencies in the range 0.1-2 MHz and image clock frequencies in the range 10-100 kHz. Finally, we demonstrate the impact and importance of this technology for the development of compact, high-performance and low-power integrated focal plane electronics.

  14. NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K

    Science.gov (United States)

    Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.

    1994-01-01

    We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.

  15. Focal pancreatic enlargement: differentiation between pancreatic adenocarcinoma and focal pancreatitis on CT and ERCP

    International Nuclear Information System (INIS)

    Kim, Eun Kyung; Kim, Ki Whang; Lee, Jong Tae; Kim, Hee Soo; Yoo, Hyung Sik; Yu, Jeong Sik; Yoon, Sang Wook

    1995-01-01

    To differentiate the pancreatic adenocarcinoma from focal pancreatitis on CT and ERCP in cases of focal pancreatic enlargement. We analysed CT findings of 66 patients of pancreatic adenocarcinoma (n = 45) or focal pancreatitis (n = 21) with respect to size, density, calcification, pancreatic or biliary duct dilatation, fat plane obliteration around the vessels, direction of retroperitoneal extension, lymphadenopathy, pseudocyst formation and atrophy of pancreas. ERCP available in 48 patients were analysed in respect to morphologic appearance of CBD and pancreatic duct, and distance between the two ducts. The patients in focal pancreatitis were younger with more common history of alcohol drinking. There was no statistical difference in calcifications of the mass (18% in the adenocarcinoma, 33% in the focal pancreatitis), but a tendency of denser, larger number of calcifications was noted in focal pancreatitis. The finding of fat plane obliteration around the vessels were more common in pancreatic adenocarcinoma, and fascial thickenings were more prominent in focal pancreatitis, although not statistically significant. On ERCP, there were no differential points of CBD, pancreatic duct morphology, but distance between the two ducts at the lesion center was more wider in focal pancreatitis. Differentiating focal pancreatitis from pancreatic adenocarcinoma is difficult. However, we should consider the possibility of focal pancreatitis in cases of patients with young age, having alcoholic history in association with CT findings of large numbers of and dense calcifications, and ERCP findings of prominent separation of two duct at the lesion center

  16. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  17. Characterization of EASIROC as front-end for the readout of the SiPM at the focal plane of the Cherenkov telescope ASTRI

    International Nuclear Information System (INIS)

    Impiombato, D.; Giarrusso, S.; Mineo, T.; Belluso, M.; Billotta, S.; Bonanno, G.; Catalano, O.; Grillo, A.; La Rosa, G.; Marano, D.; Sottile, G.

    2013-01-01

    The Extended Analogue Silicon Photo-multiplier Integrated Read Out Chip, EASIROC, is a chip proposed as front-end of the camera at the focal plane of the imaging Cherenkov ASTRI SST-2M telescope prototype. This paper presents the results of the measurements performed to characterize EASIROC in order to evaluate its compliance with the ASTRI SST-2M focal plane requirements. In particular, we investigated the trigger time walk and the jitter effects as a function of the pulse amplitude. The EASIROC output signal is found to vary linearly as a function of the input pulse amplitude with very low level of electronic noise and cross-talk (<1%). Our results show that it is suitable as front-end chip for the camera prototype, although, specific modifications are necessary to adopt the device in the final version of the telescope

  18. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; hide

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  19. A math model for high velocity sensoring with a focal plane shuttered camera.

    Science.gov (United States)

    Morgan, P.

    1971-01-01

    A new mathematical model is presented which describes the image produced by a focal plane shutter-equipped camera. The model is based upon the well-known collinearity condition equations and incorporates both the translational and rotational motion of the camera during the exposure interval. The first differentials of the model with respect to exposure interval, delta t, yield the general matrix expressions for image velocities which may be simplified to known cases. The exposure interval, delta t, may be replaced under certain circumstances with a function incorporating blind velocity and image position if desired. The model is tested using simulated Lunar Orbiter data and found to be computationally stable as well as providing excellent results, provided that some external information is available on the velocity parameters.

  20. Detectors and focal plane modules for weather satellites

    Science.gov (United States)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Ely, P.; Khalap, V.; Babu, S.; Smith, D. S.

    2016-05-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 μm band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (λc ~ 5 μm at 98K), MWIR (λc ~ 9 μm at 98K) and LWIRs (λc ~ 15.5 μm at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 μm to 8.6 μm and (iii) a 9.6 μm to 13.3 μm, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 μm to 0.86 μm channels. The thirteen channels above 1 μm are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 μm to 9.61 μm channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 μm to 13.3 μm channels fabricated in Double

  1. Focal-Plane Sensing-Processing: A Power-Efficient Approach for the Implementation of Privacy-Aware Networked Visual Sensors

    Directory of Open Access Journals (Sweden)

    Jorge Fernández-Berni

    2014-08-01

    Full Text Available The capture, processing and distribution of visual information is one of the major challenges for the paradigm of the Internet of Things. Privacy emerges as a fundamental barrier to overcome. The idea of networked image sensors pervasively collecting data generates social rejection in the face of sensitive information being tampered by hackers or misused by legitimate users. Power consumption also constitutes a crucial aspect. Images contain a massive amount of data to be processed under strict timing requirements, demanding high-performance vision systems. In this paper, we describe a hardware-based strategy to concurrently address these two key issues. By conveying processing capabilities to the focal plane in addition to sensing, we can implement privacy protection measures just at the point where sensitive data are generated. Furthermore, such measures can be tailored for efficiently reducing the computational load of subsequent processing stages. As a proof of concept, a full-custom QVGA vision sensor chip is presented. It incorporates a mixed-signal focal-plane sensing-processing array providing programmable pixelation of multiple image regions in parallel. In addition to this functionality, the sensor exploits reconfigurability to implement other processing primitives, namely block-wise dynamic range adaptation, integral image computation and multi-resolution filtering. The proposed circuitry is also suitable to build a granular space, becoming the raw material for subsequent feature extraction and recognition of categorized objects.

  2. Focal-plane sensing-processing: a power-efficient approach for the implementation of privacy-aware networked visual sensors.

    Science.gov (United States)

    Fernández-Berni, Jorge; Carmona-Galán, Ricardo; del Río, Rocío; Kleihorst, Richard; Philips, Wilfried; Rodríguez-Vázquez, Ángel

    2014-08-19

    The capture, processing and distribution of visual information is one of the major challenges for the paradigm of the Internet of Things. Privacy emerges as a fundamental barrier to overcome. The idea of networked image sensors pervasively collecting data generates social rejection in the face of sensitive information being tampered by hackers or misused by legitimate users. Power consumption also constitutes a crucial aspect. Images contain a massive amount of data to be processed under strict timing requirements, demanding high-performance vision systems. In this paper, we describe a hardware-based strategy to concurrently address these two key issues. By conveying processing capabilities to the focal plane in addition to sensing, we can implement privacy protection measures just at the point where sensitive data are generated. Furthermore, such measures can be tailored for efficiently reducing the computational load of subsequent processing stages. As a proof of concept, a full-custom QVGA vision sensor chip is presented. It incorporates a mixed-signal focal-plane sensing-processing array providing programmable pixelation of multiple image regions in parallel. In addition to this functionality, the sensor exploits reconfigurability to implement other processing primitives, namely block-wise dynamic range adaptation, integral image computation and multi-resolution filtering. The proposed circuitry is also suitable to build a granular space, becoming the raw material for subsequent feature extraction and recognition of categorized objects.

  3. Research of Infrared Imaging at Atmospheric Pressure Using a Substrate-Free Focal Plane Array

    International Nuclear Information System (INIS)

    Wu Jian-Xiong; Cheng Teng; Zhang Qing-Chuan; Zhang Yong; Mao Liang; Gao Jie; Wu Xiao-Ping; Chen Da-Peng

    2013-01-01

    An equivalent circuit model to the substrate-free focal plane array (FPA) is established. Using this fast and effective model, the performance of infrared (IR) imaging at atmospheric pressure is investigated and it is found that the substrate-free FPA has the ability of IR imaging at atmospheric pressure, whereas it has a slightly degraded noise equivalent temperature difference (NETD) as compared with IR imaging under a high vacuum. This feature is also identified experimentally by a substrate-free FPA with pixel size of 50 × 50 μm 2 . The NETDs are measured to be 160 mK at 10 −2 Pa pressure and 1.08 K at atmospheric pressure

  4. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    Science.gov (United States)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  5. A Micromachined Infrared Senor for an Infrared Focal Plane Array

    Directory of Open Access Journals (Sweden)

    Seong M. Cho

    2008-04-01

    Full Text Available A micromachined infrared sensor for an infrared focal plane array has been designed and fabricated. Amorphous silicon was used as a sensing material, and silicon nitride was used as a membrane material. To get a good absorption in infrared range, the sensor structure was designed as a l/4 cavity structure. A Ni-Cr film was selected as an electrode material and mixed etching scheme was applied in the patterning process of the Ni-Cr electrode. All the processes were made in 0.5 μm iMEMS fabricated in the Electronics and Telecommunication Research Institute (ETRI. The processed MEMS sensor had a small membrane deflection less than 0.15 μm. This small deflection can be attributed to the rigorous balancing of the stresses of individual layers. The efficiency of infrared absorption was more than 75% in the wavelength range of 8 ~ 14 μm. The processed infrared sensor showed high responsivity of ~230 kV/W at 1.0V bias and 2 Hz operation condition. The time constant of the sensor was 8.6 msec, which means that the sensor is suitable to be operated in 30 Hz frame rate.

  6. Data acquisition system for the focal-plane detector of the mass separator MASHA

    International Nuclear Information System (INIS)

    Novoselov, A.S.; Rodin, A.M.; Podshibyakin, A.V.; Belozerov, A.V.; Vedeneyev, V.Yu.; Gulyaev, A.V.; Gulyaeva, A.V.; Salamatin, V.S.; Stepantsov, S.V.; Chernysheva, E.V.; Yukhimchuk, S.A.; Komarov, A.B.; Motycak, S.; Krupa, L.; Kliman, J.; Kamas, D.

    2016-01-01

    The results of the development and the general information about the data acquisition system which was recently created at the MASHA setup (Flerov Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research) are presented. The main difference from the previous system is that we use a new modern platform, National Instruments PXI with XIA multichannel high-speed digitizers (250 MHz 12 bit 16 channels). At this moment the system has 448 spectrometric channels. The software and its features for the data acquisition and analysis are also described. The new DAQ system expands precision measuring capabilities of alpha decays and spontaneous fission at the focal-plane position-sensitive silicon strip detector which, in turn, increases the capabilities of the setup in such a field as low-yield registration of elements.

  7. Performance overview of the Euclid infrared focal plane detector subsystems

    Science.gov (United States)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  8. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, M.; Bassini, R.; Berg, A.M. van den; Ellinghaus, F.; Frekers, D.; Hannen, V.M.; Haeupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Kruesemann, B.; Rakers, S.; Sohlbach, H.; Woertche, H.J. E-mail: wortche@ikp.uni-muenster.de

    1999-11-21

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0 deg. . For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  9. Decay spectroscopy at SHIP with a new focal plane detector system

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Andrew K. [Helmholtz Institute Mainz (Germany); Collaboration: SHIP Decay Spectroscopy-Collaboration

    2016-07-01

    Decay spectroscopy of the heaviest elements remains a crucial tool in nuclear structure physics in testing a variety of theoretical models predicting the next proton and neutron shell stabilization region beyond {sup 208}Pb. Experimental measurements of alpha-decay energies and half-lives, ordering and configurations of ground state and excited levels, and the determination of high-K isomers provide necessary information in constraining these models. To this end, a new focal plane detection system for decay spectroscopy has been designed and developed at GSI for the SHIP separator. It consists of a double sided silicon strip implantation detector surrounded by 4 single sided silicon strip detectors on each side in a box formation with a compact design, allowing for good germanium solid angle coverage for gamma ray detection. The data acquisition is based on FEBEX flash ADC modules, developed at GSI, for digital signal processing enables an almost deadtime free system. Recently, a commissioning run was successfully performed using the device. In my talk I present recent highlights of decay spectroscopy at SHIP, and demonstrate results from measurements assessing the performance of the new setup.

  10. Laser jamming experiment of varifocal colour CCD imaging system%变焦彩色CCD成像系统的激光干扰实验

    Institute of Scientific and Technical Information of China (English)

    汤伟; 王锐; 王挺峰; 郭劲

    2017-01-01

    Out-field laser jamming experiment of varifocal colour CCD imaging system irradiated by semiconductor laser was done.Laser jamming effects of colour CCD imaging system with different focal lengths were measured.Laser jamming model was set-up,and theoretical proving and analysis on experimental results were completed.Theorical and experimental results show that laser jamming effect of colour CCD imaging system irradiated by 750 nm laser is obvious,and CCD surface appears obvious light saturation and crosstalk phenomena.In the same initial laser irradiating conduction,laser power truncated by the aperture gradually decreases with increase of focal length f,and light saturation area on the CCD surface gradually increases.When focal length f of colour CCD imaging system is 17 mm,light saturation area on the CCD surface is 0.33 mm×0.29 mm.While focal length f of colour CCD imaging system increases to 120 mm,light saturation area on the CCD surface is 1.8 mm×1.2 mm.Simulation results are coincident with experimental results,and it proves laser jamming model is correct.The conclusions have a reference value for colour CCD in the practical application.%开展了变焦彩色CCD成像系统的激光外场干扰实验,测得了半导体激光(750 nm)对变焦距(17~187 mm)彩色CCD相机的干扰效果;同时利用典型的激光干扰CCD模型,完成了对实验结果的验证与理论分析.理论与实验结果表明:750 nm激光对彩色CCD成像系统的干扰效果明显,CCD靶面出现了明显的光饱和和串扰现象;在激光辐照条件相同情况下,光学系统焦距f越大,被光阑截断的激光就越少,到靶的激光功率密度就越高,CCD靶面的光饱和面积就越大;光学系统焦距f为17mm时,CCD靶面的光饱和面积为0.33 mm×0.29 mm,而当光学系统焦距f增大至120 mm时,CCD靶面的光饱和面积为1.8 mm×1.2 mm.仿真结果与实验结果基本一致,证明了理论模型的正确性.研究结果将对CCD器件的实际应用具有一定的指导意义.

  11. Evolution of miniature detectors and focal plane arrays for infrared sensors

    Science.gov (United States)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  12. Theoretical investigation of the energy resolution of an ideal hemispherical deflector analyzer and its dependence on the distance from the focal plane

    International Nuclear Information System (INIS)

    Zouros, T.J.M.

    2006-01-01

    In most modern hemispherical deflector analyzers (HDAs) using a position sensitive detector (PSD), due to practical geometrical constraints (fringing field correctors, grids etc.), the PSD cannot always be placed at the optimal position, i.e. the first-order focal plane following 180 o deflection at h=0. Here, the dependence of the exit radial base width Δr πh *, base energy resolution R Bh and line shape L h on the distance h between the focal plane and the detection plane for an ideal HDA (no fringing fields) is investigated theoretically as a function of the maximum injection angle α max- bar * and the diameter of the entry aperture Δr 0 . Both exact numerical results and practical analytic formulas based on Taylor series expansions developed for any HDA show R Bh and L h become increasingly degraded with increasing h from their optimal values at h=0. A detailed comparison of the resolution properties of conventional and biased paracentric HDAs is also presented. Apart from a few marginal improvements of limited utility, overall, the ideal paracentric HDA does not seem to have any distinct practical advantages over the conventional HDA. Resolution improvements recently reported for non-ideal paracentric HDAs must therefore be due to their strong fringing fields and needs to be further investigated. Our ideal HDA results provide a unique standard to evaluate the resolution performance of any HDA under realistic non-zero h-value conditions

  13. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    International Nuclear Information System (INIS)

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-01-01

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10 -3 W/cm 2 was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer

  14. Point spread function and centroiding accuracy measurements with the JET-X mirror and MOS CCD detector of the Swift gamma ray burst explorer's X-ray telescope

    CERN Document Server

    Ambrosi, R M; Hutchinson, I B; Willingale, R; Wells, A; Short, A D T; Campana, S; Citterio, O; Tagliaferri, G; Burkert, W; Bräuninger, H

    2002-01-01

    The optical components of the Swift X-ray telescope (XRT) are already developed items. They are the flight spare X-ray mirror from the JET-X/Spectrum-X program and an MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on XMM-Newton (SPIE 4140 (2000) 64). The JET-X mirrors were first calibrated at the Max Planck Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996 (SPIE 2805 (1996) 56; SPIE 3114 (1997) 392). Half-energy widths of 16 arcsec at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the 4 yr that the mirror had been in storage at the OAB, Milan, Italy. The results reported in this paper confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the fo...

  15. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    Science.gov (United States)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  16. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  17. Shared Focal Plane Investigation for Serial Frame Cameras.

    Science.gov (United States)

    1980-03-01

    capability will be restored. 41. -.. TrABLE 1-1 SYSTEM LEADING P) ARTICULARS Lens Focal Length (inches) Range (ft) Contrast 12 18 24 Coverage 22.1...can be expected that signature bands will be apparent in the imagery. Such bands are at best distracting and at worst hindrances to image interpretation

  18. Managing focal fields of vector beams with multiple polarization singularities.

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  19. Life test of the InGaAs focal plane arrays detector for space applications

    Science.gov (United States)

    Zhu, Xian-Liang; Zhang, Hai-Yan; Li, Xue; Huang, Zhang-Cheng; Gong, Hai-Mei

    2017-08-01

    The short-wavelength infrared (SWIR) InGaAs focal plane array (FPA) detector consists of infrared detector chip, readout integrated circuit (ROIC), and flip-chip bonding interconnection by Indium bump. In order to satisfy space application requirements for failure rates or Mean Time to Failure (MTTF), which can only be demonstrated with the large number of detectors manufactured, the single pixel in InGaAs FPAs was chosen as the research object in this paper. The constant-stress accelerated life tests were carried out at 70°C 80°C 90°C and100°C. The failed pixels increased gradually during more than 14000 hours at each elevated temperatures. From the random failure data the activation energy was estimated to be 0.46eV, and the average lifetime of a single pixel in InGaAs FPAs was estimated to be longer than 1E+7h at the practical operating temperature (5°C).

  20. Mechanical Design of the LSST Camera

    Energy Technology Data Exchange (ETDEWEB)

    Nordby, Martin; Bowden, Gordon; Foss, Mike; Guiffre, Gary; /SLAC; Ku, John; /Unlisted; Schindler, Rafe; /SLAC

    2008-06-13

    The LSST camera is a tightly packaged, hermetically-sealed system that is cantilevered into the main beam of the LSST telescope. It is comprised of three refractive lenses, on-board storage for five large filters, a high-precision shutter, and a cryostat that houses the 3.2 giga-pixel CCD focal plane along with its support electronics. The physically large optics and focal plane demand large structural elements to support them, but the overall size of the camera and its components must be minimized to reduce impact on the image stability. Also, focal plane and optics motions must be minimized to reduce systematic errors in image reconstruction. Design and analysis for the camera body and cryostat will be detailed.

  1. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays

    Science.gov (United States)

    Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei

    2017-09-01

    The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.

  2. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    Science.gov (United States)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  3. The SMILE Soft X-ray Imager (SXI) CCD design and development

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Holland, A. D.; Burgon, R.; Buggey, T.; Skottfelt, J.; Sembay, S.; Drumm, P.; Thornhill, J.; Read, A.; Sykes, J.; Walton, D.; Branduardi-Raymont, G.; Kennedy, T.; Raab, W.; Verhoeve, P.; Agnolon, D.; Woffinden, C.

    2018-01-01

    SMILE, the Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions. The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV . X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 μm square pixels in a 4510 by 4510 array. SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device that has not been designed for soft X-ray signal levels indicate a temperature-dependent transfer efficiency performance varying between 5×10-5 and 9×10-4 at expected End of Life for 5.9 keV photons, giving an initial set of measurements from which to extrapolate the performance of the SXI CCDs.

  4. Performance of Hg1-xCdxTe infrared focal plane array at elevated temperature

    Science.gov (United States)

    Singh, Anand; Pal, Ravinder

    2017-04-01

    The simulated optical and electrical performance of the infrared HgCdTe focal plane array (FPA) for elevated operation temperature is reported. The depleted absorber layer is explored for equilibrium mode of operation up to 160 K. A resonant cavity is created to improve photon-matter interaction and hence, reduces the required absorption volume. The volume of the active region of HgCdTe detector is reduced by 70% in this manner. Dark current density is decreased without compromising the quantum efficiency. The effect of the reduced band filling effect leading to higher absorption coefficient and more efficient utilization of incident flux is employed. High quantum efficiency is achieved in a thin compositionally graded n+/ν/π/p HgCdTe photo-diode. This architecture helps to minimize the requirement of charge handling capacity in the CMOS read-out integrated circuit (ROIC) as the operation temperature is increased. Quantum efficiency ˜30% or above is shown to be sufficient for Noise Equivalent Temperature Difference (NETD) less than 20 mK with the reported design.

  5. Automated optical testing of LWIR objective lenses using focal plane array sensors

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  6. SWIR HgCdTe avalanche photiode focal plane array performances evaluation

    Science.gov (United States)

    de Borniol, E.; Rothman, J.; Salveti, F.; Feautrier, P.

    2017-11-01

    One of the main challenges of modern astronomical instruments like adaptive optics (AO) systems or fringe trackers is to deal with the very low photons flux detection scenarios. The typical timescale of atmospheric turbulences being in the range of some tens of milliseconds, infrared wavefront sensors for AO systems needs frame rates higher than 1 KHz leading to integration times lower than 1 ms. This integration time associated with a low irradiance results in a few number of integrated photons per frame per pixel. To preserve the information coming from this weak signal, the focal plane array (FPA) has to present a low read out noise, a high quantum efficiency and a low dark current. Up to now, the output noise of high speed near infrared sensors is limited by the silicon read out circuit noise. The use of HgCdTe avalanche photodiodes with high gain at moderate reverse bias and low excess noise seems then a logical way to reduce the impact of the read noise on images signal to noise ratio. These low irradiance passive imaging applications with integration times in the millisecond range needs low photodiode dark current and low background current. These requirements lead to the choice of the photodiode cut off wavelength. The short wave infrared (SWIR) around 3 μm is a good compromise between the gain that can be obtain for a given APD bias and the background and dark current. The CEA LETI HgCdTe APD technology, and a fine analysis of the gain curve characteristic are presented in [1] and won't be detailed here. The response time of the APD is also a key factor for a high frame rate FPA. This parameter has been evaluated in [2] and the results shows cut off frequencies in the GHz range. In this communication we report the performances of a SWIR APD FPA designed and fabricated by CEA LETI and SOFRADIR for astrophysical applications. This development was made in the frame of RAPID, a 4 years R&D project funded by the French FUI (Fond Unique Interministériel). This

  7. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    Science.gov (United States)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  8. A programmable CCD driver circuit for multiphase CCD operation

    International Nuclear Information System (INIS)

    Ewin, A.J.; Reed, K.V.

    1989-01-01

    A programmable CCD driver circuit was designed to drive CCD's in multiphased modes. The purpose of the drive electronics was to operate developmental CCD imaging arrays for NASA's Moderate Resolution Imaging Spectrometer - Tiltable (MODIS-T). Five prototype arrays were designed. Valid's Graphics Editor (GED) was used to design the driver. With this driver design, any of the five arrays can be readout. Designing the driver with GED allowed functional simulation, timing verification, and certain packaging analyses to be done on the design before fabrication. The driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400 Kpixels/sec. Timing and packaging parameters were verified. the design uses 54 TTL component chips

  9. Conversion electron spectroscopy at the FMA focal plane: Decay studies of proton-rich N {approximately} 82 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nisius, D.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    The FMA has proven to be an ideal instrument for the detailed study of the decay of microsecond isomers behind the focal plane following mass selection. In reactions leading to the population of nuclei with isomeric lifetimes longer than their flight time through the device, decay gamma rays and conversion electrons can be detected in an environment free from the backgrounds of prompt radiation and delta electrons. This was a very successful technique to study proton (h{sub 11/2}){sup n} seniority isomers in nuclei with Z > 64 and N {approximately} 82. Since isomeric decay gamma rays are emitted isotropically, conversion electrons are essential for the assignment of multipolarities in these nuclei. Furthermore, the low-energy transitions that depopulate isomeric states are typically highly converted and can escape gamma-ray detection, but they can be identified by their conversion electrons.

  10. New data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer

    International Nuclear Information System (INIS)

    Tamii, A.; Sakaguchi, H.; Takeda, H.; Yosoi, M.; Akimune, H.; Fujiwara, M.; Ogata, H.; Tanaka, M.; Togawa, H.

    1996-01-01

    This paper describes a new data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. Data are acquired by a Creative Electronic Systems (CES) Starburst, which is a CAMAC auxiliary crate controller equipped with a Digital Equipment Corporation (DEC) J11 microprocessor., The data on the Starburst are transferred to a VME single-board computer. A VME reflective memory module broadcasts the data to other systems through a fiber-optic link. A data transfer rate of 2.0 Mbytes/s between VME modules has been achieved by reflective memories. This rate includes the overhead of buffer management. The overall transfer rate, however, is limited by the performance of the Starburst to about 160 Kbytes/s at maximum. In order to further improve the system performance, the authors developed a new readout module called the Rapid Data Transfer Module (RDTM). RDTM's transfer data from LeCroy PCOS III's or 4298's, and FERA/FERET's directly to CES 8170 High Speed Memories (HSM) in VME crates. The data transfer rate of the RDTM from PCOS III's to the HSM is about 4 Mbytes/s

  11. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  12. Improved Scanners for Microscopic Hyperspectral Imaging

    Science.gov (United States)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  13. Challenges, constraints, and results of lens design for 17 micron-bolometer focal plane arrays in 8-12 micron waveband

    Science.gov (United States)

    Schuster, Norbert; Franks, John

    2011-06-01

    In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.

  14. On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras

    Science.gov (United States)

    Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.

    2017-11-01

    PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.

  15. High-resolution CCD imaging alternatives

    Science.gov (United States)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  16. The OmegaCAM 16K x 16K CCD detector system for the ESO VLT Survey Telescope (VST)

    Science.gov (United States)

    Iwert, Olaf; Baade, D.; Balestra, A.; Baruffolo, A.; Bortolussi, A.; Christen, F.; Cumani, C.; Deiries, S.; Downing, M.; Geimer, C.; Hess, G.; Hess, J.; Kuijken, K.; Lizon, J.; Muschielok, B.; Nicklas, H.; Reiss, R.; Reyes, J.; Silber, A.; Thillerup, J.; Valentijn, E.

    2006-06-01

    A 16K x 16K, 1 degree x 1 degree field, detector system was developed by ESO for the OmegaCAM instrument for use on the purpose built ESO VLT Survey Telescope (VST). The focal plane consists of an 8 x 4 mosaic of 2K x 4K 15um pixel e2v CCDs and four 2K x 4K CCDs on the periphery for the opto-mechanical control of the telescope. The VST is a single instrument telescope. This placed stringent reliability requirements on the OmegaCAM detector system such as 10 years lifetime and maximum downtime of 1.5 %. Mounting at Cassegrain focus required a highly autonomous self-contained cooling system that could deliver 65 W of cooling power. Interface space for the detector head was severely limited by the way the instrument encloses the CCD cryostat. The detector system features several novel ideas tailored to meet these requirements and described in this paper: Key design drivers of the detector head were the easily separable but precisely aligned connections to the optical field flattener on the top and the cooling system at the bottom. Material selection, surface treatment, specialized coatings and in-situ plasma cleaning were crucial to prevent contamination of the detectors. Inside the cryostat, cryogenic and electrical connections were disentangled to keep the configuration modular, integration friendly and the detectors in a safe condition during all mounting steps. A compact unit for logging up to 125 Pt100 temperature sensors and associated thermal control loops was developed (ESO's new housekeeping unit PULPO 2), together with several new modular Pt100 packaging and mounting concepts. The electrical grouping of CCDs based on process parameters and test results is explained. Three ESO standardized FIERA CCD controllers in different configurations are used. Their synchronization mechanism for read-out is discussed in connection with the CCD grouping scheme, the shutter, and the integrated guiding and image analysis facility with four independent 2K x 4K CCDs. An

  17. Inverse-designed stretchable metalens with tunable focal distance

    Science.gov (United States)

    Callewaert, Francois; Velev, Vesselin; Jiang, Shizhou; Sahakian, Alan Varteres; Kumar, Prem; Aydin, Koray

    2018-02-01

    In this paper, we present an inverse-designed 3D-printed all-dielectric stretchable millimeter wave metalens with a tunable focal distance. A computational inverse-design method is used to design a flat metalens made of disconnected polymer building blocks with complex shapes, as opposed to conventional monolithic lenses. The proposed metalens provides better performance than a conventional Fresnel lens, using lesser amount of material and enabling larger focal distance tunability. The metalens is fabricated using a commercial 3D-printer and attached to a stretchable platform. Measurements and simulations show that the focal distance can be tuned by a factor of 4 with a stretching factor of only 75%, a nearly diffraction-limited focal spot, and with a 70% relative focusing efficiency, defined as the ratio between power focused in the focal spot and power going through the focal plane. The proposed platform can be extended for design and fabrication of multiple electromagnetic devices working from visible to microwave radiation depending on scaling of the devices.

  18. Focal plane array based infrared thermography in fine physical experiment

    International Nuclear Information System (INIS)

    Vainer, Boris G

    2008-01-01

    By two examples of dissimilar physical phenomena causing thermophysical effects, the unique capabilities of one of the up-to-date methods of experimental physics-focal plane array (FPA) based infrared (IR) thermography (IRT), are demonstrated distinctly. Experimenters inexperienced in IRT can grasp how this method provides a means for combining real-time visualization with quantitative analysis. A narrow-band short-wavelength IR camera was used in the experiments. It is discussed and stated that IRT is best matched and suited to the next two test conditions-when a heated specimen is thin and when heat is generated in the immediate region of a surface of a solid. The first prerequisite is realized in the search for directional patterns of combined low-power radiation sources with the use of the IRT-aided method. The second one is realized in studies of water vapour adsorption on uneven (irregular) surfaces of solid materials. With multiple swatches taken from a set of different fabrics and used as experimental samples, a sharp distinction between adsorptivities of their surfaces is strikingly illustrated by IRT time-domain measurements exhibiting the associated thermal effect ranging within an order of magnitude. It is justified that the described IRT-aided test can find practical implementation at least in the light industry. Emissivities of different fabrics are evaluated experimentally with the described reflection method based on the narrow spectral range of IRT. On the basis of direct IR observations, attention is paid to the need for close control over the surface temperature increase while the adsorption isotherms are being measured. Sensitivity of the FPA-based IRT method, as applied to examine the kinetics of initial stages of adsorption of gaseous molecules on the solid surface, is evaluated analytically and quantitatively. The relationship between the amount of adsorbate and the measurable excess of adsorbent temperature is found. It is discovered that

  19. Low-power low-noise analog circuits for on-focal-plane signal processing of infrared sensors

    Science.gov (United States)

    Pain, Bedabrata; Mendis, Sunetra K.; Schober, Robert C.; Nixon, Robert H.; Fossum, Eric R.

    1993-10-01

    On-focal-plane signal processing circuits for enhancement of IR imager performance are presented. To enable the detection of high background IR images, an in-pixel current-mode background suppression scheme is presented. The background suppression circuit consists of a current memory placed in the feedback loop of a CTIA and is designed for a thousand-fold suppression of the background flux, thereby easing circuit design constraints, and assuring BLIP operation even with detectors having large response non-uniformities. For improving the performance of low-background IR imagers, an on-chip column-parallel analog-to-digital converter (ADC) is presented. The design of a 10-bit ADC with 50 micrometers pitch and based on sigma-delta ((Sigma) -(Delta) ) modulation is presented. A novel IR imager readout technique featuring photoelectron counting in the unit cell is presented for ultra-low background applications. The output of the unit cell is a digital word corresponding to the incident flux density and the readout is noise free. The design of low-power (noise, high-gain (> 100,000), small real estate (60 micrometers pitch) self-biased CMOS amplifiers required for photon counting are presented.

  20. Enhanced performance CCD output amplifier

    Science.gov (United States)

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  1. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    International Nuclear Information System (INIS)

    Buts, Lieven; De Jonge, Natalie; Loris, Remy; Wyns, Lode; Dao-Thi, Minh-Hoa

    2005-01-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA C36 ; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8 Å resolution. Form III belongs to space group P2 1 , with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution

  2. Improved image quality for asymmetric double-focal cone-beam SPECT

    International Nuclear Information System (INIS)

    Cao, Z.J.; Tsui, B.M.W.

    1993-01-01

    To optimize both spatial resolution and detection efficiency in brain SPECT imaging using a rectangular camera, an asymmetric double-focal cone-beam collimator is proposed with the focal points located near the base plane of the patient's head. To fit the entire head into the field-of-view of the collimator with dimensions of 50cmx40cm and at a radius-of-rotation of 15 cm, the focal lengths of the collimator are 55 and 70 cm, respectively, in the transverse and axial directions. With this geometry, the artifacts in the reconstructed image produced by the Feldkamp algorithm are more severe compared to those in a symmetric cone-beam geometry, due to the larger vertex angle between the top of the head and the base plane. To improve the reconstructed image quality, a fully three-dimensional (3D) reconstruction algorithm developed previously for single-focal cone-beam SPECT was extended to the asymmetric double-focal cone-beam geometry. The algorithm involves nonstationary 2D filtering and a reprojection technique for estimation of the missing data caused by a single-orbit cone-beam geometry. The results from simulation studies with the 3D Defrise slab phantom demonstrated that the fully 3D algorithm provided a much improved image quality in terms of reduced slice-to-slice cross talks and shape elongation compared to that produced by the conventional Feldkamp algorithm

  3. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  4. Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Yura, H. T.; Hanson, Steen Grüner

    2012-01-01

    This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time......, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis...

  5. CCD research. [design, fabrication, and applications

    Science.gov (United States)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  6. High-resolution focal plane array IR detection modules and digital signal processing technologies at AIM

    Science.gov (United States)

    Cabanski, Wolfgang A.; Breiter, Rainer; Koch, R.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Eberhardt, Kurt; Oelmaier, Reinhard; Schneider, Harald; Walther, Martin

    2000-07-01

    Full video format focal plane array (FPA) modules with up to 640 X 512 pixels have been developed for high resolution imaging applications in either mercury cadmium telluride (MCT) mid wave (MWIR) infrared (IR) or platinum silicide (PtSi) and quantum well infrared photodetector (QWIP) technology as low cost alternatives to MCT for high performance IR imaging in the MWIR or long wave spectral band (LWIR). For the QWIP's, a new photovoltaic technology was introduced for improved NETD performance and higher dynamic range. MCT units provide fast frame rates > 100 Hz together with state of the art thermal resolution NETD hardware platforms and software for image visualization and nonuniformity correction including scene based self learning algorithms had to be developed to accomplish for the high data rates of up to 18 M pixels/s with 14-bit deep data, allowing to take into account nonlinear effects to access the full NETD by accurate reduction of residual fixed pattern noise. The main features of these modules are summarized together with measured performance data for long range detection systems with moderately fast to slow F-numbers like F/2.0 - F/3.5. An outlook shows most recent activities at AIM, heading for multicolor and faster frame rate detector modules based on MCT devices.

  7. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    International Nuclear Information System (INIS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-01-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool. (paper)

  8. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    Science.gov (United States)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  9. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  10. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    Science.gov (United States)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  11. Medición de posiciones astrométricas con CCD en la zona de Rup 21

    Science.gov (United States)

    Bustos Fierro, I. H.; Calderón, J. H.

    It is shown the utilization of the block adjustment method for the measurement of astrometric positions from a mosaic of sixteen CCD images with partial overlap, which were taken with the Telescope Jorge Sahade of CASLEO. The observations cover an area of 25' x 25' around the open cluster Rup21. The source of reference positions was ACT Reference Catalog. The internal error of the measured positions is analyzed, and the external error is estimated from the comparison with the catalog USNO-A. In this comparison it is found that the direct CCD images taken with focal reducer could be distorted by severe field curvature. The effect of the distortion presumably introduced by the optics is eliminated with the suitable corrections of the stellar positions measured on every frame, but a new systematic effect on scales of the entire field is observed, which could be due to the distribution of the reference stars.

  12. Performance of back supportless CCDs for the NeXT mission

    International Nuclear Information System (INIS)

    Takagi, Shin-ichiro; Go Tsuru, Takeshi; Matsumoto, Hironori; Koyama, Katsuji; Tsunemi, Hiroshi; Miyata, Emi; Miyazaki, Satoshi; Kamata, Yukiko; Muramatsu, Masaharu; Suzuki, Hisanori; Miyaguchi, Kazuhisa

    2005-01-01

    New X-ray Telescope (NeXT) will be the next Japanese X-ray astronomical satellite, which will be launched around 2010. A multilayer super mirror will give NeXT a large effective area across the 0.1-80keV band. This wide bandpass requires a focal plane detector that is also sensitive along the entire energy band. As the focal plane detector for NeXT, we have been developing a Wideband hybrid X-ray Imager (WXI) consisting of X-ray CCDs and pixelized CdTe detector. The X-ray CCD of the WXI is required to maintain high quantum efficiency up to the high-energy band while allowing hard X-rays to pass undetected through the depletion (sensitive) layer. In order to meet these requirements, we have been developing a back supportless CCD (BS-CCD) which has a thick depletion layer, a thinned Si wafer and a back supportless structure. As the first step, we manufactured a test model of BS-CCD in order to (1) learn the handling and thinning process and (2) confirm that there is no change of the performance. For the mechanical strength and the safe handling of the wafer, we decided to thin the wafer to ∼200μm. We verified the thickness of the depletion layer and wafer of the BS-CCD to be about 70 and 190μm, respectively. The energy resolution at 5.9keV of 144eV and the read-out noise of 7 electrons (rms) are equal to those of an un-thinned CCD, hence, we confirmed that our thinning process has no effect on the performance

  13. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    KAUST Repository

    Bruno, Mark

    2016-09-29

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9\\'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.

  14. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    KAUST Repository

    Bruno, Mark; Koschmieder, Julian; Wuest, Florian; Schaub, Patrick; Fehling-Kaschek, Mirjam; Timmer, Jens; Beyer, Peter; Al-Babili, Salim

    2016-01-01

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.

  15. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    Science.gov (United States)

    Bruno, Mark; Koschmieder, Julian; Wuest, Florian; Schaub, Patrick; Fehling-Kaschek, Mirjam; Timmer, Jens; Beyer, Peter; Al-Babili, Salim

    2016-01-01

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals. PMID:27811075

  16. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  17. Comparison of different approaches to the numerical calculation of the LMJ focal

    Directory of Open Access Journals (Sweden)

    Bourgeade A.

    2013-11-01

    Full Text Available The beam smoothing in the focal plane of high power lasers is of particular importance to laser-plasma interaction studies in order to minimize plasma parametric and hydrodynamic instabilities on the target. Here we investigate the focal spot structure in different geometrical configurations where standard paraxial hypotheses are no longer verified. We present numerical studies in the cases of single flat top square beam, LMJ quadruplet and complete ring of quads with large azimuth angle. Different calculations are made with Fresnel diffraction propagation model in the paraxial approximation and full vector Maxwell's equations. The first model is based on Fourier transform from near to far field method. The second model uses first spherical wave decomposition in plane waves with Fourier transform and propagates them to the focal spot. These two different approaches are compared with Miró [1] modeling results using paraxial or Feit and Fleck options. The methods presented here are generic for focal spot calculations. They can be used for other complex geometric configurations and various smoothing techniques. The results will be used as boundary conditions in plasma interaction computations.

  18. A pipelined architecture for real time correction of non-uniformity in infrared focal plane arrays imaging system using multiprocessors

    Science.gov (United States)

    Zou, Liang; Fu, Zhuang; Zhao, YanZheng; Yang, JunYan

    2010-07-01

    This paper proposes a kind of pipelined electric circuit architecture implemented in FPGA, a very large scale integrated circuit (VLSI), which efficiently deals with the real time non-uniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPA). Dual Nios II soft-core processors and a DSP with a 64+ core together constitute this image system. Each processor undertakes own systematic task, coordinating its work with each other's. The system on programmable chip (SOPC) in FPGA works steadily under the global clock frequency of 96Mhz. Adequate time allowance makes FPGA perform NUC image pre-processing algorithm with ease, which has offered favorable guarantee for the work of post image processing in DSP. And at the meantime, this paper presents a hardware (HW) and software (SW) co-design in FPGA. Thus, this systematic architecture yields an image processing system with multiprocessor, and a smart solution to the satisfaction with the performance of the system.

  19. Charge diffusion in CCD X-ray detectors

    International Nuclear Information System (INIS)

    Pavlov, George G.; Nousek, John A.

    1999-01-01

    Critical to the detection of X-rays by CCDs, is the detailed process of charge diffusion and drift within the device. We reexamine the prescriptions currently used in the modeling of X-ray CCD detectors to provide analytic expressions for the charge distribution over the CCD pixels which are suitable for use in numerical simulations of CCD response. Our treatment results in models which predict charge distributions which are more centrally peaked and have flatter wings than the Gaussian shapes predicted by previous work and adopted in current CCD modeling codes

  20. Fully depleted back-illuminated p-channel CCD development

    Energy Technology Data Exchange (ETDEWEB)

    Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin

    2003-07-08

    An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.

  1. 3D synthetic aperture imaging using a virtual source element in the elevation plane

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    . However, the resolution in the elevation plane is determined by the fixed mechanical elevation focus. This paper suggests to post-focus the RF lines from several adjacent planes in the elevation direction using the elevation focal point of the transducer as a virtual source element, in order to obtain...... dynamic focusing in the elevation plane. A 0.1 mm point scatterer was mounted in an agar block and scanned in a water bath. The transducer is a 64 elements linear array with a pitch of 209 μm. The transducer height is 4 mm in the elevation plane and it is focused at 20 mm giving a F-number of 5. The point...... are passed through a second beamformer, in which the fixed focal points in the elevation plane are treated as virtual sources of spherical waves. Synthetic aperture focusing is applied on them. The -6 dB resolution in the elevation plane is increased from 7 mm to 2 mm. This gives a uniform point spread...

  2. Small-pixel long wavelength infrared focal plane arrays based on InAs/GaSb Type-II superlattice

    Science.gov (United States)

    Han, Xi; Jiang, Dongwei; Wang, Guowei; Hao, Hongyue; Sun, Yaoyao; Jiang, Zhi; Lv, Yuexi; Guo, Chunyan; Xu, Yingqiang; Niu, Zhichuan

    2018-03-01

    The paper reports a 640 × 512 long wavelength infrared focal plane arrays (FPAs) with 15 × 15 μm2 pixels pitch based on the type II InAs/GaSb superlattice. Material grown on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 10.2 μm across the entire wafer. The peak quantum efficiency of the detector reaches 28% at 9.1 μm without anti-reflecting coating. Maximal resistance-area products of 8.95 Ω·cm2 at 77 K and 24.4 Ω·cm2 at 45 K are achieved in a single element device indicating that the generation-recombination and tunneling mechanisms dominate the device dark current, respectively. The peak Johnson Detectivity reaches 9.66 × 1011 cm Hz1/2/W at 9.1 μm with the bias voltage of 80 mV. In the whole zone, the operability and non-uniformity for the responsivity are 97.74% and 6.41% respectively. The average noise equivalent temperature difference of 31.9 mK at 77 K is achieved with an integration time of 0.5 ms, a 300 K background and f/2 optics.

  3. Multipurpose Hyperspectral Imaging System

    Science.gov (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  4. R and D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

    International Nuclear Information System (INIS)

    Assis, Pedro; Brogueira, Pedro; Catalano, Osvaldo; Ferreira, Miguel; Lorenz, Eckart; Mendes, Luís; Pimenta, Mário; Rodrigues, Pedro; Schweizer, Thomas

    2012-01-01

    In this work we present the design, first prototypes and experimental R and D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of −20°C to −10°C, a low-power frontend electronics down to 1 kW/m 2 and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6×10 4 SiPM channels.

  5. R and D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Pedro [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Brogueira, Pedro [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); IST, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Catalano, Osvaldo [IASF-Palermo, 1, Via Ugo La Malfa 153, 90146 Palermo (Italy); Ferreira, Miguel [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Lorenz, Eckart [MPI, Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Mendes, Luis [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Pimenta, Mario [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); IST, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Rodrigues, Pedro, E-mail: psilva@lip.pt [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Schweizer, Thomas [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); MPI, Max-Planck-Institute for Physics, D-80805 Muenchen (Germany)

    2012-12-11

    In this work we present the design, first prototypes and experimental R and D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of -20 Degree-Sign C to -10 Degree-Sign C, a low-power frontend electronics down to 1 kW/m{sup 2} and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6 Multiplication-Sign 10{sup 4} SiPM channels.

  6. CCD's at TPC

    International Nuclear Information System (INIS)

    Zeller, M.E.

    1977-01-01

    The CCD, Charge Coupled Device, is an analog shift register for which application to the readout of particle detectors has recently been realized. These devices can be used to detect optical information directly, providing an automated readout for streamer or other optical chambers, or as a single input shift register, acting in this instance as a delay line for analog information. A description is given of the latter mode of operation and its utility as a readout method for drift chambers. Most of the information contained herein has been obtained from tests performed in connection with PEP TPC project, PEP-4. That detector will employ approximately 10 4 CCD's making it a reasonable testing ground for ISABELLE size detectors

  7. Test stand for non-uniformity correction of microbolometer focal plane arrays used in thermal cameras

    Science.gov (United States)

    Krupiński, Michał; Bareła, Jaroslaw; Firmanty, Krzysztof; Kastek, Mariusz

    2013-10-01

    Uneven response of particular detectors (pixels) to the same incident power of infrared radiation is an inherent feature of microbolometer focal plane arrays. As a result an image degradation occurs, known as Fixed Pattern Noise (FPN), which distorts the thermal representation of an observed scene and impairs the parameters of a thermal camera. In order to compensate such non-uniformity, several NUC correction methods are applied in digital data processing modules implemented in thermal cameras. Coefficients required to perform the non-uniformity correction procedure (NUC coefficients) are determined by calibrating the camera against uniform radiation sources (blackbodies). Non-uniformity correction is performed in a digital processing unit in order to remove FPN pattern in the registered thermal images. Relevant correction coefficients are calculated on the basis of recorded detector responses to several values of radiant flux emitted from reference IR radiation sources (blackbodies). The measurement of correction coefficients requires specialized setup, in which uniform, extended radiation sources with high temperature stability are one of key elements. Measurement stand for NUC correction developed in Institute of Optoelectronics, MUT, comprises two integrated extended blackbodies with the following specifications: area 200×200 mm, stabilized absolute temperature range +15 °C÷100 °C, and uniformity of temperature distribution across entire surface +/-0.014 °C. Test stand, method used for the measurement of NUC coefficients and the results obtained during the measurements conducted on a prototype thermal camera will be presented in the paper.

  8. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    Science.gov (United States)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  9. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    International Nuclear Information System (INIS)

    De Jonge, Natalie; Buts, Lieven; Vangelooven, Joris; Mine, Natacha; Van Melderen, Laurence; Wyns, Lode; Loris, Remy

    2007-01-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB Vfi ) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2 1 3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB Vfi with the GyrA14 Vfi fragment of V. fischeri gyrase crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14 Ec crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB Vfi and part of the F-plasmid antitoxin CcdA F crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution

  10. Development of the focus system for heaven-I

    International Nuclear Information System (INIS)

    Xiang Yihuai; Zhou Chuangzhi; Gong Kun; Ma Jinglong; Dai Hui; Shan Yusheng; Wang Naiyan

    2003-01-01

    This paper introduces the method of guiding the six KrF laser beams into target chamber and the development of focus system in MOPA angular multiplex system for Heaven-I. The six beams are focused to the vacuum target chamber by six plane-convex lenses. The focal spot on the target is measured by UV CCD camera, the diameter of the focal spot of six beams is 290 μm, the focusing power density on the target is 8 x 10 12 W/cm 2

  11. Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).

    Science.gov (United States)

    Imamura, S; Sakuma, K; Takahashi, T

    1983-01-01

    713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.

  12. Implementation of focal zooming on the Nike KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Kehne, D. M.; Karasik, M.; Weaver, J. L.; Chan, Y.; Obenschain, S. P. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Aglitsky, Y. [Science Applications International, McLean, Virginia 22150 (United States); Smyth, Z.; Lehmberg, R. H. [Research Support Instruments, Inc., Lanham, Maryland 20706 (United States); Terrell, S. [Commonwealth Technologies, Inc., Alexandria, Virginia 22315 (United States)

    2013-01-15

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser ({lambda}= 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 {mu}m thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  13. Implementation of focal zooming on the Nike KrF laser

    International Nuclear Information System (INIS)

    Kehne, D. M.; Karasik, M.; Weaver, J. L.; Chan, Y.; Obenschain, S. P.; Aglitsky, Y.; Smyth, Z.; Lehmberg, R. H.; Terrell, S.

    2013-01-01

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ= 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  14. Implementation of focal zooming on the Nike KrF laser

    Science.gov (United States)

    Kehne, D. M.; Karasik, M.; Aglitsky, Y.; Smyth, Z.; Terrell, S.; Weaver, J. L.; Chan, Y.; Lehmberg, R. H.; Obenschain, S. P.

    2013-01-01

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  15. Cámara CCD Directa con el Telescopio de 2.15 m del CASLEO: algunos diagnósticos

    Science.gov (United States)

    Cellone, S. A.

    Se efectuaron algunas pruebas con la cámara CCD (+ Reductor Focal) instalada en el foco Cassegrain del Telescopio de 2.15 m del Complejo Astronómico El Leoncito (CASLEO). Las conclusiones más significativas son: Los tiempos de exposición efectivos difieren de los nominales en una fracción apreciable de segundo. En exposiciones de menos de 3 segundos, la iluminación no es pareja en todo el detector. En consecuencia, se recomiendan los pasos a seguir por los astrónomos tanto durante la observación como en la reducción de sus datos.

  16. The scintillating fiber focal plane detector for the use of Kaos as a double arm spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayerbe Gayoso, Carlos Antonio

    2012-05-25

    calculating the transfer matrix of track parameters from the fiber detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized. The design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut fuer Kernphysik of the Johannes Gutenberg - Universitaet Mainz.

  17. The scintillating fiber focal plane detector for the use of Kaos as a double arm spectrometer

    International Nuclear Information System (INIS)

    Ayerbe Gayoso, Carlos Antonio

    2012-01-01

    detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized. The design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut fuer Kernphysik of the Johannes Gutenberg - Universitaet Mainz.

  18. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, Natalie, E-mail: ndejonge@vub.ac.be; Buts, Lieven; Vangelooven, Joris [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Mine, Natacha; Van Melderen, Laurence [Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine, Université Libre de Bruxelles, Gosselies (Belgium); Wyns, Lode; Loris, Remy [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium)

    2007-04-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB{sub Vfi}) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2{sub 1}3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB{sub Vfi} with the GyrA14{sub Vfi} fragment of V. fischeri gyrase crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14{sub Ec} crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB{sub Vfi} and part of the F-plasmid antitoxin CcdA{sub F} crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution.

  19. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    Science.gov (United States)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  20. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    Science.gov (United States)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  1. Numerical simulation of the modulation transfer function (MTF) in infrared focal plane arrays: simulation methodology and MTF optimization

    Science.gov (United States)

    Schuster, J.

    2018-02-01

    Military requirements demand both single and dual-color infrared (IR) imaging systems with both high resolution and sharp contrast. To quantify the performance of these imaging systems, a key measure of performance, the modulation transfer function (MTF), describes how well an optical system reproduces an objects contrast in the image plane at different spatial frequencies. At the center of an IR imaging system is the focal plane array (FPA). IR FPAs are hybrid structures consisting of a semiconductor detector pixel array, typically fabricated from HgCdTe, InGaAs or III-V superlattice materials, hybridized with heat/pressure to a silicon read-out integrated circuit (ROIC) with indium bumps on each pixel providing the mechanical and electrical connection. Due to the growing sophistication of the pixel arrays in these FPAs, sophisticated modeling techniques are required to predict, understand, and benchmark the pixel array MTF that contributes to the total imaging system MTF. To model the pixel array MTF, computationally exhaustive 2D and 3D numerical simulation approaches are required to correctly account for complex architectures and effects such as lateral diffusion from the pixel corners. It is paramount to accurately model the lateral di_usion (pixel crosstalk) as it can become the dominant mechanism limiting the detector MTF if not properly mitigated. Once the detector MTF has been simulated, it is directly decomposed into its constituent contributions to reveal exactly what is limiting the total detector MTF, providing a path for optimization. An overview of the MTF will be given and the simulation approach will be discussed in detail, along with how different simulation parameters effect the MTF calculation. Finally, MTF optimization strategies (crosstalk mitigation) will be discussed.

  2. Noise characteristics of neutron images obtained by cooled CCD device

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi; Sasaki, Ryoya; Okuda, Shuichi; Okamoto, Ken-Ichi; Ogawa, Yoshihiro; Tsujimoto, Tadashi

    2009-01-01

    The noise characteristics of a cooled CCD device induced by neutron and gamma ray irradiation have been investigated. In the cooled CCD images, characteristic white spot noises (CCD noise) frequently appeared, which have a shape like a pixel in most cases and their brightness is extremely high compared with that of the image pattern. They could be divided into the two groups, fixed pattern noise (FPN) and random noise. The former always appeared in the same position in the image and the latter appeared at any position. In the background image, nearly all of the CCD noises were found to be the FPN, while many of them were the random noise during the irradiation. The random CCD noises increased with irradiation and decreased soon after the irradiation. In the case of large irradiation, a part of the CCD noise remained as the FPN. These facts suggest that the CCD noise is a phenomenon strongly relating to radiation damage of the CCD device.

  3. A Study on Adaptable Non-contact Shape Inspection System

    International Nuclear Information System (INIS)

    Kang, Young June; Park, Nak Gyu; Lee, Dong Hwan

    2005-01-01

    A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3D data of an object was calculated from the 2 dimensional image information obtained by the laser stripe using the laser triangulation. The system that use existing theory can measure the diameter of hole not only in a normal plane but also ill an incline plane. However, in the existing theory, since the lens with fixed feral length was used, the area of measurement was fixed. The simplest way to solve this problem is to change distance between a CCD camera and object. Other way is to use a zoom lens having variable focal length. In this paper, the zoom lens with variable focal length was used. Therefore, we ran experiment with magnification that is optimized according to size of object using zoom lens with variable focal length

  4. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  5. Custom CCD for adaptive optics applications

    Science.gov (United States)

    Downing, Mark; Arsenault, Robin; Baade, Dietrich; Balard, Philippe; Bell, Ray; Burt, David; Denney, Sandy; Feautrier, Philippe; Fusco, Thierry; Gach, Jean-Luc; Diaz Garcia, José Javier; Guillaume, Christian; Hubin, Norbert; Jorden, Paul; Kasper, Markus; Meyer, Manfred; Pool, Peter; Reyes, Javier; Skegg, Michael; Stadler, Eric; Suske, Wolfgang; Wheeler, Patrick

    2006-06-01

    ESO and JRA2 OPTICON have funded e2v technologies to develop a compact packaged Peltier cooled 24 μm square 240x240 pixels split frame transfer 8-output back-illuminated L3Vision CCD3, L3Vision CCD for Adaptive Optic Wave Front Sensor (AO WFS) applications. The device is designed to achieve sub-electron read noise at frame rates from 25 Hz to 1,500 Hz and dark current lower than 0.01 e-/pixel/frame. The development has many unique features. To obtain high frame rates, multi-output EMCCD gain registers and metal buttressing of row clock lines are used. The baseline device is built in standard silicon. In addition, a split wafer run has enabled two speculative variants to be built; deep depletion silicon devices to improve red response and devices with an electronic shutter to extend use to Rayleigh and Pulsed Laser Guide Star applications. These are all firsts for L3Vision CCDs. The designs of the CCD and Peltier package have passed their reviews and fabrication has begun. This paper will describe the progress to date, the requirements and the design of the CCD and compact Peltier package, technology trade-offs, schedule and proposed test plan. High readout speed, low noise and compactness (requirement to fit in confined spaces) provide special challenges to ESO's AO variant of its NGC, New General detector Controller to drive this CCD. This paper will describe progress made on the design of the controller to meet these special needs.

  6. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    Science.gov (United States)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  7. Application of oblique plane microscopy to high speed live cell imaging

    Science.gov (United States)

    Kumar, Sunil; Wilding, Dean; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken T.; Dunsby, Chris

    2011-07-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. We present high speed 2D and 3D optically sectioned OPM imaging of live cells using a high NA water immersion lens.

  8. THE ACCURACY OF Hβ CCD PHOTOMETRY

    Directory of Open Access Journals (Sweden)

    C. Kim

    1994-12-01

    Full Text Available We have undertaken CCD observations of field standard stars with Hβ photometric system to investigate the reliability of Hβ CCD photometry. Flat fielding with dome flat and sky flat for Hβw and Hβn filter was compared with that of B filter in UBV system and, from these, we have not found any difference. It was confirmed that there is a good linear relationship between our Hβ values observed with 2.3m reflector and standard values. However, Hβ values observed with 60cm reflector at Sobaeksan Astronomy Observatory showed very poor relationship. To investigate the accuracy of Hβ CCD photometry for fainter objects, open cluster NGC2437 was observed and reduced with DoPHOT, and the results were compared with those for photoelectric photometry of Stetson (1981.

  9. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  10. Typical effects of laser dazzling CCD camera

    Science.gov (United States)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  11. Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging

    Science.gov (United States)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2010-08-01

    ×We describe the design, fabrication, and performance of focal plane arrays (FPAs) for use in 3-D LADAR imaging applications requiring single photon sensitivity. These 32 × 32 FPAs provide high-efficiency single photon sensitivity for three-dimensional LADAR imaging applications at 1064 nm. Our GmAPD arrays are designed using a planarpassivated avalanche photodiode device platform with buried p-n junctions that has demonstrated excellent performance uniformity, operational stability, and long-term reliability. The core of the FPA is a chip stack formed by hybridizing the GmAPD photodiode array to a custom CMOS read-out integrated circuit (ROIC) and attaching a precision-aligned GaP microlens array (MLA) to the back-illuminated detector array. Each ROIC pixel includes an active quenching circuit governing Geiger-mode operation of the corresponding avalanche photodiode pixel as well as a pseudo-random counter to capture per-pixel time-of-flight timestamps in each frame. The FPA has been designed to operate at frame rates as high as 186 kHz for 2 μs range gates. Effective single photon detection efficiencies as high as 40% (including all optical transmission and MLA losses) are achieved for dark count rates below 20 kHz. For these planar-geometry diffused-junction GmAPDs, isolation trenches are used to reduce crosstalk due to hot carrier luminescence effects during avalanche events, and we present details of the crosstalk performance for different operating conditions. Direct measurement of temporal probability distribution functions due to cumulative timing uncertainties of the GmAPDs and ROIC circuitry has demonstrated a FWHM timing jitter as low as 265 ps (standard deviation is ~100 ps).

  12. Contribution of the Chromosomal ccdAB Operon to Bacterial Drug Tolerance.

    Science.gov (United States)

    Gupta, Kritika; Tripathi, Arti; Sahu, Alishan; Varadarajan, Raghavan

    2017-10-01

    One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain ( ccd O157 ) and the ccd operon from the F plasmid ( ccd F ), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple

  13. Recording of radiation-induced optical density changes in doped agarose gels with a CCD camera

    International Nuclear Information System (INIS)

    Tarte, B.J.; Jardine, P.A.; Van Doorn, T.

    1996-01-01

    Full text: Spatially resolved dose measurement with iron-doped agarose gels is continuing to be investigated for applications in radiotherapy dosimetry. It has previously been proposed to use optical methods, rather than MRI, for dose measurement with such gels and this has been investigated using a spectrophotometer (Appleby A and Leghrouz A, Med Phys, 18:309-312, 1991). We have previously studied the use of a pencil beam laser for such optical density measurement of gels and are currently investigating charge-coupled devices (CCD) camera imaging for the same purpose but with the advantages of higher data acquisition rates and potentially greater spatial resolution. The gels used in these studies were poured, irradiated and optically analysed in Perspex casts providing gel sections 1 cm thick and up to 20 cm x 30 cm in dimension. The gels were also infused with a metal indicator dye (xylenol orange) to render the radiation induced oxidation of the iron in the gel sensitive to optical radiation, specifically in the green spectral region. Data acquisition with the CCD camera involved illumination of the irradiated gel section with a diffuse white light source, with the light from the plane of the gel section focussed to the CCD array with a manual zoom lens. The light was also filtered with a green colour glass filter to maximise the contrast between unirradiated and irradiated gels. The CCD camera (EG and G Reticon MC4013) featured a 1024 x 1024 pixel array and was interfaced to a PC via a frame grabber acquisition board with 8 bit resolution. The performance of the gel dosimeter was appraised in mapping of physical and dynamic wedged 6 MV X-ray fields. The results from the CCD camera detection system were compared with both ionisation chamber data and laser based optical density measurements of the gels. Cross beam profiles were extracted from each measurement system at a particular depth (eg. 2.3 cm for the physical wedge field) for direct comparison. A

  14. High-Voltage Clock Driver for Photon-Counting CCD Characterization

    Science.gov (United States)

    Baker, Robert

    2013-01-01

    A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.

  15. New imaging technique based on diffraction of a focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazimirov, A [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Kohn, V G [Russian Research Center ' Kurchatov Institute, 123182 Moscow (Russian Federation); Cai, Z-H [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: ayk7@cornell.edu

    2009-01-07

    We present first experimental results from a new diffraction depth-sensitive imaging technique. It is based on the diffraction of a focused x-ray beam from a crystalline sample and recording the intensity pattern on a high-resolution CCD detector positioned at a focal plane. Structural non-uniformity inside the sample results in a region of enhanced intensity in the diffraction pattern. The technique was applied to study silicon-on-insulator thin layers of various thicknesses which revealed a complex strain profile within the layers. A circular Fresnel zone plate was used as a focusing optic. Incoherent diffuse scattering spreads out of the diffraction plane and results in intensity recorded outside of the focal spot providing a new approach to separately register x-rays scattered coherently and incoherently from the sample. (fast track communication)

  16. New family of exact solutions for colliding plane gravitational waves

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    We construct an infinite-parameter family of exact solutions to the vacuum Einstein field equations describing colliding gravitational plane waves with parallel polarizations. The interaction regions of the solutions in this family are locally isometric to the interiors of those static axisymmetric (Weyl) black-hole solutions which admit both a nonsingular horizon, and an analytic extension of the exterior metric to the interior of the horizon. As a member of this family of solutions we also obtain, for the first time, a colliding plane-wave solution where both of the two incoming plane waves are purely anastigmatic, i.e., where both incoming waves have equal focal lengths

  17. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    Science.gov (United States)

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  18. 15 CFR 740.19 - Consumer Communications Devices (CCD).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Consumer Communications Devices (CCD... EXCEPTIONS § 740.19 Consumer Communications Devices (CCD). (a) Authorization. This License Exception... controllers designed for chemical processing) designated EAR99; (4) Graphics accelerators and graphics...

  19. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    Science.gov (United States)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  20. CALCULATION OF A GLARE STOP FOR TWO-MIRROR EXTRA-FOCAL OBJECTIVE

    Directory of Open Access Journals (Sweden)

    L. F. Zambrano

    2017-01-01

    Full Text Available Recently, efforts to improve optical characteristics in canonical mirror systems, including aspherical surfaces and corrective aberration capabilities. At the same time, much attention is paid to the development of new optical schemes of two-mirror objectives. Development measures to protect the image plane from stray light and harmful flows with minimal vignetting and screening is one of the most perspective ways for improving the image quality objectives. The only method to eliminate or even reduce these non-constructive rays is to set glare stops. The aim of the work was an improving method for constructing a glare stop to protect the image plane and the creation of a calculation algorithm of glare stop for protecting the image plane based on two-mirror extra-focal objectives.The study was conducted in two stages. In the course of the first stage, the positions of screening and intermediate image plane were obtained, as well as the central screening coefficient. At the second stage, an arrangement for the position of glare stop is proposed using the algorithm calculation. Thus, mathematical expressions were achieved by geometric constructions. The relation of the screening coefficient with the distance between the surfaces of the mirrors and the height of the paraxial rays is established. А representation of vignetting diagram for two-mirror extra-focal objective with D/f´ = 1 : 1,3 and 2ω = 4° was realized. The Q estimation of vignetting of inclined light beams is k= 0,56.

  1. CCD image sensor induced error in PIV applications

    Science.gov (United States)

    Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.

    2014-06-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.

  2. CCD image sensor induced error in PIV applications

    International Nuclear Information System (INIS)

    Legrand, M; Nogueira, J; Vargas, A A; Ventas, R; Rodríguez-Hidalgo, M C

    2014-01-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (∼0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described. (paper)

  3. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  4. On the relationships between electron spot size, focal spot size, and virtual source position in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sterpin, E.; Chen, Y.; Lu, W.; Mackie, T. R.; Olivera, G. H.; Vynckier, S.

    2011-01-01

    Purpose: Every year, new radiotherapy techniques including stereotactic radiosurgery using linear accelerators give rise to new applications of Monte Carlo (MC) modeling. Accurate modeling requires knowing the size of the electron spot, one of the few parameters to tune in MC models. The resolution of integrated megavoltage imaging systems, such as the tomotherapy system, strongly depends on the photon spot size which is closely related to the electron spot. The aim of this article is to clarify the relationship between the electron spot size and the photon spot size (i.e., the focal spot size) for typical incident electron beam energies and target thicknesses. Methods: Three electron energies (3, 5.5, and 18 MeV), four electron spot sizes (FWHM=0, 0.5, 1, and 1.5 mm), and two tungsten target thicknesses (0.15 and 1 cm) were considered. The formation of the photon beam within the target was analyzed through electron energy deposition with depth, as well as photon production at several phase-space planes placed perpendicular to the beam axis, where only photons recorded for the first time were accounted for. Photon production was considered for ''newborn'' photons intersecting a 45x45 cm 2 plane at the isocenter (85 cm from source). Finally, virtual source position and ''effective'' focal spot size were computed by backprojecting all the photons from the bottom of the target intersecting a 45x45 cm 2 plane. The virtual source position and focal spot size were estimated at the plane position where the latter is minimal. Results: In the relevant case of considering only photons intersecting the 45x45 cm 2 plane, the results unambiguously showed that the effective photon spot is created within the first 0.25 mm of the target and that electron and focal spots may be assumed to be equal within 3-4%. Conclusions: In a good approximation photon spot size equals electron spot size for high energy X-ray treatments delivered by linear accelerators.

  5. Solution structure and elevator mechanism of the membrane electron transporter CcdA.

    Science.gov (United States)

    Zhou, Yunpeng; Bushweller, John H

    2018-02-01

    Membrane oxidoreductase CcdA plays a central role in supplying reducing equivalents from the bacterial cytoplasm to the envelope. It transports electrons across the membrane using a single pair of cysteines by a mechanism that has not yet been elucidated. Here we report an NMR structure of the Thermus thermophilus CcdA (TtCcdA) in an oxidized and outward-facing state. CcdA consists of two inverted structural repeats of three transmembrane helices (2 × 3-TM). We computationally modeled and experimentally validated an inward-facing state, which suggests that CcdA uses an elevator-type movement to shuttle the reactive cysteines across the membrane. CcdA belongs to the LysE superfamily, and thus its structure may be relevant to other LysE clan transporters. Structure comparisons of CcdA, semiSWEET, Pnu, and major facilitator superfamily (MFS) transporters provide insights into membrane transporter architecture and mechanism.

  6. Earthquake focal mechanism forecasting in Italy for PSHA purposes

    Science.gov (United States)

    Roselli, Pamela; Marzocchi, Warner; Mariucci, Maria Teresa; Montone, Paola

    2018-01-01

    In this paper, we put forward a procedure that aims to forecast focal mechanism of future earthquakes. One of the primary uses of such forecasts is in probabilistic seismic hazard analysis (PSHA); in fact, aiming at reducing the epistemic uncertainty, most of the newer ground motion prediction equations consider, besides the seismicity rates, the forecast of the focal mechanism of the next large earthquakes as input data. The data set used to this purpose is relative to focal mechanisms taken from the latest stress map release for Italy containing 392 well-constrained solutions of events, from 1908 to 2015, with Mw ≥ 4 and depths from 0 down to 40 km. The data set considers polarity focal mechanism solutions until to 1975 (23 events), whereas for 1976-2015, it takes into account only the Centroid Moment Tensor (CMT)-like earthquake focal solutions for data homogeneity. The forecasting model is rooted in the Total Weighted Moment Tensor concept that weighs information of past focal mechanisms evenly distributed in space, according to their distance from the spatial cells and magnitude. Specifically, for each cell of a regular 0.1° × 0.1° spatial grid, the model estimates the probability to observe a normal, reverse, or strike-slip fault plane solution for the next large earthquakes, the expected moment tensor and the related maximum horizontal stress orientation. These results will be available for the new PSHA model for Italy under development. Finally, to evaluate the reliability of the forecasts, we test them with an independent data set that consists of some of the strongest earthquakes with Mw ≥ 3.9 occurred during 2016 in different Italian tectonic provinces.

  7. CCD camera eases the control of a soda recovery boiler; CCD-kamera helpottaa soodakattilan valvontaa

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.

    2001-07-01

    Fortum Technology has developed a CCD firebox camera, based on semiconductor technology, enduring hard conditions of soda recovery boiler longer than traditional cameras. The firebox camera air- cooled and the same air is pressed over the main lens so it remains clean despite of the alkaline liquor splashing around in the boiler. The image of the boiler is transferred through the main lens, image transfer lens and a special filter, mounted inside the camera tube, into the CCD camera. The first CCD camera system has been in use since 1999 in Sunila pulp mill in Kotka, owned by Myllykoski Oy and Enso Oyj. The mill has two medium-sized soda recovery boilers. The amount of black liquor, formed daily, is about 2000 tons DS, which is more than enough for the heat generation. Even electric power generation exceeds sometimes the demand, so the surplus power can be sold out. Black liquor is sprayed inside the soda recovery boiler with high pressure. The liquor form droplets in the boiler, the temperature of which is over 1000 deg C. A full-hot pile is formed at the bottom of the boiler after burning. The size and shape of the pile effect on the efficiency and the emissions of the boiler. The camera has operated well.

  8. Reliable Transport over SpaceWire for James Webb Space Telescope (JWST) Focal Plane Electronics (FPE) Network

    Science.gov (United States)

    Rakow, Glenn; Schnurr, Richard; Dailey, Christopher; Shakoorzadeh, Kamdin

    2003-01-01

    NASA's James Webb Space Telescope (JWST) faces difficult technical and budgetary challenges to overcome before it is scheduled launch in 2010. The Integrated Science Instrument Module (ISIM), shares these challenges. The major challenge addressed in this paper is the data network used to collect, process, compresses and store Infrared data. A total of 114 Mbps of raw information must be collected from 19 sources and delivered to the two redundant data processing units across a twenty meter deployed thermally restricted interface. Further data must be transferred to the solid-state recorder and the spacecraft. The JWST detectors are kept at cryogenic temperatures to obtain the sensitivity necessary to measure faint energy sources. The Focal Plane Electronics (FPE) that sample the detector, generate packets from the samples, and transmit these packets to the processing electronics must dissipate little power in order to help keep the detectors at these cold temperatures. Separating the low powered front-end electronics from the higher-powered processing electronics, and using a simple high-speed protocol to transmit the detector data minimize the power dissipation near the detectors. Low Voltage Differential Signaling (LVDS) drivers were considered an obvious choice for physical layer because of their high speed and low power. The mechanical restriction on the number cables across the thermal interface force the Image packets to be concentrated upon two high-speed links. These links connect the many image packet sources, Focal Plane Electronics (FPE), located near the cryogenic detectors to the processing electronics on the spacecraft structure. From 12 to 10,000 seconds of raw data are processed to make up an image, various algorithms integrate the pixel data Loss of commands to configure the detectors as well as the loss of science data itself may cause inefficiency in the use of the telescope that are unacceptable given the high cost of the observatory. This

  9. CCD camera system for use with a streamer chamber

    International Nuclear Information System (INIS)

    Angius, S.A.; Au, R.; Crawley, G.C.; Djalali, C.; Fox, R.; Maier, M.; Ogilvie, C.A.; Molen, A. van der; Westfall, G.D.; Tickle, R.S.

    1988-01-01

    A system based on three charge-coupled-device (CCD) cameras is described here. It has been used to acquire images from a streamer chamber and consists of three identical subsystems, one for each camera. Each subsystem contains an optical lens, CCD camera head, camera controller, an interface between the CCD and a microprocessor, and a link to a minicomputer for data recording and on-line analysis. Image analysis techniques have been developed to enhance the quality of the particle tracks. Some steps have been made to automatically identify tracks and reconstruct the event. (orig.)

  10. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  11. PLEIADES HR IN FLIGHT GEOMETRICAL CALIBRATION : LOCATION AND MAPPING OF THE FOCAL PLANE

    Directory of Open Access Journals (Sweden)

    F. de Lussy

    2012-07-01

    Full Text Available The Pleiades system, ORFEO system optical component (Optical and Radar Federated Earth Observation consists of a constellation of two satellites for very High Resolution panchromatic and multispectral optical observation of the Earth. Its mission is to cover all European civilian needs (mapping, tracking floods and fires and defence in the category of metric resolution: 0.7m Nadir. The first Pleiades satellite was launched at the end of last year. One of the key objectives of the Pleiades HR (PHR project is to achieve a location accuracy that will allow the use of images in GIS (Geographical Information System without geometrical model improvement by refining on ground control points. The image location without refined model was specified with the precision of the most commonly used tool ie the civil GPS. So the location accuracy has been specified at less than 12m for 90% of the images on a nominal satellite configuration. Very special care has been taken all along the PHR project realization to achieve this very good location accuracy. The final touch is given during the in-orbit commissioning phase which lasts until June 2012. The geometric quality implies to tune the parameters involved in the geolocation model (geometric calibration: besides attitude and orbit restitution tuning (not considered here, it consists in estimating the biases between the instrument orientation and the AOCS reference frame, and also the sight line of each detector in the focal plane. This is called static geometrical model. The analysis of dynamic perturbations outside of the model are the second most important image quality objective of in-flight commissioning, not described in this paper. Finally “image quality assessment” consists in evaluating the image quality obtained in the final products. For geolocation model, it is quantified by the absolute geolocation and the pointing accuracies, and it is a main contributor in length alteration and planimetric and

  12. CCD-based X-ray detectors for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Ito, K.; Amemiya, Y.

    1999-01-01

    CCD-based X-ray detectors are getting to be used for X-ray diffraction studies especially in the studies where real time (automated) measurements and time-resolved measurements are required. Principles and designs of two typical types of CCD-based detectors are described; one is ths system in which x-ray image intensifiers are coupled to maximize the detective quantum efficiency for time-resolved measurements, and the other is the system in which tapered optical fibers are coupled for the reduction of the image into the CCD, which is optimized for automated measurements for protein crystallography. These CCD-based X-ray detectors have an image distortion and non-uniformity of response to be corrected by software. Correction schemes which we have developed are also described. (author)

  13. Image differencing using masked CCD

    International Nuclear Information System (INIS)

    Rushbrooke, J.G.; Ansorge, R.E.; Webber, C.J. St. J.

    1987-01-01

    A charge coupled device has some of its ''pixels'' masked by a material which is opaque to the radiation to which the device is to be exposed, each masked region being employed as a storage zone into which the charge pattern from the unmasked pixels can be transferred to enable a subsequent charge pattern to be established on further exposure of the unmasked pixels. The components of the resulting video signal corresponding to the respective charge patterns read-out from the CCD are subtracted to produce a video signal corresponding to the difference between the two images which formed the respective charge patterns. Alternate rows of pixels may be masked, or chequer-board pattern masking may be employed. In an X-ray imaging system the CCD is coupled to image intensifying and converting means. (author)

  14. A CCD portrait of Comet P/Tempel 2

    International Nuclear Information System (INIS)

    Jewitt, D.; Luu, J.

    1989-01-01

    The development of activity in Comet P/Tempel 2 is studied from aphelion (R = 4 AU) to perihelion (R = 1.4 AU) using extensive time-series CCD photometry and CCD spectra. The comet undergoes a profound morphological change at R of about 2-2.5 AU, from a bare nucleus at larger distances to an active comet supporting a coma of gas and dust. Cyclic photometric variations with the period T = 8.95 + or - 0.01 hr. are present at all R, and are attributed to the rotation of the nucleus at this period. The nucleus is prolate (axes a:b:c = 1.9:1:1), a property shared with other nuclei studied using CCD photometry. Novel results include a limit on the bulk density of the nucleus, rho above 300 kg/cu m, and a 20-A-resolution CCD spectrum of the nucleus. Spatially and temporally resolved photometry is used to study the effects of nucleus rotation on the coma. The coma does not share the dramatic photometric variations shown by the nucleus. It possesses a steep surface-brightness distribution, which is attributable to progressive destruction of the coma grains with increasing space exposure. 41 refs

  15. Programmable CCD imaging system for synchrotron radiation studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.

    1992-01-01

    A real-time imaging system for x-ray detection has been developed. The CAMAC-based system has a Charge Coupled Device (CCD) as its active detection element. The electronics consist of a CAMAC-crate-based dedicated microprocessor coupled to arbitrary waveform generators, programmable timing, and ADC modules. The hardware flexibility achievable through this system enables one to use virtually any commercially available CCD. A dedicated CAMAC-based display driver allows for real-time imaging on a high-resolution color monitor. An optional front end consisting of a fiber-optic taper and a focusing optical lens system coupled to a phosphor screen allows for large area imaging. Further, programming flexibility, in which the detector can be used in different read-out modes, enables it to be exploited for time-resolved experiments. In one mode, sections of the CCD can be read-out with millisecond time-resolution and, in another, the use of the CCD as a storage device is exploited resulting in microsecond time-resolution. Three different CCDs with radically different read-out timings and waveforms have been tested: the TI 4849, a 39Ox584 pixel array; TC 215, a 1024x1O24 pixel array; and the TH 7883, a 576x384 pixel array. The TC 215 and TI 4849 are single-phase CCDs manufactured by Texas Instruments, and the TH 7883 is a four-phase device manufactured by Thomson-CSF. The CCD characterized for uniformity, charge transfer efficiency (CTE), linearity, and sensitivity is the TC215

  16. Characterization of a pnCCD for applications with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Send, S., E-mail: send@physik.uni-siegen.de [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); Abboud, A. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); Hartmann, R.; Huth, M. [PNSensor GmbH, Römerstraße 28, 80803 München (Germany); Leitenberger, W. [University of Potsdam, Department of Physics, Karl-Liebknecht-Straße 24/25, 14476 Potsdam (Germany); Pashniak, N. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); Schmidt, J. [PNSensor GmbH, Römerstraße 28, 80803 München (Germany); Strüder, L. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); PNSensor GmbH, Römerstraße 28, 80803 München (Germany); Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching (Germany); Pietsch, U. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany)

    2013-05-21

    In this work we study the response of a pnCCD by means of X-ray spectroscopy in the energy range between 6 keV and 20 keV and by Laue diffraction techniques. The analyses include measurements of characteristic detector parameters like energy resolution, count rate capability and effects of different gain settings. The limit of a single photon counting operation in white beam X-ray diffraction experiments is discussed with regard to the occurrence of pile-up events, for which the energy information about individual photons is lost. In case of monochromatic illumination the pnCCD can be used as a fast conventional CCD with a charge handling capacity (CHC) of about 300,000 electrons per pixel. If the CHC is exceeded, any surplus charge will spill to neighboring pixels perpendicular to the transfer direction due to electrostatic repulsion. The possibilities of increasing the number of storable electrons are investigated for different voltage settings by exposing a single pixel with X-rays generated by a microfocus X-ray source. The pixel binning mode is tested as an alternative approach that enables a pnCCD operation with significantly shorter readout times. -- Highlights: ► The pnCCD acts as a four-dimensional detector for white X-rays. ► Its performance for applications with synchrotron radiation is investigated. ► The pnCCD can be used for single photon counting and photon integration. ► The operation mode depends on the local frequencies of pile-up events. ► The pnCCD can be optimized for X-ray spectroscopy and X-ray imaging.

  17. Software design of control system of CCD side-scatter lidar

    Science.gov (United States)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  18. A new approach to modelling radiation noise in CCD's

    International Nuclear Information System (INIS)

    Chugg, A.; Hopkinson, G.

    1998-01-01

    The energy depositions reported by Monte Carlo electron-photon irradiation transport codes are subject to a random error due to the finite number of particle histories used to generate the results. These statistical variations, normally a nuisance, may also be identified with the real radiation noise effects experienced by CCD pixels in persistent radiation environments. This paper explores the practicability of such radiation noise modelling by applying the ACCEPT code from the ITS suite to the case of a shielded CCD exposed to an electron flux. The results are compared with those obtained in a subsequent electron irradiation of the CCD by a Van de Graaff accelerator

  19. The interaction of DNA gyrase with the bacterial toxin CcdB

    DEFF Research Database (Denmark)

    Kampranis, S C; Howells, A J; Maxwell, A

    1999-01-01

    CcdB is a bacterial toxin that targets DNA gyrase. Analysis of the interaction of CcdB with gyrase reveals two distinct complexes. An initial complex (alpha) is formed by direct interaction between GyrA and CcdB; this complex can be detected by affinity column and gel-shift analysis, and has...... of this initial complex with ATP in the presence of GyrB and DNA slowly converts it to a second complex (beta), which has a lower rate of ATP hydrolysis and is unable to catalyse supercoiling. The efficiency of formation of this inactive complex is dependent on the concentrations of ATP and CcdB. We suggest...

  20. Discriminação de variedades de citros em imagens CCD/CBERS-2 Discrimination of citrus varieties using CCD/CBERS-2 satellite imagery

    Directory of Open Access Journals (Sweden)

    Ieda Del'Arco Sanches

    2008-02-01

    Full Text Available O presente trabalho teve o objetivo de avaliar as imagens CCD/CBERS-2 quanto à possibilidade de discriminarem variedades de citros. A área de estudo localiza-se em Itirapina (SP e, para este estudo, foram utilizadas imagens CCD de três datas (30/05/2004, 16/08/2004 e 11/09/2004. Um modelo que integra os elementos componentes da cena citrícola sensoriada é proposto com o objetivo de explicar a variabilidade das respostas das parcelas de citros em imagens orbitais do tipo CCD/CBERS-2. Foram feitas classificações pelos algoritmos Isoseg e Maxver e, de acordo com o índice kappa, concluiu-se que é possível obterem-se exatidões qualificadas como muito boas, sendo que as melhores classificações foram conseguidas com imagens da estação seca.This paper was aimed at evaluating the possibility of discriminating citrus varieties in CCD imageries from CBERS-2 satellite ("China-Brazil Earth Resouces Satellite". The study area is located in Itirapina, São Paulo State. For this study, three CCD images from 2004 were acquired (May 30, August 16, and September 11. In order to acquire a better understanding and for explaining the variability of the spectral behavior of the citrus areas in orbital images (like as the CCD/CBERS-2 images a model that integrates the elements of the citrus scene is proposed and discussed. The images were classified by Isoseg and MaxVer classifiers. According to kappa index, it was possible to obtain classifications qualified as 'very good'. The best results were obtained with the images from the dry season.

  1. THERMAL EFFECTS ON CAMERA FOCAL LENGTH IN MESSENGER STAR CALIBRATION AND ORBITAL IMAGING

    Directory of Open Access Journals (Sweden)

    S. Burmeister

    2018-04-01

    Full Text Available We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER spacecraft for the camera’s thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS. Within the several hundreds of images of star fields, the Wide Angle Camera (WAC typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T = A0 + A1 T. Next, we use images from MESSENGER’s orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM. We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera – as well as the camera’s focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC. This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in

  2. Magnetic electroanatomical mapping for ablation of focal atrial tachycardias.

    Science.gov (United States)

    Marchlinski, F; Callans, D; Gottlieb, C; Rodriguez, E; Coyne, R; Kleinman, D

    1998-08-01

    Uniform success for ablation of focal atrial tachycardias has been difficult to achieve using standard catheter mapping and ablation techniques. In addition, our understanding of the complex relationship between atrial anatomy, electrophysiology, and surface ECG P wave morphology remains primitive. The magnetic electroanatomical mapping and display system (CARTO) offers an on-line display of electrical activation and/or signal amplitude related to the anatomical location of the recorded sites in the mapped chamber. A window of electrical interest is established based on signals timed from an electrical reference that usually represents a fixed electrogram recording from the coronary sinus or the atrial appendage. This window of electrical interest is established to include atrial activation prior to the onset of the P wave activity associated with the site of origin of a focal atrial tachycardia. Anatomical and electrical landmarks are defined with limited fluoroscopic imaging support and more detailed global chamber and more focal atrial mapping can be performed with minimal fluoroscopic guidance. A three-dimensional color map representing atrial activation or voltage amplitude at the magnetically defined anatomical sites is displayed with on-line data acquisition. This display can be manipulated to facilitate viewing from any angle. Altering the zoom control, triangle fill threshold, clipping plane, or color range can all enhance the display of a more focal area of interest. We documented the feasibility of using this single mapping catheter technique for localizing and ablating focal atrial tachycardias. In a consecutive series of 8 patients with 9 focal atrial tachycardias, the use of the single catheter CARTO mapping system was associated with ablation success in all but one patient who had a left atrial tachycardia localized to the medial aspect of the orifice of the left atrial appendage. Only low power energy delivery was used in this patient because of the

  3. FMC: a one-liner Python program to manage, classify and plot focal mechanisms

    Science.gov (United States)

    Álvarez-Gómez, José A.

    2014-05-01

    The analysis of earthquake focal mechanisms (or Seismic Moment Tensor, SMT) is a key tool on seismotectonics research. Each focal mechanism is characterized by several location parameters of the earthquake hypocenter, the earthquake size (magnitude and scalar moment tensor) and some geometrical characteristics of the rupture (nodal planes orientations, SMT components and/or SMT main axes orientations). The aim of FMC is to provide a simple but powerful tool to manage focal mechanism data. The data should be input to the program formatted as one of two of the focal mechanisms formatting options of the GMT (Generic Mapping Tools) package (Wessel and Smith, 1998): the Harvard CMT convention and the single nodal plane Aki and Richards (1980) convention. The former is a SMT format that can be downloaded directly from the Global CMT site (http://www.globalcmt.org/), while the later is the simplest way to describe earthquake rupture data. FMC is programmed in Python language, which is distributed as Open Source GPL-compatible, and therefore can be used to develop Free Software. Python runs on almost any machine, and has a wide support and presence in any operative system. The program has been conceived with the modularity and versatility of the classical UNIX-like tools. Is called from the command line and can be easily integrated into shell scripts (*NIX systems) or batch files (DOS/Windows systems). The program input and outputs can be done by means of ASCII files or using standard input (or redirection "") and pipes ("|"). By default FMC will read the input and write the output as a Harvard CMT (psmeca formatted) ASCII file, although other formats can be used. Optionally FMC will produce a classification diagram representing the rupture type of the focal mechanisms processed. In order to count with a detailed classification of the focal mechanisms I decided to classify the focal mechanism in a series of fields that include the oblique slip regimes. This approximation

  4. A self triggered intensified Ccd (Stic)

    International Nuclear Information System (INIS)

    Charon, Y.; Laniece, P.; Bendali, M.

    1990-01-01

    We are developing a new device based on the results reported previously of the successfull coincidence detection of β- particles with a high spatial resolution [1]. The novelty of the device consists in triggering an intensified CCD, i.e. a CCD coupled to an image intensifier (II), by an electrical signal collected from the II itself. This is a suitable procedure for detecting with high efficiency and high resolution low light rare events. The trigger pulse is obtained from the secondary electrons produced by multiplication in a double microchannel plate (MCP) and collected on the aluminized layer protecting the phosphor screen in the II. Triggering efficiencies up to 80% has been already achieved

  5. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    Science.gov (United States)

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  6. Colony Collapse Disorder (CCD and bee age impact honey bee pathophysiology.

    Directory of Open Access Journals (Sweden)

    Dennis vanEngelsdorp

    Full Text Available Honey bee (Apis mellifera colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions, and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees, we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and

  7. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  8. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    Science.gov (United States)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  9. CCD characterization and measurements automation

    Czech Academy of Sciences Publication Activity Database

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubánek, Petr; O´Connor, P.; Prouza, Michael; Radeka, V.; Takacs, P.

    2012-01-01

    Roč. 695, Dec (2012), 188-192 ISSN 0168-9002 R&D Projects: GA MŠk ME09052 Institutional research plan: CEZ:AV0Z10100502 Keywords : CCD * characterization * test automation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.142, year: 2012

  10. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Directory of Open Access Journals (Sweden)

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  11. Study of x-ray CCD image sensor and application

    Science.gov (United States)

    Wang, Shuyun; Li, Tianze

    2008-12-01

    In this paper, we expounded the composing, specialty, parameter, its working process, key techniques and methods for charge coupled devices (CCD) twice value treatment. Disposal process for CCD video signal quantification was expatiated; X-ray image intensifier's constitutes, function of constitutes, coupling technique of X-ray image intensifier and CCD were analyzed. We analyzed two effective methods to reduce the harm to human beings when X-ray was used in the medical image. One was to reduce X-ray's radiation and adopt to intensify the image penetrated by X-ray to gain the same effect. The other was to use the image sensor to transfer the images to the safe area for observation. On this base, a new method was presented that CCD image sensor and X-ray image intensifier were combined organically. A practical medical X-ray photo electricity system was designed which can be used in the records and time of the human's penetrating images. The system was mainly made up with the medical X-ray, X-ray image intensifier, CCD vidicon with high resolution, image processor, display and so on. Its characteristics are: change the invisible X-ray into the visible light image; output the vivid images; short image recording time etc. At the same time we analyzed the main aspects which affect the system's resolution. Medical photo electricity system using X-ray image sensor can reduce the X-ray harm to human sharply when it is used in the medical diagnoses. At last we analyzed and looked forward the system's application in medical engineering and the related fields.

  12. Experimental investigations of image quality in X-ray mammography with conventional screen film system (SFS), digital phosphor storage plate in/without magnification technique (CR) and digital CCD-technique (CCD)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Aichinger, U.; Boehner, C.; Dobritz, M.; Wenkel, E.; Bautz, W.; Saebel, M.

    2001-01-01

    Comparison of image quality in X-ray mammography between conventional film screen film system (SFS), digital phosphor storage plate in and without magnification technique (CR) and digital CCD-technique (CCD). Radiograms of an RMI-mammography phantom were acquired using a conventional screen film system, three digital storage plate systems and two digital systems in CCD-technique. Additionally the radiograms of one digital phosphor storage plate system were post-processed regarding contrast and included in the comparison. The detectability of details was best with the digital mammography in CCD-technique. After confirming these promising results in clinical studies, digital mammography should be able to replace conventional screen film technique. (orig.)

  13. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    Science.gov (United States)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  14. Deflection control system for prestressed concrete bridges by CCD camera. CCD camera ni yoru prestressed concrete kyo no tawami kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Y.; Nakayama, Y.; Arai, T. (Kawada Construction Co. Ltd., Tokyo (Japan))

    1994-03-15

    For the long-span prestressed concrete bridge (continuous box girder and cable stayed bridge), the design and construction control becomes increasingly complicated as construction proceeds because of its cyclic works. This paper describes the method and operation of an automatic levelling module using CCD camera and the experimental results by this system. For this automatic levelling system, the altitude can be automatically measured by measuring the center location of gravity of the target on the bridge surface using CCD camera. The present deflection control system developed compares the measured value by the automatic levelling system with the design value obtained by the design calculation system, and manages them. From the real-time continuous measurement for the long term, in which the CCD camera was set on the bridge surface, it was found that the stable measurement accuracy can be obtained. Successful application of this system demonstrates that the system is an effective and efficient construction aid. 11 refs., 19 figs., 1 tab.

  15. One method for HJ-1-A HSI and CCD data fusion

    International Nuclear Information System (INIS)

    Xiong, Wencheng; Shao, Yun; Shen, Wenming; Xiao, Rulin; Fu, Zhuo; Shi, Yuanli

    2014-01-01

    HJ-1-A satellite, developed by China independently, was equipped with two sensors of Hyper Spectral Imager (HSI) and multispectral sensor (CCD). In this paper, we examine the benefits of combining data from CCD data (high-spatial-resolution, low-spectral-resolution image) with HSI data (low -spatial-resolution, high -spectral-resolution image). Due to the same imaging time and similar spectral regime, the CCD and HSI data can be registered with each other well, and the difference between CCD and HSI data mainly is systematic bias. The approach we have been investigating compares the spectral information present in the multispectral image to the spectral content in the hyperspectral image, and derives a set of equations to approximately acquire the systematic bias between the two sensors. The systematic bias is then applied to the interpolated high-spectral CCD image to produce a fused product. This fused image has the spectral resolution of the hyperspectral image (HSI) and the spatial resolution of the multispectral image (CCD). It is capable of full exploitation as a hyperspectral image. We evaluate this technique using the data of Honghe wetland and show both good spectral and visual fidelity. An analysis of SAM classification test case shows good result when compared to original image. All in all, the approach we developed here provides a means for fusing data from HJ-1-A satellite to produce a spatial-resolution-enhanced hyperspectral data cube that can be further analyzed by spectral classification and detection algorithms

  16. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    Science.gov (United States)

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  17. A model for measurement of noise in CCD digital-video cameras

    International Nuclear Information System (INIS)

    Irie, K; Woodhead, I M; McKinnon, A E; Unsworth, K

    2008-01-01

    This study presents a comprehensive measurement of CCD digital-video camera noise. Knowledge of noise detail within images or video streams allows for the development of more sophisticated algorithms for separating true image content from the noise generated in an image sensor. The robustness and performance of an image-processing algorithm is fundamentally limited by sensor noise. The individual noise sources present in CCD sensors are well understood, but there has been little literature on the development of a complete noise model for CCD digital-video cameras, incorporating the effects of quantization and demosaicing

  18. Focal myositis

    International Nuclear Information System (INIS)

    Kransdorf, M.J.; Temple, H.T.; Sweet, D.E.

    1998-01-01

    Focal myositis is a pseudotumor of soft tissue that typically occurs in the deep soft tissue of the extremities, and is a relatively rare lesion. There is a wide clinical spectrum, with approximately one-third of patients with focal myositis subsequently developing polymyositis, and clinical symptoms of generalized weakness, fever, myalgia, and weight loss, with elevation of creatine phosphokinase. We report the case of a patient with focal myositis who subsequently developed myositis ossificans-like features. (orig.)

  19. Radiometric characterization of type-II InAs/GaSb superlattice (t2sl) midwave infrared photodetectors and focal plane arrays

    Science.gov (United States)

    Nghiem, Jean; Giard, E.; Delmas, M.; Rodriguez, J. B.; Christol, P.; Caes, M.; Martijn, H.; Costard, E.; Ribet-Mohamed, I.

    2017-09-01

    In recent years, Type-II InAs/GaSb superlattice (T2SL) has emerged as a new material technology suitable for high performance infrared (IR) detectors operating from Near InfraRed (NIR, 2-3μm) to Very Long Wavelength InfraRed (LWIR, λ > 15μm) wavelength domains. To compare their performances with well-established IR technologies such as MCT, InSb or QWIP cooled detectors, specific electrical and radiometric characterizations are needed: dark current, spectral response, quantum efficiency, temporal and spatial noises, stability… In this paper, we first present quantum efficiency measurements performed on T2SL MWIR (3-5μm) photodiodes and on one focal plane array (320x256 pixels with 30μm pitch, realized in the scope of a french collaboration ). Different T2SL structures (InAs-rich versus GaSb-rich) with the same cutoff wavelength (λc= 5μm at 80K) were studied. Results are analysed in term of carrier diffusion length in order to define the optimum thickness and type of doping of the absorbing zone. We then focus on the stability over time of a commercial T2SL FPA (320x256 pixels with 30μm pitch), measuring the commonly used residual fixed pattern noise (RFPN) figure of merit. Results are excellent, with a very stable behaviour over more than 3 weeks, and less than 10 flickering pixels, possibly giving access to long-term stability of IR absolute calibration.

  20. Strong reducing of the laser focal volume

    CSIR Research Space (South Africa)

    Godin, T

    2011-08-01

    Full Text Available equal to -1 or +1 modeled on the p light rings of the incident TEMp0 beam. The transformation quality of a 30TEM beam into a single-lobed pattern in the focal plane is shown in Fig. 3. It is clear that the intensity pattern of the rectified beam... DOE (blue solid line), rectified 30TEM (red solid line) -3 -2 -1 0 1 2 3 0 1 2 3 4 z=0 z=f DOE Fig. 2 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 0,0 0,2 0,4 0,6 0,8 1,0 TEM30 without DOE "rectified" TEM30 TEM00 In te ns...

  1. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    Science.gov (United States)

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  2. Focal myositis

    Energy Technology Data Exchange (ETDEWEB)

    Kransdorf, M.J. [Saint Mary`s Hospital, Richmond, VA (United States). Dept. of Radiol.]|[Department of Radiologic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Temple, H.T. [Department of Orthopedic Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia (United States)]|[Department of Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Sweet, D.E. [Department of Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States)

    1998-05-01

    Focal myositis is a pseudotumor of soft tissue that typically occurs in the deep soft tissue of the extremities, and is a relatively rare lesion. There is a wide clinical spectrum, with approximately one-third of patients with focal myositis subsequently developing polymyositis, and clinical symptoms of generalized weakness, fever, myalgia, and weight loss, with elevation of creatine phosphokinase. We report the case of a patient with focal myositis who subsequently developed myositis ossificans-like features. (orig.) With 3 figs., 25 refs.

  3. Fault plane solutions as related to known geological faults in and near India

    Directory of Open Access Journals (Sweden)

    N. SRIVASTAVA

    1975-05-01

    Full Text Available Based on the focal mechanism solutions of newly determined solutions, and other recent workers the correlation between one of the nodal planes and the geological faults has been discussed for three regions namely Kashmir, Central Himalayas and northeast India including Assam. The variability between multiple solutions reported for some earthquakes and the limitations in the choice of the nodal plane from /'-wave solutions have been brought out. It is seen that no standard criteria either on the basis of isoseismals or of aftershocks can be used to distinguish the fault plane from the auxiliary plane. It has been found that in general there is good agreement between one of the nodal planes and the geological faults in Kashmir and the Central Himalayas. In northeast India, the strike directions obtained from the mechanism solutions generally agree with the trends of the main thrusts but the dip direction for shocks originating in the India-Burma border

  4. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  5. A simulation study on the focal plane detector of the LAUE project

    Science.gov (United States)

    Khalil, M.; Frontera, F.; Caroli, E.; Virgilli, E.; Valsan, V.

    2015-06-01

    The LAUE project, supported by the Italian Space Agency (ASI), is devoted to the development of a long focal length (even 20 m or longer) Laue lens for gamma ray astronomy between 80 and 600 keV. These lenses take advantage of Bragg diffraction to focus radiation onto a small spot drastically improving the signal to noise ratio as well as reducing the required size of the detector significantly. In this paper we present a Monte-Carlo simulation study with MEGALIB to optimize, for space applications, the detector size to achieve high detection efficiency, and to optimize the position resolution of the detector to reconstruct the Point Spread Function of the lens considered for the LAUE project. Then we will show simulations, using the SILVACO semiconductor simulation toolkit, on the optimized detector to estimate its capacitance per channel and depletion voltage. In all of the simulations, two materials were compared; a low density material (Silicon) and a high density material (Germanium).

  6. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  7. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    Science.gov (United States)

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  8. Determination Hypocentre and Focal Mechanism Earthquake of Oct 31, 2016 in Bone, South Sulawesi

    Science.gov (United States)

    Altin Massinai, Muhammad; Fawzy Ismullah M, Muhammad

    2018-03-01

    Indonesian Meteorology, Climatology and Geophysics Agency (BMKG) recorded an earthquake with M4.6 on at October 31, 2016 at Bone District, around 80 Km northeast form Makassar, South Sulawesi. The earthquake occurred 18:18:14 local time in 4.7°S, 120°E with depth 10 Km. Seismicity around location predicted caused by activity Walennae fault. We reprocessed earthquake data to determine precise hypocentre location and focal mechanism. The P- and S-wave arrival time got from BMKG used as input HYPOELLIPSE code to determine hypocentre. The results showed that the earthquake occurred 10:18:14.46 UTC in 4.638°S, 119.966°E with depth 24.76 Km. The hypocentre resolved 10 Km fix depth and had lower travel time residual than BMKG result. Focal mechanism determination used Azmtak code based on the first arrival polarity at earthquake waveform manually picked. The result showed a reverse mechanism with strike direction 38°, dip 44°, rake angle 134° on fault plane I and strike direction 164°, dip 60°, rake angle 56° on fault plane II. So, the earthquake which may be related to a reverse East Walennae Fault.

  9. A large area cooled-CCD detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Raeburn, C.

    1994-01-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout.We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparcstation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD.The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in similar 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of similar 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at similar -40 circle C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented. ((orig.))

  10. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    Science.gov (United States)

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-01

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

  11. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  12. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  13. Development of CCD Imaging System Using Thermoelectric Cooling Method

    Directory of Open Access Journals (Sweden)

    Youngsik Park

    2000-06-01

    Full Text Available We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E (768x512 pixels CCD chip,thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of -25deg. We employed an Uniblitz VS25S shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of -10deg, a linearity 99.9+/-0.1%, gain 4.24e-adu, and system noise is 25.3e- (rms. For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry (+/-0.01mag even though the CCD is not at 'conventional' cryogenic temperatures (140K. The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  14. Research of optical coherence tomography microscope based on CCD detector

    Science.gov (United States)

    Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo

    2008-12-01

    The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.

  15. Status of backthinned AlGaN based focal plane arrays for deep-UV imaging

    Science.gov (United States)

    Reverchon, J.-L.; Lehoucq, G.; Truffer, J.-P.; Costard, E.; Frayssinet, E.; Semond, F.; Duboz, J.-Y.; Giuliani, A.; Réfrégiers, M.; Idir, M.

    2017-11-01

    The achievement of deep ultraviolet (UV) focal plane arrays (FPA) is required for both solar physics [1] and micro electronics industry. The success of solar mission (SOHO, STEREO [2], SDO [3]…), has shown the accuracy of imaging at wavelengths from 10 nm to 140 nm to reveal effects occurring in the sun corona. Deep UV steppers at 13 nm are another demanding imaging technology for the microelectronic industry in terms of uniformity and stability. A third application concerns beam shaping of Synchrotron lines [4]. Consequently, such wavelengths are of prime importance whereas the vacuum UV wavelengths are very difficult to detect due to the dramatic interaction of light with materials. The fast development of nitrides has given the opportunity to investigate AlGaN as a material for UV detection. Camera based on AlGaN present an intrinsic spectral selectivity and an extremely low dark current at room temperature. We have previously presented several FPA dedicated to deep UV based on 320 x 256 pixels of Schottky photodiodes with a pitch of 30 μm [4, 5]. AlGaN is grown on a silicon substrate instead of sapphire substrate only transparent down to 200 nm. After a flip-chip hybridization, silicon substrate and AlGaN basal layer was removed by dry etching. Then, the spectral responsivity of the FPA presented a quantum efficiency (QE) from 5% to 20% from 50 nm to 290 nm when removing the highly doped contact layer via a selective wet etching. This FPA suffered from a low uniformity incompatible with imaging, and a long time response due to variations of conductivity in the honeycomb. We also observed a low rejection of visible. It is probably due to the same honeycomb conductivity enhancement for wavelength shorter than 360 nm, i.e., the band gap of GaN. We will show hereafter an improved uniformity due to the use of a precisely ICP (Inductively Coupled Plasma) controlled process. The final membrane thickness is limited to the desertion layer. Neither access resistance

  16. Investigation of radiation damage effects in neutron irradiated CCD

    International Nuclear Information System (INIS)

    Brau, James E.; Igonkina, Olga; Potter, Chris T.; Sinev, Nikolai B.

    2005-01-01

    A Charge Coupled Devices (CCD)-based vertex detector is a leading option for vertex detection at the future linear collider. A major issue for this application is the radiation hardness of such devices. Tests of radiation hardness of CCDs used in the SLD vertex detector, VXD3, have been reported earlier. The first measurements of 1998 involved a spare VXD3 CCD that was irradiated with neutrons from a radioactive source (Pu-Be), and from a nuclear reactor. In 2003, we had the opportunity to disassemble the VXD3 detector and study the nature of the radiation damage it incurred during 3 years of operation at SLC. In the preparation for this study, additional experiments with the spare VXD3 CCD were performed. These included measurements of trapping times in neutron irradiated CCDs. Results, reported here, will help us better understand the mechanism of radiation damage effects and develop techniques to minimize performance degradation due to radiation damage

  17. Optical and x-ray alignment approaches for off-plane reflection gratings

    Science.gov (United States)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  18. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    Science.gov (United States)

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35

  19. Stroboscope Based Synchronization of Full Frame CCD Sensors.

    Science.gov (United States)

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-04-07

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  20. The study of interferometer spectrometer based on DSP and linear CCD

    Science.gov (United States)

    Kang, Hua; Peng, Yuexiang; Xu, Xinchen; Xing, Xiaoqiao

    2010-11-01

    In this paper, general theory of Fourier-transform spectrometer and polarization interferometer is presented. A new design is proposed for Fourier-transform spectrometer based on polarization interferometer with Wollaston prisms and linear CCD. Firstly, measured light is changed into linear polarization light by polarization plate. And then the light can be split into ordinary and extraordinary lights by going through one Wollaston prism. At last, after going through another Wollaston prism and analyzer, interfering fringes can be formed on linear CCD behind the analyzer. The linear CCD is driven by CPLD to output amplitude of interfering fringes and synchronous signals of frames and pixels respectively. DSP is used to collect interference pattern signals from CCD and the digital data of interfering fringes are processed by using 2048-point-FFT. Finally, optical spectrum of measured light can be display on LCD connected to DSP with RS232. The spectrometer will possess the features of firmness, portability and the ability of real-time analyzing. The work will provide a convenient and significant foundation for application of more high accuracy of Fourier-transform spectrometer.

  1. CCD-based thermoreflectance microscopy: principles and applications

    International Nuclear Information System (INIS)

    Farzaneh, M; Maize, K; Shakouri, A; Lueerssen, D; Summers, J A; Hudgings, Janice A; Mayer, P M; Ram, R J; Raad, P E; Pipe, K P

    2009-01-01

    CCD-based thermoreflectance microscopy has emerged as a high resolution, non-contact imaging technique for thermal profiling and performance and reliability analysis of numerous electronic and optoelectronic devices at the micro-scale. This thermography technique, which is based on measuring the relative change in reflectivity of the device surface as a function of change in temperature, provides high-resolution thermal images that are useful for hot spot detection and failure analysis, mapping of temperature distribution, measurement of thermal transient, optical characterization of photonic devices and measurement of thermal conductivity in thin films. In this paper we review the basic physical principle behind thermoreflectance as a thermography tool, discuss the experimental setup, resolutions achieved, signal processing procedures and calibration techniques, and review the current applications of CCD-based thermoreflectance microscopy in various devices. (topical review)

  2. Converting structures to optimize the Synchrotron X radiation detection by CCD systems

    International Nuclear Information System (INIS)

    Zanella, G.; Zannoni, R.

    1987-01-01

    It is pointed out how the quantum efficiency of X ray detection for CCD detecting system can be improved enlarging their sensivity range by means of heavy element converting structures. So the problem of fabricating CCD with a deep emptying layer is avoided

  3. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  4. Progress in Suppressing Scattered Light into the Optical Beam Path of the NAO Rozhen 2m Telescope

    Science.gov (United States)

    Ovcharov, E. P.; Petrov, N.; Markov, H.; Bonev, T.; Donchev, Z.

    2010-09-01

    In this poster paper we present a summary of the published analysis of the spatial dependence of the magnitudes derived from images obtained in the RC focal plane of the 2m RCC NAO Rozhen telescope. An alert for the possible reason was the unusually curved flat-field images taken as a part of the standard CCD calibration procedure. The reasons for the problem are described and a solution is presented, which consists modification of the mirror baffles and mounting of special diaphragm at the entrance of the filter wheel.

  5. Design of area array CCD image acquisition and display system based on FPGA

    Science.gov (United States)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  6. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    Directory of Open Access Journals (Sweden)

    S. H. Oh

    2007-12-01

    Full Text Available We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512, KAF-1602E (15367times;1024, KAF-3200E (2184×1472 made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  7. Design of offline measuring system for radiation damage effects on linear CCD

    International Nuclear Information System (INIS)

    Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Fang; Huang Shaoyan

    2004-01-01

    The paper discusses the hardware design of offline measuring system for radiation damage effects on linear CCD. Some credible results were achieved by using this system. The test results indicate that the system is available for the study of the radiation damage effects on linear CCD. (authors)

  8. Optimization of polarimetry sensitivity for X-ray CCD

    CERN Document Server

    Hayashida, K; Tsunemi, H; Hashimoto, Y; Ohtani, M

    1999-01-01

    X-ray polarimetry with CCD has been performed using a polarized X-ray beam from an electron impact X-ray source. The standard data reduction method employing double-pixel events yields the modulation factor M of 0.14 at 27 keV and 0.24 at 43 keV for the 12 mu m pixel size CCD chip. We develop a new data reduction method, in which multi-pixel events are employed, and which approximates the charge spread as an oval shape. We optimize the reduction parameters, so that we improve the P sub m sub i sub n (minimum detectable polarization degree) by factor of three from the value obtained through the usual double-pixel event method.

  9. Stroboscope Based Synchronization of Full Frame CCD Sensors

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-04-01

    Full Text Available The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  10. Focal myositis

    International Nuclear Information System (INIS)

    Galloway, H.R.; Dahlstrom, J.E.; Bennett, G.M.

    2001-01-01

    Focal myositis is a rare, benign focal inflammation of muscle. The lesion often presents as a mass that may be mistaken for a soft tissue sarcoma. This report describes the MRI and histopathological features of a case and illustrates how the diagnosis may be suspected on the basis of the MR findings. Copyright (2001) Blackwell Science Pty Ltd

  11. Modelling charge storage in Euclid CCD structures

    International Nuclear Information System (INIS)

    Clarke, A S; Holland, A; Hall, D J; Burt, D

    2012-01-01

    The primary aim of ESA's proposed Euclid mission is to observe the distribution of galaxies and galaxy clusters, enabling the mapping of the dark architecture of the universe [1]. This requires a high performance detector, designed to endure a harsh radiation environment. The e2v CCD204 image sensor was redesigned for use on the Euclid mission [2]. The resulting e2v CCD273 has a narrower serial register electrode and transfer channel compared to its predecessor, causing a reduction in the size of charge packets stored, thus reducing the number of traps encountered by the signal electrons during charge transfer and improving the serial Charge Transfer Efficiency (CTE) under irradiation [3]. The proposed Euclid CCD has been modelled using the Silvaco TCAD software [4], to test preliminary calculations for the Full Well Capacity (FWC) and the channel potential of the device and provide indications of the volume occupied by varying signals. These results are essential for the realisation of the mission objectives and for radiation damage studies, with the aim of producing empirically derived formulae to approximate signal-volume characteristics in the devices. These formulae will be used in the radiation damage (charge trapping) models. The Silvaco simulations have been tested against real devices to compare the experimental measurements to those predicted in the models. Using these results, the implications of this study on the Euclid mission can be investigated in more detail.

  12. Stellar CCD Photometry: New Approach, Principles and Application

    Science.gov (United States)

    El-Bassuny Alawy, A.

    A new approach is proposed and developed to handle pre-processed CCD frames in order to identify stellar images and derive their relevant parameters. It relies on: 1) Identifying stellar images and assigning approximate positions of their centres using an artificial intelligence technique, (Knowledge Based System), 2) Accurate determination of the centre co-ordinates applying an elementary statistical concept and 3) Estimating the image peak intensity as a stellar magnitude measure employing simple numerical analysis approach. The method has been coded for personal computer users. A CCD frame of the star cluster M67 was adopted as a test case. The results obtained are discussed in comparison with the DAOPHOTII ones and the corresponding published data. Exact coincidence has been found between both results except in very few cases. These exceptions have been discussed in the light of the basis of both methods and the cluster plates. It has been realised that the method suggested represents a very simple, extremely fast, high precision method of stellar CCD photometry. Moreover, it is more capable than DAOPHOTII of handling blended and distorted stellar images. These characteristics show the usefulness of the present method in some astronomical applications, such as auto-focusing and auto-guiding, beside the main purpose, viz. stellar photometry.

  13. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    International Nuclear Information System (INIS)

    Doran, S J; Krstajic, N; Adamovics, J; Jenneson, P M

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGE TM (Heuris Pharma, Skillman, NJ)

  14. Investigation of fitting capability of active mirror for controlling ICF's focal profile

    International Nuclear Information System (INIS)

    Zeng Zhige; Ling Ning; Jiang Wenhan

    1998-01-01

    Laser beam's profile at focal plane can be controlled using active mirror in ICF system because the beam's profile has strong relationship with the surface of active mirror, the surface of active mirror can be changed at any time and maintained for a long time. The capabilities of fitting given wave-front (computed by Geometric Transformation Method) at conditions of different actuator numbers and different arrangement have been investigated by computer simulation. The computing results present that the needed laser profile can obtained by adaptive optical technology

  15. Teleoperation environment based on virtual reality. Application of two-planes method for position measurement

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Tezuka, Tetsuo; Inoue, Ryuji

    1998-01-01

    A teleoperation system based on virtual environment (VE) is an emergent technology for operating a robot in remote or hazardous environment. We have developed a VE-based teleoperation system for robot-arm manipulation in a simplified real world. The VE for manipulating the robot arm is constructed by measuring the 3D positions of the objects around the robot arm by motion-stereo method. The 3D position is estimated by using two-(calibration) planes method based on images captured by the CCD camera on the robot-arm, since the two-planes method does not need pin-hole-model assumption to the camera system. The precision of this 3D-measurement is evaluated through experiments and then derived is the theoretical model to the error in the measurement. This measurement system is applied to VE-based teleoperation experiment for Peg-in-hole practice by the robot arm. (author)

  16. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  17. Fabrication, test and performance of very large X-ray CCDs designed for astrophysical applications

    CERN Document Server

    Soltau, H; Meidinger, N; Stoetter, D; Strüder, L; Trümper, J E; Zanthier, C V; Braeuniger, H; Briel, U; Carathanassis, D; Dennerl, K; Engelhard, S; Haberl, F; Hartmann, R; Hartner, G; Hauff, D; Hippmann, H; Holl, P; Kendziorra, E; Krause, N; Lechner, P; Pfeffermann, E; Popp, M; Reppin, C; Seitz, H; Solc, P; Stadlbauer, T; Weber, U; Weichert, U

    2000-01-01

    A 6x6 cm sup 2 large X-ray CCD has been developed and fabricated at the Semiconductor Laboratory of the Max-Planck-Institut fuer Extraterrestrische Physik. The CCD has been designed for the focal plane cameras of two satellite missions. The concept is a fully depleted pn-CCD which is sensitive over the whole wafer thickness of about 300 mu m. It has been especially developed for X-ray detection delivering a high quantum efficiency over the energy range between 0.2 and 15 keV. A production yield of 27% was achieved. Seven good (almost) defect-free wafers were produced within the performance requirements, i.e. for temperatures below 180 K they show a homogeneous noise level smaller than 5 e sup - , a uniform spectral response with an energy resolution of 130 eV for Mn-K subalpha and a reduction of the sensitive area due to defects by less than 0.3%. Three CCDs have now been integrated in the flight cameras. The presentation comprises special aspects related with the fabrication of very large CCDs, a summary of ...

  18. New imaging spectrometer for auroral research

    International Nuclear Information System (INIS)

    Rairden, R.; Swenson, G.

    1994-01-01

    A Loral 1024 x 1024 CCD array with 15-micron pixels has been incorporated as the focal plane detector in a new imaging spectrometer for auroral research. The large format low-noise CCD provides excellent dynamic range and signal to noise characteristics with image integration times on the order of 60 seconds using f/1.4 camera optics. Further signal enhancement is achieved through on-CCD pixel binning. In the nominal binned mode the instrument wavelength resolution varies from 15 to 30 angstrom across the 5000 to 8600 angstrom spectral range. Images are acquired and stored digitally on a Macintosh computer. This instrument was operated at a field site in Godhavn, Greenland during the past two winters (1993, 1994) to measure the altitude distribution of the various spectral emissions within auroral arcs. The height resolution on an auroral feature 300 km distant is ∼1 km. Examples of these measurements are presented here in snapshot and summary image formats illustrating the wealth of quantitative information provided by this new imaging spectrometer

  19. Transparent meta-analysis: does aging spare prospective memory with focal vs. non-focal cues?

    Directory of Open Access Journals (Sweden)

    Bob Uttl

    Full Text Available BACKGROUND: Prospective memory (ProM is the ability to become aware of a previously-formed plan at the right time and place. For over twenty years, researchers have been debating whether prospective memory declines with aging or whether it is spared by aging and, most recently, whether aging spares prospective memory with focal vs. non-focal cues. Two recent meta-analyses examining these claims did not include all relevant studies and ignored prevalent ceiling effects, age confounds, and did not distinguish between prospective memory subdomains (e.g., ProM proper, vigilance, habitual ProM (see Uttl, 2008, PLoS ONE. The present meta-analysis focuses on the following questions: Does prospective memory decline with aging? Does prospective memory with focal vs. non-focal cues decline with aging? Does the size of age-related declines with focal vs. non-focal cues vary across ProM subdomains? And are age-related declines in ProM smaller than age-related declines in retrospective memory? METHODS AND FINDINGS: A meta-analysis of event-cued ProM using data visualization and modeling, robust count methods, and conventional meta-analysis techniques revealed that first, the size of age-related declines in ProM with both focal and non-focal cues are large. Second, age-related declines in ProM with focal cues are larger in ProM proper and smaller in vigilance. Third, age-related declines in ProM proper with focal cues are as large as age-related declines in recall measures of retrospective memory. CONCLUSIONS: The results are consistent with Craik's (1983 proposal that age-related declines on ProM tasks are generally large, support the distinction between ProM proper vs. vigilance, and directly contradict widespread claims that ProM, with or without focal cues, is spared by aging.

  20. X-ray verification of an optically-aligned off-plane grating module

    Science.gov (United States)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  1. Noninvasive treatment of focal adenomyosis with MR-guided focused ultrasound in two patients

    International Nuclear Information System (INIS)

    Polina, Laveena; Nyapathy, Vinay; Mishra, Anindita; Yellamanthili, Himabindu; Vallabhaneni, Mythri P

    2012-01-01

    Adenomyosis is a common benign gynecological disorder presenting with dysmenorrhea, menorrhagia, and pressure symptoms. Magnetic resonance imaging–guided focused ultrasound surgery (MRgFUS) utilizes precisely focused USG waves to generate and maintain high temperatures within the targeted tissue to achieve protein denaturation and coagulative necrosis. The heat generated is monitored using MRI images acquired in real-time in three planes. We present two cases of focal adenomyosis treated with MRgFUS showing good symptomatic relief at 3 and 6 months follow-up

  2. Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.

    Science.gov (United States)

    Peet, Viktor

    2011-08-01

    For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America

  3. Ultrahigh-speed, high-sensitivity color camera with 300,000-pixel single CCD

    Science.gov (United States)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Ohtake, H.; Kurita, T.; Tanioka, K.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Etoh, T. G.

    2007-01-01

    We have developed an ultrahigh-speed, high-sensitivity portable color camera with a new 300,000-pixel single CCD. The 300,000-pixel CCD, which has four times the number of pixels of our initial model, was developed by seamlessly joining two 150,000-pixel CCDs. A green-red-green-blue (GRGB) Bayer filter is used to realize a color camera with the single-chip CCD. The camera is capable of ultrahigh-speed video recording at up to 1,000,000 frames/sec, and small enough to be handheld. We also developed a technology for dividing the CCD output signal to enable parallel, highspeed readout and recording in external memory; this makes possible long, continuous shots up to 1,000 frames/second. As a result of an experiment, video footage was imaged at an athletics meet. Because of high-speed shooting, even detailed movements of athletes' muscles were captured. This camera can capture clear slow-motion videos, so it enables previously impossible live footage to be imaged for various TV broadcasting programs.

  4. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  5. Focal thyroid inferno” on color Doppler ultrasonography: A specific feature of focal Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Fu, Xianshui; Guo, Limei; Zhang, Huabin; Ran, Weiqiang; Fu, Peng; Li, Zhiqiang; Chen, Wen; Jiang, Ling; Wang, Jinrui; Jia, Jianwen

    2012-01-01

    Purpose: To evaluate color-Doppler features predictive of focal Hashimoto's thyroiditis. Materials and methods: A total of 521 patients with 561 thyroid nodules that underwent surgeries or gun biopsies were included in this study. These nodules were divided into three groups: focal Hashimoto's thyroiditis (104 nodules in 101 patients), benignity other than focal Hashimoto's thyroiditis (73 nodules in 70 patients), and malignancy (358 nodules in 350 patients). On color Doppler sonography, four vascularity types were determined as: hypovascularity, marked internal flow, marked peripheral flow and focal thyroid inferno. The χ 2 test was performed to seek the potential vascularity type with the predictive ability of certain thyroid pathology. Furthermore, the gray-scale features of each nodule were also studied. Results: The vascularity type I (hypovascularity) was more often seen in focal Hashimoto's thyroiditis than other benignity and malignancy (46% vs. 20.5% and 19%). While the type II (marked internal flow) showed the opposite tendency (26.9% [focal Hashimoto's thyroiditis] vs. 45.2% [other benignity] and 52.8% [malignancy]). However, type III (marked peripheral flow) was unable to predict any thyroid pathology. Importantly, type IV (focal thyroid inferno) was exclusive to focal Hashimoto's thyroiditis. All 8 type IV nodules appeared to be solid, hypoechoic, and well-defined. Using “focal thyroid inferno” as an indicator of FHT, the diagnostic sensitivity and specificity were 7.7% and 100% respectively. Conclusions: The vascularity type of “focal thyroid inferno” is specific for focal Hashimoto thyroiditis. Recognition of this particular feature may avoid unnecessary interventional procedures for some solid hypoechoic thyroid nodules suspicious of malignancy.

  6. Soft x-ray imager (SXI) onboard the NeXT satellite

    Science.gov (United States)

    Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu

    2006-06-01

    We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.

  7. Calibration of the CCD photonic measuring system for railway inspection

    Science.gov (United States)

    Popov, D. V.; Ryabichenko, R. B.; Krivosheina, E. A.

    2005-08-01

    Increasing of traffic speed is the most important task in Moscow Metro. Requirements for traffic safety grow up simultaneously with the speed increasing. Currently for track inspection in Moscow Metro is used track measurement car has built in 1954. The main drawbacks of this system are absence of automated data processing and low accuracy. Non-contact photonic measurement system (KSIR) is developed for solving this problem. New track inspection car will be built in several months. This car will use two different track inspection systems and car locating subsystem based on track circuit counting. The KSIR consists of four subsystems: rail wear, height and track gauge measurement (BFSM); rail slump measurement (FIP); contact rail measurement (FKR); speed, level and car locating (USI). Currently new subsystem for wheel flange wear (IRK) is developed. The KSIR carry out measurements in real-time mode. The BFSM subsystem contains 4 matrix CCD cameras and 4 infrared stripe illuminators. The FIP subsystem contains 4 line CCD cameras and 4 spot illuminators. The FKR subsystem contains 2 matrix CCD cameras and 2 stripe illuminators. The IRK subsystem contains 2 CCD cameras and 2 stripe illuminators. Each system calibration was carried out for their adjustment. On the first step KSIR obtains data from photonic sensors which is valued in internal measurement units. Due to the calibration on the second step non-contact system converts the data to metric measurement system.

  8. Digital Printing Quality Detection and Analysis Technology Based on CCD

    Science.gov (United States)

    He, Ming; Zheng, Liping

    2017-12-01

    With the help of CCD digital printing quality detection and analysis technology, it can carry out rapid evaluation and objective detection of printing quality, and can play a certain control effect on printing quality. It can be said CDD digital printing quality testing and analysis of the rational application of technology, its digital printing and printing materials for a variety of printing equipments to improve the quality of a very positive role. In this paper, we do an in-depth study and discussion based on the CCD digital print quality testing and analysis technology.

  9. Experience in CCD Photometry at the Tartu Observatory

    Directory of Open Access Journals (Sweden)

    Tuvikene T.

    2003-12-01

    Full Text Available We give overview of the CCD instrumentation and data reduction techniques used at the Tartu Observatory. The first results from photometric observations of the peculiar variable V838 Mon are presented.

  10. Application of X-ray CCD camera in X-ray spot diagnosis of rod-pinch diode

    International Nuclear Information System (INIS)

    Song Yan; Zhou Ming; Song Guzhou; Ma Jiming; Duan Baojun; Han Changcai; Yao Zhiming

    2015-01-01

    The pinhole imaging technique is widely used in the measurement of X-ray spot of rod-pinch diode. The X-ray CCD camera, which was composed of film, fiber optic taper and CCD camera, was employed to replace the imaging system based on scintillator, lens and CCD camera in the diagnosis of X-ray spot. The resolution of the X-ray CCD camera was studied. The resolution is restricted by the film and is 5 lp/mm in the test with Pb resolution chart. The frequency is 1.5 lp/mm when the MTF is 0.5 in the test with edge image. The resolution tests indicate that the X-ray CCD camera can meet the requirement of the diagnosis of X-ray spot whose scale is about 1.5 mm when the pinhole imaging magnification is 0.5. At last, the image of X-ray spot was gained and the restoration was implemented in the diagnosis of X-ray spot of rod-pinch diode. (authors)

  11. A GRAPH READER USING A CCD IMAGE SENSOR

    African Journals Online (AJOL)

    2008-01-18

    Jan 18, 2008 ... using a stepper motor controlled by a software program in a ... Keywords: CCD sensor, microcontrollen stepper motor and microcomputer. 1. ... commercial applications (Awcock and ... on-chip amplifier, one pixel at a tirtjie.

  12. RMT focal plane sensitivity to seismic network geometry and faulting style

    Science.gov (United States)

    Johnson, Kendra L.; Hayes, Gavin; Herrmann, Robert B.; Benz, Harley M.; McNamara, Daniel E.; Bergman, Eric A.

    2016-01-01

    Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 MW 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the ‘fit falloff’, which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained

  13. Incorporating the Uncertainties of Nodal-Plane Orientation in the Seismo-Lineament Analysis Method (SLAM)

    Science.gov (United States)

    Cronin, V.; Sverdrup, K. A.

    2013-05-01

    The process of delineating a seismo-lineament has evolved since the first description of the Seismo-Lineament Analysis Method (SLAM) by Cronin et al. (2008, Env & Eng Geol 14(3) 199-219). SLAM is a reconnaissance tool to find the trace of the fault that produced an shallow-focus earthquake by projecting the corresponding nodal planes (NP) upward to their intersections with the ground surface, as represented by a DEM or topographic map. A seismo-lineament is formed by the intersection of the uncertainty volume associated with a given NP and the ground surface. The ground-surface trace of the fault that produced the earthquake is likely to be within one of the two seismo-lineaments associated with the two NPs derived from the earthquake's focal mechanism solution. When no uncertainty estimate has been reported for the NP orientation, the uncertainty volume associated with a given NP is bounded by parallel planes that are [1] tangent to the ellipsoidal uncertainty volume around the focus and [2] parallel to the NP. If the ground surface is planar, the resulting seismo-lineament is bounded by parallel lines. When an uncertainty is reported for the NP orientation, the seismo-lineament resembles a bow tie, with the epicenter located adjacent to or within the "knot." Some published lists of focal mechanisms include only one NP with associated uncertainties. The NP orientation uncertainties in strike azimuth (+/- gamma), dip angle (+/- epsilon) and rake that are output from an FPFIT analysis (Reasenberg and Oppenheimer, 1985, USGS OFR 85-739) are taken to be the same for both NPs (Oppenheimer, 2013, pers com). The boundaries of the NP uncertainty volume are each comprised by planes that are tangent to the focal uncertainty ellipsoid. One boundary, whose nearest horizontal distance from the epicenter is greater than or equal to that of the other boundary, is formed by the set of all planes with strike azimuths equal to the reported NP strike azimuth +/- gamma, and dip angle

  14. C.C.D. readout of a picosecond streak camera with an intensified C.C.D

    International Nuclear Information System (INIS)

    Lemonier, M.; Richard, J.C.; Cavailler, C.; Mens, A.; Raze, G.

    1984-08-01

    This paper deals with a digital streak camera readout device. The device consists in a low light level television camera made of a solid state C.C.D. array coupled to an image intensifier associated to a video-digitizer coupled to a micro-computer system. The streak camera images are picked-up as a video signal, digitized and stored. This system allows the fast recording and the automatic processing of the data provided by the streak tube

  15. A simulation study on the focal plane detector of the LAUE project

    International Nuclear Information System (INIS)

    Khalil, M.; Frontera, F.; Caroli, E.; Virgilli, E.; Valsan, V.

    2015-01-01

    The LAUE project, supported by the Italian Space Agency (ASI), is devoted to the development of a long focal length (even 20 m or longer) Laue lens for gamma ray astronomy between 80 and 600 keV. These lenses take advantage of Bragg diffraction to focus radiation onto a small spot drastically improving the signal to noise ratio as well as reducing the required size of the detector significantly. In this paper we present a Monte-Carlo simulation study with MEGALIB to optimize, for space applications, the detector size to achieve high detection efficiency, and to optimize the position resolution of the detector to reconstruct the Point Spread Function of the lens considered for the LAUE project. Then we will show simulations, using the SILVACO semiconductor simulation toolkit, on the optimized detector to estimate its capacitance per channel and depletion voltage. In all of the simulations, two materials were compared; a low density material (Silicon) and a high density material (Germanium). - Highlights: • The quantized Hall plateaus and Shubnikov de Haas oscillations in transition metal doped topological insulators are observed. • The evidence of a two-dimensional/layered transport of the bulk electrons is reported. • An obvious ferromagnetism in doped topological insulators is observed. • Care should be taken to pindown the transport of the topological SS in topological insulators

  16. A simulation study on the focal plane detector of the LAUE project

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M., E-mail: mkhalil@in2p3.fr [APC Laboratory, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy); Frontera, F. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy); INAF/IASF-Bologna, Via P. Gobetti 101, Bologna (Italy); Caroli, E. [INAF/IASF-Bologna, Via P. Gobetti 101, Bologna (Italy); Virgilli, E.; Valsan, V. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy)

    2015-06-21

    The LAUE project, supported by the Italian Space Agency (ASI), is devoted to the development of a long focal length (even 20 m or longer) Laue lens for gamma ray astronomy between 80 and 600 keV. These lenses take advantage of Bragg diffraction to focus radiation onto a small spot drastically improving the signal to noise ratio as well as reducing the required size of the detector significantly. In this paper we present a Monte-Carlo simulation study with MEGALIB to optimize, for space applications, the detector size to achieve high detection efficiency, and to optimize the position resolution of the detector to reconstruct the Point Spread Function of the lens considered for the LAUE project. Then we will show simulations, using the SILVACO semiconductor simulation toolkit, on the optimized detector to estimate its capacitance per channel and depletion voltage. In all of the simulations, two materials were compared; a low density material (Silicon) and a high density material (Germanium). - Highlights: • The quantized Hall plateaus and Shubnikov de Haas oscillations in transition metal doped topological insulators are observed. • The evidence of a two-dimensional/layered transport of the bulk electrons is reported. • An obvious ferromagnetism in doped topological insulators is observed. • Care should be taken to pindown the transport of the topological SS in topological insulators.

  17. In-flight characterization of the HETE soft X-ray CCD cameras

    International Nuclear Information System (INIS)

    Prigozhin, G.; Villasenor, J.; Vanderspek, R.; Doty, J.; Crew, G.; Ricker, G.; Jernigan, G.

    2003-01-01

    We have developed a set of software tools that allow to monitor the performance of the flight X-ray CCD cameras as soon as data arrive at MIT. An emission line at 5.9 keV from the on-board Fe-55 radioactive calibration source is clearly visible in the spectra and provides the means to measure the gain and the noise for each observation in each of the 4 CCD chips in operation. Both parameters can change with time, depending on the phase of the moon and the amount of light leaking into the system. Time vs. position scatter plots were found to be an extremely powerful tool in understanding of the device performance. They illustrate the evolution of the light leaks produced by the dark Earth at the beginning and the end of each orbit. With a bright X-ray source in the field of view the shadow of the mask projected on the surface of the CCD clearly shows the motions of the spacecraft

  18. Protein diffraction experiments with Atlas CCD detector

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Kovaľ, Tomáš; Dušek, Michal

    2008-01-01

    Roč. 64, Suppl. - abstracts (2008), C192 ISSN 0108-7673. [Congress of the International Union of Crystallography (IUCr) /21./. 23.08.2008-31.08.2008, Osaka] Institutional research plan: CEZ:AV0Z10100521 Keywords : x-ray data collection * CCD detectors * protein crystallography applications Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Discussion on the fusing methods for HR and CCD images of CBERS

    International Nuclear Information System (INIS)

    Gao Zhangsheng; Zhao Yingjun

    2010-01-01

    CBERS-02B multi-spectral CCD data are different from HR panchromatic data in resolution, which causes difficulty in image fusion. With the method of Pansharping, HPF, Brovey transform, IHS transform, principal component transform, Gram Schmidt (GS) transform and wavelet transform, the authors have tested the fusion methods for CCD data and HR data of CBERS, and the fusion results are discussed and evaluated qualitatively and quantitatively. (authors)

  20. Radiotherapy film densitometry using a slow-scan, cooled, digital CCD imaging system

    International Nuclear Information System (INIS)

    Burch, S.E.

    1993-01-01

    A method of performing high-resolution two-dimensional film densitometry for full size radiographic film (35 x 43 cm) using a cooled CCD camera was proposed. Studies were performed to evaluate the physical characteristics of the camera system and recommendations were made to assure maximum accuracy of density measurement. Test films of various sizes and densities, as well as clinical dosimetry films, were measured with the CCD densitometer and the reference transmission densitometer. The measured densities agreed within the stated accuracy of the transmission densitometer for all films with maximum density less than or equal to 1.5 optical density units. The 0.2 mm spatial resolution with 4096 shades of gray made it possible to study dose distributions even for films containing areas of high dose gradients. Patient verification radiographs were used to study exit beam dose distributions to detect errors in beam placement, patient position, and proper placement of beam modifying devices such as wedges and compensators. For studying photon beam dose distributions within phantoms, a method was developed using lead foils placed lateral to the film plane to filter very low energy scattered photons. The error in measurement of central axis percentage depth dose from film for 4 MV x-rays, 25 x 25 cm field was decreased from 65% to 4%. The method requires only two calibration films for density to dose conversion and represents an important advance in the field of film densitometry for radiotherapy. The technique was applied to the study of dynamic wedge dose distribution from a 6 MV linear accelerator. The phantom modification decreased the error in percentage depth dose from 21% to 1% for the 15 x 15 cm beam with 60 degree wedge angle. Profile off-axis errors for the same beam were decreased from 8% to 3%. The film dosimetry system provides fast, high resolution film density data for use in radiotherapy imaging and quality assurance

  1. Entirely saturated unilateral smear of laser spot in CCD

    International Nuclear Information System (INIS)

    Zhang Zhen; Zhou Menglian; Zhang Jianmin; Lin Xinwei

    2013-01-01

    In the video of linear CCD camera being irradiated by 532 nm CW laser, the entirely saturated unilateral smear of laser spot was found. The smear area does not represent the distribution of laser. Since this smear lies merely in one side of laser spot, it can not be induced by light leaking or carriers blooming, and it may be induced by charge transfer loss. However, the feature that the smear area is entirely saturated can not be explained by the current constant model of charge transfer inefficiency. Based on the inner structure and operating principle of buried channel CCD, a new model of charge transfer inefficiency that varies with charge quantity is proposed, which can explain the entirely saturated unilateral smear of laser spot. (authors)

  2. High performance CCD camera system for digitalisation of 2D DIGE gels.

    Science.gov (United States)

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Technical challenges and recent progress in CCD imagers

    International Nuclear Information System (INIS)

    Bosiers, Jan T.; Peters, Inge M.; Draijer, Cees; Theuwissen, Albert

    2006-01-01

    This paper gives a review of the performance of charge-coupled device (CCD) imagers for use in consumer, professional and scientific applications. An overview of recent developments and the current state-of-the-art are presented. An extensive list of references is included

  4. CCD [charge-coupled device] sensors in synchrotron x-ray detectors

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ∼1 CCD electron/x-ray photon, a peak saturation capacity of >10 6 x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of ∼1 frame/s or a complete 3-dimensional data set from a single crystal in ∼2 min. 16 refs., 16 figs., 2 tabs

  5. Intensified CCD for ultrafast diagnostics

    International Nuclear Information System (INIS)

    Cheng, J.; Tripp, G.; Coleman, L.

    1978-01-01

    Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail

  6. Accuracy analysis of indirect georeferencing about TH-1 satellite in Weinan test area

    International Nuclear Information System (INIS)

    Yunlan, Yang; Haiyan, Hu

    2014-01-01

    Optical linear scanning sensors can be divided into single-lens sensors and multi-lens sensors according to the number of lenses. In order to build stereo imaging, for single-lens optical systems such as aerial mapping camera ADS40 and ADS80, there are more than two parallel linear arrays placed on the focal plane. And for a multi-lens optical system there is only one linear CCD arrays placed on the center of every focal plan for each lens which is often carried on spacecraft. The difference of design between these two kinds of optical systems leads to the systematic errors, calibration in orbit and approach of data adjustment are different completely. Recent years the domestic space optical sensor systems are focused on multi-lens linear CCD sensor in China, such as TH-1 and ZY-3 both belong to multi-lens optical systems. The parameters influencing the position accuracy of the satellite system which are unknown or unknown precisely even changed after sensor posted launch can be estimated by self-calibration in orbit. So after self-calibration in orbit the accuracy of mapping satellite will often be improved strongly. Comparing to direct georeferencing, the indirect georeferencing as a research approach is introduced to TH-1 satellite in this paper considering the systematic errors completely. Parameters about geometry position systematic error are introduced to the basic co-linearity equations for multi-lenses linear array CCD sensor, and based on the extended model the method of space multi-lens linear array CCD sensor self-calibration bundle adjustment is presented. The test field is in some area of Weinan, Shaanxi province, and the observation data of GCPs and orbit are collected. The extended rigors model is used in bundle adjustment and the accuracy analysis shown that TH-1 has a satisfied metric performance

  7. Fifty Years of Lightning Observations from Space

    Science.gov (United States)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  8. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Science.gov (United States)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  9. Determinations of directions of the mean stress field in Sichuan-Yunnan region from a number of focal mechanism solutions

    Science.gov (United States)

    Zhong, Ji-Mao; Cheng, Wan-Zheng

    2006-07-01

    Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for calculating average mechanical axis tensor and its eigenvalues, which involves solving the corresponding eigenequation. The method for deducing mean stress field from T, B, and P axes parameters of a number of focal mechanism solutions has been verified by inverting data of mean stress fields in Fuyun region and in Tangshan region with fitting method of slip direction, and both results are consistent. To study regional average stress field, we need to choose a population of focal mechanism solutions of earthquakes in the massifs where there are significant tectonic structures. According to the focal mechanism solutions of 256 moderate-strong earthquakes occurred in 13 seismic zones of Sichuan-Yunnan region, the quantitative analysis results of stress tensor in each seismic zone have been given. The algorithm of such method is simple and convenient, which makes the method for analyzing tectonic stress field with large amount of focal mechanism solution data become quantified.

  10. Rethinking CCD's Significance in Estimating Late Neogene Whole Ocean Carbonate Budget

    Science.gov (United States)

    Si, W.; Rosenthal, Y.

    2017-12-01

    The global averaged calcite compensation depth (CCD) record is conventionally used to reconstruct two correlatable parameters of the carbonate system - the alkalinity budget of the ocean and/or the saturation state of the ocean. Accordingly, the available CCD reconstructions have been interpreted to suggest either relative stable (Pearson and Palmer, 2000) or increased alkalinity of the ocean over the past 15 Ma (Tyrrell and Zeebe, 2004; Pälike et al., 2012). However, CCD alone is insufficient to constrain the carbonate system because the weathering flux of alkalinity into the ocean is not only balanced by CaCO3 dissolution on the seafloor but also by the biologic production in the euphotic zone and, the CCD records cannot be readily interpreted as changes in either process. Here, we present evidence of the co-evolution of surface CaCO3 production and deepsea dissolution through the late Neogene. By examining separately the mass accumulation rates (MAR) of coccoliths, planktonic foraminifera, and quantifying dissolution (using a proxy revised from Broecker et al., 1999) in seventeen deepsea cores from multiple depth-transects, we find that 1) MAR of dissolution-resistant coccoliths was substantially higher in the mid Miocene and declining on a global scale towards the present; 2) unlike coccoliths, MAR of planktonic foraminifera, shows no apparent secular trend through that time; 3) the revised dissolution index, shows significantly improved preservation of planktonic foraminiferal shells over that time, particularly at intermediate water depth and exhibits close association between changes in preservation with key climatic events. Our new records have two immediate implications. First, the substantially weakened pelagic biogenic carbonate production from mid Miocene to present alone could account for the improved preservation of deepsea carbonates without calling for a scenario of increased weathering input. Second, with the constrain of global averaged CCD

  11. Inferences about the local stress field from focal mechanisms: Applications to earthquakes in the southern Great Basin of Nevada

    International Nuclear Information System (INIS)

    Harmsen, S.C.; Rogers, A.M.

    1986-01-01

    Focal mechanisms determined from regional-network earthquake data or aftershock field investigation often contain members ranging from strike slip to normal slip in extensional tectonic environments or from strike slip to thrust slip in compressional environments. Although the coexistence of normal and strike-slip faulting has suggested to some investigators that the maximum and intermediate principal stresses are of approximately equal magnitude, several have asserted that the directions of principle stresses can or must interchange to accommodate both types of mechanisms (Zoback and Zoback 1980b; Vetter and Ryall, 1983). A Coulomb-Navier criterion of slip is invoked to demonstrate that both types of mechanisms, as well as oblique members having preferred nodal-plane dips intermediate between those of the strike-slip and normal mechanisms, may be observed in a region where the stress field, resolved into principal components, is axially symmetric. The proximate coexistence of earthquakes having diverse focal mechanisms could be interpreted as evidence for an approximately axially symmetric stress field in a region where optimally oriented planes of weakness are known to exist in the host rock. 10 refs., 6 figs

  12. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    Science.gov (United States)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  13. Design principles and applications of a cooled CCD camera for electron microscopy.

    Science.gov (United States)

    Faruqi, A R

    1998-01-01

    Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.

  14. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026, Anhui (China); Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, Chunfeng [Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  15. Classification of Focal and Non Focal Epileptic Seizures Using Multi-Features and SVM Classifier.

    Science.gov (United States)

    Sriraam, N; Raghu, S

    2017-09-02

    Identifying epileptogenic zones prior to surgery is an essential and crucial step in treating patients having pharmacoresistant focal epilepsy. Electroencephalogram (EEG) is a significant measurement benchmark to assess patients suffering from epilepsy. This paper investigates the application of multi-features derived from different domains to recognize the focal and non focal epileptic seizures obtained from pharmacoresistant focal epilepsy patients from Bern Barcelona database. From the dataset, five different classification tasks were formed. Total 26 features were extracted from focal and non focal EEG. Significant features were selected using Wilcoxon rank sum test by setting p-value (p z > 1.96) at 95% significance interval. Hypothesis was made that the effect of removing outliers improves the classification accuracy. Turkey's range test was adopted for pruning outliers from feature set. Finally, 21 features were classified using optimized support vector machine (SVM) classifier with 10-fold cross validation. Bayesian optimization technique was adopted to minimize the cross-validation loss. From the simulation results, it was inferred that the highest sensitivity, specificity, and classification accuracy of 94.56%, 89.74%, and 92.15% achieved respectively and found to be better than the state-of-the-art approaches. Further, it was observed that the classification accuracy improved from 80.2% with outliers to 92.15% without outliers. The classifier performance metrics ensures the suitability of the proposed multi-features with optimized SVM classifier. It can be concluded that the proposed approach can be applied for recognition of focal EEG signals to localize epileptogenic zones.

  16. Visible spectroscopy in the DIII-D divertor

    International Nuclear Information System (INIS)

    Brooks, N.H.; Fehling, D.; Hillis, D.L.; Klepper, C.C.; Naumenko, N.; Tugarinov, S.; Whyte, D.G.

    1996-06-01

    Spectroscopy measurements in the DIII-D divertor have been carried out with a survey spectrometer which provides simultaneous registration of the visible spectrum over the region 400--900 nm with a resolution of 0.2 nm. Broad spectral coverage is achieved through use of a fiberoptic transformer assembly to map the curved focal plane of a fast (f/3) Rowland spectrograph into a rastered format on the rectangular sensor area of a two-dimensional CCD camera. Vertical grouping of pixels during CCD readout integrates the signal intensity over the height of each spectral segment in the rastered image, minimizing readout time. For the full visible spectrum, readout time is 50 ms. Faster response time (< 10 ms) may be obtained by selecting for readout just a small number of the twenty spectral segments in the image on the CCD. Simultaneous recording of low charge states of carbon, oxygen and injected impurities has yielded information about gas recycling and impurity behavior at the divertor strike points. Transport of lithium to the divertor region during lithium pellet injection has been studied, as well as cumulative deposition of lithium on the divertor targets from pellet injection over many successive discharges

  17. Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration

    Science.gov (United States)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2017-02-01

    A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.

  18. Development of online cable eccentricity detection system based on X-ray CCD

    International Nuclear Information System (INIS)

    Chen Jianzhen; Li Bin; Wei Kaixia; Guo Lanying; Qu Guopu

    2008-01-01

    An improved technology of online cable eccentricity detection, based on X-ray CCD, greatly improves the measuring precision and the responding speed. The theory of eccentricity measuring based on X-ray CCD, and the structure of an apparatus are described. The apparatus is composed of scanning drive subsystem, X-ray generation components, data acquiring subsystem and high performance computer system. The measuring results are also presented. The features of this cable eccentricity detection technology are compared with the features of other technologies. (authors)

  19. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    Science.gov (United States)

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  20. Innovative instrumentation for detecting optical transients in the hypothesis of a new improved mirror at solar furnace of Almeria

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, D.; Bartolini, C.; Cosentino, G.; Guarnieri, A.; Piccioni, A.; Beskin, G.; La Padula, C.

    2002-07-01

    The improvement of the solar Furnace mirror as light collector, with an expected Point Spread Function (PSF) of about less than 0.1 degree centigree, could provide a sufficient image definition for astronomical observations of Optical Transients (OTs). Wide-angle large aperture optics, combined with a finely pixelated imaging camera located in the focal plane 7.50 meters away from the mirrors, could offer a field of view (FOV) of 3 degree centigree diameter (30cm length). All these requirements involve the filling of focal plane by means of light having a spatial resolution of few millimeters and a time-resolution of the imager in the range of 50-1000 frame/s. A realistic approach, with regard to such demanding resolution, could be reached exploring properties of devices alternative to Photo-Multipliers tube (PMT) such as Multi Anode Photomultiplier tubes (MAPMT), semiconductor and hybrid devices (CCD, CMOS, HPD, Amorphous silicon detector etc.). These sensors, that during the last years have had a rapid development triggered by scientific, industrial and medical requirement, used or individually or coupled with optical field de magnifier (e. g. Tapers), present an efficient photon detection and a very high spatial resolution. (Author) 12 refs.

  1. The OCA CCD Camera Controller

    Science.gov (United States)

    1996-01-01

    multi CCD arrays for wide field telescopes with an array of 8x8 1K CCDs in use at Las Campanas Observatory in Chile . The same group is also involved...Verify key EPROM -292H VIH . VIH Program security bitl 1 29AH . VPP Program security’ bit 2 *. .298H -Vpp Verify security bits - 9HVIH ViI NOTE: 1...Pulsed from V.. to VIL and returned to VIH . EPROM PROGRAMMING AND VERIFICATION ..t= 21’C to-+27 ’rC:-VCC= 5V ±10%VS3 = OV. SYMBOL I .-- PARAMETER MIN MAX

  2. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    Science.gov (United States)

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.

  3. Micrometer and CCD measurements of double stars (Series 51

    Directory of Open Access Journals (Sweden)

    Popović G.M.

    1998-01-01

    Full Text Available 36 micrometric measurements of 20 double or multiple systems carried out with the Zeiss 65/1055 cm Refractor of Belgrade Observatory are communicated. Also 35 CCD measurements of 15 double or multiple systems are included.

  4. STIS-01 CCD Functional

    Science.gov (United States)

    Valenti, Jeff

    2001-07-01

    This activity measures the baseline performance and commandability of the CCD subsystem. Only primary amplifier D is used. Bias, Dark, and Flat Field exposures are taken in order to measure read noise, dark current, CTE, and gain. Numerous bias frames are taken to permit construction of "superbias" frames in which the effects of read noise have been rendered negligible. Dark exposures are made outside the SAA. Full frame and binned observations are made, with binning factors of 1x1 and 2x2. Finally, tungsten lamp exposures are taken through narrow slits to confirm the slit positions in the current database. All exposures are internals. This is a reincarnation of SM3A proposal 8502 with some unnecessary tests removed from the program.

  5. Two-dimensional spectrophotometry of planetary nebulae by CCD imaging

    International Nuclear Information System (INIS)

    Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)

    1987-01-01

    The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references

  6. Design of visible and IR infrared dual-band common-path telescope system

    Science.gov (United States)

    Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.

  7. Gravitational Couplings for Gop-Planes and y-Op-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.

  8. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging.

    Science.gov (United States)

    Mintenig, S M; Int-Veen, I; Löder, M G J; Primpke, S; Gerdts, G

    2017-01-01

    The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the environment. This study investigated MP in the effluents of 12 WWTPs in Lower Saxony, Germany. Samples were purified by a plastic-preserving enzymatic-oxidative procedure and subsequent density separation using a zinc chloride solution. For analysis, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR) and focal plane array (FPA)-based transmission micro-FT-IR imaging were applied. This allowed the identification of polymers of all MP down to a size of 20 μm. In all effluents MP was found with quantities ranging from 0 to 5 × 10 1  m -3  MP > 500 μm and 1 × 10 1 to 9 × 10 3  m -3  MP < 500 μm. By far, polyethylene was the most frequent polymer type in both size classes. Quantities of synthetic fibres ranged from 9 × 10 1 to 1 × 10 3  m -3 and were predominantly made of polyester. Considering the annual effluxes of tested WWTPs, total discharges of 9 × 10 7 to 4 × 10 9  MP particles and fibres per WWTP could be expected. Interestingly, one tertiary WWTP had an additionally installed post-filtration that reduced the total MP discharge by 97%. Furthermore, the sewage sludge of six WWTPs was examined and the existence of MP, predominantly polyethylene, revealed. Our findings suggest that WWTPs could be a sink but also a source of MP and thus can be considered to play an important role for environmental MP pollution. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, E., E-mail: eriuli@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Furukawa, T., E-mail: t_furu@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Inaniwa, T., E-mail: taku@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Sato, S., E-mail: shin_s@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Himukai, T., E-mail: himukai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Shirai, T., E-mail: t_shirai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Noda, K., E-mail: noda_k@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan)

    2011-12-15

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  10. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Science.gov (United States)

    Takeshita, E.; Furukawa, T.; Inaniwa, T.; Sato, S.; Himukai, T.; Shirai, T.; Noda, K.

    2011-12-01

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  11. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato.

    NARCIS (Netherlands)

    Vogel, J.T.; Walter, M.H.; Giavalisco, P.; Lytovchenko, A.; Kohlen, W.; Charnikhova, T.; Simkin, A.J.; Goulet, C.; Strack, D.; Bouwmeester, H.J.; Fernie, A.R.; Klee, H.J.

    2010-01-01

    The regulation of shoot branching is an essential determinant of plant architecture, integrating multiple external and internal signals. One of the signaling pathways regulating branching involves the MAX (more axillary branches) genes. Two of the genes within this pathway, MAX3/CCD7 and MAX4/CCD8,

  12. 'Focal thyroid inferno' on color Doppler ultrasonography: A specific feature of focal Hashimoto's thyroiditis

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xianshui, E-mail: fuxs1968@163.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Guo, Limei, E-mail: guolimei@bjmu.edu.cn [Department of Pathology, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Zhang, Huabin, E-mail: huabinzhang@bjmu.edu.cn [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Ran, Weiqiang, E-mail: ranwq-sina@vip.sina.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Fu, Peng, E-mail: fupeng01@gmail.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Li, Zhiqiang, E-mail: lizhq126@126.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Chen, Wen, E-mail: wendy7989@sina.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Jiang, Ling, E-mail: papayaling@yahoo.com.cn [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Wang, Jinrui, E-mail: jinrui_wang@sina.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Jia, Jianwen, E-mail: drjia88@sohu.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China)

    2012-11-15

    Purpose: To evaluate color-Doppler features predictive of focal Hashimoto's thyroiditis. Materials and methods: A total of 521 patients with 561 thyroid nodules that underwent surgeries or gun biopsies were included in this study. These nodules were divided into three groups: focal Hashimoto's thyroiditis (104 nodules in 101 patients), benignity other than focal Hashimoto's thyroiditis (73 nodules in 70 patients), and malignancy (358 nodules in 350 patients). On color Doppler sonography, four vascularity types were determined as: hypovascularity, marked internal flow, marked peripheral flow and focal thyroid inferno. The {chi}{sup 2} test was performed to seek the potential vascularity type with the predictive ability of certain thyroid pathology. Furthermore, the gray-scale features of each nodule were also studied. Results: The vascularity type I (hypovascularity) was more often seen in focal Hashimoto's thyroiditis than other benignity and malignancy (46% vs. 20.5% and 19%). While the type II (marked internal flow) showed the opposite tendency (26.9% [focal Hashimoto's thyroiditis] vs. 45.2% [other benignity] and 52.8% [malignancy]). However, type III (marked peripheral flow) was unable to predict any thyroid pathology. Importantly, type IV (focal thyroid inferno) was exclusive to focal Hashimoto's thyroiditis. All 8 type IV nodules appeared to be solid, hypoechoic, and well-defined. Using 'focal thyroid inferno' as an indicator of FHT, the diagnostic sensitivity and specificity were 7.7% and 100% respectively. Conclusions: The vascularity type of 'focal thyroid inferno' is specific for focal Hashimoto thyroiditis. Recognition of this particular feature may avoid unnecessary interventional procedures for some solid hypoechoic thyroid nodules suspicious of malignancy.

  13. Focal dermal hypoplasia without focal dermal hypoplasia

    NARCIS (Netherlands)

    Contreras-Capetillo, Silvina N.; Lombardi, Maria Paola; Pinto-Escalante, Doris; Hennekam, Raoul C.

    2014-01-01

    Focal dermal hypoplasia (FDH; Goltz-Gorlin syndrome) is an X-linked dominant disorder affecting mainly tissues of ectodermal and mesodermal origin. The phenotype is characterized by hypoplastic linear skin lesions, eye malformations, hair and teeth anomalies, and multiple limbs malformations. The

  14. Realistic Simulations of Coronagraphic Observations with WFIRST

    Science.gov (United States)

    Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)

    2018-01-01

    We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.

  15. Sighting optics including an optical element having a first focal length and a second focal length

    Science.gov (United States)

    Crandall, David Lynn [Idaho Falls, ID

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  16. New low noise CCD cameras for Pi-of-the-Sky project

    Science.gov (United States)

    Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.

    2006-10-01

    Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.

  17. Focal Mechanism of Semi-Volcanic Deep Low-Frequency Earthquakes in Eastern Shimane

    Science.gov (United States)

    Aso, N.; Ohta, K.; Ide, S.

    2012-12-01

    Many deep low-frequency earthquakes (LFEs) occur near the island arc Mohorovicic discontinuities and far from both active volcanoes and plate boundaries. They are quite similar to volcanic LFEs beneath active volcanoes, which infers some fluid movement in the source region, and we regard them as "semi-volcanic" LFEs [Aso et al., 2011; 2012 (submitted)]. Several previous studies determined the focal mechanisms of volcanic and semi-volcanic LFEs using a small portion of information of the waveforms. Although the estimated focal mechanisms are various, they may not necessary support the variety of the actual physical process, owing to the large determination error [e.g., Nishidomi and Takeo, 1996; Ohmi and Obara, 2002; Nakamichi et al., 2003]. Here we determine the focal mechanisms by waveform inversion for LFEs in eastern Shimane in western Japan, where many LFEs occurred in a quiet region. The locations are also close to the fault plane of the 2000 western Tottori earthquake of Mw6.6, and right beneath Yokota volcano, which is a Quaternary volcanic cluster. We estimated the focal mechanisms of semi-volcanic LFEs in eastern Shimane by moment tensor inversion. The data are velocity seismograms at five stations of Hi-net near the epicenters. For each seismogram, we extracted a 1.5-second time window beginning from 0.2 seconds before the arrivals of either P-wave in a vertical component or S-wave in a horizontal component. The arrival time of each phase is picked manually first, and then corrected to minimize the variance between observed and synthetic waveforms. The local site amplification is estimated using far-field body waves from deep intraslab earthquakes, and collected for each seismogram. The synthetic waveforms were calculated using the discrete wavenumber integration method developed by Takeo [1985] for a horizontally layered structure. For 38 LFEs, which are equal to or larger than M1.2 (JMA magnitude) and recorded at all five stations, the focal mechanisms

  18. Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera

    Science.gov (United States)

    Meng, Qingliang; Yang, Tao; Li, Chunlin

    2016-10-01

    As one of the key units of space CCD camera, the temperature range and stability of CCD components affect the image's indexes. Reasonable thermal design and robust thermal control devices are needed. One kind of temperature control loop heat pipe (TCLHP) is designed, which highly meets the thermal control requirements of CCD components. In order to study the dynamic behaviors of heat and mass transfer of TCLHP, particularly in the orbital flight case, a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling. The temperature control principle and details of mathematical model are presented. The model is used to study operating state, flow and heat characteristics based upon the analyses of variations of temperature, pressure and quality under different operating modes and external heat flux variations. The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well, and always ensure good temperature stability and uniformity. By comparison between flight data and simulated results, it is found that the model is to be accurate to within 1°C. The model can be better used for predicting and understanding the transient performance of TCLHP.

  19. CCD photometry of apparent dwarf galaxies in Fornax

    International Nuclear Information System (INIS)

    Phillipps, S.; Grimley, P.L.; Disney, M.J.; Cawson, M.G.M.; Kibblewhite, E.J.

    1986-01-01

    Blue and red CCD surface photometry of two apparent dwarf galaxies in the Fornax cluster region is presented. Luminosity profiles are derived and their form discussed. The fainter galaxy resembles an archetypal diffuse dwarf elliptical but the brighter of the pair is either an unusual red dwarf or a background galaxy in chance juxtaposition. (author)

  20. High dynamic range low-noise focal plane readout for VLWIR applications implemented with current mode background subtraction

    Science.gov (United States)

    Yang, Guang; Sun, Chao; Shaw, Timothy; Wrigley, Chris; Peddada, Pavani; Blazejewski, Edward R.; Pain, Bedabrata

    1998-09-01

    Design and operation of a low noise CMOS focal pa;ne readout circuit with ultra-high charge handling capacity is presented. Designed for high-background, VLWIR detector readout, each readout unit cell use an accurate dynamic current memory for automatic subtraction of the dark pedestal in current domain enabling measurement of small signals 85 dB below the dark level. The redout circuit operates with low-power dissipation, high linearity, and is capable of handling pedestal currents up to 300 nA. Measurements indicate an effective charge handling capacity of over 5 X 10(superscript 9) charges/pixel with less than 10(superscript 5) electrons of input referred noise.

  1. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  2. Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.

    Science.gov (United States)

    Coakley, Monica Marie

    1995-01-01

    This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements

  3. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    Science.gov (United States)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible

  4. Flatfielding Errors in Strömvil CCD Photometry

    Directory of Open Access Journals (Sweden)

    Boyle R. P.

    2003-12-01

    Full Text Available The importance of determining the error of the flat field in CCD photometry is detailed and our methods of doing this are described. We now have reached a precision of 1-1.5 % in our photometry. Color-magnitude diagrams of the open cluster M67 (ours and Laugalys et al. 2003 are compared.

  5. Optical system design of CCD star sensor with large aperture and wide field of view

    Science.gov (United States)

    Wang, Chao; Jiang, Lun; Li, Ying-chao; Liu, Zhuang

    2017-10-01

    The star sensor is one of the sensors which are used to determine the spatial attitude of the space vehicle. An optical system of star sensor with large aperture and wide field of view was designed in this paper. The effective focal length of the optics was 16mm, and the F-number is 1.2, the field of view of the optical system is 20°.The working spectrum is 500 to 800 nanometer. The lens system selects a similar complicated Petzval structure and special glass-couple, and get a high imaging quality in the whole spectrum range. For each field-of-view point, the values of the modulation transfer function at 50 cycles/mm is higher than 0.3. On the detecting plane, the encircled energy in a circle of 14μm diameter could be up to 80% of the total energy. In the whole range of the field of view, the dispersion spot diameter in the imaging plane is no larger than 13μm. The full field distortion was less than 0.1%, which was helpful to obtain the accurate location of the reference star through the picture gotten by the star sensor. The lateral chromatic aberration is less than 2μm in the whole spectrum range.

  6. Fault plane orientations of deep earthquakes in the Izu-Bonin-Marianas subduction zone system

    Science.gov (United States)

    Myhill, R.; Warren, L. M.

    2011-12-01

    We present the results of directivity analysis on 45 deep earthquakes within the Izu-Bonin-Marianas subduction zone between 1993 and 2011. The age of the subducting Pacific plate increases from north to south along the trench, from 120 Ma offshore Tokyo to over 150 Ma east of the Mariana Islands. The dip of the deep slab generally increases from north to south, and is steep to overturned beneath the southern Bonin Islands and Marianas. Between 34 and 26 degrees north, a peak in seismicity at 350-450 km depth marks a decrease in dip as the slab approaches the base of the upper mantle. We observe directivity for around 60 percent of the analysed earthquakes, and use the propagation characteristics to find the best fitting rupture vector. In 60-70 percent of cases with well constrained rupture directivity, the best fitting rupture vector allows discrimination of the fault plane and the auxiliary plane of the focal mechanism. The identified fault planes between 100 km and 500 km are predominantly near-horizontal or south-southwest dipping. Rotated into the plane of the slab, the fault plane poles form a single cluster, since the more steeply dipping fault planes are found within more steeply dipping sections of slab. The dominance of near-horizontal fault planes at intermediate depth agrees with results from previous studies of the Tonga and Middle-America subduction zones. However, the presence of a single preferred fault plane orientation for large deep-focus earthquakes has not been previously reported, and contrasts with the situation for deep-focus earthquakes in the Tonga-Kermadec subduction system. Ruptures tend to propagate away from the top surface of the slab. We discuss potential causes of preferred fault plane orientations within subducting slabs in the light of existing available data, and the implications for mechanisms of faulting at great depths within the Earth.

  7. A FORTRAN version implementation of block adjustment of CCD frames and its preliminary application

    Science.gov (United States)

    Yu, Y.; Tang, Z.-H.; Li, J.-L.; Zhao, M.

    2005-09-01

    A FORTRAN version implementation of the block adjustment (BA) of overlapping CCD frames is developed and its flowchart is shown. The program is preliminarily applied to obtain the optical positions of four extragalactic radio sources. The results show that because of the increase in the number and sky coverage of reference stars the precision of optical positions with BA is improved compared with the single CCD frame adjustment.

  8. BVR Standardization of the CCD Photometric System of Chungbuk National University Observatory

    Directory of Open Access Journals (Sweden)

    Jang-Hae Jeong

    2009-06-01

    Full Text Available BVR observations for 52 standard stars were performed using the 1-m reflecter with 2K CCD System of Chungbuk National University Observatory(CBNUO in 2008. We obtained 1,322 CCD images to establish a correlation between our bvr system and the standard Johnson-Cousins BVR system. We derived the tentative equations of transformation between then as follows; V = v-0.0303(B-V+0.0466 B-V = 1.3475(b-v-0.0251 V-R = 1.0641(v-r-0.0125 Using these equations the magnitudes in V, B-V, and V-R for 197 stars were obtained.

  9. CCD Camera Lens Interface for Real-Time Theodolite Alignment

    Science.gov (United States)

    Wake, Shane; Scott, V. Stanley, III

    2012-01-01

    Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.

  10. Evaluation of Hemodynamics in Focal Steatosis and Focal Spared Lesion of the Liver Using Contrast-Enhanced Ultrasonography with Sonazoid

    International Nuclear Information System (INIS)

    Shiozawa, K.; Watanabe, M.; Ikehara, T.; Kogame, M.; Shinohara, M.; Shinohara, M.; Ishii, K.; Igarashi, Y.; Sumino, Y.; Shiozawa, K.; Makino, H.

    2014-01-01

    We aim to investigate the hemodynamics in focal steatosis and focal spared lesion of the liver using contrast-enhanced ultrasonography (CEUS) with Sonazoid. The subjects were 47 patients with focal steatosis and focal spared lesion. We evaluated enhancement patterns (hyper enhancement, iso enhancement, and hypo enhancement) in the vascular phase and the presence or absence of a hypoechoic area in the post vascular phase for these lesions using CEUS. Of the 24 patients with focal steatosis, the enhancement pattern was iso enhancement in 19 and hypo enhancement in 5. Hypoechoic areas were noted in the post vascular phase in 3 patients. Of the 23 patients with focal spared lesions, the enhancement pattern was iso enhancement in 18 and hyper enhancement in 5. No hypoechoic areas were noted in the post vascular phase in any patient. The hemodynamics in focal steatosis and focal spared lesions in non diffuse fatty liver can be observed using low-invasive procedures in real-time by CEUS. It was suggested that differences in the dynamics of enhancement in the vascular phase of CEUS were influenced by the fat deposits in the target lesion, the surrounding liver parenchyma, and the third inflow.

  11. Effects on patient exposure dose and image quality by increasing focal film distance in abdominal radiography

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kwon, Soo Il

    1998-01-01

    We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce thr patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowadays, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows ; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data

  12. Focal midbrain tumors in children

    NARCIS (Netherlands)

    Vandertop, W. P.; Hoffman, H. J.; Drake, J. M.; Humphreys, R. P.; Rutka, J. T.; Amstrong, D. C.; Becker, L. E.

    1992-01-01

    The clinical and neuroradiological features of focal midbrain tumors in 12 children are described, and the results of their surgical management are presented. Patients with a focal midbrain tumor usually exhibit either symptoms and signs of raised intracranial pressure caused by an obstructive

  13. Diagnostic imaging in focal epilepsy

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2013-01-01

    Focal epilepsies account for 60% of all seizure disorders worldwide. In this review the classic and new classification system of epileptic seizures and syndromes as well as genetic forms are discussed. Magnetic resonance (MR) is the technique of choice for diagnostic imaging in focal epilepsy because of its sensitivity and high tissue contrast. The review is focused on the lack of consensus of imaging protocols and reported findings in refractory epilepsy. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics are depicted. Diagnosis of hippocampal sclerosis and malformations of cortical development as two major causes of refractory focal epilepsy is described in details. Some promising new techniques as positron emission tomography computed tomography (PET/CT) and MR and PET/CT fusion are briefly discussed. Also the relevance of adequate imaging in focal epilepsy, some practical points in imaging interpretation and differential diagnosis are highlighted. (author)

  14. 77 FR 42713 - Notice of Proposed Information Collection RequestsNPEFS 2011-2014: Common Core of Data (CCD...

    Science.gov (United States)

    2012-07-20

    ... Core of Data (CCD) National Public Education Financial Survey AGENCY: Institute of Education Sciences, Department of Education. SUMMARY: The National Public Education Financial Survey (NPEFS) is an annual... of Data (CCD) National Public Education Financial Survey. OMB Control Number: 1850-0067. [[Page 42714...

  15. Test and evaluation of IR detectors and arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    Science.gov (United States)

    Hoke, Forney M.

    The present conference discusses a radiometric calibration system for IR cameras, a methodology for testing IR focal-plane arrays in simulated nuclear radiation environments, process optimization for Si:As In-bumped focal-plane arrays, precise MTF measurements for focal-plane arrays, and IR focal-plane array crosstalk measurement. Also discussed are an imaging metric for IR focal-plane arrays, optical stimuli for high-volume automated testing of 2D HgCdTe focal-plane arrays, the evaluation of a solid-state photomultiplier focal-plane array for SDI, spectral effects on bulk photoconductors operated at cryogenic temperatures, and a novel technique for measuring the ionizing radiation effects in MOS transistors.

  16. Noise in off-axis type holograms including reconstruction and CCD camera parameters

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Edgar, E-mail: edgar.voelkl@fei.com [FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124-5793 (United States)

    2010-02-15

    Phase and amplitude images as contained in digital holograms are commonly extracted via a process called 'reconstruction'. Expressions for the expected noise in these images have been given in the past by several authors; however, the effect of the actual reconstruction process has not been fully appreciated. By starting with the Quantum Mechanical intensity distribution of the off-axis type interference pattern, then building the digital hologram on an electron-by-electron base while simultaneously reconstructing the phase/amplitude images and evaluating their noise levels, an expression is derived that consistently describes the noise in simulated and experimental phase/amplitude images and contains the reconstruction parameters. Because of the necessity to discretize the intensity distribution function, the digitization effects of an ideal CCD camera had to be included. Subsequently, this allowed a comparison between real and simulated holograms which then led to a comparison between the performance of an 'ideal' CCD camera versus a real device. It was concluded that significant improvement of the phase and amplitude noise may be obtained if CCD cameras were optimized for digitizing intensity distributions at low sampling rates.

  17. RTG diagnostics of dental focal infection

    International Nuclear Information System (INIS)

    Petrasova, A.; Ondrasovicova, J.; Cecctkova, A.

    2008-01-01

    The theory of focal infection has always been and still is a controversial issue for many dentists and scientists. Even though the focal infection does not occupy the first place in modern medicine, its understanding is imperative. The authors summarized the knowledge about dental focal infection and its relationship to systemic the diseases of the whole body in their publication and they also focused on the radiodiagnostics of this disease. (authors)

  18. A New CCD Camera at the Molėtai Observatory

    Directory of Open Access Journals (Sweden)

    Zdanavičius J.

    2003-12-01

    Full Text Available The results of the first testing of a new CCD camera of the Molėtai Observatory are given. The linearity and the flat field corrections of good accuracy are determined by using shifted star field exposures.

  19. Development of network based control and data acquisition systems for diagnostics using CCD detectors. Application to LHD experiments

    International Nuclear Information System (INIS)

    Kado, Shinichiro; Nakanishi, Hideya; Ida, Katsumi; Kojima, Mamoru

    2000-01-01

    The needs of CCD detectors as a plasma diagnostic tool have recently been increased. However, many CCD providers have developed their own controlling systems, and it is difficult to customized the usages in order to make them applicable to the network-based data acquisition clusters which consist of various sorts of diagnostics. This paper presents the development of systems in which CCD detectors are controlled and the data are acquired through networks. By making use of the Client/Server (C/S) model in the Windows NT operating system and block transfer method via shared memory relevant to the model, the dependence on the hardware is hidden by the server service, CCD list sequencer. The client program is designed for the LHD (Large Helical Device) discharge operation sequences and the data acquisition system. (author)

  20. New Design Concept for Universal CCD Controller

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    1994-06-01

    Full Text Available Currently, the CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However according to the recent technical advances, new large format CCDs are rapidly developed which have better performances with higher quantum efficiency and sensitivity. In many cases, some microprocessors have been adopted to deal with necessary digital logic for a CCD imaging system. This could often lack the flexibility of a system for a user to upgrade with new devices, especially of it is a commercial product. A new design concept has been explored which could provide the opportunity to deal with any format of devices from ant manufactures effectively for astronomical purposes. Recently available PLD (Programmable Logic Devices technology makes it possible to develop such digital circuit design, which can be integrated into a single component, instead of using microprocessors. The design concept could dramatically increase the efficiency and flexibility of a CCD imaging system, particularly when new or large format devices are available and to upgrade the performance of a system. Some variable system control parameters can be selected by a user with a wider range of choice. The software can support such functional requirements very conveniently. This approach can be applied not only to astronomical purpose, but also to some related fields, such as remote sensing and industrial applications.

  1. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  2. The translated conceptual survey of physics / stablization of the focal plane in two photon excitation fluorescence microscopy

    Science.gov (United States)

    Wada, Asma

    excitation wavelengths in the near infrared (NIR). The (NIR) wavelength regime, 750- 1100nm, penetrates deep (>100 μm) into tissue, and has been used to image to depths of up to 1 mm. Further, the longer excitation wavelengths are less absorbing than the traditional ultraviolet wavelengths used in confocal microscopy, and are consequently less damaging. As a result, (TPEF) is presently the preferred tool for visualizing dynamics by biologists. One important aspect of imaging living systems, however, is that they move! This adds to the challenge of trying to study some particular biological function(s). This thesis begins to address this issue by combining a simple micro controller circuit that can be linked to a remote focusing scheme that will make it possible to lock a focal plane to a specific depth inside a living, moving specimen.

  3. Automatic alignment device for focal spot measurements in the center of the field for mammography; Sistema automatico de alinhamento para avaliacao do ponto focal no centro do campo de equipamentos mamograficos

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Marcelo A.C.; Watanabe, Alex O.; Oliveira Junior, Paulo D.; Schiabel, Homero [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Eletrica], e-mail: mvieira@sc.usp.br

    2010-03-15

    Some quality control procedures used for mammography, such as focal spot evaluation, requires previous alignment of the measurement equipment with the X-ray central beam. However, alignment procedures are, in general, the most difficult task and the one that needs more time to be performed. Moreover, the operator sometimes is exposed to radiation during this procedure. This work presents an automatic alignment system for mammographic equipment that allows locating the central ray of the radiation beam and, immediately, aligns with it by dislocating itself automatically along the field. The system consists on a bidirectional moving device, connected to a CCD sensor for digital radiographic image acquisition. A computational analysis of a radiographic image, acquired at any position on the field, is performed in order to determine its positioning under the X-ray beam. Finally, a mechanical system for two moving directions, electronically controlled by a microcontroller under USB communication, makes the system to align automatically with the radiation beam central ray. The alignment process is fully automatic, fast and accurate, with no operator exposure to radiation, which allows a considerable time saving for quality control procedures achievement for mammography. (author)

  4. Development of X-ray CCD camera system with high readout rate using ASIC

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Matsuura, Daisuke; Anabuki, Naohisa; Miyata, Emi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Katayama, Haruyoshi

    2009-01-01

    We report on the development of an X-ray charge-coupled device (CCD) camera system with high readout rate using application-specific integrated circuit (ASIC) and Camera Link standard. The distinctive ΔΣ type analog-to-digital converter is introduced into the chip to achieve effective noise shaping and to obtain a high resolution with relatively simple circuits. The unit test proved moderately low equivalent input noise of 70μV with a high readout pixel rate of 625 kHz, while the entire chip consumes only 100 mW. The Camera Link standard was applied for the connectivity between the camera system and frame grabbers. In the initial test of the whole system, we adopted a P-channel CCD with a thick depletion layer developed for X-ray CCD camera onboard the next Japanese X-ray astronomical satellite. The characteristic X-rays from 109 Cd were successfully read out resulting in the energy resolution of 379(±7)eV (FWHM) at 22.1 keV, that is, ΔE/E=1.7% with a readout rate of 44 kHz.

  5. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2018-02-01

    Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

  6. CCD characterization and measurements automation

    International Nuclear Information System (INIS)

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubanek, P.; O'Connor, P.; Prouza, M.; Radeka, V.; Takacs, P.

    2012-01-01

    Modern mosaic cameras have grown both in size and in number of sensors. The required volume of sensor testing and characterization has grown accordingly. For camera projects as large as the LSST, test automation becomes a necessity. A CCD testing and characterization laboratory was built and is in operation for the LSST project. Characterization of LSST study contract sensors has been performed. The characterization process and its automation are discussed, and results are presented. Our system automatically acquires images, populates a database with metadata information, and runs express analysis. This approach is illustrated on 55 Fe data analysis. 55 Fe data are used to measure gain, charge transfer efficiency and charge diffusion. Examples of express analysis results are presented and discussed.

  7. The Cross-Cultural Dementia Screening (CCD): A new neuropsychological screening instrument for dementia in elderly immigrants.

    Science.gov (United States)

    Goudsmit, Miriam; Uysal-Bozkir, Özgül; Parlevliet, Juliette L; van Campen, Jos P C M; de Rooij, Sophia E; Schmand, Ben

    2017-03-01

    Currently, approximately 3.9% of the European population are non-EU citizens, and a large part of these people are from "non-Western" societies, such as Turkey and Morocco. For various reasons, the incidence of dementia in this group is expected to increase. However, cognitive testing is challenging due to language barriers and low education and/or illiteracy. The newly developed Cross-Cultural Dementia Screening (CCD) can be administered without an interpreter. It contains three subtests that assess memory, mental speed, and executive function. We hypothesized the CCD to be a culture-fair test that could discriminate between demented patients and cognitively healthy controls. To test this hypothesis, 54 patients who had probable dementia were recruited via memory clinics. Controls (N = 1625) were recruited via their general practitioners. All patients and controls were aged 55 years and older and of six different self-defined ethnicities (Dutch, Turkish, Moroccan-Arabic, Moroccan-Berber, Surinamese-Creole, and Surinamese-Hindustani). Exclusion criteria included current or previous conditions that affect cognitive functioning. There were performance differences between the ethnic groups, but these disappeared after correcting for age and education differences between the groups, which supports our central hypothesis that the CCD is a culture-fair test. Receiver-operating characteristic (ROC) and logistic regression analyses showed that the CCD has high predictive validity for dementia (sensitivity: 85%; specificity: 89%). The CCD is a sensitive and culture-fair neuropsychological instrument for dementia screening in low-educated immigrant populations.

  8. New design for the UCO/Lick Observatory CCD guide camera

    Science.gov (United States)

    Wei, Mingzhi; Stover, Richard J.

    1996-03-01

    A new CCD based field acquisition and telescope guiding camera is being designed and built at UCO/Lick Observatory. Our goal is a camera which is fully computer controllable, compact in size, versatile enough to provide a wide variety of image acquisition modes, and able to operate with a wide variety of CCD detectors. The camera will improve our remote-observing capabilities since it will be easy to control the camera and obtain images over the Observatory computer network. To achieve the desired level of operating flexibility, the design incorporates state-of-the-art technologies such as high density, high speed programmable logic devices and non-volatile static memory. Various types of CCDs can be used in this system without major modification of the hardware or software. Though fully computer controllable, the camera can be operated as a stand-alone unit with most operating parameters set locally. A stand-alone display subsystem is also available. A thermoelectric device is used to cool the CCD to about -45c. Integration times can be varied over a range of 0.1 to 1000 seconds. High speed pixel skipping in both horizontal and vertical directions allows us to quickly access a selected subarea of the detector. Three different read out speeds allow the astronomer to select between high-speed/high-noise and low-speed/low-noise operation. On- chip pixel binning and MPP operation are also selectable options. This system can provide automatic sky level measurement and subtraction to accommodate dynamically changing background levels.

  9. Fast event recorder utilizing a CCD analog shift register

    International Nuclear Information System (INIS)

    Ducar, R.J.; McIntyre, P.M.

    1978-01-01

    A system of electronics has been developed to allow the capture and recording of relatively fast, low-amplitude analog events. The heart of the system is a dual 455-cell analog shift register charge-coupled device, Fairchild CCD321ADC-3. The CCD is operated in a dual clock mode. The input is sampled at a selectable clock rate of .25-20 MHz. The stored analog data is then clocked out at a slower rate, typically about .25 MHz. The time base expansion of the analog data allows for analog-to-digital conversion and memory storage using conventional medium-speed devices. The digital data is sequentially loaded into a static RAM and may then be block transferred to a computer. The analog electronics are housed in a single-width NIM module, and the RAM memory in a single-width CAMAC module. Each pair of modules provides six parallel channels. Cost is about $200.00 per channel. Applications are described for ionization imaging (TPC, IRC) and long-drift calorimetry in liquid argon

  10. LSST beam simulator

    International Nuclear Information System (INIS)

    Tyson, J A; Klint, M; Sasian, J; Claver, C; Muller, G; Gilmor, K

    2014-01-01

    It is always important to test new imagers for a mosaic camera before device acceptance and constructing the mosaic. This is particularly true of the LSST CCDs due to the fast beam illumination: at long wavelengths there can be significant beam divergence (defocus) inside the silicon because of the long absorption length for photons near the band gap. Moreover, realistic sky scenes need to be projected onto the CCD focal plane Thus, we need to design and build an f/1.2 re-imaging system. The system must simulate the entire LSST 1 operation, including a sky with galaxies and stars with approximately black-body spectra superimposed on a spatially diffuse night sky emission with its complex spectral features

  11. Comparison of a CCD and an APS for soft X-ray diffraction

    International Nuclear Information System (INIS)

    Stewart, Graeme; Bates, R; Blue, A; Maneuski, D; Clark, A; Turchetta, R; Dhesi, S S; Marchal, J; Steadman, P; Tartoni, N

    2011-01-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  12. Comparison of a CCD and an APS for soft X-ray diffraction

    Science.gov (United States)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  13. The dispersion-focalization theory of sound systems

    Science.gov (United States)

    Schwartz, Jean-Luc; Abry, Christian; Boë, Louis-Jean; Vallée, Nathalie; Ménard, Lucie

    2005-04-01

    The Dispersion-Focalization Theory states that sound systems in human languages are shaped by two major perceptual constraints: dispersion driving auditory contrast towards maximal or sufficient values [B. Lindblom, J. Phonetics 18, 135-152 (1990)] and focalization driving auditory spectra towards patterns with close neighboring formants. Dispersion is computed from the sum of the inverse squared inter-spectra distances in the (F1, F2, F3, F4) space, using a non-linear process based on the 3.5 Bark critical distance to estimate F2'. Focalization is based on the idea that close neighboring formants produce vowel spectra with marked peaks, easier to process and memorize in the auditory system. Evidence for increased stability of focal vowels in short-term memory was provided in a discrimination experiment on adult French subjects [J. L. Schwartz and P. Escudier, Speech Comm. 8, 235-259 (1989)]. A reanalysis of infant discrimination data shows that focalization could well be the responsible for recurrent discrimination asymmetries [J. L. Schwartz et al., Speech Comm. (in press)]. Recent data about children vowel production indicate that focalization seems to be part of the perceptual templates driving speech development. The Dispersion-Focalization Theory produces valid predictions for both vowel and consonant systems, in relation with available databases of human languages inventories.

  14. The possibilities of CCD photometry of optical afterglows of GRBs

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch; Polášek, Cyril; Jelínek, M.; Hudec, René; Štrobl, Jan

    -, č. 125 (2010), s. 24-28 ISSN 1801-5964. [Conference on Variable Stars Research /41./. Prague, 27.11.2009-29.11.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : gamma-ray bursts * optical afterglows * CCD photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  15. Seven tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy

    NARCIS (Netherlands)

    Veersema, Tim J; Ferrier, Cyrille H; van Eijsden, Pieter; Gosselaar, Peter H; Aronica, Eleonora; Visser, Fredy; Zwanenburg, Jaco M; de Kort, Gerard A P; Hendrikse, Jeroen; Luijten, Peter R; Braun, Kees P J

    Objective: The aim of this study is to determine whether the use of 7 tesla (T) MRI in clinical practice leads to higher detection rates of focal cortical dysplasias in possible candidates for epilepsy surgery. Methods: In our center patients are referred for 7 T MRI if lesional focal epilepsy is

  16. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    Science.gov (United States)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  17. BVRI CCD photometry of the globular cluster NGC 2808

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    As a part of a continuing program, CCD color-magnitude diagrams are presented for the bright globular cluster NGC 2808 in the four colors comprising BVRI. From a comparison of four different CMDs with theoretical isochrones, an age of 16 + or - 2 Gyr is obtained, assuming a value for Fe/H near -1.3. 28 refs

  18. Periodontitis in patients with focal tuberculosis

    Directory of Open Access Journals (Sweden)

    Alexandrova Е.А.

    2010-12-01

    Full Text Available The research goal is to investigate the mechanisms of formation and peculiarities of periodontitis in patients with focal tuberculosis. Patients with periodontitis and focal tuberculosis are proved to develop local inflammatory reaction with increased infection and activation of proinflammatory cytokines in parodontal pockets fluid. The main risk factor of frequent and durable recurrence of parodontal pathology in case of focal tuberculosis was the development of pathologic process as a cause of disbalance of lipid peroxidation and antioxidant system, endotoxicosis syndrome

  19. Expansive focal cemento-osseous dysplasia.

    Science.gov (United States)

    Bulut, Emel Uzun; Acikgoz, Aydan; Ozan, Bora; Zengin, Ayse Zeynep; Gunhan, Omer

    2012-01-01

    To present a case of expansive focal cemento-osseous dysplasia and emphasize the importance of differential diagnosis. Cemento-osseous dysplasia is categorized into three subtypes on the basis of the clinical and radiographic features: Periapical, focal and florid. The focal type exhibits a single site of involvement in any tooth-bearing or edentulous area of the jaws. These lesions are usually asymptomatic; therefore, they are frequently diagnosed incidentally during routine radiographic examinations. Lesions are usually benign, show limited growth, and do not require further surgical intervention, but periodic follow-up is recommended because occasionally, this type of dysplasia progresses into florid osseous dysplasia and simple bone cysts are formed. A 24-year-old female patient was referred to our clinic for swelling in the left edentulous mandibular premolarmolar region and felt discomfort when she wore her prosthetics. She had no pain, tenderness or paresthesia. Clinical examination showed that the swelling in the posterior mandible that was firm, nonfluctuant and covered by normal mucosa. On panoramic radiography and computed tomography, a well defined lesion of approximately 1.5 cm in diameter of mixed density was observed. The swelling increased slightly in size over 2 years making it difficult to use prosthetics and, therefore, the lesion was totally excised under local anesthesia, and surgical specimens were submitted for histopathological examination. The histopathological diagnosis was focal cemento-osseous dysplasia. In the present case, because of the increasing size of the swelling making it difficult to use prosthetics, young age of the patient and localization of the lesion, in the initial examination, cemento-ossifying fibroma was suspected, and the lesion was excised surgically; the histopathological diagnosis confirmed it as focal cemento-osseous dysplasia. We present a case of expansive focal cemento-osseous dysplasia. Differential diagnosis

  20. THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

    Energy Technology Data Exchange (ETDEWEB)

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A. [INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Bellazzini, R.; Brez, A.; De Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G. [INFN Sezione di Pisa, Largo B. Pontecorvo, 3, I-56127 Pisa (Italy); Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Burwitz, V.; Burkert, W., E-mail: sergio.fabiani@iaps.inaf.it [Max-Planck-Institut für extraterrestrische Physik, Gautinger Str. 45, D-82061 Neuired (Germany); and others

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  1. Detection for flatness of large surface based on structured light

    Science.gov (United States)

    He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang

    2016-09-01

    In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.

  2. A comparison of film and 3 digital imaging systems for natural dental caries detection: CCD, CMOS, PSP and film

    Energy Technology Data Exchange (ETDEWEB)

    Han, Won Jeong [Dankook University College of Medicine, Seoul (Korea, Republic of)

    2004-03-15

    To evaluate the diagnostic accuracy of occlusal and proximal caries detection using CCD, CMOS, PSP and film system. 32 occlusal and 30 proximal tooth surfaces were radiographed under standardized conditions using 3 digital systems; CCD (CDX-2000HQ, Biomedysis Co., Seoul, Korea), CMOS (Schick, Schick Inc., Long Island, USA), PSP (Digora FMX, Orion Co./Soredex, Helsinki, Finland) and 1 film system (Kodak Insight, Eastman Kodak, Rochester, USA). 5 observers examined the radiographs for occlusal and proximal caries using a 5-point confidence scale. The presence of caries was validated histologically and radiographically. Diagnostic accuracy was evaluated using ROC curve areas (AZ). Analysis using ROC curves revealed the area under each curve which indicated a diagnostic accuracy. For occlusal caries, Kodak Insight film had an Az of 0.765, CCD one of 0.730, CMOS one of 0.742 and PSP one of 0.735. For proximal caries, Kodak Insight film had an Az of 0.833, CCD one of 0.832, CMOS one of 0.828 and PSP one of 0.868. No statistically significant difference was noted between any of the imaging modalities. CCD, CMOS, PSP and film performed equally well in the detection of occlusal and proximal dental caries. CCD, CMOS and PSP-based digital images provided a level of diagnostic performance comparable to Kodak Insight film.

  3. A comparison of film and 3 digital imaging systems for natural dental caries detection: CCD, CMOS, PSP and film

    International Nuclear Information System (INIS)

    Han, Won Jeong

    2004-01-01

    To evaluate the diagnostic accuracy of occlusal and proximal caries detection using CCD, CMOS, PSP and film system. 32 occlusal and 30 proximal tooth surfaces were radiographed under standardized conditions using 3 digital systems; CCD (CDX-2000HQ, Biomedysis Co., Seoul, Korea), CMOS (Schick, Schick Inc., Long Island, USA), PSP (Digora FMX, Orion Co./Soredex, Helsinki, Finland) and 1 film system (Kodak Insight, Eastman Kodak, Rochester, USA). 5 observers examined the radiographs for occlusal and proximal caries using a 5-point confidence scale. The presence of caries was validated histologically and radiographically. Diagnostic accuracy was evaluated using ROC curve areas (AZ). Analysis using ROC curves revealed the area under each curve which indicated a diagnostic accuracy. For occlusal caries, Kodak Insight film had an Az of 0.765, CCD one of 0.730, CMOS one of 0.742 and PSP one of 0.735. For proximal caries, Kodak Insight film had an Az of 0.833, CCD one of 0.832, CMOS one of 0.828 and PSP one of 0.868. No statistically significant difference was noted between any of the imaging modalities. CCD, CMOS, PSP and film performed equally well in the detection of occlusal and proximal dental caries. CCD, CMOS and PSP-based digital images provided a level of diagnostic performance comparable to Kodak Insight film.

  4. Focal adhesion interactions with topographical structures: a novel method for immuno-SEM labelling of focal adhesions in S-phase cells.

    Science.gov (United States)

    Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J

    2008-07-01

    Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.

  5. Measuring a narrow Bessel beam spot by scanning a charge-coupled device (CCD) pixel

    International Nuclear Information System (INIS)

    Tiwari, S K; Ram, S P; Jayabalan, J; Mishra, S R

    2010-01-01

    By scanning a charge-coupled device (CCD) camera transverse to the beam axis and observing the variation in counts on a marked pixel, we demonstrate that we can measure a laser beam spot size smaller than the size of the CCD-pixel. We find this method particularly attractive for measuring the size of central spot of a Bessel beam, for which the established scanning knife-edge method does not work appropriately because of the large contribution of the rings surrounding the central spot to the signal

  6. Design and Performance of a Focus-Detection System for Use in Laser Micromachining

    Directory of Open Access Journals (Sweden)

    Binh Xuan Cao

    2016-01-01

    Full Text Available We describe a new approach for locating the focal position in laser micromachining. This approach is based on a feedback system that uses a charge-coupled device (CCD camera, a beam splitter, and a mirror to focus a laser beam on the surface of a work piece. We tested the proposed method for locating the focal position by using Zemax simulations, as well as physically carrying out drilling processes. Compared with conventional methods, this approach is advantageous because: the implementation is simple, the specimen can easily be positioned at the focal position, and the dynamically adjustable scan amplitude and the CCD camera can be used to monitor the laser beam’s profile. The proposed technique will be particularly useful for locating the focal position on any surface in laser micromachining.

  7. Hiperplasia epitelial focal (doença de Heck em descendente de índios brasileiros: relato de caso Focal epithelial hyperplasia (Heck's disease in Brazilian indian descent: report of a case

    Directory of Open Access Journals (Sweden)

    Pedro Paulo de Andrade Santos

    2007-12-01

    Full Text Available A hiperplasia epitelial focal, ou doença de Heck, é uma enfermidade rara, benigna, que afeta a mucosa oral de crianças e adultos jovens de diversas regiões do mundo e em diferentes grupos étnicos, como indígenas e esquimós. Apresenta correlação com o papilomavírus humano (HPV no qual os tipos 13 e 32 têm sido consistentemente detectados nessas lesões. Este artigo relata um caso de uma paciente de 18 anos de idade, descendente de índios potiguares, que compareceu ao serviço de estomatologia da Universidade Federal do Rio Grande do Norte (UFRN, exibindo lesões bem definidas, arredondadas, planas, localizadas em cavidade oral, com tempo de evolução de aproximadamente dois anos. As lesões foram submetidas a biópsias incisionais, constatado-se no exame histopatológico alterações epiteliais, como acantose, cristas epiteliais em forma de "taco de golfe" além de células mitosóides. Esses achados histopatológicos foram compatíveis com a hipótese clínica de hiperplasia epitelial focal (doença de Heck.The focal epithelial hyperplasia or Heck's disease is a benign rare pathology, that affects children and young adults oral mucosal in many world regions, and different ethnic groups, for example Indians and Eskimos. Presents correlation with the subtypes 13 and 32 of human papillomavirus (HPV. This article report a case of an 18-year-old patient, descent of potiguar indian, attended in stomatology service of Federal University of Rio Grande do Norte (UFRN, presenting well defined lesions, round, plane, localized in oral cavity with an evolution of two years. The lesions were submitted to incisional biopsies, verifying in histopathologic exam, epithelial alterations, like acanthosis, epithelial projections in "parquet block of golf" beyond mitosoid cells. These histopathological findings were compatible with clinical hypothesis of focal epithelial hyperplasia (Heck's disease.

  8. BECN2 interacts with ATG14 through a metastable coiled-coil to mediate autophagy: BECN2 CCD Structure and Interaction with ATG14

    Energy Technology Data Exchange (ETDEWEB)

    Su, Minfei; Li, Yue; Wyborny, Shane; Neau, David; Chakravarthy, Srinivas; Levine, Beth; Colbert, Christopher L.; Sinha, Sangita C. (NDSU); (IIT); (Cornell); (UTSMC)

    2017-03-12

    ATG14 binding to BECN/Beclin homologs is essential for autophagy, a critical catabolic homeostasis pathway. Here, we show that the α-helical, coiled-coil domain (CCD) of BECN2, a recently identified mammalian BECN1 paralog, forms an antiparallel, curved homodimer with seven pairs of nonideal packing interactions, while the BECN2 CCD and ATG14 CCD form a parallel, curved heterodimer stabilized by multiple, conserved polar interactions. Compared to BECN1, the BECN2 CCD forms a weaker homodimer, but binds more tightly to the ATG14 CCD. Mutation of nonideal BECN2 interface residues to more ideal pairs improves homodimer self-association and thermal stability. Unlike BECN1, all BECN2 CCD mutants bind ATG14, although more weakly than wild type. Thus, polar BECN2 CCD interface residues result in a metastable homodimer, facilitating dissociation, but enable better interactions with polar ATG14 residues stabilizing the BECN2:ATG14 heterodimer. These structure-based mechanistic differences in BECN1 and BECN2 homodimerization and heterodimerization likely dictate competitive ATG14 recruitment.

  9. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  10. CCD Photometry Using Multiple Comparison Stars

    Directory of Open Access Journals (Sweden)

    Yonggi Kim

    2004-09-01

    Full Text Available The accuracy of CCD observations obtained at the Korean 1.8 m telescope has been studied. Seventeen comparison stars in the vicinity of the cataclysmic variable BG CMi have been measured. The ``artificial" star has been used instead of the ``control" star, what made possible to increase accuracy estimates by a factor of 1.3-2.1 times for ``good" and ``cloudy" nights, respectively. The algorithm of iterative determination of accuracy and weights of few comparison stars contributing to the artificial star, has been presented. The accuracy estimates for 13-mag stars are around 0.002 m mag for exposure times of 30 sec.

  11. Measuring high-resolution sky luminance distributions with a CCD camera.

    Science.gov (United States)

    Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther

    2013-03-10

    We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

  12. Stroboscope Based Synchronization of Full Frame CCD Sensors

    OpenAIRE

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-01-01

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equi...

  13. STARL -- a Program to Correct CCD Image Defects

    Science.gov (United States)

    Narbutis, D.; Vanagas, R.; Vansevičius, V.

    We present a program tool, STARL, designed for automatic detection and correction of various defects in CCD images. It uses genetic algorithm for deblending and restoring of overlapping saturated stars in crowded stellar fields. Using Subaru Telescope Suprime-Cam images we demonstrate that the program can be implemented in the wide-field survey data processing pipelines for production of high quality color mosaics. The source code and examples are available at the STARL website.

  14. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  15. Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source.

    Science.gov (United States)

    Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin

    2012-10-01

    An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.

  16. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  17. An empirical assessment of the focal species hypothesis.

    Science.gov (United States)

    Lindenmayer, D B; Lane, P W; Westgate, M J; Crane, M; Michael, D; Okada, S; Barton, P S

    2014-12-01

    Biodiversity surrogates and indicators are commonly used in conservation management. The focal species approach (FSA) is one method for identifying biodiversity surrogates, and it is underpinned by the hypothesis that management aimed at a particular focal species will confer protection on co-occurring species. This concept has been the subject of much debate, in part because the validity of the FSA has not been subject to detailed empirical assessment of the extent to which a given focal species actually co-occurs with other species in an assemblage. To address this knowledge gap, we used large-scale, long-term data sets of temperate woodland birds to select focal species associated with threatening processes such as habitat isolation and loss of key vegetation attributes. We quantified co-occurrence patterns among focal species, species in the wider bird assemblage, and species of conservation concern. Some, but not all, focal species were associated with high levels of species richness. One of our selected focal species was negatively associated with the occurrence of other species (i.e., it was an antisurrogate)-a previously undescribed property of nominated focal species. Furthermore, combinations of focal species were not associated with substantially elevated levels of bird species richness, relative to levels associated with individual species. Our results suggest that although there is some merit to the underpinning concept of the FSA, there is also a need to ensure that actions are sufficiently flexible because management tightly focused on a given focal species may not benefit some other species, including species of conservation concern, such of which might not occur in species-rich assemblages. © 2014 Society for Conservation Biology.

  18. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    International Nuclear Information System (INIS)

    Michael Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  19. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  20. In-plane and cross-plane thermal conductivities of molybdenum disulfide

    International Nuclear Information System (INIS)

    Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)

  1. Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-11-01

    Full Text Available The high temporal resolution (4-day charge-coupled device (CCD cameras onboard small environment and disaster monitoring and forecasting satellites (HJ-1A/B with 30 m spatial resolution and large swath (700 km have substantially increased the availability of regional clear sky optical remote sensing data. For the application of dynamic mapping of rice growth parameters, leaf area index (LAI and aboveground biomass (AGB were considered as plant growth indicators. The HJ-1 CCD-derived vegetation indices (VIs showed robust relationships with rice growth parameters. Cumulative VIs showed strong performance for the estimation of total dry AGB. The cross-validation coefficient of determination ( R C V 2 was increased by using two machine learning methods, i.e., a back propagation neural network (BPNN and a support vector machine (SVM compared with traditional regression equations of LAI retrieval. The LAI inversion accuracy was further improved by dividing the rice growth period into before and after heading stages. This study demonstrated that continuous rice growth monitoring over time and space at field level can be implemented effectively with HJ-1 CCD 10-day composite data using a combination of proper VIs and regression models.

  2. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  3. A data-acquisition system for high speed linear CCD

    International Nuclear Information System (INIS)

    Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun

    2010-01-01

    A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)

  4. Measurements of 42 Wide CPM Pairs with a CCD

    Science.gov (United States)

    Harshaw, Richard

    2015-11-01

    This paper addresses the use of a Skyris 618C color CCD camera as a means of obtaining data for analysis in the measurement of wide common proper motion stars. The equipment setup is described and data collection procedure outlined. Results of the measures of 42 CPM stars are presented, showing the Skyris is a reliable device for the measurement of double stars.

  5. Design method of general-purpose driving circuit for CCD based on CPLD

    International Nuclear Information System (INIS)

    Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2005-01-01

    It is very important for studying the radiation damage effects and mechanism systematically about CCD to develop a general-purpose test platform. The paper discusses the design method of general-purpose driving circuit for CCD based on CPLD and the realization approach. A main controller has being designed to read the data file from the outer memory, setup the correlative parameter registers and produce the driving pulses according with parameter request strictly, which is based on MAX7000S by using MAX-PLUS II software. The basic driving circuit module has being finished based on this method. The output waveform of the module is the same figure as the simulation waveform. The result indicates that the design method is feasible. (authors)

  6. Development of Multiple-Element Flame Emission Spectrometer Using CCD Detection

    Science.gov (United States)

    Seney, Caryn S.; Sinclair, Karen V.; Bright, Robin M.; Momoh, Paul O.; Bozeman, Amelia D.

    2005-01-01

    The full wavelength coverage of charge coupled device (CCD) detector when coupled with an echelle spectrography, the system allows for simultaneously multiple element spectroscopy to be performed. The multiple-element flame spectrometer was built and characterized through the analysis of environmentally significant elements such as Ca, K, Na, Cu,…

  7. Experimental Focal Cerebral Ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas

    2007-01-01

    Focal cerebral ischemia due to occlusion of a major cerebral artery is the cause of ischemic stroke which is a major reason of mortality, morbidity and disability in the populations of the developed countries. In the seven studies summarized in the thesis focal ischemia in rats induced by occlusion...... in the penumbra is recruited in the infarction process leading to a progressive growth of the infarct. The penumbra hence constitutes an important target for pharmacological treatment because of the existence of a therapeutic time window during which treatment with neuroprotective compounds may prevent...

  8. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    Science.gov (United States)

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  9. Nearaffine planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we develop a theory for nearaffine planes analogous to the theory of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a characterization of a certain class of Minkowski planes.

  10. Performance of an area variable MOS varicap weighted programmable CCD transversal filter

    OpenAIRE

    Bhattacharyya, A.B.; Shankarnarayan, L.; Kapur, N.; Wallinga, Hans

    1981-01-01

    The performance of an electrically programmable CCD transversal filter (PTF) is presented in which tap-weight multiplication is performed by a novel and compact on chip voltage controlled area variable MOS varicap.

  11. Do focal colors look particularly "colorful"?

    Science.gov (United States)

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  12. Two Herbig-Haro objects discovered by narrow-band CCD imagery

    International Nuclear Information System (INIS)

    Ogura, Katsuo

    1990-01-01

    Two new Herbig-Haro objects, HH 132 and HH 133, have been discovered by CCD imagery behind interference filters on and just off the forbidden S II lines in the red. They are located in Puppis R2 and in Vela R2. Possible locations of their exciting sources are discussed. 12 refs

  13. CCD polarimetry as a probe of regions of recent-star formation

    Energy Technology Data Exchange (ETDEWEB)

    Draper, P W

    1988-01-01

    Chapter 1 of this thesis details the incorporation of a Charged-Coupled Device (CCD) detector system with the Durham Imaging Polarimeter. The details include the physical characteristics of the device and the electronics and software associated with the device control and data storage. Chapter 2 of this work describes fully how suitable corrections for this effect can be made, and derives first-order results. The CCD performance is examined in comparison with the detector used previously and hence the veracity of the new results is established. Chapter 3 is a relevant summary of the status of the astronomy of the immediate regions of recent-star formation. Chapter 4 describes multicolor polarimetry of NGC2261/R Mon covering the period 1979 to 1986. The data conclusively prove that the polarization of R Mon must be due to effects close to R Mon (approx.14 astronomical units).

  14. A simple and accurate method for the quality control of the I.I.-DR apparatus using the CCD camera

    International Nuclear Information System (INIS)

    Igarashi, Hitoshi; Shiraishi, Akihisa; Kuraishi, Masahiko

    2000-01-01

    With the advancing development of CCD cameras, the I.I.-DR apparatus has been introduced into the x-ray fluoroscopy television system. Consequently, quality control of the system has become a complicated task. We developed a simple, accurate method for quality control of the I.I.-DR apparatus using the CCD camera. Experiments were separately performed for the imager system [laser imager, DDX (dynamic digital x-ray system)] and the imaging system (I.I., ND-filter, IRIS, CCD camera). Quality control of the imager system was done by simply examining both input and output characteristics with a sliding pattern. Quality control of the imaging system was also conducted by estimating AVE (the average volume element), which was obtained using a phantom under the constant conditions. The results indicated that this simplified method is useful as a weekly quality control check of the I.I.-DR apparatus using the CCD camera. (author)

  15. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  16. Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.

    Science.gov (United States)

    Das, Bhargab; Chandra, Vikash

    2016-10-10

    We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.

  17. Use of a CCD-based area detection system of a fibre diffractometer

    International Nuclear Information System (INIS)

    Hanna, S.; Windle, A.H.

    1995-01-01

    We describe a new X-ray fibre diffractometer, consisting of a commercial X-ray sensitive video camera coupled to a conventional 3 goniometer in place of a more traditional single-point detector. The active element of the video camera is a charge-coupled device (CCD). Diffraction images, obtained at various goniometer settings, are transformed into reciprocal space, and combined to give a complete section through the origin and parallel to the symmetry axis of cylindrically averaged reciprocal space. A greater density of measurements is needed in the vicinity of the reciprocal fibre axis in order to avoid information loss due to the curvature of the Ewald sphere. The pros and cons of using CCD's as X-ray detectors are discussed and sample results from polymer fibers are shown. 17 refs., 5 figs

  18. CCD Development Progress at Lawrence Berkeley National Laboratory

    OpenAIRE

    Kolbe, W.F.; Holland, S.E.; Bebek, C.J.

    2006-01-01

    P-channel CCD imagers, 200-300um thick, fully depleted, and back-illuminat ed are being developed for scientific applications including ground- and space-based astronomy and x-ray detection. These thick devices have extended IR response, good point-spread function (PSF) and excellent radiation tolerance. Initially, these CCDs were made in-house at LBNL using 100 mm diameter wafers. Fabrication on high-resistivity 150 mm wafers is now proceeding according to a model in which the wafers are fir...

  19. CCD high-speed videography system with new concepts and techniques

    Science.gov (United States)

    Zheng, Zengrong; Zhao, Wenyi; Wu, Zhiqiang

    1997-05-01

    A novel CCD high speed videography system with brand-new concepts and techniques is developed by Zhejiang University recently. The system can send a series of short flash pulses to the moving object. All of the parameters, such as flash numbers, flash durations, flash intervals, flash intensities and flash colors, can be controlled according to needs by the computer. A series of moving object images frozen by flash pulses, carried information of moving object, are recorded by a CCD video camera, and result images are sent to a computer to be frozen, recognized and processed with special hardware and software. Obtained parameters can be displayed, output as remote controlling signals or written into CD. The highest videography frequency is 30,000 images per second. The shortest image freezing time is several microseconds. The system has been applied to wide fields of energy, chemistry, medicine, biological engineering, aero- dynamics, explosion, multi-phase flow, mechanics, vibration, athletic training, weapon development and national defense engineering. It can also be used in production streamline to carry out the online, real-time monitoring and controlling.

  20. Earthquake focal mechanisms and stress orientations in the eastern Swiss Alps

    International Nuclear Information System (INIS)

    Marschall, I.; Deichmann, N.; Marone, F.

    2013-01-01

    This study presents an updated set of earthquake focal mechanisms in the Helvetic and Penninic/Austroalpine domains of the eastern Swiss Alps. In eight cases, based on high-precision relative hypocentre locations of events within individual earthquake sequences, it was possible to identify the active fault plane. Whereas the focal mechanisms in the Helvetic domain are mostly strike-slip, the Penninic/Austroalpine domain is dominated by normal-faulting mechanisms. Given this systematic difference in faulting style, an inversion for the stress field was performed separately for the two regions. The stress field in the Penninic/Austroalpine domain is characterized by extension oriented obliquely to the E-W strike of the orogen. Hence, the Penninic nappes, which were emplaced as large-scale compressional structures during the Alpine orogenesis, are now deforming in an extensional mode. This contrasts with the more compressional strike-slip regime in the Helvetic domain towards the northern Alpine front. Relative to the regional stress field seen in the northern Alpine foreland with a NNW-SSE compression and an ENE-WSW extension, the orientation of the least compressive stress in the Penninic/Austroalpine domain is rotated counter-clockwise by about 40 °C. Following earlier studies, the observed rotation of the orientation of the least compressive stress in the Penninic/Austroalpine region can be explained as the superposition of the regional stress field of the northern foreland and a uniaxial extensional stress perpendicular to the local trend of the Alpine mountain belt. (authors)

  1. Automatic alignment device for focal spot measurements in the center of the field for mammography

    International Nuclear Information System (INIS)

    Vieira, Marcelo A.C.; Watanabe, Alex O.; Oliveira Junior, Paulo D.; Schiabel, Homero

    2010-01-01

    Some quality control procedures used for mammography, such as focal spot evaluation, requires previous alignment of the measurement equipment with the X-ray central beam. However, alignment procedures are, in general, the most difficult task and the one that needs more time to be performed. Moreover, the operator sometimes is exposed to radiation during this procedure. This work presents an automatic alignment system for mammographic equipment that allows locating the central ray of the radiation beam and, immediately, aligns with it by dislocating itself automatically along the field. The system consists on a bidirectional moving device, connected to a CCD sensor for digital radiographic image acquisition. A computational analysis of a radiographic image, acquired at any position on the field, is performed in order to determine its positioning under the X-ray beam. Finally, a mechanical system for two moving directions, electronically controlled by a microcontroller under USB communication, makes the system to align automatically with the radiation beam central ray. The alignment process is fully automatic, fast and accurate, with no operator exposure to radiation, which allows a considerable time saving for quality control procedures achievement for mammography. (author)

  2. Caracterização espectral de áreas de gramíneas forrageiras infectadas com a doença "mela-das-sementes da braquiária" por meio de imagens CCD/CBERS-2 Spectral characterization of forage grasses infected with the disease "mela-das-sementes da braquiária" through CCD/CDBERS -2 images

    Directory of Open Access Journals (Sweden)

    José C. Rosatti

    2006-12-01

    Full Text Available Imagens CCD/CBERS-2, nas bandas espectrais CCD2, CCD3 e CCD4, dos anos de 2004 e 2005, de Mirante do Paranapanema - SP, foram transformadas em reflectância de superfície usando o modelo 5S de correção atmosférica e normalizadas radiometricamente. O objetivo principal foi caracterizar espectralmente áreas de pastagens de Brachiaria brizantha em fase de florescimento, isentas e infectadas com a doença "mela-das-sementes da braquiária", possibilitando a sua detecção por meio da comparação entre os valores de reflectância de superfície denominada de Fator de Reflectância Bidirecional de Superfície (FRBS. Teve-se, também, o objetivo de avaliar a eficácia das imagens CCD/CBERS-2 para a obtenção de respostas espectrais de pastagens. Os dosséis sadios e doentes da Brachiaria brizantha foram identificados por meio da análise dos valores de reflectância e dos dados observados no Índice de Estresse Hídrico Acumulativo Relativo da Cultura (ACWSI obtidos na área de estudo. Os resultados indicaram que as principais diferenças foram a diminuição da reflectância na banda CCD3 e o aumento da reflectância na banda CCD4 nas áreas doentes. A metodologia empregada com o uso de dados do sensor CCD/CBERS-2, associados ao ACWSI, mostrou-se eficaz para discriminar dosséis infectados com a "mela-das-sementes da braquiária".CCD/CBERS-2 images in the spectral bands of CCD2, CCD3 and CCD4 of the years 2004 and 2005, from Mirante do Paranapanema - SP (Brazil, were transformed into surface reflectance images using the 5S atmospheric correction model and radiometrically normalized. The main objective was to spectrally characterize pastures of Brachiaria brizantha in the flowering phase, exempt and infected with the disease "mela-das-sementes da braquiária" making it possible its detection through the comparison among the SBRF - Surface Bidirectional Reflectance Factor values. At the same time, it was aimed to evaluate the effectiveness of the

  3. CCD photometry of Cepheid sequences in four nearby galaxies

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.

    1991-01-01

    We present Isaac Newton Telescope B and V CCD observations of deep photometric sequences in the vicinity of Cepheid variable stars in three nearby galaxies - M31, M33 and NGC 2403. We have also checked the photometry of the brightest stars in M81 and its dwarf companion, Holmberg IX. We use our data, combined with other recent results, to re-analyse the Cepheid distances to these galaxies. (author)

  4. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  5. Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC[reg] film

    International Nuclear Information System (INIS)

    Lynch, Bart D.; Kozelka, Jakub; Ranade, Manisha K.; Li, Jonathan G.; Simon, William E.; Dempsey, James F.

    2006-01-01

    In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC[reg] EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90 deg. between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 deg. and 90 deg. , which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 deg. C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating

  6. Pharmacological response of systemically derived focal epileptic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Remler, M.P.; Sigvardt, K.; Marcussen, W.H.

    1986-11-01

    Focal epileptic lesions were made in rats by systemic focal epileptogenesis. In this method, a focal lesion of the blood-brain barrier (BBB) is produced by focal alpha irradiation followed by repeated systemic injection of a convulsant drug that cannot cross the normal BBB, resulting in a chronic epileptic focus. Changes in the spike frequency of these foci in response to various drugs was recorded. The controls, saline and chlorpromazine, produced no change. Phenytoin, phenobarbital, chlordiazepoxide, and valproic acid produced the expected decrease in spike frequency. Pentobarbital and diazepam produced a paradoxical increase in spike frequency.

  7. BVRI CCD photometry of Omega Centauri

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1987-01-01

    Color-magnitude diagrams (CMDs) of V vs B-V, V vs V-I, and V vs B-I have been constructed based on 179 BVRI CCD frames of two adjoining 4x2.5-arcmin fields in Omega Cen (NGC 5139) obtained with the 1.54-m Danish La Silla telescope. The spread in the main sequences noted in the three CMDs indicates that the wide range in chemical composition among the evolved stars in this cluster persists as well in the unevolved stars. This result suggests that the abundance variations are primordial. A difference in magnitude between the turnoff and the horizontal branch of 3.8 + or - 0.15 is found which is greater than a previous value. 38 references

  8. CCD photometry of NGC 2419

    International Nuclear Information System (INIS)

    Christian, C.A.; Heasley, J.N.

    1988-01-01

    The properties of the globular cluster NGC 2419 are reexamined using CCD photometry deepened to the vicinity of the main-sequence turnoff. A new color-magnitude diagram is derived that extends to V = 24.5 mag. It is concluded that NGC 2419 is an outer-halo analog of the metal-poor globulars closer to the Galactic center. NGC 2419 is probably nearly the same age as M15 and differs only slightly, if at all, in metallicity. NGC 2419 has many similarities with the clusters NGC 5466, M15, and M92. Comparison of the data with the isochrones of VandenBerg and Bell (1985) implies a distance modulus of 20.1 with Delta (B-V) = 0.18 mag. Oxygen-rich models can be fit to the data; such a comparison yields a lower limit to the acceptable distance modulus of the cluster. 26 references

  9. Recurrent Bilateral Focal Myositis.

    Science.gov (United States)

    Nagafuchi, Hiroko; Nakano, Hiromasa; Ooka, Seido; Takakuwa, Yukiko; Yamada, Hidehiro; Tadokoro, Mamoru; Shimojo, Sadatomo; Ozaki, Shoichi

    This report describes a rare case of recurrent bilateral focal myositis and its successful treatment via methotrexate. A 38-year-old man presented myalgia of the right gastrocnemius in May 2005. Magnetic resonance imaging showed very high signal intensity in the right gastrocnemius on short-tau inversion recovery images. A muscle biopsy revealed inflammatory CD4+ cell-dominant myogenic change. Focal myositis was diagnosed. The first steroid treatment was effective. Tapering of prednisolone, however, repeatedly induced myositis relapse, which progressed to multiple muscle lesions of both lower limbs. Initiation of methotrexate finally allowed successful tapering of prednisolone, with no relapse in the past 4 years.

  10. Some Considerations Regarding Plane to Plane Parallelism Error Effects in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2015-06-01

    Full Text Available The paper shows that by imposing the parallelism constraint between the measured plane and the reference plane, the position of the current plane is not univocal specified and is impossible to specify the way to attain the parallelism errors imposed by accuracy constrains. The parameters involved in the calculus of plane to plane parallelism error can be used to set univocal the relative position between the two planes.

  11. Ultraviolet downconverting phosphor for use with silicon CCD imagers

    Science.gov (United States)

    Blouke, M. M.; Cowens, M. W.; Hall, J. E.; Westphal, J. A.; Christensen, A. B.

    1980-01-01

    The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be approximately 20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 x 800 CCD coated with coronene is presented.

  12. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  13. Plane development of lateral surfaces for inspection systems

    Science.gov (United States)

    Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.

    2006-08-01

    The problem of developing the lateral surfaces of a 3D object can arise in item inspection using automated imaging systems. In an industrial environment, these control systems typically work at high rate and they have to assure a reliable inspection of the single item. For compactness requirements it is not convenient to utilise three or four CCD cameras to control all the lateral surfaces of an object. Moreover it is impossible to mount optical components near the object if it is placed on a conveyor belt. The paper presents a system that integrates on a single CCD picture the images of both the frontal surface and the lateral surface of an object. It consists of a freeform lens mounted in front of a CCD camera with a commercial lens. The aim is to have a good magnification of the lateral surface, maintaining a low aberration level for exploiting the pictures in an image processing software. The freeform lens, made in plastics, redirects the light coming from the object to the camera lens. The final result is to obtain on the CCD: - the frontal and lateral surface images, with a selected magnification (even with two different values for the two images); - a gap between these two images, so an automatic method to analyse the images can be easily applied. A simple method to design the freeform lens is illustrated. The procedure also allows to obtain the imaging system modifying a current inspection system reducing the cost.

  14. Multi-focal Vision and Gaze Control Improve Navigation Performance

    Directory of Open Access Journals (Sweden)

    Kolja Kuehnlenz

    2008-11-01

    Full Text Available Multi-focal vision systems comprise cameras with various fields of view and measurement accuracies. This article presents a multi-focal approach to localization and mapping of mobile robots with active vision. An implementation of the novel concept is done considering a humanoid robot navigation scenario where the robot is visually guided through a structured environment with several landmarks. Various embodiments of multi-focal vision systems are investigated and the impact on navigation performance is evaluated in comparison to a conventional mono-focal stereo set-up. The comparative studies clearly show the benefits of multi-focal vision for mobile robot navigation: flexibility to assign the different available sensors optimally in each situation, enhancement of the visible field, higher localization accuracy, and, thus, better task performance, i.e. path following behavior of the mobile robot. It is shown that multi-focal vision may strongly improve navigation performance.

  15. Flotillins Regulate Focal Adhesions by Interacting with α-Actinin and by Influencing the Activation of Focal Adhesion Kinase

    Directory of Open Access Journals (Sweden)

    Antje Banning

    2018-04-01

    Full Text Available Cell–matrix adhesion and cell migration are physiologically important processes that also play a major role in cancer spreading. In cultured cells, matrix adhesion depends on integrin-containing contacts such as focal adhesions. Flotillin-1 and flotillin-2 are frequently overexpressed in cancers and are associated with poor survival. Our previous studies have revealed a role for flotillin-2 in cell–matrix adhesion and in the regulation of the actin cytoskeleton. We here show that flotillins are important for cell migration in a wound healing assay and influence the morphology and dynamics of focal adhesions. Furthermore, anchorage-independent growth in soft agar is enhanced by flotillins. In the absence of flotillins, especially flotillin-2, phosphorylation of focal adhesion kinase and extracellularly regulated kinase is diminished. Flotillins interact with α-actinin, a major regulator of focal adhesion dynamics. These findings are important for understanding the molecular mechanisms of how flotillin overexpression in cancers may affect cell migration and, especially, enhance metastasis formation.

  16. CCD linear image sensor ILX511 arrangment for a technical spectrometer

    Czech Academy of Sciences Publication Activity Database

    Bartoněk, L.; Keprt, Jiří; Vlček, Martin

    2003-01-01

    Roč. 33, 2-3 (2003), s. 548-553 ISSN 0078-5466 Institutional research plan: CEZ:AV0Z1010921 Keywords : CCD linear sensor ILX511 * enhanced parallel port (EPP able IEEE1284) * A/D converter AD9280 Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.221, year: 2003

  17. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  18. Computer-aided diagnosis of pneumoconiosis abnormalities extracted from chest radiographs scanned with a CCD scanner

    International Nuclear Information System (INIS)

    Abe, Koji; Minami, Masahide; Nakamura, Munehiro

    2011-01-01

    This paper presents a computer-aided diagnosis for pneumoconiosis radiographs obtained with a common charge-coupled devices (CCD) scanner. Since the current computer-aided diagnosis systems of pneumoconiosis are not practical for medical doctors due to high costs of usage for a special scanner, we propose a novel system which measures abnormalities of pneumoconiosis from lung images obtained with a common CCD scanner. Experimental results of discriminations between normal and abnormal cases for 56 right-lung images including 6 standard pneumoconiosis images have shown that the proposed abnormalities are well extracted according to the standards of pneumoconiosis categories. (author)

  19. Atmospheric radiation environment analyses based-on CCD camera at various mountain altitudes and underground sites

    Directory of Open Access Journals (Sweden)

    Li Cavoli Pierre

    2016-01-01

    Full Text Available The purpose of this paper is to discriminate secondary atmospheric particles and identify muons by measuring the natural radiative environment in atmospheric and underground locations. A CCD camera has been used as a cosmic ray sensor. The Low Noise Underground Laboratory of Rustrel (LSBB, France gives the access to a unique low-noise scientific environment deep enough to ensure the screening from the neutron and proton radiative components. Analyses of the charge levels in pixels of the CCD camera induced by radiation events and cartographies of the charge events versus the hit pixel are proposed.

  20. Assessment of space proton radiation-induced charge transfer inefficiency in the CCD204 for the Euclid space observatory

    International Nuclear Information System (INIS)

    Gow, J P D; Murray, N J; Holland, A D; Hall, D J; Cropper, M; Burt, D; Hopkinson, G; Duvet, L

    2012-01-01

    Euclid is a medium class European Space Agency mission candidate for launch in 2019 with a primary goal to study the dark universe using the weak lensing and baryonic acoustic oscillations techniques. Weak lensing depends on accurate shape measurements of distant galaxies. Therefore it is beneficial that the effects of radiation-induced charge transfer inefficiency (CTI) in the Euclid CCDs over the course of the 5 year mission at L2 are understood. This will allow, through experimental analysis and modelling techniques, the effects of radiation induced CTI on shape to be decoupled from those of mass inhomogeneities along the line-of-sight. This paper discusses a selection of work from the study that has been undertaken using the e2v CCD204 as part of the initial proton radiation damage assessment for Euclid. The experimental arrangement and procedure are described followed by the results obtained, thereby allowing recommendations to be made on the CCD operating temperature, to provide an insight into CTI effects using an optical background, to assess the benefits of using charge injection on CTI recovery and the effect of the use of two different methods of serial clocking on serial CTI. This work will form the basis of a comparison with a p-channel CCD204 fabricated using the same mask set as the n-channel equivalent. A custom CCD has been designed, based on this work and discussions between e2v technologies plc. and the Euclid consortium, and designated the CCD273.

  1. The astro-geodetic use of CCD for gravity field refinement

    Science.gov (United States)

    Gerstbach, G.

    1996-07-01

    The paper starts with a review of geoid projects, where vertical deflections are more effective than gravimetry. In alpine regions the economy of astrogeoids is at least 10 times higher, but many countries do not make use of this fact - presumably because the measurements are not fully automated up to now. Based upon the experiences of astrometry of high satellites and own tests the author analyses the use of CCD for astro-geodetic measurements. Automation and speeding up will be possible in a few years, the latter depending on the observation scheme. Sensor characteristics, cooling and reading out of the devices should be harmonized. Using line sensors in small prism astrolabes, the CCD accuracy will reach the visual one (±0.2″) within 5-10 years. Astrogeoids can be combined ideally with geological data, because vertical variation of rock densities does not cause systematic effects (contrary to gravimetry). So a geoid of ±5 cm accuracy (achieved in Austria and other alpine countries by 5-10 points per 1000 km 2) can be improved to ±2 cm without additional observations and border effects.

  2. CT appearance of focal fatty infiltration of the liver

    International Nuclear Information System (INIS)

    Halvorsen, R.A.; Korobkin, M.; Ram, P.C.; Thompson, W.M.

    1982-01-01

    Focal fatty infiltration of the liver is an entity that may be confused with liver metastasis on computed tomography (CT). The imaging results and medical records of 16 patients with CT appearance suggestive of focal fatty liver were reviewed, three of whom had the simultaneous presence of metastitic liver disease. Focal fatty liver often has a distinctive appearance with CT, usually with a nonspherical shape, absence of mass effect, and density close to water. Liver metastases are usually round or oval, and unless cystic or necrotic, they have CT attenuation values closer to normal liver parenchyma than water. A radionuclide liver scan almost always resolves any confusion about the differential diagnosis of focal fatty liver: a well defined focus of photon deficiency is due to neoplasm rather than focal fatty infiltration. Sonography sometimes helps to confirm the CT impression, but may be misleading if the diagnosis of focal or diffuse fatty infiltration is not suspected before the examination

  3. The study of the focal trough in panoramic radiograph

    International Nuclear Information System (INIS)

    Park, C. S.; Kim, H. P.

    1982-01-01

    In the study of the focal trough of panoramic radiograph, using the Moritta company Panex EC a series of 48 exposures were taken with the 6-18 brass pins placed in the holes of the plastic model plate, then evaluated by 4 observers. The author analyzed the focal trough defined by the sharpness criteria and calculated the vertical and horizontal magnification range in the corrected focal trough. The results were as follows; 1. Continuous focal trough was not defined in the anterior region using a very high degree of sharpness. 2. As degree of sharpness used in the analysis became less, focal trough was continuous in the anterior and posterior regions, symmetrized bilaterally, and the widths of the focal trough increased more in the posterior region. 3. As sharpness criteria were reduced, the percentage range of image magnification increased in both vertical and horizontal magnification, and especially the percentage range of horizontal magnification was greater than that of vertical magnification.

  4. Puesta en marcha de un microdensitómetro automático basado en CCD

    Science.gov (United States)

    Calderón, J. H.; Bustos Fierro, I. H.

    We present the commisioning of a CCD-based microdensitometer intended to perform astrometric measurements of photographic plates. The work done consisted in the installation of a CCD camera, the modification of the motion system, the construction of a new illumination device, the adaptation of the electronics, and the development of software. The instrument is intended to be used for the astrometric measurement mainly of plates of the Astrographic Catalog and Carte du Ciel collections from Córdoba Observatory. In this phase of the project we counted with the collaboration of the Instituto Provincial de Enseñanza Media No 59, 25 de Mayo, Cruz Alta (Province of Córdoba). The origin and importance of such collaboration is commented.

  5. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Lampert, Máté, E-mail: lampert.mate@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Un Nam, Yong, E-mail: yunam@nfri.re.kr [NFRI, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2015-01-11

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  6. CCD Photometry of W UMa Type Binary TY UMa

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    2001-06-01

    Full Text Available We present VRI CCD photometry of W UMa type binary TY UMa. The light curves show that the secondary minimum is deeper than theprimary minimum and the maximum I (0.p25 is 0.m023 brighter than the maximum II (0.p75. The V light curve has beenanalyzed and the photometric solutions have been determined by the method of Wilson & Devinney differential correction. Weadopted the spot model to explain the asymetric light curve.

  7. A CCD fitted to the UV Prime spectrograph: Performance

    International Nuclear Information System (INIS)

    Boulade, O.

    1986-10-01

    A CCD camera was fitted to the 3.6 m French-Canadian telescope in Hawai. Performance of the system and observations of elliptic galaxies (stellar content and galactic evolution in a cluster) and quasars (absorption lines in spectra) are reported. In spite of its resolution being only average, the extremely rapid optics of the UV spectrograph gives good signal to noise ratios enabling redshifts and velocity scatter to be calculated with an accuracy better than 30 km/sec [fr

  8. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands.

    Science.gov (United States)

    Theophilou, Georgios; Morais, Camilo L M; Halliwell, Diane E; Lima, Kássio M G; Drury, Josephine; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Hapangama, Dharani K; Martin, Francis L

    2018-05-09

    The cyclical process of regeneration of the endometrium suggests that it may contain a cell population that can provide daughter cells with high proliferative potential. These cell lineages are clinically significant as they may represent clonogenic cells that may also be involved in tumourigenesis as well as endometriotic lesion development. To determine whether the putative stem cell location within human uterine tissue can be derived using vibrational spectroscopy techniques, normal endometrial tissue was interrogated by two spectroscopic techniques. Paraffin-embedded uterine tissues containing endometrial glands were sectioned to 10-μm-thick parallel tissue sections and were floated onto BaF 2 slides for synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy and globar focal plane array-based FTIR spectroscopy. Different spectral characteristics were identified depending on the location of the glands examined. The resulting infrared spectra were subjected to multivariate analysis to determine associated biophysical differences along the length of longitudinal and crosscut gland sections. Comparison of the epithelial cellular layer of transverse gland sections revealed alterations indicating the presence of putative transient-amplifying-like cells in the basalis and mitotic cells in the functionalis. SR-FTIR microspectroscopy of the base of the endometrial glands identified the location where putative stem cells may reside at the same time pointing towards ν s PO 2 - in DNA and RNA, nucleic acids and amide I and II vibrations as major discriminating factors. This study supports the view that vibration spectroscopy technologies are a powerful adjunct to our understanding of the stem cell biology of endometrial tissue. Graphical abstract ᅟ.

  9. Focal myositis: A review.

    Science.gov (United States)

    Devic, P; Gallay, L; Streichenberger, N; Petiot, P

    2016-11-01

    Amongst the heterogeneous group of inflammatory myopathies, focal myositis stands as a rare and benign dysimmune disease. Although it can be associated with root and/or nerve lesions, traumatic muscle lesions and autoimmune diseases, its triggering factors remain poorly understood. Defined as an isolated inflammatory pseudotumour usually restricted to one skeletal muscle, clinical presentation of focal myositis is that of a rapidly growing solitary mass within a single muscle, usually in the lower limbs. Electromyography shows spontaneous activity associated with a myopathic pattern. MRI reveals a contrast enhanced enlarged muscle appearing hyper-intense on FAT-SAT T2 weighted images. Adjacent structures are spared and there are no calcifications. Serum creatine kinase (CK) levels are usually moderately augmented and biological markers of systemic inflammation are absent in most cases. Pathological histological features include marked variation in fibre size, inflammatory infiltrates mostly composed of T CD4+ lymphocytes and macrophages, degenerating/regenerating fibres and interstitial fibrosis. Differential diagnoses are numerous and include myositis of other origin with focal onset. Steroid treatment should be reserved for patients who present with major pain, nerve lesions, associated autoimmune disease, or elevated C reactive protein or CK. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    International Nuclear Information System (INIS)

    Ryu, Jung-Kyu; Cho, Jeong-Yeon; Choi, Jong-Sun

    2003-01-01

    Focal musculoskeletal anomalies vary, and can manifest as part of a syndrome or be accompanied by numerous other conditions such as genetic disorders, karyotype abnormalities, central nervous system anomalies and other skeletal anomalies, lsolated focal musculoskeletal anomaly does, however, also occur; its early prenatal diagnosis is important in deciding prenatal care, and also helps in counseling parents about the postnatal effects of numerous possible associated anomalies. We have encountered 50 cases involving focal musculoskeletal anomalies, including total limb dysplasia [radial ray abnormality (n=3), mesomelic dysplasia (n=1)]; anomalies of the hand [polydactyly (n=8), syndactyly (n=3), ectrodactyly (n=1), clinodactyly (n=6), clenched hand (n=5)]; anomalies of the foot [clubfoot (n=10), rockerbottom foot (n=5), sandal gap deformity (n=1), curly toe (n=2)]; amniotic band syndrome (n=3); and anomalies of the focal spine [block vertebra (n=1), hemivertebra (n=1)]. Among these 50 cases, five [polydactyly (n=1), syndactyly (n=2) and curly toe (n=2) were confirmed by postnatal physical evaluation, two (focal spine anomalies) were diagnosed after postnatal radiologic examination, and the remaining 43 were proven at autopsy. For each condition, we describe the prenatal sonographic findings, and include a brief review

  11. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung-Kyu; Cho, Jeong-Yeon; Choi, Jong-Sun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2003-12-15

    Focal musculoskeletal anomalies vary, and can manifest as part of a syndrome or be accompanied by numerous other conditions such as genetic disorders, karyotype abnormalities, central nervous system anomalies and other skeletal anomalies, lsolated focal musculoskeletal anomaly does, however, also occur; its early prenatal diagnosis is important in deciding prenatal care, and also helps in counseling parents about the postnatal effects of numerous possible associated anomalies. We have encountered 50 cases involving focal musculoskeletal anomalies, including total limb dysplasia [radial ray abnormality (n=3), mesomelic dysplasia (n=1)]; anomalies of the hand [polydactyly (n=8), syndactyly (n=3), ectrodactyly (n=1), clinodactyly (n=6), clenched hand (n=5)]; anomalies of the foot [clubfoot (n=10), rockerbottom foot (n=5), sandal gap deformity (n=1), curly toe (n=2)]; amniotic band syndrome (n=3); and anomalies of the focal spine [block vertebra (n=1), hemivertebra (n=1)]. Among these 50 cases, five [polydactyly (n=1), syndactyly (n=2) and curly toe (n=2) were confirmed by postnatal physical evaluation, two (focal spine anomalies) were diagnosed after postnatal radiologic examination, and the remaining 43 were proven at autopsy. For each condition, we describe the prenatal sonographic findings, and include a brief review.

  12. Improving the resolution in soft X-ray emission spectrometers through photon-counting using an Electron Multiplying CCD

    International Nuclear Information System (INIS)

    Hall, D J; Soman, M; Tutt, J; Murray, N; Holland, A; Schmitt, T; Raabe, J; Strocov, V N; Schmitt, B

    2012-01-01

    In 2007, a study of back-illuminated Charge-Coupled Devices (CCDs) for soft X-ray photon detection demonstrated the improvements that could be brought over more traditional micro-channel plate detectors for X-ray spectrometers based on diffraction gratings and position sensitive detectors. Whilst the spatial resolution was reported to be improved dramatically, an intrinsic limit of approximately 25 micrometers was found due to the spreading of the charge cloud generated in the CCD across several pixels. To overcome this resolution limit, it is necessary to move away from the current integrated imaging methods and consider a photon-counting approach, recording the photon interaction locations to the sub-pixel level. To make use of photon-counting techniques it is important that the individual events are separable. To maintain the throughput of the spectrometer for high intensity lines, higher frame rates and therefore higher readout speeds are required. With CCD based systems, the increased noise at high readout speeds can limit the photon-counting performance. The Electron-Multiplying CCD shares a similar architecture with the standard CCD but incorporates a g ain register . This novel addition allows controllable gain to be applied to the signal before the read noise is introduced, therefore allowing individual events to be resolved above the noise even at much higher readout rates. In the past, the EM-CCD has only been available with imaging areas too small to be practical in soft X-ray emission spectrometers. The current drive for large area Electron-Multiplying CCDs is opening this technology to new photon-counting applications, requiring in-depth analysis of the processes and techniques involved. Early results indicate that through the introduction of photon-counting techniques the resolution in such systems can be dramatically improved.

  13. Focal plane arrays for THz imaging

    NARCIS (Netherlands)

    Iacono, A.; Bencivenni, C.; Freni, A.; Neto, A.; Gerini, G.

    2012-01-01

    The growing attention for Terahertz technology finds support in the high number of applications which will benefit by its use. In the space science sector, the investigation of the THz frequency range will improve the knowledge of the universe, giving a clearer view on its origin and its evolution.

  14. Focal Plane Alignment Utilizing Optical CMM

    Science.gov (United States)

    Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.

    2012-01-01

    In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation is sketched in Figure 2(b) (the figure also shows the tapping tool and where to tap). At this point the fasteners for the PCB are torqued slightly so the PCB can still move. The PCB location is adjusted again with the tapping tool. This process is repeated 3 to 4 times until the final torque is achieved. The oversized mounting holes are then filled with a liquid bonding agent to secure the board in position (not shown in the sketch). A 10- to 30-micron mounting accuracy has been achieved utilizing this method..

  15. Instability of in-plane vortices in two-dimensional easy-plane ferromagnets

    International Nuclear Information System (INIS)

    Wysin, G.M.

    1994-01-01

    An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with easy-plane anisotropy λ=J z /J xy leads to a clear understanding of the instability towards transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter λ c at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy comparable to computer simulations for square, hexagonal, and triangular lattices. For λ c , the in-plane vortex is stable but exhibits a normal mode whose frequency goes to zero as ω∝(λ c -λ) 1/2 as λ approaches λ c . For λ>λ c , the static nonzero out-of-plane spin components grow as (λ-λ c ) 1/2 . The lattice dependence of λ c is determined strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and cannot be obtained in a continuum theory

  16. Researchers develop CCD image sensor with 20ns per row parallel readout time

    CERN Multimedia

    Bush, S

    2004-01-01

    "Scientists at the Rutherford Appleton Laboratory (RAL) in Oxfordshire have developed what they claim is the fastest CCD (charge-coupled device) image sensor, with a readout time which is 20ns per row" (1/2 page)

  17. Roentgenographic evaluation of the actual CCD and AT angle. Pt. 2

    International Nuclear Information System (INIS)

    Brueckl, R.; Grunert, S.; Rosemeyer, B.

    1986-01-01

    The method developed by Rippstein and Mueller allows a mathematically exact determination of the femoral neck-shaft angle (CCD) and the angle of torsion (AT); already at a deviation of 5-10 0 from the prescribed position of the patient considerable errors (up to more than 15 0 ) may occur. For this reason two alternative methods are cited and described in detail: a) the cinematographic determination of the CCD- and AT-angle according to Schwetlick, and b) the combination of the determination of the AT-angle in exterior rotation according to Rogers and an anteroposterior roentgenogram of the pelvis and hips in interior rotation of the size of the AT-angle. Both methods are also mathematically exact, however, in addition almost independent from minor deviations in the position of the patient. It is advisable to apply one of the cited methods in cases of high AT-angle values (>>30 0 ), in cases where the placing of the patient is difficult and where the determination of the angles would require a major therapeutic measurement. (orig.) [de

  18. An optical test bench for the precision characterization of absolute quantum efficiency for the TESS CCD detectors

    International Nuclear Information System (INIS)

    Krishnamurthy, A.; Villasenor, J.; Kissel, S.; Ricker, G.; Vanderspek, R.

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic ∼< 13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm–1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048×2048 imaging array and 2048×2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.

  19. Heteroepitaxial growth of basal plane stacking fault free a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Hempel, Thomas; Noltemeyer, Martin; Witte, Hartmut; Dadgar, Armin; Blaesing, Juergen; Christen, Juergen; Krost, Alois [Otto-von-Guericke Universitaet Magdeburg, FNW/IEP, Magdeburg (Germany)

    2010-07-01

    Growth of light emitting quantum-wells based on a-plane GaN is a possibility to reduce or even to avoid polarization correlated luminescence red shift and reduction of radiative recombination efficiency. But until now heteroepitaxially grown a-plane GaN films are characterized by a poor crystalline quality expressed by a high density of basal plane stacking faults (BSF) and partial dislocations. We present Si doped a-plane GaN films grown on r-plane sapphire substrates by metal organic vapor phase epitaxy using high temperature AlGaN nucleation layers. FE-SEM images revealed three dimensionally grown GaN crystallites sized up to tenth micrometer in the basal plane and a few tenth micrometers along the c-axes. Though, the full width at half maxima of the X-ray diffraction {omega}-scans of the in-plane GaN(1 anti 100) and GaN(0002) Bragg reflections exhibited a very high crystal quality. Furthermore, luminescence spectra were dominated by near band gap emission, while there was no separated peak of the basal plane stacking fault. In summary we present heteroepitaxially grown a-plane GaN without an evidence of basal plane stacking faults in X-ray diffraction measurements and luminescence spectra.

  20. Optimal CCD readout by digital correlated double sampling

    Science.gov (United States)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.