WorldWideScience

Sample records for cblc-type methylmalonic aciduria

  1. Prenatal diagnosis of methymalonic aciduria and homocystinuria cblC type using DNA analysis

    Directory of Open Access Journals (Sweden)

    Antonietta Zappu

    2015-12-01

    Full Text Available Methylmalonic aciduria (MMA and homocystinuria, cblC type is the most frequent inborn error of vitamin B12. CblC patients present with a heterogeneous clinical picture.To date, the early prenatal diagnosis of MMA and homocystinuria, cblC type is performed by determination of methylmalonic acid and total homocysteine (Hcy in amniotic fluid supernatant. In this paper we report a case of prenatal diagnosis, using genetic analysis, of MMA and homocystinuria, cblC type in an at risk couple. Direct sequencing analysis of the amplified products of chorionic villi biopsy extracted DNA showed normal sequence in the fetal DNA. Mutation analysis of the MMACHC gene is more cost-effective and less time-consuming than the biochemical approach. Early prenatal treatment may have an impact on the long-term complications associated with cblC disease. Future studies with the aim of determining the long-term benefits of daily parenteral OHCbl started soon after conception in at risk mothers should be considered. In this context early prenatal diagnosis could determine whether therapy needs to be continued.

  2. Methylmalonic Aciduria in Children: Clinical Recommendations

    Directory of Open Access Journals (Sweden)

    Alexander A. Baranov

    2017-01-01

    Full Text Available Methylmalonic acidemia (aciduria is an inherited metabolic disturbance from the group of organic acidemias (acidurias. The article presents etiopathogenetic, epidemiological, diagnostic, and therapeutic aspects of the problem. The possibilities of laboratory and instrumental diagnostic methods the tactics of dietary correction of metabolic disorders in acute and interstitial periods of the disease are described in details; features of drug treatment are outlined. The necessary information for clinical practice and patients’ everyday life is given in the article.

  3. Genetics Home Reference: combined malonic and methylmalonic aciduria

    Science.gov (United States)

    ... links) Health Topic: Genetic Brain Disorders Health Topic: Lipid Metabolism Disorders Genetic and Rare Diseases Information Center (1 link) Combined malonic and methylmalonic aciduria Additional NIH Resources (1 link) National Human Genome Research Institute: NHGRI Researchers Serve Up Mysterious ...

  4. Increase in urinary purines and pyrimidines in patients with methylmalonic aciduria combined with homocystinuria.

    Science.gov (United States)

    Porcu, Simona; Corda, Marcella; Lilliu, Franco; Contini, Liliana; Era, Benedetta; Traldi, Pietro; Fais, Antonella

    2010-06-03

    Methylmalonic aciduria combined with homocystinuria (MMA-HC) is the biochemical trait of a metabolic disorder resulting from impaired conversion of dietary cobalamin (cbl, or vitamin B12) to its two metabolically active forms. Effects on urinary purine and pyrimidine levels have not been described for this condition. Urine samples were collected from three patients with methylmalonic aciduria combined with homocystinuria and from 70 healthy subjects. Urinary purine and pyrimidine levels were quantitated by the use of LC/UV-Vis and LC/ESI/MS. Higher urine levels of pyrimidines were detected with both methods in patients compared to controls. Methylmalonic aciduria with homocystinuria is due to deficiency of the enzyme, cobalamin reductase. The enzyme defect leads to altered hepatic metabolism, which appears to modify circulating pyrimidine levels. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iles, R A; Hind, A J; Chalmers, R A

    1986-12-15

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.). 18 refs.; 4 figs.; 3 tabs.

  6. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Iles, R.A.; Hind, A.J.; Chalmers, R.A.

    1986-01-01

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.)

  7. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    International Nuclear Information System (INIS)

    Buck, Nicole E.; Pennell, Samuel D.; Wood, Leonie R.; Pitt, James J.; Allen, Katrina J.; Peters, Heidi L.

    2012-01-01

    Highlights: ► Fetal cells were transplanted into a methylmalonic acid mouse model. ► Cell engraftment was detected in liver, spleen and bone marrow. ► Biochemical disease correction was measured in blood samples. ► A double dose of 5 million cells (1 week apart) proved more effective. ► Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15–17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 ± 156 (sham transplanted) to 338 ± 157 μmol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 ± 4 (sham transplanted) to 5.3 ± 1.9 μmol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical

  8. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Nicole E., E-mail: nicole.buck@mcri.edu.au [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pennell, Samuel D.; Wood, Leonie R. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pitt, James J. [Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children' s Hospital, Parkville (Australia); Allen, Katrina J. [Gastro and Food Allergy, Murdoch Childrens Research Institute, Parkville (Australia); Peters, Heidi L. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Fetal cells were transplanted into a methylmalonic acid mouse model. Black-Right-Pointing-Pointer Cell engraftment was detected in liver, spleen and bone marrow. Black-Right-Pointing-Pointer Biochemical disease correction was measured in blood samples. Black-Right-Pointing-Pointer A double dose of 5 million cells (1 week apart) proved more effective. Black-Right-Pointing-Pointer Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 {+-} 156 (sham transplanted) to 338 {+-} 157 {mu}mol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 {+-} 4 (sham transplanted) to 5.3 {+-} 1.9 {mu}mol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may

  9. Cobalamin deficiency associated with erythroblastic anemia and methylmalonic aciduria in a border collie.

    Science.gov (United States)

    Morgan, L W; McConnell, J

    1999-01-01

    Anemia due to cobalamin deficiency is a rare genetic disorder that has been recognized in dogs only recently. This report concerns a 14-month-old border collie that presented for chronic, nonregenerative anemia. Cytological examination of a peripheral blood smear showed the presence of erythroblasts. Serum cobalamin levels were below reference ranges reported for clinically normal dogs. A methylmalonic aciduria was found on urinalysis. These signs are consistent with the anemia in Imerslund-Graesbeck syndrome reported in humans. Anemia due to cobalamin deficiency responds to parenteral vitamin B12 therapy, and affected animals have a good prognosis for recovery.

  10. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria

    NARCIS (Netherlands)

    Marcadier, Julien L.; Smith, Amanda M.; Pohl, Daniela; Schwartzentruber, Jeremy; Al-Dirbashi, Osama Y.; Majewski, Jacek; Ferdinandusse, Sacha; Wanders, Ronald J. A.; Bulman, Dennis E.; Boycott, Kym M.; Chakraborty, Pranesh; Geraghty, Michael T.; Boycott, Kym; Friedman, Jan; Michaud, Jacques; Bernier, Francois; Brudno, Michael; Fernandez, Bridget; Knoppers, Bartha; Samuels, Mark; Scherer, Steve

    2013-01-01

    Methylmalonate semialdehyde dehydrogenase (MMSDH) deficiency is a rare autosomal recessive disorder with varied metabolite abnormalities, including accumulation of 3-hydroxyisobutyric, 3-hydroxypropionic, 3-aminoisobutyric and methylmalonic acids, as well as β-alanine. Existing reports describe a

  11. Case Report: A Case of Gait Disorder Due to Combined Methylmalonic Aciduria and Homocystinuria

    Directory of Open Access Journals (Sweden)

    Firouzeh Sajedi

    2000-10-01

    Full Text Available This disorder is too rare that about 100 patients have been reported in the world. In this condition a liver enzyme (methylmalonyl CoA mutase which should carry out one of many thousands of chemical processes that turn protein into energy or body tissues is defective. Clinical presentation of this disorder in first months of life may be failure to thrive, lethargy, poor feeding, mental retardation and seizures. Late-onset manifestations include other neurologic findings e.g. dementia, myelopathy and gait disorder. Increases in levels of plasma methylmalonic acid and homocystine confirm the diagnosis. Unlike patients with classic homocystinuria, plasma level of methionine is normal in these patients. The patient was 13.5 years old girl that presented to us due to convulsion, losing the ability to walk, loosing appetite, developing urinary incontinence and showing intellectual regression. In a number of investigations, there was severe increasing in urinary and plasma levels of methylmalonic acid and homocysitine. The patient has commenced on treatment with high doses of vitamin B12, Betaine and Carbamazepine and also physiotherapy. Following the treatment marked improvement in neurologic and mental state appeared and also Methylmalonic acidemia and homocystinuria was controlled.

  12. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile : a retrospective observational study

    NARCIS (Netherlands)

    Valayannopoulos, Vassili; Baruteau, Julien; Delgado, Maria Bueno; Cano, Aline; Couce, Maria L; Del Toro, Mireia; Donati, Maria Alice; Garcia-Cazorla, Angeles; Gil-Ortega, David; Gomez-de Quero, Pedro; Guffon, Nathalie; Hofstede, Floris C; Kalkan-Ucar, Sema; Coker, Mahmut; Lama-More, Rosa; Martinez-Pardo Casanova, Mercedes; Molina, Agustin; Pichard, Samia; Papadia, Francesco; Rosello, Patricia; Plisson, Celine; Le Mouhaer, Jeannie; Chakrapani, Anupam

    2016-01-01

    BACKGROUND: Isovaleric aciduria (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) are inherited organic acidurias (OAs) in which impaired organic acid metabolism induces hyperammonaemia arising partly from secondary deficiency of N-acetylglutamate (NAG) synthase. Rapid reduction in

  13. A Methylmalonic Acidemia Case Presenting with Acrodermatitis Enteropathica

    Directory of Open Access Journals (Sweden)

    hesaneh izadyar

    2014-08-01

    Full Text Available We encountered a patient with methylmalonic aciduria associated with skin lesions resembling acrodermatitis enteropathica. This child was being fed with a low-protein diet when the skin disorder developed. A deficiency in plasma levels isoleucine, was confirmed. Supplementation of a high-caloric, protein-rich diet led to a prompt improvement of skin lesions. We assume that in our patient the skin lesions were the result of malnutrition, rather than being primarily associated with the underlying metabolic disease. To our knowledge, few reports are so far available concerning methylmalonic aciduria complicated by skin eruptions.

  14. Methylmalonic acid blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003565.htm Methylmalonic acid blood test To use the sharing features on this page, please enable JavaScript. The methylmalonic acid blood test measures the amount of methylmalonic acid in the ...

  15. Ophthalmic manifestations of methylmalonic aciduria accompanied with homocystinuria

    Directory of Open Access Journals (Sweden)

    Qiu-Jing Huang

    2015-12-01

    Full Text Available Methylmalonicaciduia(MMAaccompanied with homocystinuria is a rare autosomal-recessive with congenital metabolic disorder of Vitamin B12. There are three subtypes, cblC, cblD, cblF, in which cblC is the most common one. The diagnostic tests are tandem mass spectrometry and gas chromatography-mass spectrometry. Tests for activity of enzyme in fibroblasts from skin, complementary assay and genetic analysis can be used to make the subtype clear. Early-onset patients, defined by onset of symptoms before the age of 1 year, may have severe ocular involvement, including visual loss, nystagmus, strabismus, retinopathy, maculopathy, optic atrophy, abnormal electroretinography. Late-onset patients, defined by onset of symptoms after the age of 4 year, rarely have ocular manifestations. The pathogenesis of the ophthalmic symptoms may be related to the high level of homocystine, oxidative stress and the abnormal development of nervous systems. The treatment for MMA accompanied with homocystinuria is mostly symptomatic based. Ophthalmic treatment is limited. Early supplement of methionine,GSH or other antioxidants may be helpful for retinopathy. There is no standard ophthalmological examination for those patients in China. It is critical to set up inter-departmental cooperation and early stage examination for the treatments and outcomes of the patients.

  16. A Rare Case of Malonic Aciduria Diagnosed by Newborn Screening in Qatar

    Directory of Open Access Journals (Sweden)

    Mamatha Ramaswamy

    2017-03-01

    Full Text Available Malonic aciduria is a rare autosomal recessive organic acid disorder. With the widespread use of tandem mass spectrometry for analysis of the amino acid/acylcarnitine profile on dried blood spots for newborn screening (NBS, this condition can be readily diagnosed and can be included in the organic acid screen in NBS programs. In Qatar, we report the first case of an asymptomatic baby screened and diagnosed with malonic aciduria through NBS. This patient has a genetic variant of malonyl-CoA decarboxylase that has not been previously reported in the literature. This condition should be differentiated from a similar disorder, combined malonic and methylmalonic aciduria. The clinical phenotype of malonic aciduria is variable and the pathophysiology is not fully understood. There is no established guidance or recommendations regarding the appropriate treatment regimen, dietary therapy or regular follow-up of these patients. Most available evidence for treatment is based on a single study or case report.

  17. Intrastriatal methylmalonic acid administration induces rotational behavior and convulsions through glutamatergic mechanisms.

    Science.gov (United States)

    de Mello, C F; Begnini, J; Jiménez-Bernal, R E; Rubin, M A; de Bastiani, J; da Costa, E; Wajner, M

    1996-05-20

    The effect of intrastriatal administration of methylmalonic acid (MMA), a metabolite that accumulates in methylmalonic aciduria, on behavior of adult male Wistar rats was investigated. After cannula placing, rats received unilateral intrastriatal injections of MMA (buffered to pH 7.4 with NaOH) or NaCl. MMA induced rotational behavior toward the contralateral side of injection and clonic convulsions in a dose-dependent manner. Rotational behavior and convulsions were prevented by intrastriatal preadministration of MK-801 and attenuated by preadministration of succinate. This study provides evidence for a participation of NMDA receptors in the MMA-induced behavioral alterations, where succinate dehydrogenase inhibition seems to have a pivotal role.

  18. Development and Validation of a GC-FID Method for Diagnosis of Methylmalonic Acidemia

    Directory of Open Access Journals (Sweden)

    Fatemeh Keyfi

    2016-05-01

    Full Text Available Background: Urinary organic acids are water-soluble intermediates and end products of the metabolism of amino acids, carbohydrates, lipids, and a number of other metabolic processes. In the hereditary diseases known as organic acidurias, an enzyme or co-factor defect in a metabolic pathway leads to the accumulation and increased excretion of one or more of these acidic metabolites. Gas chromatography is the most commonly-used technology to separate and identify these metabolites. In this report the analytical conditions for the determination of methylmalonic acid using a gas chromatography/flame ionization detector (GC-FID are studied with the aim to establish a method to analyze organic acids in human urine. Methods: Studies included the GC-FID method development, the conditions of the derivatization (trimethylsilylation reaction, and the stability of the methylmalonic acid standard solution and trimethylsilyl derivatives during storage. Also, a systematic comparison between GC-FID and gas chromatography/mass spectrometry (GC-MS was performed. Results: The highest resolution and sensitivity were obtained at 60 oC with a 30 min reaction time. Standard solutions and derivatized samples were stable for 7 days at 4-8 oC. Relative standard deviations of within-day and day-to-day assay results were less than 5%. Methylmalonic acid was detected in thirty human urine samples by the proposed GC-FID, and the results were compared with gold standard technique GC-MS. The correlation coefficient between GC-MS and GC-FID was obtained with R2= 0.997. Conclusions: The developed method was applied to the quantitative analysis of methylmalonic acid in urine from hospitalized children with methylmalonic acidemia. With this method we aim to support pediatric clinics in Iran and assist in clinical diagnostics.

  19. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype.

    Science.gov (United States)

    Kölker, Stefan; Valayannopoulos, Vassili; Burlina, Alberto B; Sykut-Cegielska, Jolanta; Wijburg, Frits A; Teles, Elisa Leão; Zeman, Jiri; Dionisi-Vici, Carlo; Barić, Ivo; Karall, Daniela; Arnoux, Jean-Baptiste; Avram, Paula; Baumgartner, Matthias R; Blasco-Alonso, Javier; Boy, S P Nikolas; Rasmussen, Marlene Bøgehus; Burgard, Peter; Chabrol, Brigitte; Chakrapani, Anupam; Chapman, Kimberly; Cortès I Saladelafont, Elisenda; Couce, Maria L; de Meirleir, Linda; Dobbelaere, Dries; Furlan, Francesca; Gleich, Florian; González, Maria Julieta; Gradowska, Wanda; Grünewald, Stephanie; Honzik, Tomas; Hörster, Friederike; Ioannou, Hariklea; Jalan, Anil; Häberle, Johannes; Haege, Gisela; Langereis, Eveline; de Lonlay, Pascale; Martinelli, Diego; Matsumoto, Shirou; Mühlhausen, Chris; Murphy, Elaine; de Baulny, Hélène Ogier; Ortez, Carlos; Pedrón, Consuelo C; Pintos-Morell, Guillem; Pena-Quintana, Luis; Ramadža, Danijela Petković; Rodrigues, Esmeralda; Scholl-Bürgi, Sabine; Sokal, Etienne; Summar, Marshall L; Thompson, Nicholas; Vara, Roshni; Pinera, Inmaculada Vives; Walter, John H; Williams, Monique; Lund, Allan M; Garcia-Cazorla, Angeles; Garcia Cazorla, Angeles

    2015-11-01

    The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. Acquired microcephaly and movement disorders were common in OAD and UCD highlighting that the brain is the major organ involved in these diseases. Cardiomyopathy [methylmalonic (MMA) and propionic aciduria (PA)], prolonged QTc interval (PA), optic nerve atrophy [MMA, isovaleric aciduria (IVA)], pancytopenia (PA), and macrocephaly [glutaric aciduria type 1 (GA1)] were exclusively found in OAD patients, whereas hepatic involvement was more frequent in UCD patients, in particular in argininosuccinate lyase (ASL) deficiency. Chronic renal failure was often found in MMA, with highest frequency in mut(0) patients. Unexpectedly, chronic renal failure was also observed in adolescent and adult patients with GA1 and ASL deficiency. It had a similar frequency in patients with or without a movement disorder suggesting different pathophysiology. Thirteen patients (classic OAD: 3, UCD: 10) died during the study interval, ten of them during the initial metabolic crisis in the newborn period. Male patients with late-onset ornithine transcarbamylase deficiency were presumably overrepresented in the study population. Neurologic impairment is common in OAD and UCD, whereas the involvement of other organs (heart, liver, kidneys, eyes) follows a disease-specific pattern. The identification of unexpected chronic renal failure in GA1 and ASL deficiency emphasizes the importance of a systematic follow-up in patients with rare diseases.

  20. Glutaric aciduria type I

    International Nuclear Information System (INIS)

    Mandel, H.; Berant, M.; Braun, J.; Technion-Israel Inst. of Tech., Haifa; El-Peleg, O.; Christensen, E.

    1991-01-01

    Serial CT findings in an infant with glutaric aciduria type I (GA-I) are reported. The major CT features were dilatation of the insular cisterns, regression of the temporal lobes, with 'bat wings' dilatation of the Sylvian fissures and hypodensity of the lenticular nuclei. CT changes preceded the onset of symptoms by 3 months. An improvement in the temporal lobe atrophy was seen after a period of treatment, coinciding with marked clinical improvement. A peculiar feature was the presence of external hydrocephalus, which diverted the attention from manifestations of the primary disease and thus constituted a diagnostic pitfall. The delineation and recognition of the characteristic radiologic manifestations of GA-I are essential for allowing an adequate radiologist/clinician interaction in diagnosing this inborn error of metabolism. (orig.)

  1. Physicians' use of plasma methylmalonic acid as a diagnostic tool

    DEFF Research Database (Denmark)

    Hvas, A M; Vestergaard, H; Gerdes, Lars Ulrik

    2000-01-01

    with a plasma methylmalonic acid measurement above the reference interval. Information on diagnostic decisions was available for 177 patients. MAIN OUTCOME MEASURES: Reasons for requesting plasma methylmalonic acid and the reactions to the finding of elevated plasma methylmalonic acid. RESULTS: An explicit......OBJECTIVES: To investigate physicians' reasons for requesting plasma methylmalonic acid and their reactions to an increased concentration of plasma methylmalonic acid. DESIGN: Study of medical records. SETTING: Three somatic district hospitals in Denmark. SUBJECTS: Medical records of 198 patients...... reason for requesting plasma methylmalonic acid was stated in 57% of 198 examined medical records, known or suspected anaemia being the most frequent reason. No further action was taken in 109 (62%) of the 177 cases available for follow-up. Amongst the remaining 68 patients, the finding of an increased...

  2. Stabilization of blood methylmalonic acid level in methylmalonic acidemia after liver transplantation.

    Science.gov (United States)

    Chen, P W; Hwu, W L; Ho, M C; Lee, N C; Chien, Y H; Ni, Y H; Lee, P H

    2010-05-01

    Methylmalonic acidemia with complete mutase deficiency (mut(0) type) is an inborn error of metabolism with high mortality and morbidity. LT has been suggested to be a solution to this disease, but elevation of urinary and blood MMA was still observed after LT. In this study, we measured dry blood spot MMA and its precursor propionyl-carnitine (C3-carnitine) for mut(0) patients. The results revealed that when C3-carnitine rose during metabolic stress, MMA rose exponentially (up to 1000 micromol/L) in patients who did not undergo LT. In patients who underwent LT, MMA rose to 100-200 micromol/L when C3-carnitine reached 10-20 micromol/L. However, when C3-carnitine rose further to 40-50 micromol/L, MMA levels just stayed put. Therefore, LT stabilized blood MMA level, though there might be a threshold for blood MMA clearance by the donor liver. This finding should be critical to understand the long-term outcome for LT in methylmalonic acidemia.

  3. L-2-Hydroxyglutaric aciduria: MRI in seven cases

    Energy Technology Data Exchange (ETDEWEB)

    D`Incerti, L.; Farina, L.; Savoiardo, M. [Dept. of Neuroradiology, Istituto Nazionale Neurologico ``C. Besta``, Milan (Italy); Moroni, I.; Uziel, G. [Dept. of Child Neurology, Istituto Nazionale Neurologico ``C. Besta``, Milan (Italy)

    1998-11-01

    The MRI findings in 7 patients with L-2-Hydroxyglutaric aciduria (L-2-OHG aciduria) are described and compared with previous neuroradiological reports and the only three published pathological cases. Signal abnormalities involved peripheral subcortical white matter, basal ganglia and dentate nuclei. Cerebellar atrophy was present. Although similar appearances may be seen in other metabolic disorders, the distribution of signal abnormalities in L-2-OHG aciduria is highly characteristic and may suggest the correct diagnosis. (orig.) With 5 figs., 2 tabs., 24 refs.

  4. Clinical experience with N-carbamylglutamate in a single-centre cohort of patients with propionic and methylmalonic aciduria

    Directory of Open Access Journals (Sweden)

    Alberto Burlina

    2016-09-01

    Conclusion: These observations suggest that, in addition to short-term benefits for the acute treatment of hyperammonaemia, NCG may be effective and well tolerated as a long-term treatment in patients with severe PA and MMA, and that further prospective studies are warranted.

  5. The marker of cobalamin deficiency, plasma methylmalonic acid, correlates to plasma creatinine

    DEFF Research Database (Denmark)

    Hvas, A M; Juul, S; Gerdes, Lars Ulrik

    2000-01-01

    OBJECTIVE: To examine the relationship between the two diagnostic tests, plasma methylmalonic acid and plasma cobalamins, and their association with plasma creatinine, age and sex. DESIGN: Cross-sectional study of simultaneous laboratory measurements. SETTING: County of Aarhus, Denmark. SUBJECTS......: Records on 1689 patients who had their first plasma methylmalonic acid measurement during 1995 and 1996, and who had a simultaneous measurement of plasma cobalamins. Plasma creatinine values measured within a week of measurements of plasma methylmalonic acid and plasma cobalamins were available for 1255...... of the patients. MAIN OUTCOME MEASURES: Predictors of variation in plasma methylmalonic acid; plasma cobalamins, plasma creatinine, age and sex. RESULTS: Plasma methylmalonic acid was positively correlated with plasma creatinine, even for plasma creatinine within the normal range. These associations remained...

  6. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  7. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: a retrospective observational study.

    Science.gov (United States)

    Valayannopoulos, Vassili; Baruteau, Julien; Delgado, Maria Bueno; Cano, Aline; Couce, Maria L; Del Toro, Mireia; Donati, Maria Alice; Garcia-Cazorla, Angeles; Gil-Ortega, David; Gomez-de Quero, Pedro; Guffon, Nathalie; Hofstede, Floris C; Kalkan-Ucar, Sema; Coker, Mahmut; Lama-More, Rosa; Martinez-Pardo Casanova, Mercedes; Molina, Agustin; Pichard, Samia; Papadia, Francesco; Rosello, Patricia; Plisson, Celine; Le Mouhaer, Jeannie; Chakrapani, Anupam

    2016-03-31

    Isovaleric aciduria (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) are inherited organic acidurias (OAs) in which impaired organic acid metabolism induces hyperammonaemia arising partly from secondary deficiency of N-acetylglutamate (NAG) synthase. Rapid reduction in plasma ammonia is required to prevent neurological complications. This retrospective, multicentre, open-label, uncontrolled, phase IIIb study evaluated the efficacy and safety of carglumic acid, a synthetic structural analogue of NAG, for treating hyperammonaemia during OA decompensation. Eligible patients had confirmed OA and hyperammonaemia (plasma NH3 > 60 μmol/L) in ≥1 decompensation episode treated with carglumic acid (dose discretionary, mean (SD) first dose 96.3 (73.8) mg/kg). The primary outcome was change in plasma ammonia from baseline to endpoint (last available ammonia measurement at ≤18 hours after the last carglumic acid administration, or on Day 15) for each episode. Secondary outcomes included clinical response and safety. The efficacy population (received ≥1 dose of study drug and had post-baseline measurements) comprised 41 patients (MMA: 21, PA: 16, IVA: 4) with 48 decompensation episodes (MMA: 25, PA: 19, IVA: 4). Mean baseline plasma ammonia concentration was 468.3 (±365.3) μmol/L in neonates (29 episodes) and 171.3 (±75.7) μmol/L in non-neonates (19 episodes). At endpoint the mean plasma NH3 concentration was 60.7 (±36.5) μmol/L in neonates and 55.2 (±21.8) μmol/L in non-neonates. Median time to normalise ammonaemia was 38.4 hours in neonates vs 28.3 hours in non-neonates and was similar between OA subgroups (MMA: 37.5 hours, PA: 36.0 hours, IVA: 40.5 hours). Median time to ammonia normalisation was 1.5 and 1.6 days in patients receiving and not receiving concomitant scavenger therapy, respectively. Although patients receiving carglumic acid with scavengers had a greater reduction in plasma ammonia, the endpoint ammonia levels were

  8. Adult methylmalonic acidemia presented as neuromyelitis optica: one case report

    Directory of Open Access Journals (Sweden)

    Sheng-de LI

    2015-10-01

    Full Text Available A 26-year-old male was admitted to our department, complaining of cognitive impairment, urine incontinence for 3 months, blurred vision for one month and numbness of bilateral lower limbs for 20 days. Presumed as “depression” and “viral encephalitis”, antidepressant and dexamethasone had been given but had no response. Neurological examination demonstrated impaired orientation to time and place; hearing impairment of right ear; normal muscle force in upper limbs, proximal lower muscle force was 2 and distal was 0; normal tendon reflex in both upper limbs; diminished tendon reflex in both lower limbs; left palmomental reflex (+; bilateral Babinski sign (+. Below T10: diminished superficial, deep sensation and cortical sensory. Cranial MRI on admission revealed widened sulci in bilateral cleft and frontal, temporal and insular lobes, indicating brain atrophy. Spinal MRI revealed high-intensity signals of C3-7 level and T1-12 level. The patient was diagnosed as “neuromyelitis optica (NMO” at first, but cognitive impairment is really rare in NMO. It finally turned out to be “inherited metabolic diseases” with the negative results of aquaporin 4 (AQP4, NMO-IgG, GM1, voltage-gated potassium channel (VGKC from serum and cerebrospinal fluid (CSF. The elevated level of plasm homocysteine [30.79 mmol/L (5-20 mmol/L] and urine methylmalonic acid [0.40 mmol/L (0.001 mmol/L] ascertained the diagnosis of methylmalonic acidemia. The patient was given oral treatment of folate 5 mg (3 times a day, 13 days and levocarnitine 1 g (3 times a day, 8 days and intramuscular injection of mecobalamine 1mg (once a day, 4 days or 0.50 mg (once a day, 8 days and adenosylcobalamine 0.50 mg (once a day, 8 days. Sixteen days on discharge, the patient’s neurological examination revealed no obvious recovery of vision; lower muscle force: about Ⅳ, right sensory level: T12-L1, and left sensory level lowered to L3. Reexamination of MRI revealed brain atrophy

  9. Expanded Newborn Screening for Inborn Errors of Metabolism and Genetic Characteristics in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Kejian Guo

    2018-04-01

    Full Text Available The incidence of inborn errors of metabolisms (IEMs varies dramatically in different countries and regions. Expanded newborn screening for IEMs by tandem mass spectrometry (MS/MS is an efficient approach for early diagnosis and presymptomatic treatment to prevent severe permanent sequelae and death. To determine the characteristics of IEMs and IEMs-associated mutations in newborns in Jining area, China, 48,297 healthy neonates were recruited for expanded newborn screening by MS/MS. The incidence of IEMs was 1/1178 in Jining, while methylmalonic acidemia, phenylketonuria, and primary carnitine deficiency ranked the top 3 of all detected IEMs. Thirty mutations in nine IEMs-associated genes were identified in 28 confirmed cases. As 19 cases with the mutations in phenylalanine hydroxylase (PAH, solute carrier family 22 member 5 (SLC22A5, and methylmalonic aciduria (cobalamin deficiency cblC type with homocystinuria (MMACHC genes, respectively, it suggested that mutations in the PAH, SLC22A5, and MMACHC genes are the predominant causes of IEMs, leading to the high incidence of phenylketonuria, primary carnitine deficiency, and methylmalonic acidemia, respectively. Our work indicated that the overall incidence of IEMs is high and the mutations in PAH, SLC22A5, and MMACHC genes are the leading causes of IEMs in Jining area. Therefore, it is critical to increase the coverage of expanded newborn screening by MS/MS and prenatal genetic consulting in Jining area.

  10. Glutaric aciduria type 1--importance of early diagnosis and treatment.

    Science.gov (United States)

    Afroze, Bushra; Yunus, Zabedah Mohammad

    2014-05-01

    Glutaric aciduria type 1 is a rare inherited organic academia. Untreated patients characteristically develop dystonia secondary to striatal injury during early childhood, which results in high morbidity and mortality. In patients diagnosed during neonatal period, striatal injury can be prevented by metabolic treatment including low lysine diet, carnitine supplementation and aggressive emergency treatment during acute episode of inter current illnesses. However, after the onset of neurological damage initiation of treatment is generally not effective. Therefore; glutaric aciduria type 1 is included in newborn screening panel for inherited metabolic diseases in many countries. We describe two children in a family with glutaric aciduria type 1 and their different long term outcomes. The first child was diagnosed late leading to severe neurological damage. The second child was diagnosed in the neonatal period as a result of selective high-risk screening and was treated appropriately giving a normal growth.

  11. Plasma total odd-chain fatty acids in the monitoring of disorders of propionate, methylmalonate and biotin metabolism

    NARCIS (Netherlands)

    Coker, M.; de Klerk, J. B.; Poll-The, B. T.; Huijmans, J. G.; Duran, M.

    1996-01-01

    Total plasma odd-numbered long-chain fatty acids were analysed in patients with methylmalonic acidaemia (vitamin B12-responsive and unresponsive), combined methylmalonic acidaemia/homocystinuria (CblC), propionic acidaemia (both neonatal-onset and late-onset), biotinidase deficiency and

  12. Evidence for genetic heterogeneity in D-2-hydroxyglutaric aciduria

    DEFF Research Database (Denmark)

    Kranendijk, Martijn; Struys, Eduard A; Gibson, K Michael

    2010-01-01

    We performed molecular, enzyme, and metabolic studies in 50 patients with D-2-hydroxyglutaric aciduria (D-2-HGA) who accumulated D-2-hydroxyglutarate (D-2-HG) in physiological fluids. Presumed pathogenic mutations were detected in 24 of 50 patients in the D-2-hydroxyglutarate dehydrogenase (D2HGD...

  13. Establishing a Method for Measuring Serum Methylmalonic Acid and Application to Women with a History of Breast Cancer

    National Research Council Canada - National Science Library

    Hauge, Ileana

    2002-01-01

    Serum concentrations of methylmalonic acid (MMA), a dicarboxylic acid and intermediate in the conversion of propionic acid to succinic acid, are elevated if there is deficiency of cobalamin (vitamin B12...

  14. MRI features in 17 patients with l2 hydroxyglutaric aciduria

    International Nuclear Information System (INIS)

    Fourati, Héla; Ellouze, Emna; Ahmadi, Mourad; Chaari, Dhouha; Kamoun, Fatma; Hsairi, Ines; Triki, Chahnez; Mnif, Zeineb

    2016-01-01

    l-2-Hydroxyglutaric (l-2-HG) aciduria is a rare inherited metabolic disease usually observed in children. Patients present a very slowly progressive deterioration with cerebellar ataxia, mild or severe mental retardation, and various other clinical signs including extrapyramidal and pyramidal symptoms, and seizures Goffette et al. [1]. This leukencephalopathy was first described in 1980 Duran et al. [2]. Brain magnetic resonance imaging (MRI) demonstrates nonspecific subcortical white matter (WM) loss, cerebellar atrophy and changes in dentate nuclei and putamen Steenweg et al. [3]. The diagnosis is highlighted by increased levels of l-2-HG in body fluids such as urine and cerebrospinal fluid. The purpose of this study is to retrospectively describe the brain MRI features in l-2-HG aciduria

  15. Glutaric aciduria type 1: neuroimaging features with clinical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Shaimaa Abdelsattar; Ahmed, Khaled A. [Ain-Shams University, Department of Radiodiagnosis, Faculty of Medicine, Cairo (Egypt); Abdelkhalek, Heba Salah; Zaki, Osama K. [Ain-Shams University, Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Cairo (Egypt)

    2015-10-15

    Glutaric aciduria type 1 is a rare neurometabolic disease with high morbidity. To describe the MR imaging abnormalities in glutaric aciduria type 1 and to identify any association between the clinical and imaging features. MRI scans of 29 children (mean age: 16.9 months) with confirmed diagnosis of glutaric aciduria type 1 were retrospectively reviewed. Gray matter and white matter scores were calculated based on a previously published pattern-recognition approach of assessing leukoencephalopathies. Hippocampal formation and opercular topography were assessed in relation to the known embryological basis. MRI scores were correlated with morbidity score. The most consistent MRI abnormality was widened operculum with dilatation of the subarachnoid spaces surrounding underdeveloped frontotemporal lobes. Incomplete hippocampal inversion was also seen. The globus pallidus was the most frequently involved gray matter structure (86%). In addition to the central tegmental tract, white matter abnormalities preferentially involved the central and periventricular regions. The morbidity score correlated with the gray matter abnormality score (P = 0.004). Patients with dystonia had higher gray matter and morbidity scores. Morbidity is significantly correlated with abnormality of gray matter, rather than white matter, whether secondary to acute encephalopathic crisis or insidious onset disease. (orig.)

  16. D-glyceric aciduria is caused by genetic deficiency of D-glycerate kinase (GLYCTK)

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Fischer, Kathleen; Wang, Raymond

    2010-01-01

    D-glyceric aciduria is a rare inborn error of serine and fructose metabolism that was first described in 1974. Most affected individuals have presented with neurological symptoms. The molecular basis of D-glyceric aciduria is largely unknown; possible causes that have been discussed are deficienc...

  17. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia

    DEFF Research Database (Denmark)

    Baumgartner, Matthias R; Hörster, Friederike; Dionisi-Vici, Carlo

    2014-01-01

    Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~...... recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity.......:100'000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA...

  18. A male case with CDKL5-associated encephalopathy manifesting transient methylmalonic acidemia.

    Science.gov (United States)

    Akamine, Satoshi; Ishizaki, Yoshito; Sakai, Yasunari; Torisu, Hiroyuki; Fukai, Ryoko; Miyake, Noriko; Ohkubo, Kazuhiro; Koga, Hiroshi; Sanefuji, Masafumi; Sakata, Ayumi; Kimura, Masahiko; Yamaguchi, Seiji; Sakamoto, Osamu; Hara, Toshiro; Saitsu, Hirotomo; Matsumoto, Naomichi; Ohga, Shouichi

    2018-03-03

    Mutations in the X-linked gene CDKL5 cause early-onset epileptic encephalopathy and severe developmental delay. Because this disorder predominantly affects females, the full clinical spectrum of male patients remains elusive. We herein report a 16-year-old boy, who suffered from intractable seizures 20 days after birth. Serial electroencephalograms detected recurrent focal epileptiform discharges from age 4 months, which evolved to hypsarrhythmia later in infancy. Mass-spectrometric analyses revealed increase in urinary excretion of methylmalonic acid without perturbed concentrations of propionic acid, homocystein and methionine. Whole-exome sequencing identified a de novo, truncating mutation in CDKL5 (NM_003159.2:c.419dupA, p.Asn140Lysfs*8). Targeted sequencing excluded concomitant mutations in methylmalonic academia-associated genes. No methylmalonic acidemia has been reported in children with CDKL5 disorder. Extensive analyses on organic acid metabolism for males with CDKL5 mutations will gain more insight into their biochemical profiles in infancy. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Magnetic Resonance Imaging Findings of Adult-Onset Glutaric Aciduria Type

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, G.; Mutlu, H.; Ozturk, E.; Sildiroglu, H.O.; Keskin, A.T.; Basekim, C.C.; Kizilkaya, E. [Dept. of Radiology, GATA Haydarpasa Teaching Hospital, Istanbul (Turkey)

    2007-07-15

    Glutaric aciduria or glutaric acidemia type I, an autosomal recessive disease, usually presents with an acute encephalopathic crisis in young children. We report the magnetic resonance (MR) and proton MR spectroscopy (MRS) imaging findings of a previously healthy 20-year-old man who presented with recurrent headaches. Organic acids from the patient's urine contained large amounts of adipate, glutarate, and 3-hydroxyglutarate consistent with glutaric aciduria type I.

  20. Magnetic Resonance Imaging Findings of Adult-Onset Glutaric Aciduria Type

    International Nuclear Information System (INIS)

    Sonmez, G.; Mutlu, H.; Ozturk, E.; Sildiroglu, H.O.; Keskin, A.T.; Basekim, C.C.; Kizilkaya, E.

    2007-01-01

    Glutaric aciduria or glutaric acidemia type I, an autosomal recessive disease, usually presents with an acute encephalopathic crisis in young children. We report the magnetic resonance (MR) and proton MR spectroscopy (MRS) imaging findings of a previously healthy 20-year-old man who presented with recurrent headaches. Organic acids from the patient's urine contained large amounts of adipate, glutarate, and 3-hydroxyglutarate consistent with glutaric aciduria type I

  1. Magnetic Resonance Imaging Findings of Adult-Onset Glutaric Aciduria Type I

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, G.; Mutlu, H.; Ozturk, E.; Sildiroglu, H.O.; Keskin, A.T.; Basekim, C.C.; Kizilkaya, E. [Dept. of Radiology, GATA Haydarpasa Teaching Hospital, Istanbul (Turkey)

    2007-07-15

    Glutaric aciduria or glutaric acidemia type I, an autosomal recessive disease, usually presents with an acute encephalopathic crisis in young children. We report the magnetic resonance (MR) and proton MR spectroscopy (MRS) imaging findings of a previously healthy 20-year-old man who presented with recurrent headaches. Organic acids from the patient's urine contained large amounts of adipate, glutarate, and 3-hydroxyglutarate consistent with glutaric aciduria type I.

  2. An interesting case of metabolic dystonia: L-2 hydroxyglutaric aciduria

    Directory of Open Access Journals (Sweden)

    Padma Balaji

    2014-01-01

    Full Text Available L-2-hydroxyglutaric aciduria (L-2-HGA, a neurometabolic disorder caused by mutations in the L-2 hydroxyglutarate dehydrogenase (L-2-HGDH gene, presents with psychomotor retardation, cerebellar ataxia, extrapyramidal symptoms, macrocephaly and seizures. Characteristic magnetic resonance imaging findings include subcortical cerebral white matter abnormalities with T2 hyperintensities of the dentate nucleus, globus pallidus, putamen and caudate nucleus. The diagnosis can be confirmed by elevated urinary L-2 hydroxyglutaric acid and mutational analysis of the L-2-HGDH gene. We report two siblings with dystonia diagnosed by classical neuroimaging findings with elevated urinary 2 hydroxyglutaric acid. Riboflavin therapy has shown promising results in a subset of cases, thus highlighting the importance of making the diagnosis in these patients.

  3. Methylmalonic acidemia

    Science.gov (United States)

    ... to diagnose this condition include: Ammonia test Blood gases Complete blood count CT scan or MRI of ... 2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM ...

  4. Quantification of N-acetylcysteamine activated methylmalonate incorporation into polyketide biosynthesis

    Directory of Open Access Journals (Sweden)

    Stephan Klopries

    2013-04-01

    Full Text Available Polyketides are biosynthesized through consecutive decarboxylative Claisen condensations between a carboxylic acid and differently substituted malonic acid thioesters, both tethered to the giant polyketide synthase enzymes. Individual malonic acid derivatives are typically required to be activated as coenzyme A-thioesters prior to their enzyme-catalyzed transfer onto the polyketide synthase. Control over the selection of malonic acid building blocks promises great potential for the experimental alteration of polyketide structure and bioactivity. One requirement for this endeavor is the supplementation of the bacterial polyketide fermentation system with tailored synthetic thioester-activated malonates. The membrane permeable N-acetylcysteamine has been proposed as a coenzyme A-mimic for this purpose. Here, the incorporation efficiency into different polyketides of N-acetylcysteamine activated methylmalonate is studied and quantified, showing a surprisingly high and transferable activity of these polyketide synthase substrate analogues in vivo.

  5. Novel mutations underlying argininosuccinic aciduria in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Rashed Mohamed S

    2010-03-01

    Full Text Available Abstract Background Argininosuccinic aciduria (ASAuria is an autosomal recessive disorder of the urea cycle relatively common in Saudi Arabia as a consequence of extensive consanguinity. It is the most common urea cycle disorder identified in the Saudi population, which therefore prioritizes the need to delineate the underlying molecular defects leading to disease. Findings We utilized Whole Genome Amplification (WGA, PCR and direct sequencing to identify mutations underlying ASAuria cases diagnosed by our institution. A missense mutation that accounts for 50% of Saudi ASAuria patients was recently reported by our laboratory. In this study we report a further six novel mutations (and one previously reported found in Saudi patients with ASAuria. The novel four missense, one nonsense and one splice-site mutation were confirmed by their absence in >300 chromosomes from the normal population. Pathogenicity of the novel splice-site mutation was also confirmed using reverse transcriptase-PCR analysis. Cross species amino acid conservation at the substituted residues described were observed in some but not all instances. Conclusions Together, the eight mutations described by our laboratory, encompass >90% of ASAuria patients in Saudi Arabia and add to about 45 other ASAuria mutations reported worldwide.

  6. Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome

    Directory of Open Access Journals (Sweden)

    Hoffmann Georg F

    2006-04-01

    Full Text Available Abstract Mevalonic aciduria (MVA and hyperimmunoglobulinemia D syndrome (HIDS represent the two ends of a clinical spectrum of disease caused by deficiency of mevalonate kinase (MVK, the first committed enzyme of cholesterol biosynthesis. At least 30 patients with MVA and 180 patients with HIDS have been reported worldwide. MVA is characterized by psychomotor retardation, failure to thrive, progressive cerebellar ataxia, dysmorphic features, progressive visual impairment and recurrent febrile crises. The febrile episodes are commonly accompanied by hepatosplenomegaly, lymphadenopathy, abdominal symptoms, arthralgia and skin rashes. Life expectancy is often compromised. In HIDS, only febrile attacks are present, but a subgroup of patients may also develop neurological abnormalities of varying degree such as mental retardation, ataxia, ocular symptoms and epilepsy. A reduced activity of MVK and pathogenic mutations in the MVK gene have been demonstrated as the common genetic basis in both disorders. In MVA, the diagnosis is established by detection of highly elevated levels of mevalonic acid excreted in urine. Increased levels of immunoglobulin D (IgD and, in most patients of immunoglobulin A (IgA, in combination with enhanced excretion of mevalonic acid provide strong evidence for HIDS. The diagnosis is confirmed by low activity of mevalonate kinase or by demonstration of disease-causing mutations. Genetic counseling should be offered to families at risk. There is no established successful treatment for MVA. Simvastatin, an inhibitor of HMG-CoA reductase, and anakinra have been shown to have beneficial effect in HIDS.

  7. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1

    DEFF Research Database (Denmark)

    Kölker, Stefan; Cazorla, Angeles Garcia; Valayannopoulos, Vassili

    2015-01-01

    BACKGROUND: The clinical presentation of patients with organic acidurias (OAD) and urea cycle disorders (UCD) is variable; symptoms are often non-specific. AIMS/METHODS: To improve the knowledge about OAD and UCD the E-IMD consortium established a web-based patient registry. RESULTS: We registered...

  8. The phenotypic spectrum of organic acidurias and urea cycle disorders Part 2: the evolving clinical phenotype

    NARCIS (Netherlands)

    Kölker, Stefan; Valayannopoulos, Vassili; Burlina, Alberto B.; Sykut-Cegielska, Jolanta; Wijburg, Frits A.; Teles, Elisa Leão; Zeman, Jiri; Dionisi-Vici, Carlo; Barić, Ivo; Karall, Daniela; Arnoux, Jean-Baptiste; Avram, Paula; Baumgartner, Matthias R.; Blasco-Alonso, Javier; Boy, S. P. Nikolas; Rasmussen, Marlene Bøgehus; Burgard, Peter; Chabrol, Brigitte; Chakrapani, Anupam; Chapman, Kimberly; Cortès I Saladelafont, Elisenda; Couce, Maria L.; de Meirleir, Linda; Dobbelaere, Dries; Furlan, Francesca; Gleich, Florian; González, Maria Julieta; Gradowska, Wanda; Grünewald, Stephanie; Honzik, Tomas; Hörster, Friederike; Ioannou, Hariklea; Jalan, Anil; Häberle, Johannes; Haege, Gisela; Langereis, Eveline; de Lonlay, Pascale; Martinelli, Diego; Matsumoto, Shirou; Mühlhausen, Chris; Murphy, Elaine; de Baulny, Hélène Ogier; Ortez, Carlos; Pedrón, Consuelo C.; Pintos-Morell, Guillem; Pena-Quintana, Luis; Ramadža, Danijela Petković; Rodrigues, Esmeralda; Scholl-Bürgi, Sabine; Sokal, Etienne; Summar, Marshall L.; Thompson, Nicholas; Vara, Roshni; Pinera, Inmaculada Vives; Walter, John H.; Williams, Monique; Lund, Allan M.; Garcia-Cazorla, Angeles; Garcia Cazorla, Angeles

    2015-01-01

    Background The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. Aims To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. Results Acquired microcephaly and movement disorders

  9. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria

    Science.gov (United States)

    Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea cycle disorder, and leads to deficiency of both urea...

  10. 3-Methylglutaconic aciduria-lessons from 50 genes and 977 patients

    NARCIS (Netherlands)

    Wortmann, S.B.; Kluijtmans, L.A.J.; Rodenburg, R.J.T.; Sass, J.O.; Nouws, J.; Kaauwen, E.P. van; Kleefstra, T.; Tranebjaerg, L.; Vries, M.C. de; Isohanni, P.; Walter, K.; Alkuraya, F.S.; Smuts, I.; Reinecke, C.J.; Westhuizen, F.H. van der; Thorburn, D.; Smeitink, J.A.M.; Morava, E.; Wevers, R.A.

    2013-01-01

    Elevated urinary excretion of 3-methylglutaconic acid is considered rare in patients suspected of a metabolic disorder. In 3-methylglutaconyl-CoA hydratase deficiency (mutations in AUH), it derives from leucine degradation. In all other disorders with 3-methylglutaconic aciduria the origin is

  11. The phenotypic spectrum of organic acidurias and urea cycle disorders Part 1: the initial presentation

    NARCIS (Netherlands)

    Kölker, Stefan; Garcia-Cazorla, Angeles; Cazorla, Angeles Garcia; Valayannopoulos, Vassili; Lund, Allan M.; Burlina, Alberto B.; Sykut-Cegielska, Jolanta; Wijburg, Frits A.; Teles, Elisa Leão; Zeman, Jiri; Dionisi-Vici, Carlo; Barić, Ivo; Karall, Daniela; Augoustides-Savvopoulou, Persephone; Aksglaede, Lise; Arnoux, Jean-Baptiste; Avram, Paula; Baumgartner, Matthias R.; Blasco-Alonso, Javier; Chabrol, Brigitte; Chakrapani, Anupam; Chapman, Kimberly; I Saladelafont, Elisenda Cortès; Couce, Maria L.; de Meirleir, Linda; Dobbelaere, Dries; Dvorakova, Veronika; Furlan, Francesca; Gleich, Florian; Gradowska, Wanda; Grünewald, Stephanie; Jalan, Anil; Häberle, Johannes; Haege, Gisela; Lachmann, Robin; Laemmle, Alexander; Langereis, Eveline; de Lonlay, Pascale; Martinelli, Diego; Matsumoto, Shirou; Mühlhausen, Chris; de Baulny, Hélène Ogier; Ortez, Carlos; Peña-Quintana, Luis; Ramadža, Danijela Petković; Rodrigues, Esmeralda; Scholl-Bürgi, Sabine; Sokal, Etienne; Staufner, Christian; Summar, Marshall L.; Thompson, Nicholas; Vara, Roshni; Pinera, Inmaculada Vives; Walter, John H.; Williams, Monique; Burgard, Peter

    2015-01-01

    Background The clinical presentation of patients with organic acidurias (OAD) and urea cycle disorders (UCD) is variable; symptoms are often non-specific. Aims/methods To improve the knowledge about OAD and UCD the E-IMD consortium established a web-based patient registry. Results We registered 795

  12. Subdural hematomas: glutaric aciduria type 1 or abusive head trauma? A systematic review

    NARCIS (Netherlands)

    Vester, Marloes E. M.; Bilo, Rob A. C.; Karst, Wouter A.; Daams, Joost G.; Duijst, Wilma L. J. M.; van Rijn, Rick R.

    2015-01-01

    Glutaric aciduria type 1 (GA1) is a rare metabolic disorder of glutaryl-CoA-dehydrogenase enzyme deficiency. Children with GA1 are reported to be predisposed to subdural hematoma (SDH) development due to stretching of cortical veins secondary to cerebral atrophy and expansion of CSF spaces.

  13. Occurrence of subdural hematomas in Dutch glutaric aciduria type 1 patients

    NARCIS (Netherlands)

    Vester, Marloes E M; Visser, Gepke; Wijburg, Frits A.; van Spronsen, Francjan J.; Williams, Monique; van Rijn, Rick R.

    2016-01-01

    Patients with glutaric aciduria type 1 (GA1), a rare inherited metabolic disorder, have an increased risk for subdural hematomas (SDHs). GA1 is therefore generally included in the differential diagnosis of children presenting with SDHs. This retrospective cohort study reviews all 25 registered, in

  14. Occurrence of subdural hematomas in Dutch glutaric aciduria type 1 patients

    NARCIS (Netherlands)

    Vester, Marloes E. M.; Visser, Gepke; Wijburg, Frits A.; van Spronsen, Francjan J.; Williams, Monique; van Rijn, Rick R.

    Patients with glutaric aciduria type 1 (GA1), a rare inherited metabolic disorder, have an increased risk for subdural hematomas (SDHs). GA1 is therefore generally included in the differential diagnosis of children presenting with SDHs. This retrospective cohort study reviews all 25 registered, in

  15. Subdural hematomas: glutaric aciduria type 1 or abusive head trauma? A systematic review

    NARCIS (Netherlands)

    Vester, M.E.; Bilo, R.A.; Karst, W.A.; Daams, J.G.; Duijst, W.L.J.M.; Rijn, R.R. van

    2015-01-01

    PURPOSE: Glutaric aciduria type 1 (GA1) is a rare metabolic disorder of glutaryl-CoA-dehydrogenase enzyme deficiency. Children with GA1 are reported to be predisposed to subdural hematoma (SDH) development due to stretching of cortical veins secondary to cerebral atrophy and expansion of CSF spaces.

  16. Occurrence of subdural hematomas in Dutch glutaric aciduria type 1 patients

    NARCIS (Netherlands)

    Vester, M.E.M. (Marloes E.M.); G. Visser (G.); F.A. Wijburg (Frits); F.J. van Spronsen; M. Williams (Martine); R.R. van Rijn (Rick)

    2016-01-01

    textabstractPatients with glutaric aciduria type 1 (GA1), a rare inherited metabolic disorder, have an increased risk for subdural hematomas (SDHs). GA1 is therefore generally included in the differential diagnosis of children presenting with SDHs. This retrospective cohort study reviews all 25

  17. Cerebral H-1 MR spectroscopy revealing white matter NAA decreases in glutaric aciduria type I

    NARCIS (Netherlands)

    Sijens, P. E.; Smit, G. P. A.; Meiners, L. C.; Oudkerk, M.; van Spronsen, F. J.

    MR spectroscopy in two patients with glutaric aciduria type I revealed reductions in the white matter N-acetylaspartate signal, in the more severe case accompanied by a loss of glutamate and the appearance of lactate signals. (c) 2006 Elsevier Inc. All rights reserved.

  18. A review of patients with glutaric aciduria type 1 at Inkosi Albert ...

    African Journals Online (AJOL)

    Glutaric aciduria type 1 (GA1) is a rare, autosomal-recessive organic acidaemia. It is caused by deficiency of glutaryl-co-enzyme A (CoA) dehydrogenase (GCDH) resulting from a mutation in the GCDH gene on chromosome 19p13.2. There are 108 known disease-causing mutations in the Human Gene Mutation Database.

  19. Clinical characteristics of hemolytic uremic syndrome secondary to cobalamin C disorder in Chinese children.

    Science.gov (United States)

    Li, Qi-Liang; Song, Wen-Qi; Peng, Xiao-Xia; Liu, Xiao-Rong; He, Le-Jian; Fu, Li-Bing

    2015-08-01

    The present study was undertaken to investigate the clinical characteristics of hemolytic uremic syndrome (HUS) secondary to cobalamin C disorder (cbl-C disorder). We reviewed retrospectively the medical records of 3 children with HUS secondary to cbl-C disorder who had been treated between April 1, 2009 and October 31, 2013. The 3 patients with HUS secondary to cbl-C disorder presented with progressive hemolytic anemia, acute renal failure, thrombocytopenia, poor feeding, and failure to thrive. Two of the 3 patients once had high blood pressure. The mutations of c.609G>A (p.W203X), c.217C>T (p.R73X) and c.365A>T (p.H122L) in the methylmalonic aciduria (cobalamin deficiency) cbl-C type, with homocystinuria gene were detected in the 3 patients. In these patients the levels of lactate dehydrogenase and homocysteine in serum were elevated and the level of methylmalonic acid (MMA) in urine was also elevated. After treatment with hydroxocobalamin, 2 patients were discharged with no obvious abnormal growth and neurological development and 1 patient died of multiple organ failure. The results of this study demonstrated that cbl-C disorder should be investigated in any child presenting with HUS. The high concentrations of homocysteine and MMA could be used for timely recognization of the disease. Once the high levels of plasma homocystein and/or plasma or urine MMA are detected, the treatment with parenteral hydroxocobalamin should be prescribed immediately. The early diagnosis and treatment would contribute to the good prognosis of the disease.

  20. Heptadecanoylcarnitine (C17) a novel candidate biomarker for propionic and methylmalonic acidemias during expanded newborn screening

    Science.gov (United States)

    Malvagia, Sabrina; Haynes, Christopher A.; Grisotto, Laura; Ombrone, Daniela; Funghini, Silvia; Moretti, Elisa; McGreevy, Kathleen; Buggeri, Annibale; Guerrini, Renzo; Yahyaoui, Raquel; Garg, Uttam; Seeterlin, Mary; Chace, Donald; De Jesus, Victor; la Marca, Giancarlo

    2017-01-01

    Background 3-hydroxypalmitoleoyl-carnitine (C16:1-OH) was recently reported to be elevated in acylcarnitine profile of propionic acidemia (PA) or methylmalonic acidemia (MMA) patients during expanded newborn screening (NBS). High levels of C16:1-OH, combined with other hydroxylated long chain acylcarnitines are related to long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Methods The acylcarnitine profile of two LCHADD patients was evaluated using liquid chromatography-tandem mass spectrometric method. A specific retention time was reported for each hydroxylated long chain acylcarnitine. The same method was applied to some neonatal dried blood spots (DBS) from PA and MMA patients presenting abnormal C16:1-OH concentrations. Results The final retention time of the peak corresponding to C16:1-OH in LCHADD patients differed from those in MMA and PA patients. Heptadecanoylcarnitine (C17) has been identified as the novel biomarker specific for PA and MMA patients through high resolution mass spectrometry (Orbitrap) experiments. We found that 21 out of 23 neonates (22 MMA, and 1PA) diagnosed through the Tuscany region NBS program had significantly higher levels of C17 compared to levels detected in controls. Twenty-three maternal deficiencies (21 vitamin B12 deficiency, 1 homocystinuria and 1 gastrin deficiency) and 82 false positive for propionylcarnitine (C3) results were also analyzed. Conclusions This paper reports on the characterization of a novel biomarker able to detect propionate disorders during expanded newborn screening (NBS). The use of this new biomarker may improve the analytical performances of NBS programs especially in laboratories where second tier tests are not performed. PMID:26368264

  1. Heptadecanoylcarnitine (C17) a novel candidate biomarker for newborn screening of propionic and methylmalonic acidemias.

    Science.gov (United States)

    Malvagia, Sabrina; Haynes, Christopher A; Grisotto, Laura; Ombrone, Daniela; Funghini, Silvia; Moretti, Elisa; McGreevy, Kathleen S; Biggeri, Annibale; Guerrini, Renzo; Yahyaoui, Raquel; Garg, Uttam; Seeterlin, Mary; Chace, Donald; De Jesus, Victor R; la Marca, Giancarlo

    2015-10-23

    3-Hydroxypalmitoleoyl-carnitine (C16:1-OH) has recently been reported to be elevated in acylcarnitine profiles of patients with propionic acidemia (PA) or methylmalonic acidemia (MMA) during expanded newborn screening (NBS). High levels of C16:1-OH, combined with other hydroxylated long chain acylcarnitines are related to long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and trifunctional protein (TFP) deficiency. The acylcarnitine profile of two LCHADD patients was evaluated using liquid chromatography-tandem mass spectrometric method. A specific retention time was determined for each hydroxylated long chain acylcarnitine. The same method was applied to some neonatal dried blood spots (DBSs) from PA and MMA patients presenting abnormal C16:1-OH concentrations. The retention time of the peak corresponding to C16:1-OH in LCHADD patients differed from those in MMA and PA patients. Heptadecanoylcarnitine (C17) has been identified as the novel biomarker specific for PA and MMA patients through high resolution mass spectrometry (Orbitrap) experiments. We found that 21 out of 23 neonates (22 MMA, and 1PA) diagnosed through the Tuscany region NBS program exhibited significantly higher levels of C17 compared to controls. Twenty-three maternal deficiency (21 vitamin B12 deficiency, 1 homocystinuria and 1 gastrin deficiency) samples and 82 false positive for elevated propionylcarnitine (C3) were also analyzed. We have characterized a novel biomarker able to detect propionate disorders during expanded newborn screening (NBS). The use of this new biomarker may improve the analytical performances of NBS programs especially in laboratories where second tier tests are not performed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. OPA3, mutated in 3-methylglutaconic aciduria type III, encodes two transcripts targeted primarily to mitochondria

    DEFF Research Database (Denmark)

    Huizing, Marjan; Dorward, Heidi; Ly, Lien

    2010-01-01

    3-Methylglutaconic aciduria type III (3-MGCA type III), caused by recessive mutations in the 2-exon gene OPA3, is characterized by early-onset bilateral optic atrophy, later-onset extrapyramidal dysfunction, and increased urinary excretion of 3-methylglutaconic acid and 3-methylglutaric acid. Her...... in the mitochondrion rather than the peroxisome and implicate loss of OPA3A rather than gain of OPA3B in disease etiology....

  3. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    Science.gov (United States)

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  4. Trichloroethylene-induced formic aciduria in the male C57 Bl/6 mouse

    International Nuclear Information System (INIS)

    Lock, Edward A.; Keane, Paul; Rowe, Philip H.; Foster, John R.; Antoine, Daniel; Morris, Christopher M.

    2017-01-01

    1, 1, 2-Trichloroethylene (TCE) is of environmental concern, due to evaporation while handling, chemical processing and leakage from chemical waste sites, leading to its contamination of ground water and air. For several decades there has been issues about possible long term health effects of TCE but recently the International Agency for Research on Cancer (IARC) and the US Environmental Protection Agency classified TCE as a human carcinogen. Links having been established between occupational exposures and kidney cancer and possible links to non-Hodgkin lymphoma and liver cancer, but there is more still more to learn. In male rats, TCE produces a small increase in the incidence of renal tubule tumours but not in female rats or mice of either sex. However, chronic renal injury was seen in these bioassays in both sexes of rats and mice. The mechanism of kidney injury from TCE is thought to be due to reductive metabolism forming a cysteine conjugate that is converted to a reactive metabolite via the enzyme cysteine conjugate β-lyase. However, TCE also produces a marked and sustained formic aciduria in male rats and it has been suggested that long term exposure to formic acid could lead to renal tubule injury and regeneration. In this study we have determined if TCE produces formic aciduria in male mice following a single and repeat dosing. Male C 57 Bl/6OlaHsd mice were dosed with 1000 mg/kg by ip injection and urine collected overnight 24, 48, 72 and 96 h after dosing. Formic acid was present in urine 24 h after dosing, peaked around 48 h at 8 mg formic acid excreted/mouse, and remained constant over the next 24 h and was not back to normal 96 h after dosing. This was associated with a marked acidification of the urine. Plasma creatinine and renal pathology was normal. Plasma kinetics of formic acid showed it was readily cleared with an initial half-life of 2.42 h followed by a slower rate with a half-life of 239 h. Male mice were then dosed twice/week at 1000 mg

  5. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2

    DEFF Research Database (Denmark)

    Kölker, Stefan; Valayannopoulos, Vassili; Burlina, Alberto B

    2015-01-01

    BACKGROUND: The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. AIMS: To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. RESULTS: Acquired microcephaly and movement disorders...... failure was also observed in adolescent and adult patients with GA1 and ASL deficiency. It had a similar frequency in patients with or without a movement disorder suggesting different pathophysiology. Thirteen patients (classic OAD: 3, UCD: 10) died during the study interval, ten of them during...

  6. Selective Screening for Organic Acidurias and Amino Acidopathies in Pakistani Children

    International Nuclear Information System (INIS)

    Sherazi, N. A.; Khan, A. H.; Jafri, L.; Jamil, A.; Khan, N. A.; Afroze, B.

    2017-01-01

    Objective: To determine the frequency of organic acidurais (OA) and amino acidopathies (AA) in selected high-risk patients screened in two years. Study Design: Retrospective Observational study. Place and Duration of Study: The Aga Khan University Hospital (AKUH), Karachi, from January 2013 to December 2014. Methodology: Patients with OA and AA were included in the study and patients with IMDs other than OA and AA were excluded. Amino acids and organic acids were analyzed on high performance liquid chromatography and gas chromatography-mass spectrometry respectively. Clinical data and chromatograms of patients screened for IMDs were reviewed by chemical pathologist and metabolic physician. Results: Eighty-eight cases (4.7 percent) were diagnosed including 41 OA (46.5 percent), 28 AA (31.8 percent) and 19 others (21.5 percent) from 1,866 specimens analyzed. Median age of the patients was 1.1 years, with high consanguinity rate (64.8 percent). Among OA, methyl CoA mutase deficiency was diagnosed in 9 (10.2 percent) and was suspected in 2 (2.3 percent) cases. Five (5.7 percent) cases of MHBD (2-methyl-3-hydroxybutyryl-CoA), 4 (4.5 percent) each of PPA (propionic aciduria) and HMG-CoA lyase deficiency, 3 (3.4 percent) cases each of IVA (isovaleric aciduria), multiple carboxylase deficiency, fructose-1, 6-biphosphatase deficiency, fumarase deficiency, GA-1 (glutaric aciduria type 1) and 2 (2.3 percent) cases of EMA (ethyl-malonic aciduria). AA included 8 (9.1 percent) cases of MSUD (maple syrup urine disease), 6 (6.8 percent) cases of CBS (cystathionine beta-synthetase) and UCDs (urea cycle disorders) each, 5 (5.7 percent) cases of hyperphenylalaninemia and 3 (3.4 percent) cases of hyperprolinemia were reported. Other inherited metabolic disorders included: 9 (10.2 percent) cases of intracellular cobalamin defects, 2 (2.3 percent) cases each of alkaptonuria, Canavan's disease, SUCL (succinate CoA ligase) deficiency, and 1 (1.1 percent) case each of DPD

  7. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    DEFF Research Database (Denmark)

    Corydon, M J; Gregersen, N; Lehnert, W

    1996-01-01

    Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively...

  8. Novel contiguous gene deletion in peruvian girl with Trichothiodystrophy type 4 and glutaric aciduria type 3.

    Science.gov (United States)

    La Serna-Infantes, Jorge; Pastor, Miguel Chávez; Trubnykova, Milana; Velásquez, Félix Chavesta; Sotomayor, Flor Vásquez; Barriga, Hugo Abarca

    2018-02-05

    Trichothiodystrophy type 4 is a rare autosomal recessive and ectodermal disorder, characterized by dry, brittle, sparse and sulfur-deficient hair and other features like intellectual disability, ichthyotic skin and short stature, caused by a homozygous mutation in MPLKIP gene. Glutaric aciduria type 3 is caused by a homozygous mutation in SUGCT gene with no distinctive phenotype. Both genes are localized on chromosome 7 (7p14). We report an 8-year-old female with short stature, microcephaly, development delay, intellectual disability and hair characterized for dark, short, coarse, sparse and brittle associated to classical trichorrhexis microscopy pattern. Chromosome microarray analysis showed a 125 kb homozygous pathogenic deletion, which includes genes MPLKIP and SUGCT, not described before. This is the first case described in Peru of a novel contiguous gene deletion of Trichothiodystrophy type 4 and Glutaric aciduria type 3 performed by chromosome microarray analysis, highlighting the contribution and importance of molecular technologies on diagnosis of rare genetic conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Impact of age at onset and newborn screening on outcome in organic acidurias

    DEFF Research Database (Denmark)

    Heringer, Jana; Valayannopoulos, Vassili; Lund, Allan M

    2016-01-01

    analyses, symptomatic patients were divided into those presenting with first symptoms during (i.e. early onset, EO) or after the newborn period (i.e. late onset, LO). RESULTS: Patients identified by newborn screening (NBS) had a significantly lower median age of diagnosis (8 days) compared to the LO group...... % versus 39 %, p = 0.002; GA1: 26 % versus 73 %, p age-adjusted intake of natural protein and calories was significantly higher in LO patients than in EO patients reflecting different disease severities. Variable drug...... combinations, ranging from 12 in MMA-Cbl(-) to two in isovaleric aciduria, were used for maintenance treatment. The effects of specific metabolic treatment strategies on the health outcomes remain unclear because of the strong influences of age at onset (EO versus LO), diagnostic mode (NBS versus selective...

  10. L-2 hydroxyglutaric aciduria in a South African Staffordshire Bull Terrier

    Directory of Open Access Journals (Sweden)

    Marlies Böhm

    2014-05-01

    Full Text Available L-2 hydroxyglutaric aciduria is an autosomal recessive error of metabolism that manifests as an encephalopathy. The most common presenting signs are seizures, tremors, ataxia and/ or dementia. Some affected dogs show only subtle behavioural changes. Amongst canines, the condition has been best described in Staffordshire Bull Terriers. Although this is the first reported case in South Africa, at least three other affected dogs have been indentified by polmerase chain reaction (PCR in this country. Affected dogs have normal haematology, serum biochemistry and routine urine analysis. This report discusses the advantages and limitations of the three main diagnostic modalities, namely: magnetic resonance imaging, urine gas chromatography-mass spectrometry and genetic testing. The aim of this report is to increase awareness of the condition, assist diagnosis in encephalopathic dogs and improve detection of carriers amongst breeding stock.

  11. Glutaric Aciduria type I and acute renal failure — Coincidence or causality?

    Directory of Open Access Journals (Sweden)

    Ben Pode-Shakked

    2014-01-01

    Full Text Available Glutaric Aciduria type I (GA-I is a rare organic acidemia, caused by mutations in the GCDH gene, and characterized by encephalopathic crises with neurological sequelae. We report herein a patient with GA-I who presented with severe acute renal failure requiring dialysis, following an acute diarrheal illness. Histopathological evaluation demonstrated acute tubular necrosis, and molecular diagnosis revealed the patient to be homozygous for a previously unreported mutation, p.E64D. As renal impairment is not part of the clinical spectrum typical to GA-I, possible associations of renal failure and the underlying inborn error of metabolism are discussed, including recent advancements made in the understanding of the renal transport of glutaric acid and its derivatives during metabolic disturbance in GA-I.

  12. Screening of a healthy newborn identifies three adult family members with symptomatic glutaric aciduria type I

    Directory of Open Access Journals (Sweden)

    MCH Janssen

    2014-06-01

    Full Text Available We report three adult sibs (one female, two males with symptomatic glutaric acidura type I, who were diagnosed after a low carnitine level was found by newborn screening in a healthy newborn of the women. All three adults had low plasma carnitine, elevated glutaric acid levels and pronounced 3-hydroxyglutaric aciduria. The diagnosis was confirmed by undetectable glutaryl-CoA dehydrogenase activity in lymphocytes and two pathogenic heterozygous mutations in the GCDH gene (c.1060A>G, c.1154C>T. These results reinforce the notion that abnormal metabolite levels in newborns may lead to the diagnosis of adult metabolic disease in the mother and potentially other family members.

  13. 3-Methylglutaconic aciduria, a frequent but underrecognized finding in carbamoyl phosphate synthetase I deficiency.

    Science.gov (United States)

    Rokicki, Dariusz; Pajdowska, Magdalena; Trubicka, Joanna; Thong, Meow-Keong; Ciara, Elżbieta; Piekutowska-Abramczuk, Dorota; Pronicki, Maciej; Sikora, Roman; Haidar, Rijad; Ołtarzewski, Mariusz; Jabłońska, Ewa; Muthukumarasamy, Premala; Sthaneswar, Pavai; Gan, Chin-Seng; Krajewska-Walasek, Małgorzata; Carrozzo, Rosalba; Verrigni, Daniela; Semeraro, Michela; Rizzo, Cristiano; Taurisano, Roberta; Alhaddad, Bader; Kovacs-Nagy, Reka; Haack, Tobias B; Dionisi-Vici, Carlo; Pronicka, Ewa; Wortmann, Saskia B

    2017-08-01

    The urea cycle disorder carbamoyl phosphate synthetase I deficiency is an important differential diagnosis in the encephalopathic neonate. This intoxication type inborn error of metabolism often leads to neonatal death or severe and irreversible damage of the central nervous system, even despite appropriate treatment. Timely diagnosis is crucial, but can be difficult on routine metabolite level. Here, we report ten neonates from eight families (finally) diagnosed with CPS1 deficiency at three tertiary metabolic centres. In seven of them the laboratory findings were dominated by significantly elevated urinary 3-methylglutaconic acid levels which complicated the diagnostic process. Our findings are both important for the differential diagnosis of patients with urea cycle disorders and also broaden the differential diagnosis of hyperammonemia associated with 3-methylglutaconic aciduria, which was earlier only reported in TMEM70 and SERAC1 defect. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Trichloroethylene-induced formic aciduria in the male C57 Bl/6 mouse.

    Science.gov (United States)

    Lock, Edward A; Keane, Paul; Rowe, Philip H; Foster, John R; Antoine, Daniel; Morris, Christopher M

    2017-03-01

    1, 1, 2-Trichloroethylene (TCE) is of environmental concern, due to evaporation while handling, chemical processing and leakage from chemical waste sites, leading to its contamination of ground water and air. For several decades there has been issues about possible long term health effects of TCE but recently the International Agency for Research on Cancer (IARC) and the US Environmental Protection Agency classified TCE as a human carcinogen. Links having been established between occupational exposures and kidney cancer and possible links to non-Hodgkin lymphoma and liver cancer, but there is more still more to learn. In male rats, TCE produces a small increase in the incidence of renal tubule tumours but not in female rats or mice of either sex. However, chronic renal injury was seen in these bioassays in both sexes of rats and mice. The mechanism of kidney injury from TCE is thought to be due to reductive metabolism forming a cysteine conjugate that is converted to a reactive metabolite via the enzyme cysteine conjugate β-lyase. However, TCE also produces a marked and sustained formic aciduria in male rats and it has been suggested that long term exposure to formic acid could lead to renal tubule injury and regeneration. In this study we have determined if TCE produces formic aciduria in male mice following a single and repeat dosing. Male C 57 Bl/6OlaHsd mice were dosed with 1000mg/kg by ip injection and urine collected overnight 24, 48, 72 and 96h after dosing. Formic acid was present in urine 24h after dosing, peaked around 48h at 8mg formic acid excreted/mouse, and remained constant over the next 24h and was not back to normal 96h after dosing. This was associated with a marked acidification of the urine. Plasma creatinine and renal pathology was normal. Plasma kinetics of formic acid showed it was readily cleared with an initial half-life of 2.42h followed by a slower rate with a half-life of 239h. Male mice were then dosed twice/week at 1000mg/kg TCE for

  15. SERUM METHYLMALONIC ACID DAN HOMOCYSTEIN DALAM MENDIAGNOSIS ANEMIA MEGALOBLASTIK AKIBAT DEFISIENSI KOBALAMIN DAN FOLAT PADA TRAVEL MEDICINE

    Directory of Open Access Journals (Sweden)

    Made Gian Indra Rahayuda

    2014-09-01

    Full Text Available Anemia adalah salah satu masalah kesehatan global yang utama, terutama pada negara-negara berkembang.Anemia adalah kondisi dimana massa sel darah merah dan/atau massa hemoglobin yang beredar dalam tubuh menurun hingga dibawah kadar normal sehingga tidak dapat berfungsi dengan baik dalam menyediakan oksigen untuk jaringan tubuh. Salah satu jenis yang banyak ditemukan adalah anemia megaloblastik.Anemia megaloblastik paling banyak disebabkan oleh kekurangan vitamin B12(kobalamin dan folat.Salah satu penyebab anemia defisiensi kobalamin dan folat adalah tropical sprue.Anemia defisiensi kobalamin dan asam folat memberikan gambaran yang serupa namun pada defisiensi kobalamin terdapat gejala neuropati.Batas normal serum folat antara 3-15 ng/mL.Folat eritrosit batas normalnya dari 150 – 600 ng/mL.Pada defisiensi kobalamin, serum kobalamin menurun di bawah cut off point100pg/mL (normalnya 100- 400pg/mL.Pemeriksaan lain seperti homocystein, methylmalonic acid, atau formioglutamic acid(FIGLU yang meningkat pada urin dapat memastikan diagnosis defisiensi kobalamindan asam folat. Belum ada konsensus mengenai cut off point Homocystein dan MMA. Homocysteine telah dianggap meningkat bila kadarnya di atas 12-14 µmol/L pada wanita dan di atas 14-15 µmol/L. Menurut penelitian yang dilakukan Robert et al pada kasus defisiensi kobalamin, kadar serum tHcy> 15.0 µmol/L.Kebanyakan penelitian menganggap peningkatan MMA pada defisiensi kobalamin adalah >0.28 µmol/L, tapi cut off point yang beredar bervariasi antara 0.21-0.48 µmol/L.Kadar MMA meningkat dalam serumdan urin pada defisiensi kobalamin, sedangkan pada defisiensi folat MMA normal.

  16. Estudio de pacientes con aciduria glutárica tipo II, mediante la incubación de fibroblastos con ácidos palmítico y mirístico tritiados = Study of patients with type II glutaric aciduria by incubation of fibroblasts with tritiated palmitic and myristic acids

    Directory of Open Access Journals (Sweden)

    Osorio Orozco, José Henry

    2011-09-01

    Full Text Available Introducción: la aciduria glutárica tipo II, o deficiencia múltiple de acil-CoA deshidrogenasas, es un trastorno causado por deficiencia de la flavoproteína de transferencia de electrones, de su oxidorreductasa o de ambas; se trata de una enfermedad metabólica autosómica recesiva, caracterizada por acidosis, hipoglicemia, aciduria orgánica, olor a pies sudados y malformaciones en cerebro y riñones.Objetivo: analizar las tasas de oxidación de sustratos tritiados por fibroblastos de pacientes con aciduria glutárica tipo II.Materiales y métodos: se incubaron fibroblastos de dos pacientes con aciduria glutárica tipo II y de 20 controles en presencia de ácidos palmítico y mirístico tritiados.Resultados: se encontró muy deprimida (16%-18% la oxidación de los sustratos tritiados por los fibroblastos procedentes de pacientes con aciduria glutárica tipo II en comparación con los controles.Conclusión: la prueba estudiada permite la confirmación in vitro del diagnóstico de aciduria glutárica tipo II.

  17. METHYLMALONIC ACID AND HOMOCYSTEIN SERUM IN DIAGNOSING MEGALOBLASTIC ANEMIA DUE TO COBALAMIN AND FOLATE DEFICIENCY IN TRAVEL MEDICINE

    Directory of Open Access Journals (Sweden)

    Made Gian Indra Rahayuda

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Anemia is a major global health problem, especially in developing countries. Anemia is a condition where the red blood cell mass and / or hemoglobin mass that circulating in the body was decreased to below normal level so it can not function well in providing oxygen to the body tissues. One of the most common type is megaloblastic anemia. Megaloblastic anemia is mostly caused by vitamin B12 (cobalamin and folate deficiency. One of the causes of cobalamin and folate deficiency anemia is tropical sprue. Cobalamin deficiency anemia and folate deficiency anemia gives a similar symptom, but in cobalamin deficiency there is neuropathy symptoms. Normal serum folate is between 3-15 ng/mL. Normal folate erythrocyte is 150-600 ng/mL. In cobalamin deficiency, serum cobalamin decreased below the cut off point 100pg/mL (normally 100 - 400pg/mL. Other examination such as elevated homocysteine??, methylmalonic acid, or formioglutamic acid (FIGLU in the urine can confirm the diagnosis of cobalamin and folic acid deficiency. There is no consensus on the cut-off point of homocysteine ??and MMA. Homocysteine ??has been considered to increase when the levels are above 12-14 ?mol /L in women and in the 14-15 ?mol/L. According to research by Robert et al in the case of cobalamin deficiency, serum tHcy> 15.0 ?mol/L. Most research considers the increase of MMA in cobalamin deficiency is> 0:28 ?mol / L, but the cut off point in circulation varies between 0:21 to 0:48 ?mol/L. MMA level is increased in serum and urine in cobalamin deficiency, whereas MMA normal in folate deficiency. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font

  18. [3-hydroxy-3-methylglutaric aciduria and recurrent Reye-like syndrome].

    Science.gov (United States)

    Eirís, J; Ribes, A; Fernández-Prieto, R; Rodríguez-García, J; Rodríguez-Segade, S; Castro-Gago, M

    1998-06-01

    3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMG-CoA lyase) is an inborn error of ketogenesis and Leucine catabolism. HMG-CoA lyase catalyses the final step in leucine degradation, converting HMG-CoA to acetyl-CoA and acetoacetic acid. Clinical manifestations include hepatomegaly, lethargy or coma and apnoea. Biochemically there is a characteristic absence of ketosis with hypoglycemia, acidosis, hipertransaminasemia and variable hyperammoniemia. The urinary organic acid profile includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic and 3-methylglutaric acids. Here, we report the case of a 17-year-old girl who presented in both ten months and five years of age a clinical picture characterized by lethargy leading to apnea and coma, hepatomegaly, hypoglycemia, metabolic acidosis, hyperammoniemia, elevated serum transaminases and absence of ketonuria. Diagnostic of Reye syndrome was suggested by hystopathologic finding of hepatic steatosis and clinical and biochemical data. As of 11 years old, laboratory investigations revealed carnitine deficiency and characteristic aciduria. Confirmatory enzyme diagnosis revealing deficiency of HMG-CoA lyase was made in cultured fibroblasts. Our report constitutes an example of the presentation of HMG-CoA lyase deficiency as recurrent Reye-like syndrome.

  19. A case of glutaric aciduria type I with unique abnormalities in the cerebral CT findings

    International Nuclear Information System (INIS)

    Yamaguchi, Seiji; Orii, Tadao; Yasuda, Kanji; Kohno, Yoshinori

    1987-01-01

    A first Japanese case of glutaric aciduria type I (GA-I) was described. She was a 7-month-old girl presenting with poor head control, irritability and sleeplessness. The profile of urinary organic acids by gas chromatography mass spectrometry (GC/MS) suggesting GA-I were confirmed by no activity of glutaryl-CoA dehydrogenase in the fibroblasts. The cerebral computer tomography (CT) showed marked changes such as large fluid collections on bilateral frontotemporal regions and a slight enlargement of bilateral ventricles. The amounts of urinary glutarate excretion decreased after restriction of lysine and tryptophan in her diet and administration of carnitine improved the carnitine levels in blood and urine, while these were less effective for the neurological symptoms. On the other hand, oral administration of lioresal, an analogue of gamma-aminobutyrate (GABA), cleared her symptoms such as ill temper, irritability and sleeplessness dramatically, and the abnormalities of the CT examinations were not more deteriorative until 2 years of her age at least. The neurological manifestations of GA-I seemed to be affected by the unusual metabolism of GABA in the central nervous system. (author)

  20. Postnatal and antenatal laboratory diagnosis of glutaric aciduria II in a South African family

    International Nuclear Information System (INIS)

    Henderson, H.E.; Balla, R.; De Jong, G.; Piek, C.J.; Mienie, L.J.; Erasmus, E.

    1987-01-01

    Glutaric aciduria type II (Ga II) was proved in a neonate who presented shortly after birth with respiratory distress, metabolic acidosis, non-ketotic hypoglycaemia and a sweaty-feet-like odour. The diagnosis was based on elevated levels of glutaric and other acids in the urine and on studies on cultured skin fibroblasts where defective metabolism of fatty acids of varying chain length was demonstrated. Antenatal diagnosis was performed on a subsequent pregnancy in this family where an abnormal amniotic fluid organic acid profile together with defective fatty acid oxidation in cultured amnion cells was indicative of GA II in the fetus. A measure of efficency of butyrate oxidation was obtained by analysis of the amount of 14 C label incorporated into trichloro-acetic acid precipitable macromolecules. The incorporation of ( 3 H) leucine was taken as a general indicator of metabolism in the cell population. This is the first report of this genetic disorder in a South African family and it should be considered in suspected organic acidaemia in the neonatal period

  1. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Directory of Open Access Journals (Sweden)

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  2. Phenotypic heterogeneity in two siblings with 3-methylglutaconic aciduria type I caused by a novel intragenic deletion.

    Science.gov (United States)

    Mercimek-Mahmutoglu, Saadet; Tucker, Tracy; Casey, Brett

    2011-11-01

    We describe two siblings with 3-methylglutaconic aciduria type I with phenotypic heterogeneity. The index case was a 14-year-old female with learning disability, attention deficit-hyperactivity and early onset subclinical leukoencephalopathy. Her 9-year-old brother had severe expressive speech delay and delay in speech sound development with normal cognitive functions. The diagnosis was confirmed by a demonstration of 3-methylglutaconyl-CoA hydratase enzyme deficiency in the cultured skin fibroblasts and homozygous deletion of exons 1-3 within the AUH gene. Copyright © 2011. Published by Elsevier Inc.

  3. Methylmalonic Acid Test

    Science.gov (United States)

    ... Factor Antibody Iron Iron Tests JAK2 Mutation Kidney Stone Analysis Kidney Stone Risk Panel KRAS Mutation Lactate Lactate Dehydrogenase (LD) ... in Previous Reviews Clarke, W. and Dufour, D. R., Editors (2006). Contemporary Practice in Clinical Chemistry, AACC ...

  4. Population prevalence, attributable risk, and attributable risk percentage for high methylmalonic acid concentrations in the post-folic acid fortification period in the US

    Directory of Open Access Journals (Sweden)

    Ganji Vijay

    2012-01-01

    Full Text Available Abstract Background Serum methylmalonic acid (MMA is regarded as a sensitive marker of vitamin B-12 status. Elevated circulating MMA is linked to neurological abnormalities. Contribution of age, supplement use, kidney dysfunction, and vitamin B-12 deficiency to high serum MMA in post-folic acid fortification period is unknown. Methods We investigated prevalence, population attributable risk (PAR, and PAR% for high MMA concentrations in the US. Data from 3 cross-sectional National Health and Nutrition Examination Surveys conducted in post-folic acid fortification period were used (n = 18569. Results Likelihood of having high serum MMA for white relative to black was 2.5 (P P P P P Conclusions Old age is the strongest determinant of PAR for high MMA. About 5 cases of high serum MMA/1000 people would be reduced if vitamin B-12 deficiency (

  5. CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder.

    Science.gov (United States)

    Wortmann, Saskia B; Ziętkiewicz, Szymon; Kousi, Maria; Szklarczyk, Radek; Haack, Tobias B; Gersting, Søren W; Muntau, Ania C; Rakovic, Aleksandar; Renkema, G Herma; Rodenburg, Richard J; Strom, Tim M; Meitinger, Thomas; Rubio-Gozalbo, M Estela; Chrusciel, Elzbieta; Distelmaier, Felix; Golzio, Christelle; Jansen, Joop H; van Karnebeek, Clara; Lillquist, Yolanda; Lücke, Thomas; Õunap, Katrin; Zordania, Riina; Yaplito-Lee, Joy; van Bokhoven, Hans; Spelbrink, Johannes N; Vaz, Frédéric M; Pras-Raves, Mia; Ploski, Rafal; Pronicka, Ewa; Klein, Christine; Willemsen, Michel A A P; de Brouwer, Arjan P M; Prokisch, Holger; Katsanis, Nicholas; Wevers, Ron A

    2015-02-05

    We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. A L2HGDH initiator methionine codon mutation in a Yorkshire terrier with L-2-hydroxyglutaric aciduria

    Directory of Open Access Journals (Sweden)

    Farias Fabiana HG

    2012-07-01

    Full Text Available Abstract Background L-2-hydroxyglutaric aciduria is a metabolic repair deficiency characterized by elevated levels of L-2-hydroxyglutaric acid in urine, blood and cerebrospinal fluid. Neurological signs associated with the disease in humans and dogs include seizures, ataxia and dementia. Case presentation Here we describe an 8 month old Yorkshire terrier that presented with episodes of hyperactivity and aggressive behavior. Between episodes, the dog’s behavior and neurologic examinations were normal. A T2 weighted MRI of the brain showed diffuse grey matter hyperintensity and a urine metabolite screen showed elevated 2-hydroxyglutaric acid. We sequenced all 10 exons and intron-exon borders of L2HGDH from the affected dog and identified a homozygous A to G transition in the initiator methionine codon. The first inframe methionine is at p.M183 which is past the mitochondrial targeting domain of the protein. Initiation of translation at p.M183 would encode an N-terminal truncated protein unlikely to be functional. Conclusions We have identified a mutation in the initiation codon of L2HGDH that is likely to result in a non-functional gene. The Yorkshire terrier could serve as an animal model to understand the pathogenesis of L-2-hydroxyglutaric aciduria and to evaluate potential therapies.

  7. Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure

    International Nuclear Information System (INIS)

    Yaqoob, Noreen; Evans, Andrew; Foster, John R.; Lock, Edward A.

    2014-01-01

    Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500 mg/kg/day) or TCE-OH at (100 mg/kg/day) for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for

  8. Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure.

    Science.gov (United States)

    Yaqoob, Noreen; Evans, Andrew; Foster, John R; Lock, Edward A

    2014-09-02

    Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500mg/kg/day) or TCE-OH at (100mg/kg/day) for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for metabolism

  9. Compound heterozygous mutations in electron transfer flavoprotein dehydrogenase identified in a young Chinese woman with late-onset glutaric aciduria type II

    OpenAIRE

    Xue, Ying; Zhou, Yun; Zhang, Keqin; Li, Ling; Kayoumu, Abudurexiti; Chen, Liye; Wang, Yuhui; Lu, Zhiqiang

    2017-01-01

    Background Glutaric aciduria type II (GA II) is an autosomal recessive disorder affecting fatty acid and amino acid metabolism. The late-onset form of GA II disorder is almost exclusively associated with mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Till now, the clinical features of late-onset GA II vary widely and pose a great challenge for diagnosis. The aim of the current study is to characterize the clinical phenotypes and genetic basis of a late-onset GAII ...

  10. Methylmalonic and propionic acidemias: lipid profiles of normal and affected human skin fibroblasts incubated with [1-14C]propionate

    International Nuclear Information System (INIS)

    Giudici, T.A.; Chen, R.G.; Oizumi, J.; Shaw, K.N.; Ng, W.G.; Donnell, G.N.

    1986-01-01

    Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1- 14 C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines

  11. Nutritional Supplementation with Chlorella pyrenoidosa Lowers Serum Methylmalonic Acid in Vegans and Vegetarians with a Suspected Vitamin B₁₂ Deficiency.

    Science.gov (United States)

    Merchant, Randall Edward; Phillips, Todd W; Udani, Jay

    2015-12-01

    Since vitamin B12 occurs in substantial amounts only in foods derived from animals, vegetarians and particularly vegans are at risk of developing deficiencies of this essential vitamin. The chlorella used for this study is a commercially available whole-food supplement, which is believed to contain the physiologically active form of the vitamin. This exploratory open-label study was performed to determine if adding 9 g of Chlorella pyrenoidosa daily could help mitigate a vitamin B12 deficiency in vegetarians and vegans. Seventeen vegan or vegetarian adults (26-57 years of age) with a known vitamin B12 deficiency, as evidenced by a baseline serum methylmalonic acid (MMA) level above 270 nmol/L at screening, but who otherwise appeared healthy were enrolled in the study. Each participant added 9 g of C. pyrenoidosa to their daily diet for 60 ± 5 days and their serum MMA, vitamin B12, homocysteine (Hcy) levels as well as mean corpuscular volume (MCV), hemoglobin (Hgb), and hematocrit (Hct) were measured at 30 and 60 days from baseline. After 30 and 60 days, the serum MMA level fell significantly (P < .05) by an average ∼34%. Fifteen of the 17 (88%) subjects showed at least a 10% drop in MMA. At the same time, Hcy trended downward and serum vitamin B12 trended upward, while MCV, Hgb, and Hct appeared unchanged. The results of this work suggest that the vitamin B12 in chlorella is bioavailable and such dietary supplementation is a natural way for vegetarians and vegans to get the vitamin B12 they need.

  12. Glutaric aciduria type I: a common cause of episodic encephalopathy and spastic paralysis in the Amish of Lancaster County, Pennsylvania.

    Science.gov (United States)

    Morton, D H; Bennett, M J; Seargeant, L E; Nichter, C A; Kelley, R I

    1991-10-01

    We have diagnosed type I glutaric aciduria (GA-I) in 14 children from 7 Old Order Amish families in Lancaster County, Pennsylvania. An otherwise rare disorder, GA-I appears to be a common cause of acute encephalopathy and cerebral palsy among the Amish. The natural history of the disease, which was previously unrecognized in this population, is remarkably variable and ranges from acute infantile encephalopathy and sudden death to static extrapyramidal cerebral palsy to normal adult. Ten patients first manifested the disease between 3 and 18 months at the time of an acute infectious illness. Four of these children died in early childhood, also during acute illnesses. However, there has been little progression of the neurological disease after age 5 years in the surviving children and intellect usually has been preserved, even in children with severe spastic paralysis. When well, patients have plasma glutaric acid concentrations ranging from 4.8 to 14.2 mumol/liter (nl 0-5.6 mumol/liter) and urinary glutaric acid concentrations from 12.5 to 196 mg/g creatinine (nl 0.5-8.4 mg/g creatinine). We have found that GA-I can be diagnosed in the Amish by measurement of urinary glutaric acid concentrations using isotope-dilution gas chromatography/mass spectrometry, whereas the diagnosis can easily be missed by routine urine organic acid gas chromatography.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. D-2-hydroxyglutaric aciduria: a case with an intermediate phenotype and prenatal diagnosis of two affected fetuses.

    Science.gov (United States)

    Clarke, Nigel F; Andrews, Ian; Carpenter, Kevin; Jakobs, Cornelis; van der Knaap, Marjo S; Kirk, Edwin P

    2003-08-01

    D-2-hydroxyglutaric aciduria (D2HGA) is a rare autosomal recessive disorder with variable clinical expression. The biochemical defect is unknown at present. Previously reported cases have either followed a severe clinical course characterized by neonatal epileptic encephalopathy, cortical blindness, and profound developmental delay, or a mild course characterized by mild developmental delay, manageable epilepsy, and mild hypotonia. To date there has been a clear distinction between these two groups. We report the second case of a child with D2HGA who has followed an intermediate course. She presented in infancy with hypotonia, manageable epilepsy and developed moderate to severe developmental delay, and cortical visual impairment. The proposita had a coarse facial appearance, flat face, broad nasal bridge, up-turned nose, and simple, anteverted ears. These facial anomalies have been noted in other children with D2HGA and this case strengthens the proposed association between this facial phenotype and D2HGA. We also report the third and fourth instances of prenatal diagnosis for D2HGA. At each prenatal diagnosis, an affected fetus was diagnosed on the basis of markedly increased levels of D-2-hydroxyglutaric acid in amniotic fluid. Copyright 2003 Wiley-Liss, Inc.

  14. A small molecule inhibitor of mutant IDH2 rescues cardiomyopathy in a D-2-hydroxyglutaric aciduria type II mouse model.

    Science.gov (United States)

    Wang, Fang; Travins, Jeremy; Lin, Zhizhong; Si, Yaguang; Chen, Yue; Powe, Josh; Murray, Stuart; Zhu, Dongwei; Artin, Erin; Gross, Stefan; Santiago, Stephanie; Steadman, Mya; Kernytsky, Andrew; Straley, Kimberly; Lu, Chenming; Pop, Ana; Struys, Eduard A; Jansen, Erwin E W; Salomons, Gajja S; David, Muriel D; Quivoron, Cyril; Penard-Lacronique, Virginie; Regan, Karen S; Liu, Wei; Dang, Lenny; Yang, Hua; Silverman, Lee; Agresta, Samuel; Dorsch, Marion; Biller, Scott; Yen, Katharine; Cang, Yong; Su, Shin-San Michael; Jin, Shengfang

    2016-11-01

    D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions. We generated a D2HGA type II mouse model by introducing the Idh2R140Q mutation at the native chromosomal locus. Idh2R140Q mice displayed significantly elevated 2HG levels and recapitulated multiple defects seen in patients. AGI-026, a potent, selective inhibitor of the human IDH2R140Q-mutant enzyme, suppressed 2HG production, rescued cardiomyopathy, and provided a survival benefit in Idh2R140Q mice; treatment withdrawal resulted in deterioration of cardiac function. We observed differential expression of multiple genes and metabolites that are associated with cardiomyopathy, which were largely reversed by AGI-026. These findings demonstrate the potential therapeutic benefit of an IDH2R140Q inhibitor in patients with D2HGA type II.

  15. Anesthetic management of comprehensive dental restoration in a child with glutaric aciduria type 1 using volatile sevoflurane

    Directory of Open Access Journals (Sweden)

    Wei-Nung Teng

    2014-10-01

    Full Text Available Glutaric aciduria type 1 (GA1 is a rare, inherited mitochondrial disorder that results from deficiency of mitochondrial glutaryl-CoA dehydrogenase. Most patients develop neurological dysfunction early in life, which leads to severe disabilities. We present a 37-month-old girl with GA1 manifested as macrocephaly and hypotonia who received comprehensive dental restoration surgery under general anesthesia with sevoflurane. She was placed on specialized fluid management during a preoperative fasting period and anesthesia was administered without complications. All the physiological parameters, including glucose and lactate blood levels and arterial blood gas were carefully monitored and maintained within normal range perioperatively. Strategies for anesthetic management should include prevention of pulmonary aspiration, dehydration, hyperthermia and catabolic state, adequate analgesia to minimize surgical stress, and avoidance of prolonged neuromuscular blockade. We administered general anesthesia with sevoflurane uneventfully, which was well tolerated by our patient with GA1. Additionally, communication with a pediatric geneticist and surgeons should be undertaken to formulate a comprehensive anesthetic strategy in these patients.

  16. Enfermedad de la orina con olor a jarabe de Arce (MSUD) y aciduria metilmalónica. Presentación neonatal

    OpenAIRE

    Bermúdez M.; Rojas C.; Pérez C.; Merinero B.; Torres S.; Arteaga C.

    2001-01-01

    La identificación de un error innato del metabolismo (EIM) en el recién nacido requiere de unarápida sospecha clínica por parte del pediatra y posterior puesta en marcha de una adecuada metodología diagnóstica. Entre estas urgencias neonatales se deben considerar la producida porla enfermedad de orina con olor a jarabe de arce y la aciduria metilmalónica. Estos (EIM) se debena deficiencias en las enzimas o coenzimas que intervienen en el catabolismo de los aminoácidos:La MSUD es el resultado ...

  17. Development and implementation of a novel assay for L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) in cell lysates: L-2-HGDH deficiency in 15 patients with L-2-hydroxyglutaric aciduria

    DEFF Research Database (Denmark)

    Kranendijk, M; Salomons, G S; Gibson, K M

    2009-01-01

    L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by mutations in the gene encoding L-2-hydroxyglutarate dehydrogenase. An assay to evaluate L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) activity in fibroblast, lymphoblast and/or lymphoc...

  18. Neurodevelopmental profiles of children with glutaric aciduria type I diagnosed by newborn screening: a follow-up case series.

    Science.gov (United States)

    Brown, Amy; Crowe, Louise; Beauchamp, Miriam H; Anderson, Vicki; Boneh, Avihu

    2015-01-01

    Glutaric aciduria type I (GA-I) is an inherited metabolic disorder that may lead to severe motor disorder and cognitive impairment. GA-I is now included in the newborn screening programme in many countries as early detection allows for prompt treatment and effectively reduces the risk of poor developmental outcome. Information regarding the long-term neurodevelopmental outcome of children with GA-I treated early is sparse.We recruited children with a confirmed diagnosis of GA-I diagnosed via newborn screening, treated in our centre and >3 years of age (n = 6). Children were assessed at two time points using a comprehensive neuropsychological test battery. Four of these had been the subject of a previous report. All participants were male, 3-6 years at the initial assessment and 6-12 years of age at the follow-up assessment.Fine motor skills were below average in all patients. Speech, which was affected in all four patients reported previously, improved following speech therapy. IQ scores remained generally stable within the normal range. Executive functioning was average to high average in four patients. Behaviour, as assessed through parental questionnaires, was problematic in two patients. Compounding factors included child neglect, family history of autism and multiple admissions to hospital (n = 1 in each).GA-I affects fine motor skills and speech, regardless of early treatment, but not IQ scores. Patients with GA-I should be referred for assessment and appropriate early intervention. Further research is needed to correlate specific neuropsychological deficits with neuroimaging.

  19. Enfermedad de la orina con olor a jarabe de Arce (MSUD y aciduria metilmalónica. Presentación neonatal

    Directory of Open Access Journals (Sweden)

    M. Bermúdez

    2001-07-01

    Full Text Available La identificación de un error innato del metabolismo (EIM en el recién nacido requiere de unarápida sospecha clínica por parte del pediatra y posterior puesta en marcha de una adecuada metodología diagnóstica. Entre estas urgencias neonatales se deben considerar la producida porla enfermedad de orina con olor a jarabe de arce y la aciduria metilmalónica. Estos (EIM se debena deficiencias en las enzimas o coenzimas que intervienen en el catabolismo de los aminoácidos:La MSUD es el resultado de la deficiencia en el catabolismo de los aminoácidos de cadenaramificada leucina isoleucina, valina y se produce un aumento de estos a.a. y de sus cetácidos ensangre y en orina. En la aciduria metilmalónica se altera el catabolismo de la isoleucina, valinametionina treonina, colesterol y se produce acumulación del ácido metilmalónico.

  20. Genetics Home Reference: methylmalonic acidemia

    Science.gov (United States)

    ... Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens ... patients with the cblD inborn error of cobalamin metabolism. J Pediatr. 2009 Apr;154(4):551-6. ...

  1. Efficient automated synthesis of 2-(5-["1"8F]fluoropentyl)-2-methylmalonic acid (["1"8F]ML-10) on a commercial available ["1"8F]FDG synthesis module

    International Nuclear Information System (INIS)

    Liu, Shaoyu; Nie, Dahong; Jiang, Shende; Tang, Ganghua

    2017-01-01

    ["1"8F]ML-10 (2-(5-["1"8F]fluoro-pentyl)-2-methylmalonic acid) is a small molecule positron emission tomography (PET) probe for apoptosis imaging. Automated synthesis of ["1"8F]ML-10 was developed by using two different purification methods through a direct saponification procedure on a modified commercial ["1"8F]Fluoro-2-Deoxyglucose (["1"8F]FDG) synthesizer. C18 purification method 1: The final ["1"8F]ML-10 solution containing ethanol was obtained with radiochemical yields of 60±5% (n=5) at the end of bombardment (EOB) and radiochemical purity of 98% in 35 min. Al_2O_3 and SCX purification method 2: To avoid possible side effects of a conventional ethanol-containing formulation, an new ethanol-free solution of ["1"8F]ML-10 was also developed, the radiochemical yields was 50±5% (n=5, EOB) within 45 min and the radiochemical purity was 98%. - Highlights: • The production of ["1"8F]ML-10 was optimized by using a straightforward saponification procedure. • Automated synthesis was performed on a commonly FDG synthesis module. • An ethanol-containing ["1"8F]ML-10 formulation was obtained with high radiochemical yield in a shorter time. • An ethanol-free formulation method of ["1"8F]ML-10 was also developed.

  2. The long-term treatment of a patient with type 1 diabetes mellitus and glutaric aciduria type 1: the effect of insulin.

    Science.gov (United States)

    Del Rizzo, Monica; Galderisi, Alfonso; Celato, Andrea; Furlan, Francesca; Giordano, Laura; Cazzorla, Chiara; Fasan, Ilaria; Moretti, Carlo; Zschocke, Johannes; Burlina, Alberto B

    2016-08-01

    The coexistence of two diseases associated with different metabolic disorders is a very rare event. Some associations, although sporadic, can be particularly challenging both in terms of diagnostic and therapeutic management and in terms of theoretical perspective. Here, we report a child affected by type 1 diabetes mellitus (T1DM) and glutaric aciduria type 1 (GA1). The child was diagnosed with classical T1DM at 15 months of age, with a tendency toward hypoglycemia. A few months later, during an acute intercurrent infective episode, the child displayed acute hypotonia of the lower limbs and limbs dystonia. A brain MRI showed bilateral striatal necrosis, suggesting GA1 diagnosis. Treatment with a low-lysine dietary regimen and carnitine supplementation was started and resulted in an improvement in metabolic control and a reduction of hypoglycemic episodes along with an increasing in insulin daily dose. After 2 years, the neurological outcome consisted of a reduction in dystonic movements and a metabolic stability of both diseases. This case provides some insight into the reciprocal interconnections between the two metabolic disorders. Similar pathogenic mechanisms responsible for the neuronal injury might have impacted each other, and a strict relationship between a specific aspect of GA1-impaired metabolism and glucose homeostasis might explain how the tailored management of GA1 was not only effective in controlling the disease, but it also resulted in an improvement in the control of the glycemic profile. What in known: • Glutaric aciduria type 1 (GA1) usually presents in childhood with severe and possibly irreversible neuronal damage, triggered by a catabolic stress • The association of GA1 with other diseases, including type 1 diabetes mellitus (T1DM), is a rare event, complicating the treatment management What is new: • Insulin treatment has a role in preventing GA1 metabolic decompensation, even in the catabolic condition of hypoglycemia • Promoting

  3. The M405V allele of the glutaryl-CoA dehydrogenase gene is an important marker for glutaric aciduria type I (GA-I) low excretors.

    Science.gov (United States)

    Schillaci, Lori-Anne P; Greene, Carol L; Strovel, Erin; Rispoli-Joines, Jessica; Spector, Elaine; Woontner, Michael; Scharer, Gunter; Enns, Gregory M; Gallagher, Renata; Zinn, Arthur B; McCandless, Shawn E; Hoppel, Charles L; Goodman, Stephen I; Bedoyan, Jirair K

    2016-09-01

    Glutaric aciduria type I (GA-I) is an autosomal recessive organic aciduria resulting from a functional deficiency of glutaryl-CoA dehydrogenase, encoded by GCDH. Two clinically indistinguishable diagnostic subgroups of GA-I are known; low and high excretors (LEs and HEs, respectively). Early medical and dietary interventions can result in significantly better outcomes and improved quality of life for patients with GA-I. We report on nine cases of GA-I LE patients all sharing the M405V allele with two cases missed by newborn screening (NBS) using tandem mass spectrometry (MS/MS). We describe a novel case with the known pathogenic M405V variant and a novel V133L variant, and present updated and previously unreported clinical, biochemical, functional and molecular data on eight other patients all sharing the M405V allele. Three of the nine patients are of African American ancestry, with two as siblings. GCDH activity was assayed in six of the nine patients and varied from 4 to 25% of the control mean. We support the use of urine glutarylcarnitine as a biochemical marker of GA-I by demonstrating that glutarylcarnitine is efficiently cleared by the kidney (50-90%) and that plasma and urine glutarylcarnitine follow a linear relationship. We report the allele frequencies for three known GA-I LE GCDH variants (M405V, V400M and R227P) and note that both the M405V and V400M variants are significantly more common in the population of African ancestry compared to the general population. This report highlights the M405V allele as another important molecular marker in patients with the GA-I LE phenotype. Therefore, the incorporation into newborn screening of molecular screening for the M405V and V400M variants in conjunction with MS/MS could help identify asymptomatic at-risk GA-I LE patients that could potentially be missed by current NBS programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle.

    Science.gov (United States)

    Wolfe, Lynne A; He, Miao; Vockley, Jerry; Payne, Nicole; Rhead, William; Hoppel, Charles; Spector, Elaine; Gernert, Kim; Gibson, K Michael

    2010-12-01

    We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoA dehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G > T (exon 7) and p.P534L: c.1601 C > T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation.

  5. Understanding the role of argininosuccinate lyase transcript variants in the clinical and biochemical variability of the urea cycle disorder argininosuccinic aciduria.

    Science.gov (United States)

    Hu, Liyan; Pandey, Amit V; Eggimann, Sandra; Rüfenacht, Véronique; Möslinger, Dorothea; Nuoffer, Jean-Marc; Häberle, Johannes

    2013-11-29

    Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.

  6. Population Reference Values for Serum Methylmalonic Acid Concentrations and Its Relationship with Age, Sex, Race-Ethnicity, Supplement Use, Kidney Function and Serum Vitamin B12 in the Post-Folic Acid Fortification Period

    Directory of Open Access Journals (Sweden)

    Vijay Ganji

    2018-01-01

    Full Text Available Serum methylmalonic acid (MMA is elevated in vitamin B-12 deficiency and in kidney dysfunction. Population reference values for serum MMA concentrations in post-folic acid fortification period are lacking. Aims of this study were to report the population reference values for serum MMA and to evaluate the relation between serum MMA and sex, age, race-ethnicity, kidney dysfunction and vitamin B-12. We used data from three National Health and Nutrition Examination Surveys, 1999–2000, 2001–2002 and 2003–2004 conducted after folic acid fortification commenced (n = 18,569. Geometric mean MMA was ≈22.3% higher in non-Hispanic white compared to non-Hispanic black (141.2 vs. 115.5 nmol/L and was ≈62.7% higher in >70 years old persons compared to 21–30 years old persons (196.9 vs. 121.0 nmol/L. Median serum MMA was ≈28.5% higher in the 1st the quartile of serum vitamin B-12 than in the 4th quartile of serum vitamin B-12 and was ≈35.8% higher in the 4th quartile of serum creatinine than in the 1st quartile of serum creatinine. Multivariate-adjusted serum MMA concentration was significantly associated with race-ethnicity (p < 0.001 and age (p < 0.001 but not with sex (p = 0.057. In this large US population based study, serum MMA concentrations presented here reflect the post-folic acid fortification scenario. Serum MMA concentrations begin to rise at the age of 18–20 years and continue to rise afterwards. Age-related increase in serum MMA concentration is likely to be due to a concomitant decline in kidney function and vitamin B-12 status.

  7. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1

    DEFF Research Database (Denmark)

    Carrozzo, Rosalba; Verrigni, Daniela; Rasmussen, Magnhild

    2016-01-01

    BACKGROUND: The encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings...... deficiency of complexes I and IV, but normal histological and biochemical findings in muscle did not preclude a diagnosis of succinate-CoA ligase deficiency. In five patients, the urinary excretion of methylmalonic acid was only marginally elevated, whereas elevated plasma methylmalonic acid was consistently...

  8. Risk factors and birth prevalence of birth defects and inborn errors of ...

    African Journals Online (AJOL)

    raoul

    2011-02-23

    Feb 23, 2011 ... methylmalonic aciduria, and maple syrup urine disease (MSUD) had their diagnoses confirmed by enzyme assay. The diagnosis of all ... Personal information like date of birth, sex, area of residence, mother's age at birth, father's age, order of birth, birth weight, gestational age on birth, medical history and ...

  9. Genetics Home Reference: methylmalonic acidemia with homocystinuria

    Science.gov (United States)

    ... or Free article on PubMed Central Kräutler B. Biochemistry of B12-cofactors in human metabolism. Subcell Biochem. ... not be used as a substitute for professional medical care or advice. Users with questions about a ...

  10. Genetics Home Reference: argininosuccinic aciduria

    Science.gov (United States)

    ... Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens ... and potential links to arginine and nitric oxide metabolism. J Nutr. 2004 Oct;134(10 Suppl):2775S- ...

  11. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.

    Science.gov (United States)

    Rodrigues, Marília Danyelle Nunes; Seminotti, Bianca; Zanatta, Ângela; de Mello Gonçalves, Aline; Bellaver, Bruna; Amaral, Alexandre Umpierrez; Quincozes-Santos, André; Goodman, Stephen Irwin; Woontner, Michael; Souza, Diogo Onofre; Wajner, Moacir

    2017-08-01

    Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh +/+ ) and glutaryl-CoA dehydrogenase knockout (Gcdh -/- ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh +/+ and Gcdh -/- mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh -/- mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh +/+ astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh -/- mice astrocytes. These data indicate a higher susceptibility of Gcdh -/- cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.

  12. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2. Diagnostic aids for inborn error of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-09-01

    Analysis of urine from patients with inborn error of metabolism were studied by /sup 1/H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening andor diagnosis of inherited metabolic diseases of amino acid and organic acid.

  13. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2

    International Nuclear Information System (INIS)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-01-01

    Analysis of urine from patients with inborn error of metabolism were studied by 1 H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening and/or diagnosis of inherited metabolic diseases of amino acid and organic acid. (author)

  14. Prenatal identification of a novel mutation causing methylmalonic ...

    Indian Academy of Sciences (India)

    2015-06-08

    Jun 8, 2015 ... respiratory distress, intellectual disability etc. The nonspe- cific nature of these ... disease can vary from being benign to fatal (Matsui et al. 1983; Ledley et al. ... soon after the infant was introduced to solid food. The con-.

  15. Genetics Home Reference: 2-hydroxyglutaric aciduria

    Science.gov (United States)

    ... Ben-Omran T, Hoffmann GF, de Lonlay P, McDonald MT, Meberg A, Muntau AC, Nuoffer JM, Parini ... 10 All Bulletins Features What is direct-to-consumer genetic testing? What are genome editing and CRISPR- ...

  16. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    Science.gov (United States)

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-04

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Hyperammonaemic encephalopathy secondary to selective cobalamin deficiency in a juvenile Border collie.

    Science.gov (United States)

    Battersby, I A; Giger, U; Hall, E J

    2005-07-01

    An eight-month-old Border collie was presented with anorexia, cachexia, failure to thrive and stupor. Laboratory tests demonstrated a mild anaemia, neutropenia, proteinuria and hyperammonaemia. Serum bile acid concentrations were normal, but an ammonia tolerance test (ATT) was abnormal. The dog responded to symptomatic therapy for hepatoencephalopathy. When a low serum cobalamin (vitamin B12) concentration and methylmalonic aciduria were noted, the dog was given a supplement of parenteral cobalamin. Two weeks later, a repeat ATT was normal. Cobalamin supplementation was continued every two weeks, and all clinical signs, except for proteinuria, resolved despite withdrawing all therapy for hepatoencephalopathy. A presumptive diagnosis of hereditary selective cobalamin malabsorption was made, based on the young age, Border collie breed, low serum cobalamin concentration and methylmalonic aciduria. Although hereditary selective cobalamin malabsorption in Border collies, giant schnauzers, Australian shepherd dogs and beagles has previously been reported in North America, to the authors' knowledge this is the first report of the condition in the UK and the first to document an abnormal ATT in a cobalamin-deficient dog.

  18. L-2-hydroxyglutaric Aciduria in Two Female Yorkshire Terriers

    NARCIS (Netherlands)

    Sanchez-Masian, D.F.; Artuch, R.; Mascort, J.; Jakobs, C.A.J.M.; Salomons, G.S.; Zamora, A.; Casado, M.; Fernandez, M.; Recio, A.; Lujan, A.

    2012-01-01

    Two female Yorkshire terrier puppies were presented with generalized tonic-clonic seizures and ataxia. MRI revealed bilaterally symmetrical, diffuse regions of gray matter hyperintensity on T2-weighted and fluid-attenuated inversion recovery sequences. Urinary organic acids were quantified by gas

  19. Antioxidant dysfunction: potential risk for neurotoxicity in ethylmalonic aciduria

    DEFF Research Database (Denmark)

    Pedersen, Christina B; Zolkipli, Zarazuela; Vang, Søren

    2010-01-01

    liquid chromatography tandem mass spectroscopy (nano-LC-MS/MS)-based screening of the mitochondrial proteome in patient fibroblasts. Moreover, cell viability of patient fibroblasts exposed to menadione-induced oxidative stress was evaluated. Loss of SCAD function was detected in the patient group, most...

  20. THIAMINE–RESPONSIVE MEGALOBLASTIC ANEMIA, SENSORINEURAL DEAFNESS AND DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    M. Kadivar R. Moradian

    2006-11-01

    Full Text Available Abstract- The syndrome of diabetes mellitus, sensorineural deafness and megaloblastic anemia dose not result from thiamine deficiency. The previous reported patients had no sign of beriberi, had normal nutrition, and had no evidence of malabsorption. The features of this syndrome with apparent inheritance of autosomal recessive trait may define this puzzling syndrome as a true thiamine dependency state. The first Iranian patient was described by Vossough et al. in 1995. We found nine new cases with diagnostic criteria of thiamine responsive megaloblastic anemia during eight years of our study. In two patients, presentation of diabetes and anemia was concomitant. All of them were deaf with sensorineural hearing loss which was detected in infancy up to two years of age. The presence of congenital valvular heart disease was eliminated by normal echocardiography, but cardiomyopathy was discovered in two. Nonspecific amino-aciduria was discovered in three but urinary screening tests for hereditary orotic aciduria were negative. Ox-Phos biochemistry of muscle mitochondria which demonstrates severe defect in complexes I, III, IV in diabetes mellitus associated with deafness, were done but was unremarkable in our patients. Urinary methylmalonic acid and methyl malonyl carnitine by GS/MS and TMS was done in our patients and showed abnormal results in six patients. Thiamine gene, SLC 19A2, was detected in four patients.

  1. Diagnosis and management of glutaric aciduria type I--revised recommendations

    DEFF Research Database (Denmark)

    Kölker, Stefan; Christensen, Ernst; Leonard, James V

    2011-01-01

    is often difficult to treat, and the efficacy of available drugs cannot be predicted precisely in individual patients. The major aim of this revision is to re-evaluate the previous diagnostic and therapeutic recommendations for patients with this disease and incorporate new research findings...

  2. 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Korman, Stanley H; Andresen, Brage S; Zeharia, Avraham

    2005-01-01

    BACKGROUND: Isolated excretion of 2-methylbutyrylglycine (2-MBG) is the hallmark of short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), a recently identified defect in the proximal pathway of L-isoleucine oxidation. SBCADD might be underdiagnosed because detection and recognition...

  3. Unstable argininosuccinate lyase in variant forms of the urea cycle disorder argininosuccinic aciduria.

    Science.gov (United States)

    Hu, Liyan; Pandey, Amit V; Balmer, Cécile; Eggimann, Sandra; Rüfenacht, Véronique; Nuoffer, Jean-Marc; Häberle, Johannes

    2015-09-01

    Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3% of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16% of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30% of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

  4. Recurrent rhabdomyolysis and glutaric aciduria type I: a case report and literature review.

    Science.gov (United States)

    Qian, Gu-Ling; Hong, Fang; Tong, Fan; Fu, Hai-Dong; Liu, Ai-Min

    2016-08-01

    Glutaric acidemia type I (GA-I) is a rare metabolic disorder caused by mutation of the glutaryl- CoA dehydrogenase (GCDH) gene. The occurrence of rhabdomyolysis with GA-I is extremely rare. We reported a child with recurrent rhabdomyolysis and undiagnosed glutaric acidemia type I (GA-I). And a literature review was performed. A 4.5-year-old girl was admitted to our hospital due to recurrent rhabdomyolysis for 3 times within three years. At the third admission, she was diagnosed with GA-I by biochemical testing and mutation analysis. The girl was found to have a serine to leucine replacement mutation of the GCDH gene in exon 8 at position 764. Other three patients with rhabdomyolysis and GA-I were discovered by literature searching. This report highlights that patients with GA-I may have an increased risk of rhabdomyolysis.

  5. CLPB Variants Associated with Autosomal-Recessive Mitochondrial Disorder with Cataract, Neutropenia, Epilepsy, and Methylglutaconic Aciduria

    DEFF Research Database (Denmark)

    Saunders, Carol; Smith, Laurie; Wibrand, Flemming

    2015-01-01

    of type IV 3-MGA-uria characterized by cataracts, severe psychomotor regression during febrile episodes, epilepsy, neutropenia with frequent infections, and death in early childhood. Four of the individuals were of Greenlandic descent, and one was North American, of Northern European and Asian descent...

  6. Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes

    Directory of Open Access Journals (Sweden)

    Korson Mark

    2007-04-01

    Full Text Available Abstract Background Methylmalonic acidemia (MMA, a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT. Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition. Methods To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine Mut embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the MUT gene. Enzymatic and expression studies were used to assess the extent of functional correction. Results Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or Mut murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-14C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes. Conclusion These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.

  7. Congenital genetic inborn errors of metabolism presenting as an adult or persisting into adulthood: neuroimaging in the more common or recognizable disorders.

    Science.gov (United States)

    Krishna, Shri H; McKinney, Alexander M; Lucato, Leandro T

    2014-04-01

    Numerous congenital-genetic inborn errors of metabolism (CIEMs) have been identified and characterized in detail within recent decades, with promising therapeutic options. Neuroimaging is becoming increasingly utilized in earlier stages of CIEMs, and even in asymptomatic relatives of patients with a CIEM, so as to monitor disease progress and treatment response. This review attempts to summarize in a concise fashion the neuroimaging findings of various CIEMs that may present in adulthood, as well as those that may persist into adulthood, whether because of beneficial therapy or a delay in diagnosis. Notably, some of these disorders have neuroimaging findings that differ from their classic infantile or early childhood forms, whereas others are identical to their early pediatric forms. The focus of this review is their appearance on routine magnetic resonance imaging sequences, with some basic attention to the findings of such CIEMs on specialized neuroimaging, based on recent or preliminary research. The general classes of disorders covered in this complex review are: peroxisomal disorders (adrenoleukodystrophy), lysosomal storage disorders (including metachromatic leukodystrophy, Krabbe or globoid cell leukodystrophy, Fabry, Niemann-Pick, GM1, GM2, Gaucher, mucopolysaccharidoses, and Salla diseases), mitochondrial disorders (including mitochondrial encephalomyopathy with lactic acidosis and strokelike episodes, myoclonic epilepsy with ragged red fibers, Leigh disease, and Kearns-Sayre syndrome), urea cycle disorders, several organic acidemias (including phenylketonuria, maple syrup urine disease, 3-hydroxy-3-methylglutaryl colyase deficiency, glutaric acidurias, methylmalonic academia, proprionic academia, 3-methylglucatonic aciduria, and 2-hydroxyglutaric acidurias), cytoskeletal or transporter molecule defects (including Alexander or fibrinoid leukodystrophy, proteolipid protein-1 defect or Pelizaeus Merzbacher, Wilson, and Huntington diseases), and several

  8. Filter paper saturated by urine sample in metabolic disorders detection by proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Blasco, Hélène; Garrigue, Marie-Ange; De Vos, Aymeric; Antar, Catherine; Labarthe, François; Maillot, François; Andres, Christian R; Nadal-Desbarats, Lydie

    2010-02-01

    NMR spectroscopy of urine samples is able to diagnose many inborn errors of metabolism (IEM). However, urinary metabolites have a poor stability, requiring special care for routine analysis (storage of urine at -20 or -80 degrees C, fast transport). The aim of our study was to investigate the reliability of dried urine filter paper for urine storage and transport and to evaluate the ability of NMR to detect several IEM using this method. Urine samples from five healthy subjects were analyzed by (1)H NMR following different storage conditions (-20 vs 4 degrees C vs dried on filter paper) and at different time points (24 h, 48 h, 96 h, and 7 days). Urine pattern of fresh urine was considered as a reference. We analyzed the conservation of some amino acids and organic acids using Bland and Altman plot with intraclass correlation coefficient determination. Then, we evaluated the use of filter paper to detect four different IEM (methylmalonic and isovaleric acidurias, ornithine transcarbamylase deficiency, and cystinuria). Analysis of urine samples from healthy subjects revealed a high stability of studied molecules (ICC > 0.8) even after 7 days of storage on filter paper. Moreover, an excellent preservation of metabolites specifically accumulated in IEM was observed when analysis of dried urine filter paper was compared to fresh urine (coefficient of variation storage of dried urine on filter paper is reliable for (1)H NMR spectroscopy analysis. Preservation of urine molecules over time using that method is convenient for routine clinical practice.

  9. Structural Basis of Multifunctionality in a Vitamin B[subscript 12]-processing Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Gherasim, Carmen; Smith, Janet L.; Banerjee, Ruma (Michigan)

    2012-07-11

    An early step in the intracellular processing of vitamin B{sub 12} involves CblC, which exhibits dual reactivity, catalyzing the reductive decyanation of cyanocobalamin (vitamin B{sub 12}), and the dealkylation of alkylcobalamins (e.g. methylcobalamin; MeCbl). Insights into how the CblC scaffold supports this chemical dichotomy have been unavailable despite it being the most common locus of patient mutations associated with inherited cobalamin disorders that manifest in both severe homocystinuria and methylmalonic aciduria. Herein, we report structures of human CblC, with and without bound MeCbl, which provide novel biochemical insights into its mechanism of action. Our results reveal that CblC is the most divergent member of the NADPH-dependent flavin reductase family and can use FMN or FAD as a prosthetic group to catalyze reductive decyanation. Furthermore, CblC is the first example of an enzyme with glutathione transferase activity that has a sequence and structure unrelated to the GST superfamily. CblC thus represents an example of evolutionary adaptation of a common structural platform to perform diverse chemistries. The CblC structure allows us to rationalize the biochemical basis of a number of pathological mutations associated with severe clinical phenotypes.

  10. Co-occurring Down syndrome and SUCLA2-related mitochondrial depletion syndrome.

    Science.gov (United States)

    Couser, Natario L; Marchuk, Daniel S; Smith, Laurie D; Arreola, Alexandra; Kaiser-Rogers, Kathleen A; Muenzer, Joseph; Pandya, Arti; Gucsavas-Calikoglu, Muge; Powell, Cynthia M

    2017-10-01

    Mitochondrial DNA depletion syndrome 5 (MIM 612073) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous pathogenic variants in the beta subunit of the succinate-CoA ligase gene located within the 13q14 band. We describe two siblings of Hispanic descent with SUCLA2-related mitochondrial depletion syndrome (encephalomyopathic form with methylmalonic aciduria); the older sibling is additionally affected with trisomy 21. SUCLA2 sequencing identified homozygous p.Arg284Cys pathogenic variants in both patients. This mutation has previously been identified in four individuals of Italian and Caucasian descent. The older sibling with concomitant disease has a more severe phenotype than what is typically described in patients with either SUCLA2-related mitochondrial depletion syndrome or Down syndrome alone. The younger sibling, who has a normal female chromosome complement, is significantly less affected compared to her brother. While the clinical and molecular findings have been reported in about 50 patients affected with a deficiency of succinate-CoA ligase caused by pathogenic variants in SUCLA2, this report describes the first known individual affected with both a mitochondrial depletion syndrome and trisomy 21. © 2017 Wiley Periodicals, Inc.

  11. Cobalamin C deficiency in an adolescent with altered mental status and anorexia.

    Science.gov (United States)

    Rahmandar, Maria H; Bawcom, Amanda; Romano, Mary E; Hamid, Rizwan

    2014-12-01

    Although cobalamin (cbl) C deficiency is the most common inherited disorder of vitamin B12 metabolism, the late-onset form of the disease can be difficult to recognize because it has a broad phenotypic spectrum. In this report, we describe an adolescent female exposed to unknown illicit substances and sexual abuse who presented with psychosis, anorexia, seizures, and ataxia. The patient's diagnosis was delayed until a metabolic workup was initiated, revealing hyperhomocysteinemia, low normal plasma methionine, and methylmalonic aciduria. Ultimately, cblC deficiency was confirmed when molecular testing showed compound heterozygosity for mutations (c.271dupA and c.482G>A) in the MMACHC gene. This diagnosis led to appropriate treatment with hydroxocobalamin, betaine, and folate, which resulted in improvement of her clinical symptoms and laboratory values. This patient demonstrates a previously unrecognized presentation of late-onset cblC deficiency. Although neuropsychiatric symptoms are common in late-onset disease, seizures and cerebellar involvement are not. Furthermore, anorexia has not been previously described in these patients. This case emphasizes that inborn errors of metabolism should be part of the differential diagnosis for a teenager presenting with altered mental status, especially when the diagnosis is challenging or neurologic symptoms are unexplained. Correct diagnosis of this condition is important because treatment is available and can result in clinical improvement.(1.) Copyright © 2014 by the American Academy of Pediatrics.

  12. The implementation of neonatal peritoneal dialysis in a clinical setting.

    Science.gov (United States)

    Unal, Sevim; Bilgin, Leyla; Gunduz, Mehmet; Uncu, Nermin; Azili, Mujdem Nur; Tiryaki, Tugrul

    2012-10-01

    To investigate etiology, outcome and complications related to neonatal peritoneal dialysis (PD). Neonates treated with PD in our neonatal intensive care unit during 2007-2010 were analyzed retrospectively. Among 4036 hospitalized neonates; 20 neonates (0.5%) who underwent 21 cycles of PD [7 preterm, 13 term; 13 female, 7 male] were included. The mean birth weight was 2930.2 ± 720.6 g (1120-4570), mean gestational age was 37.5 ± 3.5 weeks (27-41). The etiologic disorders included inborn errors of metabolism (propionic acidemia, methylmalonic acidemia, citrullinemia, glutaric aciduria type 2, maple syrup urine disease, 10), or acute renal failure secondary to perinatal asphyxia (4), sepsis (2), prematurity (2), hypoplastic left heart syndrome (1), kernicterus (1). The complications included peritonitis (2), early leakage (4), hemorrhage (1), catheter removal (3) and occlusion (2). The mortality rate was 50%. The gestational ages and birth weights of surviving neonates were higher (p neonates, chronic renal failure (1), severe (4) and moderate neuromotor impairment (2) developed within 4-43 months. PD, although invasive, is an effective therapy in neonates. The complexity and invasiveness of the procedure is probably responsible for high rate of complications and mortality. If appropriate catheter selection and technique in the placement should be done, PD might improve outcome.

  13. Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-An efficient tool for monitoring of inborn metabolic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Tuma, Petr, E-mail: petr.tuma@lf3.cuni.cz [Institute of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10 (Czech Republic); Samcova, Eva [Institute of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10 (Czech Republic); Stulik, Karel [Department of Analytical Chemistry, Charles University, Albertov 2030, 128 43 Prague 2 (Czech Republic)

    2011-01-24

    A mixture of 29 organic acids (OAs) occurring in urine was analyzed by capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C{sup 4}D) and UV photometric detection. The optimized analytical system involved a 100 cm long polyacrylamide-coated capillary (50 {mu}m i.d.) and the background electrolyte of 20 mM 2-morpholinoethanesulfonic acid (MES)/NaOH + 10% (v/v) methanol, pH 6.0 (pH is related to the 20 mM MES/NaOH buffer in water). The LOD values obtained by C{sup 4}D for the OAs which do not absorb UV radiation range from 0.6 {mu}M (oxalic acid) to 6.8 {mu}M (pyruvic acid); those obtained by UV photometry for the remaining OAs range from 2.9 {mu}M (5-hydroxy-3-indoleacetic acid) to 10.2 {mu}M (uric acid). The repeatability of the procedure developed is characterized by the coefficients of variation, which vary between 0.3% (tartaric acid) and 0.6% (5-hydroxy-3-indoleacetic acid) for the migration time and between 1.3% (tartaric acid) and 3.5% (lactic acid) for the peak area. The procedure permitted quantitation of 20 OAs in a real urine sample and was applied to monitoring of the occurrence of the inborn metabolic fault of methylmalonic aciduria.

  14. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    Science.gov (United States)

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  15. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan.

    Science.gov (United States)

    Niu, Dau-Ming; Chien, Yin-Hsiu; Chiang, Chuan-Chi; Ho, Hui-Chen; Hwu, Wuh-Liang; Kao, Shu-Min; Chiang, Szu-Hui; Kao, Chuan-Hong; Liu, Tze-Tze; Chiang, Hung; Hsiao, Kwang-Jen

    2010-10-01

    In Taiwan, during the period March 2000 to June 2009, 1,495,132 neonates were screened for phenylketonuria (PKU) and homocystinuria (HCU), and 1,321,123 neonates were screened for maple syrup urine disease (MSUD), methylmalonic academia (MMA), medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) deficiency, isovaleric academia (IVA), and glutaric aciduria type 1 (GA-1) using tandem mass spectrometry (MS/MS). In a pilot study, 592,717 neonates were screened for citrullinemia, 3-methylcrotonyl-CoA carboxylase deficiency (3-MCC) and other fatty acid oxidation defects in the MS/MS newborn screening. A total of 170 newborns and four mothers were confirmed to have inborn errors of metabolism. The overall incidence was approximately 1/5,882 (1/6,219 without mothers). The most common inborn errors were defects of phenylalanine metabolism [five classic PKU, 20 mild PKU, 40 mild hyperphenylalaninemia (HPA), and 13 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency]. MSUD was the second most common amino acidopathy and, significantly, most MSUD patients (10/13) belonged to the Austronesian aboriginal tribes of southern Taiwan. The most frequently detected among organic acid disorders was 3-MCC deficiency (14 newborns and four mothers). GA-1 and MMA were the second most common organic acid disorders (13 and 13 newborns, respectively). In fatty acid disorders, five carnitine transport defect (CTD), five short-chain acyl-CoA dehydrogenase deficiency (SCAD), and two medium-chain acyl-CoA dehydrogenase (MCAD) deficiency were confirmed. This is the largest case of MS/MS newborn screening in an East-Asian population to date. We hereby report the incidences and outcomes of metabolic inborn error diseases found in our nationwide MS/MS newborn screening program.

  16. Transcellular transport of cobalamin in aortic endothelial cells.

    Science.gov (United States)

    Hannibal, Luciana; Bolisetty, Keerthana; Axhemi, Armend; DiBello, Patricia M; Quadros, Edward V; Fedosov, Sergey; Jacobsen, Donald W

    2018-05-09

    Cobalamin [Cbl (or B 12 )] deficiency causes megaloblastic anemia and a variety of neuropathies. However, homeostatic mechanisms of cyanocobalamin (CNCbl) and other Cbls by vascular endothelial cells are poorly understood. Herein, we describe our investigation into whether cultured bovine aortic endothelial cells (BAECs) perform transcytosis of B 12 , namely, the complex formed between serum transcobalamin and B 12 , designated as holo-transcobalamin (holo-TC). We show that cultured BAECs endocytose [ 57 Co]-CNCbl-TC (source material) via the CD320 receptor. The bound Cbl is transported across the cell both via exocytosis in its free form, [ 57 Co]-CNCbl, and via transcytosis as [ 57 Co]-CNCbl-TC. Transcellular mobilization of Cbl occurred in a bidirectional manner. A portion of the endocytosed [ 57 Co]-CNCbl was enzymatically processed by methylmalonic aciduria combined with homocystinuria type C (cblC) with subsequent formation of hydroxocobalamin, methylcobalamin, and adenosylcobalamin, which were also transported across the cell in a bidirectional manner. This demonstrates that transport mechanisms for Cbl in vascular endothelial cells do not discriminate between various β-axial ligands of the vitamin. Competition studies with apoprotein- and holo-TC and holo-intrinsic factor showed that only holo-TC was effective at inhibiting transcellular transport of Cbl. Incubation of BAECs with a blocking antibody against the extracellular domain of the CD320 receptor inhibited uptake and transcytosis by ∼40%. This study reveals that endothelial cells recycle uncommitted intracellular Cbl for downstream usage by other cell types and suggests that the endothelium is self-sufficient for the specific acquisition and subsequent distribution of circulating B 12 via the CD320 receptor. We posit that the endothelial lining of the vasculature is an essential component for the maintenance of serum-tissue homeostasis of B 12 .-Hannibal, L., Bolisetty, K., Axhemi, A., DiBello, P

  17. Autoinhibition and signaling by the switch II motif in the G-protein chaperone of a radical B12 enzyme.

    Science.gov (United States)

    Lofgren, Michael; Koutmos, Markos; Banerjee, Ruma

    2013-10-25

    MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5'-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx(-) to form the putative transition state analog, GDP·AlF4(-). The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.

  18. Urease Inhibitor Drug Treatment for Urea Cycle Disorders

    Science.gov (United States)

    2016-08-23

    Ornithine Transcarbamylase Deficiency; Argininosuccinate Synthetase Deficiency (Citrullinemia); Argininosuccinic Acid Lyase Deficiency (Argininosuccinic Aciduria); Carbamyl-Phosphate Synthase I Deficiency

  19. Recurrent vomiting and ethylmalonic aciduria associated with rare mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene

    DEFF Research Database (Denmark)

    Seidel, J.; Streck, S.; Bellstedt, K.

    2003-01-01

    blood spots. Neither of the frequent SCAD gene variants 625G>A and 511C>T was present, but direct sequencing of the promoter and coding regions of the SCAD gene revealed that the patient had mutations on both alleles: 417G>C (Trpl15Cys) and 1095G>T (Gln341His). Neither mutation has been described before...

  20. Diagnosis of glutaric aciduria type 1 by measuring 3-hydroxyglutaric acid in dried urine spots by liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Al-Dirbashi, Osama Y; Kölker, Stefan; Ng, Dione

    2011-01-01

    completing a parallel comparative study with the standard screening method (i.e., molecular testing). In addition, follow-up DUS GA and 3HGA testing of babies with elevated dried blood spot C5DC acylcarnitines will be useful as a first-tier diagnostic test, thus reducing the number of cases requiring...

  1. Effect of gene dosage on single-cell hippocampal electrophysiology in a murine model of SSADH deficiency (gamma-hydroxybutyric aciduria)

    DEFF Research Database (Denmark)

    Dósa, Zita; Nieto-Gonzalez, Jose Luis; Korshoej, Anders Rosendal

    2010-01-01

    phasic GABAergic neurotransmission was unaffected in the same cells. Our results indicate global disruption of cortical networks in SSADH KO mice, affecting both excitatory and inhibitory neurons. Our findings provide new clues concerning seizure evolution in the murine model (absence-->tonic-clonic-->status...... epilepticus), and extend pathophysiological insight into human SSADH deficiency....

  2. Quantitative Assessment of Microstructural Changes of the Retina in Infants With Congenital Zika Syndrome.

    Science.gov (United States)

    Aleman, Tomas S; Ventura, Camila V; Cavalcanti, Milena M; Serrano, Leona W; Traband, Anastasia; Nti, Akosua A; Gois, Adriana L; Bravo-Filho, Vasco; Martins, Thayze T; Nichols, Charles W; Maia, Mauricio; Belfort, Rubens

    2017-10-01

    A better pathophysiologic understanding of the neurodevelopmental abnormalities observed in neonates exposed in utero to Zika virus (ZIKV) is needed to develop treatments. The retina as an extension of the diencephalon accessible to in vivo microcopy with spectral-domain optical coherence tomography (SD-OCT) can provide an insight into the pathophysiology of congenital Zika syndrome (CZS). To quantify the microstructural changes of the retina in CZS and compare these changes with those of cobalamin C (cblC) deficiency, a disease with potential retinal maldevelopment. This case series included 8 infants with CZS and 8 individuals with cblC deficiency. All patients underwent ophthalmologic evaluation at 2 university teaching hospitals and SD-OCT imaging in at least 1 eye. Patients with cblC deficiency were homozygous or compound heterozygotes for mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Data were collected from January 1 to March 17, 2016, for patients with CZS and from May 4, 2015, to April 23, 2016, for patients with cblC deficiency. The SD-OCT cross-sections were segmented using automatic segmentation algorithms embedded in the SD-OCT systems. Each retinal layer thickness was measured at critical eccentricities using the position of the signal peaks and troughs on longitudinal reflectivity profiles. Eight infants with CZS (5 girls and 3 boys; age range, 3-5 months) and 8 patients with cblC deficiency (3 girls and 5 boys; age range, 4 months to 15 years) were included in the analysis. All 8 patients with CZS had foveal abnormalities in the analyzed eyes (8 eyes), including discontinuities of the ellipsoid zone, thinning of the central retina with increased backscatter, and severe structural disorganization, with 3 eyes showing macular pseudocolobomas. Pericentral retina with normal lamination showed a thinned (<30% of normal thickness) ganglion cell layer (GCL) that colocalized in 7 of 8 eyes with a normal photoreceptor layer

  3. Cobalamin status during normal pregnancy and postpartum: a longitudinal study comprising 406 danish women

    DEFF Research Database (Denmark)

    Milman, N; Byg, KE; Bergholt, T

    2006-01-01

    -) cobalamin, P-methylmalonic acid and P-homocysteine was measured at 18, 32 and 39 wk gestation and 8 wk postpartum during lactation. RESULTS: P-cobalamin showed a gradual, significant decline during pregnancy (P ... and 8 wk postpartum median values were 225, 172, 161 and 319 pmol/L, respectively. P-methylmalonic displayed a gradual, significant increase during pregnancy as well as postpartum (P homocysteine demonstrated...

  4. An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study

    DEFF Research Database (Denmark)

    Steenweg, Marjan E; Jakobs, Cornelis; Errami, Abdellatif

    2010-01-01

    L-2-Hydroxyglutaric aciduria (L2HGA) is a rare, neurometabolic disorder with an autosomal recessive mode of inheritance. Affected individuals only have neurological manifestations, including psychomotor retardation, cerebellar ataxia, and more variably macrocephaly, or epilepsy. The diagnosis of ...

  5. Mild clinical presentation and prolonged survival of a patient with fumarase deficiency due to the combination of a known and a novel mutation in FH gene

    Czech Academy of Sciences Publication Activity Database

    Ezgu, F.; Krejčí, Pavel; Wilcox, W. R.

    2013-01-01

    Roč. 524, č. 2 (2013), s. 403-406 ISSN 0378-1119 Institutional support: RVO:68081707 Keywords : Fumaric aciduria * Novel mutation * Leiomyoma Subject RIV: BO - Biophysics Impact factor: 2.082, year: 2013

  6. Genetics Home Reference: 3-hydroxy-3-methylglutaryl-CoA lyase deficiency

    Science.gov (United States)

    ... disorder have been from Saudi Arabia, Portugal, or Spain. Related Information What information about a genetic condition ... Targets Orphanet: 3-hydroxy-3-methylglutaric aciduria Screening, Technology, and Research in Genetics Virginia Department of Health ( ...

  7. MRI finding of ethylmalonic encephalopathy: case report

    International Nuclear Information System (INIS)

    Kim, Jin Yong; Lee, Shi Kyung; Han, Chun Hwan; Rho, Eun Jin

    2002-01-01

    Ethylmalonic encephalopathy is a rare syndrom characterized by developmental delay, acrocyanosis, petechiae, chronic diarrhea, and ethylmalonic, lactic, and methylsuccinic aciduria. We report the MRI finding of ethylmalonic encephalopathy including previously unreported intracranial hematoma

  8. Genetics Home Reference: MEGDEL syndrome

    Science.gov (United States)

    ... Leigh-like syndrome 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome MEGDHEL syndrome SERAC1 ... Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 ...

  9. Genetics Home Reference: CLPB deficiency

    Science.gov (United States)

    ... of CLPB is associated with congenital microcephaly, severe encephalopathy and 3-methylglutaconic aciduria. J Med Genet. 2015 ... genetic testing? What is precision medicine? What is newborn screening? New Pages LMNA-related congenital muscular dystrophy ...

  10. Selected Abstracts of the 8th International Workshop on Neonatology; Cagliari (Italy; October 24-27, 2012

    Directory of Open Access Journals (Sweden)

    --- Various Authors

    2012-10-01

    Full Text Available Selected Abstracts of the 8th International Workshop on Neonatology • SYSTEMS MEDICINE IN PERINATOLOGY AND PEDIATRICS TAILORED BIOMARKERS, DRUGS AND TREATMENTS • Cagliari (Italy • October 24th-27th 2012The Workshop has been organized on behalf of Union of European Neonatal and Perinatal Societies, Union of Mediterranean Neonatal Societies, Italian Society of Neonatology, UNICEF, and under the High Patronage of the President of the Italian Republic. ABS 1. Urinary metabolomics as a new strategy to discriminate response to ibuprofen therapy in preterm neonates with patent ductus arteriosus • M. Castell Miñana et al.; Valencia (Spain ABS 2. A metabolomic approach to identify preterm neonates born of mothers with chorioamnionitis: preliminary data • L. Pugni et al.; Milan, Cagliari (Italy ABS 3. Urinary metabolomics in twins at birth • L. Paladini et al.; Lecce, Rome, Cagliari (Italy ABS 4. From prenatal diagnosis to neonatology: risk and protective factors in the development of mother-preterm child relationship • E. Boni et al.; Pavia (Italy ABS 5. Prolonged refrigerated storage of human milk: effects on nutritive and non-nutritive characteristics • P. Di Nicola et al.; Turin (Italy ABS 6. Use of donor human milk in nicu: is donor milk competing with breastfeeding or supporting it? • P. Di Nicola et al.; Turin (Italy ABS 7. Prenatal diagnosis of methymalonic aciduria and homocistinuria Cbl-C type using dna analysis • A. Zappu et al.; Cagliari (Italy ABS 8. Human breast milk vs formula milk. Is 1H-nmr metabolomics able to help to find the right formula? • A. Noto et al.; Cagliari (Italy ABS 9. A 1H-NMR study of Crisponi syndrome: can metabolomics help to describe the disorder? • M. Lussu et al.; Cagliari (Italy ABS 10. Nestin immunoreactivity in the developing human kidney • Y. Gibo et al.; Matsumoto (Japan, Rome, Cagliari (Italy ABS 11. A non-invasive approach to characterize epileptic children born elbw compared to

  11. A scoring system predicting the clinical course of CLPB defect based on the foetal and neonatal presentation of 31 patients

    DEFF Research Database (Denmark)

    Pronicka, Ewa; Ropacka-Lesiak, Mariola; Trubicka, Joanna

    2017-01-01

    Recently, CLPB deficiency has been shown to cause a genetic syndrome with cataracts, neutropenia, and 3-methylglutaconic aciduria. Surprisingly, the neurological presentation ranges from completely unaffected to patients with virtual absence of development. Muscular hypo- and hypertonia, movement...... be considered in neonates with absence of voluntary movements, respiratory insufficiency and swallowing problems, especially if associated with 3-methylglutaconic aciduria, neutropenia and cataracts. Being an important differential diagnosis of hyperekplexia (exaggerated startle responses), we advise performing...

  12. Mevalonate Kinase Deficiency and Neuroinflammation: Balance between Apoptosis and Pyroptosis

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2013-11-01

    Full Text Available Mevalonic aciduria, a rare autosomal recessive disease, represents the most severe form of the periodic fever, known as Mevalonate Kinase Deficiency. This disease is caused by the mutation of the MVK gene, which codes for the enzyme mevalonate kinase, along the cholesterol pathway. Mevalonic aciduria patients show recurrent fever episodes with associated inflammatory symptoms, severe neurologic impairments, or death, in early childhood. The typical neurodegeneration occurring in mevalonic aciduria is linked both to the intrinsic apoptosis pathway (caspase-3 and -9, which is triggered by mitochondrial damage, and to pyroptosis (caspase-1. These cell death mechanisms seem to be also related to the assembly of the inflammasome, which may, in turn, activate pro-inflammatory cytokines and chemokines. Thus, this particular molecular platform may play a crucial role in neuroinflammation mechanisms. Nowadays, a specific therapy is still lacking and the pathogenic mechanisms involving neuroinflammation and neuronal dysfunction have not yet been completely understood, making mevalonic aciduria an orphan drug disease. This review aims to analyze the relationship among neuroinflammation, mitochondrial damage, programmed cell death, and neurodegeneration. Targeting inflammation and degeneration in the central nervous system might help identify promising treatment approaches for mevalonic aciduria or other diseases in which these mechanisms are involved.

  13. Selective screening in neonates suspected to have inborn errors of ...

    African Journals Online (AJOL)

    Results: 13 patients (32.5%) were diagnosed as having IEM, 7 of them (53.8%) had urea cycle defect, 2 (15.4%) had maple syrup urine disease, while methylmalonic acidemia, fatty acid oxidation defect, mitochondrial disease, and galactosemia were diagnosed in one patient each (7.7%). Out of these patients, 12 patients ...

  14. The human serum metabolome of vitamin B-12 deficiency and repletion, and associations with neurological function

    Science.gov (United States)

    We characterize the human serum metabolome in sub-clinical vitamin B-12 (B-12) deficiency and repletion. A pre-post treatment study provided one injection of 10 mg B-12 to 27 community-dwelling elderly Chileans with B-12 deficiency evaluated with serum B-12, plasma homocysteine, methylmalonic acid a...

  15. Combined indicator of vitamin B 12 status: modification for missing biomarkers and folate status and recommendations for revised cut-points

    Science.gov (United States)

    Background: A novel approach to determine vitamin B 12 status is to combine four blood markers: total B 12 (B 12 ), holotranscobalamin (holoTC), methylmalonic acid (MMA) and total homocysteine (tHcy). This combined indicator of B 12 status is expressed as cB 12 = log 10 [(holoTC · B 12 )/ (MMA · Hcy...

  16. Homocysteine as a potential biochemical marker for depression in elderly stroke survivors

    Directory of Open Access Journals (Sweden)

    Michaela C. Pascoe

    2012-04-01

    Full Text Available Background: Elderly stroke survivors have been reported to be at risk of malnutrition and depression. Vitamin B-related metabolites such as methylmalonic acid and homocysteine have been implicated in depression. Objective: We conducted a study exploring the relationship between homocysteine and post-stroke depression. Design: Three methodologies were used: Observational cohort study of elderly Swedish patients (n=149 1.5 years post-stroke, assessed using Diagnostic and Statistical Manual of Mental Disorders, Montgomery Åsberg Depression Rating Scale and serum blood levels of methylmalonic acid and homocysteine. Results: Homocysteine significantly correlated with depressive symptomatology in stroke survivors (β = 0.18*. Individuals with abnormal levels of methylmalonic acid and homocysteine were almost twice more likely to show depressive symptomatology than those with normal levels (depressive symptoms 22%; no depressive symptoms 12%. Comparison of methylmalonic acid and homocysteine levels with literature data showed fewer stroke survivors had vitamin deficiency than did reference individuals (normal range 66%; elevated 34%. Conclusions: Homocysteine is significantly associated with depressive symptomatology in elderly Swedish stroke survivors.

  17. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jgen/094/02/0295-0298. Keywords. methylmalonic academia; prenatal diagnosis; carrier identification; genetic counselling. Author Affiliations. Ameya Paleja1 Anuradha Udumudi1. ATS GeneTech Private Limited, 6-3-1113/4, GVR Villa, Behind BS Makhtha Maisamma Temple, Greenlands, ...

  18. Fuzzy modeling for Vitamin B12 deficiency

    NARCIS (Netherlands)

    Wilbik, A.M.; van Loon, S.L.M.; Boer, A.K.; Kaymak, U.; Scharnhorst, V.; Carvalho, J.; Lesot, M.J.; Kaymak, U.; Vieira, S.; Bouchon-Meunier, B.; Yager, R.

    2016-01-01

    Blood vitamin B12 levels are not representative for actual vitamin B12 status in tissue. Instead plasma methylmalonic acid (MMA) levels can be measured because MMA concentrations increase relatively early in the course of vitamin B12 deficiency. However, MMA levels in plasma may also be increased

  19. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  20. Pilot Experience with an External Quality Assurance Scheme for Acylcarnitines in Plasma/Serum

    NARCIS (Netherlands)

    Sala, P Ruiz; Ruijter, G; Acquaviva, C; Chabli, A; de Sain-van der Velden, M G M; Garcia-Villoria, J; Heiner-Fokkema, M R; Jeannesson-Thivisol, E; Leckstrom, K; Franzson, L; Lynes, G; Olesen, J; Onkenhout, W; Petrou, P; Drousiotou, A; Ribes, A; Vianey-Saban, C; Merinero, B

    2016-01-01

    The analysis of acylcarnitines (AC) in plasma/serum is established as a useful test for the biochemical diagnosis and the monitoring of treatment of organic acidurias and fatty acid oxidation defects. External quality assurance (EQA) for qualitative and quantitative AC is offered by ERNDIM and CDC

  1. Urea Cycle Disorders in Neonates: Six Case Reports

    Directory of Open Access Journals (Sweden)

    Kıymet Çelik

    2017-06-01

    Full Text Available Urea cycle disorders are a group of diseases associated with hyperammonemia, which causes severe neurological sequelae, seizures and psychomotor retardation. In this study, six newborn cases diagnosed between 2010-2014 as citrullinemia Type I (four cases and argininosuccinic aciduria (two cases are presented in terms of clinical course and treatment responses.

  2. 3-Methylglutaconic aciduria—lessons from 50 genes and 977 patients

    DEFF Research Database (Denmark)

    Wortmann, Saskia B; Kluijtmans, Leo A J; Rodenburg, Richard J

    2013-01-01

    Elevated urinary excretion of 3-methylglutaconic acid is considered rare in patients suspected of a metabolic disorder. In 3-methylglutaconyl-CoA hydratase deficiency (mutations in AUH), it derives from leucine degradation. In all other disorders with 3-methylglutaconic aciduria the origin is unk...

  3. Hyper-IgD syndrome or mevalonate kinase deficiency.

    NARCIS (Netherlands)

    Stoffels, M.; Simon, A.

    2011-01-01

    PURPOSE OF REVIEW: The hyper-IgD and periodic fever syndrome (HIDS) is one of the classical monogenetic hereditary autoinflammatory disorders, and together with the more severe mevalonic aciduria it is also known as 'mevalonate kinase deficiency' (MKD). In this study, we will give an overview of the

  4. When silence is noise: infantile-onset Barth syndrome caused by a synonymous substitution affecting TAZ gene transcription

    NARCIS (Netherlands)

    Ferri, L.; Dionisi-Vici, C.; Taurisano, R.; Vaz, F. M.; Guerrini, R.; Morrone, A.

    2016-01-01

    Barth syndrome (BTHS) is an X-linked inborn error of metabolism which affects males. The main manifestations are cardiomyopathy, myopathy, hypotonia, growth delay, intermittent neutropenia and 3-methylglutaconic aciduria. Diagnosis is confirmed by mutational analysis of the TAZ gene and biochemical

  5. Mevalonate kinase deficiency: Evidence for a phenotypic continuum

    NARCIS (Netherlands)

    Simon, A; Kremer, H P H; Wevers, R A; Scheffer, H; de Jong, J G; van der Meer, J W M; Drenth, J. P.

    2004-01-01

    Both mevalonic aciduria, characterized by psychomotor retardation, cerebellar ataxia, recurrent fever attacks, and death in early childhood, and hyper-immunoglobulin D (hyper-IgD) syndrome, with recurrent fever attacks without neurologic symptoms, are caused by a functional deficiency of mevalonate

  6. Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations

    DEFF Research Database (Denmark)

    Kacso, Gergely; Ravasz, Dora; Doczi, Judit

    2016-01-01

    Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 β-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to result...

  7. [MVK gene abnormality and new approach to treatment of hyper IgD syndrome and periodic fever syndrome].

    Science.gov (United States)

    Naruto, Takuya

    2007-04-01

    Hyper IgD and periodic fever syndrome (HIDS; OMIM 260920) is one of the hereditary autoinflammatory syndromes characterized by recurrent episodes of fever and inflammation.. HIDS is an autosomal recessive disorder characterized by recurrent fever attacks in early childhood. HIDS caused by mevalonate kinase (MK) mutations, also that is the gene of mevalonic aciduria (OMIM 251170). During febrile episodes, urinary mevalonate concentrations were found to be significantly elevated in patients. Diagnosis of HIDS was retrieving gene or measurement of the enzyme activity in peripheral blood lymphocyte in general. This of HIDS is an activity decline of MK, and a complete deficiency of MK becomes a mevalonic aciduria with a nervous symptom. The relation between the fever and inflammation of mevalonate or isoprenoid products are uncertain. The therapy attempt with statins, which is inhibited the next enzyme after HMG-CoA reductase, or inhibit the proinflammatory cytokines.

  8. African Journal of Neurological Sciences 2012 - Vol. 31, No 1 http ...

    African Journals Online (AJOL)

    AJNS WEBMASTERS

    L'imagerie par résonance magnétique cérébrale révélait des hypersignaux ... acquisitions but in Africa the insufficiency of medical care limits this ... sur les séquences T2, Flair réalisées en coupes (axiales, sagittales, coronales) avec injection de gadolinium .... MRI brain scan in type IV 3-methylglutaconic aciduria.

  9. Metabolic disorders with typical alterations in MRI

    International Nuclear Information System (INIS)

    Warmuth-Metz, M.

    2010-01-01

    The classification of metabolic disorders according to the etiology is not practical for neuroradiological purposes because the underlying defect does not uniformly transform into morphological characteristics. Therefore typical MR and clinical features of some easily identifiable metabolic disorders are presented. Canavan disease, Pelizaeus-Merzbacher disease, Alexander disease, X-chromosomal adrenoleukodystrophy and adrenomyeloneuropathy, mitochondrial disorders, such as MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) and Leigh syndrome as well as L-2-hydroxyglutaric aciduria are presented. (orig.) [de

  10. Barth Syndrome

    DEFF Research Database (Denmark)

    Saric, Ana; Andreau, Karine; Armand, Anne-Sophie

    2016-01-01

    Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart......, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated...

  11. Aminoacidopatias de interesse neurológico The aminoacidopathies of neurologic interest

    Directory of Open Access Journals (Sweden)

    Aron J. Diament

    1974-06-01

    Full Text Available As aminoácidopatias constituem o grupo mais numeroso dos erros inatos do metabolismo, sendo crescente seu número em vista das inúmeras cadeias metabólicas envolvendo os aminoácidos na economia humana. É apresentada uma classificação atualizada das principais aminoacidopatias que determinam sintomatologia neurológica e/ou mental. São revistos os principais métodos de diagnóstico, apontando-se as falhas de algumas metodologias. São abordadas algumas particularidades da fenilcetonúria, leucinose e acidemia propiônica, principalmente no que concerne à variação genética. Finalmente, são apresentadas duas aminoacidopatias recentemente descritas: a aciduria piroglutâmica e a deficiência da beta-metil-crotonil-CoA-carboxilase.The aminoacidopathies constitute the biggest group of inborn errors of metabolism, keeping growing in number, considering the amount of metabolic chains envolving the aminoacids in the human economy. The author try to presente an up to date classification of the main aminoacidopathies which determine neurological and/or mental symptomatology. As a next step, are presented a review on the main diagnostic methods, pointing out where some methodology fail. Some particularities in phenylketonuria, maple syrup and propionic aciduria, concerning to the genetic variation are reviewed. Finally, two aminoacidopathies recently described are presented: the pyroglutamic aciduria and the beta-methyl-crotonyl-CoA-carboxilase deficiency.

  12. Nitrous Oxide Abuse and Vitamin B12 Action in a 20-Year-Old Woman: A Case Report.

    Science.gov (United States)

    Duque, Miriam Andrea; Kresak, Jesse L; Falchook, Adam; Harris, Neil S

    2015-01-01

    Herein, we report a case of a 20-year-old (ethnicity not reported) woman with a history of nitrous oxide abuse and clinical symptoms consistent with spinal cord subacute combined degeneration with associated low serum concentrations of vitamin B12, elevated methylmalonic acid levels, and radiologic evidence of demyelination of the dorsal region of the spinal column. The health of the patient improved dramatically with B12 supplementation. In this case, we discuss the interaction of nitrous oxide with the enzymatic pathways involved in the biochemistry of vitamin B12. Copyright© by the American Society for Clinical Pathology (ASCP).

  13. [Biological markers for the status of vitamins B12 and D: the importance of some analytical aspects in relation to clinical interpretation of results].

    Science.gov (United States)

    Boulat, O; Rey, F; Mooser, V

    2012-10-31

    Biological markers for the status of vitamins B12 and D: the importance of some analytical aspects in relation to clinical interpretation of results When vitamin B12 deficiency is expressed clinically, the diagnostic performance of total cobalamin is identical to that of holotranscobalamin II. In subclinical B12 deficiency, the two aforementioned markers perform less well. Additional analysis of a second, functional marker (methylmalonate or homocysteine) is recommended. Different analytical approaches for 25-hydroxyvitamin D quantification, the marker of vitamin D deficiency, are not yet standardized. Measurement biases of up to +/- 20% compared with the original method used to establish threshold values are still observed.

  14. Identification of hepatic biomarkers for physiological imbalance of dairy cows in early and mid lactation using proteomic technology

    DEFF Research Database (Denmark)

    Moyes, Kasey; Bendixen, Emøke; Codrea, Marius Cosmin

    2013-01-01

    the ration with 60% wheat straw. Liver biopsies were collected −1 and 3 d relative to restriction. Before restriction, an index for PI was calculated based on plasma nonesterified fatty acids, β-hydroxybutyrate, and glucose concentrations. Within E and M cows, a subsets of 6 cow was classified as having...... as potential hepatic biomarkers for PI for cows during early lactation and alcohol dehydrogenase-4 and methylmalonate-semialdehyde dehydrogenase for cows in mid lactation. This preliminary study identified new biomarkers in liver for PI and provided a better understanding of the differences in coping...

  15. A case of asymptomatic pancytopenia with clinical features of hemolysis as a presentation of pernicious anemia

    Directory of Open Access Journals (Sweden)

    Venkateswara K. Kollipara

    2016-09-01

    Full Text Available Pernicious anemia is an autoimmune disease with a variety of clinical presentations. We describe a case of pernicious anemia presenting with pancytopenia with hemolytic features. Further workup revealed very low vitamin B12 levels and elevated methylmalonic acid. It is important for a general internist to identify pernicious anemia as one of the cause of pancytopenia and hemolytic anemia to avoid extensive workup. Pernicious anemia can present strictly with hematological abnormalities without neurological problems or vice versa as in our case.

  16. Intestinal Malabsorption in Long-Term Survivors of Cervical Cancer Treated With Radiotherapy

    International Nuclear Information System (INIS)

    Vistad, Ingvild; Kristensen, Gunnar B.; Fossa, Sophie D.; Dahl, Alv A.; Morkrid, Lars

    2009-01-01

    Purpose: The aim of this cross-sectional study is to investigate the associations between pelvic radiotherapy (RT) and markers of intestinal absorption in cervical cancer survivors (CCSs). We compared patient data with normative data from a reference population and explored the associations between cobalamin status and clinically significant diarrhea and depression. Methods and Materials: Fifty-five CCSs treated with RT in 1994-1999 were included in 2005 in a follow-up questionnaire study exploring physical and psychological symptoms. Blood tests, including serum (S)-vitamin B 12, S-methylmalonic acid, S-folate, erythrocyte-folate, and plasma homocysteine, were analyzed. Differences in median values between CCSs and reference populations were evaluated by using Wilcoxon tests. Associations between variables were examined by means of multiple regression analyses. Results: Median S-vitamin B 12 level was significantly lower and median S-methylmalonic acid level was significantly higher in CCSs compared with the reference population (p 12 level is recommended, and regular intake of cobalamin should be considered in CCSs treated with RT

  17. A general review on vitamin B12 deficiency with focus on the situation in Jordan

    International Nuclear Information System (INIS)

    Qutob, M. S.; Takruri, H. R.

    2011-01-01

    Vitamin B 12 (cobalamin) is an essential nutrient that is only obtained from foods of animal origin, such as meat, eggs and dairy products. Vitamin B 12 plays an important role in DNA synthesis and neurological function. Thus its deficiency can lead to several neurological symptoms such as memory loss, dizziness and in severe cases may lead to dementia. Many factors can cause or lead to vitamin B-1 2 deficiency. Among these are malabsorption, several gastron intestinal problems (i.e. celiac disease, Crobn's disease) and gastrointestinal surgeries. diagnosis of vitamin B-1 2 status depends commonly on serum vitamin B 12 which is nonspecific tool for the deficiency. Other more specific tests, which reflect true deficiency, include serum and urine methylmalonic aci de, total serum homocysteine and serum holotranscobalamin. Vitamin B 12 deficiency is a worldwide public health problem; epidemiological studies showed that its prevalence in industrialized countries ranges from 5-60% of the population depending on the used cutoff point of cobalamin level. In Jordan, many reports were published on vitamin B 12 deficiency. However, these reports gave different results of its prevalence ranging from 16-48% depending on the serum vitamin B 12 cutoff point used. A recent study showed a prevalence of true deficiency of 32.7% based on measuring both serum vitamin B 12 level and plasma methylmalonic acid. (authors).

  18. The influence of a whole food vegan diet with Nori algae and wild mushrooms on selected blood parameters.

    Science.gov (United States)

    Schwarz, Joachim; Dschietzig, Thomas; Schwarz, Jens; Dura, Andreas; Nelle, Esther; Watanabe, Fumio; Wintgens, Karl Florian; Reich, Michael; Armbruster, Franz Paul

    2014-01-01

    Vegan and vegetarian diets could overcome many diseases of civilization. This study examines whether a whole food vegan diet with Nori algae and wild mushrooms can provide a sufficient quantity of critical nutrients. Five blood samples (Baseline to Time 5) were taken over eight months from 75 subjects (10 vegans without B12 supplementation who consumed Nori algae and wild mushrooms, 20 vegans with supplementation, 40 vegetarians, 5 meat-eaters). Blood was analyzed for blood cell counts, total vitamin B12, holotranscobalamin, homocysteine, methylmalonic acid, vitamin B6, folic acid, ferritin, TSH, zinc, creatinine, vitamin D2 and D3. In the vegan group without supplementation, all means were within the tolerance (holotranscobalamin, homocystein) or normal, except for elevated methylmalonic acid and diminished vitamin D. This group developed significantly higher vitamin D2 levels. The vegan group with B12 supplementation and the vegetarian group showed normal values for all parameters. Vegans following a whole food diet had a borderline supply of vitamin B12. Folic acid, vitamin B6, TSH, iron metabolism, and the blood count were in the normal range. Vegans taking dietary supplements demonstrated satisfactory overall results. An ingestion of sundried mushrooms can contribute to the supply of vitamin D.

  19. Vitamin Status among Breastfed Infants in Bhaktapur, Nepal.

    Science.gov (United States)

    Ulak, Manjeswori; Chandyo, Ram K; Thorne-Lyman, Andrew L; Henjum, Sigrun; Ueland, Per M; Midttun, Øivind; Shrestha, Prakash S; Fawzi, Wafaie W; Graybill, Lauren; Strand, Tor A

    2016-03-08

    Vitamin deficiencies are known to be common among infants residing in low- and middle-income countries but relatively few studies have assessed several biochemical parameters simultaneously. The objective of the study was to describe the status of vitamins (A, D, E, B₆, B12 and folate) in breastfed infants. We measured the plasma concentrations of trans retinol, 25 hydroxy vitamin D, α-tocopherol, pyridoxal 5'-phosphate, cobalamin, folate, methylmalonic acid, homocysteine, hemoglobin and C-reactive protein from 467 randomly selected infants. One in five (22%) was deficient in at least one vitamin. Mean (SD) plasma folate concentration was 73 (35) nmol/L, and no infant in the sample was folate deficient. Vitamin B₆ deficiency and vitamin B12 deficiency was found in 22% and 17% of the infants, respectively. Elevated plasma methylmalonic acid or total homocysteine concentration was found in 82% and 62% of infants, respectively. Fifteen percent of infants were vitamin A deficient and 65% were marginally deficient in vitamin A. Fewer than 5% of infants had low plasma vitamin D concentration or vitamin E concentration (α-tocopherol importance of continued supplementation campaigns and support the expansion of food fortification and dietary diversification programs that target children and women in Nepal.

  20. Disease-causing missense mutations affect enzymatic activity, stability and oligomerization of glutaryl-CoA dehydrogenase (GCDH)

    DEFF Research Database (Denmark)

    Keyser, B.; Muhlhausen, C.; Dickmanns, A.

    2008-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive neurometabolic disorder caused by mutations in the glutaryl-CoA dehydrogenase gene (GCDH), leading to an accumulation and high excretion of glutaric acid and 3-hydroxyglutaric acid. Considerable variation in severity of the clinical phenotype......Da GCDH complexes. Molecular modeling of mutant GCDH suggests that Met263 at the surface of the GCDH protein might be part of the contact interface to interacting proteins. These results indicate that reduced intramitochondrial stability as well as the impaired formation of homo- and heteromeric GCDH...

  1. [Sudden death of a patient with 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency].

    Science.gov (United States)

    Vilaseca Busca, M A; Ribes Rubio, A; Briones Godino, P; Cusi Sánchez, V; Baraíbar Castelló, R; Gairi Taull, J M

    1990-02-01

    A new case of neonatal 3-hydroxy-3-methylglutaric aciduria is described. 3-hydroxy-3-methylglutaryl CoA lyase activities in leukocytes demonstrated the patient's homozygosity and the heterozygous character of the parents and two other members of the family. Dietetic management with low fat high carbohydrate diet together with protein restriction and carnitine resulted in a good control of the metabolic acidosis, the hypoglycemia, and the physical and neurological development. Nevertheless, sudden death occurred at the age thirteen months without any previous apparent trouble and the necropsia showed neither signs of infection nor hepatic or cardiac derangement.

  2. Precocious Degenerative Arthropathy And Bluish Patches On Ears : Ochronosis And Alkaptonuria

    Directory of Open Access Journals (Sweden)

    Mahajan Vikram K

    2004-01-01

    Full Text Available Alkaptonuria is a rare, autosomal recessive disorder of phenylalanin/tyrosine metabolism due to congenital deficiency of the enzyme homogentisic acid oxidase. The diagnosis is clinical and the triad of homogentisic aciduria, ochronosis and precocious degenerative arthritis is characteristic. Its diagnosis in infancy and early therapeutic intervention help delaying its complications. These patients may remain undiagnosed until the darkening of urine soaked diapers is noticed or the early degenerative arthropathy develops. This paper describes two cases of alkaptonuria presenting late in life; one of them had associated hyperthyroidism.

  3. Cross-sectional multicenter study of patients with urea cycle disorders in the United States.

    Science.gov (United States)

    Tuchman, Mendel; Lee, Brendan; Lichter-Konecki, Uta; Summar, Marshall L; Yudkoff, Marc; Cederbaum, Stephen D; Kerr, Douglas S; Diaz, George A; Seashore, Margaretta R; Lee, Hye-Seung; McCarter, Robert J; Krischer, Jeffrey P; Batshaw, Mark L

    2008-08-01

    Inherited urea cycle disorders comprise eight disorders (UCD), each caused by a deficiency of one of the proteins that is essential for ureagenesis. We report on a cross-sectional investigation to determine clinical and laboratory characteristics of patients with UCD in the United States. The data used for the analysis was collected at the time of enrollment of individuals with inherited UCD into a longitudinal observation study. The study has been conducted by the Urea Cycle Disorders Consortium within the Rare Diseases Clinical Research Network (RDCRN) funded by the National Institutes of Health. One-hundred eighty-three patients were enrolled into the study. Ornithine transcarbamylase (OTC) deficiency was the most frequent disorder (55%), followed by argininosuccinic aciduria (16%) and citrullinemia (14%). Seventy-nine percent of the participants were white (16% Latinos), and 6% were African American. Intellectual and developmental disabilities were reported in 39% with learning disabilities (35%) and half had abnormal neurological examination. Sixty-three percent were on a protein restricted diet, 37% were on Na-phenylbutyrate and 5% were on Na-benzoate. Forty-five percent of OTC deficient patients were on L-citrulline, while most patients with citrullinemia (58%) and argininosuccinic aciduria (79%) were on L-arginine. Plasma levels of branched-chain amino acids were reduced in patients treated with ammonia scavenger drugs. Plasma glutamine levels were higher in proximal UCD and in neonatal type disease. The RDCRN allows comprehensive analyses of rare inherited UCD, their frequencies and current medical practices.

  4. Hallermann-Streiff syndrome associated with small cerebellum, endocrinopathy and increased chromosomal breakage.

    Science.gov (United States)

    Hou, J W

    2003-07-01

    Hallermann-Streiff syndrome (HSS) is a rare clinic entity of unknown aetiology. Further clinical and metabolic-genetic evaluations are indicated. A 2-mo-old female baby presented with ocular abnormalities and severe failure to thrive since birth. The clinical features were compatible with the diagnosis of HSS. Further imaging, metabolic and cytogenetic examinations were performed. Features characteristic of HSS were dyscephaly with mandibular and nasal cartilage hypoplasia, microphthalmia, bilateral cataracts with congenital glaucoma, natal teeth and proportionate dwarfism. Rare anomalies such as choanal atresia and small cerebellum, very low insulin-like growth factor I level, hypothyroidism, generalized organic aciduria were also noticed. An increased chromosomal breakage rate is suggestive of the existence of some DNA repair defects in HSS patients. The associated anomalies in this patient may broaden the clinical spectrum of HSS. Underlying conditions of organic aciduria, growth factor deficiency and impaired DNA repair are likely to contribute to the progeria-like facies, congenital cataracts and growth failure.

  5. Determination of thermodynamic parameters for enolization reaction of malonic and metylmalonic acids by using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Minoru Yoshimoto

    2016-06-01

    Full Text Available We investigated the process of a bromination reaction of malonic acid and methylmalonic acid in the Belousov-Zhabotinsky reaction by using a quartz crystal microbalance (QCM. The process involves an enolization reaction as a rate-determining step. We found that, in the step, the variation of Br2 concentration induced an exactly quantitative shift of a resonant frequency of the QCM, based on the change of the surface mass on the QCM and the solution viscosity and density. This new finding enabled us to estimate the reaction rate constants and the thermodynamic parameters of the enolization reaction due to a QCM measurement. The values measured by the QCM were in good agreement with those measured by a UV-spectrophotometer. As a result, we succeeded to develop a new measurement method of a nonlinear chemical reaction.

  6. Detection of vitamin B12 deficiency in older people by measuring vitamin B12 or the active fraction of vitamin B12, holotranscobalamin

    DEFF Research Database (Denmark)

    Clarke, Robert; Sherliker, Paul; Hin, Harold

    2007-01-01

    BACKGROUND: Impaired vitamin B(12) function and decreased vitamin B(12) status have been associated with neurological and cognitive impairment. Current assays analyze total vitamin B(12) concentration, only a small percentage of which is metabolically active. Concentrations of this active component......, carried on holotranscobalamin (holoTC), may be of greater relevance than total vitamin B(12). METHODS: We compared the utility of serum holoTC with conventional vitamin B(12) for detection of vitamin B(12) deficiency in a population-based study of older people, using increased methylmalonic acid (MMA......) concentrations as a marker of metabolic vitamin B(12) deficiency in the overall population (n = 2403) and in subsets with normal (n = 1651) and abnormal (n = 752) renal function. RESULTS: Among all participants, 6% had definite (MMA >0.75 micromol/L) and 16% had probable (MMA >0.45 micromol/L) metabolic vitamin...

  7. Implementation of a clinical dementia guideline. A controlled study on the effect of a multifaceted strategy

    DEFF Research Database (Denmark)

    Waldorff, Frans Boch; Almind, Gert; Mäkelä, Marjukka

    2003-01-01

    OBJECTIVE: To assess the impact of a multifaceted implementation strategy aiming to improve GP adherence to a clinical guideline on dementia. DESIGN: Controlled before and after study using data records from regional laboratories. The guideline was mailed to all GPs. The multifaceted implementation...... strategy was planned with local GPs, and consisted of seminars, outreach visits, reminders and continuing medical education (CME) small group training. SETTING: Primary health care. SUBJECTS: 535 GP practices with 727 physicians in Denmark. MAIN OUTCOME MEASURES: The diffusion and use of the guideline...... was measured by a mailed survey. Adherence to guideline recommendations was monitored by data on laboratory tests from general practice in patient's > or = 65 years: thyroid stimulating hormone requested with vitamin B12 or methylmalonate. The use of these tests as part of a diagnostic evaluation of dementia...

  8. Low vitamin B-12 status and risk of cognitive decline in older adults

    DEFF Research Database (Denmark)

    Clarke, Robert; Birks, Jacqueline; Nexo, Ebba

    2007-01-01

    remained significant. CONCLUSIONS: Low vitamin B-12 status was associated with more rapid cognitive decline. Randomized trials are required to determine the relevance of vitamin B-12 supplementation for prevention of dementia. Udgivelsesdato: 2007-Nov......BACKGROUND: Elevated total homocysteine (tHcy) concentrations have been associated with cognitive impairment, but it is unclear whether low vitamin B-12 or folate status is responsible for cognitive decline. OBJECTIVE: We examined the associations of cognitive decline with vitamin B-12 and folate...... status in a longitudinal cohort study performed from 1993 to 2003 in Oxford, United Kingdom. DESIGN: Cognitive function was assessed with the Mini-Mental State Examination on >/=3 occasions during 10 y and related to serum concentrations of vitamin B-12, holotranscobalamin (holoTC), tHcy, methylmalonic...

  9. 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis

    International Nuclear Information System (INIS)

    Lam, W.W.M.; Zhao, H.; Berry, G.T.; Kaplan, P.; Gibson, J.; Kaplan, B.S.

    1998-01-01

    Proton MR spectra of the basal ganglia were obtained from 28 patients, 24 male and 14 female, median age 16.3 months (5 weeks to 31 years). They included 17 patients with normal MRI of the basal ganglia without metabolic disturbance (control group) and 11 patients with various metabolic diseases: one case each of high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease, Galloway-Mowat syndrome, Pelizaeus-Merzbacher disease, hemolytic-uremic syndrome and Wilson disease and two cases of Alagille syndrome and methylmalonic acidemia with abnormal MRI of the basal ganglia or blood or urine analysis (abnormal group). The MR spectrum was measured by using STEAM. The MR-visible water content of the region of interest was obtained. Levels of myoinositol, choline, creatine and N -acetylaspartate were measured using a semiquantitative approach, with absolute reference calibration. In the control group, there was a gradual drop of water content over the first year of life; N -acetylaspartate, creatine and myoinositol levels showed no significant change with age, in contrast to the occipital, parietal and cerebellar regions. Choline showed a gradual decrease for the first 2 years of life and then remained fairly constant. In the abnormal group the water content was not significantly different. N -Acetylaspartate was decreased in patients with high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease and one case of methylmalonic acidemia. Decreased creatine was also found in Leigh disease, and decreased choline in Galloway-Mowat syndrome and Wilson disease. Myoinositol was elevated in the patient with abnormally high serum sodium, and decreased in the hemolytic-uremic syndrome. (orig.)

  10. Cobalamin and folate status predicts mental development scores in North Indian children 12-18 mo of age.

    Science.gov (United States)

    Strand, Tor A; Taneja, Sunita; Ueland, Per M; Refsum, Helga; Bahl, Rajiv; Schneede, Joern; Sommerfelt, Halvor; Bhandari, Nita

    2013-02-01

    Micronutrient deficiencies can affect cognitive function. Many young children in low- and middle-income countries have inadequate cobalamin (vitamin B-12) status. The objective was to measure the association of plasma concentrations of folate, cobalamin, total homocysteine, and methylmalonic acid with cognitive performance at 2 occasions, 4 mo apart, in North Indian children aged 12-18 mo. Bayley Scales of Infant Development II were used to assess cognition. In multiple regression models adjusted for several potential confounders, we measured the association between biomarkers for folate and cobalamin status and psychomotor or mental development scores on the day of blood sampling and 4 mo thereafter. Each 2-fold increment in plasma cobalamin concentration was associated with a significant increment in the mental development index score of 1.3 (95% CI: 0.2, 2.4; P = 0.021). Furthermore, each 2-fold increment in homocysteine or methylmalonic acid concentration was associated with a decrement in mental development index score of 2.0 (95% CI: 0.5, 3.4; P = 0.007) or 1.1 (95% CI: 0.3, 1.8; P = 0.004) points, respectively. Plasma folate concentration was significantly and independently associated with mental development index scores only when children with poor cobalamin status were excluded, ie, in those who had cobalamin concentrations below the 25th percentile. None of these markers was associated with psychomotor scores in the multiple regression models. Cobalamin and folate status showed a statistically significant association with cognitive performance. Given the high prevalence of deficiencies in these nutrients, folate and cobalamin supplementation trials are required to measure any beneficial effect on cognition.

  11. Absence of a weight gain response to Vitamin B12 supplementation in weaned dairy heifers grazing pastures of marginal cobalt content.

    Science.gov (United States)

    Clark, R G; Ellison, R S; Mortleman, L; Kirk, J A; Henderson, H V

    1999-08-01

    To obtain information on serum and liver vitamin B12 and urinary methylmalonic acid concentrations as diagnostic tests to predict a weight gain response to supplementation with vitamin B12 in young dairy cattle when grazing pasture of low cobalt content. Methodology. Forty dairy cattle (12 Friesian, 14 Friesian x Jersey and 14 Jersey) were allocated to two equal sized groups, treated and untreated, based on liveweight. At monthly intervals for 14 months, all animals were weighed, their serum and urine sampled, their liver biopsied and the pasture sampled from the paddocks they were grazing and going to graze. Serum and liver were assayed for vitamin B12 concentrations. For the first 5 months of the trial, urine was assayed for methylmalonic acid concentrations. Both washed and unwashed pasture samples were assayed for cobalt concentrations. No weight gain response occurred vitamin B12 supplementation in young growing cattle grazing pasture with a cobalt concentration of 0.04-0.06 mg/kg DM. For 5 months of the trial, liver vitamin B12 concentrations from untreated calves were in the range 75-220 nmol/kg and serum vitamin B12 concentrations were as low as 72 pmol/1. There was no associated growth response to supplementation. Further trials involving young cattle grazing pastures with cobalt concentrations less than 0.04 mg/kg DM are required to reliably determine liver and serum vitamin B12 concentrations at which growth responses to vitamin B12 or cobalt supplementation are likely under New Zealand pastoral grazing conditions.

  12. Homocyst(e)ine metabolism in hemodialysis patients treated with vitamins B6, B12 and folate.

    Science.gov (United States)

    Henning, B F; Zidek, W; Riezler, R; Graefe, U; Tepel, M

    2001-03-01

    Hyperhomocyst(e)inemia is commonly accepted as an independent atherosclerotic risk factor. In most hemodialysis patients, serum homocyst(e)ine is markedly elevated and may contribute to premature atherosclerosis in these patients. Whereas the beneficial effect of folate supplementation on serum homocyst(e)ine has been extensively studied, there are less detailed studies on the effects of cobalamin and pyridoxal phosphate alone, or in combination with folate. We examined the effect of a four-week course of intravenous treatment with folate (1.1 mg), cobalamin (1.0 mg), and pyridoxal phosphate (5.0 mg), administered once (group 1), twice (group 2) or thrice (group 3) weekly in 33 hemodialysis patients divided in three groups of 11 patients. All patients were followed for a further four weeks after treatment was stopped. Serum homocyst(e)ine, cobalamin, folate and pyridoxal phosphate, as well as the metabolites of homocyst(e)ine, methylmalonate, 2-methylcitrate and cystathionine, were determined before, during and after treatment. Baseline serum homocyst(e)ine correlated significantly with serum folate (P=0.0149), cobalamin (P=0.0047) and pyridoxal phosphate (P=0.0408). Correlations independent from the other metabolites or vitamins were found for methylmalonate (P=0.003) and folate (P=0.029). All regimens increased serum cobalamin significantly (in group 1 from 444 +/- 215 to 17,303 +/- 11,989 pg/ml, Pine was lowered significantly by 39.8% +/- 31.9% (Pine levels. Increasing cobalamin levels and additional treatment with folate and pyridoxal phosphate 156 may decrease serum homocyst(e)ine in the same way as high doses of folate alone.

  13. A study on complex formation of cadmium (II) ions, 9

    International Nuclear Information System (INIS)

    Matsui, Haruo

    1984-01-01

    Formation constants of cadmium (11) complexes with dicarboxylic acids such as oxalic, malonic, methylmalonic, succinic, and glutaric acids were determined in aqueous solutions containing 3 mol.dm -3 LiClO 4 as a constan ionic medium at 25 0 C by potentiometric titrations. It was reported in the previous works that cadmium (11)- aspartic acid complexes contained two chelate rings. However, a problem remained whether the second chelate ring could be formed by six membered-ring containing -O-Cd-N- bond or by seven membered-ring containing -O-Cd-O- bond. The results of the present work suggested that it would be formed by a six membered ring. Cadmium (11) ions were coordinated with a carboxylic group of the dicarboxylic acids studied, and formed no chelate ring within the complexes. The white precipitate appeared in the solution containing cadmium (11) ion and oxalic acid, in the pH range below 3.0, therefore, the chelate formation was not ascertained in this case. The formation constants, log βsub(pr)= log([Cdsub(p)Lsub(r)sup((2p-2r)+)]/([Cd 2+ ]sup(p)[L 2- ]sup(r))), of the complexes were: log β 11 = 1.98, log β 12 = 3.05 for cadmium (11)-malonic acid; log β 11 = 2.28, log β 12 = 3.06 for cadmium (11)-methylmalonic acid; log β 11 = 1.78, log β 12 = 3.08 for cadmium (11)-succinic acid; log β 11 = 1.85, log β 12 = 3.28 for cadmium (11)-glutaric acid complexes. (author)

  14. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD.

    Directory of Open Access Journals (Sweden)

    Yuanquan Song

    2009-12-01

    Full Text Available In humans, mutations in electron transfer flavoprotein (ETF or electron transfer flavoprotein dehydrogenase (ETFDH lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.

  15. Diagnosis of propionic acidemia by gas chromatography coupled to mass spectrometry in a case analysis

    International Nuclear Information System (INIS)

    Camayd Viera, Ivette; Robaina Jimenez, Zoe; Contreras Roura, Jiovanna

    2011-01-01

    Propionic acidemia is an inherited metabolic disease caused by a deficiency in the propionyl-CoA carboxilase, a biotin-dependent mitochondrial enzyme. The disorder is a clinically heterogeneous disease and one of the most frequently occurring organic acidurias. We report the first Cuban case with a severe form of propionic acidemia followed by acidosis and death. The diagnosis was carried out by gas chromatography coupled to mass spectrometry. Our aim is to highlight the importance of organic acids urine analysis as part of the first laboratory tests in undiagnosed seriously ill children. The definitive diagnosis is important as it serves as a clear guideline to establish a suitable treatment and allows geneticists to provide patients with a proper genetic counseling

  16. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  17. Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line

    Energy Technology Data Exchange (ETDEWEB)

    Cavard, C; Grimber, G; Dubois, N; Chasse, J F; Bennoun, M; Minet-Thuriaux, M; Kamoun, P; Briand, P

    1988-03-25

    The sparse fur with abnormal skin and hair (Spf-ash) mouse is a model for the human x-linked hereditary disorder, ornithine transcarbamylase (OTC) deficiency. In Spf-ash mice, both OTC mRNA and enzyme activity are 5% of control values resulting in hyperammonemia, pronounced orotic aciduria and an abnormal phenotype characterized by growth retardation and sparse fur. Using microinjection, the authors introduced a construction containing rat OTC cDNA linked to the SV40 early promoter into fertilized eggs of Spf-ash mice. The expression of the transgene resulted in the development of a transgenic mouse whose phenotype and orotic acid excretion are fully normalized. Thus, the possibility of correcting hereditary enzymatic defect by gene transfer of heterologous cDNA coding for the normal enzyme has been demonstrated.

  18. Skin Lesions Associated with Dietary Management of Maple Syrup Urine Disease: a Case Report

    Directory of Open Access Journals (Sweden)

    Kazandjieva Jana

    2015-12-01

    Full Text Available Leucinosis (maple syrup urine disease - MSUD is an inherited aminoacidopathy and organic aciduria caused by severe enzyme defect in the metabolic pathway of amino acids: leucine, isoleucine, and valine. The classical variant of the disease is characterized by accumulation of both amino and α-keto acids, particulary the most toxic rapid elevation of circulating leucine and its ketoacid, α-ketoisocaproate, which cause encephalopathy and life-threatening brain swelling. However, patients with the most severe form, classical maple syrup urine disease, may appear normal at birth, but develop acute metabolic decompensation within the first weeks of life with typical symptoms: poor feeding, vomiting, poor weight gain, somnolence and burnt sugar-smelling urine, reminiscent of maple syrup. Early diagnosis and dietary intervention improve the patient’s condition, prevent severe complications, and may allow normal intellectual development.

  19. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    DEFF Research Database (Denmark)

    Bross, Peter; Li, Zhijie; Hansen, Jakob

    2007-01-01

    for variations in the HSPD1 and HSPE1 genes encoding the mitochondrial Hsp60/Hsp10 chaperone complex: two patients with multiple mitochondrial enzyme deficiency, 61 sudden infant death syndrome cases (MIM: #272120), and 60 patients presenting with ethylmalonic aciduria carrying non-synonymous susceptibility...... variations in the ACADS gene (MIM: *606885 and #201470). Besides previously reported variations we detected six novel variations: two in the bidirectional promoter region, and one synonymous and three non-synonymous variations in the HSPD1 coding region. One of the non-synonymous variations was polymorphic...... in patient and control samples, and the rare variations were each only found in single patients and absent in 100 control chromosomes. Functional investigation of the effects of the variations in the promoter region and the non-synonymous variations in the coding region indicated that none of them had...

  20. Neurometabolic diseases of childhood

    International Nuclear Information System (INIS)

    Patay, Zoltan; Blaser, Susan I.; Poretti, Andrea; Huisman, Thierry A.G.M.

    2015-01-01

    Metabolic diseases affecting the pediatric brain are complex conditions, the underlying mechanisms leading to structural damage are diverse and the diagnostic imaging manifestations are often non-specific; hence early, sensitive and specific diagnosis can be challenging for the radiologist. However, misdiagnosis or a delayed diagnosis can result in a devastating, irreversible injury to the developing brain. Based upon the inborn error, neurometabolic diseases can be subdivided in various groups depending on the predominantly involved tissue (e.g., white matter in leukodystrophies or leukoencephalopathies), the involved metabolic processes (e.g., organic acidurias and aminoacidopathies) and primary age of the child at presentation (e.g., neurometabolic disorders of the newborn). This manuscript summarizes these topics. (orig.)

  1. Perioperative management of patient with alkaptonuria and associated multiple comorbidities

    Directory of Open Access Journals (Sweden)

    Ravindra Pandey

    2011-01-01

    Full Text Available Alkaptonuria is a rare inherited genetic disorder of tyrosine metabolism characterized by a triad of homogentisic aciduria, ochronosis, and arthritis. The most common clinical manifestations of ochronosis involve the musculoskeletal, respiratory, airway, cardiovascular, genitourinary, cutaneous, and ocular systems. We report the perioperative anesthetic management of a 56-year-old alkaptonuric patient, with multiple comorbidities scheduled, for revision total hip replacement. A review of her medical history revealed alkaptonuria, hypothyroidism, rheumatoid arthritis, hypertension, diabetes mellitus, and Pott′s spine with disc prolapse. We want to highlight the need of thorough preoperative evaluation in patients of alkaptonuria, as it is associated with multiple comorbidities. The systemic involvement should determine the anesthetic plan. Caution should be exercised during positioning to prevent injury to the joints and the spine.

  2. An update on molecular genetics of Alkaptonuria (AKU).

    Science.gov (United States)

    Zatkova, Andrea

    2011-12-01

    Alkaptonuria (AKU) is an autosomal recessive disorder caused by a deficiency of homogentisate 1,2 dioxygenase (HGD) and characterized by homogentisic aciduria, ochronosis, and ochronotic arthritis. The defect is caused by mutations in the HGD gene, which maps to the human chromosome 3q21-q23. AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups, but there are countries such as Slovakia and the Dominican Republic in which the incidence of this disorder rises to as much as 1:19,000. In this work, we summarize the genetic aspects of AKU in general and the distribution of all known disease-causing mutations reported so far. We focus on special features of AKU in Slovakia, which is one of the countries with an increased incidence of this rare metabolic disorder.

  3. DOORS syndrome: phenotype, genotype and comparison with Coffin-Siris syndrome.

    Science.gov (United States)

    Campeau, Philippe M; Hennekam, Raoul C

    2014-09-01

    DOORS syndrome (Deafness, Onychodystrophy, Osteodystrophy, mental Retardation, Seizures) is characterized mainly by sensorineural deafness, shortened terminal phalanges with small nails of hands and feet, intellectual deficiency, and seizures. Half of the patients with all clinical features have mutations in TBC1D24. We review here the manifestations of patients clinically diagnosed with DOORS syndrome. In this cohort of 32 families (36 patients) we detected 13 individuals from 10 families with TBC1D24 mutations. Subsequent whole exome sequencing in the cohort showed the same de novoSMARCB1 mutation (c.1130G>A), known to cause Coffin-Siris syndrome, in two patients. Distinguishing features include retinal anomalies, Dandy-Walker malformation, scoliosis, rocker bottom feet, respiratory difficulties and absence of seizures, and 2-oxoglutaric aciduria in the patients with the SMARCB1 mutation. We briefly discuss the heterogeneity of the DOORS syndrome phenotype and the differential diagnosis of this condition. © 2014 Wiley Periodicals, Inc.

  4. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  5. Aminoacidopatias de interesse neurológico

    Directory of Open Access Journals (Sweden)

    Aron J. Diament

    1974-06-01

    Full Text Available As aminoácidopatias constituem o grupo mais numeroso dos erros inatos do metabolismo, sendo crescente seu número em vista das inúmeras cadeias metabólicas envolvendo os aminoácidos na economia humana. É apresentada uma classificação atualizada das principais aminoacidopatias que determinam sintomatologia neurológica e/ou mental. São revistos os principais métodos de diagnóstico, apontando-se as falhas de algumas metodologias. São abordadas algumas particularidades da fenilcetonúria, leucinose e acidemia propiônica, principalmente no que concerne à variação genética. Finalmente, são apresentadas duas aminoacidopatias recentemente descritas: a aciduria piroglutâmica e a deficiência da beta-metil-crotonil-CoA-carboxilase.

  6. Assessment of a pioneer metabolic information service in Brazil.

    Science.gov (United States)

    Brustolin, Silvia; Souza, Carolina; Puga, Ana Cristina; Refosco, Lilia; Pires, Ricardo; Peres, Rossana; Giugliani, Roberto

    2006-01-01

    The Information Service on Inborn Errors of Metabolism (SIEM), a pioneer toll-free service in both Brazil and South America, is based in Porto Alegre, Southern Brazil. SIEM has been operating since October 2001 providing support to health care professionals involved in the diagnosis and management of suspected metabolic diseases. We analyzed the demographic and clinical characteristics of the 376 consults received and followed in the first two and half years of SIEM. Our results show that the suspicion of a metabolic disease was most often associated with neurological symptoms. Among the consults, 24.4% were eventually confirmed as inborn errors of metabolism (IEM), with organic acidurias and amino acid disorders being the two most frequent diagnostic groups. Our conclusion shows this kind of service to provide helpful support to the diagnosis and acute management of IEM, especially to health professionals working in developing countries who are often far from reference centers.

  7. Neurometabolic diseases of childhood

    Energy Technology Data Exchange (ETDEWEB)

    Patay, Zoltan [St. Jude Children' s Research Hospital, Section of Neuroradiology, Division of Radiology, Department of Radiological Sciences, Memphis, TN (United States); Blaser, Susan I. [The Hospital for Sick Children, Division of Neuroradiology, Department of Diagnostic Imaging, Toronto (Canada); Poretti, Andrea; Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Pediatric Radiology and Pediatric Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, MD (United States)

    2015-09-15

    Metabolic diseases affecting the pediatric brain are complex conditions, the underlying mechanisms leading to structural damage are diverse and the diagnostic imaging manifestations are often non-specific; hence early, sensitive and specific diagnosis can be challenging for the radiologist. However, misdiagnosis or a delayed diagnosis can result in a devastating, irreversible injury to the developing brain. Based upon the inborn error, neurometabolic diseases can be subdivided in various groups depending on the predominantly involved tissue (e.g., white matter in leukodystrophies or leukoencephalopathies), the involved metabolic processes (e.g., organic acidurias and aminoacidopathies) and primary age of the child at presentation (e.g., neurometabolic disorders of the newborn). This manuscript summarizes these topics. (orig.)

  8. Bilateral hypertrophic olivary nucleus degeneration on magnetic resonance imaging in children with Leigh and Leigh-like syndrome.

    Science.gov (United States)

    Bindu, P S; Taly, A B; Sonam, K; Govindaraju, C; Arvinda, H R; Gayathri, N; Bharath, M M Srinivas; Ranjith, D; Nagappa, M; Sinha, S; Khan, N A; Thangaraj, K

    2014-02-01

    Bilateral hypertrophic olivary degeneration on brain MRI has been reported in a few metabolic, genetic and neurodegenerative disorders, including mitochondrial disorders. In this report, we sought to analyse whether bilateral symmetrical inferior olivary nucleus hypertrophy is specifically associated with mitochondrial disorders in children. This retrospective study included 125 children (mean age, 7.6 ± 5 years; male:female, 2.6:1) diagnosed with various metabolic and genetic disorders during 2005-2012. The routine MRI sequences (T1 weighted, T2 weighted and fluid-attenuated inversion-recovery sequences) were analysed for the presence of bilateral symmetrical olivary hypertrophy and central tegmental tract or dentate nuclei signal changes. The other imaging findings and the final diagnoses were noted. The cohort included patients with Leigh and Leigh-like syndrome (n = 25), other mitochondrial diseases (n = 25), Wilson disease (n = 40), Type 1 glutaric aciduria (n = 14), maple syrup urine disease (n = 13), giant axonal neuropathy (n = 5) and L-2 hydroxy glutaric aciduria (n = 3). Bilateral inferior olivary nucleus hypertrophy was noted in 10 patients, all of whom belonged to the Leigh and Leigh-like syndrome group. Bilateral hypertrophic olivary degeneration on MRI is relatively often, but not routinely, seen in children with Leigh and Leigh-like syndrome. Early detection of this finding by radiologists and physicians may facilitate targeted metabolic testing in these children. This article highlights the occurrence of bilateral hypertrophic olivary nucleus degeneration on MRI in children with Leigh and Leigh-like syndrome, compared with other metabolic disorders.

  9. Assessment of quality of life of the children and parents affected by inborn errors of metabolism with restricted diet: preliminary results of a cross-sectional study.

    Science.gov (United States)

    Fabre, Alexandre; Baumstarck, Karine; Cano, Aline; Loundou, Anderson; Berbis, Julie; Chabrol, Brigitte; Auquier, Pascal

    2013-09-19

    The development in therapeutic strategies has increased survival of children affected by inborn errors of metabolism with restricted diet (IEMRD). These diseases have mild- and long-term consequences on the health. Little is known about the impact on the quality of life (QoL) of children and their families. The aims of this study were: to compare the QoL of the children and parents affected by IEMRD with the QoL of the general population and one pathology associated with long-term consequences. This cross-sectional study was performed at the French Reference Center for inborn metabolic disorders (Marseille, France). Inclusion criteria were: a child with a diagnosis of organic aciduria, urea cycle defect, or maple syrups urine disease (MSUD). Socio-demographics, clinical data, and QoL were recorded. Twenty-one of 32 eligible families were included during a planned routine visit. Ten (47%, 95% CI 27-69%) children were affected by organic aciduria, six (29%, 95% CI 10-48%) by urea cycle defects, and five (24%, 95% CI 6-42%) by MSUD. Among the younger children, the general well-being was significantly lower in the children with IEMRD than in the leukemia children (58 ± 16 versus 76 ± 15, p = 0.012), and among the older children, the leisure activities were significantly lower in the children with IEMRD than in the leukemia children (29 ± 18 versus 62 ± 22, p eating and neurologic disorders, enteral nutrition, and feeding modalities. The children and the parents of children affected presented altered 'physical' and 'social' QoL scores compared with the norms and patients with leukemia and their families. Future studies based on larger cohort studies should determine the different weights of potential predictive factors of QoL.

  10. A scoring system predicting the clinical course of CLPB defect based on the foetal and neonatal presentation of 31 patients.

    Science.gov (United States)

    Pronicka, Ewa; Ropacka-Lesiak, Mariola; Trubicka, Joanna; Pajdowska, Magdalena; Linke, Markus; Ostergaard, Elsebet; Saunders, Carol; Horsch, Sandra; van Karnebeek, Clara; Yaplito-Lee, Joy; Distelmaier, Felix; Õunap, Katrin; Rahman, Shamima; Castelle, Martin; Kelleher, John; Baris, Safa; Iwanicka-Pronicka, Katarzyna; Steward, Colin G; Ciara, Elżbieta; Wortmann, Saskia B

    2017-11-01

    Recently, CLPB deficiency has been shown to cause a genetic syndrome with cataracts, neutropenia, and 3-methylglutaconic aciduria. Surprisingly, the neurological presentation ranges from completely unaffected to patients with virtual absence of development. Muscular hypo- and hypertonia, movement disorder and progressive brain atrophy are frequently reported. We present the foetal, peri- and neonatal features of 31 patients, of which five are previously unreported, using a newly developed clinical severity scoring system rating the clinical, metabolic, imaging and other findings weighted by the age of onset. Our data are illustrated by foetal and neonatal videos. The patients were classified as having a mild (n = 4), moderate (n = 13) or severe (n = 14) disease phenotype. The most striking feature of the severe subtype was the neonatal absence of voluntary movements in combination with ventilator dependency and hyperexcitability. The foetal and neonatal presentation mirrored the course of disease with respect to survival (current median age 17.5 years in the mild group, median age of death 35 days in the severe group), severity and age of onset of all findings evaluated. CLPB deficiency should be considered in neonates with absence of voluntary movements, respiratory insufficiency and swallowing problems, especially if associated with 3-methylglutaconic aciduria, neutropenia and cataracts. Being an important differential diagnosis of hyperekplexia (exaggerated startle responses), we advise performing urinary organic acid analysis, blood cell counts and ophthalmological examination in these patients. The neonatal presentation of CLPB deficiency predicts the course of disease in later life, which is extremely important for counselling.

  11. Progressive deafness–dystonia due to SERAC1 mutations: A study of 67 cases

    Science.gov (United States)

    Maas, Roeltje R.; Iwanicka‐Pronicka, Katarzyna; Kalkan Ucar, Sema; Alhaddad, Bader; AlSayed, Moeenaldeen; Al‐Owain, Mohammed A.; Al‐Zaidan, Hamad I.; Balasubramaniam, Shanti; Barić, Ivo; Bubshait, Dalal K.; Burlina, Alberto; Christodoulou, John; Chung, Wendy K.; Colombo, Roberto; Darin, Niklas; Freisinger, Peter; Garcia Silva, Maria Teresa; Grunewald, Stephanie; Haack, Tobias B.; van Hasselt, Peter M.; Hikmat, Omar; Hörster, Friederike; Isohanni, Pirjo; Ramzan, Khushnooda; Kovacs‐Nagy, Reka; Krumina, Zita; Martin‐Hernandez, Elena; Mayr, Johannes A.; McClean, Patricia; De Meirleir, Linda; Naess, Karin; Ngu, Lock H.; Pajdowska, Magdalena; Rahman, Shamima; Riordan, Gillian; Riley, Lisa; Roeben, Benjamin; Rutsch, Frank; Santer, Rene; Schiff, Manuel; Seders, Martine; Sequeira, Silvia; Sperl, Wolfgang; Staufner, Christian; Synofzik, Matthis; Taylor, Robert W.; Trubicka, Joanna; Tsiakas, Konstantinos; Unal, Ozlem; Wassmer, Evangeline; Wedatilake, Yehani; Wolff, Toni; Prokisch, Holger; Morava, Eva; Pronicka, Ewa; Wevers, Ron A.; de Brouwer, Arjan P.

    2017-01-01

    Objective 3‐Methylglutaconic aciduria, dystonia–deafness, hepatopathy, encephalopathy, Leigh‐like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. Methods This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. Results Sixty‐seven individuals (39 previously unreported) from 59 families were included (age range = 5 days–33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy‐nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic “putaminal eye” was seen in 53%. The urinary marker 3‐methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. Interpretation MEGDHEL syndrome is a progressive deafness–dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004–1015 PMID:29205472

  12. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    Science.gov (United States)

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Metformin Lowers Serum Cobalamin without Changing Other Markers of Cobalamin Status: A Study on Women with Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Ebba Nexo

    2013-07-01

    Full Text Available Treatment with the anti-diabetic drug metformin is followed by a decline in plasma cobalamin, but it is unsettled whether this denotes an impaired cobalamin status. This study has explored changes in the markers of cobalamin status in women with Polycystic Ovary Syndrome treated with metformin (1.5–2.5 g per day (n = 29 or placebo (n = 23 for six months. Serum samples were collected before and after two, four, and six months of treatment. We found serum cobalamin to decline and reach significant lower levels after six months of treatment (p = 0.003. Despite the decline in serum cobalamin, we observed no reductions in the physiological active part of cobalamin bound to transcobalamin (holotranscobalamin, or increase in the metabolic marker of cobalamin status, methylmalonic acid. Instead, the non-functional part of circulating cobalamin bound to haptocorrin declined (p = 0.0009. Our results have two implications: The data questions whether metformin treatment induces an impaired cobalamin status in PCOS patients, and further suggests that serum cobalamin is a futile marker for judging cobalamin status in metformin-treated patients.

  14. [Vitamins and nutritional supplements in older persons: How to diagnose and when to substitute?].

    Science.gov (United States)

    Polivka, D; von Arnim, C A F

    2015-11-01

    Despite an excellent food supply in Germany, a large percentage of older persons living at home or institutionalized older persons suffer from or are at risk for malnutrition. The purpose of this article is to highlight the association between nutrient deficiencies and age-related diseases and give rational recommendations for substitution. Both malnutrition and low levels of specific nutrients are associated with cognitive and functional impairment, dementia, and depression in older persons. Most prevalent are deficiencies in vitamin B1, vitamin B12, and vitamin D. Serum levels are often misleading and show false negative results in vitamin B1 and B12 deficiencies; therefore, determination of erythrocyte transketolase activity (ETKA) and the thiamine pyrophosphate (TPP) effect for vitamin B1 and of methylmalonic acid and holotranscobalamine for vitamin B12 is recommended. Prophylactic supplementation with vitamins is not supported by prospective trials; however, positive data from observational studies support a Mediterranean diet combined with intake of vitamins, antioxidants, and unsaturated fatty acids. Older persons should be regularly screened for malnutrition and the threshold for determination of vitamin B1, B12, and vitamin D should be low. Vitamin substitution should be reserved for proven deficits. There is now data regarding cognition from prospective trials on effects of a healthy diet combined with other life-style factors like physical and cognitive activity.

  15. Whippits, nitrous oxide and the dangers of legal highs.

    Science.gov (United States)

    Thompson, Alexander G; Leite, M Isabel; Lunn, Michael P; Bennett, David L H

    2015-06-01

    Nitrous oxide is increasingly being used as a recreational drug. Prolonged use of nitrous oxide can have disabling neurological sequelae due to functional inactivation of vitamin B₁₂. We present three cases illustrating the neurological complications of using nitrous oxide. Two of these patients received nitrous oxide as a consequence of repeated hospital attendance and the third via 'Whippit' canisters used in cream dispensers, which are now widely available. Two patients developed sensorimotor peripheral neuropathy with demyelinating features with no clinical or imaging evidence of myelopathy, emphasising that not all patients develop subacute combined degeneration of the spinal cord (the typical presentation of functional vitamin B12 deficiency). The diagnosis was based upon the history of nitrous oxide use and raised levels of homocysteine and/or methylmalonic acid. All patients were treated with parenteral vitamin B12 with partial recovery, though two were left significantly disabled. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. High prevalence of suboptimal vitamin B12 status in young adult women of South Asian and European ethnicity.

    Science.gov (United States)

    Quay, Teo A W; Schroder, Theresa H; Jeruszka-Bielak, Marta; Li, Wangyang; Devlin, Angela M; Barr, Susan I; Lamers, Yvonne

    2015-12-01

    Suboptimal vitamin B12 (B12) status has been associated with an increased risk of congenital anomalies, preterm birth, and childhood insulin resistance. South Asians - Canada's largest minority group - and women of reproductive age are vulnerable to B12 deficiency. This study aimed to assess the prevalence of and factors associated with B12 deficiency and suboptimal B12 status in a convenience sample of young adult women of South Asian and European descent in Metro Vancouver. We measured serum B12, holotranscobalamin, plasma methylmalonic acid, red blood cell and plasma folate, and hematologic parameters in 206 nonpregnant, healthy women aged 19-35 years. Categorization for B12 status adhered to serum B12 cutoffs for deficiency (women is higher than in the general Canadian population. In light of maternal and fetal health risks associated with B12 inadequacy in early-pregnancy, practitioners should consider monitoring B12 status before and during early pregnancy, especially in immigrants and women with low dietary B12 intakes including non-users of vitamin supplements.

  17. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry.

    Science.gov (United States)

    Han, Lianshu; Han, Feng; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gao, Xiaolan; Wang, Yu; Ji, Wenjun; Gu, Xuefan

    2015-03-01

    Information concerning inherited metabolic diseases in China is scarce. We investigated the prevalence and age distributions of amino acid, organic acid, and fatty acid oxidation disorders in Chinese patients. Blood levels of amino acids and acylcarnitines (tandem mass spectrometry) were measured in 18,303 patients with suspected inherited metabolic diseases. Diagnosis was based on clinical features, blood levels of amino acids or acylcarnitines, urinary organic acid levels (gas chromatography-mass spectrometry), and (in some) gene mutation tests. Inherited metabolic diseases were confirmed in 1,135 patients (739 males, 396 females). Median age was 12 months (1 day to 59 years). There were 28 diseases: 12 amino acid disorders (580 patients, 51.1%), with hyperphenylalaninemia (HPA) being the most common; nine organic acidemias (408 patients, 35.9%), with methylmalonic acidemia (MMA) as the most common; and seven fatty acid oxidation defects (147 patients, 13.0%), with multiple acyl-coenzyme A dehydrogenase deficiency (MADD) being the most common. Onset was mainly at 1-6 months for citrin deficiency, 0-6 months for MMA, and in newborns for ornithine transcarbamylase deficiency (OTCD). HPA was common in patients aged 1-3 years, and MADD was common in patients >18 years. In China, HPA, citrin deficiency, MMA, and MADD are the most common inherited disorders, particularly in newborns/infants. © 2014 Wiley Periodicals, Inc.

  18. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband.

    Science.gov (United States)

    Watkins, David; Schwartzentruber, Jeremy A; Ganesh, Jaya; Orange, Jordan S; Kaplan, Bernard S; Nunez, Laura Dempsey; Majewski, Jacek; Rosenblatt, David S

    2011-09-01

    An infant was investigated because of megaloblastic anaemia, atypical hemolytic uraemic syndrome, severe combined immune deficiency, elevated blood levels of homocysteine and methylmalonic acid, and a selective decreased synthesis of methylcobalamin in cultured fibroblasts. Exome sequencing was performed on patient genomic DNA. Two mutations were identified in the MTHFD1 gene, which encodes a protein that catalyses three reactions involved in cellular folate metabolism. This protein is essential for the generation of formyltetrahydrofolate and methylenetetrahydrofolate and important for nucleotide and homocysteine metabolism. One mutation (c.727+1G>A) affects the splice acceptor site of intron 8. The second mutation, c.517C>T (p.R173C), changes a critical arginine residue in the NADP-binding site of the protein. Mutations affecting this arginine have previously been shown to affect enzyme activity. Both parents carry a single mutation and an unaffected sibling carries neither mutation. The combination of two mutations in the MTHFRD1 gene, predicted to have severe consequences, in the patient and their absence in the unaffected sibling, supports causality. This patient represents the first case of an inborn error of folate metabolism affecting the trifunctional MTHFD1 protein. This report reinforces the power of exome capture and sequencing for the discovery of novel genes, even when only a single proband is available for study.

  19. In vivo enzyme activity in inborn errors of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  20. Molecular cloning of L-methylmalonyl-CoA mutase: Gene transfer and analysis of mut cell lines

    International Nuclear Information System (INIS)

    Ledley, F.D.; Lumetta, M.; Nguyen, P.N.; Kolhouse, J.F.; Allen, R.H.

    1988-01-01

    L-Methylmalonyl-CoA mutase (MCM, EC 5.4.99.2) is a mitochondrial adenosylcobalamin-requiring enzyme that catalyzes the isomerization of L-methylmalonyl-CoA to succinyl-CoA. This enzyme is deficient in methylmalonic acidemia, an often fatal disorder of organic acid metabolism. Antibody against human placental MCM was used to screen human placenta and liver cDNA expression libraries for MCM cDNA clones. One clone expressed epitopes that could affinity-purify antibodies against MCM. A cDNA corresponding in length to the mRNA was obtained and introduced into COS cells by DNA-mediated gene transfer. Cells transformed with this clone expressed increased levels of MCM enzymatic activity. RNA blot analysis of cells genetically deficient in MCM indicates that several deficient cell lines have a specific decrease in the amount of hybridizable mRNA. These data confirm the authenticity of the MCM cDNA clone, establish the feasibility of constituting MCM activity by gene transfer for biochemical analysis and gene therapy, and provide a preliminary picture of the genotypic spectrum underlying MCM deficiency

  1. Vitamin B12 and eicosanoids in insects

    International Nuclear Information System (INIS)

    Wakayama, J.E.

    1985-01-01

    Vitamin B 12 was not detected in the house fly, Musca domestica, which apparently cannot interconvert propionate and succinate. In contrast, the termite readily interconverts succinate and methylmalonate, and contains high amounts of vitamin B 12 . The intestinal bacteria were the major source of vitamin B 12 in the termite, Coptotermes formosanus. The presence of arachidonic acid (20:4) and eicosatrienoic acid (20:3,n-6) at low levels in adult male and female house flies was demonstrated by chemical ionization-gas chromatography-mass spectrometry. After injection, over 80% of 20:4 was rapidly incorporated into the phospholipid (PL) fraction. Over 80% of the sequestered 20:4 was in the 2-position of PLs. The 20:4 was injected into the insect or was included in the diet prior to administration of [ 3 H] 20:4; large amounts of radioactivity were recovered in the triacylglycerol and free fatty acid fractions. Arachidonic acid (20:4) injected into house flies was rapidly converted to prostaglandins, and was also catabolized rapidly. Radiolabeled 20:4 injected into the hemolymph was incorporated into the reproductive tissues of male insects. About 2.1% of the total radioactivity from [ 3 H] 20:4 injected into males just prior to mating was transferred to females during mating

  2. In vivo enzyme activity in inborn errors of metabolism

    International Nuclear Information System (INIS)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D.

    1990-01-01

    Low-dose continuous infusions of [2H5]phenylalanine, [1-13C]propionate, and [1-13C]leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD

  3. Nutritional Intake and Status of Cobalamin and Folate among Non-Pregnant Women of Reproductive Age in Bhaktapur, Nepal

    Directory of Open Access Journals (Sweden)

    Ram K. Chandyo

    2016-06-01

    Full Text Available Cobalamin and folate are especially important for women of childbearing age due to their ubiquitous role in fetal growth and development. Population-based data on cobalamin and folate status are lacking from Nepal, where diets are mostly vegetarian. The objectives of the study were to investigate cobalamin and folate intake and status, and to explore associations with socio-demographics, anthropometrics, anemia, and dietary habits. Following a random selection of geographical clusters, we collected blood samples from 500 non-pregnant women and 24-h dietary recalls and food frequency questionnaires from a subsample of 379 women. Twenty percent of the women did not consume any food containing cobalamin during the days recalled, and in 72% nutritional cobalamin intake was <1 μg/day. Eighty-four percent of the women had cobalamin intake lower than the estimated average requirement (EAR (<2 μg/day. In contrast, only 12% of the women had a folate intake less than 100 μg per day, whereas 62% had intake between 100 and 320 μg. Low plasma cobalamin (<150 pmol/L was found in 42% of the women, most of whom (88% also had elevated levels of methylmalonic acid. Our results indicated a high prevalence of nutritional cobalamin deficiency, while folate deficiency was uncommon.

  4. Impact of Pre-Pregnancy BMI on B Vitamin and Inflammatory Status in Early Pregnancy: An Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Anne-Lise Bjørke-Monsen

    2016-11-01

    Full Text Available Maternal nutrition and inflammation have been suggested as mediators in the development of various adverse pregnancy outcomes associated with maternal obesity. We have investigated the relation between pre-pregnancy BMI, B vitamin status, and inflammatory markers in a group of healthy pregnant women. Cobalamin, folate, pyridoxal 5′-phosphate, and riboflavin; and the metabolic markers homocysteine, methylmalonic acid, and 3-hydroxykynurenine/xanthurenic acid ratio (HK/XA; and markers of cellular inflammation, neopterin and kynurenine/tryptophan ratio (KTR were determined in pregnancy week 18 and related to pre-pregnancy body mass index (BMI, in 2797 women from the Norwegian Mother and Child Cohort Study (MoBa. Pre-pregnancy BMI was inversely related to folate, cobalamin, pyridoxal 5′-phosphate (PLP, and riboflavin (p < 0.001, and associated with increased neopterin and KTR levels (p < 0.001. Inflammation seemed to be an independent predictor of low vitamin B6 status, as verified by low PLP and high HK/XA ratio. A high pre-pregnancy BMI is a risk factor for low B vitamin status and increased cellular inflammation. As an optimal micronutrient status is vital for normal fetal development, the observed lower B vitamin levels may contribute to adverse pregnancy outcomes associated with maternal obesity and B vitamin status should be assessed in women with high BMI before they get pregnant.

  5. Deep vein thrombosis, an unreported first manifestation of polyglandular autoimmune syndrome type III

    Directory of Open Access Journals (Sweden)

    M Horsey

    2016-07-01

    Full Text Available A 71-year-old woman with severe right lower leg pain, edema and erythema was presented to the Emergency Department and was found to have an extensive deep vein thrombosis (DVT confirmed by ultrasound. She underwent an extensive evaluation due to her prior history of malignancy and new hypercoagulable state, but no evidence of recurrent disease was detected. Further investigation revealed pernicious anemia (PA, confirmed by the presence of a macrocytic anemia (MCV=115.8fL/red cell, Hgb=9.0g/dL, decreased serum B12 levels (56pg/mL, with resultant increased methylmalonic acid (5303nmol/L and hyperhomocysteinemia (131μmol/L, the presumed etiology of the DVT. The patient also suffered from autoimmune thyroid disease (AITD, and both antithyroglobulin and anti-intrinsic factor antibodies were detected. She responded briskly to anticoagulation with heparin and coumadin and treatment of PA with intramuscular vitamin B12 injections. Our case suggests that a DVT secondary to hyperhomocystenemia may represent the first sign of polyglandular autoimmune syndrome III-B (PAS III-B, defined as the coexistent autoimmune conditions AITD and PA. It is important to recognize this clinical entity, as patients may not only require acute treatment with vitamin B12 supplementation and prolonged anticoagulation, as in this patient, but may also harbor other autoimmune diseases.

  6. Increased formic acid excretion and the development of kidney toxicity in rats following chronic dosing with trichloroethanol, a major metabolite of trichloroethylene

    International Nuclear Information System (INIS)

    Green, Trevor; Dow, Jacky; Foster, John

    2003-01-01

    The chronic toxicity of trichloroethanol, a major metabolite of trichloroethylene, has been assessed in male Fischer rats (60 per group) given trichloroethanol in drinking water at concentrations of 0, 0.5 and 1.0 g/l for 52 weeks. The rats excreted large amounts of formic acid in urine reaching a maximum after 12 weeks (∼65 mg/24 h at 1 g/l) and thereafter declining to reach an apparent steady state at 40 weeks (15-20 mg/24 h). Urine from treated rats was more acidic throughout the study and urinary methylmalonic acid and plasma N-methyltetrahydrofolate concentrations were increased, indicating an acidosis, vitamin B12 deficiency and impaired folate metabolism, respectively. The rats treated with trichloroethanol developed kidney damage over the duration of the study which was characterised by increased urinary NAG activity, protein excretion (from 4 weeks), increased basophilia, protein accumulation and tubular damage (from 12 to 40 weeks), increased cell replication (at week 28) and evidence in some rats of focal proliferation of abnormal tubules at 52 weeks. It was concluded that trichloroethanol, the major metabolite of trichloroethylene, induced nephrotoxicity in rats as a result of formic acid excretion and acidosis

  7. Vision Issues and Space Flight: Evaluation of One-Carbon Metabolism Polymorphisms

    Science.gov (United States)

    Smith, Scott M.; Gregory, Jesse F.; Zeisel, Steven; Ueland, Per; Gibson, C. R.; Mader, Thomas; Kinchen, Jason; Ploutz-Snyder, Robert; Zwart, Sara R.

    2015-01-01

    Intermediates of the one-carbon metabolic pathway are altered in astronauts who experience vision-related issues during and after space flight. Serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were higher in astronauts with ophthalmic changes than in those without (Zwart et al., J Nutr, 2012). These differences existed before, during, and after flight. Potential confounding factors did not explain the differences. Genetic polymorphisms could contribute to these differences, and could help explain why crewmembers on the same mission do not all have ophthalmic issues, despite the same environmental factors (e.g., microgravity, exercise, diet). A follow-up study was conducted to evaluate 5 polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other ophthalmic changes after flight. Preliminary evaluations of the genetic data indicate that all of the crewmembers with the MTRR GG genotype had vision issues to one degree or another. However, not everyone who had vision issues had this genetic polymorphism, so the situation is more complex than the involvement of this single polymorphism. Metabolomic and further data analyses are underway to clarify these findings, but the preliminary assessments are promising.

  8. Vitamin B12 Deficiency in Relation to Functional Disabilities

    Directory of Open Access Journals (Sweden)

    Heather E. Rasmussen

    2013-11-01

    Full Text Available This study was designed to assess whether symptoms, functional measures, and reported disabilities were associated with vitamin B12 (B12 deficiency when defined in three ways. Participants, aged 60 or more years of age, in 1999–2002 National Health and Nutrition Examination Surveys (NHANES were categorized in relation to three previously used definitions of B12 deficiency: (1 serum B12 20 μmol/L; and (3 serum B12 0.21 μmol/L. Functional measures of peripheral neuropathy, balance, cognitive function, gait speed, along with self-reported disability (including activities of daily living were examined with standardized instruments by trained NHANES interviewers and technicians. Individuals identified as B12 deficient by definition 2 were more likely to manifest peripheral neuropathy OR (odds (95% confidence intervals, p value: 9.70 (2.24, 42.07, 0.004 and report greater total disability, 19.61 (6.22, 61.86 0.0001 after adjustments for age, sex, race, serum creatinine, and ferritin concentrations, smoking, diabetes, and peripheral artery disease. Smaller, but significantly increased, odds of peripheral neuropathy and total disability were also observed when definition 3 was applied. Functional measures and reported disabilities were associated with B12 deficiency definitions that include B12 biomarkers (homocysteine or methylmalonic acid. Further study of these definitions is needed to alert clinicians of possible subclinical B12 deficiency because functional decline amongst older adults may be correctable if the individual is B12 replete.

  9. Folic acid fortification: why not vitamin B12 also?

    Science.gov (United States)

    Selhub, Jacob; Paul, Ligi

    2011-01-01

    Folic acid fortification of cereal grains was introduced in many countries to prevent neural tube defect occurrence. The metabolism of folic acid and vitamin B12 intersect during the transfer of the methyl group from 5-methyltetrahydrofolate to homocysteine catalyzed by B12-dependent methioine synthase. Regeneration of tetrahydrofolate via this reaction makes it available for synthesis of nucleotide precursors. Thus either folate or vitamin B12 deficiency can result in impaired cell division and anemia. Exposure to extra folic acid through fortification may be detrimental to those with vitamin B12 deficiency. Among participants of National Health And Nutrition Examination Survey with low vitamin B12 status, high serum folate (>59 nmol/L) was associated with higher prevalence of anemia and cognitive impairment when compared with normal serum folate. We also observed an increase in the plasma concentrations of total homocysteine and methylmalonic acid (MMA), two functional indicators of vitamin B12 status, with increase in plasma folate under low vitamin B12 status. These data strongly imply that high plasma folate is associated with the exacerbation of both the biochemical and clinical status of vitamin B12 deficiency. Hence any food fortification policy that includes folic acid should also include vitamin B12. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  10. Inborn Errors of Intermediary Metabolism in Critically Ill Mexican Newborns

    Directory of Open Access Journals (Sweden)

    Ibarra-González Isabel MSc

    2014-04-01

    Full Text Available Inborn errors of intermediary metabolism (IEiM are complex diseases with high clinical heterogeneity, and some patients who have severe enzyme deficiencies or are subjected to stress (catabolism/infections actually decompensate in the neonatal period. In this study, we performed metabolic tests on 2025 newborns in Mexico admitted to 35 neonatal intensive care units or emergency wards (NICUs/EWs over a 6-year period, in whom a metabolic disorder was clinically suspected. Of these 2025 newborns with sickness, 11 had IEiM, revealing a prevalence of 1:184. Clinical characteristics and outcomes of the newborns with confirmed IEiM are shown. Of these 11 patients, 4 had isolated methylmalonic acidemia, 3 had maple syrup urine disease, 2 had urea cycle disorders, 1 had 3-hydroxy-3-methylglutaric acidemia, and 1 had isovaleric acidemia. During the first week of life (average 3 days, all of these newborns presented with impaired alertness, hypotonia, feeding difficulties, and vomiting along with metabolic acidosis and hyperammonemia. Of the 11 newborns with IEiM, 7 died, leading to a mortality rate of 64%. In conclusion, the differential diagnosis of newborns admitted to the NICU/EW must include IEiM, requiring systematic screening of this population.

  11. Approach to a case of myeloneuropathy

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar Garg

    2016-01-01

    Full Text Available Myeloneuropathy is a frequently encountered condition and often poses a diagnostic challenge. A variety of nutritional, toxic, metabolic, infective, inflammatory, and paraneoplastic disorders can present with myeloneuropathy. Deficiencies of vitamin B12, folic acid, copper, and vitamin E may lead to myeloneuropathy with a clinical picture of subacute combined degeneration of the spinal cord. Among infective causes, chikungunya virus has been shown to produce a syndrome similar to myeloneuropathy. Vacuolar myelopathy seen in human immunodeficiency virus (HIV infection is clinically very similar to subacute combined degeneration. A paraneoplastic myeloneuropathy, an immune-mediated disorder associated with an underlying malignancy, may rarely be seen with breast cancer. Tropical myeloneuropathies are classified into two overlapping clinical entities — tropical ataxic neuropathy and tropical spastic paraparesis. Tropical spastic paraparesis, a chronic noncompressive myelopathy, has frequently been reported from South India. Establishing the correct diagnosis of myeloneuropathy is important because compressive myelopathies may pose diagnostic confusion. Magnetic resonance imaging (MRI in subacute combined degeneration of the spinal cord typically reveals characteristic signal changes on T2-weighted images of the cervical spinal cord. Once the presence of myeloneuropathy is established, all these patients should be subjected to a battery of tests. Blood levels of vitamin B12, folic acid, vitamins A, D, E, and K, along with levels of iron, methylmalonic acid, homocysteine, and calcium should be assessed. The pattern of neurologic involvement and results obtained from a battery of biochemical tests often help in establishing the correct diagnosis.

  12. Hampered Vitamin B12 Metabolism in Gaucher Disease?

    Directory of Open Access Journals (Sweden)

    Luciana Hannibal PhD

    2017-02-01

    Full Text Available Untreated vitamin B 12 deficiency manifests clinically with hematological abnormalities and combined degeneration of the spinal cord and polyneuropathy and biochemically with elevated homocysteine (Hcy and methylmalonic acid (MMA. Vitamin B 12 metabolism involves various cellular compartments including the lysosome, and a disruption in the lysosomal and endocytic pathways induces functional deficiency of this micronutrient. Gaucher disease (GD is characterized by dysfunctional lysosomal metabolism brought about by mutations in the enzyme beta-glucocerebrosidase (Online Mendelian Inheritance in Man (OMIM: 606463; Enzyme Commission (EC 3.2.1.45, gene: GBA1 . In this study, we collected and examined available literature on the associations between GD, the second most prevalent lysosomal storage disorder in humans, and hampered vitamin B 12 metabolism. Results from independent cohorts of patients show elevated circulating holotranscobalamin without changes in vitamin B 12 levels in serum. Gaucher disease patients under enzyme replacement therapy present normal levels of Hcy and MMA. Although within the normal range, a significant increase in Hcy and MMA with normal serum vitamin B 12 was documented in treated GD patients with polyneuropathy versus treated GD patients without polyneuropathy. Thus, a functional deficiency of vitamin B 12 caused by disrupted lysosomal metabolism in GD is a plausible mechanism, contributing to the neurological form of the disorder but this awaits confirmation. Observational studies suggest that an assessment of vitamin B 12 status prior to the initiation of enzyme replacement therapy may shed light on the role of vitamin B 12 in the pathogenesis and progression of GD.

  13. Experience of the Manitoba Perinatal Screening Program, 1965-85.

    Science.gov (United States)

    Fox, J G

    1987-01-01

    The Manitoba Perinatal Screening Program is guided by a committee of medical specialists with skills in the diagnosis and management of disorders of metabolism in the newborn. The program is voluntary and is centralized at Cadham Provincial Laboratory, in Winnipeg. A filter card blood specimen is collected from newborns on discharge from hospital, and a filter card urine sample is collected and mailed to the laboratory by the mother when the infant is about 2 weeks of age. The overall compliance rates for the blood and urine specimens are approximately 100% and 84% respectively. The blood specimen is screened for phenylalanine and other amino acids, thyroxine, galactose, galactose-1-phosphate and biotinidase. The urine specimen is screened for amino acids, including cystine, as well as methylmalonic acid and homocystine. Between 1965 and 1985, 83 cases of metabolic disorders were detected, including 23 cases of primary hypothyroidism, 14 of classic phenylketonuria, 5 of galactosemia variants, 3 of galactosemia, 2 of maple syrup urine disease and 1 of hereditary tyrosinemia. The direct cost per infant screened is $5.50, and the cost:benefit ratio is approximately 7.5:1. Maternal serum alpha-fetoprotein screening is being made available as the necessary supporting clinical facilities become available. On the basis of this experience, the author outlines the components that are important for an effective screening program. PMID:3676929

  14. Late-onset form of beta-electron transfer flavoprotein deficiency

    DEFF Research Database (Denmark)

    Curcoy, A; Olsen, Rikke Katrine Jentoft; Ribes, A

    2003-01-01

    Multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein (ETF) or electron transfer flavoprotein ubiquinone oxidoreductase (ETF-QO). We report the clinical features...... and biochemical and molecular genetic analyses of a patient with a mild late-onset form of GAII due to beta-ETF deficiency. Biochemical data showed an abnormal urine organic acid profile, low levels of free carnitine, increased levels of C(10:1n-6), and C(14:1n-9) in plasma, and decreased oxidation of [9,10-3H......]palmitate and [9,10-3H]myristate in fibroblasts, suggesting MAD deficiency. In agreement with these findings, mutational analysis of the ETF/ETFDH genes demonstrated an ETFB missense mutation 124T>C in exon 2 leading to replacement of cysteine-42 with arginine (C42R), and a 604_606AAG deletion in exon 6...

  15. ATP Synthase Deficiency due to TMEM70 Mutation Leads to Ultrastructural Mitochondrial Degeneration and Is Amenable to Treatment

    Directory of Open Access Journals (Sweden)

    Anne K. Braczynski

    2015-01-01

    Full Text Available TMEM70 is involved in the biogenesis of mitochondrial ATP synthase and mutations in the TMEM70 gene impair oxidative phosphorylation. Herein, we report on pathology and treatment of ATP synthase deficiency in four siblings. A consanguineous family of Roma (Gipsy ethnic origin gave birth to 6 children of which 4 were affected presenting with dysmorphic features, failure to thrive, cardiomyopathy, metabolic crises, and 3-methylglutaconic aciduria as clinical symptoms. Genetic testing revealed a homozygous mutation (c.317-2A>G in the TMEM70 gene. While light microscopy was unremarkable, ultrastructural investigation of muscle tissue revealed accumulation of swollen degenerated mitochondria with lipid crystalloid inclusions, cristae aggregation, and exocytosis of mitochondrial material. Biochemical analysis of mitochondrial complexes showed an almost complete ATP synthase deficiency. Despite harbouring the same mutation, the clinical outcome in the four siblings was different. Two children died within 60 h after birth; the other two had recurrent life-threatening metabolic crises but were successfully managed with supplementation of anaplerotic amino acids, lipids, and symptomatic treatment during metabolic crisis. In summary, TMEM70 mutations can cause distinct ultrastructural mitochondrial degeneration and almost complete deficiency of ATP synthase but are still amenable to treatment.

  16. Cross-Sectional Multi-Center Study of Patients with Urea Cycle Disorders in the United States

    Science.gov (United States)

    Tuchman, Mendel; Lee, Brendan; Lichter-Konecki, Uta; Summar, Marshall L.; Yudkoff, Marc; Cederbaum, Stephen D.; Kerr, Douglas S.; Diaz, George A.; Seashore, Margaretta R.; Lee, Hye-Seung; McCarter, Robert J.; Krischer, Jeffrey P.; Batshaw, Mark L.

    2008-01-01

    Inherited urea cycle disorders comprise eight disorders (UCD), each caused by a deficiency of one of the protein that is essential for ureagenesis. We report on a cross sectional investigation to determine clinical and laboratory characteristics of patients with UCD in the United States. The data used for the analysis was collected at the time of enrollment of individuals with inherited UCD into a longitudinal observation study. The study has been conducted by the Urea Cycle Disorders Consortium (UCDC) within the Rare Diseases Clinical Research Network (RDCRN) funded by the National Institutes of Health. One hundred eighty three patients were enrolled into the study. Ornithine transcarbamylase (OTC) deficiency was the most frequent disorder (55%), followed by argininosuccinic aciduria (17%) and citrullinemia (11%). 79% of the participants were white (16% Latinos), and 6% were African American. Intellectual and developmental disabilities were reported in 39% with learning disabilities (35%) and half had abnormal neurological examination. 63% were on a protein restricted diet, 37% were on Na-phenylbutyrate and 5% were on Na-benzoate. 45% of OTC deficient patients were on L-citrulline, while most patients with citrullinemia (58%) and argininosuccinic (79%) were on L-arginine. Plasma levels of branched-chain amino acids were reduced in patients treated with ammonia scavenger drugs. Plasma glutamine levels were higher in proximal UCD disorders and in the neonatal type disease. The RDCRN allows comprehensive analyses of rare inherited UCD, their frequencies and current medical practices. PMID:18562231

  17. Critical Newborn Screens in Double Heterozygotes of Inborn Errors of Metabolism—A Clinical Report and Recommendations

    Directory of Open Access Journals (Sweden)

    Katherine G. Langley

    2016-11-01

    Full Text Available The practice of newborn screening has been in place in the USA since the 1960s, with individual states initially screening for different numbers of disorders. In the early 2000s many efforts were made to standardize the various disorders being screened. Currently, there are at least 34 disorders that each state is mandated to include on their screening panel. Of those 34 disorders, the majority are inborn errors of metabolism (IEM which include urea cycle disorders (UCD, citrullinemia (CIT and argininosuccinic aciduria (ASA, as well as a number of fatty acid oxidation disorders. We present here four cases of infants who had critical newborn screens (NBS in the Commonwealth of Virginia and underwent genetic testing because their clinical presentation and follow-up laboratory studies were not consistent with the disorder that was flagged by NBS. These newborns were found to be carriers for two different IEMs (in three cases or compound heterozygotes (in one case. Currently no guidelines exist with respect to the appropriate way to manage these children who may or may not be symptomatic in the newborn period. We propose some general recommendations for management based on our experience with these four probands, and discuss the necessity for further conversation and collaboration between physicians encountering these not-so-infrequent presentations.

  18. A new mouse model of mild ornithine transcarbamylase deficiency (spf-j displays cerebral amino acid perturbations at baseline and upon systemic immune activation.

    Directory of Open Access Journals (Sweden)

    Tatyana N Tarasenko

    Full Text Available Ornithine transcarbamylase deficiency (OTCD, OMIM# 311250 is an inherited X-linked urea cycle disorder that is characterized by hyperammonemia and orotic aciduria. In this report, we describe a new animal model of OTCD caused by a spontaneous mutation in the mouse Otc gene (c.240T>A, p.K80N. This transversion in exon 3 of ornithine transcarbamylase leads to normal levels of mRNA with low levels of mature protein and is homologous to a mutation that has also been described in a single patient affected with late-onset OTCD. With higher residual enzyme activity, spf-J were found to have normal plasma ammonia and orotate. Baseline plasma amino acid profiles were consistent with mild OTCD: elevated glutamine, and lower citrulline and arginine. In contrast to WT, spf-J displayed baseline elevations in cerebral amino acids with depletion following immune challenge with polyinosinic:polycytidylic acid. Our results indicate that the mild spf-J mutation constitutes a new mouse model that is suitable for mechanistic studies of mild OTCD and the exploration of cerebral pathophysiology during acute decompensation that characterizes proximal urea cycle dysfunction in humans.

  19. Biochemical and molecular characteristics of patients with organic acidaemias and urea cycle disorders identified through newborn screening.

    Science.gov (United States)

    Barends, M; Pitt, J; Morrissy, S; Tzanakos, N; Boneh, A

    2014-01-01

    In recent years it has become clear that newborn screening (NBS) programmes using tandem mass spectrometry identify "patients" with "classical" inborn errors of metabolism who are asymptomatic. This observation raises issues regarding medicalization of "non-diseases," potentially unnecessary treatment and unnecessary anxiety to parents. This study aims to identify possible markers that may assist in predicting the need for treatment of infants with "classical" organic acidaemias (OA) and urea cycle disorders (UCD) diagnosed through NBS. Medical records of all patients with classical OA and UCD detected through the Victorian NBS programme from February 2002 to January 2014, or diagnosed clinically between 1990 and January 2002 were retrospectively reviewed. Neonatal presentation did not always predict the need for on-going strict treatment. Blood concentrations of amino acids and acyl-carnitines and the changes thereof in follow-up samples correlated with severity in citrullinaemia-I, possibly isovaleric acidaemia but not in argininosuccinic aciduria or propionic acidaemia. Some specific mutations correlate with "attenuated" citrullinaemia-I. Gender may affect clinical outcome in propionic acidaemia. Changes in blood concentration of certain metabolites (amino acids, acyl-carnitines) in the first weeks of life may be predictive of the need for treatment in some disorders but not in others. Mutation analysis may be predictive in some disorders but whether or not this should be considered as second-tier testing in NBS should be discussed separately. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A case of severe transient hyperammonemia in a newborn

    Directory of Open Access Journals (Sweden)

    Min Woo Hwang

    2010-04-01

    Full Text Available Transient hyperammonemia in a newborn is an overwhelming disease manifested by hyperammonemic coma. The majority of affected newborns are premature and have mild respiratory syndrome. The diagnosis may be difficult to determine. This metabolic disorder is primarily characterized by severe hyperammonemia in the postnatal period, coma, absence of abnormal organic aciduria and normal activity of the enzymes of the urea cycle. Hyperammonemic coma may develop within 2-3 days of life, although its etiology is unknown. Laboratory studies reveal marked hyperammonemia (&gt;4,000 &micro;mol/ L. The degree of neurologic impairment and developmental delay in this disorder depends on the duration of hyperammonemic coma. Moreover, the infant may succumb to the disease if treatment is not started immediately and continued vigorously. Hyperammonemic coma as a medical emergency requires dialysis therapy. Here, we report a case of severe transient hyperammonemia in a preterm infant (35 week of gestation presented with respiratory distress, seizure, and deep coma within 48 hours and required ventilatory assistance and marked elevated plasma ammonia levels. He survived with aggressive therapy including peritoneal dialysis, and was followed 2 years later without sequelae.

  1. Management of Lowe syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Risky Vitria Prasetyo

    2015-06-01

    Full Text Available Lowe syndrome (the oculocerebrorenal syndrome of Lowe, OCRL is a multisystem disorder characterized by anomalies affecting the eyes, nervous system and kidneys.1-3 The disorder was first recognized by Lowe et al. in 1952, and described as a unique syndrome with organic aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation. In 1954, renal Fanconi syndrome was recognized as being associated with Lowe syndrome and in 1965, a recessive X-linked pattern of inheritance was determined.2,4 Lowe syndrome is a very rare disease, with an estimated prevalence in the general population of 1 in 500,000. According to the Lowe Syndrome Association (LSA in the USA, the estimated prevalence is between 1 and 10 affected males in 1,000,000 people, with 190 living in the year 2000. The Italian Association of Lowe Syndrome estimated that there were 34 Lowe syndrome patients (33 boys and one girl living in Italy in the year 2005.2,4,5 It almost exclusively affects males.6 Physicians may not be familiar with Lowe syndrome due to its rarity.4

  2. Neuroimaging of nonaccidental head trauma: pitfalls and controversies

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Sujan [University of Missouri-Kansas School of Medicine, Department of Medicine, Kansas City, MO (United States); Obaldo, Ruby E. [The University of Kansas Medical Center, Department of Radiology, Kansas City, MO (United States); Walsh, Irene R. [The University of Missouri-Kansas City, Children' s Mercy Hospitals and Clinics, Department of Emergency Medicine, Kansas City, MO (United States); Lowe, Lisa H. [The University of Missouri-Kansas City, Children' s Mercy Hospitals and Clinics, Department of Radiology, Kansas City, MO (United States)

    2008-08-15

    Although certain neuroimaging appearances are highly suggestive of abuse, radiological findings are often nonspecific. The objective of this review is to discuss pitfalls, controversies, and mimics occurring in neuroimaging of nonaccidental head trauma in order to allow the reader to establish an increased level of comfort in distinguishing between nonaccidental and accidental head trauma. Specific topics discussed include risk factors, general biomechanics and imaging strategies in nonaccidental head trauma, followed by the characteristics of skull fractures, normal prominent tentorium and falx versus subdural hematoma, birth trauma versus nonaccidental head trauma, hyperacute versus acute on chronic subdural hematomas, expanded subarachnoid space versus subdural hemorrhage, controversy regarding subdural hematomas associated with benign enlarged subarachnoid spaces, controversy regarding hypoxia as a cause of subdural hematoma and/or retinal hemorrhages without trauma, controversy regarding the significance of retinal hemorrhages related to nonaccidental head trauma, controversy regarding the significance of subdural hematomas in general, and pitfalls of glutaric aciduria type 1 and hemophagocytic lymphohistiocytosis mimicking nonaccidental head trauma. (orig.)

  3. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature

    International Nuclear Information System (INIS)

    Cakmakci, Handan; Pekcevik, Yeliz; Yis, Uluc; Unalp, Aycan; Kurul, Semra

    2010-01-01

    The purpose of this study is to evaluate parenchymal diffusion properties and metabolite ratios in affected brain tissues of inherited neurometabolic brain diseases with an overview of the current literature about the diagnostic data of both techniques in childhood inherited metabolic brain diseases. The study group was consisting, 19 patients (15 males, 4 females; mean age, 54 months (4.5 years); age range, 1-171 months (14.25 years)) diagnosed with inherited neurometabolic brain disease. Single- and multivoxel proton MRS was carried out and NAA/Cr, Cho/Cr, mI/Cr, Glx/Cr ratios were calculated. Presence of lactate peak and abnormal different peaks were noted. ADC values were calculated from brain lesions. Results are compared with age and sex matched normal subjects. Elevated NAA/Cr ratio (Canavan disease), galactitol peak (galactosemia) at 3.7 ppm, branched chain amino acids (Maple syrup urine disease-MSUD) at 0.9 ppm were seen on different diseases. In Leigh disease and MSUD restricted diffusion was detected. Different diffusion properties were seen only in one Glutaric aciduria lesions. NAA/Cr ratios and calculated ADC values were significantly different from normal subjects (p < 0.05). DWI combined with MRS are complementary methods to routine cranial MRI for evaluating neurometabolic diseases which can give detailed information about neurochemistry of affected brain areas.

  4. Enhanced uridine bioavailability following administration of a triacetyluridine-rich nutritional supplement.

    Directory of Open Access Journals (Sweden)

    Melissa E Weinberg

    Full Text Available BACKGROUND: Uridine is a therapy for hereditary orotic aciduria and is being investigated in other disorders caused by mitochondrial dysfunction, including toxicities resulting from treatment with nucleoside reverse transcriptase inhibitors in HIV. Historically, the use of uridine as a therapeutic agent has been limited by poor bioavailability. A food supplement containing nucleosides, NucleomaxX®, has been reported to raise plasma uridine to supraphysiologic levels. METHODOLOGY/PRINCIPAL FINDINGS: Single- and multi-dose PK studies following NucleomaxX® were compared to single-dose PK studies of equimolar doses of pure uridine in healthy human volunteers. Product analysis documented that more than 90% of the nucleoside component of NucleomaxX® is in the form of triacetyluridine (TAU. Single and repeated dosing with NucleomaxX® resulted in peak plasma uridine concentrations 1-2 hours later of 150.9 ± 39.3 µM and 161.4 ± 31.5 µM, respectively, levels known to ameliorate mitochondrial toxicity in vitro. C(max and AUC were four-fold higher after a single dose of NucleomaxX® than after uridine. No adverse effects of either treatment were observed. CONCLUSIONS/SIGNIFICANCE: NucleomaxX®, containing predominantly TAU, has significantly greater bioavailability than pure uridine in human subjects and may be useful in the management of mitochondrial toxicity.

  5. Human Mitochondrial HMG-CoA Synthase Deficiency: Role of Enzyme Dimerization Surface and Characterization of Three New Patients

    Directory of Open Access Journals (Sweden)

    Beatriz Puisac

    2018-03-01

    Full Text Available Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency (mitochondrial HMG-CoA synthase deficiency or mHS deficiency, OMIM #605911 is an inborn error of metabolism that affects ketone body synthesis. Acute episodes include vomiting, lethargy, hepatomegaly, hypoglycemia and dicarboxylic aciduria. The diagnosis is difficult due to the relatively unspecific clinical and biochemical presentation, and fewer than 30 patients have been described. This work describes three new patients with mHS deficiency and two missense mutations c.334C>T (p.R112W and c.430G>T (p.V144L previously not reported. We developed a new method to express and measure the activity of the enzyme and in this work the study is extended to ten new missense variants including those of our patients. Enzymatic assays showed that three of the mutant proteins retained some but seven completely lacked activity. The identification of a patient homozygous for a mutation that retains 70% of enzyme activity opens the door to a new interpretation of the disease by demonstrating that a modest impairment of enzyme function can actually produce symptoms. This is also the first study employing molecular dynamics modelling of the enzyme mutations. We show that the correct maintenance of the dimerization surface is crucial for retaining the structure of the active center and therefore the activity of the enzyme.

  6. Diffusion-weighted MR imaging in leukodystrophies

    Energy Technology Data Exchange (ETDEWEB)

    Patay, Zoltan [King Faisal Specialist Hospital and Research Centre, Department of Radiology, Riyadh (Saudi Arabia)

    2005-11-01

    Leukodystrophies are genetically determined metabolic diseases, in which the underlying biochemical abnormality interferes with the normal build-up and/or maintenance of myelin, which leads to hypo- (or arrested) myelination, or dysmyelination with resultant demyelination. Although conventional magnetic resonance imaging has significantly contributed to recent progress in the diagnostic work-up of these diseases, diffusion-weighted imaging has the potential to further improve our understanding of underlying pathological processes and their dynamics through the assessment of normal and abnormal diffusion properties of cerebral white matter. Evaluation of conventional diffusion-weighted and ADC map images allows the detection of major diffusion abnormalities and the identification of various edema types, of which the so-called myelin edema is particularly relevant to leukodystrophies. Depending on the nature of histopathological changes, stage and progression gradient of diseases, various diffusion-weighted imaging patterns may be seen in leukodystrophies. Absent or low-grade myelin edema is found in mucopolysaccharidoses, GM gangliosidoses, Zellweger disease, adrenomyeloneuropathy, L-2-hydroxyglutaric aciduria, non-ketotic hyperglycinemia, classical phenylketonuria, Van der Knaap disease and the vanishing white matter, medium grade myelin edema in metachromatic leukodystrophy, X-linked adrenoleukodystrophy and HMG coenzyme lyase deficiency and high grade edema in Krabbe disease, Canavan disease, hyperhomocystinemias, maple syrup urine disease and leukodystrophy with brainstem and spinal cord involvement and high lactate. (orig.)

  7. Diffusion-weighted MR imaging in leukodystrophies

    International Nuclear Information System (INIS)

    Patay, Zoltan

    2005-01-01

    Leukodystrophies are genetically determined metabolic diseases, in which the underlying biochemical abnormality interferes with the normal build-up and/or maintenance of myelin, which leads to hypo- (or arrested) myelination, or dysmyelination with resultant demyelination. Although conventional magnetic resonance imaging has significantly contributed to recent progress in the diagnostic work-up of these diseases, diffusion-weighted imaging has the potential to further improve our understanding of underlying pathological processes and their dynamics through the assessment of normal and abnormal diffusion properties of cerebral white matter. Evaluation of conventional diffusion-weighted and ADC map images allows the detection of major diffusion abnormalities and the identification of various edema types, of which the so-called myelin edema is particularly relevant to leukodystrophies. Depending on the nature of histopathological changes, stage and progression gradient of diseases, various diffusion-weighted imaging patterns may be seen in leukodystrophies. Absent or low-grade myelin edema is found in mucopolysaccharidoses, GM gangliosidoses, Zellweger disease, adrenomyeloneuropathy, L-2-hydroxyglutaric aciduria, non-ketotic hyperglycinemia, classical phenylketonuria, Van der Knaap disease and the vanishing white matter, medium grade myelin edema in metachromatic leukodystrophy, X-linked adrenoleukodystrophy and HMG coenzyme lyase deficiency and high grade edema in Krabbe disease, Canavan disease, hyperhomocystinemias, maple syrup urine disease and leukodystrophy with brainstem and spinal cord involvement and high lactate. (orig.)

  8. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmakci, Handan, E-mail: handan.cakmakci@deu.edu.t [Dokuz Eylul University Faculty of Medicine, Department of Radiology, Izmir (Turkey); Pekcevik, Yeliz [Dokuz Eylul University Faculty of Medicine, Department of Radiology, Izmir (Turkey); Yis, Uluc [Dokuz Eylul University Faculty of Medicine, Department of Pediatric Neurology, Izmir (Turkey); Unalp, Aycan [Behcet Uz Hospital, Department of Pediatric Neurology, Izmir (Turkey); Kurul, Semra [Dokuz Eylul University Faculty of Medicine, Department of Pediatric Neurology, Izmir (Turkey)

    2010-06-15

    The purpose of this study is to evaluate parenchymal diffusion properties and metabolite ratios in affected brain tissues of inherited neurometabolic brain diseases with an overview of the current literature about the diagnostic data of both techniques in childhood inherited metabolic brain diseases. The study group was consisting, 19 patients (15 males, 4 females; mean age, 54 months (4.5 years); age range, 1-171 months (14.25 years)) diagnosed with inherited neurometabolic brain disease. Single- and multivoxel proton MRS was carried out and NAA/Cr, Cho/Cr, mI/Cr, Glx/Cr ratios were calculated. Presence of lactate peak and abnormal different peaks were noted. ADC values were calculated from brain lesions. Results are compared with age and sex matched normal subjects. Elevated NAA/Cr ratio (Canavan disease), galactitol peak (galactosemia) at 3.7 ppm, branched chain amino acids (Maple syrup urine disease-MSUD) at 0.9 ppm were seen on different diseases. In Leigh disease and MSUD restricted diffusion was detected. Different diffusion properties were seen only in one Glutaric aciduria lesions. NAA/Cr ratios and calculated ADC values were significantly different from normal subjects (p < 0.05). DWI combined with MRS are complementary methods to routine cranial MRI for evaluating neurometabolic diseases which can give detailed information about neurochemistry of affected brain areas.

  9. Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia.

    Science.gov (United States)

    Gallego-Villar, Lorena; Pérez-Cerdá, Celia; Pérez, Belén; Abia, David; Ugarte, Magdalena; Richard, Eva; Desviat, Lourdes R

    2013-09-01

    Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. PA is caused by mutations in either the PCCA or PCCB genes encoding the α- and β-subunits of the PCC enzyme which are assembled as an α6β6 dodecamer. In this study we have investigated the molecular basis of the defect in ten fibroblast samples from PA patients. Using homology modeling with the recently solved crystal structure of the PCC holoenzyme and a eukaryotic expression system we have analyzed the structural and functional effect of novel point mutations, also revealing a novel splice defect by minigene analysis. In addition, we have investigated the contribution of oxidative stress to cellular damage measuring reactive oxygen species (ROS) levels and apoptosis parameters in patient fibroblasts, as recent studies point to a secondary mitochondrial dysfunction as pathophysiological mechanism in this disorder. The results show an increase in intracellular ROS content compared to controls, correlating with the activation of the JNK and p38 signaling pathways. Highest ROS levels were present in cells harboring functionally null mutations, including one severe missense mutation. This work provides molecular insight into the pathogenicity of PA variants and indicates that oxidative stress may be a major contributing factor to the cellular damage, supporting the proposal of antioxidant strategies as novel supplementary therapy in this rare disease.

  10. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog

    Directory of Open Access Journals (Sweden)

    Vanessa R Biegen

    2015-11-01

    Full Text Available A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurologic examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurologic signs have been described in humans with this group of diseases, descriptions of advanced imaging and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.

  11. Anion-exchange analysis of isotopically labelled nucleotides, nucleosides, and bases in metabolic disorders

    International Nuclear Information System (INIS)

    Nissinen, E.A.O.

    1987-01-01

    This paper on the importance of cellular purines and pyrimidines is evidenced by the multitude of diseases, such as hyperuricemia, orotic aciduria, gout, Lesch-Nyhan syndrome, immunodeficiencies with B- and T-cell dysfunctions, etc. which result from aberrant metabolism. In addition, the use of purine and pyrimidine analogs in chemotherapy is of growing interest. Purine metabolism consists of a complex network of biochemical pathway. These pathways are under complicated feedback regulation and there also exists a close relationship between purine and pyrimidine metabolism. In addition, these pathways interact with those of the carbohydrate, amino acid, and energy metabolism. Since metabolic pathways are closely interrelated, a change in the concentration of a particular metabolite may lead to many changes in the overall metabolic profiles. For instance, in the area of nucleotide metabolism, the inhibition of IMP dehydrogenase by mycophenolic acid leads to various changes in both purine and pyrimidine nucleotide pools. Inhibition of de nova purine biosynthesis by methotrexate leads to many changes in purine and pyrimidine ribonucleotides and deoxyribonucleotides. Thus, the simultaneous measurement of all cellular purine and pyrimidine metabolites from individuals whose metabolism is altered, either by a metabolic disease or by the action of drugs, may further our understanding of cellular metabolism

  12. Tyrosinase, could it be a missing link in ochronosis in alkaptonuria?

    Science.gov (United States)

    Taylor, Adam M; Kammath, Vishnu; Bleakley, Aaron

    2016-06-01

    The hypothesis that is proposed is that tyrosinase, an enzyme widely found within the human body is implicated in the ochronosis that occurs in alkaptonuria; an autosomal recessive condition first used by Archibald Garrod to describe the theory of "Inborn Errors of Metabolism." The disease results from the absence of a single enzyme in the liver that breaks down homogentisic acid; this molecule becomes systemically elevated in sufferers. The condition is characterised by a clinical triad of symptoms; homogentisic aciduria from birth, ochronosis (darkening) of collagenous tissues (from ∼30years of age) and ochronotic osteoarthropathy in weight bearing joints due to long term ochronosis in them (from ∼40years of age). Tyrosinase, a polyphenol oxidase has been shown in many species to contribute to the darkening of tissues in many organisms; including humans in the production of melanin. Tyrosinase under the right conditions shows alterations in its substrate specificity and may contribute to the darkening seen in AKU where it moves away from polymerising tyrosine but also homogentisic acid, the causative molecule in alkaptonuria, that is present in excess. Copyright © 2016. Published by Elsevier Ltd.

  13. Hyper-IgD syndrome with novel mutation in a Japanese girl.

    Science.gov (United States)

    Naruto, Takuya; Nakagishi, Yasuo; Mori, Masaaki; Miyamae, Takako; Imagawa, Tomoyuki; Yokota, Shumpei

    2009-01-01

    Hyperimmunoglobulin D and periodic fever syndrome (HIDS) is an autosomal recessive auto-inflammatory disorder characterized by recurrent febrile attacks with lymphadenopathy, abdominal distress, skin eruptions and joint involvement. We discuss the case of a 15-year-old Japanese girl who had presented with periodic fever, hepatosplenomegaly and intractable diarrhea from seven weeks of age. At first, undifferentiated autoimmune disorder was suspected, and she was treated with prednisolone and, in turn, with immunosuppressants such as cyclosporine, methotrexate, cyclophosphamide and rituximab or with plasma exchange. However, these trials failed to relieve her symptoms, and so she was transferred to our hospital when she was 15 years old. Her parents and elder brother had no history of recurrent fever, prolonged abdominal pain or diarrhea of unknown origin. The patient had extremely elevated levels of mevalonic aciduria and had homozygosity as a novel mutation in the MVK gene (G326R). Finally, HIDS was diagnosed. She was treated with simvastatin, which resulted in a moderate decrease of the urinary mevalonic acid concentration and good clinical course. This is the first case in which homozygosity for the mutation of the MVK gene has been reported in an Asian patient, and indicated a need for differentiation.

  14. Metabolic disorders with typical alterations in MRI; Stoffwechselstoerungen mit typischen Veraenderungen im MRT

    Energy Technology Data Exchange (ETDEWEB)

    Warmuth-Metz, M. [Klinikum der Universitaet Wuerzburg, Abteilung fuer Neuroradiologie, Wuerzburg (Germany)

    2010-09-15

    The classification of metabolic disorders according to the etiology is not practical for neuroradiological purposes because the underlying defect does not uniformly transform into morphological characteristics. Therefore typical MR and clinical features of some easily identifiable metabolic disorders are presented. Canavan disease, Pelizaeus-Merzbacher disease, Alexander disease, X-chromosomal adrenoleukodystrophy and adrenomyeloneuropathy, mitochondrial disorders, such as MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) and Leigh syndrome as well as L-2-hydroxyglutaric aciduria are presented. (orig.) [German] Die Einteilung von Stoffwechselstoerungen nach ihrer Aetiologie ist fuer den diagnostischen Neuroradiologen nicht sinnvoll, da sich aus der zugrunde liegenden Stoerung keine Rueckschluesse auf die zu erwartende MR-Morphologie ziehen lassen. Deshalb sollen anhand typischer bildmorphologischer Veraenderungen in Zusammenschau mit den jeweiligen klinischen Charakteristika einige leicht einzuordnende Stoffwechselstoerungen dargestellt werden. Es handelt sich um den Morbus Canavan, Morbus Pelizaeus-Merzbacher, Morbus Alexander, die X-chromosomal vererbte Adrenoleukodystrophie und Adrenomyeloneuropathie, die mitochondrialen Stoerungen MELAS (mitochondriale Enzephalomyopathie, Laktazidose und Stroke-like-Episoden) und Leigh-Syndrom sowie die L-2-Hydroxyglutarazidurie. (orig.)

  15. Should metabolic diseases be systematically screened in nonsyndromic autism spectrum disorders?

    Directory of Open Access Journals (Sweden)

    Manuel Schiff

    Full Text Available BACKGROUND: In the investigation of autism spectrum disorders (ASD, a genetic cause is found in approximately 10-20%. Among these cases, the prevalence of the rare inherited metabolic disorders (IMD is unknown and poorly evaluated. An IMD responsible for ASD is usually identified by the associated clinical phenotype such as dysmorphic features, ataxia, microcephaly, epilepsy, and severe intellectual disability (ID. In rare cases, however, ASD may be considered as nonsyndromic at the onset of a related IMD. OBJECTIVES: To evaluate the utility of routine metabolic investigations in nonsyndromic ASD. PATIENTS AND METHODS: We retrospectively analyzed the results of a metabolic workup (urinary mucopolysaccharides, urinary purines and pyrimidines, urinary creatine and guanidinoacetate, urinary organic acids, plasma and urinary amino acids routinely performed in 274 nonsyndromic ASD children. RESULTS: The metabolic parameters were in the normal range for all but 2 patients: one with unspecific creatine urinary excretion and the other with persistent 3-methylglutaconic aciduria. CONCLUSIONS: These data provide the largest ever reported cohort of ASD patients for whom a systematic metabolic workup has been performed; they suggest that such a routine metabolic screening does not contribute to the causative diagnosis of nonsyndromic ASD. They also emphasize that the prevalence of screened IMD in nonsyndromic ASD is probably not higher than in the general population (<0.5%. A careful clinical evaluation is probably more reasonable and of better medical practice than a costly systematic workup.

  16. Neuroimaging of nonaccidental head trauma: pitfalls and controversies

    International Nuclear Information System (INIS)

    Fernando, Sujan; Obaldo, Ruby E.; Walsh, Irene R.; Lowe, Lisa H.

    2008-01-01

    Although certain neuroimaging appearances are highly suggestive of abuse, radiological findings are often nonspecific. The objective of this review is to discuss pitfalls, controversies, and mimics occurring in neuroimaging of nonaccidental head trauma in order to allow the reader to establish an increased level of comfort in distinguishing between nonaccidental and accidental head trauma. Specific topics discussed include risk factors, general biomechanics and imaging strategies in nonaccidental head trauma, followed by the characteristics of skull fractures, normal prominent tentorium and falx versus subdural hematoma, birth trauma versus nonaccidental head trauma, hyperacute versus acute on chronic subdural hematomas, expanded subarachnoid space versus subdural hemorrhage, controversy regarding subdural hematomas associated with benign enlarged subarachnoid spaces, controversy regarding hypoxia as a cause of subdural hematoma and/or retinal hemorrhages without trauma, controversy regarding the significance of retinal hemorrhages related to nonaccidental head trauma, controversy regarding the significance of subdural hematomas in general, and pitfalls of glutaric aciduria type 1 and hemophagocytic lymphohistiocytosis mimicking nonaccidental head trauma. (orig.)

  17. Relationship between cobalamin-dependent metabolites and both serum albumin and alpha1 -proteinase inhibitor concentrations in hypocobalaminemic dogs of 7 different breeds.

    Science.gov (United States)

    Grützner, Niels; Suchodolski, Jan S; Steiner, Jörg M

    2014-12-01

    Increased serum concentrations of homocysteine (HCY) and methylmalonic acid (MMA), the 2 main cobalamin-dependent metabolites, as well as decreased serum albumin and canine alpha1 -proteinase inhibitor (cα1 -PI) concentrations have previously been described in hypocobalaminemic dogs with gastrointestinal disease. However, no studies have been conducted to evaluate potential relationships between these serum biomarkers. The aim of this study was to evaluate the relationship between HCY and MMA, 2 cobalamin-dependent metabolites, and both serum albumin and cα1 -PI concentrations in hypocobalaminemic dogs. Serum samples from 285 dogs including 7 different breeds (Beagle, Boxer, Cocker Spaniel, German Shepherd, Labrador Retriever, Chinese Shar-Pei, and Yorkshire Terrier) with hypocobalaminemia were used. Serum HCY, MMA, albumin, and cα1 -PI concentrations were determined. There was a significant correlation between serum HCY and albumin concentrations, as well as serum HCY and cα1 -PI concentrations (ρ = 0.62 and ρ = 0.37, respectively; P  .05). In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, and serum HCY and MMA concentrations in Chinese Shar-Peis with hypocobalaminemia. This study shows a correlation between serum albumin and cα1 -PI and HCY concentrations, but not with serum MMA concentration in dogs with hypocobalaminemia. In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, as well as serum HCY and MMA concentrations in Chinese Shar-Peis, emphasizing the unique metabolic interactions in those dog breeds affected by hypocobalaminemia. © 2014 American Society for Veterinary Clinical Pathology.

  18. Pregnant women of South Asian ethnicity in Canada have substantially lower vitamin B12 status compared with pregnant women of European ethnicity.

    Science.gov (United States)

    Schroder, Theresa H; Sinclair, Graham; Mattman, Andre; Jung, Benjamin; Barr, Susan I; Vallance, Hilary D; Lamers, Yvonne

    2017-09-01

    Maternal vitamin B12 (B12) status has been inversely associated with adverse pregnancy outcomes and positively with fetal growth and infant development. South Asians, Canada's largest ethnic minority, are prone to B12 deficiency. Yet, data are lacking on B12 status in South Asian pregnant women in North America. We sought to determine B12 status, using multiple biomarkers, in 1st and 2nd trimester pregnant women of South Asian and, for comparison, European ethnicity living in Vancouver, Canada. In this retrospective cohort study, total B12, holotranscobalamin (holoTC), methylmalonic acid (MMA), and total homocysteine concentrations were quantified in two routinely collected (mean gestational week: 11·5 (range 8·3-13·9) and 16·5 (range 14·9-20·9)), banked serum samples of 748 healthy pregnant South Asian (n 371) and European (n 377) women. South Asian pregnant women had significantly lower B12 status than European pregnant women at both time points, as indicated by lower serum total B12 and holoTC concentrations, and higher MMA concentrations (all P≤0·001). The largest difference, which was substantial (Cohen's d≥0·5), was observed in mean serum total B12 concentrations (1st trimester: 189 (95 % CI 180, 199) v. 246 (95 % CI 236, 257) pmol/l; 2nd trimester: 176 (95 % CI 168, 185) v. 226 (95 % CI 216, 236) pmol/l). Further, South Asian ethnicity was a significant negative predictor of B12 status during pregnancy. South Asian women living in Vancouver have substantially lower B12 status during early pregnancy. Future research identifying predictors and health consequences of this observed difference is needed to allow for targeted interventions.

  19. Helicobacter pylori seropositivity's association with markers of iron, 1-carbon metabolism, and antioxidant status among US adults: a structural equations modeling approach.

    Directory of Open Access Journals (Sweden)

    May A Beydoun

    Full Text Available We tested a model in which Helicobacter pylori seropositivity (Hps predicted iron status, which in turn acted as a predictor for markers of 1-C metabolism that were then allowed to predict antioxidant status.National Health and Nutrition Examination Surveys (NHANES 1999-2000 cross-sectional data among adults aged 20-85 y were analyzed (n = 3,055. Markers of Hps, iron status (serum ferritin and transferrin saturation (TS; 1-C metabolism (serum folate (FOLserum, B-12, total homocysteine (tHcy, methylmalonic acid (MMA and antioxidant status (vitamins A and E were entered into a structural equations model (SEM.Predictors of Hps included older age, lower education and income, racial/ethnic groups (lowest among Non-Hispanic Whites, and lifetime cigarette smoking. SEM modeling indicated that Hps had a direct inverse relationship with iron status (combining serum ferritin and TS which in turn was positively related to 1-C metabolites (higher serum folate, B-12 or lower tHcy/MMA that were positively associated with antioxidant status (combining serum vitamins A and E. Another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox. The sum of all indirect effects from Hps combining both pathways and the other indirect pathways in the model (Hps → Iron_st → OneCarbon; Hps →OneCarbon →Antiox was estimated at β = -0.006±0.003, p<0.05.In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals.

  20. Identification and Quantitation of Malonic Acid Biomarkers of In-Born Error Metabolism by Targeted Metabolomics

    Science.gov (United States)

    Ambati, Chandra Shekar R.; Yuan, Furong; Abu-Elheiga, Lutfi A.; Zhang, Yiqing; Shetty, Vivekananda

    2017-05-01

    Malonic acid (MA), methylmalonic acid (MMA), and ethylmalonic acid (EMA) metabolites are implicated in various non-cancer disorders that are associated with inborn-error metabolism. In this study, we have slightly modified the published 3-nitrophenylhydrazine (3NPH) derivatization method and applied it to derivatize MA, MMA, and EMA to their hydrazone derivatives, which were amenable for liquid chromatography- mass spectrometry (LC-MS) quantitation. 3NPH was used to derivatize MA, MMA, and EMA, and multiple reaction monitoring (MRM) transitions of the corresponding derivatives were determined by product-ion experiments. Data normalization and absolute quantitation were achieved by using 3NPH derivatized isotopic labeled compounds 13C2-MA, MMA-D3, and EMA-D3. The detection limits were found to be at nanomolar concentrations and a good linearity was achieved from nanomolar to millimolar concentrations. As a proof of concept study, we have investigated the levels of malonic acids in mouse plasma with malonyl-CoA decarboxylase deficiency (MCD-D), and we have successfully applied 3NPH method to identify and quantitate all three malonic acids in wild type (WT) and MCD-D plasma with high accuracy. The results of this method were compared with that of underivatized malonic acid standards experiments that were performed using hydrophilic interaction liquid chromatography (HILIC)-MRM. Compared with HILIC method, 3NPH derivatization strategy was found to be very efficient to identify these molecules as it greatly improved the sensitivity, quantitation accuracy, as well as peak shape and resolution. Furthermore, there was no matrix effect in LC-MS analysis and the derivatized metabolites were found to be very stable for longer time.

  1. Ratios of One-Carbon Metabolites Are Functional Markers of B-Vitamin Status in a Norwegian Coronary Angiography Screening Cohort.

    Science.gov (United States)

    Ulvik, Arve; Hustad, Steinar; McCann, Adrian; Midttun, Øivind; Nygård, Ottar K; Ueland, Per M

    2017-06-01

    Background: Functional (metabolic) markers of B-vitamin status, including plasma total homocysteine (tHcy) for folate and plasma methylmalonic acid (MMA) for vitamin B-12, suffer from moderate sensitivity and poor specificity. Ratios of metabolites belonging to the same pathway may have better performance characteristics. Objective: We evaluated the ratios of tHcy to total cysteine (tCys; Hcy:Cys), tHcy to creatinine (Hcy:Cre), and tHcy to tCys to creatinine (Hcy:Cys:Cre) as functional markers of B-vitamin status represented by a summary score composed of folate, cobalamin, betaine, pyridoxal 5'-phosphate (PLP), and riboflavin concentrations measured in plasma. Methods: Cross-sectional data were obtained from a cohort of patients with stable angina pectoris (2994 men and 1167 women) aged 21-88 y. The relative contribution of the B-vitamin score, age, sex, smoking, body mass index, and markers of renal function and inflammation to the variance of the functional B-vitamin markers was calculated by using multiple linear regression. Results: Compared with tHcy alone, Hcy:Cys, Hcy:Cre, and Hcy:Cys:Cre all showed improved sensitivity and specificity for detecting plasma B-vitamin status. Improvements in overall performance ranged from 4-fold for Hcy:Cys to ∼8-fold for Hcy:Cys:Cre and were particularly strong in subjects with the common 5,10-methylenetetrahydrofolate reductase (MTHFR) 677CC genotype. Conclusions: Ratios of tHcy to tCys and/or creatinine showed a severalfold improvement over tHcy alone as functional markers of B-vitamin status in Norwegian coronary angiography screenees. The biological rationale for these ratios is discussed in terms of known properties of enzymes involved in the catabolism of homocysteine and synthesis of creatine and creatinine. © 2017 American Society for Nutrition.

  2. Vitamin B-12 supplementation during pregnancy and early lactation increases maternal, breast milk, and infant measures of vitamin B-12 status.

    Science.gov (United States)

    Duggan, Christopher; Srinivasan, Krishnamachari; Thomas, Tinku; Samuel, Tinu; Rajendran, Ramya; Muthayya, Sumithra; Finkelstein, Julia L; Lukose, Ammu; Fawzi, Wafaie; Allen, Lindsay H; Bosch, Ronald J; Kurpad, Anura V

    2014-05-01

    Pregnant women in resource-poor areas are at risk of multiple micronutrient deficiencies, and indicators of low vitamin B-12 status have been associated with adverse pregnancy outcomes, including anemia, low birth weight, and intrauterine growth retardation. To evaluate whether daily oral vitamin B-12 supplementation during pregnancy increases maternal and infant measures of vitamin B-12 status, we performed a randomized, placebo-controlled clinical trial. Pregnant women vitamin B-12 (50 μg) or placebo through 6 wk postpartum. All women were administered iron and folic acid supplements throughout pregnancy. One hundred eighty-three women were randomly assigned to receive vitamin B-12 and 183 to receive placebo. Compared with placebo recipients, vitamin B-12-supplemented women had significantly higher plasma vitamin B-12 concentrations at both the second (median vitamin B-12 concentration: 216 vs. 111 pmol/L, P vitamin B-12 concentration was 136 pmol/L in vitamin B-12-supplemented women vs. 87 pmol/L in the placebo group (P vitamin B-12-supplemented women, the incidence of delivering an infant with intrauterine growth retardation was 33 of 131 (25%) vs. 43 of 125 (34%) in those administered placebo (P = 0.11). In a subset of infants tested at 6 wk of age, median plasma vitamin B-12 concentration was 199 pmol/L in those born to supplemented women vs. 139 pmol/L in the placebo group (P = 0.01). Infant plasma methylmalonic acid and homocysteine concentrations were significantly lower in the vitamin B-12 group as well. Oral supplementation of urban Indian women with vitamin B-12 throughout pregnancy and early lactation significantly increases vitamin B-12 status of mothers and infants. It is important to determine whether there are correlations between these findings and neurologic and metabolic functions. This trial was registered at clinicaltrials.gov as NCT00641862.

  3. Nutritional factors associated with antenatal depressive symptoms in the early stage of pregnancy among urban South Indian women.

    Science.gov (United States)

    Lukose, Ammu; Ramthal, Asha; Thomas, Tinku; Bosch, Ronald; Kurpad, Anura V; Duggan, Christopher; Srinivasan, Krishnamachari

    2014-01-01

    Many women of reproductive age from developing countries have poor nutritional status, and the prevalence of depression during pregnancy is high. The objective of the present study was to assess the prevalence of antenatal depressive symptoms in early pregnancy, and to identify the demographic and nutritional factors associated with these symptoms in a sample of urban South Indian pregnant women. This cross-sectional study was the baseline assessment of a prospective randomized controlled trial of vitamin B12 supplementation in urban pregnant south Indian women between the ages of 18 and 40 years ( www.clinicaltrials.gov : NCT00641862). 365 women in their first trimester of pregnancy were screened for depressive symptoms at an urban clinic in Karnataka, South India, using the Kessler Psychological Distress Scale (K-10). Nutritional, clinical and biochemical factors were also assessed. Mean (SD) age of the cohort was 22.6 (3.7) years and mean (SD) BMI was 20.4 (3.3) kg/m(2). 121 (33 %) of the women in the 1st trimester had symptoms consistent with depression (K-10 score >6). In multivariate log binomial regression analysis, presence of antenatal depressive symptoms in the first trimester were positively associated with vomiting, prevalence ratio (PR) = 1.54 (95 % CI 1.10, 2.16) and negatively with anemia, PR = 0.67 (95 % CI 0.47, 0.96). Nutrient intakes, serum vitamin B12, methylmalonic acid, homocysteine and red cell folate levels were not associated with measures of depression. Antenatal depressive symptoms in early pregnancy are highly prevalent in urban Indian women and are more common in women with vomiting and without anemia. In this cross-sectional data, blood concentrations of vitamin B12 and folate were not associated with depressive symptoms. The relationship between nutritional status and depressive symptoms may require larger and longitudinal studies.

  4. Hepatic Effects of Pharmacological Doses of Hydroxy-Cobalamin[c-lactam] in Mice.

    Directory of Open Access Journals (Sweden)

    Patrizia Haegler

    Full Text Available The vitamin B12 analog hydroxy-cobalamin[c-lactam] (HCCL impairs hepatic mitochondrial protein synthesis and function of the electron transport chain in rats. We aimed to establish an in vivo model for mitochondrial dysfunction in mice, which could be used to investigate hepatotoxicity of mitochondrial toxicants. In a first step, we performed a dose-finding study in mice treated with HCCL 0.4 mg/kg and 4 mg/kg i.p. for two to four weeks. The plasma methylmalonate concentration was strongly increased at 4 mg/kg starting at three weeks of treatment. We subsequently treated mice daily with 4 mg/kg HCCL i.p. for three weeks and characterized liver function and histology as well as liver mitochondrial function. We found an increase in liver weight in HCCL-treated mice, which was paralleled by hepatocellular accumulation of triglycerides. In liver homogenate of HCCL-treated mice, the complex I activity of the electron transport chain was reduced, most likely explaining hepatocellular triglyceride accumulation. The activity of CPT1 was not affected by methylmalonyl-CoA in isolated liver mitochondria. Despite impaired complex I activity, mitochondrial superoxide anion production was not increased and the hepatocellular glutathione (GSH pool was maintained. Finally, the mitochondrial DNA content was not altered with HCCL treatment. In conclusion, treatment of mice with HCCL is associated with increased liver weight explained by hepatocellular triglyceride accumulation. Hepatocellular fat accumulation is most likely a consequence of impaired activity of the mitochondrial electron transport chain. The impairment of complex I activity is not strong enough to result in ROS accumulation and reduction of the GSH stores.

  5. Risk of Visual Impairment and Intracranial Hypertension After Space Flight: Evaluation of the Role of Polymorphism of Enzymes Involved in One-Carbon Metabolism

    Science.gov (United States)

    Smith, S. M.; Gregory, J. F.; Zeisel, G. H.; Gibson, C. R.; Mader, T. H.; Kinchen, J.; Ueland, P.; Ploutz-Snyder, R.; Heer, M.; Zwart, S. R.

    2016-01-01

    Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (P<0.001) higher (25-45%) in astronauts with ophthalmic changes than in those without such changes (1). These differences existed before, during, and after flight. Serum folate was lower (P<0.01) during flight in individuals with ophthalmic changes. Preflight serum concentrations of cystathionine and 2-methylcitric acid, and mean in-flight serum folate, were significantly (P<0.05) correlated with postflight changes in refraction (1). A follow-up study was conducted to evaluate a small number of known polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight.

  6. Identification of ABC transporters acting in vitamin B12 metabolism in Caenorhabditis elegans.

    Science.gov (United States)

    McDonald, Megan K; Fritz, Julie-Anne; Jia, Dongxin; Scheuchner, Deborah; Snyder, Floyd F; Stanislaus, Avalyn; Curle, Jared; Li, Liang; Stabler, Sally P; Allen, Robert H; Mains, Paul E; Gravel, Roy A

    2017-12-01

    Vitamin B 12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [ 14 C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B 12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC

  7. Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population

    Directory of Open Access Journals (Sweden)

    Melissa Ventura Marra

    2018-03-01

    Full Text Available Proactive nutrition screening is an effective public health strategy for identifying and targeting individuals who could benefit from making dietary improvements for primary and secondary prevention of disease. The Dietary Screening Tool (DST was developed and validated to assess nutritional risk among rural older adults. The purpose of this study was to evaluate the utility and validity of the DST to identify nutritional risk in middle-aged adults. This cross-sectional study in middle-aged adults (45–64 year olds, n = 87 who reside in Appalachia, examined nutritional status using an online health survey, biochemical measures, anthropometry, and three representative 24-h dietary recalls. The Healthy Eating Index (HEI was calculated to describe overall diet quality. Adults identified by the DST with a nutrition risk had lower HEI scores (50 vs. 64, p < 0.001 and were much more likely to also be considered at dietary risk by the HEI (OR 11.6; 3.2–42.6 when compared to those not at risk. Those at risk had higher energy-adjusted total fat, saturated fat, and added sugar intakes and lower intakes of dietary fiber, and several micronutrients than those classified as not at risk by the DST. Similarly, the at-risk group had significantly lower serum levels of α-carotene, β-carotene, cryptoxanthin, lutein, and zeaxanthin but did not differ in retinol or methylmalonic acid compared with those not at risk. The DST is a valid tool to identify middle-aged adults with nutritional risk.

  8. Combined Measurement of 6 Fat-Soluble Vitamins and 26 Water-Soluble Functional Vitamin Markers and Amino Acids in 50 μL of Serum or Plasma by High-Throughput Mass Spectrometry.

    Science.gov (United States)

    Midttun, Øivind; McCann, Adrian; Aarseth, Ove; Krokeide, Marit; Kvalheim, Gry; Meyer, Klaus; Ueland, Per M

    2016-11-01

    Targeted metabolic profiling characterized by complementary platforms, multiplexing and low volume consumption are increasingly used for studies using biobank material. Using liquid-liquid extraction, we developed a sample workup suitable for quantification of 6 fat- and 26 water-soluble biomarkers. 50 μL of serum/plasma was mixed with dithioerythritol, ethanol, and isooctane/chloroform. The organic layer was used for analysis of the fat-soluble vitamins all-trans retinol (A), 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, α-tocopherol (E), γ-tocopherol (E), and phylloquinone (K1) by LC-MS/MS. The remaining aqueous fraction was mixed with ethanol, water, pyridine, and methylchloroformate (in toluene) to derivatize the water-soluble biomarkers. The resulting toluene layer was used for GC-MS/MS analysis of alanine, α-ketoglutarate, asparagine, aspartic acid, cystathionine, total cysteine, glutamic acid, glutamine, glycine, histidine, total homocysteine, isoleucine, kynurenine, leucine, lysine, methionine, methylmalonic acid, ornithine, phenylalanine, proline, sarcosine, serine, threonine, tryptophan, tyrosine, and valine. Isotope-labeled internal standards were used for all analytes. Chromatographic run times for the LC-MS/MS and GC-MS/MS were 4.5 and 11 min, respectively. The limits of detection (LOD) for the low-concentration analytes (25-hydroxyvitamin D2, 25-hydroxyvitamin D3, and phylloquinone) were 25, 17, and 0.33 nM, respectively, while all other analytes demonstrated sensitivity significantly lower than endogenous concentrations. Recoveries ranged from 85.5-109.9% and within- and between-day coefficients of variance (CVs) were 0.7-9.4% and 1.1-17.5%, respectively. This low-volume, high-throughput multianalyte assay is currently in use in our laboratory for quantification of 32 serum/plasma biomarkers in epidemiological studies.

  9. Dietary supplement use and smoking are important correlates of biomarkers of water-soluble vitamin status after adjusting for sociodemographic and lifestyle variables in a representative sample of US adults1,2,3

    Science.gov (United States)

    Pfeiffer, Christine M.; Sternberg, Maya R.; Schleicher, Rosemary L.; Rybak, Michael E.

    2016-01-01

    Biochemical indicators of water-soluble vitamin (WSV) status have been measured in a nationally representative sample of the US population in NHANES 2003–2006. To examine whether demographic differentials in nutritional status were related to and confounded by certain variables, we assessed the association of sociodemographic (age, sex, race-ethnicity, education, income) and lifestyle variables (dietary supplement use, smoking, alcohol consumption, BMI, physical activity) with biomarkers of WSV status in adults (≥20 y): serum and RBC folate, serum pyridoxal-5′-phosphate (PLP), serum 4-pyridoxic acid, serum total cobalamin (B-12), plasma total homocysteine (tHcy), plasma methylmalonic acid (MMA), and serum ascorbic acid. Age (except for PLP) and smoking (except for MMA) were generally the strongest significant correlates of these biomarkers (|r| ≤0.43) and together with supplement use explained more of the variability as compared to the other covariates in bivariate analysis. In multiple regression models, sociodemographic and lifestyle variables together explained from 7% (B-12) to 29% (tHcy) of the biomarker variability. We observed significant associations for most biomarkers (≥6 out of 8) with age, sex, race-ethnicity, supplement use, smoking, and BMI; and for some biomarkers with PIR (5/8), education (1/8), alcohol consumption (4/8), and physical activity (5/8). We noted large estimated percent changes in biomarker concentrations between race-ethnic groups (from −24% to 20%), between supplement users and nonusers (from −12% to 104%), and between smokers and nonsmokers (from −28% to 8%). In summary, age, sex, and race-ethnic differentials in biomarker concentrations remained significant after adjusting for sociodemographic and lifestyle variables. Supplement use and smoking were important correlates of biomarkers of WSV status. PMID:23576641

  10. Dietary supplement use and smoking are important correlates of biomarkers of water-soluble vitamin status after adjusting for sociodemographic and lifestyle variables in a representative sample of U.S. adults.

    Science.gov (United States)

    Pfeiffer, Christine M; Sternberg, Maya R; Schleicher, Rosemary L; Rybak, Michael E

    2013-06-01

    Biochemical indicators of water-soluble vitamin (WSV) status were measured in a nationally representative sample of the U.S. population in NHANES 2003-2006. To examine whether demographic differentials in nutritional status were related to and confounded by certain variables, we assessed the association of sociodemographic (age, sex, race-ethnicity, education, income) and lifestyle (dietary supplement use, smoking, alcohol consumption, BMI, physical activity) variables with biomarkers of WSV status in adults (aged ≥ 20 y): serum and RBC folate, serum pyridoxal-5'-phosphate (PLP), serum 4-pyridoxic acid, serum total cobalamin (vitamin B-12), plasma total homocysteine (tHcy), plasma methylmalonic acid (MMA), and serum ascorbic acid. Age (except for PLP) and smoking (except for MMA) were generally the strongest significant correlates of these biomarkers (|r| ≤ 0.43) and together with supplement use explained more of the variability compared with the other covariates in bivariate analysis. In multiple regression models, sociodemographic and lifestyle variables together explained from 7 (vitamin B-12) to 29% (tHcy) of the biomarker variability. We observed significant associations for most biomarkers (≥ 6 of 8) with age, sex, race-ethnicity, supplement use, smoking, and BMI and for some biomarkers with PIR (5 of 8), education (1 of 8), alcohol consumption (4 of 8), and physical activity (5 of 8). We noted large estimated percentage changes in biomarker concentrations between race-ethnic groups (from -24 to 20%), between supplement users and nonusers (from -12 to 104%), and between smokers and nonsmokers (from -28 to 8%). In summary, age, sex, and race-ethnic differentials in biomarker concentrations remained significant after adjusting for sociodemographic and lifestyle variables. Supplement use and smoking were important correlates of biomarkers of WSV status.

  11. Evaluation of vitamin status in patients with pulmonary tuberculosis.

    Science.gov (United States)

    Oh, Jongwon; Choi, Rihwa; Park, Hyung-Doo; Lee, Hyun; Jeong, Byeong-Ho; Park, Hye Yun; Jeon, Kyeongman; Kwon, O Jung; Koh, Won-Jung; Lee, Soo-Youn

    2017-03-01

    Vitamins are known to be associated with immunity and nutrition. Moreover, vitamin deficiency can affect host immunity to various infectious diseases, including tuberculosis. Although patients with tuberculosis often have vitamin D deficiency, little is known about the levels of other vitamins. Here, we aimed to investigate the status of vitamins A, B 12 , D, and E in patients with tuberculosis. We also aimed to investigate the clinical and laboratory variables related to vitamin status in patients with tuberculosis. We performed a case-control study to investigate the serum vitamin concentrations in 152 patients with tuberculosis and 137 control subjects. The concentrations of vitamin A, vitamin D, vitamin E, homocysteine, and methylmalonic acid were measured using high-performance liquid chromatography (HPLC) or HPLC-tandem mass spectrometry. Patient demographic data and other biochemical parameters were also analyzed. The serum concentrations of vitamins A, D, and E were significantly lower in patients with tuberculosis than in control subjects (1.4 vs. 2.0 μmol/L, P vitamin deficiencies were significantly higher in patients with tuberculosis. Moreover, multiple vitamin deficiencies were only observed in patients with tuberculosis (22.4% of all patients with tuberculosis vs. 0% of all control subjects). Positive correlations among vitamin A, D, and E concentrations were observed (vitamins A and D, r = 0.395; vitamins D and E, r = 0.342; and vitamins A and E, r = 0.427, P vitamin A, D, and E concentrations. Vitamin deficiencies are common in patients with tuberculosis. Further research investigating the clinical importance of vitamin and nutritional status in patients with tuberculosis is needed. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Associations of Milk Consumption and Vitamin B2 and Β12 Derived from Milk with Fitness, Anthropometric and Biochemical Indices in Children. The Healthy Growth Study

    Directory of Open Access Journals (Sweden)

    George Moschonis

    2016-10-01

    Full Text Available The benefits of dairy consumption seem to extend beyond its significant contribution to ensuring nutrient intake adequacy as indicated by the favourable associations with several health outcomes reported by different studies. The aims of the present study were to examine the associations of milk consumption with fitness, anthropometric and biochemical indices in children and further explore whether the observed associations are attributed to vitamins B2 and B12 derived from milk. A representative subsample of 600 children aged 9–13 years participating in the Healthy Growth Study was examined. Data were collected on children’s dietary intake, using 24 h recalls, as well as on fitness, anthropometric and biochemical indices. Regression analyses were performed for investigating the research hypothesis, adjusting for potential confounders and for B-vitamin status indices (i.e., plasma riboflavin, methylmalonic acid and total homocysteine concentrations, dietary calcium intake and plasma zinc concentrations that could possibly act as effect modifiers. Milk consumption was positively associated with the number of stages performed in the endurance run test (ERT (β = 0.10; p = 0.017 and negatively with body mass index (BMI (β = −0.10; p = 0.014, after adjusting for several potential confounders and effect modifiers. Dietary intakes of vitamin B2 and B12 derived from milk were also positively associated with the number of ERT stages (β = 0.10; p = 0.015 and β = 0.10; p = 0.014 respectively. In conclusion, higher intake of milk as well as vitamin B2 and B12 derived from milk were independently associated with higher cardiorespiratory fitness in Greek preadolescents. The key roles of these B-vitamins in substrate oxidation, energy production, haemoglobin synthesis and erythropoiesis could provide a basis for interpreting these associations. However, further research is needed to confirm this potential interpretation.

  13. Vitamin B12 intake and status and cognitive function in elderly people.

    Science.gov (United States)

    Doets, Esmée L; van Wijngaarden, Janneke P; Szczecińska, Anna; Dullemeijer, Carla; Souverein, Olga W; Dhonukshe-Rutten, Rosalie A M; Cavelaars, Adrienne E J M; van 't Veer, Pieter; Brzozowska, Anna; de Groot, Lisette C P G M

    2013-01-01

    Current recommendations on vitamin B12 intake vary from 1.4 to 3.0 μg per day and are based on the amount needed for maintenance of hematologic status or on the amount needed to compensate obligatory losses. This systematic review evaluates whether the relation between vitamin B12 intake and cognitive function should be considered for underpinning vitamin B12 recommendations in the future. The authors summarized dose-response evidence from randomized controlled trials and prospective cohort studies on the relation of vitamin B12 intake and status with cognitive function in adults and elderly people. Two randomized controlled trials and 6 cohort studies showed no association or inconsistent associations between vitamin B12 intake and cognitive function. Random-effects meta-analysis showed that serum/plasma vitamin B12 (50 pmol/L) was not associated with risk of dementia (4 cohort studies), global cognition z scores (4 cohort studies), or memory z scores (4 cohort studies). Although dose-response evidence on sensitive markers of vitamin B12 status (methylmalonic acid and holotranscobalamin) was scarce, 4 of 5 cohort studies reported significant associations with risk of dementia, Alzheimer's disease, or global cognition. Current evidence on the relation between vitamin B12 intake or status and cognitive function is not sufficient for consideration in the development of vitamin B12 recommendations. Further studies should consider the selection of sensitive markers of vitamin B12 status. © The Author 2012. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Contributions of enriched cereal-grain products, ready-to-eat cereals, and supplements to folic acid and vitamin B-12 usual intake and folate and vitamin B-12 status in US children: National Health and Nutrition Examination Survey (NHANES), 2003-2006.

    Science.gov (United States)

    Yeung, Lorraine F; Cogswell, Mary E; Carriquiry, Alicia L; Bailey, Lynn B; Pfeiffer, Christine M; Berry, Robert J

    2011-01-01

    US children consume folic acid from multiple sources. These sources may contribute differently to usual intakes above the age-specific tolerable upper intake level (UL) for folic acid and to folate and vitamin B-12 status. We estimated usual daily folic acid intakes above the UL and adjusted serum and red blood cell folate, serum vitamin B-12, homocysteine, and methylmalonic acid (MMA) concentrations in US children by age group and by the following 3 major folic acid intake sources: enriched cereal-grain products (ECGP), ready-to-eat cereals (RTE), and supplements containing folic acid (SUP). We analyzed data in 4 groups of children aged 1-3, 4-8, 9-13, and 14-18 y from the National Health and Nutrition Examination Survey (NHANES), 2003-2006 (n = 7161). A total of 19-48% of children consumed folic acid from ECGP only. Intakes above the UL varied from 0-0.1% of children who consumed ECGP only to 15-78% of children who consumed ECGP+RTE+SUP. In children aged 1-8 y, 99-100% of those who consumed ≥ 200 μg folic acid/d from supplements exceeded their UL. Although consumption of RTE or SUP with folic acid was associated with higher mean folate and vitamin B-12 concentrations and, in some older children, with lower homocysteine and MMA concentrations. Our data suggest that the majority of US children consume more than one source of folic acid. Postfortification, the consumption of RTE or SUP increases usual daily intakes and blood concentrations of folate and vitamin B-12.

  15. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein

    Science.gov (United States)

    Augustin, Peter; Toplak, Marina; Fuchs, Katharina; Gerstmann, Eva Christine; Prassl, Ruth; Winkler, Andreas; Macheroux, Peter

    2018-01-01

    The heterodimeric human (h) electron-transferring flavoprotein (ETF) transfers electrons from at least 13 different flavin dehydrogenases to the mitochondrial respiratory chain through a non-covalently bound FAD cofactor. Here, we describe the discovery of an irreversible and pH-dependent oxidation of the 8α-methyl group to 8-formyl-FAD (8f-FAD), which represents a unique chemical modification of a flavin cofactor in the human flavoproteome. Furthermore, a set of hETF variants revealed that several conserved amino acid residues in the FAD-binding pocket of electron-transferring flavoproteins are required for the conversion to the formyl group. Two of the variants generated in our study, namely αR249C and αT266M, cause glutaric aciduria type II, a severe inherited disease. Both of the variants showed impaired formation of 8f-FAD shedding new light on the potential molecular cause of disease development. Interestingly, the conversion of FAD to 8f-FAD yields a very stable flavin semiquinone that exhibited slightly lower rates of electron transfer in an artificial assay system than hETF containing FAD. In contrast, the formation of 8f-FAD enhanced the affinity to human dimethylglycine dehydrogenase 5-fold, indicating that formation of 8f-FAD modulates the interaction of hETF with client enzymes in the mitochondrial matrix. Thus, we hypothesize that the FAD cofactor bound to hETF is subject to oxidation in the alkaline (pH 8) environment of the mitochondrial matrix, which may modulate electron transport between client dehydrogenases and the respiratory chain. This discovery challenges the current concepts of electron transfer processes in mitochondria. PMID:29301933

  16. Use of cultured cells with defects of citrulline metabolism in diagnosis and in the study of intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J S

    1985-01-01

    Citrullinemia and argininosuccinic aciduria are two disorders resulting from defects in two consecutive enzymes of the urea cycle, argininosuccinate synthetase and argininosuccinate lyase. Fibroblast cell lines were derived from patients with these disorders and the diagnoses, which had been made on the basis of amino acid levels in plasma and urine, were confirmed by demonstrating that the cell lines were unable to incorporate /sup 14/C-citrulline into protein. DNA from the argininosuccinate synthetase-deficient (ASS-) cells was analysed by restriction enzyme digestion and hybridisation to a cDNA probe which had been cloned from human argininosuccinate synthetase mRNA. No defect in the patient's DNA could be demonstrated, indicating that no major deletions in the argininosuccinate synthetase genes were present in this patient. Co-cultures of the ASS- and argininosuccinate lyase-deficient (ASL-) fibroblasts were able to incorporate /sup 14/C-citrulline into protein. Co-cultures of ASS- and ASL-cells were used as an assay system for measuring intercellular junctional communication. This allowed quantitation of the effects of pH and extra-cellular divalent cations on junctional communication. Tumor promoters such as phorbol esters and organochlorine pesticides have been reported to inhibit intercellular junctional communication in other systems, and this inhibitory activity may be related to the mechanism of tumor promotion. Retinoic acid and other retinoids also inhibited junctional communication, and the inhibitory effects of retinoic acid and TPA were additive. It is concluded that co-cultures of ASS- and ASL-cells constitute a useful system for providing quantitative measurements of intercellular junctional communication under a wide range of experimental conditions.

  17. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    International Nuclear Information System (INIS)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.; Tanaka, K.

    1986-01-01

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the β-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonal monospecific antibody. Single-stranded [ 32 P]labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting

  18. On the Creation, Utility and Sustaining of Rare Diseases Research Networks: Lessons learned from the Urea Cycle Disorders Consortium, the Japanese Urea Cycle Disorders Consortium and the European Registry and Network for Intoxication Type Metabolic Diseases.

    Science.gov (United States)

    Summar, Marshall L; Endo, Fumio; Kölker, Stefan

    2014-01-01

    The past two decades has seen a rapid expansion in the scientific and public interest in rare diseases and their treatment. One consequence of this has been the formation of registries/longitudinal natural history studies for these disorders. Given the expense and effort needed to develop and maintain such programs, we describe our experience with three linked registries on the same disease group, urea cycle disorders. The Urea Cycle Disorders Consortium (UCDC) was formed in the U.S. in 2003 in response to a request for application from the National Institutes of Health (NIH); the European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD) was formed in 2011 in response to a request for applications from the Directorate-General for Health and Consumers (DG SANCO) of the EU; and the Japanese Urea Cycle Disorders Consortium (JUCDC) was founded in 2012 as a sister organization to the UCDC and E-IMD. The functions of these groups are to collect natural history data, educate the professional and lay population, develop and test new treatments, and establish networks of excellence for the care for these disorders. The UCDC and JUCDC focus exclusively on urea cycle disorders while the E-IMD includes patients with urea cycle disorders and organic acidurias. More than 1400 patients have been enrolled in the three consortia, and numerous projects have been developed and joint meetings held including an international UCDC/E-IMD/JUCDC Urea Cycle meeting in Barcelona in 2013. This article summarizes some of the experiences from the three groups regarding formation, funding, and models for sustainability. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Dietary management of urea cycle disorders: European practice.

    Science.gov (United States)

    Adam, S; Almeida, M F; Assoun, M; Baruteau, J; Bernabei, S M; Bigot, S; Champion, H; Daly, A; Dassy, M; Dawson, S; Dixon, M; Dokoupil, K; Dubois, S; Dunlop, C; Evans, S; Eyskens, F; Faria, A; Favre, E; Ferguson, C; Goncalves, C; Gribben, J; Heddrich-Ellerbrok, M; Jankowski, C; Janssen-Regelink, R; Jouault, C; Laguerre, C; Le Verge, S; Link, R; Lowry, S; Luyten, K; Macdonald, A; Maritz, C; McDowell, S; Meyer, U; Micciche, A; Robert, M; Robertson, L V; Rocha, J C; Rohde, C; Saruggia, I; Sjoqvist, E; Stafford, J; Terry, A; Thom, R; Vande Kerckhove, K; van Rijn, M; van Teeffelen-Heithoff, A; Wegberg, A van; van Wyk, K; Vasconcelos, C; Vestergaard, H; Webster, D; White, F J; Wildgoose, J; Zweers, H

    2013-12-01

    There is no published data comparing dietary management of urea cycle disorders (UCD) in different countries. Cross-sectional data from 41 European Inherited Metabolic Disorder (IMD) centres (17 UK, 6 France, 5 Germany, 4 Belgium, 4 Portugal, 2 Netherlands, 1 Denmark, 1 Italy, 1 Sweden) was collected by questionnaire describing management of patients with UCD on prescribed protein restricted diets. Data for 464 patients: N-acetylglutamate synthase (NAGS) deficiency, n=10; carbamoyl phosphate synthetase (CPS1) deficiency, n=29; ornithine transcarbamoylase (OTC) deficiency, n=214; citrullinaemia, n=108; argininosuccinic aciduria (ASA), n=80; arginase deficiency, n=23 was reported. The majority of patients (70%; n=327) were aged 0-16y and 30% (n=137) >16y. Prescribed median protein intake/kg body weight decreased with age with little variation between disorders. The UK tended to give more total protein than other European countries particularly in infancy. Supplements of essential amino acids (EAA) were prescribed for 38% [n=174] of the patients overall, but were given more commonly in arginase deficiency (74%), CPS (48%) and citrullinaemia (46%). Patients in Germany (64%), Portugal (67%) and Sweden (100%) were the most frequent users of EAA. Only 18% [n=84] of patients were prescribed tube feeds, most commonly for CPS (41%); and 21% [n=97] were prescribed oral energy supplements. Dietary treatment for UCD varies significantly between different conditions, and between and within European IMD centres. Further studies examining the outcome of treatment compared with the type of dietary therapy and nutritional support received are required. © 2013 Elsevier Inc. All rights reserved.

  20. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.

    Science.gov (United States)

    Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Astegno, Alessandra; Voltattorni, Carla Borri

    2014-02-01

    The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of amino-sugars. In the catalytic process of PLP-dependent enzymes, the substrate amino acid forms a Schiff base with PLP and the electrophilicity of the PLP pyridine ring plays important roles in the subsequent catalytic steps. While the essential role of PLP in the acquisition of biological activity of many proteins is long recognized, the finding that some PLP-enzymes require the coenzyme for refolding in vitro points to an additional role of PLP as a chaperone in the folding process. Mutations in the genes encoding PLP-enzymes are causative of several rare inherited diseases. Patients affected by some of these diseases (AADC deficiency, cystathionuria, homocystinuria, gyrate atrophy, primary hyperoxaluria type 1, xanthurenic aciduria, X-linked sideroblastic anaemia) can benefit, although at different degrees, from the administration of pyridoxine, a PLP precursor. The effect of the coenzyme is not limited to mutations that affect the enzyme-coenzyme interaction, but also to those that cause folding defects, reinforcing the idea that PLP could play a chaperone role and improve the folding efficiency of misfolded variants. In this review, recent biochemical and cell biology studies highlighting the chaperoning activity of the coenzyme on folding-defective variants of PLP-enzymes associated with rare diseases are presented and discussed. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia

    Directory of Open Access Journals (Sweden)

    Grünert Sarah C

    2012-01-01

    Full Text Available Abstract Background Despite its first description over 40 years ago, knowledge of the clinical course of isovaleric acidemia (IVA, a disorder predisposing to severe acidotic episodes during catabolic stress, is still anecdotal. We aimed to investigate the phenotypic presentation and factors determining the neurological and neurocognitive outcomes of patients diagnosed with IVA following clinical manifestation. Methods Retrospective data on 21 children and adults with symptomatic IVA diagnosed from 1976 to 1999 were analyzed for outcome determinants including age at diagnosis and number of catabolic episodes. Sixteen of 21 patients were evaluated cross-sectionally focusing on the neurological and neurocognitive status. Additionally, 155 cases of patients with IVA published in the international literature were reviewed and analyzed for outcome parameters including mortality. Results 57% of study patients (12/21 were diagnosed within the first weeks of life and 43% (9/21 in childhood. An acute metabolic attack was the main cause of diagnostic work-up. 44% of investigated study patients (7/16 showed mild motor dysfunction and only 19% (3/16 had cognitive deficits. No other organ complications were found. The patients' intelligence quotient was not related to the number of catabolic episodes but was inversely related to age at diagnosis. In published cases, mortality was high (33% if associated with neonatal diagnosis, following manifestation at an average age of 7 days. Conclusions Within the group of "classical" organic acidurias, IVA appears to be exceptional considering its milder neuropathologic implications. The potential to avoid neonatal mortality and to improve neurologic and cognitive outcome under early treatment reinforces IVA to be qualified for newborn screening.

  2. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites

    Directory of Open Access Journals (Sweden)

    Vivek A. Hariharan

    2017-03-01

    Full Text Available Many enzymes make “mistakes”. Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH and mitochondrial malate dehydrogenase (mMDH slowly catalyze the reduction of 2-oxoglutarate (2-OG to the oncometabolite l-2-hydroxyglutarate (l-2-HG. l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine. We show here that human glutamine synthetase (GS catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM. We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain “mistakes” of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants.

  3. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites.

    Science.gov (United States)

    Hariharan, Vivek A; Denton, Travis T; Paraszcszak, Sarah; McEvoy, Kyle; Jeitner, Thomas M; Krasnikov, Boris F; Cooper, Arthur J L

    2017-03-30

    Many enzymes make "mistakes". Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine). We show here that human glutamine synthetase (GS) catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM). We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG) can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine) is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM) to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain "mistakes" of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants.

  4. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation.

    Science.gov (United States)

    Molenaar, Remco J; Radivoyevitch, Tomas; Maciejewski, Jaroslaw P; van Noorden, Cornelis J F; Bleeker, Fonnet E

    2014-12-01

    Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retained. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Aminoacidopathies: Prevalence, Etiology, Screening, and Treatment Options.

    Science.gov (United States)

    Wasim, Muhammad; Awan, Fazli Rabbi; Khan, Haq Nawaz; Tawab, Abdul; Iqbal, Mazhar; Ayesha, Hina

    2018-04-01

    Inborn errors of metabolism (IEMs) are a group of inherited metabolic disorders which are caused by mutations in the specific genes that lead to impaired proteins or enzymes production. Different metabolic pathways are perturbed due to the deficiency or lack of enzymes. To date, more than 500 IEMs have been reported with most of them being untreatable. However, fortunately 91 such disorders are potentially treatable, if diagnosed at an earlier stage of life. IEMs have been classified into different categories and one class of IEMs, characterized by the physiological disturbances of amino acids is called as aminoacidopathies. Out of 91 treatable IEM, thirteen disorders are amino acid related. Aminoacidopathies can be detected by chromatography and mass spectrometry based analytical techniques (e.g., HPLC, GC-MS, LC-MS/MS) for amino acid level changes, and through genetic assays (e.g., PCR, TaqMan Genotyping, DNA sequencing) at the mutation level in the corresponding genes. Hence, this review is focused to describe thirteen common aminoacidopathies namely: Phenylketonuria (PKU), Maple Syrup Urine Disease (MSUD), Homocystinuria/Methylene Tetrahydrofolate Reductase (MTHFR) deficiency, Tyrosinemia type II, Citrullinemia type I and type II, Argininosuccinic aciduria, Carbamoyl Phosphate Synthetase I (CPS) deficiency, Argininemia (arginase deficiency), Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome, N-Acetylglutamate Synthase (NAGS) deficiency, Ornithine Transcarbamylase (OTC) deficiency, and Pyruvate Dehydrogenase (PDH) complex deficiency. Furthermore, the etiology, prevalence and commonly used analytical techniques for screening of aminoacidopathies are briefly described. This information would be helpful to researchers and clinicians especially from developing countries to initiate newborn screening programs for aminoacidopathies.

  6. The use of cultured cells with defects of citrulline metabolism in diagnosis and in the study of intercellular communication

    International Nuclear Information System (INIS)

    Davidson, J.S.

    1985-02-01

    Citrullinemia and argininosuccinic aciduria are two disorders resulting from defects in two consecutive enzymes of the urea cycle, argininosuccinate synthetase and argininosuccinate lyase. Fibroblast cell lines were derived from patients with these disorders and the diagnoses, which had been made on the basis of amino acid levels in plasma and urine, were confirmed by demonstrating that the cell lines were unable to incorporate 14 C-citrulline into protein. DNA from the argininosuccinate synthetase-deficient (ASS-) cells was analysed by restriction enzyme digestion and hybridisation to a cDNA probe which had been cloned from human argininosuccinate synthetase mRNA. No defect in the patient's DNA could be demonstrated, indicating that no major deletions in the argininosuccinate synthetase genes were present in this patient. Co-cultures of the ASS- and argininosuccinate lyase-deficient (ASL-) fibroblasts were able to incorporate 14 C-citrulline into protein. Co-cultures of ASS- and ASL-cells were used as an assay system for measuring intercellular junctional communication. This allowed quantitation of the effects of pH and extra-cellular divalent cations on junctional communication. Tumor promoters such as phorbol esters and organochlorine pesticides have been reported to inhibit intercellular junctional communication in other systems, and this inhibitory activity may be related to the mechanism of tumor promotion. Retinoic acid and other retinoids also inhibited junctional communication, and the inhibitory effects of retinoic acid and TPA were additive. It is concluded that co-cultures of ASS- and ASL-cells constitute a useful system for providing quantitative measurements of intercellular junctional communication under a wide range of experimental conditions

  7. When silence is noise: infantile-onset Barth syndrome caused by a synonymous substitution affecting TAZ gene transcription.

    Science.gov (United States)

    Ferri, L; Dionisi-Vici, C; Taurisano, R; Vaz, F M; Guerrini, R; Morrone, A

    2016-11-01

    Barth syndrome (BTHS) is an X-linked inborn error of metabolism which affects males. The main manifestations are cardiomyopathy, myopathy, hypotonia, growth delay, intermittent neutropenia and 3-methylglutaconic aciduria. Diagnosis is confirmed by mutational analysis of the TAZ gene and biochemical dosage of the monolysocardiolipin/tetralinoleoyl cardiolipin (MLCL:L4-CL) ratio. We report a 6-year-old boy who presented with severe hypoglycemia, lactic acidosis and severe dilated cardiomyopathy soon after birth. The MLCL:L4-CL ratio confirmed BTHS (3.90 on patient's fibroblast, normal: 0-0.3). Subsequent sequencing of the TAZ gene revealed only the new synonymous variant NM_000116.3 (TAZ):c.348C>T p.(Gly116Gly), which did not appear to affect the protein sequence. In silico prediction analysis suggested the new c.348C>T nucleotide change could alter the TAZ mRNA splicing processing. We analyzed TAZ mRNAs in the patient's fibroblasts and found an abnormal skipping of 24 bases (NM_000116.3:c.346_371), with the consequent ablation of 8 amino acid residues in the tafazzin protein (NP_000107.1:p.Lys117_Gly124del). Molecular analysis of at risk female family members identified the patient's sister and mother as heterozygous carriers. Apparently harmless synonymous variants in the TAZ gene can damage gene expression. Such findings widen our knowledge of molecular heterogeneity in BTHS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2017-03-01

    Full Text Available Background/Aims: Mevalonate Kinase Deficiency (MKD, is a hereditary disease due to mutations in mevalonate kinase gene (MVK. MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA, the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. Methods: SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. Results: MVK mutants’ over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. Conclusions: We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation.

  9. Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency.

    Science.gov (United States)

    Tricarico, Paola Maura; Romeo, Alessandra; Gratton, Rossella; Crovella, Sergio; Celsi, Fulvio

    2017-01-01

    Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA), the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. MVK mutants' over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor) further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  10. Persistent pulmonary arterial hypertension in the newborn (PPHN): a frequent manifestation of TMEM70 defective patients.

    Science.gov (United States)

    Catteruccia, Michela; Verrigni, Daniela; Martinelli, Diego; Torraco, Alessandra; Agovino, Teresa; Bonafé, Luisa; D'Amico, Adele; Donati, Maria Alice; Adorisio, Rachele; Santorelli, Filippo Maria; Carrozzo, Rosalba; Bertini, Enrico; Dionisi-Vici, Carlo

    2014-03-01

    Mutations in the TMEM70 are the most common cause of nuclear ATP synthase deficiency resulting in a distinctive phenotype characterized by severe neonatal hypotonia, hypertrophic cardiomyopathy (HCMP), facial dysmorphism, severe lactic acidosis, hyperammonemia and 3-methylglutaconic aciduria (3-MGA). We collected 9 patients with genetically confirmed TMEM70 defect from 8 different families. Six were homozygous for the c.317-2A>G mutation, 2 were compound heterozygous for mutations c.317-2A>G and c.628A>C and 1 was homozygous for the novel c.701A>C mutation. Generalized hypotonia, lactic acidosis, hyperammonemia and 3-MGA were present in all since birth. Five patients presented acute respiratory distress at birth requiring intubation and ventilatory support. HCMP was detected in 5 newborns and appeared a few months later in 3 additional children. Five patients showed a severe and persistent neonatal pulmonary hypertension (PPHN) requiring Nitric Oxide (NO) and/or sildenafil administration combined in 2 cases with high-frequency oscillatory (HFO) ventilation. In 3 of these patients, echocardiography detected signs of HCMP at birth. PPHN is a life-threatening poorly understood condition with bad prognosis if untreated. Pulmonary hypertension has rarely been reported in mitochondrial disorders and, so far, it has been described in association with TMEM70 deficiency only in one patient. This report further expands the clinical and genetic spectrum of the syndrome indicating PPHN as a frequent and life-threatening complication regardless of the type of mutation. Moreover, in these children PPHN appears even in the absence of an overt cardiomyopathy, thus representing an early sign and a clue for diagnosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Alkaptonuria in France: past experience and lessons for the future.

    Science.gov (United States)

    Aquaron, Robert Raphael

    2011-12-01

    Alkaptonuria (AKU) is an autosomal recessive disorder due to homogentisate 1,2-dioxygenase (HGD) deficiency in the liver and characterized by a triad of signs, according to chronology of appearance: homogentisic aciduria (HGA) or alkaptonuria, ochronosis then ochronotic arthropathy. This inborn error of metabolism is caused by mutations in the HGD gene. In this work we report observations of 96 AKU French patients from 81 families collected in the literature since 1882 and from our personal contribution since 1986, giving an incidence of the disease of around 1:680,000 (96/64.10(6)). As expected for an autosomal recessive disorder the main findings of this study were: a slight predominance of males (51/93, 54,8%) over females (42/93, 45,2%), a strong predominance of sibships with one affected individual (68/81, 84,0%) over sibships with two (11/81, 13.6%) and three(2/81, 2.4%) affected individuals. AKU families are scaterred among the French territory suggesting that most cases occured in non-consanguineous unions. Consanguinity was only found in five families. Other peculiarities of this study were (a) ten of these families have both parents from a foreign geographical origin: Poland(3), Italy(3), Portugal(2), Ukraine(1) and India(1) and four families with only one foreign parent (Algeria, Armenia, Serbia, UK), (b) HGD mutations were found in 23 families, (c) four of theses 96 patients were seen by us respectively 28, 29, 39 and 45 years after their report in the literature and (d) seven patients present cardiac and/or renal complications.

  12. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    Science.gov (United States)

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-01-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles. PMID:9529363

  13. Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis.

    Science.gov (United States)

    Majd, Homa; King, Martin S; Smith, Anthony C; Kunji, Edmund R S

    2018-01-01

    Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by >70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes. Copyright © 2017. Published by Elsevier B.V.

  14. Refining low protein modular feeds for children on low protein tube feeds with organic acidaemias.

    Science.gov (United States)

    Daly, A; Evans, S; Ashmore, C; Chahal, S; Santra, S; MacDonald, A

    2017-12-01

    Children with inherited metabolic disorders (IMD) who are dependent on tube feeding and require a protein restriction are commonly fed by 'modular tube feeds' consisting of several ingredients. A longitudinal, prospective two-phase study, conducted over 18 months assessed the long-term efficacy of a pre-measured protein-free composite feed. This was specifically designed to meet the non-protein nutritional requirements of children (aged over 1 year) with organic acidaemias on low protein enteral feeds and to be used as a supplement with an enteral feeding protein source. All non-protein individual feed ingredients were replaced with one protein-free composite feed supplying fat, carbohydrate, and micronutrients. Thirteen subjects, median age 7.4y (3-15.5y), all nutritionally tube dependent (supplying nutritional intake: ≥ 90%, n = 12; 75%, n = 1), and diagnosed with organic acidaemias (Propionic acidaemia, n = 6; Vitamin B 12 non-responsive methyl malonic acidaemia, n = 4; Isovaleric acidaemia, n = 2; Glutaric aciduria type1, n = 1); were studied. Nutritional intake, biochemistry and anthropometry were monitored at week - 8, 0, 12, 26 and 79. Energy intake remained unchanged, providing 76% of estimated energy requirements. Dietary intakes of vitamins, minerals and essential fatty acids significantly increased from week 0 to week 79, but sodium, potassium, magnesium, decosahexanoic acid and fibre did not meet suggested requirements. Plasma zinc, selenium, haemoglobin and MCV significantly improved, and growth remained satisfactory. Natural protein intake met WHO/FAO/UNU 2007 recommendations. A protein-free composite feed formulated to meet the non-protein nutritional requirements of children aged over 1 year improved nutritional intake, biochemical nutritional status, and simplified enteral tube feeding regimens in children with organic acidaemias.

  15. Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain.

    Science.gov (United States)

    Ribeiro, Rafael Teixeira; Zanatta, Ângela; Amaral, Alexandre Umpierrez; Leipnitz, Guilhian; de Oliveira, Francine Hehn; Seminotti, Bianca; Wajner, Moacir

    2018-04-01

    Tissue accumulation of L-2-hydroxyglutaric acid (L-2-HG) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic inherited disease characterized by neurological symptoms and brain white matter abnormalities whose pathogenesis is not yet well established. L-2-HG was intracerebrally administered to rat pups at postnatal day 1 (P1) to induce a rise of L-2-HG levels in the central nervous system (CNS). Thereafter, we investigated whether L-2-HG in vivo administration could disturb redox homeostasis and induce brain histopathological alterations in the cerebral cortex and striatum of neonatal rats. L-2-HG markedly induced the generation of reactive oxygen species (increase of 2',7'-dichloroflurescein-DCFH-oxidation), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione-GSH) and sulfhydryl content in the cerebral cortex. Alterations of the activities of various antioxidant enzymes were also observed in the cerebral cortex and striatum following L-2-HG administration. Furthermore, L-2-HG-induced lipid peroxidation and GSH decrease in the cerebral cortex were prevented by the antioxidant melatonin and by the classical antagonist of NMDA glutamate receptor MK-801, suggesting the involvement of reactive species and of overstimulation of NMDA receptor in these effects. Finally, L-2-HG provoked significant vacuolation and edema particularly in the cerebral cortex with less intense alterations in the striatum that were possibly associated with the unbalanced redox homeostasis caused by this metabolite. Taken together, it is presumed that these pathomechanisms may underlie the neurological symptoms and brain abnormalities observed in the affected patients.

  16. Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways.

    Science.gov (United States)

    Antunes-Fernandes, E C; van Gastelen, S; Dijkstra, J; Hettinga, K A; Vervoort, J

    2016-08-01

    Methane (CH4) emission of dairy cows contributes significantly to the carbon footprint of the dairy chain; therefore, a better understanding of CH4 formation is urgently needed. The present study explored the milk metabolome by gas chromatography-mass spectrometry (milk volatile metabolites) and nuclear magnetic resonance (milk nonvolatile metabolites) to better understand the biological pathways involved in CH4 emission in dairy cattle. Data were used from a randomized block design experiment with 32 multiparous Holstein-Friesian cows and 4 diets. All diets had a roughage:concentrate ratio of 80:20 (dry matter basis) and the roughage was grass silage (GS), corn silage (CS), or a mixture of both (67% GS, 33% CS; 33% GS, 67% CS). Methane emission was measured in climate respiration chambers and expressed as CH4 yield (per unit of dry matter intake) and CH4 intensity (per unit of fat- and protein-corrected milk; FPCM). No volatile or nonvolatile metabolite was positively related to CH4 yield, and acetone (measured as a volatile and as a nonvolatile metabolite) was negatively related to CH4 yield. The volatile metabolites 1-heptanol-decanol, 3-nonanone, ethanol, and tetrahydrofuran were positively related to CH4 intensity. None of the volatile metabolites was negatively related to CH4 intensity. The nonvolatile metabolites acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-acetylsugar A were positively related to CH4 intensity, and uridine diphosphate (UDP)-hexose B and citrate were negatively related to CH4 intensity. Several volatile and nonvolatile metabolites that were correlated with CH4 intensity also were correlated with FPCM and not significantly related to CH4 intensity anymore when FPCM was included as covariate. This suggests that changes in these milk metabolites may be related to changes in milk yield or metabolic processes involved in milk synthesis. The UDP-hexose B was correlated with FPCM, whereas citrate was not. Both metabolites were

  17. Vitamin B2, vitamin B12 and total homocysteine status in children and their associations with dietary intake of B-vitamins from different food groups: the Healthy Growth Study.

    Science.gov (United States)

    Manios, Yannis; Moschonis, George; Dekkers, Renske; Mavrogianni, Christina; Grammatikaki, Eva; van den Heuvel, Ellen

    2017-02-01

    To examine the associations between the dietary intakes of certain B-vitamins from different food sources with the relevant plasma status indices in children. A representative subsample of 600 children aged 9-13 years from the Healthy Growth Study was selected. Dietary intakes of vitamins B 2 , B 12 , B 6 and folate derived from different food sources were estimated. Plasma levels of vitamin B 2 (or riboflavin), methylmalonic acid (MMA) and total homocysteine (tHcy) were also measured. Plasma concentrations of vitamin B 2 below 3 μg/L were found in 22.8 % of the children. Children in the lower quartile of dietary vitamin B 2 intake were found to have the lowest plasma vitamin B 2 levels compared to children in the upper three quartiles (5.06 ± 7.63 vs. 6.48 ± 7.88, 6.34 ± 7.63 and 6.05 ± 4.94 μg/L respectively; P = 0.003). Regarding vitamin B 12 children in the lower quartile of dietary intake had higher mean plasma tHcy levels compared to children in the upper two quartiles, respectively (6.00 ± 1.79 vs. 5.41 ± 1.43 and 5.46 ± 1.64 μmol/L; P = 0.012). Positive linear associations were observed between plasma vitamin B 2 levels and dietary vitamin B 2 derived from milk and fruits (β = 0.133; P = 0.001 and β = 0.086; P = 0.037). Additionally, nonlinear associations were also observed between plasma vitamin B 2 levels and vitamin B 2 derived from red meat, as well as between tHcy levels and vitamins B 12 and B 6 derived from milk; vitamins B 12 , B 6 and folate derived from cereal products and folate derived from fruits. A considerably high prevalence of poor plasma vitamin B 2 status was observed in children. The intake of milk, fruits and cereals was associated with more favorable tHcy levels, while the intake of milk and fruits with more favorable plasma B2 levels. However, these findings need to be further confirmed from controlled dietary intervention studies examining the modulation of biomarkers of B-vitamins.

  18. One-carbon metabolites and telomere length in a prospective and randomized study of B- and/or D-vitamin supplementation.

    Science.gov (United States)

    Pusceddu, Irene; Herrmann, Markus; Kirsch, Susanne H; Werner, Christian; Hübner, Ulrich; Bodis, Marion; Laufs, Ulrich; Widmann, Thomas; Wagenpfeil, Stefan; Geisel, Jürgen; Herrmann, Wolfgang

    2017-08-01

    Vitamin B deficiency is common in elderly people and has been associated with an increased risk of developing age-related diseases. B-vitamins are essential for the synthesis and stability of DNA. Telomers are the end caps of chromosomes that shorten progressively with age, and short telomers are associated with DNA instability. In the present randomized intervention study, we investigated whether the one-carbon metabolism is related to telomere length, a surrogate marker for cellular aging. Sixty-five subjects (>54 years) were randomly assigned to receive either a daily combination of vitamin D3 (1200 IU), folic acid (0.5 mg), vitamin B 12 (0.5 mg), vitamin B 6 (50 mg) and calcium carbonate (456 mg) (group A) or vitamin D3 and calcium carbonate alone (group B). Blood testing was performed at baseline and after 1 year of supplementation. The concentrations of several metabolites of the one-carbon pathway, as well as relative telomere length (RTL) and 5,10-methylenetetrahydrofolate reductase C677T genotype, were analyzed. At baseline, age- and gender-adjusted RTL correlated with total folate and 5-methyltetrahydrofolate (5-methylTHF). Subjects with RTL above the median had higher concentrations of total folate and 5-methylTHF compared to subjects below the median. At study end, gender- and age-adjusted RTL correlated in group A with methylmalonic acid (MMA; r = -0.460, p = 0.0012) and choline (r = 0.434, p = 0.0021) and in group B with 5,10-methenyltetrahydrofolate (r = 0.455, p = 0.026) and dimethylglycine (DMG; r = -0.386, p = 0.047). Subjects in the group A with RTL above the median had lower MMA and higher choline compared to subjects below the median. The present pilot study suggests a functional relationship between one-carbon metabolism and telomere length. This conclusion is supported by several correlations that were modified by B-vitamin supplementation. In agreement with our hypothesis, the availability of nucleotides and

  19. Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/mass spectrometry.

    Science.gov (United States)

    Zhang, Hongyou; Wu, Ling; Xu, Chuang; Xia, Cheng; Sun, Lingwei; Shu, Shi

    2013-09-26

    Ketosis is an important problem for dairy cows` production performance. However, it is still little known about plasma metabolomics details of dairy ketosis. A gas chromatography/mass spectrometry (GC/MS) technique was used to investigate plasma metabolic differences in cows that had clinical ketosis (CK, n=22), subclinical ketosis (SK, n=32), or were clinically normal controls (NC, n=22). The endogenous plasma metabolome was measured by chemical derivatization followed by GC/MS, which led to the detection of 267 variables. A two-sample t-test of 30, 32, and 13 metabolites showed statistically significant differences between SK and NC, CK and NC, and CK and SK, respectively. Orthogonal signal correction-partial least-square discriminant analysis (OPLS-DA) revealed that the metabolic patterns of both CK and SK were mostly similar, with the exception of a few differences. The development of CK and SK involved disturbances in many metabolic pathways, mainly including fatty acid metabolism, amino acid metabolism, glycolysis, gluconeogenesis, and the pentose phosphate pathway. A diagnostic model arbitrary two groups was constructed using OPLS-DA and receiver-operator characteristic curves (ROC). Multivariate statistical diagnostics yielded the 19 potential biomarkers for SK and NC, 31 for CK and NC, and 8 for CK and SK with area under the curve (AUC) values. Our results showed the potential biomarkers from CK, SK, and NC, including carbohydrates, fatty acids, amino acids, even sitosterol and vitamin E isomers, etc. 2-piperidinecarboxylic acid and cis-9-hexadecenoic acid were closely associated with metabolic perturbations in ketosis as Glc, BHBA and NEFA for dealing with metabolic disturbances of ketosis in clinical practice. However, further research is needed to explain changes of 2,3,4-trihydroxybutyric acid, 3,4-dihydroxybutyric acid, α-aminobutyric acid, methylmalonic acid, sitosterol and α-tocopherol in CK and SK, and to reveal differences between CK and SK. Our

  20. Radioiodinated phenylalkyl malonic acid derivatives as pH-sensitive SPECT tracers.

    Directory of Open Access Journals (Sweden)

    Matthias Bauwens

    Full Text Available INTRODUCTION: In vivo pH imaging has been a field of interest for molecular imaging for many years. This is especially important for determining tumor acidity, an important driving force of tumor invasion and metastasis formation, but also in the process of apoptosis. METHODS: 2-(4-[(123I]iodophenethyl-2-methylmalonic acid (IPMM, 2-(4-[(123I]iodophenethyl-malonic acid (IPM, 2-(4-[(123I]iodobenzyl-malonic acid (IBMM and 4-[(123I]iodophthalic acid (IP were radiolabeled via the Cu(+ isotopic nucleophilic exchange method. All tracers were tested in vitro in buffer systems to assess pH driven cell uptake. In vivo biodistribution of [(123I]IPMM and [(123I]IPM was determined in healthy mice and the pH targeting efficacy in vivo of [(123I]IPM was evaluated in an anti-Fas monoclonal antibody (mAb apoptosis model. In addition a mouse RIF-1 tumor model was explored in which tumor pH was decreased from 7.0 to 6.5 by means of induction of hyperglycemia in combination with administration of meta-iodobenzylguanidine. RESULTS: Radiosynthesis resulted in 15-20% for iodo-bromo exchange and 50-60% yield for iodo-iodo exchange while in vitro experiments showed a pH-sensitive uptake for all tracers. Shelf-life stability and in vivo stability was excellent for all tracers. [(123I]IPMM and [(123I]IPM showed a moderately fast predominantly biliary clearance while a high retention was observed in blood. The biodistribution profile of [(123I]IPM was found to be most favorable in view of pH-specific imaging. [(123I]IPM showed a clear pH-related uptake pattern in the RIF-1 tumor model. CONCLUSION: Iodine-123 labeled malonic acid derivates such as [(123I]IPM show a clearly pH dependent uptake in tumor cells both in vitro and in vivo which allows to visualize regional acidosis. However, these compounds are not suitable for detection of apoptosis due to a poor acidosis effect.

  1. Effect of two different sublingual dosages of vitamin B12 on cobalamin nutritional status in vegans and vegetarians with a marginal deficiency: A randomized controlled trial.

    Science.gov (United States)

    Del Bo', Cristian; Riso, Patrizia; Gardana, Claudio; Brusamolino, Antonella; Battezzati, Alberto; Ciappellano, Salvatore

    2018-02-15

    Vegetarians and vegans are more vulnerable to vitamin B 12 deficiency with severe risks of megaloblastic anemia, cognitive decline, neuropathy, and depression. An easy and simple method of supplementation consists of taking one weekly dosage of 2000 μg. However, single large oral doses of vitamin B 12 are poorly absorbed. The present research evaluates the ability of two different sublingual dosages of vitamin B 12 (350 μg/week vs 2000 μg/week) in improving cyanocobalamin (vitamin B 12 ) nutritional status in vegans and vegetarians with a marginal deficiency. A 12-week randomized, double-blind, controlled, parallel intervention trial was performed. Forty subjects with marginal vitamin B 12 deficiency were enrolled and randomly divided into two groups: test group Ld (low dose, 350 μg/week) and control group Hd (high dose, 2000 μg/week) vitamin B 12 supplementation. Blood samples were collected at baseline and after 15, 30, 60, and 90 days from the intervention for the determination of vitamin B 12 , related metabolic markers, and blood cell counts. Two-way analysis of variance showed a significant effect of time (P < 0.0001) and of time × treatment interaction (P = 0.012) on serum concentration of vitamin B 12 that increased after 90-day supplementation (Ld and Hd) compared to baseline. Both the supplements increased (P < 0.0001, time effect) the levels of holotranscobalamin, succinic acid, methionine and wellness parameter, while decreased (P < 0.0001, time effect) the levels of methylmalonic acid, homocysteine and folate compared to baseline. No difference was observed between groups (LdvsHd). No effect was detected for vitamin B 6 and blood cell count. In our experimental conditions, both supplements were able to restore adequate serum concentrations of vitamin B 12 and to improve the levels of related metabolic blood markers in subjects with a marginal deficiency. The results support the use of a sublingual dosage of 50 μg/day (350

  2. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces.

    Science.gov (United States)

    Miros, François N; Zhao, Yingjie; Sargsyan, Gevorg; Pupier, Marion; Besnard, Céline; Beuchat, César; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-02-18

    Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion-π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the (1) H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen-deuterium (H-D) exchange for 11 different examples, excluding controls. The velocity of H-D exchange increases with π acidity (NDI core substituents: SO2 R>SOR>H>OR>OR/NR2 >SR>NR2 ). The H-D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11-13 atoms). Most importantly, H-D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to -18.8 kJ mol(-1) are obtained for H-D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa =10.9 calculates to a ΔpKa =-5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as "impossible" in biology, the found enolate-π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion-π activities can be expected only from

  3. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea.

    Science.gov (United States)

    Xu, Zhen; Wang, Miaomiao; Ye, Bang-Ce

    2017-10-15

    Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n -propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398-3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398-3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398-3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (Δ pccD ) and downregulated 3-fold in the pccD overexpression strain (WT/pIB- pccD ), indicating that PccD was a negative transcriptional regulator of SACE_3398-3400. The Δ pccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB- pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the Δ pccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and

  4. Alanine-glyoxylate aminotransferase 2 (AGXT2 polymorphisms have considerable impact on methylarginine and β-aminoisobutyrate metabolism in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Anja Kittel

    -β-aminoisobutyric aciduria.

  5. Urea cycle disorders in Spain: an observational, cross-sectional and multicentric study of 104 cases.

    Science.gov (United States)

    Martín-Hernández, Elena; Aldámiz-Echevarría, Luis; Castejón-Ponce, Esperanza; Pedrón-Giner, Consuelo; Couce, María Luz; Serrano-Nieto, Juliana; Pintos-Morell, Guillem; Bélanger-Quintana, Amaya; Martínez-Pardo, Mercedes; García-Silva, María Teresa; Quijada-Fraile, Pilar; Vitoria-Miñana, Isidro; Dalmau, Jaime; Lama-More, Rosa A; Bueno-Delgado, María Amor; Del Toro-Riera, Mirella; García-Jiménez, Inmaculada; Sierra-Córcoles, Concepción; Ruiz-Pons, Mónica; Peña-Quintana, Luis J; Vives-Piñera, Inmaculada; Moráis, Ana; Balmaseda-Serrano, Elena; Meavilla, Silvia; Sanjurjo-Crespo, Pablo; Pérez-Cerdá, Celia

    2014-11-30

    Advances in the diagnosis and treatment of urea cycle disorders (UCDs) have led to a higher survival rate. The purpose of this study is to describe the characteristics of patients with urea cycle disorders in Spain. Observational, cross-sectional and multicenter study. Clinical, biochemical and genetic data were collected from patients with UCDs, treated in the metabolic diseases centers in Spain between February 2012 and February 2013, covering the entire Spanish population. Heterozygous mothers of patients with OTC deficiency were only included if they were on treatment due to being symptomatic or having biochemistry abnormalities. 104 patients from 98 families were included. Ornithine transcarbamylase deficiency was the most frequent condition (64.4%) (61.2% female) followed by type 1 citrullinemia (21.1%) and argininosuccinic aciduria (9.6%). Only 13 patients (12.5%) were diagnosed in a pre-symptomatic state. 63% of the cases presented with type intoxication encephalopathy. The median ammonia level at onset was 298 μmol/L (169-615). The genotype of 75 patients is known, with 18 new mutations having been described. During the data collection period four patients died, three of them in the early days of life. The median current age is 9.96 years (5.29-18), with 25 patients over 18 years of age. Anthropometric data, expressed as median and z-score for the Spanish population is shown. 52.5% of the cases present neurological sequelae, which have been linked to the type of disease, neonatal onset, hepatic failure at diagnosis and ammonia values at diagnosis. 93 patients are following a protein restrictive diet, 0.84 g/kg/day (0.67-1.10), 50 are receiving essential amino acid supplements, 0.25 g/kg/day (0.20-0.45), 58 arginine, 156 mg/kg/day (109-305) and 45 citrulline, 150 mg/kg/day (105-199). 65 patients are being treated with drugs: 4 with sodium benzoate, 50 with sodium phenylbutyrate, 10 with both drugs and 1 with carglumic acid. Studies like this make it

  6. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Ege Univ. Hospital, Bornova, Izmir (Turkey). Dept. of Radiology

    2004-08-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm{sup 2} images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm{sup 2} images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated

  7. Quality of life, psychological adjustment, and adaptive functioning of patients with intoxication-type inborn errors of metabolism - a systematic review.

    Science.gov (United States)

    Zeltner, Nina A; Huemer, Martina; Baumgartner, Matthias R; Landolt, Markus A

    2014-10-25

    In recent decades, considerable progress in diagnosis and treatment of patients with intoxication-type inborn errors of metabolism (IT-IEM) such as urea cycle disorders (UCD), organic acidurias (OA), maple syrup urine disease (MSUD), or tyrosinemia type 1 (TYR 1) has resulted in a growing group of long-term survivors. However, IT-IEM still require intense patient and caregiver effort in terms of strict dietetic and pharmacological treatment, and the threat of metabolic crises is always present. Furthermore, crises can affect the central nervous system (CNS), leading to cognitive, behavioural and psychiatric sequelae. Consequently, the well-being of the patients warrants consideration from both a medical and a psychosocial viewpoint by assessing health-related quality of life (HrQoL), psychological adjustment, and adaptive functioning. To date, an overview of findings on these topics for IT-IEM is lacking. We therefore aimed to systematically review the research on HrQoL, psychological adjustment, and adaptive functioning in patients with IT-IEM. Relevant databases were searched with predefined keywords. Study selection was conducted in two steps based on predefined criteria. Two independent reviewers completed the selection and data extraction. Eleven articles met the inclusion criteria. Studies were of varying methodological quality and used different assessment measures. Findings on HrQoL were inconsistent, with some showing lower and others showing higher or equal HrQoL for IT-IEM patients compared to norms. Findings on psychological adjustment and adaptive functioning were more consistent, showing mostly either no difference or worse adjustment of IT-IEM patients compared to norms. Single medical risk factors for HrQoL, psychological adjustment, or adaptive functioning have been addressed, while psychosocial risk factors have not been addressed. Data on HrQoL, psychological adjustment, and adaptive functioning for IT-IEM are sparse. Studies are inconsistent in

  8. Oculocerebrorenal syndrome of Lowe: magnetic resonance imaging findings in the first six years of life

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Neto, Arnolfo de; Ono, Sergio Eiji; Cardoso, Georgina de Melo; Santos, Mara Lucia Schmitz Ferreira; Celidonio, Izabela [Hospital Pequeno Principe, Curitiba, PR (Brazil)], e-mail: ono.sergio@gmail.com

    2009-06-15

    The oculocerebrorenal syndrome of Lowe (OCRL), was first recognized as a distinct disease in 1952 by Drs. Lowe, Terrey and MacLachlan at Massachusetts General Hospital, in Boston, USA, describing three male children with organic aciduria, decreased renal ammonia production, hydrophtalmos and mental retardation. The X-linked recessive inheritance pattern was recognized first by LeFebvre. It is present in all races, with a predominance in those of Caucasian and Asian ancestries. Rarely females are affected. It is a very rare disease, with estimated prevalence in the general population of 1 in 500,000. In USA the Lowe Syndrome Association (LSA) documented 190 living patients in the year 2000 (0.67 x million inhabitants). It is caused by a mutation in the gene encoding oculocerebrorenal- Lowe protein (OCRL1), isolated in 1992, linked to the Xq24-q26 region of the X chromosome,4-6. Approximately 60% of OCRL patients demonstrate a loss of OCRL gene expression, and the definitive laboratory test, that can be used for prenatal diagnosis, is the biochemical assay for deficiency of phosphatidylinositol 4,5-biphosphate 5-phosphate in cultured fibroblasts. The classic triad of eye, central nervous system, and kidney involvement are required for the diagnosis of Lowe's syndrome. Cataract is present at birth in all patients and glaucoma is detected within the first year of life. Hypotonia compromises suction and causes serious respiratory problems in the first period of life. Motor development is retarded and mental retardation is moderate or severe in almost all cases. Obsessive-compulsive behavior is typical. Seizure is seen in approximately 50% of the patients over 18 years old. Renal disease is primarily characterized by renal Fanconi syndrome but many children are asymptomatic at birth. Renal involvement is initially related to bicarbonate, salt and water wasting, causing failure to thrive. Later, a significant number of patients develop chronic renal failure. The

  9. N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pups.

    Directory of Open Access Journals (Sweden)

    Fernanda S Rodrigues

    Full Text Available BACKGROUND AND AIMS: Glutaric aciduria type I (GA-I is characterized by accumulation of glutaric acid (GA and neurological symptoms, such as cognitive impairment. Although this disease is related to oxidative stress and inflammation, it is not known whether these processes facilitate the memory impairment. Our objective was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS in spatial memory test, antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. We also evaluated the effect of N-acetylcysteine (NAC on theses markers. METHODS: Rat pups were injected with GA (5 umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life, and were supplemented with NAC (150 mg/kg/day; intragastric gavage; for the same period. LPS (2 mg/kg; E.coli 055 B5 or vehicle (saline 0.9% was injected intraperitoneally, once per day, from 25th to 28th day of life. Oxidative stress and inflammatory biomarkers as well as hippocampal volume were assessed. RESULTS: GA caused spatial learning deficit in the Barnes maze and LPS potentiated this effect. GA and LPS increased TNF-α and IL-1β levels. The co-administration of these compounds potentiated the increase of IL-1β levels but not TNF-α levels in the hippocampus. GA and LPS increased TBARS (thiobarbituric acid-reactive substance content, reduced antioxidant defenses and inhibited Na+, K+-ATPase activity. GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. NAC protected against impairment of spatial learning and increase of cytokines levels. NAC Also protected against inhibition of Na+,K+-ATPase activity and oxidative markers. CONCLUSIONS: These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Thus, NAC could

  10. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    International Nuclear Information System (INIS)

    Sener, R.N.

    2004-01-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm 2 images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm 2 images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated diffusion pattern

  11. Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion.

    Science.gov (United States)

    Ortega-Sáenz, Patricia; Macías, David; Levitsky, Konstantin L; Rodríguez-Gómez, José A; González-Rodríguez, Patricia; Bonilla-Henao, Victoria; Arias-Mayenco, Ignacio; López-Barneo, José

    2016-12-15

    Biotin, a vitamin whose main role is as a coenzyme for carboxylases, accumulates at unusually large amounts within cells of the carotid body (CB). In biotin-deficient rats biotin rapidly disappears from the blood; however, it remains at relatively high levels in CB glomus cells. The CB contains high levels of mRNA for SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Animals with biotin deficiency exhibit pronounced metabolic lactic acidosis. Remarkably, glomus cells from these animals have normal electrical and neurochemical properties. However, they show a marked decrease in the size of quantal dopaminergic secretory events. Inhibitors of the vesicular monoamine transporter 2 (VMAT2) mimic the effect of biotin deficiency. In biotin-deficient animals, VMAT2 protein expression decreases in parallel with biotin depletion in CB cells. These data suggest that dopamine transport and/or storage in small secretory granules in glomus cells depend on biotin. Biotin is a water-soluble vitamin required for the function of carboxylases as well as for the regulation of gene expression. Here, we report that biotin accumulates in unusually large amounts in cells of arterial chemoreceptors, carotid body (CB) and adrenal medulla (AM). We show in a biotin-deficient rat model that the vitamin rapidly disappears from the blood and other tissues (including the AM), while remaining at relatively high levels in the CB. We have also observed that, in comparison with other peripheral neural tissues, CB cells contain high levels of SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Biotin-deficient rats show a syndrome characterized by marked weight loss, metabolic lactic acidosis, aciduria and accelerated breathing with normal responsiveness to hypoxia. Remarkably, CB cells from biotin-deficient animals have normal electrophysiological and neurochemical (ATP levels and catecholamine synthesis) properties; however

  12. Oculocerebrorenal syndrome of Lowe: magnetic resonance imaging findings in the first six years of life

    International Nuclear Information System (INIS)

    Carvalho-Neto, Arnolfo de; Ono, Sergio Eiji; Cardoso, Georgina de Melo; Santos, Mara Lucia Schmitz Ferreira; Celidonio, Izabela

    2009-01-01

    The oculocerebrorenal syndrome of Lowe (OCRL), was first recognized as a distinct disease in 1952 by Drs. Lowe, Terrey and MacLachlan at Massachusetts General Hospital, in Boston, USA, describing three male children with organic aciduria, decreased renal ammonia production, hydrophtalmos and mental retardation. The X-linked recessive inheritance pattern was recognized first by LeFebvre. It is present in all races, with a predominance in those of Caucasian and Asian ancestries. Rarely females are affected. It is a very rare disease, with estimated prevalence in the general population of 1 in 500,000. In USA the Lowe Syndrome Association (LSA) documented 190 living patients in the year 2000 (0.67 x million inhabitants). It is caused by a mutation in the gene encoding oculocerebrorenal- Lowe protein (OCRL1), isolated in 1992, linked to the Xq24-q26 region of the X chromosome,4-6. Approximately 60% of OCRL patients demonstrate a loss of OCRL gene expression, and the definitive laboratory test, that can be used for prenatal diagnosis, is the biochemical assay for deficiency of phosphatidylinositol 4,5-biphosphate 5-phosphate in cultured fibroblasts. The classic triad of eye, central nervous system, and kidney involvement are required for the diagnosis of Lowe's syndrome. Cataract is present at birth in all patients and glaucoma is detected within the first year of life. Hypotonia compromises suction and causes serious respiratory problems in the first period of life. Motor development is retarded and mental retardation is moderate or severe in almost all cases. Obsessive-compulsive behavior is typical. Seizure is seen in approximately 50% of the patients over 18 years old. Renal disease is primarily characterized by renal Fanconi syndrome but many children are asymptomatic at birth. Renal involvement is initially related to bicarbonate, salt and water wasting, causing failure to thrive. Later, a significant number of patients develop chronic renal failure. The treatment

  13. Cobalamin deficiency, hyperhomocysteinemia, and dementia

    Directory of Open Access Journals (Sweden)

    Steven F Werder

    2010-04-01

    : 200 picograms per milliliter or less is low, and 201 to 350 picograms per milliliter is borderline low. Other tests may be indicated, including plasma homocysteine, serum methylmalonic acid, antiparietal cell and anti-intrinsic factor antibodies, and serum gastrin level. In B12 deficiency dementia with versus without pernicious anemia, there appear to be different manifestations, need for further workup, and responses to treatment. Dementia of the Alzheimer’s type is a compatible diagnosis when B12 deficiency is found, unless it is caused by pernicious anemia. Patients with pernicious anemia generally respond favorably to supplemental B12 treatment, especially if pernicious anemia is diagnosed early in the course of the disease. Some patients without pernicious anemia, but with B12 deficiency and either mild cognitive impairment or mild to moderate dementia, might show some degree of cognitive improvement with supplemental B12 treatment. Evidence that supplemental B12 treatment is beneficial for patients without pernicious anemia, but with B12 deficiency and moderately-severe to severe dementia is scarce. Oral cyanocobalamin is generally favored over intramuscular cyanocobalamin.Keywords: Alzheimer, dementia, cognitive impairment, cognitive dysfunction, cobalamin, cyanocobalamin, B12, homocysteine, hyperhomocysteinemia, homocystinuria

  14. Spliced leader-based analyses reveal the effects of polycyclic aromatic hydrocarbons on gene expression in the copepod Pseudodiaptomus poplesia.

    Science.gov (United States)

    Zhuang, Yunyun; Yang, Feifei; Xu, Donghui; Chen, Hongju; Zhang, Huan; Liu, Guangxing

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic and carcinogenic pollutants that can adversely affect the development, growth and reproduction of marine organisms including copepods. However, knowledge on the molecular mechanisms regulating the response to PAH exposure in marine planktonic copepods is limited. In this study, we investigated the survival and gene expression of the calanoid copepod Pseudodiaptomus poplesia upon exposure to two PAHs, 1, 2-dimethylnaphthalene (1, 2-NAPH) and pyrene. Acute toxicity responses resulted in 96-h LC 50 of 788.98μgL -1 and 54.68μgL -1 for 1, 2-NAPH and pyrene, respectively. Using the recently discovered copepod spliced leader as a primer, we constructed full-length cDNA libraries from copepods exposed to sublethal concentrations and revealed 289 unique genes of diverse functions, including stress response genes and novel genes previously undocumented for this species. Eighty-three gene families were specifically expressed in PAH exposure libraries. We further analyzed the expression of seven target genes by reverse transcription-quantitative PCR in a time-course test with three sublethal concentrations. These target genes have primary roles in detoxification, oxidative defense, and signal transduction, and include different forms of glutathione S-transferase (GST), glutathione peroxidases (GPX), peroxiredoxin (PRDX), methylmalonate-semialdehyde dehydrogenase (MSDH) and ras-related C3 botulinum toxin substrate (RAC1). Expression stability of seven candidate reference genes were evaluated and the two most stable ones (RPL15 and RPS20 for 1, 2-NAPH exposure, RPL15 and EF1D for pyrene exposure) were used to normalize the expression levels of the target genes. Significant upregulation was detected in GST-T, GST-DE, GPX4, PRDX6 and RAC1 upon 1, 2-NAPH exposure, and GST-DE and MSDH upon pyrene exposure. These results indicated that the oxidative stress was induced and that signal transduction might be affected by PAH

  15. [SUCLA2-related encephalomyopathic mitochondrial DNA depletion syndrome: a case report and review of literature].

    Science.gov (United States)

    Liu, Zhimei; Fang, Fang; Ding, Changhong; Wu, Husheng; Lyu, Junlan; Wu, Yun

    2014-11-01

    To analyze the clinical characteristics of SUCLA2-related encephalomyopathic mitochondrial DNA depletion syndrome (MDS) in one patient, and review the latest clinical research reports. Clinical, laboratory and genetic data of one case of SUCLA2-related encephalomyopathic MDS diagnosed by department of Neurology, Beijing Children's Hospital in November, 2013 were reported, and through taking "SUCLA2" as key words to search at CNKI, Wanfang, PubMed and the Human Gene Mutation Database (HGMD) professional to date, the clinical characteristics of 24 reported cases of SUCLA2-related encephalomyopathic MDS in international literature in combination with our case were analyzed. (1) The patient was 5 years and 9 months old, born as a term small for gestational age infant whose birth weight was 2 400 g, and presented since birth with severe muscular hypotonia, feeding difficulties, failure to thrive, psychomotor retardation and hearing impairment. Until now, he still showed severe developmental retardation, together with muscular atrophy, thoracocyllosis and scoliosis, and facial features. The patient is the first born from consanguineous healthy parents, whose relationship is cousins. Laboratory tests showed urinary excretion of mild methylmalonic acid (MMA), elevated plasma lactate concentration, and increased C3-carnitine and C4-dicarboxylic-carnitine in plasma carnitine ester profiling. MRI showed brain atrophy-like and bilateral T2 hyperintensities in bilateral caudate nuclei and putamen. By Next-Generation Sequencing (NGS), we identified a novel homozygous missense mutation (c.970G > A) in the SUCLA2 in a highly conserved amino acid residue. (2) The total number was only 25 with a male to female ratio of 14: 11, and age of onset of 23 was 0-4 months. The most common clinical features in patients with SUCLA2 mutation were permanent hypotonia, muscle atrophy, psychomotor retardation and scoliosis or kyphosis. Frequent signs included hearing impairment, hyperkinesia

  16. Selected Abstracts of the 6th International Congress of UENPS; Valencia (Spain; November 23rd-25th 2016; Session “Neonatology and NICU clinical care and practices”

    Directory of Open Access Journals (Sweden)

    --- Various Authors

    2016-11-01

    Full Text Available Selected Abstracts of the 6th International Congress of UENPS; Valencia (Spain; November 23rd-25th 2016; Session “Neonatology and NICU clinical care and practices”ABS 1. BILATERAL CLAVICLE FRACTURE: A RARE CAUSE OF PERSISTENT CRYING • P. Cruz, P. Mendes, M. Anselmo, L. GonçalvesABS 2. NEONATAL TRANSPORT DURATION AND SHORT-TERM OUTCOME IN VERY-LOW-GESTATIONAL-AGE NEONATES • A. Matic, M. Gavrilovic LatinovicABS 3. PEMPHIGOID GESTATIONIS – A RARE CASE IN TWIN PREGNANCY • L. Gonçalves, E. Scortenschi, P. Cruz, P. Mendes, M. AnselmoABS 4. DEVELOPMENT OF A CLINICIAN-REPORTED OUTCOME (ClinRO MEASURE TO ASSESS READINESS FOR DISCHARGE FROM NEONATAL CARE AMONG EXTREMELY PRETERM INFANTS • M. Turner, R. Ward, J. Higginson, I. Hansen-Pupp, M. Vanya, E. Flood, G. Quiggle, A. Tocoian, A. Mangili, N. Barton, S. SardaABS 5. THE EFFECT OF THYROID HORMONES ON NICU ADMISSION DUE TO TRANSIENT TACHYPNEA OF NEWBORN IN LATE PRETERM AND TERM INFANTS • T. Gursoy, S. Ercin, P. Kayiran, B. GurakanABS 6. IMPROVING THE QUALITY OF PROLONGED JAUNDICE WORK-UPS IN THE OUTPATIENT DEPARTMENT IN A TERTIARY NEONATAL CENTRE • C.M. Moore, J. O’Loughlin, B.C. HayesABS 7. SAVE THE DATE? CORRECT RECORDING OF DAY OF LIFE AND CORRECTED GESTATIONAL AGE IN NICU • C.M. Moore, A.F. El-KhuffashABS 8. PARENTS IN NICU: THE IMPORTANCE OF INTEGRATION BETWEEN THE CURE AND THE CARE • G. De Bernardo, M. Svelto, M. Giordano, D. SordinoABS 9. THE PREVALENCE OF HEREDITARY HEARING LOSS IN 41,152 NEWBORNS DURING THE PERIOD 2011-2015 • S.T. Hsu, C.C. Hung, Y.N. Su, C.Y. Chen, H.C. Chou, W.S. Hsieh, C.C. Wu, P.N. TsaoABS 10. DEFICIENCY OF MULTIPLE acyl-CoA DEHYDROGENASE OR GLUTARIC ACIDURIA TYPE II • M. Torres, L. Geronès, J. Herrero, M.C. Cèspedes, F. Camba, J.A. Arranz, M. del Toro, F. CastilloABS 11. TEN YEARS OF EXPERIENCE IN CARRIER SCREENING FOR SPINAL MUSCULAR ATROPHY IN TAIWAN • C.Y. Chuang, C.C. Hung, Y.N. Su, P.N. TsaoABS 12. REDUCING MEDICATION ERRORS ON THE