Sample records for cbm20 low-affinity starch-binding

  1. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21

    DEFF Research Database (Denmark)

    Marhovic, M.; Svensson, Birte; MacGregor, E. A.;


    families: CBM20, CBM21, CBM25, CBM26, CBM34, and CBM41. This work is concentrated on CBM20 and CBM21. The CBM20 module was believed to be located almost exclusively at the C-terminal end of various amylases. The CBM21 module was known as the N-terminally positioned SBD of Rhizopus glucoamylase. Nowadays...

  2. Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism. (United States)

    Glaring, Mikkel A; Baumann, Martin J; Abou Hachem, Maher; Nakai, Hiroyuki; Nakai, Natsuko; Santelia, Diana; Sigurskjold, Bent W; Zeeman, Samuel C; Blennow, Andreas; Svensson, Birte


    Starch-binding domains are noncatalytic carbohydrate-binding modules that mediate binding to granular starch. The starch-binding domains from the carbohydrate-binding module family 45 (CBM45, are found as N-terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45-type domains, the Solanum tuberosumα-glucan, water dikinase and the Arabidopsis thaliana plastidial α-amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry was used to verify the conformational integrity of an isolated CBM45 domain, revealing a surprisingly high thermal stability (T(m) of 84.8 °C). The functionality of CBM45 was demonstrated in planta by yellow/green fluorescent protein fusions and transient expression in tobacco leaves. Affinities for starch and soluble cyclodextrin starch mimics were measured by adsorption assays, surface plasmon resonance and isothermal titration calorimetry analyses. The data indicate that CBM45 binds with an affinity of about two orders of magnitude lower than the classical starch-binding domains from extracellular microbial amylolytic enzymes. This suggests that low-affinity starch-binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low-affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and, hence, of starch metabolism.

  3. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;


    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...... phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...

  4. Investigation of Starch Binding Domains for Improvement of Starch degradation

    DEFF Research Database (Denmark)

    Christiansen, Camilla

    dikinase (GWD). GWD kan fosforylere i C-3 og C-6 positionen i glukose enhederne i stivelse, ved en dikinase reaktion der anvender β-fosfat fra ATP. Mutanter i Arabidopsis thaliana GWD1 udviser en stivelses overskud fænotype med en lavere stivelses nedbrydnings rate, hvilket påviser en forbindelse mellem......-hydrolyserende enzymer. Den overordnede struktur fundet hos CBM20 er ifølge en homologimodellering bevaret i GWD3-SBD og bindings site 1, som er involveret i initial binding er vel bevaret både i strukturen og på sekvens niveau. Sammenlignet med andre karakteriserede CBM20, så har GWD3-SBD et mindre loop i området...

  5. Starch-binding domain shuffling in Aspergillus niger glucoamylase. (United States)

    Cornett, Catherine A G; Fang, Tsuei-Yun; Reilly, Peter J; Ford, Clark


    Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII approximately GAII approximately GAI > RGAIDeltaL approximately RGAI approximately GAE. Insoluble starch hydrolysis rates were GAI > RGAIDeltaL > RGAI > GAE approximately RGAII > GAII, while insoluble starch-binding capacities were GAI > RGAI > RGAIDeltaL > RGAII > GAII > GAE. These results indicate that: (i) moving the SBD to the N-terminus or replacing the native SBD somewhat affects soluble starch hydrolysis; (ii) SBD location significantly affects insoluble starch binding and hydrolysis; (iii) insoluble starch hydrolysis is imperfectly correlated with its binding by the SBD; and (iv) placing the P.macerans cyclomaltodextrin glucanotransferase SBD at the end of a linker, instead of closely associated with the rest of the enzyme, severely reduces its ability to bind and hydrolyze insoluble starch.

  6. Starch-binding domains in the post-genome era. (United States)

    Machovic, M; Janecek, S


    Starch belongs to the most abundant biopolymers on Earth. As a source of energy, starch is degraded by a large number of various amylolytic enzymes. However, only about 10% of them are capable of binding and degrading raw starch. These enzymes usually possess a distinct sequence-structural module, the so-called starchbinding domain (SBD). In general, all carbohydrate-binding modules (CBMs) have been classified into the CBM families. In this sequence-based classification the individual types of SBDs have been placed into seven CBM families: CBM20, CBM21, CBM25, CBM26, CBM34, CBM41 and CBM45. The family CBM20, known also as a classical C-terminal SBD of microbial amylases, is the most thoroughly studied. The three-dimensional structures have already been determined by X-ray crystallography or nuclear magnetic resonance for SBDs from five CBM families (20, 25, 26, 34 and 41), and the structure of the CBM21 has been modelled. Despite differences among the amino acid sequences, the fold of a distorted beta-barrel seems to be conserved together with a similar way of substrate binding (mainly stacking interactions between aromatic residues and glucose rings). SBDs have recently been discovered in many non-amylolytic proteins. These may, for example, have regulatory functions in starch metabolism in plants or glycogen metabolism in mammals. SBDs have also found practical uses.

  7. A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. (United States)

    Peng, Hui; Zheng, Yunyun; Chen, Maojiao; Wang, Ying; Xiao, Yazhong; Gao, Yi


    A novel starch-binding domain (SBD) that represents a new carbohydrate-binding module family (CBM69) was identified in the α-amylase (AmyP) of the recently established alpha-amylase subfamily GH13_37. The SBD and its homologues come mostly from marine bacteria, and phylogenetic analysis indicates that they are closely related to the CBM20 and CBM48 families. The SBD exhibited a binding preference toward raw rice starch, but the truncated mutant (AmyPΔSBD) still retained similar substrate preference. Kinetic analyses revealed that the SBD plays an important role in soluble starch hydrolysis because different catalytic efficiencies have been observed in AmyP and the AmyPΔSBD.

  8. Microbial starch binding domains are superior to granule bound starch synthase 1 for anchoring luciferase to potato starch granules

    NARCIS (Netherlands)

    Ji, Q.; Vincken, J.P.; Suurs, L.C.J.M.; Visser, R.G.F.


    Microbial starch-binding domains (SBD) and granule-bound starch synthase I (GBSSI) are proteins which are accumulated in potato starch granules. The efficiency of SBD and GBSSI for targeting active luciferase reporter proteins to granules during starch biosynthesis was compared. GBSSI or SBD sequenc

  9. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris (United States)

    Catalytic properties of the two glucoamylases, AmyC and AmyD, without starch binding domains from Rhizopus oryzae strain 99-880 were heterologously expressed and purified to homogeneity. AmyC and AmyD demonstrate pH optima of 5.5 and 6.0, respectively, nearly 1 unit higher than most fungal glucoamy...

  10. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. (United States)

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded


    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  11. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins


    Huang, X.


    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the costs of the post-harvest starch modification. The starch binding domain (SBD) technology has been extensively explored in our lab for modifying starch in planta and producing so-called “tailored ...

  12. The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase. (United States)

    Tseng, C C; Miyamoto, M; Ramalingam, K; Hemavathy, K C; Levine, M J; Ramasubbu, N


    Human salivary alpha-amylase participates in the initial digestion of starch and may be involved in the colonization of viridans streptococci in the mouth. To elucidate the role of histidine residues located near the starch-binding site on the streptococcal-binding activity, the wild type and three histidine mutants, H52A, H299A and H305A were constructed and expressed in a baculovirus system. While His52 is located near the non-reducing end of the starch-binding pocket (subsite S3/S4), the residues His299 and His305 are located near the subsites S1/S1'. For the wild type, the cDNA encoding the leader and secreted sequences of human salivary amylase was amplified by polymerase chain reaction from a human submandibular salivary-gland cDNA library, and subcloned into the baculovirus shuttle vector pVL1392 downstream of the polyhedrin promoter. Oligonucleotide-based, site-directed mutagenesis was used to generate the mutants expressed in the baculovirus system. Replacing His52 or His299 or His305 to Ala residue did not alter the bacterial-binding activity significantly, but these mutants did show differences in their catalytic activities. The mutant H52A showed negligible reduction in enzymatic activity compared to that of wild type for the hydrolysis of starch and oligosaccharides. In contrast, the H299A and H305A mutants showed a 12 to 13-fold reduction (90-92%) in starch-hydrolysing activity. In addition, the k(cat) for the hydrolysis of oligosaccharides by H299A decreased by as much as 11-fold for maltoheptaoside. This reduction was even higher (40-fold) for the hydrolysis of p-nitrophenyl maltoside, with a significant change in K(M). The mutant H305A, however, exhibited a reduction in k(cat) only, with no changes in the K(M) for the hydrolysis of oligosaccharides. The reduction in the k(cat) for the H305A mutant was almost 93% for maltoheptaoside hydrolysis. The pH activity profile for the H305A mutant was also significantly different from that of the wild type

  13. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). (United States)

    Martín, Mariana; Wayllace, Nahuel Z; Valdez, Hugo A; Gomez-Casati, Diego F; Busi, María V


    Glycogen and starch, the major storage carbohydrate in most living organisms, result mainly from the action of starch or glycogen synthases (SS or GS, respectively, EC SSIII from Arabidopsis thaliana is an SS isoform with a particular modular organization: the C-terminal highly conserved glycosyltransferase domain is preceded by a unique specific region (SSIII-SD) which contains three in tandem starch binding domains (SBDs, named D1, D2 and D3) characteristic of polysaccharide degrading enzymes. N-terminal SBDs have a probed regulatory role in SSIII activity, showing starch binding ability and modulating the catalytic properties of the enzyme. On the other hand, GS from Agrobacterium tumefaciens has a simple primary structure organization, characterized only by the highly conserved glycosyltransferase domain and lacking SBDs. To further investigate the functional role of A. thaliana SSIII-SD, three chimeric proteins were constructed combining the SBDs from A. thaliana with the GS from A. tumefaciens. Recombinant proteins were expressed in and purified to homogeneity from Escherichia coli cells in order to be kinetically characterized. Furthermore, we tested the ability to restore in vivo glycogen biosynthesis in transformed E. coli glgA(-) cells, deficient in GS. Results show that the D3-GS chimeric enzyme showed increased capacity of glycogen synthesis in vivo with minor changes in its kinetics parameters compared to GS.

  14. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading. (United States)

    Sumitani, J; Tottori, T; Kawaguchi, T; Arai, M


    The alpha-amylase from Bacillus sp. no. 195 (BAA) consists of two domains: one is the catalytic domain similar to alpha-amylases from animals and Streptomyces in the N-terminal region; the other is the functionally unknown domain composed of an approx. 90-residue direct repeat in the C-terminal region. The gene coding for BAA was expressed in Streptomyces lividans TK24. Three active forms of the gene products were found. The pH and thermal profiles of BAAs, and their catalytic activities for p-nitrophenyl maltopentaoside and soluble starch, showed almost the same behaviours. The largest, 69 kDa, form (BAA-alpha) was of the same molecular mass as that of the mature protein estimated from the nucleotide sequence, and had raw-starch-binding and -degrading abilities. The second largest, 60 kDa, form (BAA-beta), whose molecular mass was the same as that of the natural enzyme from Bacillus sp. no. 195, was generated by proteolytic processing between the two repeat sequences in the C-terminal region, and had lower activities for raw starch binding and degrading than those of BAA-alpha. The smallest, 50 kDa, form (BAA-gamma) contained only the N-terminal catalytic domain as a result of removal of the C-terminal repeat sequence, which led to loss of binding and degradation of insoluble starches. Thus the starch adsorption capacity and raw-starch-degrading activity of BAAs depends on the existence of the repeat sequence in the C-terminal region. BAA-alpha was specifically adsorbed on starch or dextran (alpha-1,4 or alpha-1,6 glucan), and specifically desorbed with maltose or beta-cyclodextrin. These observations indicated that the repeat sequence of the enzyme was functional in the starch-binding domain (SBD). We propose the designation of the homologues to the SBD of glucoamylase from Aspergillus niger as family I SBDs, the homologues to that of glucoamylase from Rhizopus oryzae as family II, and the homologues of this repeat sequence of BAA as family III.

  15. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase

    DEFF Research Database (Denmark)

    Morris, V. M.; Gunning, A. P.; Faults, C. B.


    Atomic force microscopy has been used to investigate the complexes formed between high molecular weight amylose chains and Aspergillus niger glucoamylase mutants (E400Q and W52F), wild-type A. niger starch binding domains (SBDS), and mutant SBDs (W563K and W590K) lacking either of the two starch ...

  16. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. (United States)

    Hostinová, Eva; Solovicová, Adriana; Dvorský, Radovan; Gasperík, Juraj


    Raw-starch-degrading glucoamylases have been known as multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain (SBD) by an O-glycosylated linker region. A molecular genetics approach has been chosen to find structural differences between two related glucoamylases, raw-starch-degrading Glm and nondegrading Glu, from the yeasts Saccharomycopsis fibuligera IFO 0111 and HUT 7212, respectively. We have found that Glm and Glu show a high primary (77%) and tertiary structure similarity. Glm, although possessing a good ability for raw starch degradation, did not show consensus amino acid residues to any SBD found in glucoamylases or other amylolytic enzymes. Raw starch binding and digestion by Glm must thus depend on the existence of a site(s) lying within the intact protein which lacks a separate SBD. The enzyme represents a structurally new type of raw-starch-degrading glucoamylase.

  17. Dynamics of starch granule biogenesis - the role of redox-regulated enzymes and low-affinity carbohydrate-binding modules

    DEFF Research Database (Denmark)

    Blennow, A.; Svensson, Birte


    The deposition and degradation of starch in plants is subject to extensive post-translational regulation. To permit degradation of B-type crystallites present in tuberous and leaf starch these starch types are phosphorylated by glucan, water dikinase (GWD). At the level of post-translational redo...... families and can enable diurnal dynamics of starch-enzyme recognition. Such diurnal changes in starch binding have been indicated for the redox-regulated GWD and SEX4....

  18. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B


    of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...

  19. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  20. Interaction of ceftobiprole with the low-affinity PBP 5 of Enterococcus faecium. (United States)

    Henry, Xavier; Amoroso, Ana; Coyette, Jacques; Joris, Bernard


    Ceftobiprole is a new cephalosporin that exhibits a high level of affinity for methicillin-resistant Staphylococcus aureus PBP 2a. It was reported that ceftobiprole did not interact with a mutated form of the low-affinity protein Enterococcus faecium PBP 5 (PBP 5fm) that, when overexpressed, confers a beta-lactam resistance phenotype to the bacterium. Our results show that ceftobiprole binds to unmutated PBP 5fm to form a stable acyl-enzyme and that ceftobiprole is able to efficiently kill a penicillin-resistant Enterococcus faecium strain that produces this protein.

  1. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase

    DEFF Research Database (Denmark)

    Juge, N.; Nøhr, J.; Le Gal-Coëffet, M.-F.


    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha......-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms...

  2. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. (United States)

    Dobrowsky, R T; Werner, M H; Castellino, A M; Chao, M V; Hannun, Y A


    The role of the low-affinity neurotrophin receptor (p75NTR) in signal transduction is undefined. Nerve growth factor can activate the sphingomyelin cycle, generating the putative-lipid second messenger ceramide. In T9 glioma cells, addition of a cell-permeable ceramide analog mimicked the effects of nerve growth factor on cell growth inhibition and process formation. This signaling pathway appears to be mediated by p75NTR in T9 cells and NIH 3T3 cells overexpressing p75NTR. Expression of an epidermal growth factor receptor-p75NTR chimera in T9 cells imparted to epidermal growth factor the ability to activate the sphingomyelin cycle. These data demonstrate that p75NTR is capable of signaling independently of the trk neurotrophin receptor (p140trk) and that ceramide may be a mediator in neurotrophin biology.

  3. High and Low Affinity Urea Root Uptake: Involvement of NIP5;1. (United States)

    Yang, Huayiu; Menz, Jochen; Häussermann, Iris; Benz, Martin; Fujiwara, Toru; Ludewig, Uwe


    Urea is the most widespread nitrogen (N) fertilizer worldwide and is rapidly degraded in soil to ammonium by urease. Ammonium is either taken up by plant roots or is further processed to nitrate by soil microorganisms. However, urea can be taken up by roots and is further degraded to ammonium by plant urease for assimilation. When urea is supplied under sterile conditions, it acts as a poor N source for seedlings or adult Arabidopsis thaliana plants. Here, the gene expression of young seedlings exposed to urea and ammonium nitrate nutrition was compared. Several primary metabolism and transport genes, including those for nitrate and urea, were differentially expressed in seedlings. However, urease and most major intrinsic proteins were not differentially expressed, with the exception of NIP6;1, a urea-permeable channel, which was repressed. Furthermore, little overlap with the gene expression with ammonium as the sole N source was observed, confirming that pure urea nutrition is not associated with the ammonium toxicity syndrome in seedlings. The direct root uptake of urea was increased under boron deficiency, in both the high and low affinity range. This activity was entirely mediated by the NIP5;1 channel, which was confirmed to transport urea when expressed in oocytes. The uptake of urea in the high and low affinity range was also determined for maize and wheat roots. The urea uptake by maize roots was only about half that of wheat, but was not stimulated by boron deficiency or N deficiency in either species. This analysis identifies novel components of the urea uptake systems in plants, which may become agronomically relevant to urea uptake and utilization, as stabilized urea fertilizers become increasingly popular.

  4. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A;


    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after......, respectively, 4, 7, 10 and 14 days in culture. It was found that THIP treatment of 4- and 7-day-old cultures led to formation of low affinity GABA receptors, whereas such receptors could not be detected after THIP treatment in the older cultures (10 and 14 days) in spite of the fact that these cultured granule...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  5. Molecular identification of high and low affinity receptors for nicotinic acid. (United States)

    Wise, Alan; Foord, Steven M; Fraser, Neil J; Barnes, Ashley A; Elshourbagy, Nabil; Eilert, Michelle; Ignar, Diane M; Murdock, Paul R; Steplewski, Klaudia; Green, Andrew; Brown, Andrew J; Dowell, Simon J; Szekeres, Philip G; Hassall, David G; Marshall, Fiona H; Wilson, Shelagh; Pike, Nicholas B


    Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.

  6. Microbial starch-binding domains are superior to granule-bound starch synthase I for anchoring luciferase to potato starch granules

    Institute of Scientific and Technical Information of China (English)

    JI Qin; Jean-Paul VINCKEN; Luc C.J.M. SUURS; Richard G.F. VISSER


    Microbial starch-binding domains (SBD) and granule-hound starch synthase I (GBSSI) are proteins which are accumulated in potato starch granules. The efficiency of SBD and GBSSI for targeting active luciferase reporter proteins to granules during starch biosynthesis was compared. GBSSI or SBD sequences were fused to the N- or C-terminus of the luciferase (LUC) gene, via an artificial Pro-Thr encoding linker sequence. The genes were introduced into an amylose-free (am f) potato mutant. It appeared that SBD was superior to GBSSI as a targeting sequence, mainly because the luciferase retained higher activity in the SBD-containing fusion proteins than in the GBSSI-containing ones.

  7. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. (United States)

    Sevcík, Jozef; Hostinová, Eva; Solovicová, Adriana; Gasperík, Juraj; Dauter, Zbigniew; Wilson, Keith S


    Most glucoamylases (alpha-1,4-D-glucan glucohydrolase, EC have structures consisting of both a catalytic and a starch binding domain. The structure of a glucoamylase from Saccharomycopsis fibuligera HUT 7212 (Glu), determined a few years ago, consists of a single catalytic domain. The structure of this enzyme with the resolution extended to 1.1 A and that of the enzyme-acarbose complex at 1.6 A resolution are presented here. The structure at atomic resolution, besides its high accuracy, shows clearly the influence of cryo-cooling, which is manifested in shrinkage of the molecule and lowering the volume of the unit cell. In the structure of the complex, two acarbose molecules are bound, one at the active site and the second at a site remote from the active site, curved around Tyr464 which resembles the inhibitor molecule in the 'sugar tongs' surface binding site in the structure of barley alpha-amylase isozyme 1 complexed with a thiomalto-oligosaccharide. Based on the close similarity in sequence of glucoamylase Glu, which does not degrade raw starch, to that of glucoamylase (Glm) from S. fibuligera IFO 0111, a raw starch-degrading enzyme, it is reasonable to expect the presence of the remote starch binding site at structurally equivalent positions in both enzymes. We propose the role of this site is to fix the enzyme onto the surface of a starch granule while the active site degrades the polysaccharide. This hypothesis is verified here by the preparation of mutants of glucoamylases Glu and Glm.

  8. Agonist high- and low-affinity states of dopamine D-2 receptors : methods of detection and clinical implications

    NARCIS (Netherlands)

    van Wieringen, Jan-Peter; Booij, Jan; Shalgunov, Vladimir; Elsinga, Philip; Michel, Martin C.


    Dopamine D-2 receptors, similar to other G-protein-coupled receptors, exist in a high- and low-affinity state for agonists. Based upon a review of the methods for detecting D-2 receptor agonist high-affinity states, we discuss alterations of such states in animal models of disease and the implicatio

  9. The cytoplasmic tail of FcgammaRIIIAalpha is involved in signaling by the low affinity receptor for immunoglobulin G

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Geisler, Carsten


    The low affinity receptor for IgG, FcgammaRIIIA, is a multimeric receptor composed of the ligand binding subunit FcgammaRIIIAalpha (CD16) in association with the signal-transducing subunits zeta or gamma. Previous studies suggested that the cytoplasmic tail of FcgammaRIIIAalpha was not required...

  10. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. (United States)

    Huang, Chun Y; Shirley, Neil; Genc, Yusuf; Shi, Bujun; Langridge, Peter


    Genetic variation in phosphorus (P) efficiency exists among wheat (Triticum aestivum) and barley (Hordeum vulgare) genotypes, but the underlying mechanisms for the variation remain elusive. High- and low-affinity phosphate (Pi) PHT1 transporters play an indispensable role in P acquisition and remobilization. However, little is known about genetic variation in PHT1 gene expression and association with P acquisition efficiency (PAE) and P utilization efficiency (PUE). Here, we present quantitative analyses of transcript levels of high- and low-affinity PHT1 Pi transporters in four barley genotypes differing in PAE. The results showed that there was no clear pattern in the expression of four paralogs of the high-affinity Pi transporter HvPHT1;1 among the four barley genotypes, but the expression of a low-affinity Pi transporter, HvPHT1;6, and its close homolog HvHPT1;3 was correlated with the genotypes differing in PUE. Interestingly, the expression of HvPHT1;6 and HvPHT1;3 was correlated with the expression of HvIPS1 (for P starvation inducible; noncoding RNA) but not with HvIPS2, suggesting that HvIPS1 plays a distinct role in the regulation of the low-affinity Pi transporters. In addition, high PUE was found to be associated with high root-shoot ratios in low-P conditions, indicating that high carbohydrate partitioning into roots occurs simultaneously with high PUE. However, high PUE accompanying high carbon partitioning into roots could result in low PAE. Therefore, the optimization of PUE through the modification of low-affinity Pi transporter expression may assist further improvement of PAE for low-input agriculture systems.

  11. Characterization of the low affinity transport system for NO(3)(-) uptake by Citrus roots. (United States)

    Cerezo, M; Flors, V; Legaz, F; García-Agustín, P


    Three-month old citrange Troyer (hybrid of Citrus sinensis x Poncirus trifoliata) seedlings were grown hydroponically and, after a period of NO(3)(-) starvation, plants were transferred to solutions enriched with K(15)NO(3) (96% atoms 15N excess) to measure 15NO(3)(-) uptake rates as a function of external 15NO(3)(-) concentrations. Two different NO(3)(-) uptake systems were found. Between 1 and 50 mM 15NO(3)(-) in the uptake solution medium, the uptake rate increased linearly due to the low affinity transport system (LATS). Nitrate reductase activity showed the same response to external [NO(3)(-)], and also appears to be regulated by the rate of nitrate uptake. Nitrate pre-treatments had a represive effect on NO(3)(-) uptake rate measured at 5 or 30 mM external [15NO(3)(-)]. The extent of the inhibition depended on the [NO(3)(-)] during the pre-treatment and in the uptake solution. These results suggest that the LATS of Citrus seedlings is under feedback control by the N status of the plant. Accordingly, addition of amino acids (Glu, Asp, Asn, Gln) to the uptake solution resulted in a decrease in 15NO(3)(-) uptake rate. However, the inactivation of nitrate reductase activity after treatment of the seedlings with either 100 or 500 µM WO(4)(2-) did not affect the activity of the LATS. Metabolic uncouplers, 2,4-DNP and KCN, reduced the uptake rate by 43.3% and 41.4% respectively at 5mM external [15NO(3)(-)]. However, these compounds had little effect when 15NO(3)(-) uptake was assayed at 30 mM external concentration. The ATPase inhibitors DCCD and DES reduced 15NO(3)(-) uptake by 68.8%-35.6%, at both external [15NO(3)(-)]. Nitrate uptake by the LATS declined with the increase of the solution pH beyond pH 4. The data presented are discussed in the context of the kinetics, energy dependence and regulation of NO(3)(-) uptake.

  12. The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. (United States)

    Nisha, M; Satyanarayana, T


    In order to understand the role of N1 domain (1-257 aa) in the amylopullulanase (gt-apu) of the extremely thermophilic bacterium Geobacillus thermoleovorans NP33, N1 deletion construct (gt-apuΔN) has been generated and expressed in Escherichia coli. The truncated amylopullulanase (gt-apuΔN) exhibits similar pH and temperature optima like gt-apu, but enhanced thermostability. The gt-apuΔN has greater hydrolytic action and specific activity on pullulan than gt-apu. The k cat (starch and pullulan) and K m (starch) values of gt-apuΔN increased, while K m (pullulan) decreased. The enzyme upon N1 deletion hydrolyzed maltotetraose as the smallest substrate in contrast to maltopentaose of gt-apu. The role of N1 domain of gt-apu in raw starch binding has been confirmed, for the first time, based on deletion and Langmuir-Hinshelwood kinetics. Furthermore, N1 domain appears to exert a negative influence on the thermostability of gt-apu because N1 truncation significantly improves thermostability.

  13. Crystal structures of starch binding domain from Rhizopus oryzae glucoamylase in complex with isomaltooligosaccharide: insights into polysaccharide binding mechanism of CBM21 family. (United States)

    Chu, Chen-Hsi; Li, Kun-Mou; Lin, Shih-Wei; Chang, Margaret Dah-Tsyr; Jiang, Ting-Ying; Sun, Yuh-Ju


    Glucoamylases are responsible for hydrolysis of starch and polysaccharides to yield β-D-glucose. Rhizopus oryzae glucoamylase (RoGA) is composed of an N-terminal starch binding domain (SBD) and a C-terminal catalytic domain connected by an O-glycosylated linker. Two carbohydrate binding sites in RoSBD have been identified, site I is created by three highly conserved aromatic residues, Trp47, Tyr83, and Tyr94, and site II is built up by Tyr32 and Phe58. Here, the two crystal structures of RoSBD in complex with only α-(1,6)-linked isomaltotriose (RoSBD-isoG3) and isomaltotetraose (RoSBD-isoG4) have been determined at 1.2 and 1.3 Å, respectively. Interestingly, site II binding is observed in both complexes, while site I binding is only found in the RoSBD-isoG4 complex. Hence, site II acts as the recognition binding site for carbohydrate and site I accommodates site II to bind isoG4. Site I participates in sugar binding only when the number of glucosyl units of oligosaccharides is more than three. Taken together, two carbohydrate binding sites in RoSBD cooperate to reinforce binding mode of glucoamylase with polysaccharides as well as the starch.

  14. Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC. (United States)

    Hyrc, K L; Bownik, J M; Goldberg, M P


    Accurate measurement of elevated intracellular calcium levels requires indicators with low calcium affinity and high selectivity. We examined fluorescence spectral properties and ionic specificity of three low-affinity, ratiometric indicators structurally related to Fura-2: mag-Fura-2 (furaptra), Fura-2FF, and BTC. The indicators differed in respect to their excitation wavelengths, affinity for Ca2+ (Kd approximately 20 microM, 6 microM and 12 microM respectively) and selectivity over Mg2+ (Kd approximately 2 mM for mag-Fura-2, > 10 mM for Fura-2FF and BTC). Among the tested indicators, BTC was limited by a modest dynamic range upon Ca2+ binding, susceptibility to photodamage, and sensitivity to alterations in pH. All three indicators bound other metal ions including Zn2+, Cd2+ and Gd3+. Interestingly, only in the case of BTC were spectral differences apparent between Ca2+ and other metal ions. For example, the presence of Zn2+ increased BTC fluorescence 6-fold at the Ca2+ isosbestic point, suggesting that this dye may be used as a fluorescent Zn2+ indicator. Fura-2FF has high specificity, wide dynamic range, and low pH sensitivity, and is an optimal low-affinity Ca2+ indicator for most imaging applications. BTC may be useful if experimental conditions require visible wavelength excitation or sensitivity to other metal ions including Zn2+.

  15. Role of the low-affinity binding site in electron transfer from cytochrome C to cytochrome C peroxidase. (United States)

    Mei, Hongkang; Geren, Lois; Miller, Mark A; Durham, Bill; Millett, Francis


    The interaction of yeast iso-1-cytochrome c (yCc) with the high- and low-affinity binding sites on cytochrome c peroxidase compound I (CMPI) was studied by stopped-flow spectroscopy. When 3 microM reduced yCc(II) was mixed with 0.5 microM CMPI at 10 mM ionic strength, the Trp-191 radical cation was reduced from the high-affinity site with an apparent rate constant >3000 s(-1), followed by slow reduction of the oxyferryl heme with a rate constant of only 10 s(-1). In contrast, mixing 3 microM reduced yCc(II) with 0.5 microM preformed CMPI *yCc(III) complex led to reduction of the radical cation with a rate constant of 10 s(-1), followed by reduction of the oxyferryl heme in compound II with the same rate constant. The rate constants for reduction of the radical cation and the oxyferryl heme both increased with increasing concentrations of yCc(II) and remained equal to each other. These results are consistent with a mechanism in which both the Trp-191 radical cation and the oxyferryl heme are reduced by yCc(II) in the high-affinity binding site, and the reaction is rate-limited by product dissociation of yCc(III) from the high-affinity site with apparent rate constant k(d). Binding yCc(II) to the low-affinity site is proposed to increase the rate constant for dissociation of yCc(III) from the high-affinity site in a substrate-assisted product dissociation mechanism. The value of k(d) is 2000 s(-1) for the 2:1 complex at 10 mM ionic strength. The reaction of horse Cc(II) with CMPI was greatly inhibited by binding 1 equiv of yCc(III) to the high-affinity site, providing evidence that reduction of the oxyferryl heme involves electron transfer from the high-affinity binding site rather than the low-affinity site. The effects of CcP surface mutations on the dissociation rate constant indicate that the high-affinity binding site used for the reaction in solution is the same as the one identified in the yCc*CcP crystal structure.

  16. The contribution of low affinity NGF receptor (p75NGFR to delayed neuronal death after ischemia in the gerbil hippocampus.

    Directory of Open Access Journals (Sweden)

    Bagum MA


    Full Text Available The implication of low affinity nerve growth factor receptor (p75NGFR, which is believed to play a pro-apoptotic role, in delayed neuronal death (DND after ischemia in the gerbil hippocampus was investigated. Immunohistochemistry and Western blot analysis revealed that the presence of p75 NGFR immunoreactivity (IR was negligible in the hippocampus of the sham control gerbil but appeared clearly in CA1 neurons 3 and 4 days after 5-min transient ischemia. Terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL positive nuclei appeared when the level of p75NGFR IR increased. Furthermore, almost all TUNEL-positive CA1 neurons also costained for p75NGFR. These results suggest that p75NGFR contributes to DND after ischemia by an apoptotic mechanism.

  17. Ethanol-Induced ADH Activity in Zebrafish: Differential Concentration-Dependent Effects on High- Versus Low-Affinity ADH Enzymes. (United States)

    Tran, Steven; Nowicki, Magda; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert


    Zebrafish express enzymes that metabolize ethanol in a manner comparable to that of mammals, including humans. We previously demonstrated that acute ethanol exposure increases alcohol dehydrogenase (ADH) activity in an inverted U-shaped dose-dependent manner. It was hypothesized that the biphasic dose-response was due to the increased activity of a high-affinity ADH isoform following exposure to low concentrations of ethanol and increased activity of a low-affinity ADH isoform following exposure to higher concentrations of ethanol. To test this hypothesis, we exposed zebrafish to different concentrations of ethanol (0%, 0.25%, 0.5%, and 1.0% v/v) for 30 min and measured the total ADH activity in the zebrafish liver. However, we also repeated this enzyme activity assay using a low concentration of the substrate (ethanol) to determine the activity of high-affinity ADH isoforms. We found that total ADH activity in response to ethanol induces an inverted U-shaped dose-response similar to our previous study. Using a lower substrate level in our enzyme assay targeting high-affinity isozymes, we found a similar dose-response. However, the difference in activity between the high and low substrate assays (high substrate activity - low substrate activity), which provide an index of activity for low-affinity ADH isoforms, revealed no significant effect of ethanol exposure. Our results suggest that the inverted U-shaped dose-response for total ADH activity in response to ethanol is driven primarily by high-affinity isoforms of ADH.

  18. A low-affinity penicillin-binding protein 2x variant is required for heteroresistance in Streptococcus pneumoniae. (United States)

    Engel, Hansjürg; Mika, Moana; Denapaite, Dalia; Hakenbeck, Regine; Mühlemann, Kathrin; Heller, Manfred; Hathaway, Lucy J; Hilty, Markus


    Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from the heteroresistant strain Spain(23F) 2349 in the nonheteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of pbp2x expression was not observed, and therefore, expression does not correlate with an increased proportion of resistant subpopulations. In addition, the influence of the CiaRH system, mediating PBP-independent β-lactam resistance, was assessed by PAP on ciaR disruption mutants but revealed no heteroresistant phenotype. We also showed that the highly resistant subpopulations (HOM*) of transformants containing low-affinity pbp2x undergo an increase in resistance upon selection on penicillin plates that partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins encoded by pstS, phoU, pstB, and pstC in these highly resistant subpopulations. In conclusion, the presence of low-affinity pbp2x enables certain pneumococcal colonies to survive in the presence of β-lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaptation to antibiotic stress.

  19. The high-affinity maltose switch MBP317-347 has low affinity for glucose: implications for targeting tumors with metabolically directed enzyme prodrug therapy. (United States)

    Valdes, Gilmer; Schulte, Reinhard W; Ostermeier, Marc; Iwamoto, Keisuke S


    Development of agents with high affinity and specificity for tumor-specific markers is an important goal of molecular-targeted therapy. Here, we propose a shift in paradigm using a strategy that relies on low affinity for fundamental metabolites found in different concentrations in cancerous and non-cancerous tissues: glucose and lactate. A molecular switch, MBP317-347, originally designed to be a high-affinity switch for maltose and maltose-like polysaccharides, was demonstrated to be a low-affinity switch for glucose, that is, able to be activated by high concentrations (tens of millimolar) of glucose. We propose that such a low-affinity glucose switch could be used as a proof of concept for a new prodrug therapy strategy denominated metabolically directed enzyme prodrug therapy (MDEPT) where glucose or, preferably, lactate serves as the activator. Accordingly, considering the typical differential concentrations of lactate found in tumors and in healthy tissues, a low-affinity lactate-binding switch analogous to the low-affinity glucose-binding switch MBP317-347 would be an order of magnitude more active in tumors than in normal tissues and therefore can work as a differential activator of anticancer drugs in tumors.

  20. Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Raquel Cuevas-Diaz Duran


    Full Text Available Adipose-derived stem cells (ADSCs are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271, yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects.

  1. Rational design of a low-affinity peptide for the detection of cystatin C in a fast homogeneous immunoassay. (United States)

    Dobslaff, Kristin; Zscharnack, Kristin; Kreisig, Thomas; Zuchner, Thole


    Immunoassays play an essential role in current research and diagnostics resulting in a variety of detection principles. Thereby, homogeneous assays are often used for a fast signal response as demanded for example in point-of-care diagnostics. These systems often rely on a competitive assay design where the sample analyte and the corresponding dye-labeled substance are competing for binding sites on an antibody present in limited amounts. Due to the similar affinities of the antibody towards the sample analyte and the competitor, both sensitivity and assay time are limited. As a consequence, a competitor with a slightly reduced affinity towards the antibody can potentially overcome these drawbacks. Here, we present the rational design of a low-affinity peptide (donor peptide) as a specific analyte competitor for a FRET-based homogeneous immunoassay for the analysis of the protein cystatin C. Thereby, the strategy of peptide-induced antibody generation was combined with the selective variation of the immunization sequence in order to achieve a lower affinity towards the antibody. We could show that shortened donor peptides improved the resulting quenching efficiency in the immunoassay. In addition, the substitution of small hydrophobic amino acids by those with a higher steric demand appeared to be the most promising strategy providing a fast assay response for cystatin C of only 90 s.

  2. Low-affinity neurotrophin receptor with targeted mutation of exon 3 is capable of mediating the death of axotomized neurons. (United States)

    Murray, Simon S; Bartlett, Perry F; Lopes, Elizabeth C; Coulson, Elizabeth J; Greferath, Una; Cheema, Surindar S


    1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo, we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.

  3. A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store. (United States)

    Henderson, Mark J; Baldwin, Heather A; Werley, Christopher A; Boccardo, Stefano; Whitaker, Leslie R; Yan, Xiaokang; Holt, Graham T; Schreiter, Eric R; Looger, Loren L; Cohen, Adam E; Kim, Douglas S; Harvey, Brandon K


    Endoplasmic reticulum calcium homeostasis is critical for cellular functions and is disrupted in diverse pathologies including neurodegeneration and cardiovascular disease. Owing to the high concentration of calcium within the ER, studying this subcellular compartment requires tools that are optimized for these conditions. To develop a single-fluorophore genetically encoded calcium indicator for this organelle, we targeted a low affinity variant of GCaMP3 to the ER lumen (GCaMPer (10.19)). A set of viral vectors was constructed to express GCaMPer in human neuroblastoma cells, rat primary cortical neurons, and human induced pluripotent stem cell-derived cardiomyocytes. We observed dynamic changes in GCaMPer (10.19) fluorescence in response to pharmacologic manipulations of the ER calcium store. Additionally, periodic calcium efflux from the ER was observed during spontaneous beating of cardiomyocytes. GCaMPer (10.19) has utility in imaging ER calcium in living cells and providing insight into luminal calcium dynamics under physiologic and pathologic states.

  4. A Low Affinity GCaMP3 Variant (GCaMPer for Imaging the Endoplasmic Reticulum Calcium Store.

    Directory of Open Access Journals (Sweden)

    Mark J Henderson

    Full Text Available Endoplasmic reticulum calcium homeostasis is critical for cellular functions and is disrupted in diverse pathologies including neurodegeneration and cardiovascular disease. Owing to the high concentration of calcium within the ER, studying this subcellular compartment requires tools that are optimized for these conditions. To develop a single-fluorophore genetically encoded calcium indicator for this organelle, we targeted a low affinity variant of GCaMP3 to the ER lumen (GCaMPer (10.19. A set of viral vectors was constructed to express GCaMPer in human neuroblastoma cells, rat primary cortical neurons, and human induced pluripotent stem cell-derived cardiomyocytes. We observed dynamic changes in GCaMPer (10.19 fluorescence in response to pharmacologic manipulations of the ER calcium store. Additionally, periodic calcium efflux from the ER was observed during spontaneous beating of cardiomyocytes. GCaMPer (10.19 has utility in imaging ER calcium in living cells and providing insight into luminal calcium dynamics under physiologic and pathologic states.

  5. Association of low-affinity FC gamma receptor 3B (FCGR3B) copy number variation with rheumatoid arthritis in Caucasian subjects

    NARCIS (Netherlands)

    Merriman, T.R.; Fanciulli, M.; Merriman, M.E.; Alizadeh, B.Z.; Koeleman, B.P.C.; Dalbeth, N.; Gow, P.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Vyse, T.; Aitman, T.; Radstake, T.; McKinney, C.


    Aim: There is increasing evidence that gene copy-number variation influences phenotypic variation. The low-affinity Fc receptor 3B (FCGR3B) is a copy-number polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMN). Given the importan

  6. YehZYXW of Escherichia coli Is a Low-Affinity, Non-Osmoregulatory Betaine-Specific ABC Transporter. (United States)

    Lang, Shenhui; Cressatti, Marisa; Mendoza, Kris E; Coumoundouros, Chelsea N; Plater, Samantha M; Culham, Doreen E; Kimber, Matthew S; Wood, Janet M


    Transporter-mediated osmolyte accumulation stimulates the growth of Escherichia coli in high-osmolality environments. YehZYXW was predicted to be an osmoregulatory transporter because (1) osmotic and stationary phase induction of yehZYXW is mediated by RpoS, (2) the Yeh proteins are homologous to the components of known osmoregulatory ABC transporters (e.g., ProU of E. coli), and (3) YehZ models based on the structures of periplasmic betaine-binding proteins suggested that YehZ retains key betaine-binding residues. The betaines choline-O-sulfate, glycine betaine, and dimethylsulfoniopropionate bound YehZ and ProX with millimolar and micromolar affinities, respectively, as determined by equilibrium dialysis and isothermal titration calorimetry. The crystal structure of the YehZ apoprotein, determined at 1.5 Å resolution (PDB ID: 4WEP ), confirmed its similarity to other betaine-binding proteins. Small and nonpolar residues in the hinge region of YehZ (e.g., Gly223) pack more closely than the corresponding residues in ProX, stabilizing the apoprotein. Betaines bound YehZ-Gly223Ser an order of magnitude more tightly than YehZ, suggesting that weak substrate binding in YehZ is at least partially due to apo state stabilization. Neither ProX nor YehZ bound proline. Assays based on osmoprotection or proline auxotrophy failed to detect YehZYXW-mediated uptake of proline, betaines, or other osmolytes. However, transport assays revealed low-affinity glycine betaine uptake, mediated by YehZYXW, that was inhibited at high salinity. Thus, YehZYXW is a betaine transporter that shares substrate specificity, but not an osmoregulatory function, with homologues like E. coli ProU. Other work suggests that yehZYXW may be an antivirulence locus whose expression promotes persistent, asymptomatic bacterial infection.

  7. GintAMT3 – a Low-Affinity Ammonium Transporter of the Arbuscular Mycorrhizal Rhizophagus irregularis (United States)

    Calabrese, Silvia; Pérez-Tienda, Jacob; Ellerbeck, Matthias; Arnould, Christine; Chatagnier, Odile; Boller, Thomas; Schüßler, Arthur; Brachmann, Andreas; Wipf, Daniel; Ferrol, Nuria; Courty, Pierre-Emmanuel


    Nutrient acquisition and transfer are essential steps in the arbuscular mycorrhizal (AM) symbiosis, which is formed by the majority of land plants. Mineral nutrients are taken up by AM fungi from the soil and transferred to the plant partner. Within the cortical plant root cells the fungal hyphae form tree-like structures (arbuscules) where the nutrients are released to the plant-fungal interface, i.e., to the periarbuscular space, before being taken up by the plant. In exchange, the AM fungi receive carbohydrates from the plant host. Besides the well-studied uptake of phosphorus (P), the uptake and transfer of nitrogen (N) plays a crucial role in this mutualistic interaction. In the AM fungus Rhizophagus irregularis (formerly called Glomus intraradices), two ammonium transporters (AMT) were previously described, namely GintAMT1 and GintAMT2. Here, we report the identification and characterization of a newly identified R. irregularis AMT, GintAMT3. Phylogenetic analyses revealed high sequence similarity to previously identified AM fungal AMTs and a clear separation from other fungal AMTs. Topological analysis indicated GintAMT3 to be a membrane bound pore forming protein, and GFP tagging showed it to be highly expressed in the intraradical mycelium of a fully established AM symbiosis. Expression of GintAMT3 in yeast successfully complemented the yeast AMT triple deletion mutant (MATa ura3 mep1Δ mep2Δ::LEU2 mep3Δ::KanMX2). GintAMT3 is characterized as a low affinity transport system with an apparent Km of 1.8 mM and a Vmax of 240 nmol-1 min-1 108 cells-1, which is regulated by substrate concentration and carbon supply. PMID:27252708

  8. The advanced glycation end product-lowering agent ALT-711 is a low-affinity inhibitor of thiamine diphosphokinase. (United States)

    Krautwald, Martina; Leech, Dale; Horne, Stacey; Steele, Megan L; Forbes, Josephine; Rahmadi, Anton; Griffith, Renate; Münch, Gerald


    Advanced glycation end products (AGEs) are involved in age-related diseases, including the complications of diabetes and chronic renal impairment with arterial stiffening. Alagebrium chloride (ALT-711) is an AGE-lowering agent with beneficial effects in renal structural and functional parameters in diabetes, decreased diabetes-accelerated atherosclerosis, and age-related myocardial stiffening. ALT-711 exhibits a structural homology to thiamine, and it was suggested to interfere with thiamine metabolism. Thiamine is converted to thiamine diphosphate (TDP) by thiamine diphosphokinase (TDPK). TDP is a cofactor for pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase. A decreased activity of these enzymes due to TDP deficiency results in disorders such as beriberi and Wernicke-Korsakoff syndrome. Therefore, we investigated whether ALT-711 is an inhibitor of TDPK. Molecular modeling studies showed that ALT-711 fits into the thiamine-binding pocket of TDPK, and there are three interactions between the thiazolium ring and the enzyme, as well as parallel stacking between the phenyl ring and the indole ring of Trp222B. Enzyme kinetic experiments also showed that ALT-711 dose-dependently decreased TDPK activity with K(i)s, calculated by different experiments and fitting models ranging from 0.88 to 1.09 mM. Fitting of the kinetic data favored mixed-mode inhibition with a major role for competitive inhibition. In summary, our results suggest that ALT-711 is a low-affinity inhibitor of TDPK, but is unlikely to interfere with thiamine metabolism at therapeutic concentrations. However, when new AGE-crosslink breakers based on thiamine are designed, care should be taken that they do not act as more potent competitive inhibitors than ALT-711.

  9. GintAMT3 – a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis

    Directory of Open Access Journals (Sweden)

    Silvia eCalabrese


    Full Text Available Nutrient acquisition and transfer are essential steps in the arbuscular mycorrhizal (AM symbiosis, which is formed by the majority of land plants. Mineral nutrients are taken up by AM fungi from the soil and transferred to the plant partner. Within the cortical plant root cells the fungal hyphae form tree-like structures (arbuscules where the nutrients are released to the plant-fungal interface, i.e. to the periarbuscular space, before being taken up by the plant. In exchange, the AM fungi receive valuable carbohydrates from the plant host. Besides the well-studied uptake of phosphorus (P, the uptake and transfer of nitrogen (N plays a crucial role in this mutualistic interaction. In the AM fungus Rhizophagus irregularis (formerly called Glomus intraradices, two ammonium transporters (AMT were previously described, namely GintAMT1 and GintAMT2. Here, we report the identification and characterization of a newly identified R. irregularis AMT, GintAMT3. Phylogenetic analyses revealed high sequence similarity to previously identified AM fungal AMTs and a clear separation from other fungal AMTs. Topological analysis indicated GintAMT3 to be a membrane bound pore forming protein, and GFP tagging showed it to be highly expressed in the intraradical mycelium (IRM of a fully established AM symbiosis. Expression of GintAMT3 in yeast successfully complemented the yeast AMT triple deletion mutant (MATa ura3 mep1Δ mep2Δ::LEU2 mep3Δ::KanMX2. GintAMT3 is characterized as a low affinity transport system with an apparent Km of 1.8 mM and a Vmax of 240 nmol-1 min-1 108 cells-1, which is regulated by substrate concentration and carbon supply.

  10. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    Energy Technology Data Exchange (ETDEWEB)

    Krizsan, D. (EGIS Pharmaceutical Works, Budapest (Hungary)); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. (Biological Research Center of the Hungarian Academy of Sciences, Szeged (Hungary)); Hosztafi, S. (Alkaloida Chemical Works, Tiszavasvari (Hungary))


    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  11. Effect of NaC1 on inactivation of bovine thrombin by antithrombin III in the presence of low affinity-heparin or dextran sulfate. (United States)

    Oshima, G; Nagasawa, K


    Heparin with low affinity (LA-heparin) to antithrombin III (AT III) enhanced the rate of inactivation of thrombin by AT III. The enhancement of the rate was saturable with AT III and was proportional to the LA-heparin concentration. Although the rate-enhancement in the presence of LA-heparin decreased with increase in NaC1 concentration, it was comparable with that in the presence of high affinity-heparin (HA-heparin) in the absence of NaC1. Inactivation of thrombin by AT III in the presence of dextran sulfate (DS) was also sensitive to NaC1 concentration. These findings indicate that free AT III is favorable for binding to the complexes of thrombin and highly sulfated polysaccharides having low affinities to AT III in the absence of NaC1.

  12. Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng


    Full Text Available The 72 kDa heat shock protein (HSP72 is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV nucleocapsid protein (N, a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins.

  13. Taking Advantage: High Affinity B cells in the Germinal Center Have Lower Death Rates, But Similar Rates of Division Compared to Low Affinity Cells1



    B lymphocytes producing high affinity antibodies (Abs) are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high affinity B cells are selected during the immune response has never been elucidated. Though it has been shown that high affinity cells directly outcompete low affinity cells in the germinal center (GC)2, whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity c...

  14. Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. (United States)

    Anderson, Shannon M; Khalil, Ashraf; Uduman, Mohamed; Hershberg, Uri; Louzoun, Yoram; Haberman, Ann M; Kleinstein, Steven H; Shlomchik, Mark J


    B lymphocytes producing high-affinity Abs are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high-affinity B cells are selected during the immune response has never been elucidated. Although it has been shown that high-affinity cells directly outcompete low-affinity cells in the germinal center (GC), whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity cells proliferate more rapidly or are more likely to enter cell cycle, thereby outgrowing lower affinity cells. Alternatively, higher affinity cells could be relatively more resistant to cell death in the GC. By comparing high- and low-affinity B cells for the same Ag, we show here that low-affinity cells have an intrinsically higher death rate than do cells of higher affinity, even in the absence of competition. This suggests that selection in the GC reaction is due at least in part to the control of survival of higher affinity B cells and not by a proliferative advantage conferred upon these cells compared with lower affinity B cells. Control over survival rather than proliferation of low- and high-affinity B cells in the GC allows greater diversity not only in the primary response but also in the memory response.

  15. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.


    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  16. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. (United States)

    Antyborzec, Inga; O'Leary, Valerie B; Dolly, James O; Ovsepian, Saak V


    Basal forebrain cholinergic neurons (BFCNs) are one of the most affected neuronal types in Alzheimer's disease (AD), with their extensive loss documented at late stages of the pathology. While discriminatory provision of neuroprotective agents and trophic factors to these cells is thought to be of substantial therapeutic potential, the intricate topography and structure of the forebrain cholinergic system imposes a major challenge. To overcome this, we took advantage of the physiological enrichment of BFCNs with a low-affinity p75 neurotrophin receptor (p75(NTR)) for their targeting by lentiviral vectors within the intact brain of adult rat. Herein, a method is described that affords selective and effective transduction of BFCNs with a green fluorescence protein (GFP) reporter, which combines streptavidin-biotin technology with anti-p75(NTR) antibody-coated lentiviral vectors. Specific GFP expression in cholinergic neurons was attained in the medial septum and nuclei of the diagonal band Broca after a single intraventricular administration of such targeted vectors. Bioelectrical activity of GFP-labeled neurons was proven to be unchanged. Thus, proof of principle is obtained for the utility of the low-affinity p75(NTR) for targeted transduction of vectors to BFCNs in vivo.

  17. Adjuvant dependence of APS pathology-related low-affinity antibodies during secondary immune response to tetanus toxoid in BALB/c mice. (United States)

    Zivković, Irena; Petrušić, Vladimir; Dimitrijević, Rajna; Stojanović, Marijana; Dimitrijević, Ljiljana


    One of the established animal models for autoimmune disease antiphospholipid syndrome (APS) is TTd hyperimmunization of mice. Tetanus toxoid (TTd) and plasma protein β2GPI share structural homology so that immunization with TTd induces appearance of cross-reactive antibodies. In this paper, we have investigated the presence and dynamic of fluctuation of specific (anti-TTd) and auto (anti-β2GPI) antibodies induced in BALB/c mice during secondary immune response after TTd immunization with alhydrogel or glycerol as adjuvants. In addition, we followed the induced reproductive pathology as a sign of autoimmune outcome. We show undoubtedly adjuvant dependance of (1) level of induced anti-TTd IgG antibodies, (2) changes in levels of low-affinity anti-β2GPI IgG antibodies, and (3) change in fecundity and fertility during secondary immune response. These findings once more indicate the importance of chosen adjuvants used for successful immunization and eventual autoantibody outcome, this time associated with the processes involving low affinity, natural antibodies.

  18. Oxycodone is associated with dose-dependent QTc prolongation in patients and low-affinity inhibiting of hERG activity in vitro

    DEFF Research Database (Denmark)

    Fanoe, Søren; Jensen, Gorm Boje; Sjøgren, Per;


    with the use of these drugs. WHAT THIS PAPER ADDS: This study is the first to show that oxycodone dose is associated with QT prolongation and in vitro blockade of hERG channels expressed in HEK293. Neither morphine nor tramadol doses are associated with the QT interval length. AIMS: During recent years some...... patients treated with methadone, oxycodone, morphine or tramadol were recruited in a cross-sectional study. The QTc was estimated from a 12-lead ECG. To examine hERG activity in the presence of oxycodone, electrophysiological testing was conducted using Xenopus laevis oocytes and HEK293 cells expressing h...... dose was associated with a 10 ms(1/2) (95% CI 2-19) longer QTc. Neither morphine nor tramadol dose was associated with the QTc. Electrophysiological testing revealed low-affinity inhibition of the potassium current through hERG channels expressed in HEK293 cells (IC(50) = 171 microM oxycodone...

  19. Low-affinity FcγR interactions can decide the fate of novel human IgG-sensitised red blood cells and platelets. (United States)

    Armour, Kathryn L; Smith, Cheryl S; Turner, Craig P; Kirton, Christopher M; Wilkes, Anthony M; Hadley, Andrew G; Ghevaert, Cedric; Williamson, Lorna M; Clark, Michael R


    G1Δnab is a mutant human IgG1 constant region with a lower ability to interact with FcγR than the natural IgG constant regions. Radiolabelled RBCs and platelets sensitised with specific G1Δnab Abs were cleared more slowly from human circulation than IgG1-sensitised counterparts. However, non-destructive splenic retention of G1Δnab-coated RBCs required investigation and plasma radioactivities now suggest this also occurred for platelets sensitised with an IgG1/G1Δnab mixture. In vitro assays with human cells showed that G1Δnab-sensitised RBCs did not cause FcγRI-mediated monocyte activation, FcγRIIIa-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) or macrophage phagocytosis although they did adhere to macrophages. Thus, FcγRII was implicated in the adhesion despite the Δnab mutation reducing the already low-affinity binding to this receptor class. Additional contacts via P-selectin enhance the interaction of sensitised platelets with monocytes and this system provided evidence of FcγRII-dependent activation by G1Δnab. These results emphasise the physiological relevance of low-affinity interactions: It appears that FcγRII interactions of G1Δnab allowed splenic retention of G1Δnab-coated RBCs with inhibitory FcγRIIb binding preventing RBC destruction and that FcγRIIb engagement by G1Δnab on IgG1/G1Δnab-sensitised platelets overcame activation by IgG1. Considering therapeutic blocking Abs, G1Δnab offers lower FcγR binding and a greater bias towards inhibition than IgG2 and IgG4 constant regions.

  20. Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2. (United States)

    Muñoz-Montesino, Carola; Roa, Francisco J; Peña, Eduardo; González, Mauricio; Sotomayor, Kirsty; Inostroza, Eveling; Muñoz, Carolina A; González, Iván; Maldonado, Mafalda; Soliz, Carlos; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I


    Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is

  1. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper


    phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...... glucan phosphatases showed similar affinities for the short oligosaccharide β-cyclodextrin. We performed structure-guided mutagenesis to define the mechanism of these differences. We found that the carbohydrate binding module (CBM) domain provided a stronger binding affinity compared to surface binding...

  2. Activation of high and low affinity dopamine receptors generates a closed loop that maintains a conductance ratio and its activity correlate

    Directory of Open Access Journals (Sweden)

    Wulf-Dieter Christian Krenz


    Full Text Available Neuromodulators alter network output and have the potential to destabilize a circuit. The mechanisms maintaining stability in the face of neuromodulation are not well described. Using the pyloric network in the crustacean stomatogastric nervous system, we show that dopamine (DA does not simply alter circuit output, but activates a closed loop in which DA-induced alterations in circuit output consequently drive a change in an ionic conductance to preserve a conductance ratio and its activity correlate. DA acted at low affinity type 1 receptors (D1Rs to induce an immediate modulatory decrease in the transient potassium current (IA of a pyloric neuron. This, in turn, advanced the activity phase of that component neuron, which disrupted its network function and thereby destabilized the circuit. DA simultaneously acted at high affinity D1Rs on the same neuron to confer activity-dependence upon the hyperpolarization activated current (Ih such that the DA-induced changes in activity subsequently reduced Ih. This DA-enabled, activity-dependent, intrinsic plasticity exactly compensated for the modulatory decrease in IA to restore the IA:Ih ratio and neuronal activity phase, thereby closing an open loop created by the modulator. Activation of closed loops to preserve conductance ratios may represent a fundamental operating principle neuromodulatory systems use to ensure stability in their target networks.

  3. An azide-insensitive low-affinity ATPase stimulated by Ca2+ or Mg2+ in basal-lateral and brush border membranes of kidney cortex. (United States)

    Ilsbroux, I; Vanduffel, L; Teuchy, H; De Cuyper, M


    Basal-lateral and brush border membranes from pig kidney cortex were prepared by differential centrifugation followed by free-flow electrophoresis. In each type of membrane, azide-insensitive, low-affinity Ca2+-ATPase and Mg2+-ATPase activities are demonstrated. A comparative study for both membranes further reveals the following analogies between these ATPases: (a) they show maximal activity between pH 8 and 8.5; (b) they exhibit Km values for Ca-ATP or Mg-ATP in the millimolar range and have a comparable low substrate specificity; (c) they are insensitive to 10 microM of vanadate, N,N'-dicyclohexylcarbodiimide, e diethylstilbestrol, quercetin, harmaline and amiloride. The partial inhibition by 1 mM of the various compounds is rather aspecific. In view of these similarities it is concluded that only one enzyme entity is responsible for the activity which is measured in both membrane types. The HCO3-stimulated Mg2+-ATPase activity in pig kidney cortex was also studied. This enzyme, however, is clearly of mitochondrial origin since the HCO3-stimulation coincides with the distribution profile of succinate dehydrogenase, a mitochondrial marker; and since it is inhibited by azide.

  4. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

    DEFF Research Database (Denmark)

    Morrill, Johan; Kulcinskaja, Evelina; Sulewska, Anna Maria;


    β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here....... Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs...... by an exceptionally low Km and the presence of an atypical low affinity CBM, which increases binding to specifically to soluble mannan while causing minimal decrease in catalytic efficiency as opposed to enzymes with canonical mannan binding modules. These features highlight fine tuning of catalytic and binding...

  5. Assessment of GM-CSF receptors by real-time RT-PCR on cell lines expressing high and low affinity receptors and their relation to cytotoxic effect of chimeric protein (StxA1-GM-CSF

    Directory of Open Access Journals (Sweden)

    Habibi Roudkenar M.


    Full Text Available Immunotoxins, which are composed of both the cell targeting and the cell killing moieties are the new approach for targeted therapy of human disease .In all immunotoxins that GM-CSF has been used as cell targeting; only cell lines expressing high affinity receptor have been used for cytotoxicity studies. In the present study, various cell lines expressing high and low affinity receptors were used for assessment of the cytotoxic effect of hybrid chimeric protein. The expression of GM-CSF receptor (GM-CSFR was quantified by real-time RT- PCR. The cell lines K562 and THP1 expressing high affinity receptor and MC-7, PC-3 and DU145 expressing low affinity receptor were used for this study. The chimeric hybrid protein was found to be toxic for various cell lines used in this investigation and cytotoxicity was more effective in cell lines bearing high affinity receptors. Overall, our results showed that the recombinant hybrid protein could have wide range of application on various cancer cell lines even cells bearing low affinity receptors for GM-CSF.

  6. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals

    DEFF Research Database (Denmark)

    Janeček, Štefan; Svensson, Birte; MacGregor, E. Ann


    Starch-binding domains (SBDs) comprise distinct protein modules that bind starch, glycogen or related carbohydrates and have been classified into different families of carbohydrate-binding modules (CBMs). The present review focuses on SBDs of CBM20 and CBM48 found in amylolytic enzymes from sever...

  7. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

    DEFF Research Database (Denmark)

    Morrill, Johan; Kulcinskaja, Evelina; Sulewska, Anna Maria


    β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here......, we report the biochemical properties of the first family 5 subfamily 8 glycoside hydrolase (GH5_8) mannanase from the probiotic bacterium Bifidobacterium animalis subsp. lactis Bl-04 (BlMan5_8). BlMan5_8 possesses a novel low affinity carbohydrate binding module (CBM) specific for soluble mannan...

  8. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

    DEFF Research Database (Denmark)

    Morrill, Johan; Kulcinskaja, Evelina; Sulewska, Anna Maria;


    β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here......, we report the biochemical properties of the first family 5 subfamily 8 glycoside hydrolase (GH5_8) mannanase from the probiotic bacterium Bifidobacterium animalis subsp. lactis Bl-04 (BlMan5_8). BlMan5_8 possesses a novel low affinity carbohydrate binding module (CBM) specific for soluble mannan...

  9. Role of H{sub 2}O{sub 2} on the kinetics of low-affinity high-capacity Na{sup +}-dependent alanine transport in SHR proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Vanda; Pinho, Maria Joao [Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto (Portugal); Jose, Pedro A. [Center for Molecular Physiology Research, Children' s National Medical Center, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC (United States); Soares-da-Silva, Patricio, E-mail: [Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto (Portugal)


    Research highlights: {yields} H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only. {yields} It is suggested that Na{sup +} binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H{sub 2}O{sub 2} on the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na{sup +} dependence of [{sup 14}C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na{sup +} removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H{sub 2}O{sub 2} levels in the extracellular medium significantly reduced Na{sup +}-K{sub m} and V{sub max} values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake. After removal of apocynin from the culture medium, H{sub 2}O{sub 2} levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na{sup +}-K{sub m} and V{sub max} of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only

  10. The carbohydrate-binding module family 20-diversity, structure, and function

    DEFF Research Database (Denmark)

    Christiansen, Camilla; Abou Hachem, Maher; Janecek, S.


    Starch-active enzymes often possess starch-binding domains (SBDs) mediating attachment to starch granules and other high molecular weight substrates. SBDs are divided into nine carbohydrate-binding module (CBM) families, and CBM20 is the earliest-assigned and best characterized family. High...... diversity characterizes CBM20s, which occur in starch-active glycoside hydrolase families 13, 14, 15, and 77, and enzymes involved in starch or glycogen metabolism, exemplified by the starch-phosphorylating enzyme glucan, water dikinase 3 from Arabidopsis thaliana and the mammalian glycogen phosphatases......, laforins. The clear evolutionary relatedness of CBM20s to CBM21s, CBM48s and CBM53s suggests a common clan hosting most of the known SBDs. This review surveys the diversity within the CBM20 family, and makes an evolutionary comparison with CBM21s, CBM48s and CBM53s, discussing intrafamily and interfamily...

  11. Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. (United States)

    Eisen, Herman N


    The antibodies produced initially in response to most antigens are high molecular weight (MW) immunoglobulins (IgM) with low affinity for the antigen, while the antibodies produced later are lower MW classes (e.g., IgG and IgA) with, on average, orders of magnitude higher affinity for that antigen. These changes, often termed affinity maturation, take place largely in small B-cell clusters (germinal center; GC) in lymphoid tissues in which proliferating antigen-stimulated B cells express the highly mutagenic cytidine deaminase that mediates immunoglobulin class-switching and sequence diversification of the immunoglobulin variable domains of antigen-binding receptors on B cells (BCR). Of the large library of BCR-mutated B cells thus rapidly generated, a small minority with affinity-enhancing mutations are selected to survive and differentiate into long-lived antibody-secreting plasma cells and memory B cells. BCRs are also endocytic receptors; they internalize and cleave BCR-bound antigen, yielding peptide-MHC complexes that are recognized by follicular helper T cells. Imperfect correlation between BCR affinity for antigen and cognate T-cell engagement may account for the increasing affinity heterogeneity that accompanies the increasing average affinity of antibodies. Conservation of mechanisms underlying mutation and selection of high-affinity antibodies over the ≈200 million years of evolution separating bird and mammal lineages points to the crucial role of antibody affinity enhancement in adaptive immunity.

  12. IgE low affinity receptor (CD23) expression, Plasmodium falciparum specific IgE and tumor necrosis factor-alpha production in Thai uncomplicated and severe falciparum malaria patients. (United States)

    Kumsiri, Ratchanok; Troye-Blomberg, Marita; Pattanapanyasat, Kovit; Krudsood, Srivicha; Maneerat, Yaowapa


    Previous studies have suggested that Plasmodium falciparum (P. falciparum) specific IgE in the form of immune complexes crosslinking the low-affinity receptor (CD23) on monocyte results in tumor necrosis factor (TNF)-α and nitric oxide (NO) production. However, the roles of these parameters in severity and immune protection are still unclear. This study aimed to determine the association between CD23 expression on monocytes, plasma soluble CD23 (sCD23), total IgE, malaria-specific IgE and IgG, and TNF-α levels in P. falciparum infected patients. We evaluated 64 uncomplicated (UC) and 25 severe patients (S), admitted at the Hospital for Tropical Diseases, Mahidol University, and 34 healthy controls (C) enrolled in 2001. Flow cytometry and enzyme linked immunosorbent assays (ELISA) demonstrated that trends of the CD23 expression, levels of sCD23 and specific IgE were higher in the S group as compared to those in the UC and C groups. Plasma levels of P. falciparum specific IgE in the UC (p=0.011) and S groups (p=0.025) were significantly higher than those in C group. In contrast the TNF-α levels tended to be higher in the UC than those in the S (p=0.343) and significantly higher than those in C (p=0.004) groups. The specific IgG levels in UC were significantly higher than those in S and C (pIgE-IgG complexes (r=-0.715, p=0.002). Significant positive correlations between levels of specific IgE and TNF-α (r=0.575, p=0.010); and sCD23 (r=0.597, p=0.000) were also observed. In conclusion, our data suggest that CD23 expression and malaria-specific IgE levels may be involved in the severity of the disease while TNF-α and the malaria-specific IgG may correlate with protection against falciparum malaria.

  13. Phage display selects for amylases with improved low pH starch-binding

    NARCIS (Netherlands)

    Verhaert, RMD; Beekwilder, J; Olsthoorn, R; Quax, WJ; Duin, Jan van


    Directed evolution of secreted industrial enzymes is hampered by the lack of powerful selection techniques. We have explored surface display to select for enzyme variants with improved binding performance on complex polymeric substrates. By a combination of saturation mutagenesis and phage display w

  14. Reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP, with E. coli F1-ATPase and its subunits: the roles of the high affinity binding site in the alpha subunit and the low affinity binding site in the beta subunit. (United States)

    Matsuoka, I; Takeda, K; Futai, M; Tonomura, Y


    . The kinetic properties of the fluorescence change of DNS-ATP in the reaction with the reconstituted EF1-ATPase were quite similar to those of native EF1. Most of our findings are consistent with a simple mechanism that the high affinity catalytic site and low affinity regulatory site exist in the alpha subunit and beta subunit, respectively. However, the findings mentioned in (4) suggest that the binding of the alpha and beta subunit, which is mediated by the gamma subunit, induces conformational change(s) in the ATP binding site located probably in the alpha subunit, and that the conformational change(s) is essential to exert the full hydrolyzing activity.

  15. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.


    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  16. Low affinity and slow Na+-binding precedes high affinity aspartate binding in GltPh

    NARCIS (Netherlands)

    Hänelt, Inga; Jensen, Sonja; Wunnicke, Dorith; Slotboom, Dirk Jan


    GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters (EAATs) that take up the neurotransmitter glutamate. Each protomer in GltPh consis

  17. Synthesis and in vitro evaluation of dioxopyrrolopyrroles as potential low-affinity fluorescent Ca2+ indicators

    Directory of Open Access Journals (Sweden)

    Nesibe Avcıbaşi


    1,4-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP3 have been synthesized and evaluated for their Ca2+ binding properties via fluorimetric titrations. The in vitro dissociation constant Kd measured at 21 ∘C in 100 mM KCl buffered solution, pH 7.05, for the Ca2+ –DPP1 complex is 10 μM; for Ca2+ –DPP2 and Ca2+ –DPP3 a Kd value of 20 μM is found. All three indicators form 1 : 1 complexes with Ca2+. The fluorescence quantum yields of the uncomplexed forms of DPP1, DPP2 and DPP3 are 1.2×10−2, 3.4×10−2 and 3.6×10−2, respectively. After binding to Ca2+ these values increase to 4.8×10−2, 5.0×10−2 and 5.1×10−2, respectively.

  18. Parabens: potential impact of low-affinity estrogen receptor binding chemicals on human health. (United States)

    Karpuzoglu, Ebru; Holladay, Steven D; Gogal, Robert M


    Parabens, alkyl esters of p-hydroxybenzoic acid, are widely used in cosmetics, pharmaceuticals, personal care products and as food additives to inhibit microbial growth and extend product shelf life. Consumers of these compounds are frequently exposed via the skin, lips, eyes, oral mucosa, nails, and hair. Parabens are estrogenic molecules but exert weaker activity than natural estrogens, which would imply a low risk. Consistent with this idea, a number of recent commission reports from different countries suggested that parabens pose a negligible endocrine-disrupting risk at the recommended doses. However, individuals are not routinely exposed to a single paraben, and most of the available paraben toxicity data, reviewed in these reports, are from single-exposure studies. Further, assessing the additive and cumulative risk of multiple paraben exposure from daily use of multiple cosmetic and/or personal care products is presently not possible based on current studies. In this review, current and recent studies of paraben exposure and public health policies as well as critical gaps in the knowledge are discussed and new research directions regarding multiple exposures and novel target cohorts are recommended.

  19. Characterization of the ER-Targeted Low Affinity Ca2+ Probe D4ER

    Directory of Open Access Journals (Sweden)

    Elisa Greotti


    Full Text Available Calcium ion (Ca2+ is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER represents the major intracellular Ca2+ store and the free Ca2+ concentration ([Ca2+] within its lumen ([Ca2+]ER can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca2+ sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca2+ probes are plagued by different drawbacks, such as a double dissociation constant (Kd for Ca2+, low dynamic range, and an affinity for the cation that is too high for the levels of [Ca2+] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET-based, Cameleon probe, named D4ER, characterized by suitable Ca2+ affinity and dynamic range for monitoring [Ca2+] variations within the ER. As an example, resting [Ca2+]ER have been evaluated in a known paradigm of altered ER Ca2+ homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer’s Disease-linked protein Presenilin 2 (PS2. The lower Ca2+ affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca2+ content in cells expressing mutated PS2, compared to controls.

  20. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  1. The bovine peripheral-type benzodiazepine receptor: A receptor with low affinity for benzodiazepines

    Energy Technology Data Exchange (ETDEWEB)

    Parola, A.L.; Laird, H.E. II (Univ. of Arizona, Tucson (USA))


    The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit ({sup 3}H)PK 11195 binding was PK 11195 > protoporphyrin IX > benzodiazepines. ({sup 3}H)PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. ({sup 3}H)PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing and denaturing conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.

  2. Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch

    Directory of Open Access Journals (Sweden)

    Aiming Ren


    Full Text Available Naturally occurring L-glutamine riboswitches occur in cyanobacteria and marine metagenomes, where they reside upstream of genes involved in nitrogen metabolism. By combining X-ray, NMR, and MD, we characterized an L-glutamine-dependent conformational transition in the Synechococcus elongatus glutamine riboswitch from tuning fork to L-shaped alignment of stem segments. This transition generates an open ligand-binding pocket with L-glutamine selectivity enforced by Mg2+-mediated intermolecular interactions. The transition also stabilizes the P1 helix through a long-range “linchpin” Watson-Crick G-C pair-capping interaction, while melting a short helix below P1 potentially capable of modulating downstream readout. NMR data establish that the ligand-free glutamine riboswitch in Mg2+ solution exists in a slow equilibrium between flexible tuning fork and a minor conformation, similar, but not identical, to the L-shaped bound conformation. We propose that an open ligand-binding pocket combined with a high conformational penalty for forming the ligand-bound state provide mechanisms for reducing binding affinity while retaining high selectivity.

  3. Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch. (United States)

    Ren, Aiming; Xue, Yi; Peselis, Alla; Serganov, Alexander; Al-Hashimi, Hashim M; Patel, Dinshaw J


    Naturally occurring L-glutamine riboswitches occur in cyanobacteria and marine metagenomes, where they reside upstream of genes involved in nitrogen metabolism. By combining X-ray, NMR, and MD, we characterized an L-glutamine-dependent conformational transition in the Synechococcus elongatus glutamine riboswitch from tuning fork to L-shaped alignment of stem segments. This transition generates an open ligand-binding pocket with L-glutamine selectivity enforced by Mg(2+)-mediated intermolecular interactions. The transition also stabilizes the P1 helix through a long-range "linchpin" Watson-Crick G-C pair-capping interaction, while melting a short helix below P1 potentially capable of modulating downstream readout. NMR data establish that the ligand-free glutamine riboswitch in Mg(2+) solution exists in a slow equilibrium between flexible tuning fork and a minor conformation, similar, but not identical, to the L-shaped bound conformation. We propose that an open ligand-binding pocket combined with a high conformational penalty for forming the ligand-bound state provide mechanisms for reducing binding affinity while retaining high selectivity.

  4. Evidence that the angiotensin at 2-receptor agonist compound 21 is also a low affinity thromboxane TXA2-receptor antagonist

    DEFF Research Database (Denmark)

    Fredgart, M.; Leurgans, T.; Stenelo, M.;


    Objective: The objective of this study was to test whether Compound 21 (C21), a high-affinity, non-peptide angiotensinAT2-receptor agonist, is also an antagonist of thromboxane A2 (TXA2) receptors thus reducing both vasoconstriction and platelet aggregation. Design and method: Binding of C21 to t...

  5. Intermediate affinity and potency of clozapine and low affinity of other neuroleptics and of antidepressants at H3 receptors. (United States)

    Kathmann, M; Schlicker, E; Göthert, M


    It was the aim of the present study to determine the affinities of four neuroleptics and five antidepressants for histamine H3 receptors. In rat brain cortex membranes, the specifically bound [3H]-N alpha-methylhistamine was monophasically displaced by clozapine (pKi 6.15). The other drugs did not completely displace the radioligand even at 100 microM; the pKi values were: haloperidol (4.91); sulpiride (4.73); amitriptyline (4.56); desipramine (4.15); levomepromazine (4.14); fluovoxamine (4.13); maprotiline (4.09); moclobemide (H3 receptor model, i.e., in superfused mouse brain cortex slices preincubated with [3H]-noradrenaline. The electrically evoked tritium overflow was not affected by clozapine 0.5-32 microM. However, clozapine shifted the concentration-response curve of histamine for its inhibitory effect on the evoked overflow to the right, but did not affect the maximum effect of histamine. The Schild plot yielded a pA2 value of 6.33. In conclusion, clozapine shows an intermediate affinity and potency (as a competitive antagonist) at H3 receptors. The Ki value of clozapine at H3 receptors resembles its Ki value at D2 receptors (the target of the classical neuroleptics), but is higher than its Ki values at D4, 5-HT2 or muscarinic acetylcholine receptors, which according to current hypotheses, might be involved in the atypical profile of clozapine.

  6. The intracellular domain of the low affinity p75 nerve growth factor receptor is a death effector domain. (United States)

    Park, Hyun H


    The death domain superfamily, comprising the death domain, death effector domain, caspase recruitment domain and pyrin domain subfamilies, is one of the largest classes of protein interaction modules, and plays a particularly critical function in the assembly and activation of apoptotic and inflammatory complexes. Members of the death domain superfamily share a common structural feature, the 6-helical bundle fold. However, individual subfamilies exhibit distinct structural and sequence characteristics. The most distinct feature identified in structural studies is that only the death effector domain contains a charge triad, which is formed by the E/D-RxDL motif. However, using sequence alignment and structural comparison, in the present study we found that the p75-NGFR death domain also contains a charge triad. We therefore suggest that the p75-NGFR death domain should be classified as belonging to the death effector domain.

  7. Selective κ opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters.

    Directory of Open Access Journals (Sweden)

    Thomas A Munro

    Full Text Available BACKGROUND: Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. RESULTS: In binding assays, the three antagonists showed no detectable affinity (K(i≥10 µM for most non-opioid receptors and transporters (26 of 43 tested. There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold. Nor-BNI bound weakly to the α(2C-adrenoceptor (K(i = 630 nM. GNTI enhanced calcium mobilization by noradrenaline at the α(1A-adrenoceptor (EC₅₀ = 41 nM, but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M₁ receptor antagonist (K(B = 3.7 µM. JDTic bound to the noradrenaline transporter (K(i = 54 nM, but only weakly inhibited transport (IC₅₀ = 1.1 µM. JDTic also bound to the opioid-like receptor NOP (K(i = 12 nM, but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. CONCLUSIONS: Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α(1A-adrenoceptors. This may contribute to GNTI's severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.

  8. Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs

    DEFF Research Database (Denmark)

    Tungatt, Katie; Bianchi, Valentina; Crowther, Michael D;


    Fluorochrome-conjugated peptide-MHC (pMHC) multimers are commonly used in combination with flow cytometry for direct ex vivo visualization and characterization of Ag-specific T cells, but these reagents can fail to stain cells when TCR affinity and/or TCR cell-surface density are low. pMHC multim...

  9. Carbohydrate Binding Module 74 is a novel starch binding domain associated with large and multi-domain α-amylase enzymes

    NARCIS (Netherlands)

    Valk, Vincent; Lammerts van Bueren, Alicia; van der Kaaij, Rachel M; Dijkhuizen, Lubbert


    Microbacterium aurum B8.A is a bacterium that originates from a potato starch-processing plant and employs a GH13 α-amylase (MaAmyA) enzyme that forms pores in potato starch granules. MaAmyA is a large and multi-modular protein that contains a novel domain at its C-terminus (Domain 2). Deletion of D

  10. GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA receptors

    DEFF Research Database (Denmark)

    Belhage, B; Meier, E; Schousboe, A


    The kinetics of specific GABA-binding to membranes isolated from cerebellar granule cells, cultured for 12 days from dissociated cerebella of 7-day-old rats was studied using [3H]GABA as the ligand. The granule cells were cultured in the presence of the specific GABA receptor agonist 4, 5, 6, 7-t...

  11. High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions

    DEFF Research Database (Denmark)

    Plenge, Per; Wiborg, Ove


    of presumed importance. Binding of S-citalopram, both to the high-affinity-binding site and to the allosteric binding site, was measured in these mutants with the purpose of investigating the connection between the two binding sites. The amino acid substitutions did not introduce large changes in the two...

  12. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors (United States)

    Temkitthawon, Prapapan; Hinds, Thomas R.; Beavo, Joseph A.; Viyoch, Jarupa; Suwanborirux, Khanit; Pongamornkul, Wittaya; Sawasdee, Pattara; Ingkaninan, Kornkanok


    Aim of the study A number of medicinal plants are used in traditional medicine to treat erectile dysfunction. Since cyclic nucleotide PDEs inhibitors underlie several current treatments for this condition, we sought to show whether these plants might contain substantial amounts of PDE5 inhibitors. Materials and methods Forty one plant extracts and eight 7-methoxyflavones from Kaempferia parviflora Wall. ex Baker were screened for PDE5 and PDE6 inhibitory activities using the two-step radioactive assay. The PDE5 and PDE6 were prepared from mice lung and chicken retinas, respectively. All plant extracts were tested at 50 μg/ml whereas the pure compounds were tested at 10 μM. Results From forty one plant extracts tested, four showed the PDE5 inhibitory effect. The chemical constituents isolated from rhizomes of Kaempferia parviflora were further investigated on inhibitory activity against PDE5 and PDE6. The results showed that 7-methoxyflavones from this plant showed inhibition toward both enzymes. The most potent PDE5 inhibitor was 5,7-dimethoxyflavone (IC50 = 10.64 ± 2.09 μM, selectivity on PDE5 over PDE6 = 3.71). Structure activity relationship showed that the methoxyl group at C-5 position of 7-methoxyflavones was necessary for PDE5 inhibition. Conclusions Kaempferia parviflora rhizome extract and its 7-methoxyflavone constituents had moderate inhibitory activity against PDE5. This finding provides an explanation for enhancing sexual performance in the traditional use of Kaempferia parviflora. Moreover, 5,7-dimethoxyflavones should make a useful lead compound to further develop clinically efficacious PDE5 inhibitors. PMID:21884777

  13. Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites

    DEFF Research Database (Denmark)

    Plenge, Per; Gether, Ulrik; Rasmussen, Søren G


    SERT and the three mutants. Further, R-citalopram previously thought of as an inactive enantiomer strongly attenuated dissociation of the wild-type [(3)H]-imipramine:hSERT complex, whereas S-citalopram had almost no effect on this complex. These results suggest that 1: The allosteric site on hSERT is distinct from...... the site to which S-citalopram binds with high affinity. 2: The allosteric effects of R-citalopram on the dissociation of [(3)H]-imipramine from hSERT indicate that R-citalopram introduces a conformational change in hSERT....

  14. Serum Levels of Two Immunological Markers, the Soluble Low Affinity Receptor for IGE (SFCERII, SCD23) and their Correlation with Age, Gender and the Onset of Childhood Atopy (United States)


    Public Release IAW 190-1 Distribution Unlimited MICHAEL M. BRICKER, SMSqt, USAF Chief Ad-ministr’ation [13, MSTRACT (Mam",wnm zo -ow it. I It’ K~~itt...391- 虜. 16. Halonen, M., 0. Stern, S. Lyle, A. Wright, L. Taussig and F.D. Martinez. 1991. Relationship of total serunm Ie levels in cord and 9...trends in Bronchial Asthma. In: Kaliner, Michael A., J. Barnes, C.G.A. Persson eds. 1991. Asthma: Its Pathology and Treatment: Lung Biology in Health and

  15. The CREC family, a novel family of multiple EF-hand, low-affinity Ca(2+)-binding proteins localised to the secretory pathway of mammalian cells

    DEFF Research Database (Denmark)

    Honoré, B; Vorum, H


    (2+)-regulated activities. Recent evidence has been obtained that some CREC family members are involved in pathological activities such as malignant cell transformation, mediation of the toxic effects of snake venom toxins and putative participation in amyloid formation. Udgivelsesdato: 2000-Jan-21...

  16. Aryl Hydrocarbon Receptors in the frog Xenopus laevis: Two AHR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)


    Lavine, Jeremy A.; Rowatt, Ashley J.; Klimova, Tatyana; Whitington, Aric J.; Dengler, Emelyne; Beck, Catherine; Powell, Wade H.


    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent developmental toxicant in most vertebrates. However, frogs are relatively insensitive to TCDD toxicity, especially during early life stages. Toxicity of TCDD and related halogenated aromatic hydrocarbons is mediated by the aryl hydrocarbon receptor (AHR), and specific differences in properties of the AHR signaling pathway can underlie differences in TCDD toxicity in different species. This study investigated the role of AHR in frog TCDD i...

  17. Dissecting the Binding Mode of Low Affinity Phage Display Peptide Ligands to Protein Targets by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Ming, Shonoi A;


    Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use of hydro......Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use...

  18. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface

    DEFF Research Database (Denmark)

    Ahring, Philip K.; Olsen, Jeppe A.; Nielsen, Elsebet O.


    2)(2) receptors. However, standard saturation binding experiments with [H-3]epibatidine did not reveal biphasic binding under the conditions utilized. Therefore, an engineered beta 2 construct (beta 2(HQT)), which converts the beta(-) face to resemble that of an alpha 4(-) face, was utilized...

  19. Calcium binding to the low affinity sites in troponin C induces conformational changes in the high affinity domain. A possible route of information transfer in activation of muscle contraction. (United States)

    Grabarek, Z; Leavis, P C; Gergely, J


    Residues 89-100 of troponin C (C89-100) and 96-116 of troponin I (I96-116) interact with each other in the troponin complex (Dalgarno, D.C., Grand, R.J.A., Levine, B.A. Moir, A., J.G., Scott, G.M.M., and Perry, S.V. (1982) FEBS Lett. 150, 54-58) and are necessary for the Ca2+ sensitivity of actomyosin ATPase (Syska, H., Wilkinson, J.M., Grand, R.J.A., and Perry, S.V. (1976) Biochem. J. 153, 375-387 and Grabarek, Z., Drabikowski, W., Leavis, P.C., Rosenfeld, S.S., and Gergely, J. (1981) J. Biol. Chem. 256, 13121-13127). We have studied Ca2+-induced changes in the region C89-100 by monitoring the fluorescence of troponin C (TnC) labeled at Cys-98 with 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Equilibrium titration of the labeled TnC with Ca2+ indicates that the probe is sensitive to binding to both classes of sites in free TnC as well as in its complex with TnI. When Mg2 X TnC is mixed with Ca2+ in a stopped flow apparatus, there is a rapid fluorescence increase related to Ca2+ binding to the unoccupied sites I and II followed by a slower increase (k = 9.9 s-1) that represents Mg2+-Ca2+ exchange at sites III and IV. In the TnC X TnI complex, the fast phase is much larger and the Mg2+-Ca2+ exchange at sites III and IV results in a small decrease rather than an increase in the fluorescence of the probe. The possibility is discussed that the fast change in the environment of Cys-98 upon Ca2+ binding to sites I and II may be instrumental in triggering activation of the thin filament by facilitating a contact between C89-100 and I96-116.

  20. The Internalization of Neurotensin by the Low-Affinity Neurotensin Receptors (NTSR2 and vNTSR2) Activates ERK 1/2 in Glioma Cells and Allows Neurotensin-Polyplex Transfection of tGAS1. (United States)

    Ayala-Sarmiento, Alberto E; Martinez-Fong, Daniel; Segovia, José


    Glioblastoma is the most malignant primary brain tumor and is very resistant to treatment; hence, it has a poor prognosis. Neurotensin receptor type 1 (NTSR1) plays a key role in cancer malignancy and has potential therapeutic applications. However, the presence and function of neurotensin (NTS) receptors in glioblastoma is not clearly established. RT-PCR assays showed that healthy (non-tumor) astroglial cells and C6 glioma cells express NTSR2 and its isoform (vNTSR2) rather than NTSR1. In glioma cells, NTS promotes the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2), an effect that was completely abolished by blocking the internalization of the NTS/NTSR complex. We demonstrated pharmacologically that the internalization is dependent on the activation of NTSR2 receptors and it was prevented by levocabastine, a NTSR2 receptor antagonist. The internalization of NTSR2 and vNTSR2 was further demonstrated by its ability to mediate gene transfer (transfection) via the NTS-polyplex system. Expression of reporter transgenes and of the pro-apoptotic soluble form of growth arrest specific 1 (tGAS1) was observed in glioma cells. A significant reduction on the viability of C6 cells was determined when tGAS1 was transfected into glioma cells. Conversely, astroglial cells could neither internalize NTS nor activate ERK 1/2 and could not be transfected by the NTS-polyplex. These results demonstrate that the internalization process of NTSR2 receptors is a key regulator necessary to trigger the activation of the ERK 1/2. Our data support a new internalization pathway in glioma C6 cells that involve NTSR2/vNTSR2, which can be used to selectively transfer therapeutic genes using the NTS-polyplex system.

  1. 海滨碱蓬(Suaeda maritima)低亲和性Na+吸收速率的研究%Studies on Low-affinity Na+ Absorption Rate of Suaeda maritime

    Institute of Scientific and Technical Information of China (English)



    用采自英国苏克塞斯的海滨碱蓬为材料,将铺有滤纸的培养皿中发芽7天的海滨碱蓬幼苗,移栽到育苗盘中溶液培养,用调整过的Hoagland营养液培养海滨碱蓬21天,用150mmol/L NaCl处理海滨碱蓬0 h、6 h、12 h、24 h、36 h及48 h,测定海滨碱蓬在不同处理时间下根、茎、叶的鲜重、干重及Na+含量.分析Na+吸收速率在48 h内的变化趋势.结果表明,不同处理之间海滨碱蓬Na+吸收速率差异不显著.因此,海滨碱蓬在48 h内的Na+吸收速率基本保持不变,在与Na+吸收途径有关的试验中,处理时间设为48 h不仅可以节省人力物力财力,又可以取得事半功倍的良好研究目的.%Seed of Suaeda maritima (L.) were collected from a salt marsh at East Sussex, United Kingdom, in 2003. Seeds were germinated on filter paper and kept in petri dishes and wetted sterile water at 23-28℃. After 7 days of germination, seedlings were carefully transplanted to solution culture with modified Hangland nutrient solution containing: 6 mmol/L KNO3, 1 mmol/L NH4H2PO4, 0.5 mmol/L MgSO4, 0.5 mmol/L Ca(NO3)2,92 μmol/L H3BO3, 0.6 μmol/L CuSO4, 0.7 μmol/L (NH4)6MO7O24, 18 μmol/L MnC12, 1.6 μmol/L ZnSO4,60 μ mol Fe-citrate. After 21 days in solution culture, then plants were treated with 150 mmol/L NaC1 for 0 h,6 h, 12 h, 24 h, 36 h and 48 h. Fresh weight, Dry weight and Na+content of root, stem and leaf were determined according to different treatment time. Na+ absorption rate of Suaeda maritime was analyzed. The results showed that Na+ absorption rate of Suaeda maritina had no significant differences under different time when plants were treated with 150 mmol/L NaC1. So the treatment time in connection with Na+ absorption pathway should be supposed to 48 h. It did not only save on manpower, material resources and financial resources but also get two fold results with half the effort.

  2. The Differential Expression of Calcitonin Gene Related Peptide, alpha CGRP mRNA, Choline Acetyltransferase, and Low Affinity Nerve Growth Factor Receptor in Cranial Motoneurons After Hypoglossal Nerve Injury During Postnatal Development (United States)


    projection motoneurons to the tongue musculature (Odutola, 1976; Cooper, 1981). The remainder of the neurons are small (10-18 flm) local interneurons ...neurotrophic factor ( BDNF ), neurotrophin 3 (NT-3), and neurotrophin 4/5 (NT-4/5) (Barde, 1989, Glass & Yancopoulos, 1993). 23 Two types of receptors bind...essential components of the high affmity receptors for NGF, BDNF , and NT-3, and NT-4/5 and mediate their binding, uptake, and retrograde transport in vivo


    NARCIS (Netherlands)



    The distribution of IgE FcR (Fc-epsilon-R)-positive and -negative B cells was examined in normal adult mice. Using three-color flow cytometry, the expression of the Fc-epsilon-R was analyzed on various B-cell subsets present in the peritoneum and spleen. The results demonstrate that in the peritonea

  4. Crystallization and preliminary X-ray analysis of the low-affinity complex between human leukocyte antigen-G (HLA-G) and leukocyte Ig-like receptor B2 (LILRB2). (United States)

    Shiroishi, Mitsunori; Maenaka, Katsumi


    Human leukocyte antigen-G (HLA-G) is a nonclassical MHC class I (MHCI) molecule that is expressed mainly on placenta trophoblast cells. Leukocyte Ig-like receptor B2 (LILRB2) is a human inhibitory immune receptor that recognizes HLA-G with a higher affinity than any other MHCI although this interaction is only in the microM range. The interaction between HLA-G and LILRB2 seems to play a dominant role in the escape of the fetus from the maternal immune response. Here we report the crystallization and x-ray analysis of the LILRB2/HLA-G complex. The extracellular domains of HLA-G and LILRB2 were expressed in Escherichia coli, refolded and purified. The initial crystallization trials using novel PEG-based screening sets provided crystals of the LILRB2/HLA-G complex with 40-50% PEG400 as the precipitant. These crystals belong to space group P3(1)21 (a=b=81.4 A, c=186.7 A, gamma=120 degrees ). Dehydration of the crystals by soaking them in a solution containing a higher concentration of PEG400 dramatically improved the resolution and also the mosaicity.

  5. Studies of the effect of maltose on the direct binding of porcine pancreatic α-amylase to maize starch. (United States)

    Warren, Frederick J; Butterworth, Peter J; Ellis, Peter R


    For a two phase system comprising an enzyme in solution acting on an insoluble substrate such as starch, adsorption of the enzyme is a key initial step in the reaction but few studies of agents affecting direct binding have been performed. The effect of maltose on the interaction of maize starch with porcine pancreatic α-amylase was studied by using a method in which the direct binding of starch to amylase is measured under conditions of negligible catalytic activity. The dissociation constant for starch binding increased with maltose concentration and analysis of the binding showed that the kinetic action of maltose was entirely competitive. This result accords with results described in the literature in which maltose was shown to be a competitive inhibitor of amylase action. If the maltose concentration is sufficiently high, a second molecule may bind at the active site but the affinity of the second binding step is approximately 6.5-fold weaker. Because of the relatively low affinity for maltose, it seems unlikely that inhibition by maltose of the initial stage of starch-amylase interaction normally plays any role in regulating intestinal digestion of starch.

  6. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav;


    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  7. In planta modification of potato starch granule biogenesis by different granule-bound fusion proteins

    NARCIS (Netherlands)

    Nazarian, F.


    Starch is composed of amylose and amylopectin and it is deposited in amyloplasts/choloroplasts as semi-crystalline granules. Many biosynthetic enzymes are involved in starch degradation and biosynthesis. Some microbial starch degrading enzymes have a Starch Binding Domain (SBD) which has affinity fo

  8. Plant α-glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose

    DEFF Research Database (Denmark)

    Wilkens, Casper; Auger, Kyle D.; Anderson, Nolan T.;


    The plant glucan phosphatases Starch EXcess 4 (SEX4) and Like Sex Four2 (LSF2) apply different starch binding mechanisms. SEX4 contains a carbohydrate binding module, and LSF2 has two surface binding sites (SBSs). We determined KDapp for amylopectin and amylose, and KD for β-cyclodextrin and vali...

  9. Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23. (United States)

    Lo, Huei-Fen; Lin, Long-Liu; Chiang, Wen-Ying; Chie, Meng-Chun; Hsu, Wen-Hwei; Chang, Chen-Tien


    The alpha-amylase from Bacillus sp. strain TS-23 is a secreted starch hydrolase with a domain organization similar to that of other microbial alpha-amylases and an additional functionally unknown domain (amino acids 517-613) in the C-terminal region. By sequence comparison, we found that this latter domain contained a sequence motif typical for raw-starch binding. To investigate the functional role of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23, four His(6)-tagged mutants with extensive deletions in this region were constructed and expressed in Escherichia coli. SDS-PAGE and activity staining analyses showed that the N- and C-terminally truncated alpha-amylases had molecular masses of approximately 65, 58, 54, and 49 kDa. Progressive loss of raw-starch-binding activity occurred upon removal of C-terminal amino acid residues, indicating the requirement for the entire region in formation of a functional starch-binding domain. Up to 98 amino acids from the C-terminal end of the alpha-amylase could be deleted without significant effect on the raw-starch hydrolytic activity or thermal stability. Furthermore, the active mutants hydrolyzed raw corn starch to produce maltopentaose as the main product, suggesting that the raw-starch hydrolytic activity of the Bacillus sp. strain TS-23 alpha-amylase is functional and independent from the starch-binding domain.

  10. SusG: A Unique Cell-Membrane-Associated [alpha]-Amylase from a Prominent Human Gut Symbiont Targets Complex Starch Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Smith, Thomas J. (Danforth)


    SusG is an {alpha}-amylase and part of a large protein complex on the outer surface of the bacterial cell and plays a major role in carbohydrate acquisition by the animal gut microbiota. Presented here, the atomic structure of SusG has an unusual extended, bilobed structure composed of amylase at one end and an unprecedented internal carbohydrate-binding motif at the other. Structural studies further demonstrate that the carbohydrate-binding motif binds maltooligosaccharide distal to, and on the opposite side of, the amylase catalytic site. SusG has an additional starch-binding site on the amylase domain immediately adjacent to the active cleft. Mutagenesis analysis demonstrates that these two additional starch-binding sites appear to play a role in catabolism of insoluble starch. However, elimination of these sites has only a limited effect, suggesting that they may have a more important role in product exchange with other Sus components.

  11. Transcriptome Analysis of Human Immune Responses Following Live Vaccine Strain (LVS) Francisella Tularensis Vaccination (United States)


    CSF2RB Colony-stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) – IL3/ IL5 receptor low-affinity Antimicrobial humoral...STAT6, IFN gamma, IL5 , IL7, IL13, IL19 3597 SCAP2 src family-associated phosphoprotein 2 Protein complex assembly, signal transduction, associated with

  12. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.


    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  13. Agrobacterium-mediated transformation of Mexican lime (Citrus aurantifolia Swingle) using optimized systems for epicotyls and cotelydons (United States)

    Epicotyl and internodal stem segments provide the predominantly used explants for regeneration of transgenic citrus plants following co-cultivation with Agrobacterium. Previous reports using epicotyls segments from Mexican lime have shown low affinity for Agrobacterium tumefaciens infection which re...

  14. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Seo, E.S.; Dilokpimol, Adiphol


    with a characteristic subsite binding energy profile around the catalytic site. Furthermore, several amylolytic enzymes that facilitate attack on the natural substrate, i.e. the endosperm starch granules, have secondary sugar binding sites either situated on the surface of the protein domain or structural unit...... that contains the catalytic site or belonging to a separate starch binding domain. The role of surface sites in the function of barley alpha-amylase 1 has been investigated by using mutational analysis in conjunction with carbohydrate binding analyses and crystallography. The ability to bind starch depends...

  15. Small angle x-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted; Nøhr, Jane; Kastrup, Jette Sandholm


    The industrially important glucoamylase 1 is an exo-acting glycosidase with substrate preference for alpha-1,4 and alpha-1,6 linkages at non-reducing ends of starch. It consists of a starch binding and a catalytic domain interspersed by a highly glycosylated polypeptide linker. The linker function...... is poorly understood and structurally undescribed, and data regarding domain organization and intramolecular functional cooperativity are conflicting or non-comprehensive. Here, we report a combined small angle x-ray scattering and calorimetry study of Aspergillus niger glucoamylase 1, glucoamylase 2, which...

  16. The deposition and characterization of starch in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan T.; Jensen, Susanne Langgård;


    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved...... in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were...... doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating...

  17. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg


    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...... maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content...... and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers...

  18. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte;


    Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes...... by amylolytic activity measurements. Nearly half of the 312 proteins in the secretomes were carbohydrate-active enzymes (CAZymes), mostly glycoside hydrolases (GHs) and oxidative auxiliary activities (AAs). The abundance of the GH13 α-amylase (AmyB) decreased with time, as opposed to other starch......-degrading enzymes, e.g., the GH13 AmyF, GH15 glucoamylases (GlaA and GlaB), and the GH31 α-glucosidase (AgdE). Two AA13 LPMOs displayed similar secretion patterns as amylolytic hydrolases and were among the most abundant CAZymes. The starch-active AnLPMO13A that possesses a CBM20 carbohydrate-binding module...

  19. Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells. (United States)

    Sasaki, Katsuhiro; Takada, Kensuke; Ohte, Yuki; Kondo, Hiroyuki; Sorimachi, Hiroyuki; Tanaka, Keiji; Takahama, Yousuke; Murata, Shigeo


    Positive selection in the thymus provides low-affinity T-cell receptor (TCR) engagement to support the development of potentially useful self-major histocompatibility complex class I (MHC-I)-restricted T cells. Optimal positive selection of CD8(+) T cells requires cortical thymic epithelial cells that express β5t-containing thymoproteasomes (tCPs). However, how tCPs govern positive selection is unclear. Here we show that the tCPs produce unique cleavage motifs in digested peptides and in MHC-I-associated peptides. Interestingly, MHC-I-associated peptides carrying these tCP-dependent motifs are enriched with low-affinity TCR ligands that efficiently induce the positive selection of functionally competent CD8(+) T cells in antigen-specific TCR-transgenic models. These results suggest that tCPs contribute to the positive selection of CD8(+) T cells by preferentially producing low-affinity TCR ligand peptides.

  20. Comparative study of prostaglandin E2 production in chick spinal cord and meninges. (United States)

    Billotte, C; Vesin, M F


    In chick spinal cord the presence of low affinity (KD = 2.2 microM) receptors for prostaglandin E2 (PGE2) raises the question whether spinal cord possesses a PGE2 biosynthetic capacity able to activate these receptors. The production of PGE2 in spinal cord and meninges was investigated by enzyme immunoassay. Spinal cord exhibited a 30- to 100-fold lower PGE2 biosynthetic capacity compared to meninges, but can generate PGE2 resulting in micromolar concentrations, sufficient to activate the low affinity PGE2 receptors. It is suggested that in physiological conditions, PGE2 synthesized within the spinal cord might locally activate the low affinity PGE2 receptors, whereas in pathological situations, after disruption of the blood-spinal cord barrier, PGE2 produced by the meninges might be accessible to spinal cord PGE2 receptors, and thus largely contribute to their saturation.

  1. Further characterization of the low and high affinity binding components of the thyrotropin receptor. (United States)

    McQuade, R; Thomas, C G; Nayfeh, S N


    Following cross-linking with disuccinimidyl suberate and analysis by SDS-PAGE and autoradiography, both the high- and low-affinity TSH binding components exhibited two similar 125I-TSH-labeled bands, with Mr values of 80,000 and 68,000. IgG fractions from patients with Graves' disease inhibited 125I-TSH binding to both components, while normal IgG had no effect. Although not entirely conclusive, these results suggest that the high- and low-affinity components share similar subunit composition and antigenic determinants.

  2. Further characterization of the low and high affinity binding components of the thyrotropin receptor

    Energy Technology Data Exchange (ETDEWEB)

    McQuade, R.; Thomas, C.G. Jr.; Nayfeh, S.N.


    Following cross-linking with disuccinimdiyl suberate and analysis by SDS-PAGE and autoradiography, both the high- and low-affinity TSH binding components exhibited two similar /sup 125/I-TSH-labeled bands, with Mr values of 80,000 and 68,000. IgG fractions from patients with Graves' disease inhibited /sup 125/I-TSH binding to both components, while normal IgG had no effect. Although not entirely conclusive, these results suggest that the high- and low-affinity components share similar subunit composition and antigenic determinants.

  3. Effect of moxonidine on contractile activity of isolated large intestine in mice: role of alpha2-adrenoceptors and Ii-imidazoline receptors. (United States)

    Kozaeva, L P; Korobov, N V; Medvedev, O S


    We studied the ability of moxonidine to interact with alpha2-adrenoceptors and Ii-imidazoline receptors in isolated mouse large intestine. Moxonidine caused contractions of longitudinal muscles in the large intestine, which depended on the dose of this preparation. Pretreatment with yohimbine (alpha2-adrenoceptor antagonist with low affinity for Ii-imidazoline receptors) and efaroxan (Ii-imidazoline receptor antagonist with low affinity for alpha2-adrenoceptors) abolished the effect of moxonidine. Antagonistic activity and relative selectivity of yohimbine and efaroxan suggest that the effects of moxonidine on mouse large intestine are realized via alpha2-adrenoceptors.

  4. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase

    DEFF Research Database (Denmark)

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide;


    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1......-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had...

  5. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.


    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  6. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J. (WU); (Danforth)


    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.

  7. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail:; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)


    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  8. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. (United States)

    Mehta, Deepika; Satyanarayana, T


    The gene (1,542 bp) encoding thermostable Ca(2+)-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir-Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.

  9. GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A


    treatment did not lead to formation of low affinity GABA receptors. Studies of the ultrastructure of the cells (4-day-old cultures) showed that exposure to bromide or valinomycin mimicked the ability of THIP to enhance the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles...

  10. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Meier, E


    preparations. This indicates that the low-affinity receptors were not located in the plasma membrane. This is in good agreement with the corresponding morphological findings, that monensin treatment led to an intense vacuolization of the Golgi apparatus, thereby preventing intracellular transport of the newly...

  11. Design and synthesis of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (citalopram) analogues as novel probes for the serotonin transporter S1 and S2 binding sites

    DEFF Research Database (Denmark)

    Banala, Ashwini K; Zhang, Peng; Plenge, Per


    The serotonin transporter (SERT) is the primary target for antidepressant drugs. The existence of a high affinity primary orthosteric binding site (S1) and a low affinity secondary site (S2) has been described, and their relation to antidepressant pharmacology has been debated. Herein, structural...

  12. Evidence that deletion at FCGR3B is a risk factor for systemic sclerosis

    NARCIS (Netherlands)

    McKinney, C.; Broen, J.C.A.; Vonk, M.C.; Beretta, L.; Hesselstrand, R.; Hunzelmann, N.; Riemekasten, G.; Scorza, R.; Simeon, C.P.; Fonollosa, V.; Carreira, P.E.; Ortego-Centeno, N.; Gonzalez-Gay, M.A.; Airo, P.; Coenen, M.J.; Martin, J.; Radstake, T.R.D.J.; Merriman, T.R.


    There is increasing evidence that gene copy number (CN) variation influences clinical phenotype. The low-affinity Fc receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment of polymorphonuclear neutrophils to sites of inflammation and their activati

  13. Reduced expression of PBP-2A by neonatal mecA-positive coagulase-negative staphylococci (CoNS) blood isolates : beta-lactams are useful first-line agents for the treatment of neonatal CoNS sepsis, restricting the use of vancomycin

    NARCIS (Netherlands)

    Fleer, Andre; Hemels, Marieke A. C.; Paauw, Armand; Krediet, Tannette G.


    Vancomycin use for neonatal coagulase-negative staphylococci (CoNS) sepsis is based on a high CoNS carriage rate of mecA, encoding penicillin-binding protein (PBP)-2a, with low affinity for, and associated with resistance to, -lactam antibiotics. The relationship between mecA gene carriage, phenotyp

  14. Association of variation in Fc gamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples

    NARCIS (Netherlands)

    McKinney, Cushla; Fanciulli, Manuela; Merriman, Marilyn E.; Phipps-Green, Amanda; Alizadeh, Behrooz Z.; Koeleman, Bobby P. C.; Dalbeth, Nicola; Gow, Peter J.; Harrison, Andrew A.; Highton, John; Jones, Peter B.; Stamp, Lisa K.; Steer, Sophia; Barrera, Pilar; Coenen, Marieke J. H.; Franke, Barbara; van Riel, Piet L. C. M.; Vyse, Tim J.; Aitman, Tim J.; Radstake, Timothy R. D. J.; Merriman, Tony R.


    Objective There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fc gamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonucl

  15. Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins

    NARCIS (Netherlands)

    Prigent, S.V.E.; Gruppen, H.; Visser, A.J.W.G.; Koningsveld, G.A. van; Jong, G.A.H. de; Voragen, A.G.J.


    The non-covalent interactions between the monomeric phenolic compound chlorogenic acid (5-CQA) and bovine serum albumin (BSA), lysozyme, and α-lactalbumin were characterized, and their effect on protein properties was examined. 5-CQA had a low affinity for all three proteins, and these interactions

  16. The cardiac safety of aripiprazole treatment in patients at high risk for torsade

    DEFF Research Database (Denmark)

    Polcwiartek, Christoffer; Sneider, Benjamin; Graff, Claus;


    prolongation risk was lower compared with placebo and active controls. Epidemiological studies linked aripiprazole to weak/moderate torsadogenicity. No studies were found associating aripiprazole with BrS suggesting low affinity for the fast sodium current. CONCLUSIONS: Aripiprazole is a low-risk antipsychotic...

  17. Binding Mode of an α-Amino Acid-Linked Quinoxaline-2,3-dione Analogue at Glutamate Receptor Subtype GluK1

    DEFF Research Database (Denmark)

    Demmer, Charles S; Møller, Charlotte; Brown, Patricia M G E;


    Two α-amino acid-functionalized quinoxalines, 1a (CNG-10301) and 1b (CNG-10300), of a quinoxaline moiety coupled to an amino acid moiety were designed, synthesized, and characterized pharmacologically. While 1a displayed low affinity at native AMPA, KA, and NMDA receptors, and at homomeric GluK1,...

  18. Molecular analysis of the interaction between the hematopoietic master transcription factors GATA-1 and PU.1

    DEFF Research Database (Denmark)

    Liew, Chu Wai; Rand, Kasper Dyrberg; Simpson, Raina J Y;


    of the GATA-1-PU.1 interaction. A combination of NMR titration data and extensive mutagenesis revealed that the PU.1-Ets domain and the GATA-1 C-terminal zinc finger (CF) form a low affinity interaction in which specific regions of each protein are implicated. Surprisingly, the interaction cannot be disrupted...

  19. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1

    DEFF Research Database (Denmark)

    Koronakis, Vassilis; Hume, Peter J; Humphreys, Daniel


    The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may b...

  20. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas; Eriksen, J;


    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal...

  1. Use of Bifunctional Immunotherapeutic Agents to Target Breast Cancer (United States)


    Selective Tumor Cell Targeting Using Low-Affinity, Multivalent Interactions Coby B. Carlson†,‡, Patricia Mowery‡, Robert M. Owen†, Emily C. Dykhuizen†, and...washed cells and immediately analyzed for fluorescence using a FACSCalibur flow cytometer (Becton Dickinson ). Data were ana- lyzed using (Becton Dickinson ). An identical assay omitting the bifunctional conjugate assessed background fluorescence. The relative fluorescence is

  2. Effects of non-covalent interactions with 5-O-Caffeoylquinic Acid (Chlorogenic Acid) on the heat denaturation and solubility of globular proteins.

    NARCIS (Netherlands)

    Prigent, S.V.E.; Gruppen, H.; Visser, A.J.W.G.; Koningsveld, van G.A.; Jong, de G.A.H.; Voragen, A.G.J.


    The non-covalent interactions between the monomeric phenolic compound chlorogenic acid (5-CQA) and bovine serum albumin (BSA), lysozyme, and -lactalbumin were characterized, and their effect on protein properties was examined. 5-CQA had a low affinity for all three proteins, and these interactions s

  3. The substituted (S)-3-phenylpiperidine (-)-OSU6162 reduces apomorphine- and amphetamine-induced behaviour in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Brandt-Christensen, Anne Mette; Andersen, M B; Fink-Jensen, A


    inhibit (-)-apomorphine-induced behaviours in non-human primates at doses that do not cause EPS. When (-)-OSU6162 was tested against d-amphetamine-induced behaviours a separation between dose levels that inhibit d-amphetamine effects and cause EPS was not observed. The data further substantiate a role...... for low affinity DA D2 antagonists in the pharmacological treatment of psychosis....

  4. Expression of leukaemia inhibitory factor at the conceptus-maternal interface during preimplantation development and in the endometrium during the oestrous cycle in the mare

    NARCIS (Netherlands)

    De Ruijter-Villani, M.; Deelen, C.; Stout, T. A E


    Leukaemia inhibitory factor (LIF) plays a critical role in blastocyst development and implantation in several species. The present study investigated mRNA and protein expression for LIF, as well as the low-affinity LIF receptor (LIFR) and interleukin-6 signal transducer (IL6ST), in equine endometriu

  5. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats

    DEFF Research Database (Denmark)

    Dagil, Robert; O'Shea, Charlotte; Nykjær, Anders


    megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described...

  6. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24 (United States)

    Saccharomyces cerevisiae strains expressing xylose isomerase (XI) produce some of the highest reported ethanol yields from xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are not functional, require additional strain modification, and have low affinity for xylose...

  7. Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: Evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system

    NARCIS (Netherlands)

    Chaillou, S.; Pouwels, P.H.; Postma, P.W.


    We have identified and characterized the D-xylose transport system of Lactobacillus pentosus. Uptake of D-xylose was not driven by the proton motive force generated by malolactic fermentation and required D-xylose metabolism. The kinetics of D-xylose transport were indicative of a low- affinity faci

  8. Design, synthesis and evaluation of multivalent glycodendrimers as multivalent ligands

    NARCIS (Netherlands)

    Branderhorst, H.M.


    Carbohydrates are more and more of interest in drug design as they are important mediators in a whole range of biological processes. Because of the low affinity of carbohydrates for their receptors, multivalent ligand presentation was introduced. Multivalent compounds were shown to improve the affin


    Institute of Scientific and Technical Information of China (English)

    QIUXiu-Di; WANGHan-Zheng; GONGYue-Ting


    Theeffects of gonadotrophin--relensing hormone (GnRH) onthe bindingof125I-labelled GnRH agonist to human placental membranes were studied. The GnRH binding sites of human plaoenta had a high specificity but low affinity. The natural GnRH had a slightly

  10. Lithium transport across biological membranes

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H


    Li+ is actively transported out of cells, and across different epithelia of both mammalian and amphibian origin. Due to the low affinity of the Na+/K(+)-ATPase for Li+, the transport is most likely energized by exchange and/or cotransport processes. The detailed mechanism by which Li+ is reabsorb...

  11. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids

    DEFF Research Database (Denmark)

    Schousboe, A; Drejer, J; Hansen, Gert Helge


    By the use of primary cultures of neurons consisting of cerebral cortex interneurons or cerebellar granule cells it is possible to study biochemical and pharmacological aspects of receptors for GABA and glutamate. Cerebellar granule cells have been shown to express both high- and low-affinity GAB...

  12. Unique carbohydrate binding platforms employed by the glucan phosphatases. (United States)

    Emanuelle, Shane; Brewer, M Kathryn; Meekins, David A; Gentry, Matthew S


    Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.

  13. Characterization of the guinea pig adipocyte thyrotropin receptor. (United States)

    Gennick, S E; Thomas, C G; Nayfeh, S N


    125I-TSH binding to porcine thyroid and guinea pig fat resulted in curvilinear Scatchard plots with similar dissociation constants for the high and low affinity binding components. Antibodies from the sera of patients with Graves' disease inhibited binding to the high and low affinity binding components of both tissues. Covalent cross-linking of 125I-TSH to membranes from each tissue resulted in the specific labeling of two protein bands. The guinea pig fat receptor subunits have Mr values of 52,000 and 38,000, whereas the porcine thyroid receptor subunits have values of 46,000 & 35,000. The labeling of the receptor subunits was inhibited by preincubation with Graves' autoantibodies. Despite possessing a different subunit composition, the receptors from these tissues exhibit similar affinity for TSH and share similar antigenic determinants for Graves' autoantibodies.

  14. A peptide antagonist disrupts NK cell inhibitory synapse formation. (United States)

    Borhis, Gwenoline; Ahmed, Parvin S; Mbiribindi, Bérénice; Naiyer, Mohammed M; Davis, Daniel M; Purbhoo, Marco A; Khakoo, Salim I


    Productive engagement of MHC class I by inhibitory NK cell receptors depends on the peptide bound by the MHC class I molecule. Peptide:MHC complexes that bind weakly to killer cell Ig-like receptors (KIRs) can antagonize the inhibition mediated by high-affinity peptide:MHC complexes and cause NK cell activation. We show that low-affinity peptide:MHC complexes stall inhibitory signaling at the step of Src homology protein tyrosine phosphatase 1 recruitment and do not go on to form the KIR microclusters induced by high-affinity peptide:MHC, which are associated with Vav dephosphorylation and downstream signaling. Furthermore, the low-affinity peptide:MHC complexes prevented the formation of KIR microclusters by high-affinity peptide:MHC. Thus, peptide antagonism of NK cells is an active phenomenon of inhibitory synapse disruption.

  15. Influence of calcium ion on photosystem Ⅱ oxygen evolution

    Institute of Scientific and Technical Information of China (English)

    杜林方; 孙逊; 潘用华; 林宏辉; 梁厚果


    Treatment of photosystem Ⅱ particles with NaCl-washings,low-pH washings or detergentOG-solubilizings inhibited oxygen evolution and the inhibition was reversed by addition of exogenous Ca2+.Dynamic analysis with Ca2+reconstitution revealed two Ca2+binding sites with different affinities in theNaCl-washed PS Ⅱ particles or in the low-pH-treated ones.Oxygen-evolving PS Ⅱ core complex also con-tained the high and low affinity Ca2+binding sites.Ca2+enhanced the intensity of fluorescence emission of PSⅡ core complex.These results suggest that calcium play two roles in PS Ⅱ,the low affinity Ca2+is associ-ated with energy transfer while the high affinity Ca2+is concerned with water splitting reaction.

  16. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Meier, E;


    differentiation and GABA receptor expression was investigated in cultured cerebellar granule cells. After 4 days in culture the neurons were exposed to the inhibitors for 6 h in the simultaneous presence of THIP. Subsequently, cultures were either fixed for electron microscopic examination or used for preparation...... of membranes for [3H]GABA binding assays. In some experiments the functional activity of the newly induced low-affinity GABA receptors was assessed by investigation of the ability of GABA to inhibit neurotransmitter release from the neurons. These experiments were performed to differentiate between...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  17. Multiple (/sup 3/H)imipramine binding sites in brains of male and female Fawn-Hooded and Long-Evans rats

    Energy Technology Data Exchange (ETDEWEB)

    Ieni, J.R.; Zukin, S.R.; Praag, H.M. van; Tobach, E.; Barr, G.A.


    Comparisons of high- and low-affinity (/sup 3/H)imipramine binding to whole brain homogenates from adult male and female rats of the Fawn-Hooded and Long-Evans strains were performed. Most strikingly, no significant differences were observed between the two strains in any of the binding parameters, indicating that brain (/sup 3/H)imipramine binding sites, which may be related to the serotonergic uptake process, appear normal in a strain of rats with serotonin platelet storage pool disease. However, a significant sex difference in high- but not low-affinity whole brain (/sup 3/H)imipramine Bsub(max) values was observed, with females of both strains having higher densities than males.

  18. Adverse events in children and adolescents treated with quetiapine

    DEFF Research Database (Denmark)

    Jakobsen, Klaus D; Wallach-Kildemoes, Helle; Bruhn, Christina H


    Quetiapine is a low-affinity dopamine D2 receptor antagonist, approved for the treatment of bipolar disorder and schizophrenia in children and adolescents by the Food and Drug Administration, but not by European Medicine Agency. Although knowledge of adverse drug reactions in children and adolesc......Quetiapine is a low-affinity dopamine D2 receptor antagonist, approved for the treatment of bipolar disorder and schizophrenia in children and adolescents by the Food and Drug Administration, but not by European Medicine Agency. Although knowledge of adverse drug reactions in children...... 10–17 years) and six patients were boys. The main reported ADEs were (i) endocrine, for example, hyperprolactinemia and hyperthyroidism, (ii) cardiac, for example, tachycardia and QT prolongation, (iii) neurological, for example, seizures and cerebral hemorrhage, and (iv) psychiatric, for example...

  19. [The role of alpha2-adrenergic and I1-imidazoline receptors in the effects of clonidine and moxonidine on isolated large intestine of mice]. (United States)

    Kozaeva, L P; Korobov, N V; Medvedev, O S


    The ability of clonidine and moxonidine to interact with alpha2-adreno- and I1-imidazoline receptors was studied on isolated segments of large intestine of mice. Both drugs induced dose-dependent contractions in longitudinal muscles of the intestine segments. In both cases, the drug action was almost equally decreased by pretreatment with of yohimbine (alpha2-adrenoreceptor agonist with low affinity to I1-imidazoline receptors) and efaroxan (I1-imidazoline receptor agonist with low affinity to alpha2-adrenoreceptors). Analysis of the ratios of the antagonist activities (pA2) of yohimbine and efaroxan with respect to clonidine and moxonidine, as well as the relative selectivity of the two antagonists suggested that the action of both drugs on the large intestine is realized predominantly via alpha2-adrenoreceptors.

  20. Use systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans


    Yasong eLu; Griffen, Steven C.; Boulton, David W.; Leil, Tarek A.


    In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose cotransporters 1 (SGLT1) and 2 (SGLT2) along the proximal tubules. SGLT2 has been characterized as a high capacity, low affinity pathway responsible for reabsorption of the majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs the residual glucose in the distal part. Inhibition of SGLT2 is a viable mechanism for removing glucose from the body and improving glycemic control...

  1. Use of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans


    Lu, Yasong; Griffen, Steven C.; Boulton, David W.; Leil, Tarek A.


    In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose cotransporters 1 (SGLT1) and 2 (SGLT2) along the proximal tubules. SGLT2 has been characterized as a high capacity, low affinity pathway responsible for reabsorption of the majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs the residual glucose in the distal part. Inhibition of SGLT2 is a viable mechanism for removing glucose from the body and improving glycemic control...

  2. [3H]WIN 35,065-2: a ligand for cocaine receptors in striatum. (United States)

    Ritz, M C; Boja, J W; Grigoriadis, D; Zaczek, R; Carroll, F I; Lewis, A H; Kuhar, M J


    [3H]WIN 35,065-2 binding to striatal membranes was characterized, primarily by centrifugation assay. Like [3H]cocaine, [3H]WIN 35,065-2 binds to both high- and low-affinity sites. [3H]WIN 35,065-2, however, exhibits consistently higher affinities than [3H]cocaine. Saturation experiments indicate a low-affinity binding site with an apparent KD of approximately 160 nM and a Bmax of 135 fmol/mg of tissue. A high-affinity site has also been identified with an apparent KD of 5.6 nM and a Bmax of 5.2 fmol/mg of tissue. The specific-to-nonspecific binding ratios with [3H]WIN 35,065-2 were higher than with [3H]cocaine in both centrifugation and filtration assays. Pharmacological characterization suggests that [3H]WIN 35,065-2 binds to the dopamine transporter. Mazindol, GBR 12909, nomifensine, and (-)-cocaine are potent inhibitors of [3H]WIN 35,065-2 binding. In contrast, the norepinephrine transporter ligand desipramine is a weak inhibitor, and the serotonin transporter ligand citalopram does not inhibit binding. The effect of sodium on binding was examined under conditions in which (a) the low-affinity site was primarily (87%) occupied and (b) approximately 50% of both sites were occupied. The results indicate that both sites are sodium dependent. Injection of 6-hydroxydopamine into the striatum results in a significant loss of both high- and low-affinity sites, a finding suggesting that both sites are on dopaminergic nerve terminals. Taken together, these data are consistent with the presence of multiple cocaine binding sites associated with the dopamine transporter.

  3. Cleaved inflammatory lactoferrin peptides in parotid saliva of periodontitis patients. (United States)

    Komine, Ken-Ichi; Kuroishi, Toshinobu; Ozawa, Akiko; Komine, Yumiko; Minami, Takumi; Shimauchi, Hidetoshi; Sugawara, Shunji


    Lactoferrin (Lf) is a member of the transferrin family of iron-binding anti-bacterial proteins, present in most exocrine secretions, such as saliva, and plays an important role in mucosal defense. In this study, we identified small Lf peptides with Con A low-affinity in the parotid saliva of chronic periodontitis patients by Con A two-dimensional immunoelectrophoresis, Con A affinity chromatography and Western blotting using anti-human Lf polyclonal Ab. N-terminal amino acid sequencing of the four Con A low-affinity Lf peptides confirmed them to be fragments of intact Lf. The detection ratio of the proteinase 3 (PR3)-like activity was elevated in the parotid saliva of periodontitis patients and was associated with the severity of clinical symptoms. PR3 protein was also detected in the parotid saliva of periodontitis patients, and PR3, but not human leukocyte elastase and cathepsin G, degraded intact Lf. Con A low-affinity saliva Lf peptides showed no anti-bacterial activity against Escherichia coli, and had a reduced iron-chelating capacity. Con A low-affinity saliva Lf peptides, PR3-treated Lf preparation and two of four synthetic polypeptides induced the production of interleukin IL-6, monocyte chemoattractant protein-1 and IL-8, and the activation of NF-kappaB in human oral epithelial HSC-2 cells. Furthermore, concentrations of the Lf peptides in the parotid saliva of periodontitis patients were increased with a correlation to the severity of clinical symptoms. These results suggest that Lf in the parotid saliva of periodontitis patients was degraded into small peptides by the PR3-like activity with the capability to induce inflammatory mediators.

  4. Non Benzodiazepines Hypnotics: Another Way to Induce Sleep (United States)


    Management", held in Venice, Italy, 3-4 June 1999, and published in RTO MP-31. 3-2 network of excitatory and inhibitory interneurones lying A major...excitatory interneurones of the RAS are believed to use insomnia and favour the evolution of transient insomnia glutamic acid as their neurotransmitter, and...intrisic activity and a potent hypnotic effect. functioning and memory have long been recognized to It has a low affinity for oj (including ac or ca3

  5. A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. (United States)

    Zhang, Yue; Banks, Charles


    The biosorption of Cu, Pb, Zn and Ni from a mixed solution of the metals was investigated in continuous flow packed columns containing polyurethane immobilised biomass. The characteristics and biosorption properties of Sphagnum moss, the brown seaweed Ascophyllum nodosum, waste biomass from the preparation of sunflower oil, and whole plant maize were compared. All the biomass types showed a preference for the sequestration of Pb followed by Cu, with Ni and Zn having roughly equal affinity. With continuous metal loading to the column there was an initial binding of all metals and then a displacement of the lower affinity metals by those with a high affinity. This led to a chromatographic effect in the column with breakthrough concentrations for low-affinity metals higher than the concentration in the feed. A similar phenomenon was found on desorption using acidic solutions where low-affinity metals were desorbed preferentially. The results also indicated that despite competitive displacement of one metal species by another the biomass appeared to succeed in retaining some low-affinity metal species indicating that there may be selective sites present with different affinity characteristics. When using a multi-metal solution with Cu, Pb, Zn and Ni at equal 10 mgl(-1) concentrations as column influent, the total quantities of metal sequestered were: seaweed, 117.3 mg g(-1); sunflower waste, 33.2 mg g(-1); Sphagnum moss, 32.5 mg g(-1); and maize, 2.3 mg g(-1). The use of an acid base potentiometric titration showed a relationship between the number of acid functional groups and biosorption capacity, although this was not proportional for the biomass types studied. It can, however, be used in conjunction with a simple classification of metals into high and low-affinity bands to make a preliminary assessment of a biosorption system.

  6. Dextromethorphan and Quinidine Combination for Heroin Detoxification



    Dextromethorphan (DM) is a low-affinity, non-competitive NMDA receptor antagonist that has shown promise in pre-clinical and preliminary clinical studies for the reduction of opioid withdrawal symptoms, but when used at higher doses, it is associated with deleterious side effects attributed to its metabolite, dextrorphan. A clinical trial was therefore conducted to test the withdrawal-suppressant effect of a combination of dextromethorphan with quinidine (DM/Q). Quinidine inhibits the metabol...

  7. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis


    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick


    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl ...

  8. Binding of estrogenic compounds to recombinant estrogen receptor-alpha: application to environmental analysis.


    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick


    International audience; Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activi...

  9. Studies on the Effects of Anticholinesterase Compounds on Functions of Neuroglia (United States)


    intramembrane particle assemblies seen by freeze- fracture studies, large negative membrane potentials determined by the K+ diffusion gradient due to a high... benzodiazepine binding sites of either high (26) or low affinity (27) type have been observed. In addition, based on work in primary astrocyte cultures, it seems...J. Neurochem. 43:1319- 1327. 27. McCarthy, K. and Harden, T.K. (1981) Identification of two benzodiazepine binding sites on cells cultured from rat

  10. Synthesis of new N-substituted benzodiazepine derivatives with potential anxiolytic activity. (United States)

    Kossakowski, J; Zawadowski, T; Turło, J


    In continuation of the development of antipsychotic and anxiolytic agents with a reduced propensity toward extrapyramidal side-effects, a series of N-aminoalkyl derivatives of (s)-(+)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11-(10H, 11aH)-dione was prepared. Evaluation of these compounds in revealed a very low affinity for 5-HT1A receptor.

  11. Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae : artefacts and re-definitions


    Oliveira, Rui Pedro Soares de; Lages, Fernanda; Graça, Magda Maria Couto da Silva; Lucas, Cândida


    Glycerol has been shown to cross Saccharomyces cerevisiae plasma membrane (1) through a H+/symport detected in cells grown on non-fermentable carbon sources, (2) by passive diffusion and (3) through the constitutive Fps1p channel. This has been named a facilitator, for mediating glycerol low affinity transport of the facilitated diffusion type. We present experimental evidence that this kinetics is an artefact created by glycerol kinase activity. Instead, the channel is shown to mediate the m...

  12. Regulation of DnaA Assembly and Activity: Taking Directions From the Genome



    To ensure proper timing of chromosome duplication during the cell cycle, bacteria must carefully regulate the activity of initiator protein, DnaA, and its interactions with the unique replication origin, oriC. Although several protein regulators of DnaA are known, recent evidence suggests that DnaA recognition sites, in multiple genomic locations, also play an important role in controlling assembly of pre-replication complexes. In oriC, closely spaced high and low affinity recognition sites d...

  13. An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant. (United States)

    Zhong, Huailing; Hansen, Kasper B; Boyle, Noel J; Han, Kiho; Muske, Galina; Huang, Xinyan; Egebjerg, Jan; Sánchez, Connie


    The human serotonin transporter (hSERT) has primary and allosteric binding sites for escitalopram and R-citalopram. Previous studies have established that the interaction of these two compounds at a low affinity allosteric binding site of hSERT can affect the dissociation of [(3)H]escitalopram from hSERT. The allosteric binding site involves a series of residues in the 10th, 11th, and 12th trans-membrane domains of hSERT. The low affinity allosteric activities of escitalopram and R-citalopram are essentially eliminated in a mutant hSERT with changes in some of these residues, namely A505V, L506F, I507L, S574T, I575T, as measured in dissociation binding studies. We confirm that in association binding experiments, R-citalopram at clinically relevant concentrations reduces the association rate of [(3)H]escitalopram as a ligand to wild type hSERT. We demonstrate that the ability of R-citalopram to reduce the association rate of escitalopram is also abolished in the mutant hSERT (A505V, L506F, I507L, S574T, I575T), along with the expected disruption the low affinity allosteric function on dissociation binding. This suggests that the allosteric binding site mediates both the low affinity and higher affinity interactions between R-citalopram, escitalopram, and hSERT. Our data add an additional structural basis for the different efficacies of escitalopram compared to racemic citalopram reported in animal studies and clinical trials, and substantiate the hypothesis that hSERT has complex allosteric mechanisms underlying the unexplained in vivo activities of its inhibitors.

  14. Determination of the succinonitrile-benzene and succinonitrile-cyclohexanol phase diagrams by thermal and UV spectroscopic analysis (United States)

    Kaukler, W. F.; Frazier, D. O.; Facemire, B.


    Equilibrium temperature-composition diagrams were determined for the two organic systems, succinonitrile-benzene and succinonitrile-cyclohexanol. Measurements were made using the common thermal analysis methods and UV spectrophotometry. Succinonitrile-benzene monotectic was chosen for its low affinity for water and because UV analysis would be simplified. Succinonitrile-cyclohexanol was chosen because both components are transparent models for metallic solidification, as opposed to the other known succinonitrile-based monotectics.

  15. NCBI nr-aa BLAST: CBRC-TTRU-01-1094 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available orter gb|AAO27233.1| putative phosphate transporter [Buchnera aphidicola str. Bp (Baizongia pistaciae)] NP_778128.1 0.12 27% ... ...ola str. Bp (Baizongia pistaciae)] sp|Q89A24|PIT_BUCBP RecName: Full=Low-affinity inorganic phosphate transp...CBRC-TTRU-01-1094 ref|NP_778128.1| putative phosphate transporter [Buchnera aphidic

  16. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers


    Kuszynski Charles; Gangaplara Arunakumar; Upadhyaya Bijaya; Massilamany Chandirasegaran; Reddy Jay


    Abstract Background Tetramers are useful tools to enumerate the frequencies of antigen-specific T cells. However, unlike CD8 T cells, CD4 T cells - especially self-reactive cells - are challenging to detect with major histocompatibility complex (MHC) class II tetramers because of low frequencies and low affinities of their T cell receptors to MHC-peptide complexes. Here, we report the use of fluorescent multimers, designated MHC dextramers that contain a large number of peptide-MHC complexes ...

  17. Polymorphisms and Protein Expression Differences of Starch Granule Protein in Wheat%小麦淀粉粒结合蛋白多态性及蛋白表达差异的研究

    Institute of Scientific and Technical Information of China (English)

    冶婷; 李卫华; 李士磊; 王亮; 高欢欢


    Starch granule proteins(SGP) is a trace protein which combined with wheat starch grain.Different molecular weight starch grains with myrosinase-binding protein may related to starch quality traits.To understand the diversity of starch-binding protein and its relationships with starch quality traits,149 spring wheat materials from China,Mexico and Egypt,were used for starch granule-bound proteins analysis by SDS-PAGE electrophoresis and cluster analysis,and differential expression of SGP among materials also was studied.The studies showed that the composition of SGP in the tested materials was polymorphic,10 major SGPs and 56 band combinations were detected among the 149 materials.Among which,SGP-g and SGP-e were found with the highest frequency in wheat starch-binding proteins(more than 90%).The vast majority of the wheat materials(92.6%) contain 7~9 SGPs bands.Geographical origin of materials was not consistent with the clustering based SGPs protein bands.%为了解小麦淀粉粒结合蛋白(Starch granule proteins,SGPs)的多样性及与淀粉品质性状的关系,对来自中国、墨西哥和埃及的149份春小麦材料淀粉粒结合蛋白进行SDS-PAGE电泳分析,探讨了淀粉粒结合蛋白多态性及表达差异。结果表明,供试材料的SGP组成存在多态性,149份材料中分离了10种主要的SGPs和56种组合带谱,其中SGP-g和SGP-e是小麦中出现频率最高的淀粉粒结合蛋白(出现频率均在90%以上),而绝大多数小麦材料(92.6%)中包含了7~9条SGPs条带。材料的地理来源与SGPs蛋白谱带聚类的结果并不完全一致。

  18. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate. (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm


    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  19. Calcium binding to cardiac myocytes protected from proteolytic enzyme activity. (United States)

    Bailey, L E; Fawzi, A B


    Excitation-contraction coupling in cardiac muscle is dependent on extracellular calcium and calcium bound to the surface of the myocardial cell. In this study, we examined the physical characteristics of calcium binding to adult guinea pig ventricular myocytes disaggregated mechanically in oxygenated tissue culture medium containing a proteinase inhibitor (aprotinin), and separated from cellular debris by Cytodex beads. Cells prepared in this manner excluded Trypan blue and showed no evidence of spontaneous contraction or contracture. Scatchard plots of calcium binding determined by continuous flow equilibrium dialysis revealed a high-affinity, low-capacity pool, Ka = 65 X 10(3) M-1 and Bt = 1.3 nmol X mg-1 and a low-affinity, high-capacity pool, Ka = 141 M-1 and Bt = 138 nmol X mg-1. The low-affinity pool was not detectable after lanthanum, trypsin or collagenase treatment or in cells prepared without aprotinin in the isolation medium. Both neuraminidase and phospholipase C reduced Bt of the low-affinity pool by one half, but only neuraminidase affected the affinity constant of this pool. Ka was increased to 516.7 M-1, similar to the apparent affinity constant for calcium binding estimated from dP/dtmax measured at several extracellular calcium concentrations (470 M-1). The results suggest that calcium bound to sarcolemmal phospholipids represents the superficial calcium involved in excitation-contraction coupling in the heart.

  20. Antigen-affinity controls pre-germinal centser B cell selection by promoting Mcl-1 induction through BAFF receptor signaling (United States)

    Wensveen, Felix M.; Slinger, Erik; van Attekum, Martijn HA; Brink, Robert; Eldering, Eric


    Upon antigen encounter, the responsive B cell pool undergoes stringent selection which eliminates cells with low B cell receptor (BCR) affinity. Already before formation of the germinal center, activated B cells of low-affinity are negatively selected in a process that is molecularly not well understood. In this study, we investigated the mechanism behind pre-GC affinity-mediated B cell selection. We applied affinity mutants of HEL antigen and found that rapidly after activation B cells become highly dependent on the cytokine BAFF. Moreover, expression of BAFF receptor CD268 is regulated in a BCR-affinity dependent fashion. High affinity responses via BAFF correlated with PI3K activation, which controlled expression of the pro-survival protein Mcl-1, and thereby increased survival. In the presence of excess BAFF, or in absence of the Mcl-1 antagonist Noxa, more low-affinity B cells survived the first two days after antigen encounter. This resulted in increased numbers of antigen-specific B cells of low affinity upon immunization and reduced the overall affinity of cells that contributed to the germinal center reaction. Our findings elucidate a crucial molecular pathway of B cell selection in the earliest phases of activation by identifying a novel link between BCR affinity and BAFF-R signaling towards Mcl-1. PMID:27762293

  1. Characterization and regulation of. beta. /sub 2/-adrenergic receptors in rat vas deferens

    Energy Technology Data Exchange (ETDEWEB)

    May, J.M.


    ..beta../sub 2/-Adrenergic receptors in rat vas deferens were examined by measuring the binding of /sup 125/I-pindolol (/sup 125/IPIN) to membrane preparations and the inhibition of evoked contractions in intact tissues. /sup 125/IPIN labeled a single class of binding sites with mass action kinetics. Affinity constants for ..beta..-adrenergic receptor antagonists calculated from both binding and functional experiments agreed well, suggesting that /sup 125/IPIN labels the functional ..beta../sub 2/-adrenergic receptor. n-Bromoacetylalprenololmenthane (BAAM) was used to decrease receptor density so that agonist affinity constants could be determined functionally. Treatment of tissues with BAAM decreased the functional potencies of agonists. Higher concentrations of BAAM decreased the maximum tissue response. Affinity constants for agonists calculated after BAAM treatment were compared to affinity constants determined from binding studies done under conditions designed to promote high or low affinity agonist binding. Functional affinity constants for isoproterenol and salbutamol agreed with the low affinity binding constants, suggesting that the low affinity form of the receptor initiates the functional response. Because acute denervation of vasa deferentia did not alter the density of /sup 125/IPIN binding sites, the sites are probably post-junctional. Chronic infusion of isoproterenol reduced the potency of isoproterenol, the maximum tissue response, and the receptor density. These results suggest that ..beta..-adrenergic receptor density and responsiveness in rat vas deferens are not affected by removing catecholamine sources, but receptor density and responsiveness can be decreased by increasing agonist concentration at the receptor.

  2. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    Energy Technology Data Exchange (ETDEWEB)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.; Rodrigues de Miranda, J.F.; Beld, A.J.; Lammers, J.W.J.; van Ginneken, C.A.M.


    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/- and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.

  3. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna;


    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low affinity ligands because L-Glu is difficult to displace...... despite extensive dialysis. Here, we show that L-Asp binds to full-length GluA2 with low affinity (Ki = 0.63 mM) and to GluA2 LBD with even lower affinity (Ki = 2.6 mM), and we use differential scanning differential scanning fluorimetry to show that L-Asp is able to stabilize the isolated GluA2 LBD. We...... mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taken together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low affinity ligands for lead...

  4. Physiological and Molecular Analysis of Applied Nitrogen in Rice Genotypes

    Institute of Scientific and Technical Information of China (English)

    Khalid Rehman HAKEEM; Ruby CHANDNA; Altaf AHMAD; Muhammad IQBAL


    Ten genotypes of rice (Oryza sativa L.) were grown for 30 d in complete nutrient solution with 1 mmol/L (N-insufficient),4 mmol/L (N-moderate) and 10 mmol/L (N-high) nitrogen levels,and nitrogen efficiency (NE) was analyzed.Growth performance,measured in terms of fresh weight,dry weight and lengths of root and shoot,was higher in N-efficient than in N-inefficient rice genotypes at low N level.Of these 10 genotypes,Suraksha was identified as the most N-efficient,while Vivek Dhan the most N-inefficient.To find out the physiological basis of this difference,the nitrate uptake rate of root and the activities of nitrate assimilatory enzymes in leaves of N-efficient and N-inefficient rice genotypes were studied.Uptake experiments revealed the presence of two separate nitrate transporter systems mediating high- and low-affinity nitrate uptake.Interestingly,the nitrate uptake by the roots of Suraksha is mediated by both high- and low-affinity nitrate transporter systems,while that of Vivek Dhan by only low-affinity nitrate transporter system.Study of the activities and expression levels of nitrate assimilatory enzymes in N-efficient and N-inefficient rice genotypes showed that nitrate reductase (NR) and glutamine svnthetase (GS) play important roles in N assimilation under low-nitrogen conditions.

  5. A TCR affinity threshold regulates memory CD4 T cell differentiation following vaccination. (United States)

    Baumgartner, Christina K; Yagita, Hideo; Malherbe, Laurent P


    Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection.

  6. Catalytic domain surface residues mediating catecholamine inhibition in tyrosine hydroxylase. (United States)

    Briggs, Gabrielle D; Bulley, Jesse; Dickson, Phillip W


    Tyrosine hydroxylase (TH) performs the rate-limiting step in catecholamine (CA) synthesis and is a tetramer composed of regulatory, catalytic and tetramerization domains. CAs inhibit TH by binding two sites in the active site; one with high affinity and one with low affinity. Only high affinity CA binding requires the regulatory domain, believed to interact with the catalytic domain in the presence of CA. Without a crystal structure of the regulatory domain, the specific areas involved in this process are largely undefined. It is not clear whether the regulatory domain-catalytic domain interaction is asymmetrical across the tetramer to produce the high and low affinity sites. To investigate this, pure dimeric TH was generated through double substitution of residues at the tetramerization interface and dimerization salt bridge (K170E/L480A). This was shown to be the core regulatory unit of TH for CA inhibition, possessing both high and low affinity CA binding sites, indicating that there is symmetry between dimers of the tetramer. We also examined possible regulatory domain-interacting regions on the catalytic domain that mediate high affinity CA binding. Using site-directed mutagenesis, A297, E362/E365 and S368 were shown to mediate high affinity dopamine inhibition through V(max) reduction and increasing the K(M) for the cofactor.

  7. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design (United States)

    Larsson, Andreas; Nordlund, Paer; Jansson, Anna; Anand, Ganesh S.


    A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD). PMID:27253209

  8. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Arun Chandramohan


    Full Text Available A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower. Amide hydrogen deuterium Exchange mass spectrometry (HDXMS is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD.

  9. Novel Biochemical and Structural Insights into the Interaction of Myristoylated Cargo with Unc119 Protein and Their Release by Arl2/3. (United States)

    Jaiswal, Mamta; Fansa, Eyad K; Kösling, Stefanie K; Mejuch, Tom; Waldmann, Herbert; Wittinghofer, Alfred


    Primary cilia are highly specialized small antenna-like cellular protrusions that extend from the cell surface of many eukaryotic cell types. The protein content inside cilia and cytoplasm is very different, but details of the sorting process are not understood for most ciliary proteins. Recently, we have shown that prenylated proteins are sorted according to their affinity to the carrier protein PDE6δ and the ability of Arl3 but not Arl2 to release high affinity cargo inside the cilia (Fansa, E. K., Kösling, S. K., Zent, E., Wittinghofer, A., and Ismail, S. (2016) Nat. Commun. 7, 11366). Here we address the question whether a similar principle governs the transport of myristoylated cargo by the carrier proteins Unc119a and Unc119b. We thus analyzed the binding strength of N-terminal myristoylated cargo peptides (GNAT1, NPHP3, Cystin1, RP2, and Src) to Unc119a and Unc119b proteins. The affinity between myristoylated cargo and carrier protein, Unc119, varies between subnanomolar and micromolar. Peptides derived from ciliary localizing proteins (GNAT1, NPHP3, and Cystin1) bind with high affinity to Unc119 proteins, whereas a peptide derived from a non-ciliary localizing protein (Src) has low affinity. The peptide with intermediate affinity (RP2) is localized at the ciliary transition zone as a gate keeper. We show that the low affinity peptides are released by both Arl2·GppNHp and Arl3·GppNHp, whereas the high affinity peptides are exclusively released by only Arl3·GppNHp. Determination of the x-ray structure of myristoylated NPHP3 peptide in complex with Unc119a reveals the molecular details of high affinity binding and suggests the importance of the residues at the +2 and +3 positions relative to the myristoylated glycine for high and low affinities. The mutational analysis of swapping the residues at the +2 and +3 positions between high and low affinity peptides results in reversing their affinities for Unc119a and leads to a partial mislocalization of a low

  10. Crystal structure of a raw-starch-degrading bacterial α-amylase belonging to subfamily 37 of the glycoside hydrolase family GH13 (United States)

    Liu, Yanhong; Yu, Jigang; Li, Fudong; Peng, Hui; Zhang, Xuecheng; Xiao, Yazhong; He, Chao


    Subfamily 37 of the glycoside hydrolase family GH13 was recently established on the basis of the discovery of a novel α-amylase, designated AmyP, from a marine metagenomic library. AmyP exhibits raw-starch-degrading activity and consists of an N-terminal catalytic domain and a C-terminal starch-binding domain. To understand this newest subfamily, we determined the crystal structure of the catalytic domain of AmyP, named AmyPΔSBD, complexed with maltose, and the crystal structure of the E221Q mutant AmyPΔSBD complexed with maltotriose. Glu221 is one of the three conserved catalytic residues, and AmyP is inactivated by the E221Q mutation. Domain B of AmyPΔSBD forms a loop that protrudes from domain A, stabilizes the conformation of the active site and increases the thermostability of the enzyme. A new calcium ion is situated adjacent to the -3 subsite binding loop and may be responsible for the increased thermostability of the enzyme after the addition of calcium. Moreover, Tyr36 participates in both stacking and hydrogen bonding interactions with the sugar motif at subsite -3. This work provides the first insights into the structure of α-amylases belonging to subfamily 37 of GH13 and may contribute to the rational design of α-amylase mutants with enhanced performance in biotechnological applications. PMID:28303907

  11. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi.

    Directory of Open Access Journals (Sweden)

    Wanping Chen

    Full Text Available Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH from the Carbohydrate-Active enZymes (CAZy Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α-amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.

  12. A CESA from Griffithsia monilis (Rhodophyta, Florideophyceae) has a family 48 carbohydrate-binding module. (United States)

    Matthews, Peter R; Schindler, Michael; Howles, Paul; Arioli, Tony; Williamson, Richard E


    Cellulose synthases form rosette terminal complexes in the plasma membranes of Streptophyta and various linear terminal complexes in other taxa. The sequence of a putative CESA from Griffithsia monilis (Rhodophyta, Floridiophyceae) was deduced using a cloning strategy involving degenerate primers, a cDNA library screen, and 5' and 3' rapid amplification of cDNA ends (RACE). RACE identified two alternative transcriptional starts and four alternative polyadenylation sites. The first translation start codon provided an open reading frame of 2610 bp encoding 870 amino acids and was PCR amplified without introns from genomic DNA. Southern hybridization indicated one strongly hybridizing gene with possible weakly related genes or pseudogenes. Amino acid sequence analysis identified a family 48 carbohydrate-binding module (CBM) upstream of the protein's first predicted transmembrane domain. There are broad similarities in predicted 3D structures of the family 48 modules from CESA, from several glycogen- and starch-binding enzymes, and from protein kinases, but there are substitutions at some residues thought to be involved in ligand binding. The module in G. monilis CESA will be on the cytoplasmic face of the plasma membrane so that it could potentially bind either low molecular weight ligands or starch which is cytosolic rather than inside membrane-bound plastids in red algae. Possible reasons why red algal CESAs have evolved family 48 modules perhaps as part of a system to regulate cellulose synthase activity in relation to cellular carbohydrate status are briefly discussed.

  13. Mouse Stbd1 is N-myristoylated and affects ER-mitochondria association and mitochondrial morphology. (United States)

    Demetriadou, Anthi; Morales-Sanfrutos, Julia; Nearchou, Marianna; Baba, Otto; Kyriacou, Kyriacos; Tate, Edward W; Drousiotou, Anthi; Petrou, Petros P


    Starch binding domain-containing protein 1 (Stbd1) is a carbohydrate-binding protein that has been proposed to be a selective autophagy receptor for glycogen. Here, we show that mouse Stbd1 is a transmembrane endoplasmic reticulum (ER)-resident protein with the capacity to induce the formation of organized ER structures in HeLa cells. In addition to bulk ER, Stbd1 was found to localize to mitochondria-associated membranes (MAMs), which represent regions of close apposition between the ER and mitochondria. We demonstrate that N-myristoylation and binding of Stbd1 to glycogen act as major determinants of its subcellular targeting. Moreover, overexpression of non-myristoylated Stbd1 enhanced the association between ER and mitochondria, and further induced prominent mitochondrial fragmentation and clustering. Conversely, shRNA-mediated Stbd1 silencing resulted in an increase in the spacing between ER and mitochondria, and an altered morphology of the mitochondrial network, suggesting elevated fusion and interconnectivity of mitochondria. Our data unravel the molecular mechanism underlying Stbd1 subcellular targeting, support and expand its proposed function as a selective autophagy receptor for glycogen and uncover a new role for the protein in the physical association between ER and mitochondria.

  14. Expression of an engineered granule-bound Escherichia coli glycogen branching enzyme in potato results in severe morphological changes in starch granules. (United States)

    Huang, Xing-Feng; Nazarian-Firouzabadi, Farhad; Vincken, Jean-Paul; Ji, Qin; Suurs, Luc C J M; Visser, Richard G F; Trindade, Luisa M


    The Escherichia coli glycogen branching enzyme (GLGB) was fused to either the C- or N-terminus of a starch-binding domain (SBD) and expressed in two potato genetic backgrounds: the amylose-free mutant (amf) and an amylose-containing line (Kardal). Regardless of background or construct used, a large amount of GLGB/SBD fusion protein was accumulated inside the starch granules, however, without an increase in branching. The presence of GLGB/SBD fusion proteins resulted in altered morphology of the starch granules in both genetic backgrounds. In the amf genetic background, the starch granules showed both amalgamated granules and porous starch granules, whereas in Kardal background, the starch granules showed an irregular rough surface. The altered starch granules in both amf and Kardal backgrounds were visible from the initial stage of potato tuber development. High-throughput transcriptomic analysis showed that expression of GLGB/SBD fusion protein in potato tubers did not affect the expression level of most genes directly involved in the starch biosynthesis except for the up-regulation of a beta-amylase gene in Kardal background. The beta-amylase protein could be responsible for the degradation of the extra branches potentially introduced by GLGB.

  15. Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase. (United States)

    Zhang, Xiaohua; Caner, Sami; Kwan, Emily; Li, Chunmin; Brayer, Gary D; Withers, Stephen G


    Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic amylase, distinct from the active site of the amylase, have been identified through X-ray crystallographic analyses. The role of these sites in the degradation of both starch granules and soluble starch was probed by the generation of a series of surface variants modified at each site to disrupt binding. Kinetic analysis of the binding and/or cleavage of substrates ranging from simple maltotriosides to soluble starch and insoluble starch granules has allowed evaluation of the potential role of each such surface site. In this way, two key surface binding sites, on the same face as the active site, are identified. One site, containing a pair of aromatic residues, is responsible for attachment to starch granules, while a second site featuring a tryptophan residue around which a malto-oligosaccharide wraps is shown to heavily influence soluble starch binding and hydrolysis. These studies provide insights into the mechanisms by which enzymes tackle the degradation of largely insoluble polymers and also present some new approaches to the interrogation of the binding sites involved.

  16. Utilización de Cromatografía Líquida de Alta Eficiencia (HPLC para determinar consumo de sustrato

    Directory of Open Access Journals (Sweden)

    Agostina Romero


    Full Text Available La incorporación de diferentes tipos de desechos industriales y hogareños, y muy especialmente de agroquímicos, son los principales motivos que pueden originar la contaminación de los ambientes naturales, esencialmente los cursos y cuerpos de agua natural. Los efectos nocivos pueden minimizarse merced a la fotodegradación, proceso que puede favorecerse por la adsorción de los contaminantes a arcillas naturales o modificadas con nanopartículas. En este último caso, para el estudio y seguimiento de la cinética de degradación de los contaminantes una técnica normalmente empleada es la cromatografía. En el caso particular del fenol, es posible aplicar la cromatografía líquida de alta eficiencia (HPLC, High Performance Liquid Chromatography. El presente trabajo se enfocó en la optimización de una técnica para el seguimiento de la adsorción y degradación de compuestos orgánicos, en particular fenol, mediante HPLC. Empleando un equipo Shimadzu CBM-20A, se obtuvo la mayor eficiencia con una corrida isotérmica a 25ºC en columna Phenomenex Luna C18 (2 de 250 mm de longitud y 4,6mm de diámetro interno usando como fase móvil una mezcla 50/50 (V/V acetonitrilo y agua ultrapura con un flujo de 1mL/min. Se empleó un detector espectrofotométrico UV (270 nm. La aplicación de la técnica con estos parámetros permitirán estudiar convenientemente los mecanismos de la fotodegradación del fenol adsorbido a arcillas modificadas con nanopartículas.

  17. Detection of multiple H3 receptor affinity states utilizing [3H]A-349821, a novel, selective, non-imidazole histamine H3 receptor inverse agonist radioligand. (United States)

    Witte, David G; Yao, Betty Bei; Miller, Thomas R; Carr, Tracy L; Cassar, Steven; Sharma, Rahul; Faghih, Ramin; Surber, Bruce W; Esbenshade, Timothy A; Hancock, Arthur A; Krueger, Kathleen M


    1. A-349821 is a selective histamine H3 receptor antagonist/inverse agonist. Herein, binding of the novel non-imidazole H3 receptor radioligand [3H]A-349821 to membranes expressing native or recombinant H3 receptors from rat or human sources was characterized and compared with the binding of the agonist [3H]N--methylhistamine ([3H]NMH). 2. [3H]A-349821 bound with high affinity and specificity to an apparent single class of saturable sites and recognized human H3 receptors with 10-fold higher affinity compared to rat H3 receptors. [3H]A-349821 detected larger populations of receptors compared to [3H]NMH. 3. Displacement of [3H]A-349821 binding by H3 receptor antagonists/inverse agonists was monophasic, suggesting recognition of a single binding site, while that of H3 receptor agonists was biphasic, suggesting recognition of both high- and low-affinity H3 receptor sites. 4. pKi values of high-affinity binding sites for H3 receptor competitors utilizing [3H]A-349821 were highly correlated with pKi values obtained with [3H]NalphaMH, consistent with labelling of H3 receptors by [3H]A-349821. 5. Unlike assays utilizing [3H]NMH, addition of GDP had no effect on saturation parameters measured with [3H]A-349821, while displacement of [3H]A-349821 binding by the H3 receptor agonist histamine was sensitive to GDP. 6. In conclusion, [3H]A-349821 labels interconvertible high- and low-affinity states of the H3 receptor, and displays improved selectivity over imidazole-containing H3 receptor antagonist radioligands. [3H]A-349821 competition studies showed significant differences in the proportions and potencies of high- and low-affinity sites across species, providing new information about the fundamental pharmacological nature of H3 receptors.

  18. Melatonin modulation of presynaptic nicotinic acetylcholine receptors located on short noradrenergic neurons of the rat vas deferens: a pharmacological characterization

    Directory of Open Access Journals (Sweden)

    Zago W.M.


    Full Text Available Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

  19. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology domain prevents in vivo Rac1 activation without affecting membrane targeting. (United States)

    Baumeister, Mark A; Martinu, Lenka; Rossman, Kent L; Sondek, John; Lemmon, Mark A; Chou, Margaret M


    Dbl family guanine nucleotide exchange factors (GEFs) for Rho family small GTPases invariably contain a pleckstrin homology (PH) domain that immediately follows their Dbl homology (DH) domain. Although the DH domain is responsible for GEF activity, the role of the PH domain is less clear. We previously reported that PH domains from several Dbl family members bind phosphoinositides with very low affinity (K(d) values in the 10 microM range). This suggests that, unlike several other PH domains, those from Dbl proteins will not function as independent membrane-targeting modules. To determine the functional relevance of low affinity phosphoinositide binding, we mutated the corresponding PH domain from Tiam-1 to abolish its weak, specific binding to phosphatidylinositol 3-phosphate. We first confirmed in vitro that phosphoinositide binding by the isolated DH/PH domain was impaired by the mutations but that intrinsic GEF activity was unaffected. We then introduced the PH domain mutations into full-length Tiam-1 and found that its ability to activate Rac1 or serum response factor in vivo was abolished. Immunofluorescence studies showed that membrane targeting of Tiam-1 was essentially unaffected by mutations in the C-terminal PH domain. Our studies therefore indicate that low affinity phosphatidylinositol 3-phosphate binding by the C-terminal PH domain may be critical for in vivo regulation and activity of Tiam-1 but that the PH domain exerts its regulatory effects without altering membrane targeting. We suggest instead that ligand binding to the PH domain induces conformational and/or orientational changes at the membrane surface that are required for maximum exchange activity of its adjacent DH domain.

  20. Two-phase positive inotropic effects of ouabain and the presence of multiple classes of ouabain binding sites in the ferret heart

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Y.C.; Akera, T.


    Characteristics of more than one class of ouabain receptors which appear to exist in ferret heart were examined. In isolated papillary muscle, 1 to 30 nM ouabain produced a positive inotropic effect in the presence of 5 propranolol and 2 phentolamine. Higher concentrations of ouabain (0.1 to 10 produced an additional and prominent inotropic effect. In partially purified Na, K-ATPase, ouabain caused a monophasic inhibition; however, the concentration-inhibition curve spanned over 5 log units, indicating that ouabain is interacting with more than a single class of the enzyme. Scatchard analysis of specific /sup 3/H-ouabain binding revealed approximately equal abundance of high and low affinity binding sites. The K/sub D/ value for high affinity sites was approximately 20 nM whereas that for low affinity sites was about 45 times higher. When phosphoenzyme was formed in the presence of (..gamma..-/sup 32/P)-ATP, Mg/sup 2 +/ and Na/sup +/ and subjected to SDS gel electrophoresis, two distinct K/sup +/-sensitive bands with about 100,000 dalton molecular weight were detected. Molecular weight difference between these two bands was approximately 2500 dalton. Phosphorylation of either band was abolished by 1 ouabain suggesting that both bands may correspond to the high-affinity binding sites. These results indicate that high and low affinity ouabain binding sites exists in approximately equal abundance in the ferret heart, and that binding of ouabain to these sites cases Na,K-ATPase inhibition and the positive inotropic effect.

  1. Characterization of the binding sites for dicarboxylic acids on bovine serum albumin. (United States)

    Tonsgard, J H; Meredith, S C


    Dicarboxylic acids are prominent features of several diseases, including Reye's syndrome and inborn errors of mitochondrial and peroxisomal fatty acid oxidation. Moreover, dicarboxylic acids are potentially toxic to cellular processes. Previous studies [Tonsgard, Mendelson & Meredith (1988) J. Clin. Invest. 82, 1567-1573] demonstrated that long-chain dicarboxylic acids have a single high-affinity binding site and between one and three lower-affinity sites on albumin. Medium-chain-length dicarboxylic acids have a single low-affinity site. We further characterized dicarboxylic acid binding to albumin in order to understand the potential effects of drugs and other ligands on dicarboxylic acid binding and toxicity. Progesterone and oleate competitively inhibit octadecanedioic acid binding to the single high-affinity site. Octanoate inhibits binding to the low-affinity sites. Dansylated probes for subdomain 2AB inhibit dodecanedioic acid binding whereas probes for subdomain 3AB do not. In contrast, low concentrations of octadecanedioic acid inhibit the binding of dansylated probes to subdomain 3AB and 2AB. L-Tryptophan, which binds in subdomain 3AB, inhibits hexadecanedioic acid binding but has no effect on dodecanedioic acid. Bilirubin and acetylsalicylic acid, which bind in subdomain 2AB, inhibit the binding of medium-chain and long-chain dicarboxylic acids. Our results suggest that long-chain dicarboxylic acids bind in subdomains 2C, 3AB and 2AB. The single low-affinity binding site for medium-chain dicarboxylic acids is in subdomain 2AB. These studies suggest that dicarboxylic acids are likely to be unbound in disease states and may be potentially toxic.

  2. Characterization of the Effect of Drug-Drug Interaction on Protein Binding in Concurrent Administration of Sulfamethoxazol and Diclofenac Sodium Using Bovine Serum Albumin (United States)

    Hossain, Md Kamal; Khatun, Amina; Rahman, Mahmudur; Akter, Md Nahid; Chowdhury, Sadia Afreen; Alam, SM Mahbubul


    Purpose: This project was aimed to determine the effect of concurrent administration of sulfamethoxazole and diclofenac sodium. Methods: Equilibrium dialysis method was adopted to study different protein binding aspects of sulfamethoxazole and diclofenac sodium. Results: Sulfamethoxazole showed two types of association constants; high affinity constant 29.0±0.20×106 M-1 with lower number of binding sites of 0.7±1 and low affinity constant 1.13±0.20×106 M-1 with higher number of binding sites of 3.45±1 at pH 7.4 and 40 °C temperature. Diclofenac sodium showed high affinity constant 33.66±0.20×106 M-1 with lower number of binding sites of 1.01±1 and low affinity constant 1.72±0.20×106 M-1 with higher number of binding sites of 6.40±1 at the same condition. Site specific probe displacement data implied that site-I, warfarin sodium site, was the high affinity site, while site-II, diazepam site, was the low affinity site for these drugs. During concurrent administration, sulfamethoxazole increased the free concentration of diclofenac sodium from 17.5±0.14% to 70.0±0.014% in absence and from 22.5±0.07% to 83.0±0.014% in presence of site-I specific probe. Diclofenac sodium also increased the free concentration of sulfamethoxazole from 2.8±0.07% to 52.0±0.14% and from 8.5±0.014% to 64.4±0.07% in absence and presence of site-I specific probe respectively. Conclusion: The study revealed that the concurrent administration of sulfamethoxazole and diclofenac sodium may result drug concentration alteration in blood. PMID:28101466

  3. A mutation correcting the DNA interaction defects of a mutant phage lambda terminase, gpNu1 K35A terminase. (United States)

    Hwang, Y; Feiss, M


    Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer composed of gpNu1 (181 aa) and gpA (641 aa) subunits, encoded by the lambda Nu1 and A genes, respectively. Similarity between the deduced amino acid sequences of gpNu1 and gpA and the nucleotide binding site consensus sequence suggests that each terminase subunit has an ATP reactive center. Terminase has been shown to have two distinct ATPase activities. The gpNu1 subunit has a low-affinity ATPase stimulated by nonspecific DNA and gpA has a high-affinity ATPase. In previous work, a mutant terminase, gpNu1 K35A holoterminase, had a mild defect in interactions with DNA, such that twofold increased DNA concentrations were required both for full stimulation of the low-affinity ATPase and for saturation of the cos cleavage reaction. In addition, the gpNu1 K35A terminase exhibited a post-cleavage defect in DNA packaging that accounted for the lethality of the Nu1 K35A mutation [Y. Hwang and M. Feiss (1997) Virology 231, 218-230]. In the work reported here, a mutation in the turn of the putative helix-turn-helix DNA binding domain has been isolated as a suppressor of the gpNu1 K35A change. This suppressor mutation causes the change A14V in gpNu1. A14V reverses the DNA-binding defects of gpNu1 K35A terminase, both for stimulation of the low-affinity ATPase and for saturation of the cos cleavage defect. A14V suppresses the post-cleavage DNA packaging defect caused by the gpNu1 K35A change.

  4. Uptake of gamma-aminobutyric acid and L-glutamic acid by synaptosomes from postmortem human cerebral cortex: multiple sites, sodium dependence and effect of tissue preparation. (United States)

    Dodd, P R; Watson, W E; Morrison, M M; Johnston, G A; Bird, E D; Cowburn, R F; Hardy, J A


    The uptake of gamma-aminobutyric acid (GABA) and L-glutamic acid by synaptosomes prepared from frozen postmortem human brain was shown to be effected via distinct high and low affinity sites. At approximately 17 h postmortem delay, the kinetic parameters for GABA uptake were: high affinity site, Km 7.1 +/- 2.5 microM, Vmax 18.7 +/- 4.8 nmol.min-1 per 100 mg protein; low affinity site, Km 2 +/- 1 mM, Vmax 425 +/- 250 nmol.min-1 per 100 mg protein (means +/- S.E.M., n = 13). Kinetic parameters for L-glutamate uptake were: high affinity site, Km 7.5 +/- 1.0 microM, Vmax 85 +/- 8 nmol.min-1 per 100 mg protein; low affinity site, Km 1.8 +/- 1.2 mM. Vmax 780 +/- 175 nmol.min-1 per 100 mg protein (n = 11). A detailed kinetic analysis of high affinity GABA uptake was performed over a range of sodium ion concentrations. The results were consistent with a coupling ratio of one Na+ ion to one GABA molecule; a similar result was found with rat brain synaptosomes. However, rat and human synaptosomes differed in the degree to which the substrate affinity of the high affinity GABA uptake site varied with decreasing Na+ ion concentration. High affinity GABA uptake was markedly affected by the method used to freeze and divide the tissue, but did not vary greatly in different cortical regions. There was some decline of high affinity GABA uptake activity with postmortem delay, apparently due to a loss of sites rather than a change in site affinity.

  5. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell


    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N.


    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HI...

  6. Fluids as transducers of gravity in biological systems

    CERN Document Server

    Lofthouse, J


    A qualitative model is presented, suggesting gravitational information is transduced into biological systems primarily by its effect on spatially organised membrane and cytoplasmic flows. Continuous low affinity interactions between membrane bound cytoskeletal proteins and phospholipid flows that are undergoing forced convective and shear driven flows are shown to convert this information into spatial protein patterns, and hence cell shape. As applied here to plant cells, the feedback mechanism is shown capable not only of establishing the strict nanometer scale parallelism that exists between proteins running on the inside and outside of the cell membrane, but also to predict its maintainance and the angle of fibre realignment observed during tropic responses.

  7. A novel human immunoglobulin Fcγ–Fcε bifunctional fusion protein inhibits FcεRI-mediated degranulation


    Zhu, Daocheng; Kepley, Christopher L.; Zhang, Min; Zhang, Ke; Saxon, Andrew


    Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fcε receptor 1 (FcεRI), have key roles in allergic diseases. FcεRI cross-linking stimulates the release of allergic mediators1. Mast cells and basophils co-express FcγRIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with FcεRI can block FcεRI-mediated reactivity2–4. Here we designed, expressed and tested the human basophil and mast-c...

  8. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-ht2 receptors

    DEFF Research Database (Denmark)

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian;


    showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form...... about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure...

  9. In-Bead Screening of Hydroxamic Acids for the Identification of HDAC Inhibitors

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Nielsen, Thomas Eiland


    A one bead–one compound screening format is presented. Following solid-phase synthesis on a photolabile linker, library compounds were readily released and screened inside polymer beads. The release of screening compounds was readily controlled by varying photolysis time and light intensity. Dose......-response experiments were carried out to effectively distinguish high- and low-affinity ligands. A library containing 55 800 compounds was synthesized and screened in a fluorometric assay, thereby identifying potent HDAC inhibitors with IC50 values in the nanomolar range....

  10. Evidence for a non-opioid sigma binding site din the guinea-pig myenteric plexus

    Energy Technology Data Exchange (ETDEWEB)

    Roman, F.; Pascaud, X.; Vauche, D.; Junien, J.


    The presence of a binding site to (+)-(/sup 3/H)SKF 10,047 was demonstrated in a guinea-pig myenteric plexus (MYP) membrane preparation. Specific binding to this receptor was saturable, reversible, linear with protein concentration and consisted of two components, a high affinity site and a low affinity site. Morphine and naloxone 10/sup -4/M were unable to displace (+)-(/sup 3/H)SKF 10,047 binding. Haloperidol, imipramine, ethylketocyclazocine and propranolol were among the most potent compounds to inhibit this specific binding. These results suggest the presence of a non-opioid haloperidol sensitive sigma receptor in the MYP of the guinea-pig.

  11. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli


    Iwao Ohtsu; Yusuke Kawano; Marina Suzuki; Susumu Morigasaki; Kyohei Saiki; Shunsuke Yamazaki; Gen Nonaka; Hiroshi Takagi


    Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (K m = 1.1 μM) that is ...

  12. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, J.T.; Castren, E.; Vakkuri, O.; Saavedra, J.M.


    We used quantitative in vitro autoradiography to localize and characterize 2-/sup 125/I-melatonin binding sites in the rat suprachiasmatic nuclei in relation to pineal melatonin production. In a light:dark cycle of 12:12 h, binding density exhibited significant diurnal variation with a peak at the dark-light transition and a trough 12 hours later. Saturation studies suggested that the decreased binding at light-dark transition might be due to a shift of the putative melatonin receptor to a low affinity state.

  13. Ethanol-related changes in benzodiazepine receptor ligand modulation of GABA[sub A] receptor-operated chloride channels: Relevance to ethanol tolerance and dependence

    Energy Technology Data Exchange (ETDEWEB)

    Buck, K.J.


    This study focuses on how ethanol exposure affects biochemical processes associated with the GABA[sub A] complex in the mammalian CNS, and examines the role of these changes in the development of alcohol tolerance and withdrawal. In vitro studies of control mice and those acutely or chronically exposed to alcohol were conducted. Radioligand binding using the low-affinity GABA[sub A] receptor-selective antagonist [[sup 3]H]SR95531 showed no changes in saturation binding analysis of receptor affinity or density. Muscimol-activated [sup 36]Cl[sup [minus

  14. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A;


    The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays...... exposed to THIP (150 microM) for 3 hr low affinity GABA receptors were induced. These findings show that the effect of THIP on the ultrastructure composition and GABA receptor expression in cultured cerebellar granule cells may be interrelated and moreover it is likely that the turn-over of GABA receptors...

  15. EGF receptor ligands: recent advances [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Bhuminder Singh


    Full Text Available Seven ligands bind to and activate the mammalian epidermal growth factor (EGF receptor (EGFR/ERBB1/HER1: EGF, transforming growth factor-alpha (TGFA, heparin-binding EGF-like growth factor (HBEGF, betacellulin (BTC, amphiregulin (AREG, epiregulin (EREG, and epigen (EPGN. Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  16. C2-domain containing calcium sensors in neuroendocrine secretion

    DEFF Research Database (Denmark)

    Pinheiro, Paulo S; Houy, Sébastien; Sørensen, Jakob B


    to calcium, trigger the merger of cargo-filled vesicles with the plasma membrane. Low-affinity, fast-kinetics calcium sensors of the synaptotagmin family - especially synaptotagmin-1 and synaptotagmin-2 - are the main calcium sensors for fast exocytosis triggering in many cell types. Their functions extend...... the properties and possible interplay of (some of) the major C2-domain containing calcium sensors in calcium-triggered exocytosis. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases"....

  17. Reconstitution of the functional receptors for murine and human interleukin 5



    The murine interleukin 5 receptor (mIL-5R) is composed of two distinct subunits, alpha and beta. The alpha subunit (mIL-5R alpha) specifically binds IL-5 with low affinity. The beta subunit (mIL-5R beta) does not bind IL-5 by itself, but forms the high-affinity receptor with mIL-5R alpha. mIL-5R beta has been revealed to be the mIL-3R-like protein, AIC2B which is shared with receptors for IL-3 and granulocyte/macrophage colony-stimulating factor. We demonstrated here the reconstitution of the...

  18. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior

    DEFF Research Database (Denmark)

    Butini, Stefania; Gemma, Sandra; Campiani, Giuseppe;


    Dopamine D(3) antagonism combined with serotonin 5-HT(1A) and 5-HT(2A) receptor occupancy may represent a novel paradigm for developing innovative antipsychotics. The unique pharmacological features of 5i are a high affinity for dopamine D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors, together...... with a low affinity for dopamine D(2) receptors (to minimize extrapyramidal side effects), serotonin 5-HT(2C) receptors (to reduce the risk of obesity under chronic treatment), and for hERG channels (to reduce incidence of torsade des pointes). Pharmacological and biochemical data, including specific c...

  19. Exploiting Cross-reactivity to Neutralize Two Different Scorpion Venoms with One Single Chain Antibody Fragment*


    Riaño-Umbarila, Lidia; Contreras-Ferrat, Gabriel; Olamendi-Portugal, Timoteo; Morelos-Juárez, Citlalli; Corzo, Gerardo; Possani, Lourival D.; Becerril, Baltazar


    We report the optimization of a family of human single chain antibody fragments (scFv) for neutralizing two scorpion venoms. The parental scFv 3F recognizes the main toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2), albeit with low affinity. This scFv was subjected to independent processes of directed evolution to improve its recognition toward Cn2 (Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., and Bece...

  20. Use of Capillary Electrophoresis in the Study of Interaction between dsDNA and Drug Molecules

    Institute of Scientific and Technical Information of China (English)


    Two 17-mer dsDNA with different sequence characteristics were designed to investigate the binding characteristics of berberine, an anticancer drug with uncertain binding mode, and Hoechst 33258, a model DNA minor groove binder, with dsDNA, respectively by the capillary zone electrophoresis (CZE). Kenndler model analysis revealed that Hoechst 33258 exhibited intermediate affinity with dsDNA, while there was only low affinity and some weak binding preference for AATT-containing to GGCC-containing dsDNA for berberine.

  1. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2


    Sawyer, Nicole; Cauchon, Elizabeth; Chateauneuf, Anne; Cruz, Rani P G; Donald W Nicholson; Metters, Kathleen M; O'Neill, Gary P; Gervais, Francois G


    The recombinant human prostaglandin D2 (PGD2) receptor, hCRTH2, has been expressed in HEK293(EBNA) and characterized with respect to radioligand binding and signal transduction properties. High and low affinity binding sites for PGD2 were identified in the CRTH2 receptor population by saturation analysis with respective equilibrium dissociation constants (KD) of 2.5 and 109 nM. This revealed that the affinity of PGD2 for CRTH2 is eight times less than its affinity for the DP receptor.Equilibr...

  2. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

    DEFF Research Database (Denmark)

    Hui, Tommy; Sørensen, Esben Skipper; Rittling, Susan R.


    with α4 integrin to that of VCAM and fibronectin. Jurkat cells, whose α4 integrins are inherently activated, adhered to different preparations of OPN in the presence of Mn2+: the EC50 of adhesion was not affected by phosphorylation or glycosylation status. Thrombin cleavage of OPN at the C......-terminus of the α4 integrin binding site also did not affect binding affinity. THP-1 cells express a low affinity conformation of the integrin and adhered to OPN only in the presence of Mn2+ plus PMA or an activating antibody. This was in contrast to VCAM and fibronectin: THP-1 cells adhered to these ligands...

  3. Radiotracer studies on ion-selective membranes based on poly(vinyl chloride) matrices. (United States)

    Jaber, A M; Moody, G J; Thomas, J D; Willcox, A


    Radiotracer studies with (45)Ca, (89)Sr and (133)Ba have provided evidence that the permeation of magnesium, strontium and barium ions through PVC membranes containing Orion 92-20-02 liquid ion-exchanger is inhibited by their low affinity for the liquid ion-exchanger sites. Experiments with (7)Be indicate a strong affinity of the membrane for beryllium ions with corresponding inhibition of permeation. When acid is present in the solution on one side of the membrane, preferential permeation by protons may lead to transport of ions against their concentration gradient in order to maintain the balance of charge.

  4. Are ex vivo neutralising antibodies against IFN-beta always detrimental to therapeutic efficacy in multiple sclerosis?

    DEFF Research Database (Denmark)

    Sorensen, P S; Koch-Henriksen, Nils; Bendtzen, K


    Neutralising antibodies (NAbs) against interferon (IFN)-beta reduce the treatment effect in multiple sclerosis (MS). However, data from pivotal trials of IFN-beta in MS suggest that NAb-positive patients may have a reduced relapse rate during the first six to 12 months of therapy. We collected...... rates during the first six or 12 months of therapy. We hypothesise that low affinity NAbs, present early after the start of IFN-beta therapy, though neutralising in vitro in sensitive assays increase the half-life of IFN-beta in vivo and, thereby, enhance the therapeutic effect. With affinity maturation...

  5. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed


    of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K+. Low-affinity ATP interaction with the enzyme was strongly reduced following CPZ treatment; in contrast, indirectly measured interaction with ADP was much increased, which suggests that composite...... regulatory communication with nucleotides takes place during turnover. Studies with lipid vesicles revealed that CPZ reduced ATP-dependent digitoxigenin-sensitive 22Na+ influx into K+ loaded vesicles only at saturating ATP concentrations. The drug apparently abolishes the regulatory effect of ATP on the pump...

  6. Effect of Interstitial Hydrogen on Cohesive Strength of Al Grain Boundary with Mg Segregation

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang LIU; Xiaowei WANG; Jingyang WANG; Hongyan ZHANG


    The effect of interstitial hydrogen on the cohesion of the Al ∑=11(113) grain boundary (GB) is investigated based on the thermodynamic model of Rice-Wang using the first-principles density function calculation. The results indicate that interstitial H behaves as an embrittler from "strengthening energy" analysis. The reduced GB cohesion due to the presence of H at the GB is attributed to the low affinity between H and Al, and the weakened bonding of Al atomic pairs perpendicular to GB plane.

  7. Effects of plantain and corn starches on the mechanical and disintegration properties of paracetamol tablets. (United States)

    Akin-Ajani, Olufunke D; Itiola, Oludele A; Odeku, Oluwatoyin A


    The effects of plantain starch obtained from the unripe fruit of the plant Musa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 2(3) factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and disintegration time (DT) of the tablets were investigated. The ranking of the individual effects on TS was RD > C > N, on BFI was C > RD > N and on DT was N > C > RD. The ranking for the interaction effects on TS and DT was N-C > N-RD > C-RD, while that on BFI was N-C > C-RD > N-RD. Changing nature of starch from a "low" (plantain starch) to a "high" (corn starch) level, increasing the concentration of starch binding agent from 2.5% to 10.0% wt/wt, and increasing relative density of the tablet from 0.80 to 0.90, led to increase in the values of TS and DT, but a decrease in BFI. Thus, tablets containing plantain starch had lower tensile strength and disintegration time values than those containing corn starch, but showed better ability to reduce the lamination and capping tendency in paracetamol tablet formulation. The interaction between N and C was significantly (P starch used as binding agent in tablet formulations to obtain tablets of desired bond strength and disintegration properties. Furthermore, plantain starch could be useful as an alternative binding agent to cornstarch, especially where faster disintegration is required and the problems of lamination and capping are of particular concern.

  8. Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization (United States)

    Valk, Vincent; van der Kaaij, Rachel M.; Dijkhuizen, Lubbert


    The bacterium Microbacterium aurum strain B8.A degrades granular starches, using the multi-domain MaAmyA α-amylase to initiate granule degradation through pore formation. This paper reports the characterization of the M. aurum B8.A MaAmyB enzyme, a second starch-acting enzyme with multiple FNIII and CBM25 domains. MaAmyB was characterized as an α-glucan 1,4-α-maltohexaosidase with the ability to subsequently hydrolyze maltohexaose to maltose through the release of glucose. MaAmyB also displays exo-activity with a double blocked PNPG7 substrate, releasing PNP. In M. aurum B8.A, MaAmyB may contribute to degradation of starch granules by rapidly hydrolyzing the helical and linear starch chains that become exposed after pore formation by MaAmyA. Bioinformatics analysis showed that MaAmyB represents a novel GH13 subfamily, designated GH13_42, currently with 165 members, all in Gram-positive soil dwelling bacteria, mostly Streptomyces. All members have an unusually large catalytic domain (AB-regions), due to three insertions compared to established α-amylases, and an aberrant C-region, which has only 30% identity to established GH13 C-regions. Most GH13_42 members have three N-terminal domains (2 CBM25 and 1 FNIII). This is unusual as starch binding domains are commonly found at the C-termini of α-amylases. The evolution of the multi-domain M. aurum B8.A MaAmyA and MaAmyB enzymes is discussed. PMID:27808246

  9. Dysfunctional muscle and liver glycogen metabolism in mdx dystrophic mice.

    Directory of Open Access Journals (Sweden)

    David I Stapleton

    Full Text Available Duchenne muscular dystrophy (DMD is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice.Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01. Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001. Glycogen synthase activity was 12% higher (P<0.05 but glycogen branching enzyme activity was 70% lower (P<0.01 in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01 in mdx mice resulting from a 24% reduction in PKA activity (P<0.01. In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001 together with starch-binding domain protein 1 (219% higher; P<0.01. In addition, mdx mice were glucose intolerant (P<0.01 and had 30% less liver glycogen (P<0.05 compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05 as a possible cause of this phenotype.We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen.

  10. The Trypanosoma cruzi Diamine Transporter Is Essential for Robust Infection of Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Hasne

    Full Text Available Trypanosoma cruzi is incapable of synthesizing putrescine or cadaverine de novo, and, therefore, salvage of polyamines from the host milieu is an obligatory nutritional function for the parasite. A high-affinity diamine transporter (TcPOT1 from T. cruzi has been identified previously that recognizes both putrescine and cadaverine as ligands. In order to assess the functional role of TcPOT1 in intact parasites, a Δtcpot1 null mutant was constructed by targeted gene replacement and characterized. The Δtcpot1 mutant lacked high-affinity putrescine-cadaverine transport capability but retained the capacity to transport diamines via a non-saturable, low-affinity mechanism. Transport of spermidine and arginine was not impacted by the Δtcpot1 lesion. The Δtcpot1 cell line exhibited a significant but not total defect in its ability to subsist in Vero cells, although initial infection rates were not affected by the lesion. These findings reveal that TcPOT1 is the sole high-affinity diamine permease in T. cruzi, that genetic obliteration of TcPOT1 impairs the ability of the parasite to maintain a robust infection in mammalian cells, and that a secondary low-affinity uptake mechanism for this key parasite nutrient is operative but insufficient for optimal infection.

  11. Physicochemical aspects of the energetics of binding of sulphanilic acid with bovine serum albumin (United States)

    Banipal, Tarlok S.; Kaur, Amandeep; Banipal, Parampaul K.


    The thermodynamic study of the binding of sulphanilic acid with model transport protein bovine serum albumin is a promising approach in the area of synthesizing new sulfa drugs with improved therapeutic effect. Thus, such binding studies play an important role in the rational drug design process. The binding between sulphanilic acid and bovine serum albumin has been studied using calorimetry, light scattering in combination with spectroscopic and microscopic techniques. The calorimetric data reveals the presence of two sequential nature of binding sites where the first binding site has stronger affinity ( 104 M- 1) and second binding site has weaker affinity ( 103 M- 1). However, the spectroscopic (absorption and fluorescence) results suggest the presence of single low affinity binding site ( 103 M- 1) on protein. The contribution of polar and non-polar interactions to the binding process has been explored in the presence of various additives. It is found that sulphanilic acid binds with high affinity at Sudlow site II and with low affinity at Sudlow site I of protein. Light scattering and circular dichroism measurements have been used to study the effect on the molecular topology and conformation of protein, respectively. Thus these studies provide important insights into the binding of sulphanilic acid with bovine serum albumin both quantitatively and qualitatively.

  12. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model. (United States)

    Helms, Hans Cc; Aldana, Blanca I; Groth, Simon; Jensen, Morten M; Waagepetersen, Helle S; Nielsen, Carsten U; Brodin, Birger


    The aim was to characterize the clearance pathways for L-glutamate from the brain interstitial fluid across the blood-brain barrier using a primary in vitro bovine endothelial/rat astrocyte co-culture. Transporter profiling was performed using uptake studies of radiolabeled L-glutamate with co-application of transporter inhibitors and competing amino acids. Endothelial abluminal L-glutamate uptake was almost abolished by co-application of an EAAT-1 specific inhibitor, whereas luminal uptake was inhibited by L-glutamate and L-aspartate (1 mM). L-glutamate uptake followed Michaelis-Menten-like kinetics with high and low affinity at the abluminal and luminal membrane, respectively. This indicated that L-glutamate is taken up via EAAT-1 at the abluminal membrane and exits at the luminal membrane via a low affinity glutamate/aspartate transporter. Metabolism of L-glutamate and transport of metabolites was examined using [U-(13)C] L-glutamate. Intact L-glutamate and metabolites derived from oxidative metabolism were transported through the endothelial cells. High amounts of L-glutamate-derived lactate in the luminal medium indicated cataplerosis via malic enzyme. Thus, L-glutamate can be transported intact from brain to blood via the concerted action of abluminal and luminal transport proteins, but the total brain clearance is highly dependent on metabolism in astrocytes and endothelial cells followed by transport of metabolites.

  13. Structure-activity relationship studies of citalopram derivatives

    DEFF Research Database (Denmark)

    Larsen, M Andreas B; Plenge, Per; Andersen, Jacob;


    towards the S2 site. EXPERIMENTAL APPROACH: We performed a systematic structure-activity relationship study based on the scaffold of citalopram and the structurally closely related congener, talopram, that shows low-affinity S1 binding in SERT. The role of the four chemical substituents, which distinguish......-activity relationship study revealed a di-methyl citalopram, which binds to the S1 site with an affinity of 6.4 [4.7;8.8] μM (mean[SEM interval]) and shows an allosteric potency of 3.6 [3.3;3.8] μM, thus bearing ~2-fold selectivity for the allosteric site relative to the S1 site in SERT. CONCLUSIONS AND IMPLICATIONS....... The antidepressant drug citalopram displays high-affinity S1 binding and low-affinity S2 binding. To elucidate a possible therapeutic role of allosteric inhibition of SERT a drug that specifically targets the allosteric site is required. The purpose of this study was to find a compound bearing higher selectivity...

  14. Yeast Agp2p and Agp3p function as amino acid permeases in poor nutrient conditions. (United States)

    Schreve, James L; Garrett, Jinnie M


    The gene AGP2 and the ORF YFL055w (here named AGP3) are classified as members of the yeast amino acid permease gene family. Analysis of the growth of multiply-mutant strains in which these genes are disrupted shows that both encode permeases capable of supplying branched chain, and other, amino acids as nitrogen source. Both Agp2p and Agp3p are low affinity permeases for leucine (Kmapp 0.2-0.5 mM) and are expressed at lower levels than other permeases on all media tested. Thus, it appears that these two permeases can function as low affinity, relatively non-specific, permeases with redundant functions in the cell. Transcription of AGP2 and AGP3 is very low but is increased in cells lacking other functional general amino acid permeases (Gap1p or Agp1p). These results suggest Agp2p and Agp3p function in amino acid transport when nitrogen sources are limiting and/or other permeases are inactive.

  15. Dual aminergic regulation of central beta adrenoceptors. Effect of atypical antidepressants and 5-hydroxytryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Manier, D.H.; Gillespie, D.D.; Sulser, F.


    Nonlinear regression analysis of agonist competition binding curves reveals that the (/sup 3/H)-dihydroalprenolol-labeled receptor population with low affinity for isoproterenol is increased by p-chlorophenylalanine (PCPA) and this increase is abolished by 5-hydroxytryptophan (5-HTP) in vivo. Desipramine (DMI) decreased the beta adrenoceptor population with high agonist affinity to the same degree in PCPA-treated animals as in control animals, thus explaining the reported discrepancy between beta adrenoceptor number and responsiveness of the beta adrenoceptor-coupled adenylate cyclase system. Mianserin also selectively reduced the beta adrenoceptor population with high agonist affinity in membrane preparations of normal animals, whereas fluoxetine selectively abolished the upregulation of the low affinity sites in reserpinized animals and had no effect on either receptor population from brain of normal animals. The results emphasize the importance of nonlinear regression analysis of agonist competition binding for the interpretation of drug action and encourage the pursuit of the molecular neurobiology of the serotonin (5-HT)/norepinephrine (NE) link in brain.

  16. Effects of PEG size on structure, function and stability of PEGylated BSA. (United States)

    Plesner, Bitten; Fee, Conan J; Westh, Peter; Nielsen, Anders D


    The effects of PEGylation on the structural, thermal and functional stability of bovine serum albumin (BSA) were investigated using BSA and 6 linear mono-PEGylated BSA compounds. The secondary and tertiary structure of BSA measured by circular dichroism (CD) was independent of PEGylation. In contrast, the thermal stability of BSA was affected by PEGylation. The apparent unfolding temperature T(max) measured by differential scanning calorimetry (DSC) decreased with PEGylation, whereas the temperature of aggregation, T(agg), measured by dynamic light scattering (DLS) increased with PEGylation. The unfolding temperature and the temperature of aggregation were both independent of the molecular weight of the PEG chain. Possible functional changes of BSA after PEGylation were measured by Isothermal Titration Calorimetry (ITC), where the binding of sodium dodecyl sulphate (SDS) to BSA and PEGylated BSA was analysed. At 25°C, two distinct classes of binding sites (high affinity and low affinity) for BSA and one class of binding site (low affinity) for PEGylated BSA were identified. The binding isotherm was modelled assuming independence and thermodynamic equivalence of the sites within each class. From the present biophysical characterisation, it is concluded that after PEGylation BSA appears to be unaffected structurally (secondary and tertiary structure), slightly destabilised thermally (unfolding temperature), stabilised kinetically (temperature of aggregation) and has an altered functionality (binding profile). These biophysical characteristics are all independent of the molecular weight of the attached polymer chain.

  17. Biochemical identification of new proteins involved in splicing repression at the Drosophila P-element exonic splicing silencer (United States)

    Horan, Lucas; Yasuhara, Jiro C.; Kohlstaedt, Lori A.; Rio, Donald C.


    Splicing of the Drosophila P-element third intron (IVS3) is repressed in somatic tissues due to the function of an exonic splicing silencer (ESS) complex present on the 5′ exon RNA. To comprehensively characterize the mechanisms of this alternative splicing regulation, we used biochemical fractionation and affinity purification to isolate the silencer complex assembled in vitro and identify the constituent proteins by mass spectrometry. Functional assays using splicing reporter minigenes identified the proteins hrp36 and hrp38 and the cytoplasmic poly(A)-binding protein PABPC1 as novel functional components of the splicing silencer. hrp48, PSI, and PABPC1 have high-affinity RNA-binding sites on the P-element IVS3 5′ exon, whereas hrp36 and hrp38 proteins bind with low affinity to the P-element silencer RNA. RNA pull-down and immobilized protein assays showed that hrp48 protein binding to the silencer RNA can recruit hrp36 and hrp38. These studies identified additional components that function at the P-element ESS and indicated that proteins with low-affinity RNA-binding sites can be recruited in a functional manner through interactions with a protein bound to RNA at a high-affinity binding site. These studies have implications for the role of heterogeneous nuclear ribonucleoproteins (hnRNPs) in the control of alternative splicing at cis-acting regulatory sites. PMID:26545814

  18. Key Role for Intracellular K+ and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters▿ (United States)

    Pérez-Valle, Jorge; Jenkins, Huw; Merchan, Stephanie; Montiel, Vera; Ramos, José; Sharma, Sukesh; Serrano, Ramón; Yenush, Lynne


    K+ transport in living cells must be tightly controlled because it affects basic physiological parameters such as turgor, membrane potential, ionic strength, and pH. In yeast, the major high-affinity K+ transporter, Trk1, is inhibited by high intracellular K+ levels and positively regulated by two redundant “halotolerance” protein kinases, Sat4/Hal4 and Hal5. Here we show that these kinases are not required for Trk1 activity; rather, they stabilize the transporter at the plasma membrane under low K+ conditions, preventing its endocytosis and vacuolar degradation. High concentrations (0.2 M) of K+, but not Na+ or sorbitol, transported by undefined low-affinity systems, maintain Trk1 at the plasma membrane in the hal4 hal5 mutant. Other nutrient transporters, such as Can1 (arginine permease), Fur4 (uracil permease), and Hxt1 (low-affinity glucose permease), are also destabilized in the hal4 hal5 mutant under low K+ conditions and, in the case of Can1, are stabilized by high K+ concentrations. Other plasma membrane proteins such as Pma1 (H+-pumping ATPase) and Sur7 (an eisosomal protein) are not regulated by halotolerance kinases or by high K+ levels. This novel regulatory mechanism of nutrient transporters may participate in the quiescence/growth transition and could result from effects of intracellular K+ and halotolerance kinases on membrane trafficking and/or on the transporters themselves. PMID:17548466

  19. Expression, receptor binding, and biophysical characterization of guinea pig insulin desB30

    DEFF Research Database (Denmark)

    Engholm, Ebbe; Hansen, Thomas Hesselhøj; Johansson, Eva;


    not indicate the formation of any larger structures of GI desB30 in the presence of various divalent metal ions, but did indicate that GI desB30 has an affinity towards Mn, Co, and Cu ions. Finally, the low affinity for the insulin receptor and the very low affinity for the IGF-I receptor by GI desB30 were......Here we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering...... and analytical ultracentrifugation studies confirmed that GI desB30 did not form dimers or hexamers, in contrast to human insulin. Sizeexclusion chromatography connected to inductively coupled plasma mass spectrometry revealed that GI desB30 has affinity towards several divalent metal ions. These studies did...

  20. Soluble IgE receptors--elements of the IgE network. (United States)

    Platzer, Barbara; Ruiter, Floortje; van der Mee, John; Fiebiger, Edda


    Soluble isoforms of three human IgE Fc receptors, namely FcεRI, FcεRII, and galectin-3, can be found in serum. These soluble IgE receptors are a diverse family of proteins unified by the characteristic of interacting with IgE in the extracellular matrix. A truncated form of the alpha-chain of FcεRI, the high affinity IgE receptor, has recently been described as a soluble isoform (sFcεRI). Multiple soluble isoforms of CD23 (sCD23), the low affinity IgE receptor also known as FcεRII, are generated via different mechanisms of extracellular and intracellular proteolysis. The second low affinity IgE receptor, galectin-3, only exists as a secretory protein. We here discuss the physiological roles of these three soluble IgE receptors as elements of the human IgE network. Additionally, we review the potential and current use of sFcεRI, sCD23, and galectin-3 as biomarkers in human disease.

  1. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils (United States)

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L. E.; Conrad, Ralf; Jia, Zhongjun


    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ~1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this `high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane.

  2. PDE6δ-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity. (United States)

    Fansa, Eyad Kalawy; Kösling, Stefanie Kristine; Zent, Eldar; Wittinghofer, Alfred; Ismail, Shehab


    The phosphodiesterase 6 delta subunit (PDE6δ) shuttles several farnesylated cargos between membranes. The cargo sorting mechanism between cilia and other compartments is not understood. Here we show using the inositol polyphosphate 5'-phosphatase E (INPP5E) and the GTP-binding protein (Rheb) that cargo sorting depends on the affinity towards PDE6δ and the specificity of cargo release. High-affinity cargo is exclusively released by the ciliary transport regulator Arl3, while low-affinity cargo is released by Arl3 and its non-ciliary homologue Arl2. Structures of PDE6δ/cargo complexes reveal the molecular basis of the sorting signal which depends on the residues at the -1 and -3 positions relative to farnesylated cysteine. Structure-guided mutation allows the generation of a low-affinity INPP5E mutant which loses exclusive ciliary localization. We postulate that the affinity to PDE6δ and the release by Arl2/3 in addition to a retention signal are the determinants for cargo sorting and enrichment at its destination.

  3. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels (United States)

    Chang, Hsueh-Kai; Iwamoto, Masayuki; Oiki, Shigetoshi; Shieh, Ru-Chi


    Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward rectification, we studied a mutant Kir channel (E224K/H226E) and measured single-channel currents and streaming potentials (Vstream), the latter provide the ratio of water to ions queued in a single-file permeation process in the selectivity filter. The water-ion coupling ratio was near one at a high K+ concentration ([K+]) for the wild-type channel and increased substantially as [K+] decreased. On the other hand, fewer ions occupied the selectivity filter in the mutant at all [K+]. A model for the Kir channel involving a K+ binding site in the wide pore was introduced. Model analyses revealed that the rate constants associated with the binding and release to and from the wide-pore K+ binding site was modified in the mutant. These effects lead to the reduced contribution of a conventional two-ion permeation mode to total conductance, especially at positive potentials, thereby inward rectification.

  4. Quinine enhances the behavioral stimulant effect of cocaine in mice. (United States)

    Huertas, Adriana; Wessinger, William D; Kucheryavykh, Yuri V; Sanabria, Priscila; Eaton, Misty J; Skatchkov, Serguei N; Rojas, Legier V; Maldonado-Martínez, Gerónimo; Inyushin, Mikhail Y


    The Na(+)-dependent dopamine transporter (DAT) is primarily responsible for regulating free dopamine (DA) concentrations in the brain by participating in the majority of DA uptake; however, other DA transporters may also participate, especially if cocaine or other drugs of abuse compromise DAT. Recently, such cocaine-insensitive low-affinity mono- and poly-amine OCT transporters were described in astrocytes which use DA as a substrate. These transporters are from a different transporter family and while insensitive to cocaine, they are specifically blocked by quinine and some steroids. Quinine is inexpensive and is often found in injected street drugs as an "adulterant". The present study was designed to determine the participation of OCTs in cocaine dependent behavioral and physiological changes in mice. Using FVB mice we showed, that daily single injections of quinine (10 mg/kg, i.p.) co-administered with cocaine (15 mg/kg, i.p.) for 10 days significantly enhanced cocaine-induced locomotor behavioral sensitization. Quinine had no significant effect on the time course of behavioral activation. In astrocytes from the ventral tegmental area of mice, transporter currents of quinine-sensitive monoamine transporters were also augmented after two weeks of cocaine administration. The importance of low-affinity high-capacity transporters for DA clearance is discussed, explaining the known ability of systemically administered DAT inhibitors to anomalously increase DA clearance.

  5. Neurotrophins and Neuropathic Pain: Role in Pathobiology

    Directory of Open Access Journals (Sweden)

    Nemat Khan


    Full Text Available Neurotrophins (NTs belong to a family of trophic factors that regulate the survival, growth and programmed cell death of neurons. In mammals, there are four structurally and functionally related NT proteins, viz. nerve growth factor (NGF, brain-derived neurotrophic factor (BDNF, neurotrophin 3 and neurotrophin 4. Most research on NTs to date has focussed on the effects of NGF and BDNF signalling via their respective cognate high affinity neurotrophic tyrosine kinase viz TrkA and TrkB receptors. Apart from the key physiologic roles of NGF and BDNF in peripheral and central nervous system function, NGF and BDNF signalling via TrkA and TrkB receptors respectively have been implicated in mechanisms underpinning neuropathic pain. Additionally, NGF and BDNF signalling via the low-affinity pan neurotrophin receptor at 75 kDa (p75NTR may also contribute to the pathobiology of neuropathic pain. In this review, we critically assess the role of neurotrophins signalling via their cognate high affinity receptors as well as the low affinity p75NTR in the pathophysiology of peripheral neuropathic and central neuropathic pain. We also identify knowledge gaps to guide future research aimed at generating novel insight on how to optimally modulate NT signalling for discovery of novel therapeutics to improve neuropathic pain relief.

  6. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. (United States)

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Rokhsar, Daniel S; Levine, Michael S


    Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of intrinsic and extrinsic signals. Despite the discovery of the first enhancer more than 30 y ago, the relationship between primary DNA sequence and enhancer activity remains obscure. In particular, the importance of "syntax" (the order, orientation, and spacing of binding sites) is unclear. A high-throughput screen identified synthetic notochord enhancers that are activated by the combination of ZicL and ETS transcription factors in Ciona embryos. Manipulation of these enhancers elucidated a "regulatory code" of sequence and syntax features for notochord-specific expression. This code enabled in silico discovery of bona fide notochord enhancers, including those containing low-affinity binding sites that would be excluded by standard motif identification methods. One of the newly identified enhancers maps upstream of the known enhancer that regulates Brachyury (Ci-Bra), a key determinant of notochord specification. This newly identified Ci-Bra shadow enhancer contains binding sites with very low affinity, but optimal syntax, and therefore mediates surprisingly strong expression in the notochord. Weak binding sites are compensated by optimal syntax, whereas enhancers containing high-affinity binding affinities possess suboptimal syntax. We suggest this balance has obscured the importance of regulatory syntax, as noncanonical binding motifs are typically disregarded by enhancer detection methods. As a result, enhancers with low binding affinities but optimal syntax may be a vastly underappreciated feature of the regulatory genome.

  7. The S-enantiomer of R, S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism

    DEFF Research Database (Denmark)

    Chen, Fenghua; Larsen, Mads; Sanchez, Connie


    The interaction of the S- and R-enantiomers (escitalopram and R-citalopram) of citalopram, with high- and low-affinity binding sites in COS-1 cell membranes expressing human SERT (hSERT) were investigated. Escitalopram affinity for hSERT and its 5-HT uptake inhibitory potency was in the nanomolar...... range and approximately 40-fold more potent than R-citalopram. Escitalopram considerably stabilised the [3H]-escitalopram/SERT complex via an allosteric effect at a low-affinity binding site. The stereoselectivity between escitalopram and R-citalopram was approximately 3:1 for the [3H]-escitalopram....../hSERT complex. The combined effect of escitalopram and R-citalopram was additive. Paroxetine and sertraline mainly stabilised the [3H]-paroxetine/hSERT complex. Fluoxetine, duloxetine and venlafaxine have only minor effects. 5-HT stabilised the [125I]-RTI-55, [3H]-MADAM, [3H]-paroxetine, [3H]-fluoxetine and [3H...

  8. The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors

    DEFF Research Database (Denmark)

    Chen, Fenghua; Larsen, Mads Breum; Sánchez, Connie


    The interaction of the S- and R-enantiomers (escitalopram and R-citalopram) of citalopram, with high- and low-affinity binding sites in COS-1 cell membranes expressing human SERT (hSERT) were investigated. Escitalopram affinity for hSERT and its 5-HT uptake inhibitory potency was in the nanomolar...... range and approximately 40-fold more potent than R-citalopram. Escitalopram considerably stabilised the [3H]-escitalopram/SERT complex via an allosteric effect at a low-affinity binding site. The stereoselectivity between escitalopram and R-citalopram was approximately 3:1 for the [3H]-escitalopram....../hSERT complex. The combined effect of escitalopram and R-citalopram was additive. Paroxetine and sertraline mainly stabilised the [3H]-paroxetine/hSERT complex. Fluoxetine, duloxetine and venlafaxine have only minor effects. 5-HT stabilised the [125I]-RTI-55, [3H]-MADAM, [3H]-paroxetine, [3H]-fluoxetine and [3H...

  9. Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. (United States)

    Boks, Niels P; Kaper, Hans J; Norde, Willem; van der Mei, Henny C; Busscher, Henk J


    Staphylococcus epidermidis adheres to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in similar numbers, but in different modes. Real-time observation of staphylococcal adhesion under a shear rate of 15 s(-1) revealed different adhesion dynamics on both substrata. The number of adsorption and desorption events to achieve a similar number of adhering bacteria was twofold higher on hydrophilic than on hydrophobic DDS-coated glass. Moreover, 22% of all staphylococci on glass slid over the surface prior to adhering on a fixed site ("mobile adhesion mode"), but mobile adhesion was virtually absent (1%) on DDS-coated glass. Sliding preceded desorption on hydrophilic glass in about 20% of all desorption events, while on hydrophobic DDS-coated glass 2% of all staphylococci desorbed straight from their adhesion site. Since acid-base interactions between the staphylococci and a hydrophobic DDS-coating are attractive, it is suggested that these interactions facilitate a closer approach of the bacteria and therewith enhance immobile adhesion at local, high affinity sites. Alternatively, if the local site is low affinity, this may lead to desorption. In the absence of attractive acid-base interactions, as on hydrophilic glass, bacteria can be captured in the minimum of the DLVO-interaction energy curve, but this does not prevent them from sliding under flow at a fixed distance from a substratum surface until immobilization or desorption at or from a local high or low affinity site, respectively.

  10. Direct antiglobulin ("Coombs") test-negative autoimmune hemolytic anemia: a review. (United States)

    Segel, George B; Lichtman, Marshall A


    We have reviewed the literature to identify and characterize reports of warm-antibody type, autoimmune hemolytic anemia in which the standard direct antiglobulin reaction was negative but a confirmatory test indicated that the red cells were opsonized with antibody. Three principal reasons account for the absence of a positive direct antiglobulin test in these cases: a) IgG sensitization below the threshold of detection by the commercial antiglobulin reagent, b) low affinity IgG, removed by preparatory washes not conducted at 4°C or at low ionic strength, and c) red cell sensitization by IgA alone, or rarely (monomeric) IgM alone, but not accompanied by complement fixation, and thus not detectable by a commercial antiglobulin reagent that contains anti-IgG and anti-C3. In cases in which the phenotype is compatible with warm-antibody type, autoimmune hemolytic anemia and the direct antiglobulin test is negative, an alternative method to detect low levels of IgG sensitization, use of 4°C, low ionic strength washes to prepare the cells for the direct antiglobulin test reaction to permit retention and identification of low affinity IgG antibodies, and, if the latter are uninformative, testing for sensitization with an anti-IgA, and, if necessary, an anti-IgM reagent identifies cases of warm-antibody type, immune hemolysis not verified by a commercial reagent.

  11. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat. (United States)

    Buchner, Peter; Hawkesford, Malcolm J


    NPF (formerly referred to as low-affinity NRT1) and 'high-affinity' NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling.

  12. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.


    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  13. Alternating Carrier Models of Asymmetric Glucose Transport Violate the Energy Conservation Laws (United States)

    Naftalin, Richard J


    Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric “carrier” (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\propto}1/K_{{\\mathrm{D}}}^{{\\mathrm{in}}}\\end{equation*}\\end{document}) and slower unliganded “free” carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, ΔGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}K_{{\\mathrm{D}}}^{{\\mathrm{in}}}/K_{{\\mathrm{D}}}^{{\\mathrm{out}}}\\end{equation*}\\end{document}), where R is the universal gas constant (8.314 Joules/M/K°), and T is the temperature, assumed here to be 300 K°, sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly

  14. Kinetic and mutational dissection of the two ATPase activities of terminase, the DNA packaging enzyme of bacteriophage Chi. (United States)

    Hwang, Y; Catalano, C E; Feiss, M


    Terminase the DNA packaging enzyme of bacteriophage chi, is a heteromultimer of gpNul (21 kDa) and gpA (74 kDa) subunits, encoded by the chi Nul and A genes, respectively. Sequence comparisons indicate that both gpNu1 and gpA have a match to the P-loop motif of ATPase centers, which is a glycine-rich segment followed by a lysine. By site-specific mutagenesis, we changed the lysines of the putative P-loops of gpNul (k35) and gpA (K497) to arginine, alanine, or aspartic acid, and studied the mutant enzymes by kinetic analysis and photochemical cross-linking with 8-azido-ATP. Both the gpNul and gpA subunits of wild-type terminase were covalently modified with 8-N3[32P] ATP in the presence of UV light. Saturation occurred with apparent dissociation constants of 508 and 3.5 microM for gpNul and gpA, resepctively. ATPase assays showed two activities: a low-affinity activity (Km=469 microM), and a high-affinity activity (Km=4.6 microM). The gpNul K35A and gpNul K35D mutant terminases showed decreased activity in the low-affinity ATPase activity. The reduced activities of these enzymes were recovered when 10 times more DNA was added, suggesting that the primary defect of the enzymes is alteration of the nonspecific, double-stranded DNA binding activity of terminase. ATPase assays and photolabeling of the gpA K497A and gpA K497D mutant terminases showed reduced affinity for ATP at the high-affinity site which was not restored by increased DNA. In summary, the results indicate the presence of a low-affinity, DNA-stimulated ATPase center in gpNul, and a high-affinity site in gpA.

  15. MITOMI: a microfluidic platform for in vitro characterization of transcription factor-DNA interaction. (United States)

    Rockel, Sylvie; Geertz, Marcel; Maerkl, Sebastian J


    Gene regulatory networks (GRNs) consist of transcription factors (TFs) that determine the level of gene expression by binding to specific DNA sequences. Mapping all TF-DNA interactions and elucidating their dynamics is a major goal to generate comprehensive models of GRNs. Measuring quantitative binding affinities of large sets of TF-DNA interactions requires the application of novel tools and methods. These tools need to cope with the difficulties related to the facts that TFs tend to be expressed at low levels in vivo, and often form only transient interactions with both DNA and their protein partners. Our approach describes a high-throughput microfluidic platform with a novel detection principle based on the mechanically induced trapping of molecular interactions (MITOMI). MITOMI allows the detection of transient and low-affinity TF-DNA interactions in high-throughput.

  16. Conformational changes in the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum detected using phosphorescence polarization. (United States)

    Restall, C J; Coke, M; Murray, E K; Chapman, D


    The technique of time-averaged phosphorescence has been used to study the interaction of calcium ions and ATP with the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum vesicles. The presence of excess calcium ions was found to cause a 20% decrease in the phosphorescence emission anisotropy. This is interpreted as being due to a conformational change in the protein and is supported by data from time-resolved phosphorescence measurements which also show a lowering of the anisotropy. This change in the decay of the emission anisotropy is associated with only minor changes in the rotational relaxation time of the protein and is again suggestive of a conformational change in the protein. In some cases ATP was also observed to lower the time-averaged phosphorescence anisotropy possibly via an interaction with the low-affinity regulatory site of the protein.

  17. TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8(+) T cells. (United States)

    Takada, Kensuke; Van Laethem, Francois; Xing, Yan; Akane, Kazuyuki; Suzuki, Haruhiko; Murata, Shigeo; Tanaka, Keiji; Jameson, Stephen C; Singer, Alfred; Takahama, Yousuke


    In the thymus, low-affinity T cell antigen receptor (TCR) engagement facilitates positive selection of a useful T cell repertoire. Here we report that TCR responsiveness of mature CD8(+) T cells is fine tuned by their affinity for positively selecting peptides in the thymus and that optimal TCR responsiveness requires positive selection on major histocompatibility complex class I-associated peptides produced by the thymoproteasome, which is specifically expressed in the thymic cortical epithelium. Thymoproteasome-independent positive selection of monoclonal CD8(+) T cells results in aberrant TCR responsiveness, homeostatic maintenance and immune responses to infection. These results demonstrate a novel aspect of positive selection, in which TCR affinity for positively selecting peptides produced by thymic epithelium determines the subsequent antigen responsiveness of mature CD8(+) T cells in the periphery.

  18. Molecular requirements for MHC class II alpha-chain engagement and allelic discrimination by the bacterial superantigen streptococcal pyrogenic exotoxin C. (United States)

    Kasper, Katherine J; Xi, Wang; Rahman, A K M Nur-Ur; Nooh, Mohammed M; Kotb, Malak; Sundberg, Eric J; Madrenas, Joaquín; McCormick, John K


    Superantigens (SAgs) are microbial toxins that bind to both TCR beta-chain variable domains (Vbetas) and MHC class II molecules, resulting in the activation of T cells in a Vbeta-specific manner. It is now well established that different isoforms of MHC II molecules can play a significant role in the immune response to bacterial SAgs. In this work, using directed mutational studies in conjunction with functional analyses, we provide a complete functional map of the low-affinity MHC II alpha-chain binding interface of the SAg streptococcal pyrogenic exotoxin C (SpeC) and identify a functional epitope in the beta-barrel domain that is required for the activation of T cells. Using cell lines that exclusively express individual MHC II isoforms, our studies provide a molecular basis for the selectivity of SpeC-MHC II recognition, and provide one mechanism by how SAgs are capable of distinguishing between different MHC II alleles.

  19. Morphological Analysis and Interaction of Chlorophyll and BSA

    Directory of Open Access Journals (Sweden)

    Filipe D. S. Gorza


    Full Text Available Interactions between proteins and drugs, which can lead to formation of stable drug-protein complexes, have important implications on several processes related to human health. These interactions can affect, for instance, free concentration, biological activity, and metabolism of the drugs in the blood stream. Here, we report on the UV-Visible spectroscopic investigation on the interaction of bovine serum albumin (BSA with chlorophyll (Chl in aqueous solution under physiological conditions. Binding constants at different temperatures—obtained by using the Benesi-Hildebrand equation—were found to be of the same order of magnitude (~104 M−1 indicating low affinity of Chl with BSA. We have found a hyperchromism, which suggested an interaction between BSA and Chl occurring through conformational changes of BSA caused by exposition of tryptophan to solvent. Films from BSA and Chl obtained at different Chl concentrations showed fractal structures, which were characterized by fractal dimension calculated from microscopic image analysis.

  20. An induced rebinding model of antigen discrimination. (United States)

    Dushek, Omer; van der Merwe, P Anton


    T cells have to detect rare high-affinity 'foreign' peptide MHC (pMHC) ligands among abundant low-affinity 'self'-peptide MHC ligands. It remains unclear how this remarkable discrimination is achieved. Kinetic proofreading mechanisms can provide the required specificity but only at the expense of much reduced sensitivity. A number of recent observations suggest that pMHC engagement of T cell receptors (TCRs) induces changes such as clustering and/or conformational alterations that enhance subsequent rebinding. We show that inclusion of induced rebinding to the same pMHC in kinetic proofreading models enhances the sensitivity of TCR recognition while retaining specificity. Moreover, induced rebinding is able to reproduce the striking, and hitherto unexplained, 2D membrane-binding properties recently reported for the TCR.

  1. Synthesis and modulation properties of imidazo[4,5-b]pyridin-7-one and indazole-4,7-dione derivatives towards the Cryptosporidium parvum CpABC3 transporter. (United States)

    Zeinyeh, Waël; Xia, Hexue; Lawton, Philippe; Radix, Sylvie; Marminon, Christelle; Nebois, Pascal; Walchshofer, Nadia


    The syntheses of new N-polysubstituted imidazo[4,5-b]pyridine-7-one (IP, 5 and 8a-8f) and indazole-4,7-dione (ID, 9 and 10) derivatives are described. The binding affinity of IP and ID towards the recombinant Nucleotide Binding Domain NBD1 of Cryptosporidium parvum CpABC3 was evaluated by intrinsic fluorescence quenching. IP induced a moderate quenching of the intrinsic fluorescence of H6-NBD1 whereas IDs 9 and 10 showed a binding affinity comparable to the ATP analogue TNP-ATP. In addition, 8d, 8e and 10 were shown to be competitive inhibitors of the ATPase activity, but with low affinity. These compounds could thus act like some flavonoid derivatives, which can partly overlap both the nucleotide-binding site and the adjacent hydrophobic steroid-binding region of mammalian P-glycoproteins.

  2. Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1. (United States)

    Choudhary, Om P; Paz, Aviv; Adelman, Joshua L; Colletier, Jacques-Philippe; Abramson, Jeff; Grabe, Michael


    The voltage-dependent anion channel (VDAC) mediates the flow of metabolites and ions across the outer mitochondrial membrane of all eukaryotic cells. The open channel passes millions of ATP molecules per second, whereas the closed state exhibits no detectable ATP flux. High-resolution structures of VDAC1 revealed a 19-stranded β-barrel with an α-helix partially occupying the central pore. To understand ATP permeation through VDAC, we solved the crystal structure of mouse VDAC1 (mVDAC1) in the presence of ATP, revealing a low-affinity binding site. Guided by these coordinates, we initiated hundreds of molecular dynamics simulations to construct a Markov state model of ATP permeation. These simulations indicate that ATP flows through VDAC through multiple pathways, in agreement with our structural data and experimentally determined physiological rates.

  3. Resolution, configurational assignment, and enantiopharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H- tetrazol-5-yl)isoxazol-4-yl]propionic acid, a potent GluR3- and GluR4-preferring AMPA receptor agonist

    DEFF Research Database (Denmark)

    Vogensen, S B; Jensen, H S; Stensbøl, T B;


    tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50......) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed...

  4. Autoreactive helper T cells alleviate the need for intrinsic TLR signaling in autoreactive B cell activation (United States)

    Giles, Josephine R.; Neves, Adriana Turqueti; Marshak-Rothstein, Ann; Shlomchik, Mark J.


    T cells play a significant role in the pathogenesis of systemic autoimmune diseases, including systemic lupus erythematosus; however, there is relatively little information on the nature and specificity of autoreactive T cells. Identifying such cells has been technically difficult because they are likely to be rare and low affinity. Here, we report a method for identifying autoreactive T cell clones that recognize proteins contained in autoantibody immune complexes, providing direct evidence that functional autoreactive helper T cells exist in the periphery of normal mice. These T cells significantly enhanced autoreactive B cell proliferation and altered B cell differentiation in vivo. Most importantly, these autoreactive T cells were able to rescue many aspects of the TLR-deficient AM14 (anti-IgG2a rheumatoid factor) B cell response, suggesting that TLR requirements can be bypassed. This result has implications for the efficacy of TLR-targeted therapy in the treatment of ongoing disease. PMID:28239656

  5. Effect of cysteamine on cytosolic somatostatin binding sites in rabbit duodenal mucosa. (United States)

    Gonzalez-Guijarro, L; Lopez-Ruiz, M P; Bodegas, G; Prieto, J C; Arilla, E


    Administration of cysteamine in rabbits elicited a rapid depletion of both duodenal mucosa and plasma somatostatin. A significant reduction was observed within 5 min, returning toward control values by 150 min. The depletion of somatostatin was associated with an increase in the binding capacity and a decrease in the affinity of both high- and low-affinity binding sites present in cytosol of duodenal mucosa. Incubation of cytosolic fraction from control rabbits with 1 mM cysteamine did not modify somatostatin binding. Furthermore, addition of cysteamine at the time of binding assay did not affect the integrity of 125I-Tyr11-somatostatin. It is concluded that in vivo administration of cysteamine to rabbits depletes both duodenal mucosa and plasma somatostatin and leads to up-regulation of duodenal somatostatin binding sites.

  6. Comparison of the carbohydrate moieties of recombinant soluble Fc epsilon receptor (sFc epsilon RII/sCD23) expressed in Saccharomyces cerevisiae and Chinese hamster ovary cells. Different O-glycosylation sites are used by yeast and mammalian cells. (United States)

    Kalsner, I; Schneider, F J; Geyer, R; Ahorn, H; Maurer-Fogy, I


    Recombinant human soluble low affinity receptor for the Fc portion of IgE (sFc epsilon RII/sCD23) was produced in Saccharomyces cerevisiae or Chinese hamster ovary cells and subjected to carbohydrate analysis. Applied methods included analytical SDS-PAGE, reversed phase HPLC, methylation analysis and sequential degradation with exoglycosidases. The results revealed that sFc epsilon RII derived from Chinese hamster ovary cells is glycosylated exclusively at Ser-147, containing mainly the trisaccharide Sia(alpha 2-3)Gal(beta 1-3)GalNAc, whereas the yeast derived glycoprotein was glycosylated at Ser-167 and contained only alpha-mannosyl residues. It is shown here for the first time that different amino acids of a given protein can be O-glycosylated when expressed in yeast or Chinese hamster ovary cells.

  7. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. (United States)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C; Pinkett, Heather W


    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  8. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)


    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  9. Resolution, configurational assignment, and enantiopharmacology at glutamate receptors of 2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) and demethyl-ACPA

    DEFF Research Database (Denmark)

    Johansen, T N; Stensbøl, T B; Nielsen, B;


    We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution...... of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC...... columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid...

  10. Rational design and enantioselective synthesis of (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid - a novel inhibitor at human glutamate transporter subtypes 1, 2, and 3

    DEFF Research Database (Denmark)

    Bunch, Lennart; Nielsen, Birgitte; Jensen, Anders A.;


    The natural product kainic acid is used as template for the rational design of a novel conformationally restricted (S)-glutamic acid (Glu) analogue, (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid (1a). The target structure 1a was synthesized from commercially available (S......)-pyroglutaminol, in an enantioselective fashion, in 14 steps. Pharmacological characterization of 1a at human glutamate transporter subtypes 1, 2, and 3 yielded K(i) values of 127, 52, and 46 microM, respectively. Furthermore, binding studies at native ionotropic Glu (iGlu) receptors revealed low affinity for alpha-amino-3-hydroxy-5...

  11. Tranylcypromine substituted cis-hydroxycyclobutylnaphthamides as potent and selective dopamine D₃ receptor antagonists. (United States)

    Chen, Jianyong; Levant, Beth; Jiang, Cheng; Keck, Thomas M; Newman, Amy Hauck; Wang, Shaomeng


    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (K(i) = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has K(i) values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor.

  12. Binding characteristics of the muscarinic receptor subtype in rabbit pancreas

    Energy Technology Data Exchange (ETDEWEB)

    van Zwam, A.J.; Willems, P.H.; Rodrigues de Miranda, J.F.; de Pont, J.J.; van Ginneken, C.A. (Catholic Univ. of Nijmegen (Netherlands))


    The muscarinic receptor in the rabbit pancreas was characterized with the use of the labeled ligand ({sup 3}H)-(-)-quinuclidinyl-benzylate (({sup 3}H)-(-)-QNB). Specific binding of ({sup 3}H)-(-)-QNB to pancreatic acini was found to be reversible and of high affinity, with an equilibrium dissociation constant (KD) of 68 pmol/l and a receptor density (RT) of 170 fmol/mg protein. Agonist binding behaviour was investigated by displacement of ({sup 3}H)-(-)-QNB binding by eight agonists like arecoline, arecadine-propargylester (APE) and carbachol, yielding only low affinity binding sites. The inhibition of ({sup 3}H)-(-)-QNB binding by the selective antagonists pirenzepine, hexahydrosiladifenidol (HHSiD) and (11-(2-(diethyl-amino)-methyl-1-piperidinyl)acetyl)-5,11-dihydro-6H-pyr ido (2,3-b) (1,4) benzodiazepin-6-one (AF-DX 116) confirmed the M3 nature of the rabbit pancreatic receptor.

  13. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S


    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  14. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A


    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect...... immunogold labelling using a monoclonal antibody specific for phenylalkylamine and dihydropyridine sensitive Ca2+ channels. Using the same technique and a monoclonal antibody (bd-17) to the beta 2/beta 3-subunit of the GABAA-receptor, double labelling of Ca2+ channels and GABAA-receptors with gold particles...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  15. The connection between metal ion affinity and ligand affinity in integrin I domains

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas; Waldron, TT; Astrof, N;


    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes within...... isolated I domains in regulating ligand binding has been reported, the relationship between metal ion binding affinity and ligand binding affinity has not been elucidated. Metal and ligand binding by several I domain mutants that are stabilized in different conformations are investigated using isothermal...... titration calorimetry and surface plasmon resonance studies. This work suggests an inverse relationship between metal ion affinity and ligand binding affinity (i.e. constructs with a high affinity for ligand exhibit a low affinity for metal). This trend is discussed in the context of structural studies...

  16. Modeling the HIV-1 Intasome: A Prototype View of the Target of Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Robert Craigie


    Full Text Available The HIV-1 integrase enzyme is essential for integrating the viral DNA into the host chromosome. Infection is aborted in the absence of integration, making integrase an attractive antiviral target. Recently approved inhibitors of integrase bind tightly to integrase assembled in a nucleoprotein complex with the viral DNA ends (intasome, but have only low affinity for free integrase. High-resolution structures of HIV-1 intasomes are therefore required to understand the detailed mechanisms of inhibition and resistance. Although the structure of the HIV-1 intasome has not yet been determined, the structure of the related prototype foamy virus (PFV intasome was recently solved. A new study [1] exploits the PFV structure to model the HIV-1 intasome. The model provides the most reliable picture to date of the active site region of the HIV-1 intasome and is an important advance in studies of inhibition of this essential HIV-1 enzyme.

  17. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, M.M.; Moody, T.W.


    Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

  18. Effect of ethanol administration and withdrawal on GABA receptor binding in rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Volicer, L.; Biagioni, T.M.


    Sodium independent GABA receptor binding was measured in synaptosomes prepared from cerebral cortex of rats made ethanol dependent by three daily ethanol administrations. In rats sacrificed 1 hour after the last ethanol dose there was a lower number of low affinity binding sites and lower affinity of the high affinity binding than in controls. The decreased affinity was present only in rats who showed symptoms of ethanol withdrawal during the course of ethanol administration. In rats sacrificed during ethanol withdrawal the affinity of the high affinity binding was lower than in controls and other binding characteristics were unchanged. This decreased binding was normalized by repeated Triton X-100 incubations indicating involvement of an endogenous inhibitor in this ethanol effect. Acute ethanol administration did not change GABA receptor binding.

  19. Uptake of (N-Me-3H)-choline by synaptosomes from the central nervous system of Locusta migratoria

    Energy Technology Data Exchange (ETDEWEB)

    Breer, H.


    The accumulation of 3H-choline by isolated synaptosomes from the central nervous system of locust was studied at concentrations varying from 0.05 to 40 microM. Kinetic analysis of the saturable process revealed a high-affinity and a low-affinity system. The high-affinity uptake was competitively inhibited by hemicholinium-3 and was absolutely dependent on external sodium. Elevated potassium concentrations inhibited choline uptake. The choline uptake by insect synaptosomes was found to be remarkably resistant to a variety of metabolic inhibitors. The reduced choline uptake under depolarizing conditions (high potassium concentration or veratridine) in the absence of calcium implies that electrochemical gradients are important for high-affinity choline uptake. Depolarization of preloaded synaptosomes under appropriate conditions resulted in a significant release of newly accumulated choline radioactivity.

  20. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A. (UPENN-MED)


    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  1. GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A


    GABA has been shown to exert a neurotrophic like activity by enhancing the morphological and functional maturation of neurons. Mechanisms involved in this effect of GABA are largely unknown but since GABA has been shown to mediate a hyperpolarizing action on neurons it can be assumed...... that this action might be important. In order to investigate this possibility, the ability to mimic the trophic actions of GABA of different agents known to influence the membrane potential or the GABA gated chloride channels was studied. Hence, GABA receptor expression as well as the ultrastructure of cerebellar...... granule cells were monitored after exposure of the cells in culture to either bromide, valinomycin or picrotoxin. It was found that cells which at early developmental stages (4 days in culture) were exposed to bromide or valinomycin expressed low affinity GABA receptors similar to cells treated...

  2. Antagonists and the purinergic nerve hypothesis: 2, 2'-pyridylisatogen tosylate (PIT), an allosteric modulator of P2Y receptors. A retrospective on a quarter century of progress. (United States)

    Spedding, M; Menton, K; Markham, A; Weetman, D F


    2,2'-Pyridylisatogen tosylate (PIT) is a selective antagonist of P2Y responses in smooth muscle and does not antagonise the effects of adenosine. Responses to purinergic nerve stimulation are resistant to PIT. PIT is an allosteric modulator of responses to ATP in recombinant P2Y(1) receptors expressed in Xenopus oocytes with potentiation of ATP at low concentrations (0.1-10 microM) and antagonism at higher ones (>10 microM). A radioligand binding profile showed that PIT did not interact with any other receptors, with the exception of low affinity for the adenosine A(1) receptor (pK(i), 5.3). The compound recognises purine sites and then may cause irreversible binding to sulfhydryl groups following prolonged incubation or high concentrations. PIT is a potent spin trapper.

  3. Apolipoprotein M affecting lipid metabolism or just catching a ride with lipoproteins in the circulation?

    DEFF Research Database (Denmark)

    Dahlbäck, B; Nielsen, Lars Bo


    M retains its signal peptide, which serves as a hydrophobic anchor to the lipoproteins. This prevents apoM from being lost in the urine. Approximately 5% of HDL carries an apoM molecule. ApoM in plasma (1 microM) correlates strongly with both low-density lipoprotein (LDL) and HDL cholesterol, suggesting......Apolipoprotein M (apoM) is a novel apolipoprotein found mainly in high-density lipoproteins (HDL). Its function is yet to be defined. ApoM (25 kDa) has a typical lipocalin ss-barrel fold and a hydrophobic pocket. Retinoids bind apoM but with low affinity and may not be the natural ligands. Apo......; possible mechanisms include increased formation of pre-ss HDL, enhanced cholesterol mobilization from foam cells, and increased antioxidant properties....

  4. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    Energy Technology Data Exchange (ETDEWEB)

    Krejciríková, Veronika; Pachl, Petr; Fábry, Milan; Malý, Petr; Rezácová, Pavlína; Brynda, Jirí (Czech Academy)


    Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 {angstrom} resolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K{sub d} value in the micromolar range (K{sub d1} = 600 {+-} 70 {mu}M) and a low-affinity site with K{sub d2} = 28 {+-} 10 mM.

  5. TCR affinity promotes CD8+ T cell expansion by regulating survival. (United States)

    Hommel, Mirja; Hodgkin, Philip D


    Ligation with high affinity ligands are known to induce T lymphocytes to become fully activated effector cells while ligation with low affinity ligands (or partial agonists) may result in a delayed or incomplete response. We have examined the quantitative features of CD8(+) T cell proliferation induced by peptides of different TCR affinities at a range of concentrations in the mouse OT-I model. Both the frequency of cells responding and the average time taken for cells to reach their first division are affected by peptide concentration and affinity. Consecutive division times, however, remained largely unaffected by these variables. Importantly, we identified affinity to be the sole regulator of cell death in subsequent division. These results suggest a mechanism whereby TCR affinity detection can modulate the subsequent rate of T cell growth and ensure the dominance of higher affinity clones over time.

  6. The effect of structural differences in the reducing terminus of sugars on the binding affinity of carbohydrates and proteins analyzed using photoaffinity labeling. (United States)

    Ohtsuka, Isao; Sadakane, Yutaka; Higuchi, Mari; Hada, Noriyasu; Hada, Junko; Kakiuchi, Nobuko; Sakushima, Akiyo


    Because carbohydrates and proteins bind with such low affinity, the nature of their interactions is not clear. Photoaffinity labeling with diazirin groups is useful for elucidating the roles of carbohydrates in these binding processes. However, when carbohydrate probes are synthesized according to this conventional method, the reducing terminus of the sugar is opened to provide an acyclic structure. Because greater elucidation of carbohydrate-protein interactions requires a closed-ring carbohydrate in addition to the photoreactive group, we synthesized new molecular tools. The carbohydrate ligands were synthesized in three steps (glycosylation with allyl alcohol, deprotection, and ozonolysis). Specific binding proteins for carbohydrate ligands were obtained by photoaffinity labeling. Closed ring-type carbohydrate ligands, in which the reducing sugar is closed, bound to lectins more strongly than open ring-type sugars. Carbohydrate to protein binding was observed using AFM.

  7. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp. (United States)

    Chunhui, Chen; Xiaogang, Xu


    Vancomycin resistant enterococci has become an important nosocomial pathogen since it is discovered in late 1980s. The products, encoded by vancomycin resistant gene cluster in enterococci, catalyze the synthesis of peptidoglycan precursors with low affinity with glycopeptide antibiotics including vancomycin and teicoplanin and lead to resistance. These vancomycin resistant gene clusters are classified into nine types according to their gene sequences and organization, or D-Ala:D-Lac (VanA, VanB, VanD and VanM) and D-Ala:D-Ser (VanC, VanE, VanG, VanL and VanN) ligase gene clusters based on the differences of their encoded ligases. Moreover, these gene clusters are characterized by their different resistance levels and infection models. In this review, we summarize the classification, gene organization and infection model of vancomycin resistant gene cluster in Enterococcus spp.

  8. Expression of NGF, Trka and p75 in human cartilage

    Directory of Open Access Journals (Sweden)

    A Gigante


    Full Text Available Nerve growth factor (NGF exerts its action through two types of receptor: high-affinity tyrosine kinase A receptor (trkA and low-affinity p75 receptor. NGF has a neurotrophic role in central and peripheral nervous system development, but there is also clear evidence of its involvement in the developing skeleton. The aim of the present immunohistochemical study was to investigate the expression and distribution of NGF, trkA, and p75 in normal cartilaginous tissues from adult subjects: articular and meniscal cartilage of the knee, cartilage from the epiglottis, and intervertebral disc tissue. Detection of NGF mRNA was also performed by in situ hybridization. Immunoreaction for NGF and the two receptors in articular chondrocytes, chondrocyte-like cells of meniscus and annulus fibrosus, and chondrocytes of the epiglottis demonstrated that they are all expressed in hyaline, fibrous and elastic cartilaginous tissues, suggesting that they could be involved in cartilage physio-pathology.

  9. Synthesis and pharmacological evaluation of piperidine (piperazine)-substituted benzoxazole derivatives as multi-target antipsychotics. (United States)

    Huang, Ling; Zhang, Wenjun; Zhang, Xiaohua; Yin, Lei; Chen, Bangyin; Song, Jinchun


    The present study describes the optimization of a series of novel benzoxazole-piperidine (piperazine) derivatives combining high dopamine D2 and serotonin 5-HT1A, 5-HT2A receptor affinities. Of these derivatives, the pharmacological features of compound 29 exhibited high affinities for the DA D2, 5-HT1A and 5-HT2A receptors, but low affinities for the 5-HT2C and histamine H1 receptors and human ether-a-go-go-related gene (hERG) channels. Furthermore, compound 29 reduced apomorphine-induced climbing and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced head twitching without observable catalepsy, even at the highest dose tested. Thus, compound 29 is a promising candidate as a multi-target antipsychotic treatment.

  10. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes. (United States)

    Wensveen, Felix M; van Gisbergen, Klaas P J M; Eldering, Eric


    Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.

  11. Identification of an erythrocyte pyruvate kinase variant in a family from Latium with non-spherocytic congenital haemolytic anaemia. (United States)

    Papa, G; De Laurenzi, A; Isacchi, G C; Bonifazi, G; Parziale, L; Salvati, A M


    Erythrocyte PK deficiency was detected in a family from Latium in Italy. This PK variant is characterized by normal or increased activity immediately after blood collection, instability to storage, to heat and to urea. Only in the propositus the mutant enzyme exhibited an increased Michaelis constant for PEP, slightly increased inhibition by ATP and an altered optimum pH value. The kinetic anomaly was only partially corrected by activation with F-1, 6-DP and by addition of 2-ME. From these results it can be concluded that in the family observed two distinct erythrocyte PK alterations were demonstrable: instability in the propositus and his father; low affinity for PEP and altered optimum pH value only in the propositus.

  12. Participation of L3T4 in T cell activation in the absence of class II major histocompatibility complex antigens. Inhibition by anti-L3T4 antibodies is a function both of epitope density and mode of presentation of anti-receptor antibody

    DEFF Research Database (Denmark)

    Owens, T; Fazekas de St Groth, B


    The recognition of many class II major histocompatibility complex (MHC)-associated antigens by T cells requires the participation of the L3T4 molecule. It has been proposed that this molecule acts to stabilize low affinity binding to antigen in association with MHC and thereby increases the avidity...... two monoclonal antibodies, KJ16-133.18 and F23.1, that recognize a determinant encoded by the T cell receptor V beta 8 gene family. These antibodies were used to select two clones of T cells with surface phenotype Thy-1.2+, L3T4+, Lyt-2-, KJ16-133.18+, F23.1+, IA-, IE-. One of these clones (E9.D4...... the formation of TCR complexes and so prevent activation. However, by increasing the epitope density of the activating ligand, the avidity of the T cell/ligand interaction can be increased sufficiently to prevent this disruption.(ABSTRACT TRUNCATED AT 400 WORDS)...

  13. Coupling of the p75 neurotrophin receptor to sphingolipid signaling. (United States)

    Dobrowsky, R T; Carter, B D


    The neurotrophins are a family of growth factors involved in the survival and differentiation of specific populations of neurons and glial cells. Many of the trophic signals elicited by neurotrophins are initiated by the binding of these molecules to various Trk tyrosine kinase receptors. In contrast, recent data suggest that neurotrophin-mediated death signals are generated through the interaction of nerve growth factor with the low-affinity neurotrophin receptor, p75NTR, Neurotrophins may signal through p75NTR by stimulating sphingomyelin hydrolysis and generating ceramide in primary cultures of neurons and glial cells as well as in fibroblasts heterologously expressing p75NTR. The biochemical characteristics of p75NTR-dependent ceramide generation are discussed relative to the role of ceramide in p75NTR-dependent apoptosis and the activation of NF-kappa B.

  14. A murine monoclonal antibody that binds N-terminal extracellular segment of human protease-activated receptor-4. (United States)

    Sangawa, Takeshi; Nogi, Terukazu; Takagi, Junichi


    Abstract A monoclonal antibody that recognizes native G protein coupled receptors (GPCR) is generally difficult to obtain. Protease-activated receptor-4 (PAR4) is a GPCR that plays an important role in platelet activation as a low-affinity thrombin receptor. By immunizing peptide corresponding to the N-terminal segment of human PAR4, we obtained a monoclonal antibody that recognizes cell surface expressed PAR4. Epitope mapping using a series of artificial fusion proteins that carry PAR4-derived peptide revealed that the recognition motif is fully contained within the 6-residue portion adjacent to the thrombin cleavage site. The antibody blocked PAR4 peptide cleavage by thrombin, suggesting its utility in the functional study of PAR4 signaling.

  15. Is oral absorption of vigabatrin carrier-mediated?

    DEFF Research Database (Denmark)

    Nøhr, M. K.; Juul, R. V.; Thale, Z. I.;


    by significant increases in the apparent Michaelis constant. Based on the mechanistic model, a high capacity low affinity carrier is proposed to be involved in intestinal vigabatrin absorption. PAT1-ligands increased the Michaelis constant of vigabatrin after oral co-administration indicating that this carrier......The aim of the study was to investigate the intestinal transport mechanisms responsible for vigabatrin absorption in rats by developing a population pharmacokinetic (PK) model of vigabatrin oral absorption. The PK model was used to investigate whether vigabatrin absorption was carrier......-mediated and if the proton-coupled amino acid transporter 1 (PAT1) was involved in the absorption processes. Vigabatrin (0.3-300 mg/kg) was administered orally or intravenously to Sprague Dawley rats in the absence or presence of PAT1-ligands l-proline, l-tryptophan or sarcosine. The PK profiles of vigabatrin were described...

  16. Rheumatoid factors, B cells and immunoglobulin genes. (United States)

    Jefferis, R


    The paradigm of self, non-self discrimination in the immune system is under review as autoreactive B or T cells are increasingly delineated within normal individuals. The products of autoreactive B cells are, mostly, polyspecific IgM antibodies of low affinity. These 'natural' antibodies include rheumatoid factors (RF) encoded by unmutated germline immunoglobulin genes. In rheumatoid arthritis (RA) the RF may be of the IgM, IgG or IgA isotype, show evidence of somatic mutation and have increased affinity; consistent with maturation of an antigen driven immune response. This response could be initiated or driven by an auto-immunogenic form of IgG or an exogenous cross-reactive antigen. Changes in galactosylation of IgG have been reported to be a valuable diagnostic and prognostic indicator in RA. Speculation that these changes may precipitate some of the disease processes is critically reviewed.

  17. Sustained drug release by contact lenses for glaucoma treatment-a review. (United States)

    Carvalho, I M; Marques, C S; Oliveira, R S; Coelho, P B; Costa, P C; Ferreira, D C


    In the context of ocular pharmacology, there is a growing need for innovative delivery platforms for a convenient and sustained drug release into the eye, especially for chronic diseases that require the adoption of a strict insurmountable treatment regimen for a large part of the affected population, as in the case of glaucoma. Due to the large residence time of the contact lenses in the eye, its use for sustained drug delivery is quite promising. However, and despite the numerous therapeutic advantages arising from its use, the low affinity shown by most ophthalmic drugs for conventional contact lenses hinders the practical application of this technology. In this paper we elaborated a review of the various methods exploited so far to improve the contact lenses' characteristics as mechanisms for controlled and prolonged drug release for topical treatment of ocular diseases, with particular emphasis on the treatment of glaucoma.

  18. Adaptive Assembly: Maximizing the Potential of a Given Functional Peptide with a Tailor-Made Protein Scaffold. (United States)

    Watanabe, Hideki; Honda, Shinya


    Protein engineering that exploits known functional peptides holds great promise for generating novel functional proteins. Here we propose a combinatorial approach, termed adaptive assembly, which provides a tailor-made protein scaffold for a given functional peptide. A combinatorial library was designed to create a tailor-made scaffold, which was generated from β hairpins derived from a 10-residue minimal protein "chignolin" and randomized amino acid sequences. We applied adaptive assembly to a peptide with low affinity for the Fc region of human immunoglobulin G, generating a 54-residue protein AF.p17 with a 40,600-fold enhanced affinity. The crystal structure of AF.p17 complexed with the Fc region revealed that the scaffold fixed the active conformation with a unique structure composed of a short α helix, β hairpins, and a loop-like structure. Adaptive assembly can take full advantage of known peptides as assets for generating novel functional proteins.

  19. In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Nielsen, Jens


    limitation (0.37 +/- 0.05 mu mol/g CDW) than what has been reported for growth under glucose limitation. The galactose pulse of 5.58 mM was consumed within 40 min (t = 40) and 7 min after the pulse was added cell growth stopped. Subsequently, the cells started to grow and at t = 30 the specific growth rate......-1P was measured, which may be responsible for a toxic metabolic response in S. cerevisiae. The increase in the Gal-1P concentration is intensified by the low affinity of Gal7 towards Gal-1P and, hence, under the physiological conditions examined Gal7 seems to exert control over flux through...

  20. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine

    DEFF Research Database (Denmark)

    Kristensen, K; Christensen, C B; Christrup, Lona Louring


    The binding affinities of racemic methadone and its optical isomers R-methadone and S-methadone were evaluated for the opioid receptors mu1, mu2, delta and kappa, in comparison with that of morphine. The analgesic R-methadone had a 10-fold higher affinity for mu1 receptors than S-methadone (IC50 3.......0 nM and 26.4 nM, respectively). At the mu2 receptor, the IC50 value of R-methadone was 6.9 nM and 88 nM for S-methadone, respectively. As expected, R-methadone had twice the affinity for mu1 and mu2 receptors than the racemate. All of the compounds tested had low affinity for the delta and kappa...

  1. Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae. (United States)

    Kerdsomboon, Kittikhun; Tatip, Supinda; Kosasih, Sattawat; Auesukaree, Choowong


    Moringa oleifera leaves are a well-known source of antioxidants and traditionally used for medicinal applications. In the present study, the protective action of soluble M. oleifera leaf extract (MOLE) against cadmium toxicity was investigated in the model eukaryote Saccharomyces cerevisiae. The results showed that this extract exhibited a protective effect against oxidative stress induced by cadmium and H2O2 through the reduction of intracellular reactive oxygen species. Interestingly, not only the co-exposure of soluble MOLE with cadmium but also pretreatment of this extract prior to cadmium exposure significantly reduced the cadmium uptake through an inhibition of Fet4p, a low-affinity iron(II) transporter. In addition, the supplementation of soluble MOLE significantly reduced intracellular iron accumulation in a Fet4p-independent manner. Our findings suggest the potential use of soluble extract from M. oleifera leaves as a dietary supplement for protection against cadmium accumulation and oxidative stress.

  2. Glycomimetic ligands for the human asialoglycoprotein receptor. (United States)

    Mamidyala, Sreeman K; Dutta, Sanjay; Chrunyk, Boris A; Préville, Cathy; Wang, Hong; Withka, Jane M; McColl, Alexander; Subashi, Timothy A; Hawrylik, Steven J; Griffor, Matthew C; Kim, Sung; Pfefferkorn, Jeffrey A; Price, David A; Menhaji-Klotz, Elnaz; Mascitti, Vincent; Finn, M G


    The asialoglycoprotein receptor (ASGPR) is a high-capacity galactose-binding receptor expressed on hepatocytes that binds its native substrates with low affinity. More potent ligands are of interest for hepatic delivery of therapeutic agents. We report several classes of galactosyl analogues with varied substitution at the anomeric, C2-, C5-, and C6-positions. Significant increases in binding affinity were noted for several trifluoromethylacetamide derivatives without covalent attachment to the protein. A variety of new ligands were obtained with affinity for ASGPR as good as or better than that of the parent N-acetylgalactosamine, showing that modification on either side of the key C3,C4-diol moiety is well tolerated, consistent with previous models of a shallow binding pocket. The galactosyl pyranose motif therefore offers many opportunities for the attachment of other functional units or payloads while retaining low-micromolar or better affinity for the ASGPR.

  3. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    Energy Technology Data Exchange (ETDEWEB)

    Balcar, V.J.; Dreher, B. (Univ. of Sydney (Australia))


    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary and association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.

  4. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing (United States)

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; Boyd, Lisa F.; Jiang, Jiansheng; Dolan, Michael A.; Venna, Ramesh; Norcross, Michael A.; McMurtrey, Curtis P.; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H.


    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8+ T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  5. Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. (United States)

    Gouridis, Giorgos; Schuurman-Wolters, Gea K; Ploetz, Evelyn; Husada, Florence; Vietrov, Ruslan; de Boer, Marijn; Cordes, Thorben; Poolman, Bert


    The conformational dynamics in ABC transporters is largely elusive. The ABC importer GlnPQ from Lactococcus lactis has different covalently linked substrate-binding domains (SBDs), thus making it an excellent model system to elucidate the dynamics and role of the SBDs in transport. We demonstrate by single-molecule spectroscopy that the two SBDs intrinsically transit from open to closed ligand-free conformation, and the proteins capture their amino acid ligands via an induced-fit mechanism. High-affinity ligands elicit transitions without changing the closed-state lifetime, whereas low-affinity ligands dramatically shorten it. We show that SBDs in the closed state compete for docking onto the translocator, but remarkably the effect is strongest without ligand. We find that the rate-determining steps depend on the SBD and the amino acid transported. We conclude that the lifetime of the closed conformation controls both SBD docking to the translocator and substrate release.

  6. Thermostabilisation of membrane proteins for structural studies (United States)

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.


    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  7. Effect of a GABA agonist on the expression and distribution of GABAA receptors in the plasma membrane of cultured cerebellar granule cells: an immunocytochemical study

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A


    The effect of the gamma-aminobutyric acid (GABA) agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP, 150 microM) on the localization and density of GABAA receptors in the plasma membrane of rat cerebellar granule cells in primary cultures was studied at the electron microscope (EM) level...... by preembedding immunogold staining using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA receptor complex. In THIP-treated as well as untreated control cultures, GABAA receptors were found to be evenly distributed in the plasma membrane of cell bodies as well as processes. However...... at the EM level using the preembedding immunogold technique. It is likely that low-affinity GABAA receptors are preferentially located in the cell processes and to a considerable extent in the form of 'hot spots'. However, these 'hot spots' also contain high-affinity receptors....

  8. Binding of Bacillus thuringiensis Cry1A toxins with brush border membrane vesicles of maize stem borer (Chilo partellus Swinhoe). (United States)

    Sharma, Priyanka; Nain, Vikrant; Lakhanpaul, Suman; Kumar, P A


    Maize stem borer (Chilo partellus) is a major insect pest of maize and sorghum in Asia and Africa. Bacillus thuringiensis (Bt) δ-endotoxins have been found effective against C. partellus, both in diet-overlay assay and in transgenic plants. Gene stacking as one of the resistance management strategies in Bt maize requires an understanding of receptor sharing and binding affinity of δ-endotoxins. In the present study, binding affinity of three fluorescein isothiocyanate labeled Cry1A toxins showed high correlation with the toxicity of respective δ-endotoxins. Competitive binding studies showed that Cry1Ab toxins share some of the binding sites with Cry1Aa and Cry1Ac with low affinity and that Cry1Ab may have additional binding sites that are unavailable to the other two toxins tested.

  9. Cassia obtusifolia MetE as a cytosolic target for potassium isolespedezate, a leaf-opening factor of Cassia plants: target exploration by a compact molecular-probe strategy. (United States)

    Ueda, Minoru; Manabe, Yoshiyuki; Otsuka, Yuki; Kanzawa, Nobuyuki


    Affinity chromatography by using ligand-immobilized bead technology is generally the first choice for target exploration of a bioactive ligand. However, when a ligand has comparatively low affinity against its target, serious difficulties will be raised in affinity-based target detection. We report here that the use of compact molecular probes (CMP) will be advantageous in such cases; it enables the retention of moderate affinity between the ligand and its target in contrast to immobilizing the ligand on affinity beads that will cause a serious drop in affinity to preclude target detection. In the CMP strategy, a CMP containing an azide handle is used for an initial affinity-based labeling of target, and subsequent tagging by CuAAC with a large FLAG tag will give a tagged target protein. By using the CMP strategy, we succeeded in the identification of Cassia obtusifolia MetE as a cytosolic target protein of potassium isolespedezate (1), a moderately bioactive ligand.

  10. Molecular chaperones: The modular evolution of cellular networks

    Indian Academy of Sciences (India)

    Tamás Korcsmáros; István A Kovács; Máté S Szalay; Péter Csermely


    Molecular chaperones play a prominent role in signaling and transcriptional regulatory networks of the cell. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms and may serve as potential regulators of evolvability. Chaperones have weak links, connect hubs, are in the overlaps of network modules and may uncouple these modules during stress, which gives an additional protection for the cell at the network-level. Moreover, after stress chaperones are essential to re-build inter-modular contacts by their low affinity sampling of the potential interaction partners in different modules. This opens the way to the chaperone-regulated modular evolution of cellular networks, and helps us to design novel therapeutic and anti-aging strategies.

  11. In vitro and in vivo evidence for active brain uptake of the GHB analogue HOCPCA by the monocarboxylate transporter subtype 1

    DEFF Research Database (Denmark)

    Thiesen, Louise; Kehler, Jan; Clausen, Rasmus P


    -affinity binding sites, ligands with high and specific affinity are essential. The conformationally restricted GHB analogue 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) is one such compound. The objective of this study was to investigate the transport of HOCPCA across the blood-brain barrier in vitro...... and in vivo, and to investigate the hypothesis that HOCPCA, like GHB, is a substrate for the monocarboxylate transporters (MCTs). For in vitro uptake studies, MCT1, 2 and 4 were recombinantly expressed in Xenopus laevis oocytes and the previously reported radioligand [(3)H]HOCPCA was used (as substrate......γ-Hydroxybutyric acid (GHB) is a recreational drug, a clinically prescribed drug in narcolepsy and alcohol dependence, and an endogenous substance which binds to both high and low affinity sites in the brain. For studying the molecular mechanisms and the biological role of the GHB high...

  12. Dissecting plant iron homeostasis under short and long-term iron fluctuations

    DEFF Research Database (Denmark)

    Shirvanehdeh, Behrooz Darbani; Briat, Jean-Francois; Holm, Preben Bach;


    A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we...... discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between...... elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects...

  13. Radiotracer studies on calcium ion-selective electrode membranes based on poly(vinyl chloride) matrices. (United States)

    Craggs, A; Moody, G J; Thomas, J D; Willcox, A

    Radiotracer studies with (45)Ca and (36)Cl demonstrate that PVC matrix membranes containing Orion 92-20-02 liquid calcium ion-exchanger are permselective to counter-cations. Diffusion coefficients are quoted for the migration of (45)Ca between pairs of calcium solutions and are discussed in terms of solution concentration, membrane thickness and concentration level of sensor in the membrane. Migration of calcium ions from calcium chloride solution to a Group (II) metal chloride solution through a PVC membrane containing calcium liquid ion-exchanger is discussed in terms of solvent extraction and electrode selectivity coefficient parameters. Thus, magnesium, strontium and barium ions appear to inhibit migration through the membrane by their low affinity for the membrane liquid ion-exchanger sites, while the inhibition by beryllium ions is attributed to site blockage by the strong affinity of dialkylphosphate sites for beryllium.

  14. Detection of carrier heterogeneity by rate of ligand dialysis: medium-chain fatty acid interaction with human serum albumin and competition with chloride

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R


    Binding equilibria for decanoate, octanoate, and hexanoate to defatted human serum albumin were investigated by dialysis exchange rate determinations in 66 mM sodium phosphate buffer, pH 7.4, 37 degrees C. The binding isotherms for decanoate and octanoate could not be fitted by the general binding......(5) M-1, respectively, for decanoate; 1.6 X 10(6) and 3.5 X 10(4) for octanoate; and 7.1 X 10(4) and 8.0 X 10(2) M-1 for hexanoate. The high-affinity albumin component binds 1 mol decanoate, 1 mol octanoate, or 2 mol hexanoate more than is bound to the low-affinity component. Chloride ions compete...

  15. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub


    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  16. MC148 encoded by human molluscum contagiosum poxvirus is an antagonist for human but not murine CCR8

    DEFF Research Database (Denmark)

    Lüttichau, H R; Gerstoft, J; Schwartz, T W


    The viral CC chemokines MC148, encoded by the poxvirus molluscum contagiosum, and viral macrophage inflammatory protein (vMIP)-I and vMIP-II, encoded by human herpesvirus 8, were probed on the murine CC receptor (CCR) 8 in parallel with human CCR8. In calcium mobilization assays, vMIP-I acted...... as a high-affinity agonist, whereas vMIP-II acted as a low-affinity antagonist on the murine CCR8 as well as the human CCR8. MC148 was found to bind and block responses through the human CCR8 with high affinity, but surprisingly MC148 was unable to bind and block responses through the murine CCR8. Because...

  17. Constraints on mutational pathways of hemoglobin evolution

    DEFF Research Database (Denmark)

    Kumar, Amit; Natarajan, Chandrasekhar; Moriyama, Hideaki


    When an evolutionary transition in protein function involves multiple mutational steps, a number of important questions can be addressed by experimentally examining the full set of possible intermediate genotypes that connect the ancestral starting point and the evolved endpoint. For example......, if the functional effects of mutations depend on the sequential order in which they occur, then evolution may be more likely to follow some pathways (those involving onotonic increases in fitness) rather than others (those involving low-fitness intermediates). Here we report an experimental analysis of multiple...... nightjar Hb, we used a combinatorial protein engineering approach to synthesize genotypes representing each of the 16 possible multi-site combinations.We discovered that all possible mutational pathways connecting the high-affinity ancestor and the low-affinity, wild-type Hb may not be equally accessible...

  18. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. (United States)

    Marks, Joanne; Carvou, Nicolas J C; Debnam, Edward S; Srai, Surjit K; Unwin, Robert J


    The mechanism of renal glucose transport involves the reabsorption of filtered glucose from the proximal tubule lumen across the brush border membrane (BBM) via a sodium-dependent transporter, SGLT, and exit across the basolateral membrane via facilitative, GLUT-mediated, transport. The aim of the present study was to determine the effect of streptozotocin-induced diabetes on BBM glucose transport. We found that diabetes increased facilitative glucose transport at the BBM by 67.5 % (P < 0.05)--an effect that was abolished by overnight fasting. Western blotting and immunohistochemistry demonstrated GLUT2 expression at the BBM during diabetes, but the protein was undetectable at the BBM of control animals or diabetic animals that had been fasted overnight. Our findings indicate that streptozotocin-induced diabetes causes the insertion of GLUT2 into the BBM and this may provide a low affinity/high capacity route of entry into proximal tubule cells during hyperglycaemia.

  19. Cadmium adsorption in montmorillonite as affected by glyphosate

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jun; ZHOU Dong-mei; LUO Xiao-san; SUN Rui-juan; CHEN Huai-man


    Behaviors of soil heavy metals are often affected by coexisting herbicides due to their physical and chemical interaction. Effect of glyphosate, an herbicide containing -PO32- and -COOH groups, on cadmium adsorption in montmorillonite was studied in detail. The results showed that cadmium adsorption quantity in montmorillonite increased with increasing soil solution pH and cadmium concentration as usual, but decreased with glyphosate, which is due to the formation of a low affinity complex of Cd and glyphosate and decreasing solution pH induced by glyphosate addition. When the equilibrium solution pH was below 6.7, glyphosate has little effect on cadmium adsorption, but when the equilibrium solution pH was above 6.7, glyphosate significantly decreased cadmium adsorption quantity in montmorillonite. In addition, the adding order of Cd and glyphosate also influenced Cd adsorption quantity in montmorillonite.

  20. Thyrotropin receptor-adenylate cyclase function in human thyroid neoplasms. (United States)

    Saltiel, A R; Powel-Jones, C H; Thomas, C G; Nayfeh, S N


    The action of thyrotropin (TSH) on plasma membranes was studied to elucidate the mechanism of hormonal regulation of malignant versus normal human thyroid tissue. Thyroid plasma membranes of six specimens of papillary or follicular carcinoma and six of adenoma, as well as adjacent normal tissue obtained from these patients, were evaluated with respect to binding of 125I-labeled TSH and stimulation of adenylate cyclase. Scatchard analysis of TSH binding revealed the presence of two species of binding sites in normal thyroid of different affinities and capacities. In 11 of 12 tumors studied, the high-affinity binding site remained intact; however, the total number of low-affinity sites was markedly lower than normal tissue. Other parameters of binding were not altered in neoplastic thyroid. In each of these tissues, the hormone responsiveness and kinetics of adenylate cyclase activation were essentially identical to those observed in normal tissue, although basal activity was typically greater in the neoplasm. One carcinoma was totally deficient in both 125I-labeled TSH binding and TSH-stimulatable adenylate cyclase, although basal activity was detected. Furthermore, adenylate cyclase of this specimen was not activated by prostaglandin, in contrast to normal thyroid and other thyroid tumors. These results suggest that: (a) clinical behavior of thyroid carcinomas may not be reflected by TSH receptor-adenylate cyclase function; (b) lack of clinical response as manifest by tumor regression cannot be ascribed to the absence of functional TSH receptors or adenylate cyclase; and (c) decreased low-affinity binding present in tumors is not correlated with altered hormone responsiveness of adenylate cyclase but may reflect more general cancer-induced changes in membrane structure or composition.

  1. Thyrotropin binding to porcine thyroid plasma membranes: kinetic and thermodynamic analyses. (United States)

    Saltiel, A R; Thomas, C G; Nayfeh, S N


    Evaluation of TSH binding to plasma membranes of porcine thyroid revealed unique sensitivity to pH and temperature. Analysis of apparent equilibrium binding yielded a linear Scatchard plot at the optimal pH of 6.0, indicating one class of binding sites. At physiological pH 7.4 a curvilinear Scatchard plot was obtained, resolved by computer analysis into two classes of binding sites of different affinities and capacities. Treatment of membranes with phospholipase C resulted in a 20% decrease in the number of high affinity sites, but no change occurred in binding affinity. In contrast, low affinity sites were not altered. To evaluate the significance of the curvilinear Scatchard plot, the kinetics of association were examined. The intrinsic Kd (kd/ka) was 0.20 nM, a value essentially equivalent to that of the high affinity binding component. The 'negative cooperativity' model of hormone binding was evaluated by examining the effect of excess unlabeled TSH on dissociation rate. Dissociation of bound 125I-labeled TSH was biphasic, and was enhanced by unlabeled hormone, regardless of whether the membranes were prelabeled at pH 6.0 or 7.4. This effect was not correlated with curvilinear Scatchard plots, and therefore not proof of negative cooperativity. Binding sites for TSH were further distinguished by their sensitivity to temperature. A van't Hoff plot of temperature dependence of the apparent Kd of the high affinity site was linear from 4 to 37 degrees C. In contrast, the apparent Kd of low affinity binding did not vary with respect to temperature. These results demonstrate that there are at least two independent binding sites for TSH on porcine thyroid plasma membranes, distinguishable by their equilibrium binding properties.

  2. Tumour antigen targeted monoclonal antibodies incorporating a novel multimerisation domain significantly enhance antibody dependent cellular cytotoxicity against colon cancer. (United States)

    Jain, Ajay; Poonia, Bhawna; So, Edward C; Vyzasatya, Ravi; Burch, Erin E; Olsen, Henrik S; Mérigeon, Emmanuel Y; Block, David S; Zhang, Xiaoyu; Schulze, Dan H; Hanna, Nader N; Twadell, William S; Yfantis, Harris G; Chan, Siaw L; Cai, Ling; Strome, Scott E


    Tumour antigen targeted antibodies (mAbs) can induce natural killer (NK) cells to kill tumours through antibody dependent cellular cytotoxicity (ADCC) upon engagement of NK cell expressed FcγRIIIa. FcγRIIIa polymorphisms partially dictate the potency of the ADCC response. The high affinity FcγRIIIa-158-valine (V) polymorphism is associated with more potent ADCC response than the low affinity FcγRIIIa-158-phenylalanine (F) polymorphism. Because approximately 45% of patients are homozygous for the FcγRIIIa-158-F polymorphism (FF genotype), their ability to mount ADCC is impaired. We investigated whether a novel mAb capable of binding multiple antigen specific targets and engaging multiple low affinity FcγRIIIa receptors could further enhance ADCC against colon cancer in vitro. Specifically, we generated a novel anti-epidermal growth factor receptor (EGFR) antibody (termed a stradobody) consisting of an unmodified Fab sequence and two Immunoglobulin G, subclass 1 (IgG1) Fc domains separated by an isoleucine zipper domain and the 12 amino-acid IgG2 hinge. The stradobody framework induced multimerisation and was associated with increased binding to the EGFR and FcγRIIIa. From a functional perspective, when compared to an unmodified anti-EGFR mAb with a sequence identical to cetuximab (a commercially available anti-EGFR mAb), stradobodies significantly enhanced ADCC. These effects were observed using both KRAS wild type HT29 and KRAS mutant SW480 colon cancer cells as targets, and by NK cells obtained from healthy donors and a cohort of patients with colon cancer. These data suggest that high avidity cross-linking of multiple tumour surface antigens and multiple NK cell associated FcγRIIIa molecules can enhance ADCC and partially overcome impaired ADCC by FF genotype individuals in vitro.

  3. Binding of furosemide to albumin isolated from human fetal and adult serum. (United States)

    Viani, A; Cappiello, M; Silvestri, D; Pacifici, G M


    Albumin was isolated from pooled fetal serum from 58 placentas obtained at normal delivery at term and from pooled adult plasma from 8 individuals. Albumin isolation was carried out by means of PEG precipitation followed by ion-exchange chromatography on DEAE-Sephadex A 50 and then on SP-Sephadex C 50. The electrophoresis on SDS-polyacrylamide gels showed only one spot that comigrated with commercial human albumin. Binding to albumin was measured by equilibrium dialysis of an aliquot of albumin solution (0.7 ml) against the same volume of 0.13 M sodium orthophosphate buffer (pH 7.4). At a total concentration of 2 micrograms/ml (therapeutic range), the unbound fraction of furosemide was 2.71% (fetal albumin) and 2.51% (adult albumin). Two classes of binding sites for furosemide were observed in fetal and adult albumin. The number of binding sites (moles of furosemide per mole of albumin) was 1.22 (fetal albumin) and 1.58 (adult albumin) for the high-affinity site and 2.97 (fetal albumin) and 3.25 (adult albumin) for the low-affinity site. The association constants (M-1) were 3.1 X 10(4) (fetal albumin) and 2.6 X 10(4) (adult albumin) for the high-affinity set of sites and 0.83 X 10(4) (fetal albumin) and 1.0 X 10(4) (adult albumin) low-affinity site. The displacement of furosemide from albumin was studied with therapeutic concentrations of several drugs. Valproic acid, salicylic acid, azapropazone and tolbutamide had the highest displacing effects which were significantly higher with fetal than with adult albumin.

  4. The Characteristics of Gastrin Receptor Expression in Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    HUANGGuangjian; ZHANGYanling; LEZhuqin; YUFen; ZHANGGuangming; DENShouzhen; NIQuanxing


    Objective: To investigate the characteristics and significance of gastrin receptor (GR) expression in gastric cancer. Methods: The content and affinity of GR were determined in 34 specimens of gastric cancer using radioligand binding assay. The correlation was analyzed between GR expression in tumors and tumor sites, stages, grades, DNA of gastric cancer cells, GR of adjacent normal gastric mucosa, survival time. Results: Among the 34 cases of gastric cancer, 16 patients (47.1%) had positive GR in specimens of gastric cancer, with high-affinity GR in 14 cases (41.2%) and low-affinity GR in 2 cases. Of high-affinity GR, 9 cases had cancers with GR>10 fmol/mg.protein (39.5±14.4 fmol/mg.protein), 5 cases with GR≤10fmol/mg.protein (6.0±2.8 fmol/mg.protein). High-affinity GR was easier to be expressed in cancers ofgastric body (7/9) and cardia (3/6) than in gastric antrum (4/19). The expression of GR in gastric cancer accorded well with that in normal gastric mucosa at the same sites, but with more high-special binding sites than the latter (39.5±14.4 vs 26.1±16.6 fmol/mg.protein). A significantly greater proportion of patients withⅢ+Ⅳ stages (13/24) had high-affinity GR compared with I+II stages (1/10) of gastric cancers. During a follow-up of 23-61 months, 11 of 13 cases with high-affinity GR were dead, whereas 4 of 11 cases with low-affinity or negative GR were dead in Ⅲ+Ⅳ stages of gastric cancer. Conclusion: GR is an important factor in the autocrine growth of gastric cancer cells, and helpful in the prediction of prognosis and guidance of treatment with GR antagonists.

  5. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    Energy Technology Data Exchange (ETDEWEB)

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F. (NIH)


    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  6. Soluble T Cell Receptor Vβ Domains Engineered for High-Affinity Binding to Staphylococcal or Streptococcal Superantigens

    Directory of Open Access Journals (Sweden)

    Preeti Sharma


    Full Text Available Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs, so-called because they stimulate a large fraction of an individual’s T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR on a T cell and a class II product of the major histocompatibility complex (MHC on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1 or S. pyogenes (SpeA and SpeC have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  7. Studies of the biogenic amine transporters. VII. Characterization of a novel cocaine binding site identified with [125I]RTI-55 in membranes prepared from human, monkey and guinea pig caudate. (United States)

    Rothman, R B; Silverthorn, M L; Glowa, J R; Matecka, D; Rice, K C; Carroll, F I; Partilla, J S; Uhl, G R; Vandenbergh, D J; Dersch, C M


    [125I]RTI-55 is a cocaine analog with high affinity for dopamine (DA) and serotonin (5-HT) transporters. Quantitative ligand binding studies revealed a novel high affinity [125I]RTI-55 binding site assayed under 5-HT transporter (SERT) conditions which has low affinity for almost all classic biogenic amine transporter ligands, including high affinity 5-HT transporter inhibitors such as paroxetine, but which retains high affinity for cocaine analogs. This site, termed SERT(site2) for its detection under 5-HT transporter conditions (not for an association with the SERT) occurs in monkey caudate, human caudate, and guinea pig caudate membranes, but not in rat caudate membranes. SERT(site2) is distinguished from the DA transporter (DAT) and SERT by several criteria, including a distinct ligand-selectivity profile, the inability to detect SERT(site2) in cells stably expressing the cloned human DAT, and insensitivity to irreversible ligands which inhibit [125I]RTI-55 binding to the DAT and SERT. Perhaps the most striking finding about SERT(site2) is that a wide range of representative antidepressant agents have very low affinity for SERT(site2). The affinity of cocaine for this site is not very different from the concentration cocaine achieves in the brain at pharmacological doses. Viewed collectively with the observation that ligands with high affinity for SERT(site2) are mostly cocaine analogs, these data lead us to speculate that actions of cocaine which differ from those of classic biogenic amine uptake inhibitors may be mediated in part via SERT(site2).

  8. Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters. (United States)

    Sandtner, Walter; Stockner, Thomas; Hasenhuetl, Peter S; Partilla, John S; Seddik, Amir; Zhang, Yuan-Wei; Cao, Jianjing; Holy, Marion; Steinkellner, Thomas; Rudnick, Gary; Baumann, Michael H; Ecker, Gerhard F; Newman, Amy Hauck; Sitte, Harald H


    Determining the structural elements that define substrates and inhibitors at the monoamine transporters is critical to elucidating the mechanisms underlying these disparate functions. In this study, we addressed this question directly by generating a series of N-substituted 3,4-methylenedioxyamphetamine analogs that differ only in the number of methyl substituents on the terminal amine group. Starting with 3,4-methylenedioxy-N-methylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine (MDDMA) and 3,4-methylenedioxy-N,N,N-trimethylamphetamine (MDTMA) were prepared. We evaluated the functional activities of the compounds at all three monoamine transporters in native brain tissue and cells expressing the transporters. In addition, we used ligand docking to generate models of the respective protein-ligand complexes, which allowed us to relate the experimental findings to available structural information. Our results suggest that the 3,4-methylenedioxyamphetamine analogs bind at the monoamine transporter orthosteric binding site by adopting one of two mutually exclusive binding modes. 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy-N-methylamphetamine adopt a high-affinity binding mode consistent with a transportable substrate, whereas MDDMA and MDTMA adopt a low-affinity binding mode consistent with an inhibitor, in which the ligand orientation is inverted. Importantly, MDDMA can alternate between both binding modes, whereas MDTMA exclusively binds to the low-affinity mode. Our experimental results are consistent with the idea that the initial orientation of bound ligands is critical for subsequent interactions that lead to transporter conformational changes and substrate translocation.

  9. Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jian Chen; Dong-ping Li; Le-gong Li; Zhen-hua Liu; Yu-ju Yuan; Li-lin Guo; Dan-dan Mao; Lian-fu Tian; Liang-bi Chen; Sheng Luan


    Magnesium (Mg2+) is abundant in plant cells and plays a critical role in many physiological processes. A 10-mem-ber gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukaryote subset of the CorA superfamily, functioning as Mg2+ transporters. Some family members (AtMGTI and AtMGT10) function as high-affinity Mg2+ transporter and could complement bacterial mutant or yeast mutant lacking Mg2+ transport capa-bility. Here we report an AtMGT family member, AtMGT9, that functions as a low-affinity Mg2+ transporter, and is essential for pollen development. The functional complementation assay in Salmonella mutant strain MM281 showed that AtMGT9 is capable of mediating Mg2+ uptake in the sub-miilimolar range of Mg2+. The AtMGT9 gene was ex-pressed most strongly in mature anthers and was also detectable in vascular tissues of the leaves, and in young roots. Disruption of AtMGT9 gene expression resulted in abortion of half of the mature pollen grains in heterozygous mu-tant +/mgtg, and no homozygous mutant plant was obtained in the progeny of selfed +/mgt9 plants. Transgenic plants expressing AtMGT9 in these heterozygous plants can recover the pollen phenotype to the wild type. In addition, At-MGT9 RNAi transgenic plants also showed similar abortive pollen phenotype to mutant +/mgtg. Together, our results demonstrate that AtMGT9 functions as a low-affinity Mg2+ transporter that plays a crucial role in male gametophyte development and male fertility.

  10. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. (United States)

    Rizzardo, Cecilia; Tomasi, Nicola; Monte, Rossella; Varanini, Zeno; Nocito, Fabio F; Cesco, Stefano; Pinton, Roberto


    Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.

  11. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA.

    Directory of Open Access Journals (Sweden)

    Andrew M Edwards

    Full Text Available Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn bridging to alpha(5beta(1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis.

  12. Selective labeling of serotonin uptake sites in rat brain by (/sup 3/H)citalopram contrasted to labeling of multiple sites by (/sup 3/H)imipramine

    Energy Technology Data Exchange (ETDEWEB)

    D' Amato, R.J.; Largent, B.L.; Snowman, A.M.; Snyder, S.H.


    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes (/sup 3/H)citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for (/sup 3/H)citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of (/sup 3/H)citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of (/sup 3/H)citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of (/sup 3/H)imipramine binding reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific (/sup 3/H)imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of (/sup 3/H)imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in (/sup 3/H)citalopram and serotonin-sensitive (/sup 3/H)imipramine binding with only a small effect on serotonin-insensitive (/sup 3/H)imipramine binding. The dissociation rate of (/sup 3/H)imipramine or (/sup 3/H)citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive (/sup 3/H)imipramine high affinity binding sites closely resembles that of (/sup 3/H)citalopram binding.

  13. HIV-1 predisposed to acquiring resistance to maraviroc (MVC and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry

    Directory of Open Access Journals (Sweden)

    Westby Mike


    Full Text Available Abstract Background Maraviroc (MVC and other CCR5 antagonists are HIV-1 entry inhibitors that bind to- and alter the conformation of CCR5, such that CCR5 is no longer recognized by the viral gp120 envelope (Env glycoproteins. Resistance to CCR5 antagonists results from HIV-1 Env acquiring the ability to utilize the drug-bound conformation of CCR5. Selecting for HIV-1 resistance to CCR5-antagonists in vitro is relatively difficult. However, the CCR5-using CC1/85 strain appears to be uniquely predisposed to acquiring resistance to several CCR5 antagonists in vitro including MVC, vicriviroc and AD101. Findings Here, we show that Env derived from the parental CC1/85 strain is inherently capable of a low affinity interaction with MVC-bound CCR5. However, this phenotype was only revealed in 293-Affinofile cells and NP2-CD4/CCR5 cells that express very high levels of CCR5, and was masked in TZM-bl, JC53 and U87-CD4/CCR5 cells as well as PBMC, which express comparatively lower levels of CCR5 and which are more commonly used to detect resistance to CCR5 antagonists. Conclusions Env derived from the CC1/85 strain of HIV-1 is inherently capable of a low-affinity interaction with MVC-bound CCR5, which helps explain the relative ease in which CC1/85 can acquire resistance to CCR5 antagonists in vitro. The detection of similar phenotypes in patients may identify those who could be at higher risk of virological failure on MVC.

  14. Ca2+ dependence of the distance between Cys-98 of troponin C and Cys-133 of troponin I in the ternary troponin complex. Resonance energy transfer measurements. (United States)

    Tao, T; Gowell, E; Strasburg, G M; Gergely, J; Leavis, P C


    We have used resonance energy transfer to study the spatial relationship between Cys-98 of rabbit skeletal troponin C and Cys-133 of rabbit skeletal troponin I in the reconstituted ternary troponin complex. The donor was introduced by labeling either troponin C or troponin I with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, while the acceptor was introduced by labeling either protein with N-[4-(dimethylamino)phenyl-4'-azophenyl]maleimide. The extent of energy transfer was determined by measuring the quenching of the donor fluorescence decay. The results indicate first that the distance between these two sites is not fixed, suggesting that the protein regions involved possess considerable segmental flexibility. Second, the mean distance between the two sites is dependent on the metal-binding state of troponin C, being 39.1 A when none of the metal-binding sites are occupied, 41.0 A when Mg2+ ions bind at the high-affinity sites, and 35.5 A when Ca2+ ions bind to the low-affinity sites. Neither the magnitude of the distances nor the trend of change with metal ions differs greatly when the locations of the probes are switched or when steady-state fluorometry was used to determine the transfer efficiency. Since the low-affinity sites have been implicated as the physiological triggering sites, our findings suggest that one of the key events in Ca2+ activation of skeletal muscle contraction is a approximately 5-A decrease in the distance between the Cys-98 region of troponin C and the Cys-133 region of troponin I.

  15. Beta adrenoreceptors in the rabbit bladder detrusor muscle

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.F.; Marks, B.H.


    This study examines the beta adrenergic receptors of the rabbit detrusor smooth muscle, employing (/sup 125/I)iodocyanopindolol (ICYP) as a ligand for the binding of beta adrenergic receptors. Saturation binding experiments on the isolated membrane fraction yielded a KD for ICYP of 14.7 pM and a maximum binding of 147.6 fmol/mg of protein. Displacement of labeled ICYP by a series of beta adrenergic agents yielded the following KD values for the combined high and low affinity binding sites: I-propranolol, 0.76 nM; ICI 118,551, 1.7 nM; zinterol, 38.0 nM; metoprolol, 3.5 microM; and practolol, 61.4 microM. When these displacement experimental results were compared to KD values from other reported binding studies with ICYP for beta adrenoreceptors, both the order of potency and the KD values indicated primarily beta-2 adrenergic receptor subtypes. Computer program Scatfit analysis of the displacement curves indicated a single slope and affinity constant for all five beta adrenergic agents. Hofstee plots for zinterol, ICI 118,551 and metoprolol, however, were not linear and indicated that minor populations of beta-1 adrenoreceptors were also present as both high and low affinity binding sites could be defined. It is concluded that the primary receptor population is beta-2 and that this tissue is heterogenous with a small population of beta-1 adrenoreceptors representing approximately 13 to 23% of the total beta adrenoreceptor population.

  16. Active site of Zn2+-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1

    Directory of Open Access Journals (Sweden)

    Jin-Suk Han


    Full Text Available The enzyme sn-glycerol-1-phosphate dehydrogenase (Gro1PDH, EC is key to the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate of archaeal ether lipids. This enzyme catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate. To date, no information about the active site and catalytic mechanism of this enzyme has been reported. Using the sequence and structural information for glycerol dehydrogenase, we constructed six mutants (D144N, D144A, D191N, H271A, H287A and D191N/H271A of Gro1PDH from Aeropyrum pernix K1 and examined their characteristics to clarify the active site of this enzyme. The enzyme was found to be a zinc-dependent metalloenzyme, containing one zinc ion for every monomer protein that was essential for activity. Site-directed mutagenesis of D144 increased the activity of the enzyme. Mutants D144N and D144A exhibited low affinity for the substrates and higher activity than the wild type, but their affinity for the zinc ion was the same as that of the wild type. Mutants D191N, H271A and H287A had a low affinity for the zinc ion and a low activity compared with the wild type. The double mutation, D191N/ H271A, had no enzyme activity and bound no zinc. From these results, it was clarified that residues D191, H271 and H287 participate in the catalytic activity of the enzyme by binding the zinc ion, and that D144 has an effect on substrate binding. The structure of the active site of Gro1PDH from A. pernix K1 seems to be similar to that of glycerol dehydrogenase, despite the differences in substrate specificity and biological role.

  17. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines. (United States)

    Colin, Philippe; Bénureau, Yann; Staropoli, Isabelle; Wang, Yongjin; Gonzalez, Nuria; Alcami, Jose; Hartley, Oliver; Brelot, Anne; Arenzana-Seisdedos, Fernando; Lagane, Bernard


    CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.

  18. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes. (United States)

    Buratti, Franca M; Volpe, Maria Teresa; Meneguz, Annarita; Vittozzi, Luciano; Testai, Emanuela


    The bioactivation of azinphos-methyl (AZIN), chlorpyrifos (CPF), diazinon (DIA), and parathion (PAR), four widely used organophosphorothioate (OPT) pesticides has been investigated in human liver microsomes (HLM). In addition, the role of human cytochrome P450 (CYPs) in OPT desulfuration at pesticide levels representative of human exposure have been defined by means of correlation and immunoinhibition studies. CYP-mediated oxon formation from the four OPTs is efficiently catalyzed by HLM, although showing a high variability (>40-fold) among samples. Two distinct phases were involved in the desulfuration of AZIN, DIA, and PAR, characterized by different affinity constants (K(mapp1) = 0.13-9 microM and K(mapp2) = 5- 269 microM). Within the range of CPF concentrations tested, only the high-affinity component was evidenced (K(mapp1) = 0.27-0.94 microM). Oxon formation in phenotyped individual HLM showed a significant correlation with CYP1A2-, 3A4-, and 2B6-related activities, at different levels depending on the OPT concentration. Anti-human CYP1A2, 2B6, and 3A4 antibodies significantly inhibited oxon formation, showing the same OPT concentration dependence. Our data indicated that CYP1A2 is mainly involved in OPT desulfuration at low pesticide concentrations, while the role of CYP3A4 is more significant to the low-affinity component of OPT bioactivation. The contribution of CYP2B6 to total hepatic oxon formation was relevant in a wide range of pesticide concentrations, being a very efficient catalyst of both the high- and low-affinity phase. These results suggest CYP1A2 and 2B6 as possible metabolic biomarkers of susceptibility to OPT toxic effect at the actual human exposure levels.

  19. Cotransfection of TrkA and p75 NTR in neuroblastoma cell line (IMR-32) promotes differentiation and apoptosis of tumor cells

    Institute of Scientific and Technical Information of China (English)

    陈杰; 折晓宁


    Objective To assess the effects of both TrkA and p75NTR on nerve growth factor (NGF)-induced differentiation of neuroblastoma cells. Methods Retroviral vectors were constructed to express the high affinity NGF receptor (TrkA) and low affinity NGF receptor (p75NTR). Neuroblastoma cell line IMR-32 was transfected by the vectors expressing either TrkA or p75NTR or both by using lipofectmine TM reagent separately or cotransfected at the same time. Southern blot, Northern blot, RT-PCR and flow cytometry were used to determine the success of the transfection. MTT technique was to monitor the cell proliferation. Colony formation in soft agar and tumor forming assay in nude mice were used to test the biological characteristics of the tumor cells. Terminal-deoxynucleotidytransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay was used to test the apoptosis of the tumor cells. Results Stable transformant cell lines expressing TrkA, p75NTR or both genes were established. Studies on these transformant cell lines have shown different NGF responses. The p75NTR transfection only resulted in the mild differentiation response, and transfection of TrkA gene caused remarkable neurite extension, up-regulation of neurofilament and decreased expression of N-myc oncogene after NGF reatment. The cotransfection of the two genes into this cell line resulted in the more rapid and more apparent morphological changes than single TrkA transfected cells after NGF treatment. The cotransfected cells underwent apoptosis after withdrawal of NGF. Conclusions The results indicate that coexpression of both low- and high-affinity NGF receptors are not only more efficient in restoration of NGF-induced differentiation pathway, but also be able to activate the pro-apoptotic activity of low-affinity NGF receptor and make the tumor cells become NGF-dependent and irreversibly differentiated.

  20. (/sup 3/H)desipramine binding to rat brain tissue: binding to both noradrenaline uptake sites and sites not related to noradrenaline neurons

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, I.T.Ro.; Ross, S.B.; Marcusson, J.O.


    The pharmacological and biochemical characteristics of (3H)desipramine binding to rat brain tissue were investigated. Competition studies with noradrenaline, nisoxetine, nortriptyline, and desipramine suggested the presence of more than one (3H)desipramine binding site. Most of the noradrenaline-sensitive binding represented a high-affinity site, and this site appeared to be the same as the high-affinity site of nisoxetine-sensitive binding. The (3H)desipramine binding sites were abolished by protease treatment, a result suggesting that the binding sites are protein in nature. When specific binding was defined by 0.1 microM nisoxetine, the binding was saturable and fitted a single-site binding model with a binding affinity of approximately 1 nM. This binding fraction was abolished by lesioning of the noradrenaline neurons with the noradrenaline neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4). In contrast, when 10 microM nisoxetine was used to define the specific binding, the binding was not saturable over the nanomolar range, but the binding fitted a two-site binding model with KD values of 0.5 and greater than 100 nM for the high- and low-affinity components, respectively. The high-affinity site was abolished after DSP4 lesioning, whereas the low-affinity site remained. The binding capacity (Bmax) for binding defined by 0.1 microM nisoxetine varied between brain regions, with very low density in the striatum (Bmax not possible to determine), 60-90 fmol/mg of protein in cortical areas and cerebellum, and 120 fmol/mg of protein in the hypothalamus. The binding capacities of these high-affinity sites correlated significantly with the regional distribution of (3H)noradrenaline uptake but not with 5-(3H)hydroxytryptamine uptake.

  1. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens. (United States)

    Sharma, Preeti; Wang, Ningyan; Kranz, David M


    Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs), so-called because they stimulate a large fraction of an individual's T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR) on a T cell and a class II product of the major histocompatibility complex (MHC) on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V) of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1) or S. pyogenes (SpeA and SpeC) have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  2. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-à-go-go-related gene channels. (United States)

    Perrin, Mark J; Kuchel, Philip W; Campbell, Terence J; Vandenberg, Jamie I


    Drug block of the human ether-à-go-go-related gene K(+) channel (hERG) is the most common cause of acquired long QT syndrome, a disorder of cardiac repolarization that may result in ventricular tachycardia and sudden cardiac death. We investigated the open versus inactivated state dependence of drug block by using hERG mutants N588K and N588E, which shift the voltage dependence of inactivation compared with wild-type but in which the mutated residue is remote from the drug-binding pocket in the channel pore. Four high-affinity drugs (cisapride, dofetilide, terfenadine, and astemizole) demonstrated lower affinity for the inactivation-deficient N588K mutant hERG channel compared with N588E and wild-type hERG. Three of four low-affinity drugs (erythromycin, perhexiline, and quinidine) demonstrated no preference for N588E over N588K channels, whereas dl-sotalol was an example of a low-affinity state-dependent blocker. All five state-dependent blockers showed an even lower affinity for S620T mutant hERG (no inactivation) compared with N588K mutant hERG (greatly reduced inactivation). Computer modeling indicates that the reduced affinity for S620T compared with N588K and wild-type channels can be explained by the relative kinetics of drug block and unblock compared with the kinetics of inactivation and recovery from inactivation. We were also able to calculate, for the first time, the relative affinities for the inactivated versus the open state, which for the drugs tested here ranged from 4- to 70-fold. Our results show that preferential binding to the inactivated state is necessary but not sufficient for high-affinity binding to hERG channels.

  3. Cortisol levels, binding, and properties of corticosteroid-binding globulin in the serum of primates. (United States)

    Klosterman, L L; Murai, J T; Siiteri, P K


    New World primates have exceptionally high plasma levels of cortisol and other steroid hormones when compared with humans and other primates. It has been suggested that this difference can be explained by either low affinity or concentration of cellular steroid receptors. We have assessed cortisol availability in serum from several species of New and Old World primates under physiological conditions (whole serum at 37 degrees C). Measurements were made of total and free cortisol, corticosteroid-binding globulin (CBG) binding capacity and affinity for cortisol, distribution of cortisol in serum, and its binding to albumin. In agreement with earlier reports, plasma free cortisol levels in Old World primates, prosimians, and humans range from 10-300 nM. However, very high total plasma cortisol together with low CBG binding capacity and affinity result in free cortisol concentrations of 1-4 microM in some New World primates (squirrel monkey and marmosets) but not in others such as the titi and capuchin. In squirrel monkeys, free cortisol levels are far greater than might be predicted from the affinity of the glucocorticoid receptor estimated in cultured skin fibroblasts. In addition to low affinity, CBG from squirrel monkeys and other New World primates exhibits differences in electrophoretic mobility and sedimentation behavior in sucrose density ultracentrifugation, suggestive of a molecular weight that is approximately twice that of CBG from other species. Together with other data these results indicate that the apparent glucocorticoid resistance found in New World primates is a complex phenomenon that is not easily explained by present concepts of glucocorticoid action.

  4. Further characterization of the process of in vitro uptake of radiolabeled copper by the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Barnea, A.; Hartter, D.E.; Cho, G.; Bhasker, K.R.; Katz, B.M.; Edwards, M.D. (Univ. of Texas, Dallas (USA))


    We have previously demonstrated that hypothalmic slices obtained from adult male rats accumulate {sup 67}Cu by two ligand-dependent, saturable processes: a high and low affinity process. To further establish the generality of these uptake processes, we defined the ligand requirements and the saturation kinetics of {sup 67}Cu uptake by tissue slices obtained from the newborn hypothalamus (HT); adult male hypothalamus, hippocampus, cortex, median eminence, and caudate nucleus; hypothalamus and hippocampus of castrated (14 days) males and of pregnant (19 days) and ovariectomized (14 days) females. It was found that ionic {sup 67}Cu{sup 2}{sup +} was poorly taken up by newborn HT and adult caudate, complexation with His enhanced {sup 67}Cu uptake 3-4-fold, and complexation with albumin inhibited {sup 67}Cu uptake. These ligand requirements are identical to those we have previously shown for the adult HT. When {sup 67}Cu uptake was evaluated under conditions optimal for the high or the low affinity process, for each process the dose response curves generated from these various tissues were very similar. In addition, we assessed the uptake of both components of the CuHis2 complex by incubating tissues with {sup 67}Cu{sup 3 H}-His2 and found that the tissue ratio of {sup 67}Cu:{sup 3}H was a sigmoidal function of the concentration of the Cu complex such that at greater than 5 microM, the ratio was about 3-fold greater than the medium ratio; indicating preferential uptake of {sup 67}Cu relative to {sup 3}H-His. The changes in isotope ratios were observed in newborn HT and adult HT, as well as caudate. These similarities in the ligand requirements and saturation kinetics of {sup 67}Cu uptake establish the generality of these two processes of in vitro uptake of copper in the rat brain.

  5. Alpha/sub 2/-adrenergic receptors on a platelet precursor cell line, HEL

    Energy Technology Data Exchange (ETDEWEB)

    McKernan, R.M.; Motulsky, H.J.; Rozansky, D.; Insel, P.A.


    The authors have identified ..cap alpha../sub 2/-adrenergic receptors on human erythroleukemia HEL cells, a suspension-growing, bone-marrow-derived cell line related to human platelets. Intact HEL cells were studied using radioligand binding and cAMP accumulation assays. The authors identified saturable specific binding of the ..cap alpha../sub 2/-antagonist (/sup 3/H)yohimbine (yoh) in cells incubated at 37/sup 0/C for 1 hr (B/sub max/ 5900 +/- 2100 sites/cell, K/sub d/ 3.6 +/- 0.9 nM, n = 7). Competition for (/sup 3/H)yoh binding sites with antagonists confirmed that these sites were similar to human ..cap alpha../sub 2/-adrenoceptors from platelets and other resources, as typified by their high affinity for WY-26392, yohimbine and idazoxan, and very low affinity for prazosin. Studies at 37/sup 0/C revealed a low affinity of these sites for catecholamines (K/sub i/ for (-)-epinephrine, 21; (-)-norepinephrine, 45, (+)-epinephrine, 80 When experiments were conducted at 4 /sup 0/C, (-)-epinephrine was able to compete for only 50-60% of the sites specifically labelled by (/sup 3/H)yoh at 37/sup 0/, but (-)-epinephrine had an approximately 10-fold greater affinity for these sites (K/sub i/ at 4 /sup 0/C = 2.4 In addition, epinephrine inhibited cAMP accumulation stimulated by forskolin and PGE/sub 1/ in HEL cells; this response was inhibited by pertussis toxin. The authors conclude that HEL cells possess ..cap alpha../sub 2/-adrenergic receptors linked to G/sub i/ and thus should serve as a useful model to explore metabolism and regulation of these receptors in human cells.

  6. Increased gamma-aminobutyric acid receptor function in the cerebral cortex of myoclonic calves with an hereditary deficit in glycine/strychnine receptors. (United States)

    Lummis, S C; Gundlach, A L; Johnston, G A; Harper, P A; Dodd, P R


    Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.


    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  8. Nitrate transport and signalling. (United States)

    Miller, Anthony J; Fan, Xiaorong; Orsel, Mathilde; Smith, Susan J; Wells, Darren M


    Physiological measurements of nitrate (NO(3)(-)) uptake by roots have defined two systems of high and low affinity uptake. In Arabidopsis, genes encoding both of these two uptake systems have been identified. Most is known about the high affinity transport system (HATS) and its regulation and yet measurements of soil NO(3)(-) show that it is more often available in the low affinity range above 1 mM concentration. Several different regulatory mechanisms have been identified for AtNRT2.1, one of the membrane transporters encoding HATS; these include feedback regulation of expression, a second component protein requirement for membrane targeting and phosphorylation, possibly leading to degradation of the protein. These various changes in the protein may be important for a second function in sensing NO(3)(-) availability at the surface of the root. Another transporter protein, AtNRT1.1 also has a role in NO(3)(-) sensing that, like AtNRT2.1, is independent of their transport function. From the range of concentrations present in the soil it is proposed that the NO(3)(-)-inducible part of HATS functions chiefly as a sensor for root NO(3)(-) availability. Two other key NO(3)(-) transport steps for efficient nitrogen use by crops, efflux across membranes and vacuolar storage and remobilization, are discussed. Genes encoding vacuolar transporters have been isolated and these are important for manipulating storage pools in crops, but the efflux system is yet to be identified. Consideration is given to how well our molecular and physiological knowledge can be integrated as well to some key questions and opportunities for the future.

  9. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. (United States)

    Suzuki, Takuo; Ishii-Watabe, Akiko; Tada, Minoru; Kobayashi, Tetsu; Kanayasu-Toyoda, Toshie; Kawanishi, Toru; Yamaguchi, Teruhide


    The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human, humanized, chimeric, or mouse mAbs and Fc-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis. The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of Fc-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such Abs. We further investigated the reason for the relatively low affinity of Fc-fusion proteins to FcRn and suggested the possibility that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the FcgammaRI binding region of the Fc domain.

  10. An important site in PBP2x of penicillin-resistant clinical isolates of Streptococcus pneumoniae: mutational analysis of Thr338. (United States)

    Zerfass, Ilka; Hakenbeck, Regine; Denapaite, Dalia


    Penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae represents a primary resistance determinant for beta-lactams, and low-affinity PBP2x variants can easily be selected with cefotaxime. Penicillin-resistant clinical isolates of S. pneumoniae frequently contain in their mosaic PBP2x the mutation T338A adjacent to the active site S337, and T338P as well as T338G substitutions are also known. Site-directed mutagenesis has now documented that a single point mutation at position T338 confers selectable levels of beta-lactam resistance preferentially to oxacillin. Despite the moderate impact on beta-lactam susceptibility, the function of the PBP2x mutants appears to be impaired, as can be documented in the absence of a functional CiaRH regulatory system, resulting in growth defects and morphological changes. The combination of low-affinity PBP2x and PBP1a encoded by mosaic genes is known to result in high cefotaxime resistance. In contrast, introduction of a mosaic pbp1a into the PBP2x(T338G) mutant did not lead to increased resistance. However, the mosaic PBP1a gene apparently complemented the PBP2x(T338G) defect, since Cia mutant derivatives grew normally. The data support the view that PBP2x and PBP1a interact with each other on some level and that alterations of both PBPs in resistant clinical isolates have evolved to ensure cooperation between both proteins.

  11. The novel antiepileptic drug imepitoin compares favourably to other GABA-mimetic drugs in a seizure threshold model in mice and dogs. (United States)

    Löscher, Wolfgang; Hoffmann, Katrin; Twele, Friederike; Potschka, Heidrun; Töllner, Kathrin


    Recently, the imidazolinone derivative imepitoin has been approved for treatment of canine epilepsy. Imepitoin acts as a low-affinity partial agonist at the benzodiazepine (BZD) site of the GABAA receptor and is the first compound with such mechanism that has been developed as an antiepileptic drug (AED). This mechanism offers several advantages compared to full agonists, including less severe adverse effects and a lack of tolerance and dependence liability, which has been demonstrated in rodents, dogs, and nonhuman primates. In clinical trials in epileptic dogs, imepitoin was shown to be an effective and safe AED. Recently, seizures in dogs have been proposed as a translational platform for human therapeutic trials on new epilepsy treatments. In the present study, we compared the anticonvulsant efficacy of imepitoin, phenobarbital and the high-affinity partial BZD agonist abecarnil in the timed i.v. pentylenetetrazole (PTZ) seizure threshold test in dogs and, for comparison, in mice. Furthermore, adverse effects of treatments were compared in both species. All drugs dose-dependently increased the PTZ threshold in both species, but anticonvulsant efficacy was higher in dogs than mice. At the doses selected for this study, imepitoin was slightly less potent than phenobarbital in increasing seizure threshold, but markedly more tolerable in both species. Effective doses of imepitoin in the PTZ seizure model were in the same range as those suppressing spontaneous recurrent seizures in epileptic dogs. The study demonstrates that low-affinity partial agonists at the benzodiazepine site of the GABAA receptor, such as imepitoin, offer advantages as a new category of AEDs.

  12. Native ESI Mass Spectrometry Can Help to Avoid Wrong Interpretations from Isothermal Titration Calorimetry in Difficult Situations (United States)

    Wolff, Philippe; Da Veiga, Cyrielle; Ennifar, Eric; Bec, Guillaume; Guichard, Gilles; Burnouf, Dominique; Dumas, Philippe


    We studied by native ESI-MS the binding of various DNA-polymerase-derived peptides onto DNA-polymerase processivity rings from Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. These homodimeric rings present two equivalent specific binding sites, which leads to successive formation during a titration experiment of singly- and doubly occupied rings. By using the ESI-MS free-ring spectrum as a ruler, we derived by robust linear regression the fractions of the different ring species at each step of a titration experiment. These results led to accurate Kd values (from 0.03 to 0.5 μM) along with the probability of peptide loss due to gas phase dissociation (GPD). We show that this good quality is due to the increased information content of a titration experiment with a homodimer. Isothermal titration calorimetry (ITC) led with the same binding model to Kd(ITC) values systematically higher than their ESI-MS counterparts and, often, to poor fit of the ITC curves. A processing with two competing modes of binding on the same site requiring determination of two (Kd, ΔH) pairs greatly improved the fits and yielded a second Kd(ITC) close to Kd(ESI-MS). The striking features are: (1) ITC detected a minor binding mode ( 20%) of `low-affinity' that did not appear with ESI-MS; (2) the simplest processing of ITC data with only one (Kd, ΔH) pair led wrongly to the Kd of the low-affinity binding mode but to the ΔH of the high-affinity binding mode. Analogous misleading results might well exist in published data based on ITC experiments.

  13. GZ-793A, a lobelane analog, interacts with the vesicular monoamine transporter-2 to inhibit the effect of methamphetamine. (United States)

    Horton, David B; Nickell, Justin R; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P


    (R)-3-[2,6-cis-Di(4-methoxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-793A) inhibits methamphetamine-evoked dopamine release from striatal slices and methamphetamine self-administration in rats. GZ-793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter-2 (VMAT2). This study determined GZ-793A's ability to evoke [³H]dopamine release and inhibit methamphetamine-evoked [³H]dopamine release from isolated striatal synaptic vesicles. Results show GZ-793A concentration-dependent [³H]dopamine release; nonlinear regression revealed a two-site model of interaction with VMAT2 (High- and Low-EC₅₀ = 15.5 nM and 29.3 μM, respectively). Tetrabenazine and reserpine completely inhibited GZ-793A-evoked [³H]dopamine release, however, only at the High-affinity site. Low concentrations of GZ-793A that interact with the extravesicular dopamine uptake site and the High-affinity intravesicular DA release site also inhibited methamphetamine-evoked [³H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration-response was evident with increasing concentrations of GZ-793A, and the Schild regression slope was 0.49 ± 0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ-793A interaction at more than one site on the VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High-affinity tetrabenazine- and reserpine-sensitive site, dopamine release via a Low-affinity tetrabenazine- and reserpine-insensitive site, and a low-affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ-793A inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse.

  14. An anti-CD3/anti–CLL-1 bispecific antibody for the treatment of acute myeloid leukemia (United States)

    Leong, Steven R.; Sukumaran, Siddharth; Hristopoulos, Maria; Totpal, Klara; Stainton, Shannon; Lu, Elizabeth; Wong, Alfred; Tam, Lucinda; Newman, Robert; Vuillemenot, Brian R.; Ellerman, Diego; Gu, Chen; Mathieu, Mary; Dennis, Mark S.; Nguyen, Allen; Zheng, Bing; Zhang, Crystal; Lee, Genee; Chu, Yu-Waye; Prell, Rodney A.; Lin, Kedan; Laing, Steven T.


    Acute myeloid leukemia (AML) is a major unmet medical need. Most patients have poor long-term survival, and treatment has not significantly changed in 40 years. Recently, bispecific antibodies that redirect the cytotoxic activity of effector T cells by binding to CD3, the signaling component of the T-cell receptor, and a tumor target have shown clinical activity. Notably, blinatumomab is approved to treat relapsed/refractory acute lymphoid leukemia. Here we describe the design, discovery, pharmacologic activity, pharmacokinetics, and safety of a CD3 T cell–dependent bispecific (TDB) full-length human IgG1 therapeutic antibody targeting CLL-1 that could potentially be used in humans to treat AML. CLL-1 is prevalent in AML and, unlike other targets such as CD33 and CD123, is not expressed on hematopoietic stem cells providing potential hematopoietic recovery. We selected a high-affinity monkey cross-reactive anti–CLL-1 arm and tested several anti-CD3 arms that varied in affinity, and determined that the high-affinity CD3 arms were up to 100-fold more potent in vitro. However, in mouse models, the efficacy differences were less pronounced, probably because of prolonged exposure to TDB found with lower-affinity CD3 TDBs. In monkeys, assessment of safety and target cell depletion by the high- and low-affinity TDBs revealed that only the low-affinity CD3/CLL1 TDB was well tolerated and able to deplete target cells. Our data suggest that an appropriately engineered CLL-1 TDB could be effective in the treatment of AML. PMID:27908880

  15. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.E.; Geiger, J.D. (Univ. of Manitoba, Winnipeg (Canada))


    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  16. Native ESI Mass Spectrometry Can Help to Avoid Wrong Interpretations from Isothermal Titration Calorimetry in Difficult Situations (United States)

    Wolff, Philippe; Da Veiga, Cyrielle; Ennifar, Eric; Bec, Guillaume; Guichard, Gilles; Burnouf, Dominique; Dumas, Philippe


    We studied by native ESI-MS the binding of various DNA-polymerase-derived peptides onto DNA-polymerase processivity rings from Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. These homodimeric rings present two equivalent specific binding sites, which leads to successive formation during a titration experiment of singly- and doubly occupied rings. By using the ESI-MS free-ring spectrum as a ruler, we derived by robust linear regression the fractions of the different ring species at each step of a titration experiment. These results led to accurate Kd values (from 0.03 to 0.5 μM) along with the probability of peptide loss due to gas phase dissociation (GPD). We show that this good quality is due to the increased information content of a titration experiment with a homodimer. Isothermal titration calorimetry (ITC) led with the same binding model to Kd(ITC) values systematically higher than their ESI-MS counterparts and, often, to poor fit of the ITC curves. A processing with two competing modes of binding on the same site requiring determination of two (Kd, ΔH) pairs greatly improved the fits and yielded a second Kd(ITC) close to Kd(ESI-MS). The striking features are: (1) ITC detected a minor binding mode ( 20%) of `low-affinity' that did not appear with ESI-MS; (2) the simplest processing of ITC data with only one (Kd, ΔH) pair led wrongly to the Kd of the low-affinity binding mode but to the ΔH of the high-affinity binding mode. Analogous misleading results might well exist in published data based on ITC experiments.

  17. Crystal structure of syndesmos and its interaction with Syndecan-4 proteoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749 (Korea, Republic of); Yoo, Jiho [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749 (Korea, Republic of); Lee, Inhwan [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749 (Korea, Republic of); Kang, Ying Jin [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749 (Korea, Republic of); Cho, Hyun-Soo, E-mail: [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749 (Korea, Republic of); Lee, Weontae, E-mail: [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749 (Korea, Republic of)


    Syndesmos, nucleoside diphosphate linked moiety X (nudix)-type motif 16-like 1 (Nudt16l1), is evolutionarily divergent from the Nudt16 family. Syndesmos, which is co-localized with syndecan-4 cytoplasmic domain (Syn4{sup cyto}) in focal contacts, interacts with various cell adhesion adaptor proteins to control cell signaling. We determined the X-ray crystal structure of syndesmos; it is composed of seven α-helices and seven β-strands. Although syndesmos has a molecular topology similar to that of nudix hydrolase proteins, the structure of the nudix motif differs from that of X29. The dimeric interface of syndesmos is composed of α-helix 4, 7 and β-strand 2, 7, which primarily form hydrophobic interactions. The binding interaction between syndesmos and syn4{sup cyto} was characterized as a low-affinity interaction (K{sub d} = 62 μM) by surface plasmon resonance (SPR) and nuclear magnetic resonance (NMR). The NMR resonances of Lys (177, 178, 179), Gly182, and Ser183 in the C1 region and Lys193 and Lys194 in the V region of syndecan-4 are perturbed upon syndesmos binding. Our results provide structural insight into the molecular function of syndesmos in the regulation of cell signaling via binding to syndecan-4. - Highlights: • Crystal structure of syndesmos has been determined as a dimer at 2.01 Å resolution. • The molecular topology of syndesmos resembles that of the Nudix hydrolase protein. • The structure of the Nudix motif of syndesmos is quite different from that of X29. • Syndesmos binds cytoplasmic domain of syndecan-4 proteoglycan with low affinity.

  18. Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain

    Institute of Scientific and Technical Information of China (English)

    Fan Li; Xuejun Zhu; Yanfei Li; Hao Cao; Yingjiu Zhang


    A gene encoding a special thermophilic muitifunetional amylase OPMA-N was cloned from Bacillus sp. ZW25311. OPMA-N has an additional 124-residue N-terminal domain compared with typical amylases and forms a relatively independent domain with a IS-pleated sheet and random coil structure. Here we reported an unusual substrate and product specificities of OPMA-N and the impact of the additional N-terminal domain (1-124 aa) on the function and properties of OPMA-N. Both OPMAN (12.82 U/mg) and its N-terminal domain-truncated AOPMA-N (12.55 U/mg) only degraded starch to produce oligosaccharides including maltose, maltotriose, isomaitotriose, and isomaitotetraose, but not to produce glucose. Therefore, the N-terminal domain did not determine its substrate and product specificities that were probably regulated by its C-terminal IS-pleated sheet structure. However, the N-terminal domain of OPMA-N seemed to modulate its catalytic feature, leading to the production of more isomaitotriose and less maltose, and it seemed to contribute to OPMA-N's thermostability since OPMA-N showed higher activity than AOPMA-N in a temperature range from 40 to 80~C and the halflife (tl) was 5 h for OPMA-N and 2 h for AOPMA-N at 60~C. Both OPMA-N and AOPMA-N were Ca-independent, but their activities could be influenced by Cu2+, Niz+, Zn2+, EDTA, SDS (1 mM), or Triton-X100 (1%). Kinetic analysis and starch-adsorption assay indicated that the N-terminal domain of OPMA-N could increase the OPMA-N-starch binding and subsequently increase the catalytic efficiency of OPMA-N for starch. In particular, the N-terminal domain of OPMA-N did not determine its oligomerization, because both OPMA-N and AOPMA-N could exist in the forms of monomer, homodimer, and homooligomer at the same time.

  19. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)


    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  20. Isolation of bovine platelet cationic proteins which inhibit the surface-mediated activation of factor XII and prekallikrein. (United States)

    Kodama, K; Kato, H; Iwanaga, S


    A possible role of bovine platelets in the surface-mediated activation of Factor XII and prekallikrein was studied, using the contact system reconstituted with the purified proteins from bovine plasma. The washed platelets before and after aggregation by ADP, thrombin or collagen did not show any ability to trigger or accelerate the activation of Factor XII and prekallikrein. On the contrary, these aggregates showed a potent inhibitory activity on the activation of those zymogens triggered by kaolin, amylose sulfate and sulfatide. The inhibitory substances from the supernatant of the thrombin-induced aggregates were separated into two major fractions, a low affinity fraction and a high affinity fraction, on a heparin-Sepharose column. The high affinity protein was identified as platelet factor 4, based on the amino acid composition. From the low affinity fraction, a beta-thromboglobulin (beta-TG)-like substance and three kinds of unknown proteins, named LA1, LA2, and LA3, were isolated by gel-filtration on a column of Sephadex G-100 or Sephadex G-75 followed by chromatography on a column of Mono S. The molecular weights of LA1, LA2, and LA3 were estimated to be 35,000, 26,000, and 11,000, respectively, on SDS-PAGE. LA2 was identified as a carbohydrate-less LA1, as judged from the amino acid composition and carbohydrate content. The inhibitory activities of these five cationic proteins on the activation of Factor XII and prekallikrein mediated with amylose sulfate, sulfatide and kaolin were different from each other. In the case of kaolin-mediated activation, LA3 was the most potent inhibitor, while platelet factor 4 and beta-TG-like substance did not show any significant inhibitory activity. Moreover, the inhibitory activities of all the cationic proteins were not correlated with their anti-heparin activities. Since these proteins were rapidly liberated from platelets by the action of the stimulants, the present results demonstrate a negative role of platelets in

  1. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Miletti Luiz C


    Full Text Available Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by

  2. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases.

    Directory of Open Access Journals (Sweden)

    Aly Abd-Ella

    Full Text Available Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low

  3. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides. (United States)

    Behan, D P; De Souza, E B; Lowry, P J; Potter, E; Sawchenko, P; Vale, W W


    A 37-kDa corticotropin releasing factor (CRF) binding protein (CRF-BP) was purified from human plasma by repeated affinity purification and subsequently sequenced and cloned. The human and rat CRF-BP cDNAs encode proteins of 322 amino acids with one putative signal sequence, one N-glycosylation site, and 10 conserved cysteines. Human CRF-BP binds human CRF with high affinity but has low affinity for the ovine peptide. In contrast, sheep CRF-BP binds human and ovine CRF with high affinity. The CRF-BP gene consists of seven exons and six introns and is located on chromosome 13 and loci 5q of the mouse and human genomes, respectively. CRF-BP inhibits the adrenocorticotrophic hormone (ACTH) releasing properties of CRF in vitro. CRF-BP dimerizes after binding CRF and clears the peptide from blood. This clearance mechanism protects the maternal pituitary gland from elevated plasma CRF levels found during the third trimester of human pregnancy. CRF-BP is expressed in the brains of all species so far tested but is uniquely expressed in human liver and placenta. In brain, CRF-BP is membrane associated and is predominantly expressed in the cerebral cortex and subcortical limbic structures. In some brain areas CRF-BP colocalizes with CRF and CRF receptors. The protein is also present in pituitary corticotropes, where it is under positive glucocorticoid control, and is likely to locally modulate CRF-induced ACTH secretion. The ligand requirements of the CRF receptor and the CRF-BP can be distinguished in that central human CRF fragments, such as CRF (6-33) and CRF (9-33), have high affinity for CRF-BP but low affinity for the CRF receptor. The binding protein's ability to inhibit CRF-induced ACTH secretion can be reversed by CRF (6-33) and CRF (9-33), suggesting that ligand inhibitors may have utility in elevating free CRF levels in disease states associated with decreased CRF. Thus, by controlling the amount of free CRF which activates CRF receptors, it is likely that the CRF

  4. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikeska, Ruth [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany); Wacker, Roland [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Arni, Raghuvir [Department of Physics, IBILCE/UNESP, São Jose do Rio Preto, São Paul (Brazil); Singh, Tej P. [Department of Biophysics, All India Institute of Medical Sciences, New Delhi (India); Mikhailov, Albert; Gabdoulkhakov, Azat [Institute of Crystallography of Russian Academy of Sciences, Leninsky Prospect 59, 117333 Moscow (Russian Federation); Voelter, Wolfgang [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Betzel, Christian, E-mail: [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany)


    The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chain has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.

  5. SILAC-iPAC: a quantitative method for distinguishing genuine from non-specific components of protein complexes by parallel affinity capture. (United States)

    Rees, Johanna S; Lilley, Kathryn S; Jackson, Antony P


    Pull-down assays can identify members of protein complexes but suffer from co-isolation of contaminants. The problem is particularly acute when the specifically interacting partners are of low-abundance and/or bind transiently with low affinity. To differentiate true interacting partners from contaminants, we have combined SILAC labelling with a proteomic method called "Interactomes by Parallel Affinity Capture" (iPAC). In our method, a cell-line stably expressing a doubly tagged target endogenous protein and its tag-less control cell-line are differentially SILAC labelled. Lysates from the two cell-lines are mixed and the tagged protein is independently purified for MS analysis using multiple affinity resins in parallel. This allows the quantitative identification of tagged proteins and their binding partners. SILAC-iPAC provides a rigorous and sensitive approach that can discriminate between genuine binding partners and contaminants, even when the contaminants in the pull-down are in large excess. We employed our method to examine the interacting partners of phosphatidyl inositol 5-phosphate 4-kinase 2β subunit (PI5P4K2β) and the Fanconi anaemia core complex in the chicken pre-B cell-line DT40. We confirmed known components of these two complexes, and we have identified new potential binding partners. Combining the iPAC approach with SILAC labelling provides a sensitive and fully quantitative method for the discrimination of specific interactions under conditions where low signal to noise ratios are unavoidable. In addition, our work provides the first characterisation of the most abundant proteins within the DT40 proteome and the non-specific DT40 'beadomes' (non-specific proteins binding to beads) for common epitope tags. Given the importance and widespread use of the DT40 cell-line, these will be important resources for the cell biology and immunology communities. Biological significance SILAC-iPAC provides an improved method for the analysis of low-affinity

  6. The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions. (United States)

    Vedovato, Natascia; Gadsby, David C


    Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K-adenosine triphosphatase (ATPase) alpha subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane's electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis alpha1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain-sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 microM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump-induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the

  7. Molecular and cellular aspects of immunologic tolerance. (United States)

    Nossal, G J


    , clonal abortion occurs if the self antigenic determinant concerned is present within the thymus; if not, clonal anergy is more likely. For B cell tolerance, the strength of the negative signal and therefore the choice between abortion and anergy depends on the molar concentration of the self antigen, the capacity for multivalent presentation to a B cell, and the affinity of the B cell's receptor for the antigen in question. Some B cells with low affinity for self antigens certainly escape censorship and remain capable of secreting low affinity anti-self antibodies, which however do no harm.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. Comparison of [11C]cocaine binding at tracer and pharmacological doses of baboon brain: A PET study

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S.; Logan, J. [Brookhaven National Lab., Upton, NY (United States)] [and others


    In vitro studies have shown that cocaine (C) binds to both high and low affinity sites on the dopamine transporter (DAT). We have previously characterized the binding of tracer doses of [{sup 11}C]cocaine (C*)to a high affinity site on the DAT. To assess if in vivo C also binds to low affinity sites we used PET to compare binding of tracer doses (17.8{plus_minus}12.2 {mu}g C) of C* to pharmacological doses (8 mg of C coadministered with C*). Sixteen paired studies were done to assess test/retest variability, specific versus non specific binding and to characterize binding profile. Dynamic scans were started immediately after injection of C* (5-8 mCi) for 50 min on the CTI-931 (6 x 6 x 6.5 mm FWHM). Time activity curves for tissue concentration and for unchanged tracer in plasma were used to calculate the transport constant between plasma and tissue (K1) and to obtain the distribution volume (DV). The ratio of the DV in striatum (ST) to that in cerebellum (CB) (which corresponds to Bmax/Kd-1) was used as model parameter. Peak brain uptake of C* was significantly higher for tracer than for pharmacological doses (0.041 versus 0.033 % dose/cc), as were the values for K1 (1.07{plus_minus}0.21 versus 0.68{plus_minus}0.26 (t=3.0 p<0.01)). Repeated measures were reproducible for tracer ({plus_minus}2%) and pharmacological doses of C* ({plus_minus}4%). Tracer dose C* showed highest binding and slowest clearance in ST which was reduced by C (0.5-2.0 mg/kg iv, -25 to -30%) and by drugs that inhibit DAT (2mg/kg nomifensine - 21%, 0.5 mg/kg methylphenidate -12%) and was increased by serotonin transporter inhibitors (5HT-Ti) (2 mg/kg citalopram +11%, 0.5 mg/kg fluoxetine +6%) and not changed by NE transporter inhibitors (0.5 mg/kg desipramine or 2 mg/kg tomoxetine). The increase with (5HT-Ti) may reflect neurotransmitter interactions or changes in bioavailability. At pharmacological doses C* showed homogeneous distribution and was not changed by C nor by any of the above drugs.

  9. The tumor targeted superantigen ABR-217620 selectively engages TRBV7-9 and exploits TCR-pMHC affinity mimicry in mediating T cell cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Gunnar Hedlund

    Full Text Available The T lymphocytes are the most important effector cells in immunotherapy of cancer. The conceptual objective for developing the tumor targeted superantigen (TTS ABR-217620 (naptumomab estafenatox, 5T4Fab-SEA/E-120, now in phase 3 studies for advanced renal cell cancer, was to selectively coat tumor cells with cytotoxic T lymphocytes (CTL target structures functionally similar to natural CTL pMHC target molecules. Here we present data showing that the molecular basis for the anti-tumor activity by ABR-217620 resides in the distinct interaction between the T cell receptor β variable (TRBV 7-9 and the engineered superantigen (Sag SEA/E-120 in the fusion protein bound to the 5T4 antigen on tumor cells. Multimeric but not monomeric ABR-217620 selectively stains TRBV7-9 expressing T lymphocytes from human peripheral blood similar to antigen specific staining of T cells with pMHC tetramers. SEA/E-120 selectively activates TRBV7-9 expressing T lymphocytes resulting in expansion of the subset. ABR-217620 selectively triggers TRBV7-9 expressing cytotoxic T lymphocytes to kill 5T4 positive tumor cells. Furthermore, ABR-217620 activates TRBV7-9 expressing T cell line cells in the presence of cell- and bead-bound 5T4 tumor antigen. Surface plasmon resonance analysis revealed that ABR-217620 binds to 5T4 with high affinity, to TRBV7-9 with low affinity and to MHC class II with very low affinity. The T lymphocyte engagement by ABR-217620 is constituted by displaying high affinity binding to the tumor cells (KD approximately 1 nM and with the mimicry of natural productive immune TCR-pMHC contact using affinities of around 1 µM. This difference in kinetics between the two components of the ABR-217620 fusion protein will bias the binding towards the 5T4 target antigen, efficiently activating T-cells via SEA/E-120 only when presented by the tumor cells.

  10. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy. (United States)

    Löscher, W; Lehmann, H; Behl, B; Seemann, D; Teschendorf, H J; Hofmann, H P; Lubisch, W; Höger, T; Lemaire, H G; Gross, G


    Antagonists at the ionotropic non-NMDA [AMPA (amino-methyl proprionic acid)/kainate] type of glutamate receptors have been suggested to possess several advantages compared to NMDA (N-methyl-D-aspartate) receptor antagonists, particularly in terms of risk/benefit ratio, but the non-NMDA receptor antagonists available so far have not fulfilled this promise. From a large series of pyrrolyl-quinoxalinedione derivatives, we selected six new competitive non-NMDA receptor antagonists. The basis of selection was high potency and selectivity for AMPA and/or kainate receptors, high in vivo potency after systemic administration, and an acceptable ratio between neuroprotective or anticonvulsant effects and adverse effects. Pharmacological characteristics of these novel compounds are described in this study with special emphasis on their effects in the kindling model of temporal lobe epilepsy, the most common type of epilepsy in humans. In most experiments, NBQX and the major antiepileptic drug valproate were used for comparison with the novel compounds. The novel non-NMDA receptor antagonists markedly differed in their AMPA and kainate receptor affinities from NBQX. Thus, while NBQX essentially did not bind to kainate receptors at relevant concentrations, several of the novel compounds exhibited affinity to rat brain kainate receptors or recombinant kainate receptor subtypes in addition to AMPA receptors. One compound, LU 97175, bound to native high affinity kainate receptors and rat GluR5-GluR7 subunits, i.e. low affinity kainate binding sites, with much higher affinities than to AMPA receptors. All compounds potently blocked AMPA-induced cell death in vitro and, except LU 97175, AMPA-induced convulsions in vivo. In the kindling model, compounds with a high affinity for GluR7 (LU 97175) or compounds (LU 115455, LU 136541) which potently bind to AMPA receptors and low affinity kainate receptor subunits were potent anticonvulsants in the kindling model, whereas the AMPA

  11. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Feng Lin


    Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs

  12. Biodistribution of 99Mo in rats

    Directory of Open Access Journals (Sweden)

    Raphael Sancho Sisley de Souza


    Full Text Available The modification of 99Mo standard metabolism in the presence of MDP would alter the dosimetry of this radionuclide in nuclear medicine patients. Therefore, the objective of this work is to evaluate the influence of MDP in the biodistribution of 99Mo. Wistar rats were divided in two groups of six animals, being inoculated respectively 99Molibdate and 99Mo+MDP via plex ocular. The biodistribution study was carried out after 10 and 120 minutes respectively. The organs were counted with a NaI(Tl detector. The uptake values did not present significant differences among the groups. An in vitro study through planar chromatography was carried out to determine the affinity between molybdenum and MDP. The results show that 99Mo has low affinity both to propanone and NaCl-0.9% solution. However, 99Mo in the presence of MDP presented affinity to NaCl-0.9% solution and low affinity to propanone suggesting that 99Mo was bound to MDP under the conditions of the experiment.A modificação do metabolismo padrão do 99Mo em presença de MDP levaria a alterações na dosimetria deste radionuclídeo em pacientes de medicina nuclear. Assim, o objetivo deste trabalho é avaliar a influência do MDP na biodistribuição de 99Mo. Ratos Wistar foram divididos em dois grupos de seis animais, sendo inoculados respectivamente com 99Molibdato e 99Molibdato+MDP via plexo ocular. O estudo de biodistribuição foi realizado após 10 e 120 minutos respectivamente. Os órgãos foram contados com detector NaI(Tl. Os valores de uptake não apresentaram diferenças significativas entre os grupos. Foi realizado um estudo in vitro através de cromatografia planar para determinar a afinidade entre o molibdênio e o MDP. Os resultados mostraram que o molibdênio tem baixa afinidade tanto pela propanona quanto pela solução 0.9% de NaCl. Entretanto, o molibdênio em presença de MDP apresentou afinidade pela solução 0.9% de NaCl e baixa afinidade pela propanona, sugering ter ocorrido

  13. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases. (United States)

    Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno


    Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a

  14. Interaction of C/EBP-beta and NF-Y factors constrains activity levels of the nutritionally controlled promoter IA expressing the acetyl-CoA carboxylase-alpha gene in cattle

    Directory of Open Access Journals (Sweden)

    Shi Xuanming


    Full Text Available Abstract Background The enzyme acetyl-CoA carboxylase-alpha (ACC-α is rate limiting for de novo fatty acid synthesis. Among the four promoters expressing the bovine gene, promoter IA (PIA is dominantly active in lipogenic tissues. This promoter is in principal repressed but activated under favorable nutritional conditions. Previous analyses already coarsely delineated the repressive elements on the distal promoter but did not resolve the molecular nature of the repressor. Knowledge about the molecular functioning of this repressor is fundamental to understanding the nutrition mediated regulation of PIA activity. We analyzed here the molecular mechanism calibrating PIA activity. Results We finely mapped the repressor binding sites in reporter gene assays and demonstrate together with Electrophoretic Mobility Shift Assays that nuclear factor-Y (NF-Y and CCAAT/enhancer binding protein-β(C/EBPβ each separately repress PIA activity by binding to their cognate low affinity sites, located on distal elements of the promoter. Simultaneous binding of both factors results in strongest repression. Paradoxically, over expression of NFY factors, but also - and even more so - of C/EBPβ significantly activated the promoter when bound to high affinity sites on the proximal promoter. However, co-transfection experiments revealed that NF-Y may eventually diminish the strong stimulatory effect of C/EBPβ at the proximal PIA in a dose dependent fashion. We validated by chromatin immunoprecipitation, that NF-Y and C/EBP factors may physically interact. Conclusion The proximal promoter segment of PIA appears to be principally in an active state, since even minute concentrations of both, NF-Y and C/EBPβ factors can saturate the high affinity activator sites. Higher factor concentrations will saturate the low affinity repressive sites on the distal promoter resulting in reduced and calibrated promoter activity. Based on measurements of the mRNA concentrations of

  15. Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, O.S. [GET-CNRS-UPS-IRD-UMR 5563, 14, Avenue Edouard Belin, 31400 Toulouse (France); Probst, A., E-mail: [Universite de Toulouse, INPT, UPS, EcoLab (Laboratoire Ecologie fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Leviel, E. [GET-CNRS-UPS-IRD-UMR 5563, 14, Avenue Edouard Belin, 31400 Toulouse (France); Liao, B. [International College, Central South University of Forestry and Technology, Changsha 410004 (China)


    Highlights: Black-Right-Pointing-Pointer Adsorption experiments of Cd and Pb in acid soils (China, France). Black-Right-Pointing-Pointer Large pH conditions and large range of metal concentrations were considered. Black-Right-Pointing-Pointer Similar dependencies between metals concentration in solution and metal adsorbed on the surface were predicted using Langmuir and Freundlich equations and surface complexation model (SCM). Black-Right-Pointing-Pointer No competition between Cd and Pb detected at pH 5. Black-Right-Pointing-Pointer Metal adsorption capacity is two orders of magnitude higher than limit value for soil protection. - Abstract: The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25 Degree-Sign C as a function of the pH (3.5-8) and a large range of metal concentrations in solution (10{sup -9}-10{sup -4} mol l{sup -1}). We studied the adsorption kinetics using a Cd{sup 2+}-selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 {+-} 0.5 {mu}mol/g Cd and 20 {+-} 2 {mu}mol/g Pb). A constant slope of adsorbed-dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil

  16. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H. (Biopharmaceuticals Div., Bagsvaerd (Denmark))


    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the {alpha}-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor.

  17. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; C Richardson


    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  18. Inhibition of thyrotropin-stimulated adenosine 3',5'-monophosphate formation in rat thyroid cells by an adenosine analog. Evidence that the inhibition is mediated by the putative inhibitory guanine nucleotide regulatory protein. (United States)

    Berman, M I; Thomas, C G; Nayfeh, S N


    Addition of N6-(L-2-phenylisopropyl)-adenosine (PIA) to cultured FRTL-5 rat thyroid cells led to a concentration-dependent inhibition of TSH-stimulated cAMP formation. Half-maximal inhibition was attained with approximately 0.5 nM PIA. Forskolin and cholera toxin-stimulated cAMP production were also inhibited by PIA. 3-Isobutyl-methylxanthine inhibited the effect of PIA. These results are consistent with the presence of inhibitory adenosine receptors (Ri). Ri-sites were further demonstrated by the binding of 3H-cyclohexyl-adenosine to FRTL-5 plasma membranes. High (Kd = 0.50 +/- 0.07 nM) and low affinity (Kd = 5.95 +/- 2.33 nM) binding sites were observed. Pretreatment of FRTL-5 cells with pertussis, but not cholera, toxin effectively antagonized the inhibitory effects of PIA on cAMP production. ADP-ribosylation of FRTL-5 membranes with [32P]-NAD in the presence of cholera or pertussis toxin specifically labeled a 45,000 and 41,000 Mr species, respectively, which correspond to the alpha subunit of the stimulatory and inhibitory guanine nucleotide regulatory proteins. These results demonstrate that PIA inhibits TSH-stimulated cAMP production via Ri-sites on FRTL-5 thyroid cells. PIA appears to exert its inhibitory effects through the inhibitory guanine nucleotide regulatory protein.

  19. Expression of nerve growth factor and its receptor in distracted tibial nerve after limb lengthening. (United States)

    Shao, Heng; Shu, Hengsheng; Wang, Chunmei; Yuan, Wu; Li, Yunsheng


    Despite many experimental and clinical studies conducted on distraction osteogenesis (DO) in the past decade, changes in the surrounding tissues that occur after the procedure remains poorly understood. To study the biochemical changes of recovery in nerve tissues upon DO-induced nerve injury, we prepared a rabbit model of tibia lengthening to observe the expression pattern of nerve growth factor (NGF) and low-affinity NGF receptor (p75NGFR) in the distracted tibial nerve. The distracted tibial nerve was harvested at various time points during the consolidation period of new bone formation and immunohistochemical staining was performed to detect the expression of NGF and p75NGFR. The expression levels of NGF and p75NGFR were found to be different at various times after DO. The changes in expression of these two cellular factors show similar tendencies with significantly elevated expression in Schwann cells at 7 and 14 days after distraction, but low or undetectable levels of expression at 0, 28, and 56 days. These results suggest that NGF and p75NGFR may play important roles in the adaptive process of the distracted nerve. NGF and p75NGFR are autocrine growth factors present in the distracted nerve during the early consolidation period. NGF interacts with p75NGFR to promote damage repair and reconstruction of nerves. Together, this study furthers the understanding of the relative mechanisms of nerve repair, as well as provides a further basis for the clinical application of neurotrophins.

  20. Atrazine molecular imprinted polymers: comparative analysis by far-infrared and ultraviolet induced polymerization. (United States)

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping


    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIP(uv) possessed specific binding to atrazine compared with their MIP(FIR) radiation counterparts. Scatchard plot's of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%-94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%-97.1% and 94.4%-101.9%, for both MIPs, respectively.

  1. Intracellular binding of the anti-inflammatory drug niflumic acid in the liver. (United States)

    Kelmer-Bracht, A M; Ishii-Iwamoto, E L; Bracht, A


    Intracellular binding of niflumic acid in the perfused rat liver was analyzed according to the model of Scatchard. The data for the binding isotherm were obtained from previously published indicator dilution experiments. The intracellular bound niflumic acid was calculated as the difference between total concentration and the concentration of the free form. The intracellular concentration of the free form was inferred from the concentration of the free form in the extracellular space under the assumption of equilibrative distribution. A Scatchard model with two classes of binding sites fits very well to the experimental curve. The high affinity class has a dissociation constant of 26.10 +/- 0.69 microM and a maximal binding capacity of 2.21 +/- 0.03 micromol (ml intracellular space)(-1); the low affinity class has a dissociation constant of 721.90 +/- 229.0 microM and a maximal binding capacity of 5.96 +/- 0.67 micromol (ml intracellular space)(-1). Probably, under in vivo conditions, the binding capacity in the cellular space exceeds that of the extracellular space. This phenomenon explains, partly at least, the high intracellular concentrations of niflumic acid found under in vivo conditions.

  2. Ziprasidone: from pharmacology to the clinical practice. One year of experience. (United States)

    Baca, E; Azanza, J R; Giner, J; Saiz-Ruiz, J; Vallejo, J; Diez, T; Madrigal, M


    More than a year after the marketing of the atypical anti-psychotic ziprasidone, data from research studies and clinical practice have provided a fair amount of useful information for its practical use in the treatment of schizophrenia. Its pharmacodynamical characteristics and the results from clinical trials with a flexible dose seem to justify the need to administer doses in a range higher than what was initially foreseen, with an initial minimum of 120 mg per day and a fast titulation up to 160 mg per day. Such doses make it possible to achieve sufficient plasma concentrations to occupy at least 60 % of the D2 receptors from which the anti-psychotic effect derives. Moreover, its anti-depressive activity and its non-sedative profile have been confirmed, with a favorable effect on attention and other cognitive functions of the patient, according to its high affinity for 5HT1A and D1 receptors and the inhibition of serotonin and noradrenaline re-uptake. Finally, the low affinity of this drug for alpha-adrenergic, histaminergic and muscarinic receptors favors a good tolerability profile, with a neutral effect on weight, and a lack of anti-cholinergic effects. Results from different clinical trials show that the use of doses in the higher range is associated to a faster and more pronounced clinical improvement without adding a higher risk of adverse events.

  3. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. (United States)

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N


    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent.

  4. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro

    Institute of Scientific and Technical Information of China (English)

    Ke Yin; Xinxin Han; Zhihong Xu; Hongwei Xue


    Hormones are critical for cell differentiation,elongation, and division. The plant hormone auxin plays vital roles in plant growth and development and is essential for various physiologic processes. Previous studies showed that germin-like proteins (GLPs) are involved in multiple physiologic and developmental processes and that several GLP members could bind different auxin molecules. Here we showed that Arabidopsis thaliana GLP4 gene, which has a length of 660 bp and encodes a 219-aa polypeptide, contains the conserved auxin-binding region box A and hinds indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid (2,4-D) with low affinity, but not α-naphthaleneacetic acid, in vitro,by using assays equilibrium dialysis and nuclear magnetic resonance. This hinding character is different from that of auxin-binding protein 1, which does not hind 2,4-D. GLP4 is highly transcribed in various tissues, but it shows low transcription in roots and during embryo development. In addition, transcription of GLP4 is stimulated by auxin treatment. Suhcellular localization studies indicated that GLP4 protein is localized in the Golgi compartment and the N-terminus of GLP4 is crucial for its proper localization, which suggests that GLP4 may be involved in Goigi-dependent developmental processes.

  5. Predicting the toxicity of metal mixtures. (United States)

    Balistrieri, Laurie S; Mebane, Christopher A


    The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout.

  6. On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity

    Directory of Open Access Journals (Sweden)

    Salvador Eugenio C. Caoili


    Full Text Available B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins.

  7. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda


    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  8. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.


    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  9. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.


    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  10. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla. (United States)

    Stephen, Tom Li; Tikhonova, Anastasia; Riberdy, Janice M; Laufer, Terri M


    Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.

  11. An activating mutation reveals a second binding mode of the integrin α2 I domain to the GFOGER motif in collagens.

    Directory of Open Access Journals (Sweden)

    Federico Carafoli

    Full Text Available The GFOGER motif in collagens (O denotes hydroxyproline represents a high-affinity binding site for all collagen-binding integrins. Other GxOGER motifs require integrin activation for maximal binding. The E318W mutant of the integrin α2β1 I domain displays a relaxed collagen specificity, typical of an active state. E318W binds more strongly than the wild-type α2 I domain to GMOGER, and forms a 2:1 complex with a homotrimeric, collagen-like, GFOGER peptide. Crystal structure analysis of this complex reveals two E318W I domains, A and B, bound to a single triple helix. The E318W I domains are virtually identical to the collagen-bound wild-type I domain, suggesting that the E318W mutation activates the I domain by destabilising the unligated conformation. E318W I domain A interacts with two collagen chains similarly to wild-type I domain (high-affinity mode. E318W I domain B makes favourable interactions with only one collagen chain (low-affinity mode. This observation suggests that single GxOGER motifs in the heterotrimeric collagens V and IX may support binding of activated integrins.

  12. Screening for inhibitors of dihydrofolate reductase using pulsed ultrafiltration mass spectrometry. (United States)

    Nikolic, D; van Breemen, R B


    A method of screening combinatorial libraries for inhibitors of eukaryotic dihydrofolate reductase has been developed using pulsed ultra-filtration electrospray mass spectrometry, which is a continuous-flow affinity separation system for extracting and identifying high affinity ligands in combinatorial libraries. In this application, pulsed ultrafiltration conditions were optimized for the isolation and identification of inhibitors of dihydrofolate reductase from a 22 compound library containing six known inhibitors of the enzyme including trimethoprim, aminopterin, methotrexate, pyrimethamine, folic acid, and folinic acid, and 16 compounds without known affinity. In order to optimize the screening method, sources of non-specific binding were identified and minimized. A significant source of non-specific binding for this set of library compounds was hydrophobic interaction with the surfaces of the ultrafiltration chamber. After affinity separation of bound (high affinity) versus free (low affinity) library compounds during pulsed ultrafiltration, receptor-bound ligands were released and eluted using either organic solvent or acidified mobile phase. Although 80% methanol easily disrupted the receptor-ligand complexes, organic solvent had the undesirable effect of releasing non-specifically bound compounds from the chamber and thereby increasing the background noise. Interference from non-specific binding was minimized by releasing bound ligands using a low pH mobile phase eluent instead of organic solvent. Under the conditions used, pulsed ultrafiltration mass spectrometry selectively identified the two library compounds with the highest affinity for dihydrofolate reductase, methotrexate and aminopterin.

  13. Functions of nucleotide binding subunits in the tonoplast ATPase from Beta vulgaris L

    Energy Technology Data Exchange (ETDEWEB)

    Manolson, M.F.; Poole, R.J.


    Partial purification of NO/sub 3/ sensitive H/sup +/-ATPases from the vacuolar membranes of high plants reveal two prominent polypeptides of approximately 60 and 70 kDa. Both polypeptides appear to contain nucleotide binding sites. The photoactive affinity analog of ATP, BzATP, cannot be hydrolyzed by the tonoplast ATPase but is a potential inhibitor (apparent K/sub I/ = 11 /sup 32/P-BzATP was shown to specifically photolabel the 60 kDa polypeptide. In contrast, Mandala and Taiz have shown the photoincorporation of /sup 32/P-azidoATP to the 70 kDa polypeptide. This sterically different photoaffinity probe can be hydrolyzed although with a low affinity. Azido and benzophenone derivatives of the product, ADP, are currently being examined with respect to their inhibition kinetics of, and their photoincorporation into, the tonoplast ATPase from Beta vulgaris L. Kinetic data will be integrated with patterns of photoincorporation using analogs of both substrate and product, in order to illuminate the functions of the two nucleotide binding subunits.

  14. Conformational Plasticity in the Transsynaptic Neurexin-Cerebellin-Glutamate Receptor Adhesion Complex

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shouqiang; Seven, Alpay B.; Wang, Jing; Skiniotis, Georgios; Özkan, Engin (UC); (Michigan)


    Synaptic specificity is a defining property of neural networks. In the cerebellum, synapses between parallel fiber neurons and Purkinje cells are specified by the simultaneous interactions of secreted protein cerebellin with pre-synaptic neurexin and post-synaptic delta-type glutamate receptors (GluD). Here, we determined the crystal structures of the trimeric C1q-like domain of rat cerebellin-1, and the first complete ectodomain of a GluD, rat GluD2. Cerebellin binds to the LNS6 domain of α- and β-neurexin-1 through a high-affinity interaction that involves its highly flexible N-terminal domain. In contrast, we show that the interaction of cerebellin with isolated GluD2 ectodomain is low affinity, which is not simply an outcome of lost avidity when compared with binding with a tetrameric full-length receptor. Rather, high-affinity capture of cerebellin by post-synaptic terminals is likely controlled by long-distance regulation within this transsynaptic complex. Altogether, our results suggest unusual conformational flexibility within all components of the complex.

  15. Manipulating the sensitivity of signal-induced repression: quantification and consequences of altered brinker gradients.

    Directory of Open Access Journals (Sweden)

    Lucia Gafner

    Full Text Available Traditionally, the analysis of gene regulatory regions suffered from the caveat that it was restricted to artificial contexts (e.g. reporter constructs of limited size. With the advent of the BAC recombineering technique, genomic constructs can now be generated to test regulatory elements in their endogenous environment. The expression of the transcriptional repressor brinker (brk is negatively regulated by Dpp signaling. Repression is mediated by small sequence motifs, the silencer elements (SEs, that are present in multiple copies in the regulatory region of brk. In this work, we manipulated the SEs in the brk locus. We precisely quantified the effects of the individual SEs on the Brk gradient in the wing disc by employing a 1D data extraction method, followed by the quantification of the data with reference to an internal control. We found that mutating the SEs results in an expansion of the brk expression domain. However, even after mutating all predicted SEs, repression could still be observed in regions of maximal Dpp levels. Thus, our data point to the presence of additional, low affinity binding sites in the brk locus.

  16. Binding of kappa- and sigma-opiates in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wolozin, B.L.; Nishimura, S.; Pasternak, G.W.


    Detailed displacements of (/sup 3/H)dihydromorphine by ketocyclazocine and SKF 10,047, (/sup 3/H)ethylketocyclazocine by SKF 10,047, and (/sup 3/H)SKF 10,047 by ketocyclazocine are all multiphasic, suggesting multiple binding sites. After treating brain tissue in vitro with naloxazone, all displacements lose the initial inhibition of /sup 3/H-ligand binding by low concentrations of unlabeled drugs. Together with Scatchard analysis of saturation experiments, these studies suggest a common site which binds mu-, kappa, and sigma-opiates and enkephalins equally well and with highest affinity (KD less than 1 nM). The ability of unlabeled drugs to displace the low affinity binding of (/sup 3/H)dihydromorphine (KD . 3 nM), (/sup 3/H)ethylketocyclazocine (KD . 4 nM), (/sup 3/H)SKF 10,047 (KD . 6 nM), and D-Ala2-D-Leu5-(/sup 3/H)enkephalin (KD . 5 nM) remaining after treating tissue with naloxazone demonstrates unique pharmacological profiles for each. These results suggest the existence of distinct binding sites for kappa- and sigma-opiates which differ from those sites which selectively bind morphine (mu) and enkephalin (delta).

  17. Long-term oral administration of the NMDA receptor antagonist memantine extends life span in spinocerebellar ataxia type 1 knock-in mice. (United States)

    Iizuka, Akira; Nakamura, Kazuhiro; Hirai, Hirokazu


    Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by extension of a CAG repeat in the Sca1gene. Although the mechanisms underlying the symptoms of SCA1 have not been determined, aberrant neuronal activation potentially contributes to the neuronal cell death characteristic of the disease. Here we examined the potential involvement of extrasynaptic N-methyl-d-aspartate receptor (NMDAR) activation in the pathogenesis of SCA1 by administering memantine, a low-affinity noncompetitive NMDAR antagonist, in SCA1 knock-in (KI) mice. In KI mice, the exon in the ataxin 1 gene is replaced with abnormally expanded 154CAG repeats. Memantine was administered orally to the SCA1 KI mice from 4 weeks of age until death. The treatment significantly attenuated body-weight loss and prolonged the life span of SCA1 KI mice. Furthermore, memantine significantly suppressed the loss of Purkinje cells in the cerebellum and motor neurons in the dorsal motor nucleus of the vagus, which are critical for motor function and parasympathetic function, respectively. These findings support the contribution of aberrant activation of extrasynaptic NMDARs to neuronal cell death in SCA1 KI mice and suggest that memantine may also have therapeutic benefits in human SCA1 patients.

  18. Impact of manure-related DOM on sulfonamide transport in arable soils (United States)

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina


    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.

  19. Transport of platinum bonded nucleotides into proteoliposomes, mediated by Drosophila melanogaster thiamine pyrophosphate carrier protein (DmTpc1). (United States)

    Carrisi, Chiara; Antonucci, Daniela; Lunetti, Paola; Migoni, Danilo; Girelli, Chiara R; Dolce, Vincenza; Fanizzi, Francesco P; Benedetti, Michele; Capobianco, Loredana


    The results of the present study suggest that DmTpc1 is actively implicated in the specific uptake of free cytoplasmic Pt bonded nucleotides, and therefore could be linked to the mechanism of action of some platinum-based antitumor drugs. Although DmTpc1 has a low affinity for model [Pt(dien)(N7-5'-dGTP)] and cis-[Pt(NH3)2(py)(N7-5'-dGTP)] compared to dATP it's well known that DNA platination level of few metal atoms per double-stranded molecule may account for the pharmacological activity of platinum based antitumor drugs. This is the first investigation where it has been demonstrated that a mitochondrial carrier is directly involved in the transport of metalated purines related with the cisplatin mechanism of action. Moreover it is shown as a lower hindrance of nucleotide bonded platinum complexes could strongly enhance mitochondrial uptake. Furthermore, a new application of ICP-AES addressed to measure the transport of metalated nucleobases, by using a recombinant protein reconstituted into liposomes, has been here, for the first time, developed and compared with a standard technique such as the liquid scintillation counting.

  20. Radioreceptor assay for analysis of fentanyl and its analogs in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Alburges, M.E.


    The assay is based on the competition of these drugs with ({sup 3}H) fentanyl for opioid receptors in membrane preparations of rat forebrain in vitro. The binding in stereospecific, reversible and saturable. Scatchard plots of saturation suggest the presence of high and low affinity binding sites. Morphine and hydromorphone complete with ({sup 3}H)fentanyl for the opioid receptor, but other morphine-like compounds were relatively weak displacers of ({sup 3}H)fentanyl. Many other commonly abused drugs do not compete with ({sup 3}H)fentanyl for the opioid receptors. Urine samples from animals injected with fentanyl, ({plus minus})-cis-3-methylfentanyl, alpha-methylfentanyl, butyrylfentanyl and benzylfentanyl were analyzed by radioreceptor assay, radioimmunoassay, and gas chromatography/mass spectrometry. Urinary analysis of fentanyl showed a good correlation with these three methods; however, discrepancies were observed in the analysis of fentanyl analogs. This radioreceptor assay is well-suited as an initial assay for the detection of active analogs of fentanyl in urine with good correlation with other techniques in the analysis of fentanyl; however, there is substantial disagreement between techniques in the quantitation of fentanyl analogs. The implications of these discrepancies are discussed.

  1. Notable Aspects of Glycan-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Miriam Cohen


    Full Text Available This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry. Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells, stick and roll (bacteria or surfacing (viruses.

  2. Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. (United States)

    Cheeta, S; Tucci, S; Sandhu, J; Williams, A R; Rupniak, N M; File, S E


    The gerbil social interaction test has previously detected anxiolytic effects of nicotine and diazepam. In the present study, the high affinity substance P (NK(1)) receptor antagonist L-760735 (3 mg/kg) significantly increased the time spent in social interaction, whereas its low affinity analogue L-781773 (3 mg/kg) was without effect. Diazepam (0.1 mg/kg) and the 5-HT(1A) receptor agonist 8-OH-DPAT (0.003 and 0.01 mg/kg) also increased social interaction, whereas an acute dose of the selective serotonin re-uptake inhibitor fluoxetine (10 mg/kg) decreased the time spent in social interaction. Diazepam (0.1 mg/kg) significantly increased locomotor activity, but this effect was independent of the increase in social interaction. The other drugs tested were without effect on locomotor activity. The present findings suggest that the gerbil social interaction may well provide a useful assay for detecting both anxiolytic and anxiogenic compounds, and suggests that the high affinity NK(1) receptor antagonist L-760735 may prove to be useful as an anxiolytic therapy.

  3. The molecular interactions of buspirone analogues with the serotonin transporter. (United States)

    Jarończyk, Małgorzata; Chilmonczyk, Zdzisław; Mazurek, Aleksander P; Nowak, Gabriel; Ravna, Aina W; Kristiansen, Kurt; Sylte, Ingebrigt


    A major problem with the selective serotonin reuptake inhibitors (SSRIs) is the delayed onset of action. A reason for that may be that the initial SSRI-induced increase in serotonin levels activates somatodendritic 5-HT(1A) autoreceptors, causing a decrease in serotonin release in major forebrain areas. It has been suggested that compounds combining inhibition of the serotonin transport protein with antagonistic effects on the 5-HT(1A) receptor will shorten the onset time. The anxiolytic drug buspirone is known as 5-HT(1A) partial agonist. In the present work, we are studying the inhibition of the serotonin transporter protein by a series of buspirone analogues by molecular modelling and by experimental affinity measurements. Models of the transporter protein were constructed using the crystal structure of the Escherichia coli major facilitator family transporter-LacY and the X-ray structure of the neurotransmitter symporter family (NSS) transporter-LeuT(Aa) as templates. The buspirone analogues were docked into both SERT models and the interactions with amino acids within the protein were analyzed. Two putative binding sites were identified on the LeuT(Aa) based model, one suggested to be a high-affinity site, and the other suggested to be a low-affinity binding site. Molecular dynamic simulations of the LacY based model in complex with ligands did not induce a helical architecture of the LacY based model into an arrangement more similar to that of the LeuT(Aa) based model.

  4. Substrate specificity and ion coupling in the Na+/betaine symporter BetP. (United States)

    Perez, Camilo; Koshy, Caroline; Ressl, Susanne; Nicklisch, Sascha; Krämer, Reinhard; Ziegler, Christine


    BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.

  5. Antibody-free magnetic cell sorting of genetically modified primary human CD4+ T cells by one-step streptavidin affinity purification.

    Directory of Open Access Journals (Sweden)

    Nicholas J Matheson

    Full Text Available Existing methods for phenotypic selection of genetically modified mammalian cells suffer disadvantages of time, cost and scalability and, where antibodies are used to bind exogenous cell surface markers for magnetic selection, typically yield cells coated with antibody-antigen complexes and beads. To overcome these limitations we have developed a method termed Antibody-Free Magnetic Cell Sorting in which the 38 amino acid Streptavidin Binding Peptide (SBP is displayed at the cell surface by the truncated Low Affinity Nerve Growth Receptor (LNGFRF and used as an affinity tag for one-step selection with streptavidin-conjugated magnetic beads. Cells are released through competition with the naturally occurring vitamin biotin, free of either beads or antibody-antigen complexes and ready for culture or use in downstream applications. Antibody-Free Magnetic Cell Sorting is a rapid, cost-effective, scalable method of magnetic selection applicable to either viral transduction or transient transfection of cell lines or primary cells. We have optimised the system for enrichment of primary human CD4+ T cells expressing shRNAs and exogenous genes of interest to purities of >99%, and used it to isolate cells following Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9 genome editing.

  6. Dynamics of the full length and mutated heat shock factor 1 in human cells.

    Directory of Open Access Journals (Sweden)

    Gaëtan Herbomel

    Full Text Available Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs. nSBs represent a natural amplification of RNA pol II dependent transcription sites. Dynamics of HSF1 and of deletion mutants were studied in living cells using multi-confocal Fluorescence Correlation Spectroscopy (mFCS and Fluorescence Recovery After Photobleaching (FRAP. In this paper, we show that HSF1 dynamics modifications upon heat shock result from both formation of high molecular weight complexes and increased HSF1 interactions with chromatin. These interactions involve both DNA binding with Heat Shock Element (HSE and sat III sequences and a more transient sequence-independent binding likely corresponding to a search for more specific targets. We find that the trimerization domain is required for low affinity interactions with chromatin while the DNA binding domain is required for site-specific interactions of HSF1 with DNA.

  7. Novel serial positive enrichment technology enables clinical multiparameter cell sorting.

    Directory of Open Access Journals (Sweden)

    Christian Stemberger

    Full Text Available A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve--especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4(high/CD25(high/CD45RA(high 'regulatory T cells' and CD8(high/CD62L(high/CD45RA(neg 'central memory T cells', have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research.

  8. GHB receptor targets in the CNS: focus on high-affinity binding sites. (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine


    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  9. The novel alpha 2-adrenoceptor agonist [3H]mivazerol binds to non-adrenergic binding sites in human striatum membranes that are distinct from imidazoline receptors. (United States)

    Flamez, A; Gillard, M; De Backer, J P; Vauquelin, G; Noyer, M


    The alpha 2 adrenergic agonist [3H]mivazerol labelled two populations of binding sites in membranes from the human striatum. Forty per cent of the sites labelled by 3 nM [3H]mivazerol corresponded to alpha 2 adrenergic receptors as they displayed a high affinity for (-)-adrenaline and for rauwolscine. The remaining binding was displaced by mivazerol with a pIC50 of 6.5 +/- 0.1. These sites displayed higher affinity for dexmedetomidine (pIC50 = 7.1 +/- 0.1), but much lower affinity for clonidine (pIC50 < 5.0) and for idazoxan (pIC50 = 5.1 +/- 0.1). Mivazerol also showed low affinity for the [3H]clonidine-labelled I1 imidazoline receptors and for the [3H]idazoxan-labelled I2 receptors (pIC50 = 5.1 and 3.9, respectively). These results suggest that the non-adrenergic [3H]mivazerol binding sites are distinct from the imidazoline receptors in the human striatum.

  10. A novel form of the membrane protein CD147 that contains an extra Ig-like domain and interacts homophilically

    Directory of Open Access Journals (Sweden)

    Brown Marion H


    Full Text Available Abstract Background CD147 is a broadly distributed integral membrane glycoprotein with two Ig-like domains implicated in a wide range of functions. It is associated at the cell surface with the monocarboxylate transporters MCT1 and 4 but interactions of the extracellular region have not been characterised. Results We report the characterisation of a form of CD147 with an additional membrane-distal Ig-like domain. In contrast to the two domain form, this three domain form of CD147 interacts homophilically. Surface plasmon resonance analysis using recombinant proteins showed that the interaction was of low affinity (KD ~ 40 μM and this is typical of many interactions between membrane proteins. cDNA for the 3 domain form are rare but have been identified in human and mouse retina. Conclusion The finding that the three domain form of CD147 has an extracellular ligand, that is it interacts homophilically, suggests this interaction may be important in aligning lactate transporters in the retina where lactate is an important metabolite.

  11. At High Levels, Constitutively Activated STAT3 Induces Apoptosis of Chronic Lymphocytic Leukemia Cells. (United States)

    Rozovski, Uri; Harris, David M; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Grgurevic, Srdana; Faderl, Stefan; Ferrajoli, Alessandra; Wierda, William G; Martinez, Matthew; Verstovsek, Srdan; Keating, Michael J; Estrov, Zeev


    In chronic lymphocytic leukemia (CLL), the increment in PBLs is slower than the expected increment calculated from the cells' proliferation rate, suggesting that cellular proliferation and apoptosis are concurrent. Exploring this phenomenon, we found overexpression of caspase-3, higher cleaved poly (ADP-ribose) polymerase levels (p < 0.007), and a higher apoptosis rate in cells from patients with high counts compared with cells from patients with low counts. Although we previously found that STAT3 protects CLL cells from apoptosis, STAT3 levels were significantly higher in cells from patients with high counts than in cells from patients with low counts. Furthermore, overexpression of STAT3 did not protect the cells. Rather, it upregulated caspase-3 and induced apoptosis. Remarkably, putative STAT3 binding sites were identified in the caspase-3 promoter, and a luciferase assay, chromatin immunoprecipitation, and an EMSA revealed that STAT3 activated caspase-3 However, caspase-3 levels increased only when STAT3 levels were sufficiently high. Using chromatin immunoprecipitation and EMSA, we found that STAT3 binds with low affinity to the caspase-3 promoter, suggesting that at high levels, STAT3 activates proapoptotic mechanisms and induces apoptosis in CLL cells.

  12. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress. (United States)

    Yu, Mei; Zhang, Yuan; Chen, Xiaoyu; Zhang, Tao


    The aim of this study was to examine whether amantadine (AMA), as a low-affinity noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is able to improve cognitive deficits caused by chronic stress in rats. Male Wistar rats were divided into four groups: control, control + AMA, stress and stress + AMA groups. The chronic stress model combined chronic unpredictable stress (CUS) with isolated feeding. Animals were exposed to CUS continued for 21 days. AMA (25 mg/kg) was administrated p.o. for 20 days from the 4th day of CUS to the 23rd. Weight and sucrose consumption were measured during model establishing period. Spatial memory was evaluated using the Morris water maze (MWM) test. Following MWM testing, both long-term potentiation (LTP) and depotentiation were recorded in the hippocampal CA1 region. NR2B and postsynaptic density protein 95 (PSD-95) proteins were measured by Western-blot analysis. AMA increased weight and sucrose consumption of stressed rats. Spatial memory and reversal learning in stressed rats were impaired relative to controls, whereas AMA significantly attenuated cognitive impairment. AMA also mitigated the chronic stress-induced impairment of hippocampal synaptic plasticity, in which both the LTP and depotentiation were significantly inhibited in stressed rats. Moreover, AMA enhanced the expression of hippocampal NR2B and PSD-95 in stressed rats. The data suggest that AMA may be an effective therapeutic agent for depression-like symptoms and associated cognitive disturbances.

  13. Structure of a cation-bound multidrug and toxic compound extrusion transporter

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao; Szewczyk, Paul; Karyakin, Andrey; Evin, Mariah; Hong, Wen-Xu; Zhang, Qinghai; Chang, Geoffrey (Scripps)


    Transporter proteins from the MATE (multidrug and toxic compound extrusion) family are vital in metabolite transport in plants, directly affecting crop yields worldwide. MATE transporters also mediate multiple-drug resistance (MDR) in bacteria and mammals, modulating the efficacy of many pharmaceutical drugs used in the treatment of a variety of diseases. MATE transporters couple substrate transport to electrochemical gradients and are the only remaining class of MDR transporters whose structure has not been determined. Here we report the X-ray structure of the MATE transporter NorM from Vibrio cholerae determined to 3.65 {angstrom}, revealing an outward-facing conformation with two portals open to the outer leaflet of the membrane and a unique topology of the predicted 12 transmembrane helices distinct from any other known MDR transporter. We also report a cation-binding site in close proximity to residues previously deemed critical for transport. This conformation probably represents a stage of the transport cycle with high affinity for monovalent cations and low affinity for substrates.

  14. Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins. (United States)

    Vigonsky, Elena; Ovcharenko, Elena; Lewinson, Oded


    In all kingdoms of life, ATP Binding Cassette (ABC) transporters participate in many physiological and pathological processes. Despite the diversity of their functions, they have been considered to operate by a largely conserved mechanism. One deviant is the vitamin B12 transporter BtuCD that has been shown to operate by a distinct mechanism. However, it is unknown if this deviation is an exotic example, perhaps arising from the nature of the transported moiety. Here we compared two ABC importers of identical substrate specificity (molybdate/tungstate), and find that their interactions with their substrate binding proteins are utterly different. One system forms a high-affinity, slow-dissociating complex that is destabilized by nucleotide and substrate binding. The other forms a low-affinity, transient complex that is stabilized by ligands. The results highlight significant mechanistic divergence among ABC transporters, even when they share the same substrate specificity. We propose that these differences are correlated with the different folds of the transmembrane domains of ABC transporters.

  15. Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis

    Directory of Open Access Journals (Sweden)

    Hendrickson Erik L


    Full Text Available Abstract Background Methanogenic Archaea play key metabolic roles in anaerobic ecosystems, where they use H2 and other substrates to produce methane. Methanococcus maripaludis is a model for studies of the global response to nutrient limitations. Results We used high-coverage quantitative proteomics to determine the response of M. maripaludis to growth-limiting levels of H2, nitrogen, and phosphate. Six to ten percent of the proteome changed significantly with each nutrient limitation. H2 limitation increased the abundance of a wide variety of proteins involved in methanogenesis. However, one protein involved in methanogenesis decreased: a low-affinity [Fe] hydrogenase, which may dominate over a higher-affinity mechanism when H2 is abundant. Nitrogen limitation increased known nitrogen assimilation proteins. In addition, the increased abundance of molybdate transport proteins suggested they function for nitrogen fixation. An apparent regulon governed by the euryarchaeal nitrogen regulator NrpR is discussed. Phosphate limitation increased the abundance of three different sets of proteins, suggesting that all three function in phosphate transport. Conclusion The global proteomic response of M. maripaludis to each nutrient limitation suggests a wider response than previously appreciated. The results give new insight into the function of several proteins, as well as providing information that should contribute to the formulation of a regulatory network model.

  16. Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level

    KAUST Repository

    Aouida, Mustapha


    Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3? nor sam3? single mutant is defective in polyamine transport, while the dur3? sam3? double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2? mutant. Studies of Agp2 localization indicate that in the double mutant dur3? sam3?, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport. © 2013 Aouida et al.

  17. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors on Helicoverpa armigera (Hübner) larvae

    Indian Academy of Sciences (India)

    S Ramesh Babu; B Subrahmanyam; Srinivasan; I M Santha


    Acacia nilotica proteinase inhibitor (AnPI) was isolated by ammonium sulphate precipitation followed by chromatography on DEAE-Sephadex A-25 and resulted in a purification of 10.68-fold with a 19.5% yield. Electrophoretic analysis of purified AnPI protein resolved into a single band with molecular weight of approximately 18.6+1.00 kDa. AnPI had high stability at different pH values (2.0 to 10.0) except at pH 5.0 and are thermolabile beyond 80°C for 10 min. AnPI exhibited effective against total proteolytic activity and trypsin-like activity, but did not show any inhibitory effect on chymotrypsin activity of midgut of Helicoverpa armigera. The inhibition kinetics studies against H. armigera gut trypsin are of non-competitive type. AnPI had low affinity for H. armigera gut trypsin when compared to SBTI. The partially purified and purified PI proteins-incorporated test diets showed significant reduction in mean larval and pupal weight of H. armigera. The results provide important clues in designing strategies by using the proteinase inhibitors (PIs) from the A. nilotica that can be expressed in genetically engineered plants to confer resistance to H. armigera.

  18. Purification and characterization of biologically active human recombinant 37 kDa soluble CD23 (sFc epsilon RII) expressed in insect cells. (United States)

    Graber, P; Jansen, K; Pochon, S; Shields, J; Aubonney, N; Turcatti, G; Bonnefoy, J Y


    Human recombinant soluble 37 kDa CD23 has been expressed in insect cells and secreted into the culture medium using the IL-2 leader sequence. The 37 kDa CD23 was purified 600-fold to homogeneity by monoclonal antibody affinity chromatography and gel filtration. The pure protein is monomeric, glycosylated, depleted of one N terminal amino acid and contains four disulphide bonds. It degrades into smaller fragments of 33, 29 and 25 kDa if purified in the absence of protease inhibitors. The same pattern of proteolytic fragments is observed when the pure preparation is incubated at room temperature for 3 weeks. Physical characterization of the 37 kDa CD23 by circular dichroism indicates that the protein contains mainly beta sheet and 20% of alpha helical structures. Specific binding of IgE to natural CD23 (low affinity IgE receptor) was inhibited by purified recombinant 37 kDa CD23. Moreover, purified recombinant 37kDa CD23 and interleukin-1 promoted the survival of germinal centre B cells.

  19. Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effect on guinea-pig isolated atria. (United States)

    Ghysel-Burton, J; Godfraind, T


    1 The actions of ouabain, ouabagenin and dihydroouabain on the contractility and on the ionic content have been investigated in left guinea-pig atria stimulated at 3.3 Hz. The specific binding of ouabain and its displacement by the other cardenolides have been determined. 2 The action of either ouabain or ouabagenin on Na and K content was qualitatively different according to the concentration employed. Low doses evoked a reduction of Nai whereas high doses produced an increase. Dihydroouabain evoked only a Nai gain. 3 The increase of KCl concentration from 2.7 to 12 mM decreased Nai in untreated atria and displaced ouabain dose-effect curves to the right. 4 ED50 values for the positive inotropic effect were lower than ED50 values for the inhibition of the pump and were not similarly affected by an increase in KCl concentration. 5 The specific binding of ouabain occurred at high and low affinity sites, related to Na pump stimulation and inhibition respectively. 6 The increase in KCl reduced the affinity of the two groups of sites for ouabain and increased the capacity of the high-affinity sites whereas the capacity of the other sites remained unchanged. 7 The results confirm the existence of two specific binding sites for ouabain in guinea-pig heart and suggest that the inhibition of the Na pump is not the only mechanism responsible for the positive inotropic effect of cardiac glycosides.

  20. Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841. (United States)

    Cheng, Guojun; Karunakaran, Ramakrishnan; East, Alison K; Poole, Philip S


    Rhizobium leguminosarum Rlv3841 contains at least three sulfate transporters, i.e., SulABCD, SulP1 and SulP2, and a single molybdate transporter, ModABC. SulABCD is a high-affinity transporter whose mutation prevented growth on a limiting sulfate concentration, while SulP1 and SulP2 appear to be low-affinity sulfate transporters. ModABC is the sole high-affinity molybdate transport system and is essential for growth with NO3(-) as a nitrogen source on limiting levels of molybdate (molybdate, a quadruple mutant with all four transporters inactivated, had the longest lag phase on NO3(-), suggesting these systems all make some contribution to molybdate transport. Growth of Rlv3841 on limiting levels of sulfate increased sulB, sulP1, modB, and sulP2 expression 313.3-, 114.7-, 6.2-, and 4.0-fold, respectively, while molybdate starvation increased only modB expression (three- to 7.5-fold). When grown in high-sulfate but not low-sulfate medium, pea plants inoculated with LMB695 (modB) reduced acetylene at only 14% of the wild-type rate, and this was not further reduced in the quadruple mutant. Overall, while modB is crucial to nitrogen fixation at limiting molybdate levels in the presence of sulfate, there is an unidentified molybdate transporter also capable of sulfate transport.

  1. Thiazide diuretic drug receptors in rat kidney: Identification with ( sup 3 H)metolazone

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, K.; Vaughn, D.A.; Fanestil, D.D. (Univ. of California, San Diego, La Jolla (USA))


    Thiazides and related diuretics inhibit NaCl reabsorption in the distal tubule through an unknown mechanism. The authors report here that ({sup 3}H)metolazone, a diuretic with a thiazide-like mechanism of action, labels a site in rat kidney membranes that has characteristics of the thiazide-sensitive ion transporter. ({sup 3}H)Metolazone bound with high affinity to a site with a density of 0.717 pmol/mg of protein in kidney membranes. The binding site was localized to the renal cortex, with little or not binding in other kidney regions and 11 other tissues. The affinities of thiazide-type diuretics for this binding site were significantly correlated with their clinical potency. Halide anions specifically inhibited high-affinity binding of ({sup 3}H)metolazone to this site. ({sup 3})Metolazone also bound with lower affinity to sites present in kidney as well as in liver, testis, lung, brain, heart, and other tissues. Calcium antagonists and certain smooth muscle relaxants had K{sub i} values of 0.6-10 {mu}M for these low-affinity sites, which were not inhibited by most of the thiazide diuretics tested. Properties of the high-affinity ({sup 3}H)metolazone binding site are consistent with its identity as the receptor for thiazide-type diuretics.

  2. Structural and mechanistic insights into Helicobacter pylori NikR activation (United States)

    Bahlawane, C.; Dian, C.; Muller, C.; Round, A.; Fauquant, C.; Schauer, K.; de Reuse, H.; Terradot, L.; Michaud-Soret, I.


    NikR is a transcriptional metalloregulator central in the mandatory response to acidity of Helicobacter pylori that controls the expression of numerous genes by binding to specific promoter regions. NikR/DNA interactions were proposed to rely on protein activation by Ni(II) binding to high-affinity (HA) and possibly secondary external (X) sites. We describe a biochemical characterization of HpNikR mutants that shows that the HA sites are essential but not sufficient for DNA binding, while the secondary external (X) sites and residues from the HpNikR dimer–dimer interface are important for DNA binding. We show that a second metal is necessary for HpNikR/DNA binding, but only to some promoters. Small-angle X-ray scattering shows that HpNikR adopts a defined conformation in solution, resembling the cis-conformation and suggests that nickel does not trigger large conformational changes in HpNikR. The crystal structures of selected mutants identify the effects of each mutation on HpNikR structure. This study unravels key structural features from which we derive a model for HpNikR activation where: (i) HA sites and an hydrogen bond network are required for DNA binding and (ii) metallation of a unique secondary external site (X) modulates HpNikR DNA binding to low-affinity promoters by disruption of a salt bridge. PMID:20089510

  3. Role of calcium in the constriction of isolated cerebral arteries

    Energy Technology Data Exchange (ETDEWEB)

    Wendling, W.W.


    Calcium entry blockers (CEB) have been used in the experimental treatment or prevention of many cerebrovascular disorders including stroke, post-ischemic hypoperfusion after cardiac arrest, cerebral vasospasm after subarachnoid hemorrhage, and migraine headache. However, the mechanism of action of these drugs on the cerebral circulation is poorly understood. This study examined the effects of calcium antagonists, Ca/sup 2 +/-deficient solutions, and vasocostrictors on cerebrovascular tone and /sup 45/Ca fluxes, to determine the role of calcium in cerebral arterial constriction. A Scatchard plot of /sup 45/Ca binding to BMCA showed that Ca/sup 2 +/ was bound at either low or high affinity binding sties. The four vasoconstrictors (potassium, serotonin, PGF/sub 2 ..cap alpha../, or SQ-26,655) each increased low affinity /sup 45/Ca uptake into BMCA. The results demonstrate that: (1) Potassium and serotonin constrict BMCA mainly by promoting Ca/sup 2 +/ influx through CEB-sensitive channels; (2) PGF/sub 2 ..cap alpha../ and SQ-26,655 constrict BMCA in part by promoting Ca/sup 2 +/ influx through CEB-sensitive channels, and in part by releasing Ca/sup 2 +/ from depletable internal stores; (3) The major action of CEB on BMCA is to block vasoconstrictor-induced Ca/sup 2 +/ uptake through both potential-operated (K/sup +/-stimulated) and receptor-operated channels.

  4. Heparin binds to the laminin alpha4 chain LG4 domain at a site different from that found for other laminins. (United States)

    Yamashita, Hironobu; Beck, Konrad; Kitagawa, Yasuo


    We previously reported that the LG4 domain of the laminin alpha4 chain is responsible for high-affinity heparin binding. To specify the amino acid residues involved in this activity, we produced a series of alpha4 LG4-fusion proteins in which each of the 27 basic residues (arginine, R; histidine; lysine, K) were replaced one by one with alanine (A). When the effective residues R1520A, K1531A, K1533A, and K1539A are mapped on a structural model, they form a track on the concave surface of the beta-sandwich, suggesting that they interact with adjacent sulfate groups along the heparin chain. Whereas low-affinity heparin-binding sites of other LG domains have been located at the top of the beta-sheet sandwich opposite the N and C termini, the residues for high-affinity heparin binding of alpha4 LG4 reveal a new topological area of the LG module.

  5. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.; Mishra, R.K.


    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  6. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. (United States)

    Mainardi, Jean-Luc; Villet, Régis; Bugg, Timothy D; Mayer, Claudine; Arthur, Michel


    Acquisition of resistance to the two classes of antibiotics therapeutically used against Gram-positive bacteria, the glycopeptides and the beta-lactams, has revealed an unexpected flexibility in the peptidoglycan assembly pathway. Glycopeptides select for diversification of the fifth position of stem pentapeptides because replacement of D-Ala by D-lactate or D-Ser at this position prevents binding of the drugs to peptidoglycan precursors. The substitution is generally well tolerated by the classical D,D-transpeptidases belonging to the penicillin-binding protein family, except by low-affinity enzymes. Total elimination of the fifth residue by a D,D-carboxypeptidase requires a novel cross-linking enzyme able to process the resulting tetrapeptide stems. This enzyme, an L,D-transpeptidase, confers cross-resistance to beta-lactams and glycopeptides. Diversification of the side chain of the precursors, presumably in response to the selective pressure of peptidoglycan endopeptidases, is controlled by aminoacyl transferases of the Fem family that redirect specific aminoacyl-tRNAs from translation to peptidoglycan synthesis. Diversification of the side chains has been accompanied by a parallel divergent evolution of the substrate specificity of the L,D-transpeptidases, in contrast to the D,D-transpeptidases, which display an unexpected broad specificity. This review focuses on the role of antibiotics in selecting or counter-selecting diversification of the structure of peptidoglycan precursors and their mode of polymerization.

  7. Cu(I) binding properties of a designed metalloprotein. (United States)

    Xie, Fei; Sutherland, Duncan E K; Stillman, Martin J; Ogawa, Michael Y


    The Cu(I) binding properties of the designed peptide C16C19-GGY are reported. This peptide was designed to form an alpha-helical coiled-coil but modified to incorporate a Cys-X-X-Cys metal-binding motif along its hydrophobic face. Absorption, emission, electrospray ionization mass spectrometry (ESI-MS), and circular dichroism (CD) experiments show that a 1:1 Cu-peptide complex is formed when Cu(I) is initially added to a solution of the monomeric peptide. This is consistent with our earlier study in which the emissive 1:1 complex was shown to exist as a peptide tetramer containing a tetranuclear copper cluster Kharenko et al. (2005) [11]. The presence of the tetranuclear copper center is now confirmed by ESI-MS which along with UV data show that this cluster is formed in a cooperative manner. However, spectroscopic titrations show that continued addition of Cu(I) results in the occupation of a second, lower affinity metal-binding site in the metallopeptide. This occupancy does not significantly affect the conformation of the metallopeptide but does result in a quenching of the 600nm emission. It was further found that the exogenous reductant tris(2-carboxyethyl)phosphine (TCEP) can competitively inhibit the binding of Cu(I) to the low affinity site of the peptide, but does not interact with Cu(I) clusters.

  8. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    Directory of Open Access Journals (Sweden)

    En-Ju Chou


    Full Text Available CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.


    Institute of Scientific and Technical Information of China (English)


    A kind of molecularly imprinted polymer (MIPs) with high selectivity was prepared using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as crosslinker and Gatifloxacin as template. The effect of various parameters such as volume of solvent, functional monomer dosage, crosslinker dosage and polymerization time were investigated. The selective binding experiment for substrates show that the affinity and selectivity for Gatifloxacin were higher than that for blank polymer. Scatchard analysis show that the MIPs recognized template with two kinds of binding sites. The dissociation constant Kd and maximum adsorption quantity Qmax of these two kinds of binding sites were calculated: Kd1 and Qmax1 of the binding sites with high affinity were 8.67×10-4 mol/L and 28.19μmol/g, while Kd2 and Qmax2 of the binding sites with low affinity were1.05×10-3 mol/L and 33.20μmol/g respectively.

  10. NaCl对大麦硝态氮吸收动力学特征的影响%Kinetics characteristics of NO3absorption of barley (Hordeum vulgare L.) pretreated with different concentrations of NaCl and NO3-N

    Institute of Scientific and Technical Information of China (English)

    丁效东; 张士荣


    To learn nitrogen absorption characteristics of plant under salt stress, the NO3--N absorption ability of barley (Hordeum vulgare L.) cultivar ‘Jian 4’ pretreated with NaCl and NO3--N were investigated using culture solution. The pretreatment concentrations of NaCl were 1 mmol×L-1(CK) and 120 mmol×L-1, those of NO3--N were 1 mmol (NO3--N)×L-1 and 10 mmol (NO3--N)×L-1. Barley growth and NO3--N absorption were measured and the kinetics of NO3--N absorption of high- affinity transport system and low-affinity transport system of barley were investigated. The results showed that the uptake of NO3--N of barley pretreated with different concentrations of NaCl and NO3--N was in accordance with Michelis-Menten equation. Also the uptake kinetics parametersVmax andKm were enhanced with increasing pretreatment concentration of NO3--N. For high-affinity system, the uptake of NO3--N of barley was in accordance with Michaelis-Menten equation for all the pretreatments. Under 1 mmol(NO3--N)×L-1 pretreatment, compared with 1 mmol×L-1 NaCl treatment, 120 mmol×L-1 NaCl pretreatment significantly increased barley uptake rate of NO3--N; while under 10 mmol(NO3--N)×L-1, no significant difference in the rate of uptake of NO3--N was observed between 1 mmol×L-1 NaCl and 120 mmol×L-1 NaCl treatments. This indicated that in low nitrogen environment, NaCl restrained uptake of NO3--N of high-affinity system. For low-affinity systems, the uptake rate of NO3--N of barley was in accordance with Michaelis-Menten equation for all pretreatments. Under 1 mmol(NO3--N)×L-1 pretreatment, compared with 1 mmol×L-1 NaCl treatment, 120 mmol×L-1 NaCl treatment significantly increased the rate of uptake of NO3--N. With 10 mmol×L-1 NO3--N pretreatment, the uptake rate of NO3--N under 120 mmol×L-1 NaCl was lower than that of under 1 mmol×L-1 NaCl pretreatment. This showed that under low nitrogen environment, salt stress improved root uptake of NO3--N in low-affinity system. However, under

  11. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells

    Directory of Open Access Journals (Sweden)

    Camacho-Nuez Minerva


    Full Text Available Abstract Background Dengue viruses (DENV attach to the host cell surface and subsequently enter the cell by receptor-mediated endocytosis. Several primary and low affinity co-receptors for this flavivirus have been identified. However, the presence of these binding molecules on the cell surface does not necessarily render the cell susceptible to infection. Determination of which of them serve as bona fide receptors for this virus in the vector may be relevant to treating DENV infection and in designing control strategies. Results (1 Overlay protein binding assay showed two proteins with molecular masses of 80 and 67 kDa (R80 and R67. (2 Specific antibodies against these two proteins inhibited cell binding and infection. (3 Both proteins were bound by all four serotypes of dengue virus. (4 R80 and R67 were purified by affinity chromatography from Ae. aegypti mosquito midguts and from Ae albopictus C6/36 cells. (5 In addition, a protein with molecular mass of 57 kDa was purified by affinity chromatography from the midgut extracts. (6 R80 and R67 from radiolabeled surface membrane proteins of C6/36 cells were immunoprecipitated by antibodies against Ae. aegypti midgut. Conclusion Our results strongly suggest that R67 and R80 are receptors for the four serotypes of dengue virus in the midgut cells of Ae. aegypti and in C6/36 Ae. albopictus cells.

  12. Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. (United States)

    Lim, Daniel; Strynadka, Natalie C J


    The multiple antibiotic resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) has become a major clinical problem worldwide. The key determinant of the broad-spectrum beta-lactam resistance in MRSA strains is the penicillin-binding protein 2a (PBP2a). Because of its low affinity for beta-lactams, PBP2a provides transpeptidase activity to allow cell wall synthesis at beta-lactam concentrations that inhibit the beta-lactam-sensitive PBPs normally produced by S. aureus. The crystal structure of a soluble derivative of PBP2a has been determined to 1.8 A resolution and provides the highest resolution structure for a high molecular mass PBP. Additionally, structures of the acyl-PBP complexes of PBP2a with nitrocefin, penicillin G and methicillin allow, for the first time, a comparison of an apo and acylated resistant PBP. An analysis of the PBP2a active site in these forms reveals the structural basis of its resistance and identifies features in newly developed beta-lactams that are likely important for high affinity binding.

  13. Confined Water Determines Transport Properties of Guest Molecules in Narrow Pores. (United States)

    Phan, Anh; Cole, David R; Weiß, R Gregor; Dzubiella, Joachim; Striolo, Alberto


    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of solid substrates. Models for silica, magnesium oxide, and alumina were used as solid substrates. The pores were filled with water. The results show that the methane permeability through the hydrated pores is strongly dependent on the solid substrate. Detailed analysis of the simulated systems reveals that local properties of confined water, including its structure, and more importantly, evolution of solvation free energy and hydrogen bond structure are responsible for the pronounced differences observed. The simulations are extended to multicomponent systems representative of natural gas, containing methane, ethane, and H2S. The results show that all pores considered have high affinity for H2S, moderate affinity for methane, and low affinity for ethane. The H2S/methane transport selectivity through the hydrated alumina pore is comparable, or superior, to that reported for existing commercial membranes. A multiscale approach was then implemented to demonstrate that a Smoluchowski one-dimensional model is able to reproduce the molecular-level results for short pores when appropriate values for the local self-diffusion coefficients are used as input parameters. We propose that the model can be extended to predict methane transport through uniform hydrated pores of macroscopic length. When verified by experiments, our simulation results could have important implications in applications such as natural gas sweetening and predictions of methane migration through hydraulically fractured shale formations.

  14. Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. (United States)

    House, S D; Guidon, P T; Perdrizet, G A; Rewinski, M; Kyriakos, R; Bockman, R S; Mistry, T; Gallagher, R A; Hightower, L E


    Heat and a variety of other stressors cause mammalian cells and tissues to acquire cytoprotection. This transient state of altered cellular physiology is nonproliferative and antiapoptotic. In this study, male Wistar rats were stress conditioned with either stannous chloride or gallium nitrate, which have immunosuppressive effects in vivo and in vitro, or heat shock, the most intensively studied inducer of cytoprotection. The early stages of inflammation in response to topical suffusion of mesentery tissue with formyl-methionyl-leucyl-phenylalanine (FMLP) were monitored using intravital microscopy. Microvascular hemodynamics (venular diameter, red blood cell velocity [Vrbc], white blood cell [WBC] flux, and leukocyte-endothelial adhesion [LEA]) were used as indicators of inflammation, and tissue levels of inducible Hsp70, determined using immunoblot assays, provided a marker of cytoprotection. None of the experimental treatments blocked decreases in WBC flux during FMLP suffusion, an indicator of increased low-affinity interactions between leukocytes and vascular endothelium known as rolling adhesion. During FMLP suffusion LEA, an indicator of firm attachment between leukocytes and vascular endothelial cells increased in placebo and gallium nitrate-treated animals but not in heat- and stannous chloride-treated animals, an anti-inflammatory effect. Hsp70 was not detected in aortic tissue from placebo and gallium nitrate-treated animals, indicating that Hsp70-dependent cytoprotection was not present. In contrast, Hsp70 was detected in aortic tissues from heat- and stannous chloride-treated animals, indicating that these tissues were in a cytoprotected state that was also an anti-inflammatory state.

  15. 新型抗精神病药:阿塞那平%A new type of antipsychotic drug: asenapine

    Institute of Scientific and Technical Information of China (English)

    王娟; 李华芳


    阿塞那平(asenapine)是一种新型非典型抗精神病药物,为5-HT受体、α-肾上腺素受体、多巴胺D受体及组胺H受体的拮抗药,对M胆碱受体没有亲和力.阿塞那平主要用于治疗成人的急性精神分裂症,以及双相情感障碍Ⅰ型的急性躁狂发作或混合性发作(伴/不伴精神病性症状).现有资料提示该药具有良好的有效性和安全性,但仍需要长期使用的资料积累.%Asenapine as a new atypical antipsychotic agent is an antagonist of serotonin 5-HT, α-adrenergic, dopamine D and histamine H receptors, and displays very low affinities for muscarinic M receptor. Asenapine has been approved for the acute treatment of schizophrenia in adults and the acute treatment of manic or mixed episodes associated with bipolar I disorder, with or without psychotic features, in adults. Although the present clinical data show that it is effective and safe, further studies for long term observation are necessary.

  16. Supramolecular assembly in telechelic polymer blends (United States)

    Elliott, R.; Fredrickson, Glenn H.


    Equilibrium, supramolecular assembly in melt blends of two species of telechelic polymers with reversible bonding sites at both ends is theoretically investigated. The bonding between polymers, whether between like or dislike chains, is controlled by affinities of chain bonding set by specified bond energies. Low affinities, or low overall bond strength, results in a monodisperse population of unlinked chains while larger affinities cause longer chains to assemble, forming a polydisperse blend. We investigate sequentially blends with only homobonding (like chain), only heterobonding (dislike chain), and finally a mixed homo- and heterobonding melt. In the first case, the effects of longer chain assembly and polydispersity in a homogeneous melt and its bulk demixing transition are explored. In contrast with the homobonding case, large heterobonding affinities cause alternating blocks to assemble into multiblock copolymers, which can lead to mesophases. The weak bonding region between bulk phase separation and mesophase stability is investigated and a novel Lifshitz point is found indicating a region prone to emulsify. Mixed homo- and heterobonding systems are also examined. Polymeric segments of both species are modeled as flexible Gaussian threads and nonspecific interactions between dissimilar blocks are contactlike Flory-Huggins repulsions. The melts are assumed to be incompressible and all calculations are carried out within mean-field theory. A new integral equation formalism is developed for enumerating all linear species in these complex supramolecular systems, and the random phase approximation and numerical self-consistent field theory are invoked in this context to map out a variety of phase diagrams.

  17. Neuroimaging of the vesicular acetylcholine transporter by a novel 4-[{sup 18}F]fluoro-benzoyl derivative of 7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydro-benzo[1,4]oxazines

    Energy Technology Data Exchange (ETDEWEB)

    Sorger, Dietlind [Department of Nuclear Medicine, University of Leipzig, Leipzig 04103 (Germany)], E-mail:; Scheunemann, Matthias; Vercouillie, Johnny [Institute of Interdisciplinary Isotope Research, Leipzig 04318 (Germany); Grossmann, Udo [Department of Nuclear Medicine, University of Leipzig, Leipzig 04103 (Germany); Fischer, Steffen; Hiller, Achim; Wenzel, Barbara [Institute of Interdisciplinary Isotope Research, Leipzig 04318 (Germany); Roghani, Ali [Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock TX 39430 (United States); Schliebs, Reinhard [Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig 04109 (Germany); Steinbach, Joerg; Brust, Peter [Institute of Interdisciplinary Isotope Research, Leipzig 04318 (Germany); Sabri, Osama [Department of Nuclear Medicine, University of Leipzig, Leipzig 04103 (Germany)


    Phenylpiperidinyl-octahydro-benzo[1,4]oxazines represent a new class of conformationally restrained vesamicol analogues. Derived from this morpholine-fused vesamicol structure, a new fluorine-18-labeled 4-fluorobenzoyl derivative ([{sup 18}F]FBMV) was synthesized with an average specific activity of 75 GBq/{mu}mol and a radiochemical purity of 99%. The radiolabeling method included an exchange reaction of a 4-nitro group of the precursor by fluorine-18, a reduction procedure to eliminate excess of the nitro compound, followed by a high-performance liquid chromatography purification. [{sup 18}F]FBMV demonstrates (i) a moderate lipophilic character with a logD{sub pH7.0} 1.8{+-}0.10; (ii) a considerable binding affinity to the vesicular acetylcholine transporter (VAChT) (K{sub i}=27.5 nM), as determined using PC12 cells transfected with a VAChT cDNA, and a low affinity to {sigma}{sub 1,2} receptors (K{sub i} >3000 nM); (iii) a good uptake into the rat and pig brains; (iv) a typical accumulation in the VAChT-containing brain regions; and (v) an approximately 20% reduction in cortical tracer binding after a specific cholinergic lesion using 192IgG-saporin. [{sup 18}F]FBMV exhibits another PET marker within the group of vesamicol derivatives that demonstrates potentials in imaging brain cholinergic deficits, while its usefulness in clinical practice must await further investigation.

  18. Bystander activation of CD8+ T lymphocytes during experimental mycobacterial infection. (United States)

    Gilbertson, Brad; Germano, Susie; Steele, Pauline; Turner, Steven; Fazekas de St Groth, Barbara; Cheers, Christina


    Infection of C57BL/6 mice with Mycobacterium avium leads to the activation of both CD4+ and CD8+ gamma interferon (IFN-gamma)-producing T cells, although the CD8+ cells play no role in protection against infection. Using transfer of different lines of transgenic T cells with T-cell receptors (TCRs) which recognize irrelevant antigens, we show here that transferred CD8+ T cells from two of the three lines were activated to the same degree as the host cells, suggesting that the majority of the IFN-gamma-producing CD8+ T cells of the host represented bystander activation. The third line, specific for the male HY antigen, showed no activation. Activation required the participation of the CD28 coreceptor on T cells and was unaffected by the removal of CD44(hi) (memory phenotype) T cells. The transferred CD8+ T cells proliferated in vivo, although this was not essential for IFN-gamma production. Taken together, these data are highly reminiscent of homeostatic proliferation of TCR transgenic T cells upon transfer to lymphopenic hosts, and suggest low-affinity stimulation through the TCR, possibly by self peptides. The findings are discussed in relation to homeostatic proliferation and their significance in the possible induction of autoimmune disease.

  19. Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues. (United States)

    Kawakami, Hironori; Ohashi, Eiji; Kanamoto, Shota; Tsurimoto, Toshiki; Katayama, Tsutomu


    In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC.

  20. MHC class I phenotype and function of human beta 2-microglobulin transgenic murine lymphocytes

    DEFF Research Database (Denmark)

    Bjerager, L; Pedersen, L O; Bregenholt, S;


    Lymphoid cells from beta 2-microglobulin (beta 2m) knockout mice transgenic for human (h) beta 2m (C57BL/10 m beta 2m-/h beta 2m+) were compared with normal mice for their binding to exogenously added h beta 2m, binding to a H-2Db peptide and for functional activity in a one-way allogenic MLC....... Based on data from cellular binding studies, Scatchard analyses and flow cytometry, it is concluded that exogenous h beta 2m does not bind to hybrid MHC class I (MHC-I) molecules composed of mouse heavy chain/h beta 2m molecules expressed on lymphocytes of transgenic mice. Immunoprecipitation and SDS...... binds radiolabelled peptide in the absence of exogenous added h beta 2m suggesting that a stable fraction of hybrid H-2Db molecules is empty or contain peptides with very low affinity. In a one-way allogenic mixed lymphocyte culture, transgenic splenocytes were found to be far less stimulatory than...

  1. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. (United States)

    Zachariou, M; Scopes, R K


    The enzymes responsible for sorbitol formation in Zymomonas mobilis were investigated. A previously undescribed enzyme catalyzes the intermolecular oxidation-reduction of glucose and fructose to form gluconolactone and sorbitol. This enzyme has been purified; it had a subunit size of 40,000 daltons and is probably tetrameric at low pH. It contained tightly bound NADP as the hydrogen carrier and did not require any added cofactor for activity. In addition, a gluconolactonase has been isolated, although not completely purified. Together these two enzymes were capable of completely converting a 54% (wt/vol) equimolar mixture of glucose and fructose to sorbitol and sodium gluconate at the optimum pH of close to 6.2. The oxidoreductase had low affinities for its substrates, but natural environmental conditions would expose it to high concentrations of sugars. The amount of the enzyme in Z. mobilis cells was sufficient to account for the rate of sorbitol formation in vivo. However, the enzyme was present in the highest amounts when the cells were grown on glucose alone, and it was repressed by the presence of fructose; this was not the case with the gluconolactonase.

  2. Metal-Binding Characteristics of the Gamma-Glutamyl Capsular Polymer of Bacillus licheniformis ATCC 9945. (United States)

    McLean, R J; Beauchemin, D; Clapham, L; Beveridge, T J


    The metal-binding affinity of the anionic poly-gamma-d-glutamyl capsule of Bacillus licheniformis was investigated by using Na, Mg, Al, Ca, Cr, Mn, Fe, Ni, and Cu. Purified capsule was suspended in various concentrations of the chloride salts of the various metals, and after dialysis the bound metals were analyzed either by graphite furnace atomic absorption spectroscopy or by inductively coupled plasma-mass spectrometry. Exposure of purified capsule to excess concentrations of Na revealed it to contain 8.2 mumol of anionic sites per mg on the basis of Na binding. This was confirmed by titration of the capsule with HCl and NaOH. Other metal ions were then added in ionic concentrations equivalent to 25, 50, 75, 100, 200, and 400% of the available anionic sites. The binding characteristics varied with the metal being investigated. Addition of Cu, Al, Cr, or Fe induced flocculation. These metal ions showed the greatest affinity for B. licheniformis capsule in competitive-binding experiments. Flocculation was not seen with the addition of other metal ions. With the exception of Ni and Fe all capsule-metal-binding sites readily saturated. Ni had low affinity for the polymer, and its binding was increased at high metal concentrations. Fe binding resulted in the development of rust-colored ferrihydrite which itself could bind additional metal. Metal-binding characteristics of B. licheniformis capsule appear to be influenced by the chemical and physical properties of both the capsule and the metal ions.

  3. Structure-function relationships for the interleukin 2 receptor system

    Directory of Open Access Journals (Sweden)

    Richard J. Robb


    Full Text Available Receptors for interleukin 2 (IL-2 esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta] chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.

  4. Somatic mutation of immunoglobulin V(H)6 genes in human infants. (United States)

    Ridings, J; Dinan, L; Williams, R; Roberton, D; Zola, H


    Infants respond to antigen by making antibody that is generally of low affinity for antigen. Somatic hypermutation of immunoglobulin genes, and selection of cells expressing mutations with improved affinity for antigen, are the molecular and cellular processes underlying the maturation of antibody affinity. We have reported previously that neonates and infants up to 2 months of age, including individuals undergoing strong immunological challenge, show very few mutated V(H)6 sequences, with low mutation frequencies in mutated sequences, and little evidence of selection. We have now examined immunoglobulin genes from healthy infants between 2 and 10 months old for mutation and evidence of selection. In this age group, the proportion of V(H)6 sequences which are mutated and the mutation frequency in mutated sequences increase with age. There is evidence of selection from 6 months old. These results indicate that the process of affinity maturation, which depends on cognate T-B cell interaction and functional germinal centres, is approaching maturity from 6 months old.

  5. Somatic mutation of immunoglobulin VH6 genes in human infants (United States)

    Ridings, J; Dinan, L; Williams, R; Roberton, D; Zola, H


    Infants respond to antigen by making antibody that is generally of low affinity for antigen. Somatic hypermutation of immunoglobulin genes, and selection of cells expressing mutations with improved affinity for antigen, are the molecular and cellular processes underlying the maturation of antibody affinity. We have reported previously that neonates and infants up to 2 months of age, including individuals undergoing strong immunological challenge, show very few mutated VH6 sequences, with low mutation frequencies in mutated sequences, and little evidence of selection. We have now examined immunoglobulin genes from healthy infants between 2 and 10 months old for mutation and evidence of selection. In this age group, the proportion of VH6 sequences which are mutated and the mutation frequency in mutated sequences increase with age. There is evidence of selection from 6 months old. These results indicate that the process of affinity maturation, which depends on cognate T–B cell interaction and functional germinal centres, is approaching maturity from 6 months old. PMID:9764600

  6. Activity assays of mammalian thioredoxin and thioredoxin reductase: fluorescent disulfide substrates, mechanisms, and use with tissue samples. (United States)

    Montano, Sergio J; Lu, Jun; Gustafsson, Tomas N; Holmgren, Arne


    Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin-glutathione disulfide (Di-E-GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC-insulin), which displayed higher fluorescence on disulfide reduction. Di-E-GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC-insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.

  7. Antigen transfer from exosomes to dendritic cells as an explanation for the immune enhancement seen by IgE immune complexes.

    Directory of Open Access Journals (Sweden)

    Rebecca K Martin

    Full Text Available IgE antigen complexes induce increased specific T cell proliferation and increased specific IgG production. Immediately after immunization, CD23(+ B cells capture IgE antigen complexes, transport them to the spleen where, via unknown mechanisms, dendritic cells capture the antigen and present it to T cells. CD23, the low affinity IgE receptor, binds IgE antigen complexes and internalizes them. In this study, we show that these complexes are processed onto B-cell derived exosomes (bexosomes in a CD23 dependent manner. The bexosomes carry CD23, IgE and MHC II and stimulate antigen specific T-cell proliferation in vitro. When IgE antigen complex stimulated bexosomes are incubated with dendritic cells, dendritic cells induce specific T-cell proliferation in vivo, similar to IgE antigen complexes. This suggests that bexosomes can provide the essential transfer mechanism for IgE antigen complexes from B cells to dendritic cells.

  8. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator

    DEFF Research Database (Denmark)

    Jornil, Jakob; Jensen, Klaus Gjervig; Larsen, Frank


    the importance of the identified paroxetine-metabolizing P450 isoforms for human metabolism, taking mechanism-based inhibition into account. The amount of active hepatic CYP2D6 and CYP3A4 (not inactivated by mechanism-based inhibition) was also estimated by Simcyp. For extensive and poor metabolizers of CYP2D6......We identify here for the first time the low-affinity cytochrome P450 (P450) isoforms that metabolize paroxetine, using cDNA-expressed human P450s measuring substrate depletion and paroxetine-catechol (product) formation by liquid chromatography-tandem mass spectrometry. CYP1A2, CYP2C19, CYP2D6, CYP......3A4, and CYP3A5 were identified as paroxetine-catechol-forming P450 isoforms, and CYP2C19 and CYP2D6 were identified as metabolizing P450 isoforms by substrate depletion. Michaelis-Menten constants K(m) and V(max) were determined by product formation and substrate depletion. Using selective...

  9. Differential distribution of calcium stores in paramecium cells. Occurrence of a subplasmalemmal store with a calsequestrin-like protein. (United States)

    Plattner, H; Habermann, A; Kissmehl, R; Klauke, N; Majoul, I; Söling, H D


    We have analyzed in Paramecium cells the occurrence and intracellular distribution of the high capacity/low affinity calcium-binding proteins, calsequestrin (CS) and calreticulin (CR) using antibodies against CS from rat skeletal muscle and against CR from rat liver, respectively. As revealed by Western blots, a CS-like protein isolated by affinity chromatography from Paramecium cells comigrated with CS isolated from rat skeletal muscle. The immunoreactivity of this 53 kDa protein band was blocked when the antibodies had been preadsorbed with purified rat CS. A band of identical molecular size was shown to bind 45Ca in overlays. By immunofluorescence and immunogold labeling this CS-like protein was localized selectively to the extended subplasmalemmal calcium stores, the "alveolar sacs", which cover almost the entire cell surface. Concomitantly the 53 kDa 45Ca-binding band became increasingly intense in overlays as we increasingly enriched alveolar sacs. Antibodies against rat CR react with a 61 kDa band but do not cross-react with CS-like protein in Paramecium. These antibodies selectively stained intracellular reticular structures, identified bona fide as endoplasmic reticulum.

  10. Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction. (United States)

    Braverman, Alan S; Tallarida, Ronald J; Ruggieri, Michael R


    M(3) muscarinic receptors mediate cholinergic-induced contraction in most smooth muscles. However, in the denervated rat bladder, M(2) receptors participate in contraction because M(3)-selective antagonists [para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and 4-DAMP] have low affinities. However, the affinity of the M(2)-selective antagonist methoctramine in the denervated bladder is consistent with M(3) receptor mediating contraction. It is possible that two pathways interact to mediate contraction: one mediated by the M(2) receptor and one by the M(3) receptor. To determine whether an interaction exists, the inhibitory potencies of combinations of methoctramine and p-F-HHSiD for reversing cholinergic contractions were measured. In normal bladders, all combinations gave additive effects. In denervated bladders, synergistic effects were seen with the 10:1 and 1:1 (methoctramine:p-F-HHSiD wt/wt) combinations. After application of the sarcoplasmic reticulum ATPase inhibitor thapsigargin to normal tissue, the 10:1 and 1:1 ratios became synergistic, mimicking denervated tissue. Thus in normal bladders both M(2) and M(3) receptors can induce contraction. In the denervated bladder, the M(2) and the M(3) receptors interact in a facilitatory manner to mediate contraction.

  11. Role of tertiary structures on the Root effect in fish hemoglobins. (United States)

    Ronda, Luca; Merlino, Antonello; Bettati, Stefano; Verde, Cinzia; Balsamo, Anna; Mazzarella, Lelio; Mozzarelli, Andrea; Vergara, Alessandro


    Many fish hemoglobins exhibit a marked dependence of oxygen affinity and cooperativity on proton concentration, called Root effect. Both tertiary and quaternary effects have been evoked to explain the allosteric regulation brought about by protons in fish hemoglobins. However, no general rules have emerged so far. We carried out a complementary crystallographic and microspectroscopic characterization of ligand binding to crystals of deoxy-hemoglobin from the Antarctic fish Trematomus bernacchii (HbTb) at pH6.2 and pH8.4. At low pH ligation has negligible structural effects, correlating with low affinity and absence of cooperativity in oxygen binding. At high pH, ligation causes significant changes at the tertiary structural level, while preserving structural markers of the T state. These changes mainly consist in a marked displacement of the position of the switch region CD corner towards an R-like position. The functional data on T-state crystals validate the relevance of the crystallographic observations, revealing that, differently from mammalian Hbs, in HbTb a significant degree of cooperativity in oxygen binding is due to tertiary conformational changes, in the absence of the T-R quaternary transition. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.

  12. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity. (United States)

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J


    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  13. ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) are not primary resistance factors for cabazitaxel

    Institute of Scientific and Technical Information of China (English)

    Rishil J Kathawala; Yi-Jun Wang; Suneet Shukla; Yun-Kai Zhang; Saeed Alqahtani; Amal Kaddoumi; Suresh V Ambudkar; Charles R Ashby Jr; Zhe-Sheng Chen


    Introduction:ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells. Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette (ABC) transporters. Methods:We determined the effects of cabazitaxel, a novel tubulin-binding taxane, and paclitaxel on paclitaxel-resistant, ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant, ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter. Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2, LLC-MDR1-WT, and HEK293/ABCC10 cells. Moreover, cabazitaxel had low efficacy, whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1, indicating a direct interaction of both drugs with the transporter. Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel, suggesting that cabazitaxel may have a low affinity for these efflux transporters.

  14. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2)

    DEFF Research Database (Denmark)

    Bröer, Angelika; Tietze, Nadine; Kowalczuk, Sonja;


    Transporters of the SLC6 (solute carrier 6) family play an important role in the removal of neurotransmitters in brain tissue and in amino acid transport in epithelial cells. In the present study, we demonstrate that mouse v7-3 (slc6a15) encodes a transporter for neutral amino acids...... low-affinity substrates of the transporter, with K(0.5) values in the millimolar range. Transport of neutral amino acids via B(0)AT2 was Na+-dependent, Cl--independent and electrogenic. Superfusion of mouse B(0)AT2-expressing oocytes with amino acid substrates generated robust inward currents. Na......+-activation kinetics of proline transport and uptake under voltage clamp suggested a 1:1 Na+/amino acid co-transport stoichiometry. Susbtrate and co-substrate influenced each other's K(0.5) values, suggesting that they share the same binding site. A mouse B(0)AT2-like transport activity was detected in synaptosomes...

  15. How do we choose between atypical antipsychotics? The advantages of amisulpride. (United States)

    Mortimer, Ann M


    Clinician choice of an atypical antipsychotic may depend on a number of factors such as perceived efficacy, tolerability and cost. It is also important that the choice of treatment takes into consideration the previous response to treatment, experience of side-effects and personal clinical characteristics. The receptor-affinity profiles of the atypical antipsychotics differ; with the exception of amisulpride, a selective D2/D3 antagonist, all the atypical antipsychotics exhibit a greater affinity for the serotonin-2A receptors than dopamine receptors. However, there is no evidence that the variation in receptor affinities is relevant to efficacy. Indeed, the crucial factor may be fast dissociation from low affinity for the D2 receptor. Tolerability also varies between the atypical antipsychotics and the side-effect profile may be related to the receptor-affinity profile of the individual drugs. Extrapyramidal side-effects are generally less of a problem with most atypical drugs than with conventional drugs, but weight gain, loss of glycaemic control, sedation and hyperprolactinaemia remain problematic in some patients. Amisulpride is effective for the treatment of both positive and negative symptoms, and is well tolerated with regard to weight gain, glucose tolerance and sedation. In two clinical trials, the AMIRIS and SOLIANOL studies, amisulpride demonstrated clear advantages over some other atypical antipsychotics with respect to negative symptoms, depressive symptoms and weight gain.

  16. Pharmacology of the sphingosine-1-phosphate signalling system. (United States)

    Zu Heringdorf, Dagmar Meyer; Ihlefeld, Katja; Pfeilschifter, Josef


    The recent success of FTY720 (Fingolimod, Gilenya(®)), which has been approved for the treatment of relapsing-remitting multiple sclerosis and is the first-in-class sphingosine-1-phosphate (S1P) receptor modulating drug, has boosted the interest in further drug development in this area. Several selective S1P1 receptor-modulating drugs are being investigated in clinical trials for the treatment of diverse autoimmune disorders. Sphingosine kinase inhibitors are under development for the treatment of cancer, aberrant angiogenesis and inflammatory diseases; an inhibitor of SK2 with relatively low affinity is being analysed in patients with advanced solid tumours. While an indirect S1P lyase inhibitor has just failed the proof of concept in patients with rheumatoid arthritis, S1P lyase is still a promising target for the treatment of inflammatory and autoimmune diseases. Another approach is the development of S1P-scavenging or -clearing agents, including a monoclonal S1P antibody that has successfully passed phase I clinical trials and will be further developed for age-related macular degeneration.

  17. Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level.

    Directory of Open Access Journals (Sweden)

    Mustapha Aouida

    Full Text Available Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3Δ nor sam3Δ single mutant is defective in polyamine transport, while the dur3Δ sam3Δ double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2Δ mutant. Studies of Agp2 localization indicate that in the double mutant dur3Δ sam3Δ, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport.

  18. Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level. (United States)

    Aouida, Mustapha; Rubio-Texeira, Marta; Rubio Texeira, Marta; Thevelein, Johan M; Poulin, Richard; Ramotar, Dindial


    Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3Δ nor sam3Δ single mutant is defective in polyamine transport, while the dur3Δ sam3Δ double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2Δ mutant. Studies of Agp2 localization indicate that in the double mutant dur3Δ sam3Δ, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport.

  19. Myeloma light chains are ligands for cubilin (gp280). (United States)

    Batuman, V; Verroust, P J; Navar, G L; Kaysen, J H; Goda, F O; Campbell, W C; Simon, E; Pontillon, F; Lyles, M; Bruno, J; Hammond, T G


    Although myeloma light chains are known to undergo receptor-mediated endocytosis in the kidney, the molecular identity of the receptor has not been characterized. We examined the interaction between cubilin (gp280) and four species of light chains isolated from the urine of patients with multiple myeloma. Four lines of evidence identify cubilin, a giant glycoprotein receptor, which is restricted in distribution to endocytic scavenger pathways and which has potent effects on endosomal trafficking, as a potentially physiologically relevant binding site for light chains: 1) light chains coeluted during immunoaffinity purification of cubilin; 2) polyclonal antisera to cubilin but not control sera, displaced human light chain binding from rat renal brush-border membranes; 3) cubilin bound to multiple species of light chains during surface plasmon resonance; 4) anti-cubilin antiserum interfered with light chain endocytosis by visceral yolk sac epithelial cells. However, both binding of light chains to brush-border membranes and endocytosis of light chains by yolk sac epithelial cells were only partially inhibited by anticubilin antibodies, suggesting presence of additional or alternate binding sites for light chains. Excess light chain had a potent inhibitory effect on endosomal fusion in vitro. Binding showed dose and time-dependent saturability with low-affinity, high-capacity equilibrium binding parameters. These data demonstrate that cubilin plays a role in the endocytosis and trafficking of light chains in renal proximal tubule cells.

  20. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. (United States)

    Mahady, Laura J; Perez, Sylvia E; Emerich, Dwaine F; Wahlberg, Lars U; Mufson, Elliott J


    Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75(NTR) . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75(NTR) -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.

  1. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in rats: effect of oxygen affinity. (United States)

    Fukumoto, Dai; Kawaguchi, Akira T; Haida, Munetaka; Yamano, Mariko; Ogata, Yoshitaka; Tsukada, Hideo


    Liposome-encapsulated hemoglobin (LEH) with a low oxygen affinity (l-LEH, P(50) = 45 mm Hg) was found to be protective in the rodent and primate models of ischemic stroke. This study investigated the role of LEH with a high O(2) affinity (h-LEH, P(50) = 10 mm Hg) in its protective effect on brain ischemia. The extent of cerebral infarction was determined 24 h after photochemically induced thrombosis of the middle cerebral artery from the integrated area of infarction detected by triphenyltetrazolium chloride staining in rats receiving various doses of h-LEH as well as l-LEH. Both h-LEH and l-LEH significantly reduced the extent of cortical infarction. h-LEH remained protective at a lower concentration (minimal effective dose [MED]: 0.08 mL/kg) than l-LEH (MED: 2 mL/kg) in the cortex. h-LEH reduced the infarction extent in basal ganglia as well (MED: 0.4 mL/kg), whereas l-LEH provided no significant protection. h-LEH provided better protection than l-LEH. The protective effect of both high- and low-affinity LEH may suggest the importance of its small particle size (230 nm) as compared to red blood cells. The superiority of h-LEH over l-LEH supports an optimal O(2) delivery to the ischemic penumbra as the mechanism of action in protecting against brain ischemia and reperfusion.

  2. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly (United States)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia


    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  3. Lymphocyte Proliferation Response to S Antigen in Patients with Uveitis and Optic Neuritis

    Institute of Scientific and Technical Information of China (English)

    PeixianRen; XiuzhenYan


    Purpose:To evaluate the autoimmunity which may play a major role in the etiolo-gy of certain forms of uveitis and optic neuritis.Methods:lymphocyte proliferation response to retinal soluble antigen in vitro by gy of certain forms of uveitis and optic neuritis.Methods:Lymphocyte proliferation response toretinal soluble antigen in vitro by incoperation3H-thymidine withDNA was tested in 115patients with anterior u-veitis,posterior/pan-uveitis,optic neuritis,and 50volunteers with unrelated diseases such as congenital ptosis,strabismus,or completely healthy persons as control.Results:The positive rate of lymphocyte stimulation was34%(18/53)in anteri-or uveitis,41.5%(17/41)in posterior/pan-uveitis,and57.1%(12/21)in optic euritis,The results in the experimental groups were significantly different from those of the control group(x2=14.76,P<0.05,x2=19.14P<0.005,x2=26.38,P<0.005,respectively).Conclusion:The autoimmunity plays a role in the patogenesis in certain forms of uveitis and optic neuritis,Such immune responses may be secondary to the expo-sition or release of retinal antigens by various causes,leading to activation or augmentation of meager or low-affinity S antigen specific lymphocytes which may preexist in the circulation and starting the pathogenic autoimmune process.Eye Science 1995;11:120-123.

  4. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym.). (United States)

    Appert, C; Logemann, E; Hahlbrock, K; Schmid, J; Amrhein, N


    Near-full-length cDNAs for the four phenylalanine ammonia-lyase (PAL) isoenzymes in parsley (Petroselium crispum Nym.) were cloned and the complete amino acid sequences deduced. Fusion proteins with glutathione S-transferase were expressed in Escherichia coli, purified and cleaved. All of the resulting phenylalanine ammonia-lyase proteins, as well as the fusion proteins, were catalytically active. The turnover number of one selected isoenzyme, PAL-1, was estimated to be around 22 s-1 for each active site. In contrast to a certain degree of differential expression in various parts of parsley plants, the four phenylalanine ammonia-lyase isoenzymes exhibited very similar apparent Km values for L-phenylalanine (15-24.5 microM) as well as identical temperature (58 degrees C) and pH (8.5) optima. All of them were competitively inhibited by (E)-cinnamate with similar efficiency (Ki values: 9.1-21.5 microM), lacked cooperative behaviour, and accepted L-tyrosine as a substrate with low affinity (Km values: 2.6-7.8 mM). These results suggest that the occurrence of multiple gene copies has a function other than encoding isoenzymes with different enzyme kinetic properties.

  5. Chick RGS2L demonstrates concentration-dependent selectivity for pertussis toxin-sensitive and -insensitive pathways that inhibit L-type Ca2+ channels. (United States)

    Tosetti, Patrizia; Parente, Valeria; Taglietti, Vanni; Dunlap, Kathleen; Toselli, Mauro


    In neuronal cells, the influx of Ca2+ ions through voltage-dependent L-type calcium (L) channels couples excitation to multiple cellular functions. In addition to voltage, several neurotransmitters, hormones and cytokines regulate L channel gating via binding to G-protein-coupled receptors. Intracellular molecules that modify G-protein activity - such as regulator of G-protein-signalling (RGS) proteins - are therefore potential candidates for regulating Ca2+ influx through L channels. Here we show that a novel RGS2 splice variant from chick dorsal root ganglion (DRG) neurons, RGS2L, reduces bradykinin (BK)-mediated inhibition of neuronal L channels and accelerates recovery from inhibition. Chick RGS2 reduces the inhibition mediated by both the pertussis toxin (PTX)-sensitive (Gi/o-coupled) and the PTX-insensitive (presumably Gq/11-coupled) pathways. However, we demonstrate for the first time in a living cell that the extent of coupling to each pathway varies with RGS2L concentration. A low concentration of recombinant chick RGS2L (10 nM) preferentially reduces the inhibition mediated by the PTX-insensitive pathway, whereas a 100-fold higher concentration attenuates both PTX-sensitive- and PTX-insensitive-mediated components equally. Our data suggest that factors promoting RGS2L gene induction may regulate Ca2+ influx through L channels by recruiting low-affinity interactions with Gi/o that are absent at basal RGS2L levels.

  6. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Alderete, J.F.


    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites.

  7. ESR Study on calcineurin

    Institute of Scientific and Technical Information of China (English)

    魏群; 肖方祥; 卢景芬; 周捷


    X-band electron spin resonance spectroscopy was used to investigate the binding of Mn2+tothe apo-forms of calcineurin and its A and B subunits.The results indicated the presence of 2Mn2+binding sites of different affinities(20μmol/L and 60μmol/L)in the calcineurin A subunit and 4Mn2+binding sites in the calcineurin subunit B,2 high affinity and 2 low affinity binding sites withKd’s of 4μmol/L and 90μmol/L,respectively.Interestingly and quite surprisingly,Mn2+binding to theholoenzyme was characterized by only 2 binding sites with Kd’s of 7μmol/L and 33μmol/L.However,inthe presence of calmodulin about 10 Mn2+sites were detected,and the Mn2+calmodulin-calcineurin complexexhibited enzymatic activity.These results,based on direct spectral measurements of the metal ligand,demonstrate that Mn2+binds to both free subunits of calcineurin in a manner distinct from binding to theholoenzyme.Also,the data suggest that conformational changes occur upon heterodimer formation andassociation of the holoenzyme with the regulatory protein calmodulin.

  8. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. (United States)

    Lei, Saobo; McBain, Chris J


    Two distinct forms of long-term depression (LTD) exist at mossy fiber synapses between dentate gyrus granule cells and hippocampal CA3 stratum lucidum interneurons. Although induction of each form of LTD requires an elevation of postsynaptic intracellular Ca2+, at Ca2+-impermeable AMPA receptor (CI-AMPAR) synapses, induction is NMDA receptor (NMDAR) dependent, whereas LTD at Ca2+-permeable AMPA receptor (CP-AMPAR) synapses is NMDAR independent. However, the expression locus of either form of LTD is not known. Using a number of criteria, including the coefficient of variation, paired-pulse ratio, AMPA-NMDA receptor activity, and the low-affinity AMPAR antagonist gamma-D-glutamyl-glycine, we demonstrate that LTD expression at CP-AMPAR synapses is presynaptic and results from reduced transmitter release, whereas LTD expression at CI-AMPAR synapses is postsynaptic. The N-ethylmaleimide-sensitive fusion protein-AP2-clathrin adaptor protein 2 inhibitory peptide pep2m occluded LTD expression at CI-AMPAR synapses but not at CP-AMPAR synapses, confirming that CI-AMPAR LTD involves postsynaptic AMPAR trafficking. Thus, mossy fiber innervation of CA3 stratum lucidum interneurons occurs via two parallel systems targeted to either Ca2+-permeable or Ca2+-impermeable AMPA receptors, each with a distinct expression locus for long-term synaptic plasticity.

  9. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. (United States)

    BenFarhat, Dalel; Dammak, Mariam; Khedher, Saoussen Ben; Mahfoudh, Salima; Kammoun, Schema; Tounsi, Slim


    Bacillus thuringiensis kurstaki strain BNS3 produces parasporal crystals formed by Cry1Aa, Cry1Ac and Cry2Aa delta-endotoxins. In a previous work, we showed that the latter exhibited individually, a weak insecticidal activity against Ephestia kuehniella. In order to improve their toxicities, we studied the combined effect of each delta-endotoxin with X. nematophila cells on E. kuehniella larvae growth. Xenorhabdus cells were used in combination with spore crystal mixture of the wild strain BNS3, known to be active against E. kuehniella, but no improvement in toxicity was observed. This could be due to the high efficiency of BNS3 crystals against this insect. However, when X. nematophila was combined with each of Cry1Aa, Cry1Ac and Cry2Aa, improvement of toxicity was noticed. The best improvements were obtained with Cry1Ac and Cry2Aa, which are more toxic to E. kuehniella than Cry1Aa. The difference in toxicity improvement was attributed to the low affinity of Cry1Aa to BBMV receptors, compared to those of Cry1Ac and Cry2Aa. This synergism between Cry toxins and Xenorhabdus cells could be exploited on control target insect, particularly in case of resistance to Cry toxins.

  10. Receptor pre-clustering and T cell responses: insights into molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Mario eCastro


    Full Text Available T~cell activation, initiated by T~cell receptor (TCR mediated recognition of pathogen derived peptides presented by major histocompatibility complex class I or II molecules (pMHC, shows exquisite specificity and sensitivity, even though the TCR-pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T~cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR-pMHC binding and TCR triggering an open question. We formulate a mathematical model to characterise the pre-clustering of T~cell receptors (TCRs on the surface of T~cells, motivated by the experimentally-observed distribution of TCR clusters on the surface of naive and memory T~cells. We extend a recently-introduced stochastic criterion to compute the timescales of T~cell responses, assuming that ligand-induced cross-linked TCR is the minimum signalling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favouring the existence of clusters are required to explain the difference between naive and memory T~cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models.

  11. Conserved Aspartic Acid Residues Lining the Extracellular Loop I of Sodium-coupled Bile Acid Transporter ASBT Interact with Na+ and 7α-OH Moieties on the Ligand Cholestane Skeleton* (United States)

    Hussainzada, Naissan; Da Silva, Tatiana Claro; Zhang, Eric Y.; Swaan, Peter W.


    Functional contributions of residues Val-99—Ser-126 lining extracellular loop (EL) 1 of the apical sodium-dependent bile acid transporter were determined via cysteine-scanning mutagenesis, thiol modification, and in silico interpretation. Despite membrane expression for all but three constructs (S112C, Y117C, S126C), most EL1 mutants (64%) were inactivated by cysteine mutation, suggesting a functional role during sodium/bile acid co-transport. A negative charge at conserved residues Asp-120 and Asp-122 is required for transport function, whereas neutralization of charge at Asp-124 yields a functionally active transporter. D124A exerts low affinity for common bile acids except deoxycholic acid, which uniquely lacks a 7α-hydroxyl (OH) group. Overall, we conclude that (i) Asp-122 functions as a Na+ sensor, binding one of two co-transported Na+ ions, (ii) Asp-124 interacts with 7α-OH groups of bile acids, and (iii) apolar EL1 residues map to hydrophobic ligand pharmacophore features. Based on these data, we propose a comprehensive mechanistic model involving dynamic salt bridge pairs and hydrogen bonding involving multiple residues to describe sodium-dependent bile acid transporter-mediated bile acid and cation translocation. PMID:18508772

  12. A quantitative method to discriminate between non-specific and specific lectin-glycan interactions on silicon-modified surfaces. (United States)

    Yang, Jie; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal


    Essential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces. An efficient conjugation protocol featuring a key "click"-based coupling step has been developed which ensures the obtention of interfaces with controlled glycan density. The adsorption behavior of these newly developed interfaces with the lectins, Lens culinaris and Peanut agglutinin, has been probed using quantitative IR-ATR and the data interpreted using various isothermal models. The analysis reveals that protein physisorption to the interface is more prevalent than specific chemisorption for the majority of washing protocols investigated. Physisorption can be greatly suppressed through application of a strong surfactinated rinse. The coexistence of chemisorption and physisorption processes is further demonstrated by quantification of the amounts of adsorbed proteins distributed on the surface, in correlation with the results obtained by atomic force microscopy (AFM). Taken together, the data demonstrates that the nonspecific adsorption of proteins to these glycan-terminated surfaces can be effectively eliminated through the proper control of the chemical structure of the surface monolayer combined with the implementation of an appropriate surface-rinse protocol.

  13. Applications of a catch and release electrospray ionization mass spectrometry assay for carbohydrate library screening. (United States)

    El-Hawiet, Amr; Shoemaker, Glen K; Daneshfar, Rambod; Kitova, Elena N; Klassen, John S


    Applications of a catch and release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against target proteins are described. Direct ESI-MS measurements were performed on solutions containing a target protein (a single chain antibody, an antigen binding fragment, or a fragment of a bacterial toxin) and a library of carbohydrates containing multiple specific ligands with affinities in the 10(3) to 10(6) M(-1) range. Ligands with moderate affinity (10(4) to 10(6) M(-1)) were successfully detected from mixtures containing >200 carbohydrates (at concentrations as low as 0.25 μM each). Additionally, the absolute affinities were estimated from the abundance of free and ligand-bound protein ions determined from the ESI mass spectrum. Multiple low affinity ligands (~10(3) M(-1)) were successfully detected in mixtures containing >20 carbohydrates (at concentrations of ~10 μM each). However, identification of specific interactions required the use of the reference protein method to correct the mass spectrum for the occurrence of nonspecific carbohydrate-protein binding during the ESI process. The release of the carbohydrate ligands, as ions, was successfully demonstrated using collision-induced dissociation performed on the deprotonated ions of the protein-carbohydrate complexes. The use of ion mobility separation, performed on deprotonated carbohydrate ions following their release from the complex, allowed for the positive identification of isomeric ligands.

  14. Influence of lidocaine on ouabain-induced inotropic response in rat atria. (United States)

    Sterin-Borda, Leonor; Orman, Betina; Reina, Silvia; Borda, Enri


    In this paper we demonstrated that lidocaine broadens the therapeutic range of ouabain action having a protective effect on ouabain-induced toxicity on rat atria. The lidocaine effect on therapeutic ouabain action was associated with the increase in the sensitivity of Na(+)-K(+)-ATPase related to a decreased in the equilibrium dissociation constant (K(d)) of high affinity binding sites. Lidocaine suppressed the ouabain-induced tonotropic effect and arrhythmias, decreasing the number of low affinity binding sites (B(max)) without changes in K(d). Blockade of Na(+)-Ca(2+) exchange with KB-R7943 or dual Na(+)-Ca(2+) channel with flunarizine, mimicked lidocaine effect increasing ouabain therapeutic action, extending its concentration range tolerated, delaying the onset of contracture. Lidocaine itself triggered negative inotropic response at high concentration. This effect was increased in the presence of flunarizine and verapamil but not by the inhibition of calcium/calmodulin with W-7. The mechanism underlying the lidocaine-induced negative inotropic response, appears to be different that underlying the positive inotropic effect on ouabain action. This study provides evidence that lidocaine can interact with the same or similar binding sites for ouabain in rat atrial tissue, providing a protective effect on ouabain-induced changes in contractility. The contribution of Na(+)-Ca(2+) exchange and/or Ca(2+) overload on lidocaine effect is discussed.

  15. An Engineered N-Cadherin Substrate for Differentiation, Survival, and Selection of Pluripotent Stem Cell-Derived Neural Progenitors.

    Directory of Open Access Journals (Sweden)

    Amranul Haque

    Full Text Available For stem cell-based treatment of neurodegenerative diseases a better understanding of key developmental signaling pathways and robust techniques for producing neurons with highest homogeneity are required. In this study, we demonstrate a method using N-cadherin-based biomimetic substrate to promote the differentiation of mouse embryonic stem cell (ESC- and induced pluripotent stem cell (iPSC-derived neural progenitor cells (NPCs without exogenous neuro-inductive signals. We showed that substrate-dependent activation of N-cadherin reduces Rho/ROCK activation and β-catenin expression, leading to the stimulation of neurite outgrowth and conversion into cells expressing neural/glial markers. Besides, plating dissociated cells on N-cadherin substrate can significantly increase the differentiation yield via suppression of dissociation-induced Rho/ROCK-mediated apoptosis. Because undifferentiated ESCs and iPSCs have low affinity to N-cadherin, plating dissociated cells on N-cadherin-coated substrate increase the homogeneity of differentiation by purging ESCs and iPSCs (~30% from a mixture of undifferentiated cells with NPCs. Using this label-free cell selection approach we enriched differentiated NPCs plated as monolayer without ROCK inhibitor. Therefore, N-cadherin biomimetic substrate provide a powerful tool for basic study of cell-material interaction in a spatially defined and substrate-dependent manner. Collectively, our approach is efficient, robust and cost effective to produce large quantities of differentiated cells with highest homogeneity and applicable to use with other types of cells.

  16. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis Smirniotis


    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  17. Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW

    Directory of Open Access Journals (Sweden)

    Lisa Maria Henning


    Full Text Available The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein–protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with KDs of 80 μM and 150 µM to the individual WW domains and with a KD of 150 μM to the tandem-WW1–WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a KD of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome.

  18. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells. (United States)

    Zhu, Hong; Yang, Wei; He, Ling-juan; Ding, Wan-jing; Zheng, Lin; Liao, Si-da; Huang, Ping; Lu, Wei; He, Qiao-jun; Yang, Bo


    The human hepatocellular carcinoma (HCC) represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER) stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  19. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available The human hepatocellular carcinoma (HCC represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  20. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence (United States)

    Cerasi, Mauro; Liu, Janet Z.; Ammendola, Serena; Poe, Adam J.; Petrarca, Patrizia; Pesciaroli, Michele; Pasquali, Paolo; Raffatellu, Manuela; Battistoni, Andrea


    Zinc is an essential metal for cellular homeostasis and function in both eukaryotes and prokaryotes. To acquire this essential nutrient, bacteria employ transporters characterized by different affinity for the metal. Several studies have investigated the role of the high affinity transporter ZnuABC in the bacterial response to zinc shortage, showing that this transporter has a key role in adapting bacteria to zinc starvation. In contrast, the role of the low affinity zinc importer ZupT has been the object of limited investigations. Here we show that a Salmonella strain lacking ZupT is impaired in its ability to grow in metal devoid environments and that a znuABC zupT strain exhibits a severe growth defect in zinc devoid media, is hypersensitive to oxidative stress and contains reduced level of intracellular free zinc. Moreover, we show that ZupT plays a role also in the ability of S. Typhimurim to colonize the host tissues. During systemic infections, the single zupT mutant strain was attenuated only in Nramp1+/+ mice, but competition experiments between znuABC and znuABC zupT mutants revealed that ZupT contributes to metal uptake in vivo independently from the presence a functional Nramp1 transporter. Altogether, the here reported results show that ZupT plays an important role in Salmonella zinc homeostasis, being involved in metal import both in vitro and in infected animals. PMID:24430377

  1. Interaction between reduced glutathione and PEO-PPO-PEO copolymers in aqueous solutions: studied by 1H NMR and spin-lattice relaxation. (United States)

    Jia, Lianwei; Guo, Chen; Yang, Liangrong; Xiang, Junfeng; Tang, Yalin; Liu, Huizhou


    In order to investigate the effect of PEO-PPO-PEO copolymers on the glutathione (GSH)/glutathione-S-transferase (GST) detoxification system, interaction between the copolymers and GSH is studied by NMR measurements. Selective rotating-frame nuclear Overhauser effect (ROE) experiment confirms that glutamyl (Glu) α-H of GSH has spatial contact with EO methylene protons. Spin-lattice relaxation times of GSH Glu α-H show a decrease when PEO-PPO-PEO copolymers are added, and the decrease is greater with copolymers possessing more EO units. Other protons of GSH show little change in the presence of the copolymers. The addition of GSH promotes the dehydration of PEO-PPO-PEO copolymers. This results from the breaking of hydrogen bonds between water and the polymers and the forming of hydrogen bonds between Glu α-carboxylate protons and oxygen atoms of EO units. The dissociation constant between GSH and P85 copolymer is determined by spin-lattice relaxation measurements, which shows the binding is of low affinity and the two molecules are in fast dissociation kinetics. This study suggests that GSH transporting or utilizing systems may be affected by treatment of PEO-PPO-PEO copolymers.

  2. Molecular Evolution of Antibody Cross-Reactivity for Two Subtypes of Type a Botulinum Neurotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rodriguez, C.; Levy, R.; Arndt, J.W.; Forsyth, C.M.; Razai, A.; Lou, J.; Geren, I.; Stevens, R.C.; Marks, J.D.; /UC, San Francisco /Scripps Res. Inst.


    Broadening antibody specificity without compromising affinity should facilitate detection and neutralization of toxin and viral subtypes. We used yeast display and a co-selection strategy to increase cross-reactivity of a single chain (sc) Fv antibody to botulinum neurotoxin type A (BoNT/A). Starting with a scFv that binds the BoNT/A1 subtype with high affinity (136 pM) and the BoNT/A2 subtype with low affinity (109 nM), we increased its affinity for BoNT/A2 1,250-fold, to 87 pM, while maintaining high-affinity binding to BoNT/A1 (115 pM). To find the molecular basis for improved cross-reactivity, we determined the X-ray co-crystal structures of wild-type and cross-reactive antibodies complexed to BoNT/A1 at resolutions up to 2.6 A, and measured the thermodynamic contribution of BoNT/A1 and A2 amino acids to wild-type and cross-reactive antibody binding. The results show how an antibody can be engineered to bind two different antigens despite structural differences in the antigen-antibody interface and may provide a general strategy for tuning antibody specificity and cross-reactivity.

  3. Application of NMR Methods to Identify Detection Reagents for Use in the Development of Robust Nanosensors

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, M; Krishnan, V V; Balhorn, R


    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for studying bi-molecular interactions at the atomic scale. Our NMR lab is involved in the identification of small molecules, or ligands that bind to target protein receptors, such as tetanus (TeNT) and botulinum (BoNT) neurotoxins, anthrax proteins and HLA-DR10 receptors on non-Hodgkin's lymphoma cancer cells. Once low affinity binders are identified, they can be linked together to produce multidentate synthetic high affinity ligands (SHALs) that have very high specificity for their target protein receptors. An important nanotechnology application for SHALs is their use in the development of robust chemical sensors or biochips for the detection of pathogen proteins in environmental samples or body fluids. Here, we describe a recently developed NMR competition assay based on transferred nuclear Overhauser effect spectroscopy (trNOESY) that enables the identification of sets of ligands that bind to the same site, or a different site, on the surface of TeNT fragment C (TetC) than a known ''marker'' ligand, doxorubicin. Using this assay, we can identify the optimal pairs of ligands to be linked together for creating detection reagents, as well as estimate the relative binding constants for ligands competing for the same site.

  4. Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3. (United States)

    Burger, Jessica L; Jeerage, Kavita M; Bruno, Thomas J


    Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition.

  5. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi. (United States)

    Jimenez, Veronica; Docampo, Roberto


    We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX (named after SYG1, Pho81 and XPR1) domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low-affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-green fluorescent protein have significantly higher levels of pyrophosphate (PPi ) and short-chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi , they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi.

  6. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. (United States)

    Willcocks, Lisa C; Lyons, Paul A; Clatworthy, Menna R; Robinson, James I; Yang, Wanling; Newland, Stephen A; Plagnol, Vincent; McGovern, Naomi N; Condliffe, Alison M; Chilvers, Edwin R; Adu, Dwomoa; Jolly, Elaine C; Watts, Richard; Lau, Yu Lung; Morgan, Ann W; Nash, Gerard; Smith, Kenneth G C


    Copy number (CN) variation (CNV) has been shown to be common in regions of the genome coding for immune-related genes, and thus impacts upon polygenic autoimmunity. Low CN of FCGR3B has recently been associated with systemic lupus erythematosus (SLE). FcgammaRIIIb is a glycosylphosphatidylinositol-linked, low affinity receptor for IgG found predominantly on human neutrophils. We present novel data demonstrating that both in a family with FcgammaRIIIb-deficiency and in the normal population, FCGR3B CNV correlates with protein expression, with neutrophil uptake of and adherence to immune complexes, and with soluble serum FcgammaRIIIb. Reduced FcgammaRIIIb expression is thus likely to contribute to the impaired clearance of immune complexes, which is a feature of SLE, explaining the association between low FCGR3B CNV and SLE that we have confirmed in a Caucasian population. In contrast, antineutrophil cytoplasmic antibody-associated systemic vasculitis (AASV), a disease not associated with immune complex deposition, is associated with high FCGR3B CN. Thus, we define a role for FCGR3B CNV in immune complex clearance, a function that may explain why low FCGR3B CNV is associated with SLE, but not AASV. This is the first report of an association between disease-related gene CNV and variation in protein expression and function that may contribute to autoimmune disease susceptibility.

  7. Separation optimization for the recovery of phenyl ethyl alcohol. (United States)

    Priddy, S A; Hanley, T R; Effler, W T


    Phenyl ethyl alcohol is a compound that occurs naturally in flower petals and in many common beverages, such as beer. Desire for the floral, rose-like notes imparted by phenyl ethyl alcohol has created a unique niche for this chemical in flavor and fragrance industries. Phenyl ethyl alcohol can be produced by Saccharomyces cerevisiae via bioconversion. Often this method of production results in extremely low yields, thus placing a great deal of importance on recovery and purification of the valuable metabolite. To determine the best method for recovering the chemical, a primary recovery step and a secondary recovery step were developed. The primary recovery step consisted of comparing dead-end filtration with crossflow ultrafiltration. Crossflow ultrafiltration was ultimately selected to filter the fermentation broth because of its high flow rates and low affinity for the product. The secondary recovery step consisted of a comparison of liquid- liquid extraction and hydrophobic resin recovery. The hydrophobic resin was selected because of its higher rate of recovery and a higher purity than the liquid-liquid extraction, the current practice of Brown-Forman.

  8. Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves. (United States)

    Miura, Chitose; Li, Hui; Matsunaga, Hisami; Haginaka, Jun


    Molecularly imprinted polymers (MIPs) for chlorogenic acid (CGA) were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer, divinylbenzene as a crosslinker and methanol or dimethylsulfoxide as a co-solvent. The prepared MIPs were microspheres with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high and low affinity sites, were formed on the MIP. The retention and molecular-recognition properties of the prepared MIP were evaluated using a mixture of water and acetonitrile as a mobile phase in hydrophilic interaction chromatography. With an increase of acetonitrile content, the retention factor of CGA was increased on the MIP. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CGA on the MIP. The MIP had a specific molecular-recognition ability for CGA, while other related compounds, such as caffeic acid, gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP for CGA was successfully applied for extraction of CGA in the leaves of Eucommia ulmodies.

  9. Impact of antipsychotic medication on transcranial direct current stimulation (tDCS) effects in schizophrenia patients. (United States)

    Agarwal, Sri Mahavir; Bose, Anushree; Shivakumar, Venkataram; Narayanaswamy, Janardhanan C; Chhabra, Harleen; Kalmady, Sunil V; Varambally, Shivarama; Nitsche, Michael A; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N


    Transcranial direct current stimulation (tDCS) has generated interest as a treatment modality for schizophrenia. Dopamine, a critical pathogenetic link in schizophrenia, is also known to influence tDCS effects. We evaluated the influence of antipsychotic drug type (as defined by dopamine D2 receptor affinity) on the impact of tDCS in schizophrenia. DSM-IV-TR-diagnosed schizophrenia patients [N=36] with persistent auditory hallucinations despite adequate antipsychotic treatment were administered add-on tDCS. Patients were divided into three groups based on the antipsychotic's affinity to D2 receptors. An auditory hallucinations score (AHS) was measured using the auditory hallucinations subscale of the Psychotic Symptom Rating Scales (PSYRATS). Add-on tDCS resulted in a significant reduction inAHS. Antipsychotic drug type had a significant effect on AHS reduction. Patients treated with high affinity antipsychotics showed significantly lesser improvement compared to patients on low affinity antipsychotics or a mixture of the two. Furthermore, a significant sex-by-group interaction occurred; type of medication had an impact on tDCS effects only in women. Improvement differences could be due to the larger availability of the dopamine receptor system in patients taking antipsychotics with low D2 affinity. Sex-specific differences suggest potential estrogen-mediated effects. This study reports a first-time observation on the clinical utility of antipsychotic drug type in predicting tDCS effects in schizophrenia.

  10. Interaction of benzimidazole anthelmintics with Haemonchus contortus tubulin: binding affinity and anthelmintic efficacy. (United States)

    Lubega, G W; Prichard, R K


    The ability of various benzimidazoles (BZs) to bind tubulin under different conditions was assessed by determining their IC50 values (the concentration of unlabeled drug required to inhibit 50% of the labeled drug binding), Ka (the apparent equilibrium association constant) and Bmax (the maximum binding at infinite [BZ] = [drug-receptor]). The ability of unlabeled benzimidazoles--fenbendazole, mebendazole (MBZ), oxibendazole (OBZ), albendazole (ABZ), rycobendazole (albendazole sulfoxide, ABZSO), albendazole sulfone, oxfendazole (OFZ), and thiabendazole--to bind tubulin was determined from their ability to inhibit the binding of [3H]MBZ or [3H]OBZ to tubulin in supernatants derived from unembryonated eggs or adult worms of Haemonchus contortus. The binding constants (IC50, Ka, and Bmax) correlated with the known anthelmintic potency (recommended therapeutic doses) of the BZ compounds except for OFZ and ABZSO whose Ka values were lower than could be expected from anthelmintic potency. The binding of [3H]ABZ or [3H]OFZ to tubulin in supernatants derived from BZ-susceptible and BZ-resistant H. contortus was compared. [3H]ABZ demonstrated saturable high-affinity binding but [3H]OFZ bound with low affinity. The high-affinity binding of [3H]ABZ was reduced for the R strain. Tubulin bound BZ drugs at 4 degrees C with lower apparent Ka than at 37 degrees C.

  11. Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids. (United States)

    Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes


    Stearic and palmitic fatty acids (10%, 20% and 30%, W/W gum) were used to improve the barrier properties of Lepidium perfoliatum seed gum (LPSG) film. The impact of the incorporation of fatty acids into the film matrix was studied by investigating the physical, mechanical, and barrier properties of the films. Addition of stearic and palmitic fatty acids to LPSG films reduced their water vapor permeability (WVP), moisture content, water solubility and water adsorption. Increasing fatty acid concentration from 10% to 30%, reduced the elongation at break (EB). Lower values of tensile strength (TS) and elastic modulus (EM) were obtained in the presence of higher fatty acids concentrations. Incorporation of fatty acids led to production of opaque films and the opacity increased as function of fatty acids concentration. Results showed that moisture content, water solubility and WVP decreased as the chain length of fatty acid increased. Therefore, LPSG-fatty acids composite film could be used for packaging in which a low affinity toward water is needed.

  12. Calretinin: from a simple Ca2+ buffer to a multifunctional protein implicated in many biological processes

    Directory of Open Access Journals (Sweden)

    Beat eSchwaller


    Full Text Available The hexa-EF-hand Ca2+-binding protein calretinin (CR is predominantly expressed in specific neurons of the central and peripheral nervous system. However, CR expression is also observed in non-neuronal cells, e.g. during embryonic development and in mesothelioma cells. Of the 6 EF-hand domains, 5 are functional; the first 4 domains form 2 pairs showing high cooperativity within a pair that results in non-linear modulation of intracellular Ca2+ signals by CR. EF-hand domain 5 has a low affinity and represents the identified interaction site with CR-binding partners present in mouse cerebellar granule cells. CR binding to other targets including the pore-forming α1 subunit of the Ca2+ channel CaV2.1, as well as to huntingtin indicates additional Ca2+ sensor functions besides the well-known Ca2+-buffering functions. The absence of CR in cerebellar granule cells of CR-/- mice results in increased excitability and altered firing of Purkinje cells and promotes cerebellar 160-Hz oscillations impairing motor coordination. The putative role of CR in neuroprotection is still highly discussed. Altogether, CR emerges as a multi-functional protein also associated with development, i.e. cell proliferation, differentiation and cell death.

  13. High-dose pyridoxine as an 'anti-stress' strategy. (United States)

    McCarty, M F


    Pyridoxine nutritional status has a significant and selective modulatory impact on central production of both serotonin and GABA - neurotransmitters which control depression, pain perception, and anxiety - owing to the fact that the decarboxylases which produce these neurotransmitters have a relatively low affinity for pyridoxal phosphate (PLP). Pyridoxine deficiency leads to increased sympathetic outflow and hypertension in rodents, possibly reflecting decreased central production of these neurotransmitters; conversely, supplemental pyridoxine lowers blood pressure in many animal models of hypertension, and there is preliminary evidence for antihypertensive activity in humans as well. Additionally, physiological levels of PLP interact with glucocorticoid receptors to down-regulate their activity. Thus, high-dose pyridoxine, by amplifying tissue levels of PLP, may be expected to have a favorable impact on certain dysphoric mental states, while diminishing sympathetic output and acting peripherally to blunt the physiological impact of corticosteroids. In light of growing evidence that chronic dysphoria, particularly when accompanied by hopelessness or cynicism, has a major negative impact on morbidity and mortality from a wide range of disorders, high intakes of pyridoxine may have the potential to improve prognosis in many individuals. With respect to cardiovascular health, reduction of homocysteine levels should contribute to this benefit. These predictions are consistent with recent epidemiology correlating plasma PLP levels with risk for vascular events and overall survival.

  14. Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. (United States)

    Reineke, Ulrich; Ivascu, Claudia; Schlief, Marén; Landgraf, Christiane; Gericke, Seike; Zahn, Grit; Herzel, Hanspeter; Volkmer-Engert, Rudolf; Schneider-Mergener, Jens


    We used a relatively small library of 5520 randomly generated single 15-mer peptides prepared by SPOT synthesis as an array of 28.5x19.0 cm to identify epitopes for three distinct monoclonal antibodies, namely anti-p24 (human immunodeficiency virus (HIV)-1) monoclonal anibody (mab) CB4-1, anti-interleukin-10 (IL-10) mab CB/RS/13, and anti-transforming growth factor alpha (TGFalpha) mab Tab2. Initially identified peptide ligands mostly had very low affinities for the antibodies with dissociation constants around 10(-4) M. Subsequent identification of residues critical for the antibody interactions involved complete L-amino acid substitutional analyses. Several substitutions resulted in analogs with dissociation constants in the low micromolar and high nanomolar range. Specifically binding peptides with key residue patterns matching the wild-type epitopes were identified for all three antibodies. In addition, for antibody CB4-1 mimotopes that showed no homology to the known epitope were selected. Our results suggest that a very limited library diversity, although far from covering the entire sequence repertoire, can suffice to rapidly and economically select peptidic antibody epitopes and mimotopes.

  15. Effect of Contragestazolin ( L 1 4 1 0 5 ) on Pregnancy Termination in Rodents

    Institute of Scientific and Technical Information of China (English)

    何俏军; 叶金玲; 方瑞英


    Contragestazolin (L14105) belongs to the class of 2-phenyl-triazote [5, I-a] isoquinolines. When given subcutaneously, intramuscularly or orally showed potential pregnancy-terminating activity in mice, rats, hamsters and guinea pigs, but the dialy doses of oral administration needed were Z 1, 6. 3 and 47, 6 times (for mouse, rat and hamster) greater than those needed parenterally. L14105 had low affinity to rat uterine progesterone receptor. When cultured human deciduat cells were exposed to L14105 0. 077~0. 155 mmol/L for 24~48 h, the cells'' viability markedly dropped and structural changes occurred in comparison with controls, Histological examination of conceptuses of rats showed edema, degeneration, necrosis and atrophy or disappearance of decidual cells nuclei and absorption of embryos after the sc administration of L14105 5mg/kg for 24~48 h. L14105 stimulated the contractile force of uterine smooth muscle in vivo or in vitro. Conclusion: L14105 shows a very high pregnancy terminating activity. Multiple orat administration is also effective. The mode of action of contragestation is related to damage of decidual cells and stimulation of uterine contractility.

  16. Structure of a TCR with High Affinity for Self-antigen Reveals Basis for Escape from Negative Selection

    Energy Technology Data Exchange (ETDEWEB)

    Y Yin; Y Li; M Kerzic; R Martin; R Mariuzza


    The failure to eliminate self-reactive T cells during negative selection is a prerequisite for autoimmunity. To escape deletion, autoreactive T-cell receptors (TCRs) may form unstable complexes with self-peptide-MHC by adopting suboptimal binding topologies compared with anti-microbial TCRs. Alternatively, escape can occur by weak binding between self-peptides and MHC. We determined the structure of a human autoimmune TCR (MS2-3C8) bound to a self-peptide from myelin basic protein (MBP) and the multiple sclerosis-associated MHC molecule HLA-DR4. MBP is loosely accommodated in the HLA-DR4-binding groove, accounting for its low affinity. Conversely, MS2-3C8 binds MBP-DR4 as tightly as the most avid anti-microbial TCRs. MS2-3C8 engages self-antigen via a docking mode that resembles the optimal topology of anti-foreign TCRs, but is distinct from that of other autoreactive TCRs. Combined with a unique CDR3 conformation, this docking mode compensates for the weak binding of MBP to HLA-DR4 by maximizing interactions between MS2-3C8 and MBP. Thus, the MS2-3C8-MBP-DR4 complex reveals the basis for an alternative strategy whereby autoreactive T cells escape negative selection, yet retain the ability to initiate autoimmunity.

  17. Ascorbic acid and BSA protein in solution and films: interaction and surface morphological structure. (United States)

    Maciel, Rafael R G; de Almeida, Adriele A; Godinho, Odin G C; Gorza, Filipe D S; Pedro, Graciela C; Trescher, Tarquin F; Silva, Josmary R; de Souza, Nara C


    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 10(2) M(-1), which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state.

  18. Developing the IVIG biomimetic, hexa-Fc, for drug and vaccine applications. (United States)

    Czajkowsky, Daniel M; Andersen, Jan Terje; Fuchs, Anja; Wilson, Timothy J; Mekhaiel, David; Colonna, Marco; He, Jianfeng; Shao, Zhifeng; Mitchell, Daniel A; Wu, Gang; Dell, Anne; Haslam, Stuart; Lloyd, Katy A; Moore, Shona C; Sandlie, Inger; Blundell, Patricia A; Pleass, Richard J


    The remarkable clinical success of Fc-fusion proteins has driven intense investigation for even more potent replacements. Using quality-by-design (QbD) approaches, we generated hexameric-Fc (hexa-Fc), a ~20 nm oligomeric Fc-based scaffold that we here show binds low-affinity inhibitory receptors (FcRL5, FcγRIIb, and DC-SIGN) with high avidity and specificity, whilst eliminating significant clinical limitations of monomeric Fc-fusions for vaccine and/or cancer therapies, in particular their poor ability to activate complement. Mass spectroscopy of hexa-Fc reveals high-mannose, low-sialic acid content, suggesting that interactions with these receptors are influenced by the mannose-containing Fc. Molecular dynamics (MD) simulations provides insight into the mechanisms of hexa-Fc interaction with these receptors and reveals an unexpected orientation of high-mannose glycans on the human Fc that provides greater accessibility to potential binding partners. Finally, we show that this biosynthetic nanoparticle can be engineered to enhance interactions with the human neonatal Fc receptor (FcRn) without loss of the oligomeric structure, a crucial modification for these molecules in therapy and/or vaccine strategies where a long plasma half-life is critical.

  19. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics. (United States)

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R


    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  20. The mahogany protein is a receptor involved in suppression of obesity. (United States)

    Nagle, D L; McGrail, S H; Vitale, J; Woolf, E A; Dussault, B J; DiRocco, L; Holmgren, L; Montagno, J; Bork, P; Huszar, D; Fairchild-Huntress, V; Ge, P; Keilty, J; Ebeling, C; Baldini, L; Gilchrist, J; Burn, P; Carlson, G A; Moore, K J


    Genetic studies have shown that mutations within the mahogany locus suppress the pleiotropic phenotypes, including obesity, of the agouti-lethal-yellow mutant. Here we identify the mahogany gene and its product; this study, to our knowledge, represents the first positional cloning of a suppressor gene in the mouse. Expression of the mahogany gene is broad; however, in situ hybridization analysis emphasizes the importance of its expression in the ventromedial hypothalamic nucleus, a region that is intimately involved in the regulation of body weight and feeding. We present new genetic studies that indicate that the mahogany locus does not suppress the obese phenotype of the melanocortin-4-receptor null allele or those of the monogenic obese models (Lep(db), tub and Cpe(fat)). However, mahogany can suppress diet-induced obesity, the mechanism of which is likely to have implications for therapeutic intervention in common human obesity. The amino-acid sequence of the mahogany protein suggests that it is a large, single-transmembrane-domain receptor-like molecule, with a short cytoplasmic tail containing a site that is conserved between Caenorhabditis elegans and mammals. We propose two potential, alternative modes of action for mahogany: one draws parallels with the mechanism of action of low-affinity proteoglycan receptors such as fibroblast growth factor and transforming growth factor-beta, and the other suggests that mahogany itself is a signalling receptor.