WorldWideScience

Sample records for cb1 endocanabinoide cnr1

  1. Roles of G1359A polymorphism of the cannabinoid receptor gene (CNR1 on weight loss and adipocytokines after a hypocaloric diet Papel del polimorfismo G1359A del gen del receptor endocanabinoide tipo 1 (CNR1 en la perdida de peso y adipocitoquinas tras una dieta hipocalórica

    Directory of Open Access Journals (Sweden)

    D. A. De Luis

    2011-04-01

    Full Text Available Background: A intragenic biallelic polymorphism (1359 G/A of the CB1 gene resulting in the substitution of the G to A at nucleotide position 1359 in codon 435 (Thr, was reported as a common polymorphism in Caucasian populations. Intervention studies with this polymorphism have not been realized. Objective: We decided to investigate the role of the polymorphism (G1359A of CB1 receptor gene on adipocytokines response and weight loss secondary to a lifestyle modification (Mediterranean hypocaloric diet and exercise in obese patients. Design: A population of 94 patients with obesity was analyzed. Before and after 3 months on a hypocaloric diet, an anthropometric evaluation, an assessment of nutritional intake and a biochemical analysis were performed. The statistical analysis was performed for the combined G1359A and A1359A as a group and wild type G1359G as second group, with a dominant model. Results: Forty seven patients (50% had the genotype G1359G (wild type group and 47 (50% patients G1359A (41 patients, 43.6% or A1359A (6 patients, 6.4% (mutant type group had the genotype. In wild and mutant type groups, weight, body mass index, fat mass, waist circumference and systolic blood pressure decreased. In mutant type group, resistin (4.15 ± 1.7 ng/ml vs. 3.90 ± 2.1 ng/ml: P Antecedentes: Un polimorfismo intragénico (1359 G / A del gen del receptor CB1 que produce la sustitución en la posición 1359 en el codón 435 (Thr, se ha descrito como un polimorfismo común en poblaciones caucásicas. No se han realizado estudios de intervención dietética teniendo en cuenta este polimorfismo. Objetivo: Se decidió investigar el papel del polimorfismo (G1359A del gen del receptor CB1 en la respuesta a las adipocitoquinas y la pérdida de peso secundaria a una modificación de estilo de vida (dieta mediterránea hipocalórica y ejercicio en pacientes obesos. Diseño: Se analizó una población de 94 pacientes con obesidad. Antes y tras 3 meses con una

  2. Loss of cannabinoid receptor CB1 induces preterm birth.

    Directory of Open Access Journals (Sweden)

    Haibin Wang

    Full Text Available BACKGROUND: Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events. METHODS AND FINDINGS: Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth. CONCLUSIONS: CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by

  3. CB1 expression is attenuated in Fallopian tube and decidua of women with ectopic pregnancy.

    Directory of Open Access Journals (Sweden)

    Andrew W Horne

    Full Text Available BACKGROUND: Embryo retention in the Fallopian tube (FT is thought to lead to ectopic pregnancy (EP, a considerable cause of morbidity. In mice, genetic/pharmacological silencing of cannabinoid receptor Cnr1, encoding CB1, causes retention of embryos in the oviduct. The role of the endocannabinoids in tubal implantation in humans is not known. METHODS AND FINDINGS: Timed FT biopsies (n = 18 were collected from women undergoing gynecological procedures for benign conditions. Endometrial biopsies and whole blood were collected from women undergoing surgery for EP (n = 11; management of miscarriage (n = 6, and termination of pregnancy (n = 8. Using RT-PCR and immunohistochemistry, CB1 mRNA and protein expression levels/patterns were examined in FT and endometrial biopsies. The distribution of two polymorphisms of CNR1 was examined by TaqMan analysis of genomic DNA from the whole blood samples. In normal FT, CB1 mRNA was higher in luteal compared to follicular-phase (p<0.05. CB1 protein was located in smooth muscle of the wall and of endothelial vessels, and luminal epithelium of FT. In FT from women with EP, CB1 mRNA expression was low. CB1 mRNA expression was also significantly lower (p<0.05 in endometrium of women with EP compared to intrauterine pregnancies (IUP. Although of 1359G/A (rs1049353 polymorphisms of CNR1 gene suggests differential distribution of genotypes between the small, available cohorts of women with EP and those with IUP, results were not statistically significant. CONCLUSIONS: CB1 mRNA shows temporal variation in expression in human FT, likely regulated by progesterone. CB1 mRNA is expressed in low levels in both the FT and endometrium of women with EP. We propose that aberrant endocannabinoid-signaling in human FT leads to EP. Furthermore, our finding of reduced mRNA expression along with a possible association between polymorphism genotypes of the CNR1 gene and EP, suggests a possible genetic predisposition to EP that

  4. Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects.

    Science.gov (United States)

    Monteleone, P; Bifulco, M; Di Filippo, C; Gazzerro, P; Canestrelli, B; Monteleone, F; Proto, M C; Di Genio, M; Grimaldi, C; Maj, M

    2009-10-01

    Endocannabinoids modulate eating behavior; hence, endocannabinoid genes may contribute to the biological vulnerability to eating disorders. The rs1049353 (1359 G/A) single nucleotide polymorphism (SNP) of the gene coding the endocannabinoid CB1 receptor (CNR1) and the rs324420 (cDNA 385C to A) SNP of the gene coding fatty acid amide hydrolase (FAAH), the major degrading enzyme of endocannabinoids, have been suggested to have functional effects on mature proteins. Therefore, we explored the possibility that those SNPs were associated to anorexia nervosa and/or bulimia nervosa. The distributions of the CNR1 1359 G/A SNP and of the FAAH cDNA 385C to A SNP were investigated in 134 patients with anorexia nervosa, 180 patients with bulimia nervosa and 148 normal weight healthy controls. Additive effects of the two SNPs in the genetic susceptibility to anorexia nervosa and bulimia nervosa were also tested. As compared to healthy controls, anorexic and bulimic patients showed significantly higher frequencies of the AG genotype and the A allele of the CNR1 1359 G/A SNP. Similarly, the AC genotype and the A allele of the FAAH cDNA 385C to A SNP were significantly more frequent in anorexic and bulimic individuals. A synergistic effect of the two SNPs was evident in anorexia nervosa but not in bulimia nervosa. Present findings show for the first time that the CNR1 1359 G/A SNP and the FAAH cDNA 385C to A SNP are significantly associated to anorexia nervosa and bulimia nervosa, and demonstrate a synergistic effect of the two SNPs in anorexia nervosa.

  5. CB1 receptor mediates the effects of glucocorticoids on AMPK activity in the hypothalamus.

    Science.gov (United States)

    Scerif, Miski; Füzesi, Tamás; Thomas, Julia D; Kola, Blerina; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-10-01

    AMP-activated protein kinase (AMPK), a regulator of cellular and systemic energy homeostasis, can be influenced by several hormones. Tissue-specific alteration of AMPK activity by glucocorticoids may explain the increase in appetite, the accumulation of lipids in adipose tissues, and the detrimental cardiac effects of Cushing's syndrome. Endocannabinoids are known to mediate the effects of various hormones and to influence AMPK activity. Cannabinoids have central orexigenic and direct peripheral metabolic effects via the cannabinoid receptor type 1 (CB1). In our preliminary experiments, WT mice received implants of a corticosterone-containing pellet to establish a mouse model of Cushing's syndrome. Subsequently, WT and Cb1 (Cnr1)-knockout (CB1-KO) littermates were treated with corticosterone and AMPK activity in the hypothalamus, various adipose tissues, liver and cardiac tissue was measured. Corticosterone-treated CB1-KO mice showed a lack of weight gain and of increase in hypothalamic and hepatic AMPK activity. In adipose tissues, baseline AMPK activity was higher in CB1-KO mice, but a glucocorticoid-induced drop was observed, similar to that observed in WT mice. Cardiac AMPK levels were reduced in CB1-KO mice, but while WT mice showed significantly reduced AMPK activity following glucocorticoid treatment, CB1-KO mice showed a paradoxical increase. Our findings indicate the importance of the CB1 receptor in the central orexigenic effect of glucocorticoid-induced activation of hypothalamic AMPK activity. In the periphery adipose tissues, changes may occur independently of the CB1 receptor, but the receptor appears to alter the responsiveness of the liver and myocardial tissues to glucocorticoids. In conclusion, our data suggest that an intact cannabinoid pathway is required for the full metabolic effects of chronic glucocorticoid excess.

  6. Rs6454674, Rs806368 and Rs1049353 CNR1 Gene Polymorphisms in Turkish Bipolar Disorder Patients: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Gokay Alpak

    2014-04-01

    Full Text Available Bipolar disorder (BD is one of the most prevalent psychiatric disorders in clinical practice. The etiology of the BD is not thoroughly understood. Endocannabinoid system, which is involved in regulation of emotion, stress, memory, and cognition, may have an important role in the pathophysiology of BD. Mutations on the cannabinoid-1 receptor (CNR1 gene are associated with several psychiatric disorders. The main cannabinoid (CB receptor is CB1 and its activation inhibits neuronal depolarization. One previous study showed rs1049353 polymorphism of CNR1 gene is associated with major depression but not with BD. In this study, we aimed to investigate the rs6454674, rs806368 and rs1049353 CNR1 gene polymorphisms in Turkish BD patients. A total of 96 patients and 58 healthy controls were included in the current case-control study. Blood samples of study participants were collected into sterile tubes and processed to obtain genomic DNA. Restriction Fragment Length Polymorphism analysis were done by digesting the PCR products with HpyCH4III and BseGI enzymes for the rs6454674 and rs806368 restriction sites, respectively. Single-Strand Conformation Polymorphism (SSCP analysis was also performed. Among three polymorphisms investigated in this study, only rs6454674 polymorphism was significantly different between BD patients and controls (rs6454674 T/G; p=0.042, rs806368 T/C; p>0.05, rs1049353 A/G; p>0.05. Furthermore, we found that the mean of the yearly manic attacks was statistically higher in patients who have heterozygote (0.91+/-0.67 rs6454674 T/G polymorphisms compared to those with homozygote (p=0.043 polymorphism. The post-hoc analysis showed that the main differences were between the heterozygotes genotype and non-mutant (GG homozygotes (0.42+/-0.31; p=0.037 but not in homozygote mutant genotype (0.74+/-0.74; p=0.149. When patients were compared with the other clinical parameters, and mutated alleles and genotypes for each polymorphism, we did not

  7. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces

    Directory of Open Access Journals (Sweden)

    Chakrabarti Bhismadev

    2011-06-01

    Full Text Available Abstract Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC. However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1 gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking. Methods A total of 30 volunteers (13 males and 17 females from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380 were associated with differential gaze duration for happy (but not disgust faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing

  8. Evidence for association between polymorphisms in the Cannabinoid Receptor 1 (CNR1) gene and cannabis dependence

    OpenAIRE

    Agrawal, Arpana; Wetherill, Leah; Dick, Danielle M; Xuei, Xiaoling; Hinrichs, Anthony; Hesselbrock, Victor; Kramer, John; Nurnberger, John I.; Schuckit, Marc; Laura J Bierut; Edenberg, Howard J.; Foroud, Tatiana

    2009-01-01

    Genomic studies of cannabis use disorders have been limited. The cannabinoid receptor 1 gene (CNR1) on chromosome 6q14–15 is an excellent candidate gene for cannabis dependence due to the important role of the G-protein coupled receptor encoded by this gene in the rewarding effects of Δ9-tetrahydrocannabinol. Previous studies have found equivocal evidence for an association between SNPs in CNR1 and a general vulnerability to substance use disorders. We investigate the association between 9 SN...

  9. Gene-specific disruption of endocannabinoid receptor 1 (cnr1a) by ethanol probably leads to the development of fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish (Oryzias latipes) embryogenesis.

    Science.gov (United States)

    Dasmahapatra, Asok K; Khan, Ikhlas A

    2015-01-01

    The present study was designed to investigate the probable roles played by cannabinoid (CB) receptors in fetal alcohol spectrum disorder (FASD) induction in Japanese rice fish (Oryzias latipes). Searching of public databases (GenBank, Ensembl) indicated that the Japanese rice fish genome includes three human ortholog CB receptor genes (cnr1a, cnr1b and cnr2). Quantitative real-time PCR (qPCR) and whole mount in situ hybridization (WMISH) techniques were used to analyze the expression of these cnr genes during Japanese rice fish embryogenesis and also in response to developmental ethanol exposure. qPCR analyses showed that the expression of all three CB receptor genes were developmentally regulated and only cnr2 showed maternal expression. The mRNA concentrations of these genes were found to be enhanced after 3 dpf and attained maximal levels either prior to or after hatching. WMISH technique indicated that all three cnr genes were expressed in the head region of hatchlings. During development, ethanol selectively attenuated the expression of cnr1a mRNA only. Blocking of cnr1a mRNA by CB1 receptor antagonists rimonabant (10-20 μM) or AM251 (0.2-1 μM) 0-2 dpf were unable to induce any FASD-related phenotypic features in embryos or in hatchlings. However, continuous exposure of the embryos (0-6 dpf) to AM251 (1 μM) was able to reduce the hatching efficiency of the embryos. Our data indicated that in Japanese rice fish, ethanol disrupted the expression of only cnr1a in a concentration-dependent manner that induced delay in hatching and might be responsible for the development of FASD phenotypes.

  10. Exploração farmacológica do sistema endocanabinoide: novas perspectivas para o tratamento de transtornos de ansiedade e depressão? Pharmacological exploitation of the endocannabinoid system: new perspectives for the treatment of depression and anxiety disorders?

    Directory of Open Access Journals (Sweden)

    Viviane M. Saito

    2010-05-01

    Full Text Available OBJETIVO: Este artigo revisa o sistema endocanabinoide e as respectivas estratégias de intervenções farmacológicas. MÉTODO: Realizou-se uma revisão da literatura sobre o sistema endocanabinoide e a sua farmacologia, considerando-se artigos originais ou de revisão escritos em inglês. DISCUSSÃO: Canabinoides são um grupo de compostos presentes na Cannabis Sativa (maconha, a exemplo do Δ9-tetraidrocanabinol e seus análogos sintéticos. Estudos sobre o seu perfil farmacológico levaram à descoberta do sistema endocanabinoide do cérebro de mamíferos. Este sistema é composto por pelo menos dois receptores acoplados a uma proteína G, CB1 e CB2, pelos seus ligantes endógenos (endocanabinoides; a exemplo da anandamida e do 2-araquidonoil glicerol e pelas enzimas responsáveis por sintetizá-los e metabolizá-los. Os endocanabinoides representam uma classe de mensageiros neurais que são sintetizados sob demanda e liberados de neurônios pós-sinápticos para restringir a liberação de neurotransmissores clássicos de terminais pré-sinápticos. Esta sinalização retrógrada modula uma diversidade de funções cerebrais, incluindo ansiedade, medo e humor, em que a ativação de receptores CB1 pode exercer efeitos dos tipos ansiolítico e antidepressivo em estudos préclínicos. CONCLUSÃO: Experimentos com modelos animais sugerem que drogas que facilitam a ação dos endocanabinoides podem representar uma nova estratégia para o tratamento de transtornos de ansiedade e depressão.OBJECTIVE: The present review provides a brief introduction into the endocannabinoid system and discusses main strategies of pharmacological interventions. METHOD: We have reviewed the literature relating to the endocannabinoid system and its pharmacology; both original and review articles written in English were considered. DISCUSSION: Cannabinoids are a group of compounds present in Cannabis Sativa (hemp, such as Δ9-tetrahydrocannabinol, and their synthetic

  11. CNR1 gene polymorphisms in addictive disorders: a systematic review and a meta-analysis.

    Science.gov (United States)

    Benyamina, Amine; Kebir, Oussama; Blecha, Lisa; Reynaud, Michel; Krebs, Marie-Odile

    2011-01-01

    The aim of the present work was to systematically review all association studies of cannabis receptor 1 (CNR1) polymorphisms with dependence syndrome and to perform a meta-analysis. Odds ratios (ORs) were estimated by contrasting the ratio of counts of the 'high risk' versus 'low risk' alleles in cases with dependence versus controls. Studies were analyzed by random-effects meta-analysis using pooled OR. Eleven full text articles met our eligibility criteria and nine meta-analyses were performed on three polymorphisms of CNR1: rs1049353, rs806379 and the AAT repeat. Of these, only the AAT polymorphism showed a significant association with illicit substance dependence but only in the Caucasian population samples and using a risk allele definition of ≥ 16 repeats. Our analysis showed a small effect size (OR = 1.55, P = 0.045), with strong heterogeneity (Q = 19.87, P < 0.01 with I² = 85%). In line with the polygenic model, our meta-analysis supports a minor implication for CNR1 AAT polymorphism in illicit substance dependence vulnerability. Further studies in well-phenotyped samples and using more polymorphisms are needed to conclude on the actual influence of cannabinoid receptor polymorphisms. PMID:20192949

  12. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1(-/-)) mice.

    Science.gov (United States)

    Khalid, Aysha B; Goodyear, Simon R; Ross, Ruth A; Aspden, Richard M

    2016-10-01

    The endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength. Elastic modulus, density and mineral content were measured in the diaphysis. Second moment of area (MOA2), inner and outer perimeters of the cortical shaft and trabecular fractional bone volume (BV/TV) were measured using micro-CT. In Cnr1(-/-) males and females at both ages the bending stiffness was reduced due to a smaller MOA2. Bone from Cnr1(-/-) females had a greater modulus than wild-type controls, although no differences were observed in males. BV/TV of 12-week-old Cnr1(-/-) females was greater than controls, although no difference was seen at 5-weeks. On the contrary, Cnr1(-/-) males had the same BV/TV as controls at 12-weeks while they had significantly lower values at 5-weeks. This study shows that deleting Cnr1 decreases the amount of cortical bone in both males and females at 12-weeks, but increases the amount of trabecular bone only in females.

  13. Stress regulates endocannabinoid-CB1 receptor signaling.

    Science.gov (United States)

    Hillard, Cecilia J

    2014-10-01

    The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.

  14. CB1 receptors modulate affective behaviour induced by neuropathic pain.

    Science.gov (United States)

    Rácz, Ildikó; Nent, Elisa; Erxlebe, Edda; Zimmer, Andreas

    2015-05-01

    Patients suffering from chronic pain are often diagnosed with a psychiatric condition, in particular generalized anxiety and major depression. The underlying pathomechanisms contributing to this comorbidity, however, are not entirely clear. In this manuscript we have focussed on the potential role of the cannabinoid receptor CB1, because it is known to modulate neuronal circuits contributing to chronic pain states and affective behaviours. For this purpose we analysed the consequences of a partial sciatic nerve ligation on anxiety- and depression-related behaviours in mice lacking CB1 receptors. Our results show that the development of mechanical hypersensitivity was similar in CB1 deficient mice and wild type controls. However, CB1 knockouts showed much more pronounced behavioural manifestations of anxiety-related behaviours in the light-dark and zero-maze tests, sucrose anhedonia, and disturbed home-cage activity. These results indicate that the endocannabinoid system affects chronic pain-induced mood changes through CB1 receptors.

  15. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte;

    2010-01-01

    BACKGROUND/AIMS: Body weight gain is a common side effect of treatment with antipsychotics, but the mechanisms underlying this weight gain are unknown. Several factors may be involved in antipsychotic-induced body weight gain including the cannabinoid receptor 1 (CB(1)), the serotonin receptor 2C...... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  16. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells.

    Science.gov (United States)

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  17. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    Science.gov (United States)

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  18. SISTEMA ENDOCANABINOIDE: MODIFICANDO LOS FACTORES DE RIESGO CARDIOVASCULAR Endocannabinoid system: modifying cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    John Edwin Feliciano Alfonso

    2006-10-01

    Full Text Available La necesidad de alcanzar un tratamiento óptimo para el tabaquismo, la obesidad y sus comorbilidades, conocidos factores de riesgo cardiovascular, ha fomentado la búsqueda de objetivos terapéuticos novedosos. Es el caso del sistema endocanabinoide, involucrado en diversos fenómenos fisiológicos entre los que se encuentran el refuerzo de ciertos comportamientos y la regulación del apetito. La sobreactivación de este sistema altera la homeostasis corporal predisponiendo a dependencias o a un aumento en la ingesta alimentaria, lo que puede traducirse en tabaquismo u obesidad. La intervención farmacológica sobre el sistema endocanabinoide puede contribuir al manejo de estos factores de riesgo cardiovascular, teniendo en cuenta que a tales beneficios se suman otros independientes de la suspensión del tabaquismo o la reducción de peso, como el aumento del colesterol de alta densidad, la disminución de triglicéridos y la mejoría del control glucémico en pacientes con diabetes. Ensayos clínicos controlados aleatorizados adelantados en poblaciones con diferentes características, han evaluado la utilidad de la regulación farmacológica del sistema endocanabinoide; confirmando su eficacia en personas con factores de riesgo cardiovascular establecidos.The need for an optimal treatment for smoking, obesity and their comorbidities, well-known cardiovascular risk factors; has prompted the search for novel therapeutic targets. This is the case of the endocannabinoid system, involved in several physiological phenomena including the reinforcement of certain behaviors and the regulation of appetite.

  19. Neurobiologia da Cannabis: do sistema endocanabinoide aos transtornos por uso de Cannabis

    Directory of Open Access Journals (Sweden)

    José Luis G. Pinho Costa

    2011-01-01

    Full Text Available OBJETIVOS: Diante das lacunas na efetividade das terapêuticas para transtornos por uso de Cannabis, a droga ilícita mais consumida no mundo, este trabalho propõe-se a rever os conhecimentos sobre o substrato neuroanatômico, biomolecular e celular do sistema endocanabinoide, descrever os mecanismos de neuroplasticidade dependente dos canabinoides e relacioná-los com a neurobiologia dos transtornos por uso de Cannabis (abuso e dependência. MÉTODOS: Recorreu-se às bases de dados Medline, Scopus e ISI Web of Knowledge; as palavras-chave pesquisadas foram "Cannabis", "neurobiology", "endocannabinoid system", "endocannabinoids", "receptors, cannabinoid", "neuronal plasticity", "long-term synaptic depression", "long-term potentiation", "marijuana abuse" e "tetrahydrocannabinol". Foram incluídos 80 trabalhos nesta revisão. DISCUSSÃO: A distribuição neuroanatômica, celular e biomolecular do sistema endocanabinoide adequa-se perfeitamente às suas funções de neuromodulação (via neuroplasticidade e metaplasticidade, nomeadamente em vias relacionadas aos transtornos por uso de substâncias. Os canabinoides exógenos perturbam essas funções. CONCLUSÃO: O sistema endocanabinoide contribui para a definição de setpoints em diversas vias neuronais, incluindo vias cruciais na instalação de transtornos por uso de substâncias; com o uso de Cannabis, esses setpoints tornar-se-ão mais permissivos, facilitando os transtornos por uso de Cannabis. Os avanços no entendimento da neurobiologia da Cannabis abrem uma janela de oportunidades para novas estratégias terapêuticas nos transtornos por uso de Cannabis.

  20. Construction of Cannabinoid Receptor 1 Gene(CNR1)siRNA Expression Vector and Screening of CNR1-interference Positive L6 Cell Clones%大麻素Ⅰ型受体基因(CNR1)特异性siRNA表达载体的构建及稳定干扰阳性L6细胞克隆的筛选

    Institute of Scientific and Technical Information of China (English)

    徐娥; 任阳; 朱琳娜; 伍婷; 袁章琴; 黄艳娜; 汪以真

    2012-01-01

    The cannabinoid receptor type 1 (CNR1) is a key component of the endocannabinoid system, which has been reported to play a pivotal role in modulating feeding behavior and energy balance. In order to further study on gene function of CNR1, this study was conducted to construct and identify CNR1 gene small interfering (siRNA) expression vectors and screened the stable CNR1- interference positive L6 cell clones. Three pairs of CNR 1-specific double-strand siRNAs were designed and inserted into the pYr-1.1 vector. The CNR1 gene siRNA expression vectors were identified by restriction enzyme digestion and sequencing. After that siRNAs were transfected with L6 cells by LipofectamineTM(Lip)2000. Then, the transfection efficiency was detected by EGFP and FCM. CNR1 gene expression was determined by Real-time PCR and the stable transgenic L6 cell clones were screened by G418. The results revealed that the CNR1 gene siRNA expression vectors have been constructed successfully. The transient transfection efficiencies of L6 cells were 10.45% (P<0.01), 8.57%(P<0.01)and 8.71% (P<0.01) respectively, and the silencing efficacies of the transient transfected L6 cells were 39%(P<0.05), 64%(P<0.01) and 68%(P<0.01), respectively. The optimal selection concentration of G418 for stable transfected L6 cell clones was 800 μg/mL. The silencing efficacies of CNR-1-positive transgenic cell clones were 43%(P<0.05), 18%(P<0.01) and 91%(P<0.01), respectively. The results showed that CNR1-3 expression vector was optimal silencing vector and CNR1-3 stable transgenic cell clones were best silencing cell line. This study successfully provides CNR1 gene silencing method by siRNA and the screening of CNR1-interference positive L6 cell clones renders basic tools for further studying the functions of CNR1 gene.%大麻素Ⅰ型受体(CNR1)是介导内源性大麻素发挥作用的关键分子,在食欲和能量代谢调控中发挥着重要作用.为了更深入研究CNR1的基因功能,本实验旨在构建和筛选有效沉默CNR

  1. CB1 cannabinoid receptor modulates MDMA acute responses and reinforcement

    OpenAIRE

    Touri??o Raposo, Clara; Ledent, Catherine; Maldonado, Rafael; Valverde Granados, Olga

    2008-01-01

    Background: 3, 4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug widely abused by young people. The endocannabinoid system is involved in the addictive processes induced by different drugs of abuse. However, the role of this system in the pharmacological effects of MDMA has not been yet clarified. Methods: Locomotion, body temperature and anxiogenic-like responses were evaluated after acute MDMA administration in CB1 knockout mice. Additionally, MDMA rewarding propertie...

  2. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice.

    Science.gov (United States)

    Hsu, Yung-Chien; Lei, Chen-Chou; Shih, Ya-Hsueh; Ho, Cheng; Lin, Chun-Liang

    2015-02-01

    Proteinuria is not only a sign of kidney damage but is also involved in the progression of renal disease as an independent pathologic factor. Although patients with mutated type 1 cannabinoid receptors (CB1) polymorphism are associated with renal microvascular damage, the biologic role of CB1 signaling in proteinuria remains uncharacterized till now. Herein, we investigate whether CB1 participates in glomerular proteinuria in CB1 transgenic mice and treatment with CB1 agonist WIN55212-2 rat, neither of which are diabetic models. The CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher kidney weight and urinary protein concentrations but not blood glucose levels compared with the wild-type group. A combination of laser-capture microsdissection, quantitative reverse transcription-polymerase chain reaction, immunoblotting and immunohistochemical validation revealed that CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher vascular endothelial growth factor (VEGF) expression in renal glomeruli than that of the wild-type group. Geneticorpharmacological activation of CB1 by transgenic CB1 mice or treatment with WIN55212-2 reduced nephrin expression in the renal glomeruli compared with that of the wild-type group in the glomerular mesanglium. Taken together, CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 induced proteinuria with upregulation of CB1 resulting in impaired nephrin expression, by inducing excess VEGF reaction in the renal glomeruli. Genetic and pharmacological manipulation of CB1 signaling revealed VEGF-dependent nephrin depression of glomerulopathy. Controlling CB1 activity can be used an alternative strategy for sustaining renal function in the presence of CB1 activation.

  3. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation.

    Science.gov (United States)

    Smith, Tricia H; Blume, Lawrence C; Straiker, Alex; Cox, Jordan O; David, Bethany G; McVoy, Julie R Secor; Sayers, Katherine W; Poklis, Justin L; Abdullah, Rehab A; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R; Howlett, Allyn C; Selley, Dana E

    2015-04-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  4. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    Science.gov (United States)

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.

  5. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    Science.gov (United States)

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology. PMID:26612422

  6. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.

    Science.gov (United States)

    Dubreucq, Sarah; Koehl, Muriel; Abrous, Djoher N; Marsicano, Giovanni; Chaouloff, Francis

    2010-07-01

    Chronic voluntary wheel-running activity has been reported to hypersensitise central CB1 receptors in mice. On the other hand, pharmacological findings suggest that the CB1 receptor could be involved in wheel-running behaviour and in running-induced neurogenesis in the hippocampus. We analysed wheel-running behaviour for 6 weeks and measured its consequences on hippocampal neurogenesis in CB1 knockout (CB1(-/-)) animals, compared to wild-type (CB1(+/+)) littermates. Because wheel running has been shown to affect locomotor reactivity in novel environments, memory for aversive events and depression-like behaviours, we also assessed these behaviours in control and running CB1(+/+) and CB1(-/-) mice. When compared with running CB1(+/+) mice, the distance covered weekly by CB1(-/-) mice was decreased by 30-40%, an observation accounted for by decreased time spent and maximal velocity on the wheels. Analyses of running distances with respect to the light/dark cycle revealed that mutant covered less distance throughout both the inactive and the active phases of that cycle. Locomotion in an activity cage, exploration in an open field, and immobility time in the forced swim test proved insensitive to chronic wheel running in either genotype. Wheel running, per se, did not influence the expression and extinction of cued fear memory but counteracted in a time-dependent manner the deficiency of extinction measured in CB1(-/-) mice. Hippocampal neurogenesis, assessed by doublecortin labelling of immature neurons in the dentate gyrus, was lowered by 40% in control CB1(-/-) mice, compared to control CB1(+/+) mice. Although CB1(-/-) mice ran less than their wild-type littermates, the 6-week running protocol increased neurogenesis to similar extents (37-39%) in both genotypes. This study suggests that mouse CB1 receptors control wheel running but not its neurogenic consequences in the hippocampus.

  7. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    Science.gov (United States)

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling.

  8. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex.

    Science.gov (United States)

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A

    2016-04-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416(Ct)-Leu472(Ct)). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416(Ct), Asp423(Ct), Asp428(Ct), and Arg444(Ct) of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. PMID:26994549

  9. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex.

    Science.gov (United States)

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A

    2016-04-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416(Ct)-Leu472(Ct)). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416(Ct), Asp423(Ct), Asp428(Ct), and Arg444(Ct) of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein.

  10. Brain regional differences in CB1 receptor adaptation and regulation of transcription

    OpenAIRE

    Lazenka, M.F.; Selley, D.E.; Sim-Selley, L.J.

    2012-01-01

    Cannabinoid CB1 receptors (CB1Rs) are expressed throughout the brain and mediate the central effects of cannabinoids, including Δ9-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana. Repeated THC administration produces tolerance to cannabinoid-mediated effects, although the magnitude of tolerance varies by effect. Consistent with this observation, CB1R desensitization and downregulation, as well induction of immediate early genes (IEGs), varies by brain region. Zif268...

  11. Orchestrated activation of mGluR5 and CB1 promotes neuroprotection.

    Science.gov (United States)

    Batista, Edleusa M L; Doria, Juliana G; Ferreira-Vieira, Talita H; Alves-Silva, Juliana; Ferguson, Stephen S G; Moreira, Fabricio A; Ribeiro, Fabiola M

    2016-08-20

    The metabotropic glutamate receptor 5 (mGluR5) and the cannabinoid receptor 1 (CB1) exhibit a functional interaction, as CB1 regulates pre-synaptic glutamate release and mGluR5 activation increases endocannabinoid synthesis at the post-synaptic site. Since both mGluR5 and CB1 promote neuroprotection, we delineated experiments to investigate a possible link between CB1 and mGluR5 activation in the induction of neuroprotection using primary cultured corticostriatal neurons. We find that either the pharmacological blockade or the genetic ablation of either mGluR5 or CB1 can abrogate both CB1- and mGluR5-mediated neuroprotection against glutamate insult. Interestingly, decreased glutamate release and diminished intracellular Ca(2+) do not appear to play a role in CB1 and mGluR5-mediated neuroprotection. Rather, these two receptors work cooperatively to trigger the activation of cell signaling pathways to promote neuronal survival, which involves MEK/ERK1/2 and PI3K/AKT activation. Interestingly, although mGluR5 activation protects postsynaptic terminals and CB1 the presynaptic site, intact signaling of both receptors is required to effectively promote neuronal survival. In conclusion, mGluR5 and CB1 act in concert to activate neuroprotective cell signaling pathways and promote neuronal survival.

  12. Reversible disruption of pre-pulse inhibition in hypomorphic-inducible and reversible CB1-/- mice.

    Directory of Open Access Journals (Sweden)

    Maria Franca Marongiu

    Full Text Available Although several genes are implicated in the pathogenesis of schizophrenia, in animal models for such a severe mental illness only some aspects of the pathology can be represented (endophenotypes. Genetically modified mice are currently being used to obtain or characterize such endophenotypes. Since its cloning and characterization CB1 receptor has increasingly become of significant physiological, pharmacological and clinical interest. Recently, its involvement in schizophrenia has been reported. Among the different approaches employed, gene targeting permits to study the multiple roles of the endocannabinoid system using knockout ((-/- mice represent a powerful model but with some limitations due to compensation. To overcome such a limitation, we have generated an inducible and reversible tet-off dependent tissue-specific CB1(-/- mice where the CB1R is re-expressed exclusively in the forebrain at a hypomorphic level due to a mutation (IRh-CB1(-/- only in absence of doxycycline (Dox. In such mice, under Dox(+ or vehicle, as well as in wild-type (WT and CB1(-/-, two endophenotypes motor activity (increased in animal models of schizophrenia and pre-pulse inhibition (PPI of startle reflex (disrupted in schizophrenia were analyzed. Both CB1(-/- and IRh-CB1(-/- showed increased motor activity when compared to WT animals. The PPI response, unaltered in WT and CB1(-/- animals, was on the contrary highly and significantly disrupted only in Dox(+ IRh-CB1(-/- mice. Such a response was easily reverted after either withdrawal from Dox or haloperidol treatment. This is the first Inducible and Reversible CB1(-/- mice model to be described in the literature. It is noteworthy that the PPI disruption is not present either in classical full CB1(-/- mice or following acute administration of rimonabant. Such a hypomorphic model may provide a new tool for additional in vivo and in vitro studies of the physiological and pathological roles of cannabinoid system in

  13. Deficits in Sensory-Specific Devaluation Task Performance Following Genetic Deletions of Cannabinoid (CB1) Receptor

    Science.gov (United States)

    Crombag, Hans S.; Johnson, Alexander W.; Zimmer, Anne M.; Zimmer, Andreas; Holland, Peter C.

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired…

  14. Association of cannabis use during adolescence, prefrontal CB1 receptor signaling and schizophrenia

    Directory of Open Access Journals (Sweden)

    Adriana eCaballero

    2012-05-01

    Full Text Available The cannabinoid receptor 1 (CB1R is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that co-opt CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.g. memory loss, cognitive deficits, etc. In the context of this review, we present evidence for the role of CB1R signaling in the prefrontal cortex (PFC, an area involved in executive functions, with emphasis on the developmental regulation of CB1R signaling in the acquisition of mature PFC function. We further hypothesize how alterations of CB1R signaling specifically during adolescent maturation might confer liability to psychiatric disorders.

  15. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor.

    Science.gov (United States)

    Scott, Caitlin E; Ahn, Kwang H; Graf, Steven T; Goddard, William A; Kendall, Debra A; Abrol, Ravinder

    2016-01-25

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013 , 22 , 101 - 113 ; Ahn, K. H. et al. Proteins 2013 , 81 , 1304 - 1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.

  16. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.

    Science.gov (United States)

    Madeo, G; Schirinzi, T; Maltese, M; Martella, G; Rapino, C; Fezza, F; Mastrangelo, N; Bonsi, P; Maccarrone, M; Pisani, A

    2016-02-01

    Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes. PMID

  17. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus.

    Science.gov (United States)

    Monory, Krisztina; Polack, Martin; Remus, Anita; Lutz, Beat; Korte, Martin

    2015-03-01

    The endocannabinoid system negatively regulates the release of various neurotransmitters in an activity-dependent manner, thereby influencing the excitability of neuronal circuits. In the hippocampus, cannabinoid type 1 (CB1) receptor is present on both GABAergic and glutamatergic axon terminals. CB1 receptor-deficient mice were previously shown to have increased hippocampal long-term potentiation (LTP). In this study, we have investigated the consequences of cell-type-specific deletion of the CB1 receptor on the induction of hippocampal LTP and on CA1 pyramidal cell morphology. Deletion of CB1 receptor in GABAergic neurons in GABA-CB1-KO mice leads to a significantly decreased hippocampal LTP compared with WT controls. Concomitantly, CA1 pyramidal neurons have a significantly reduced dendritic branching both on the apical and on the basal dendrites. Moreover, the average spine density on the apical dendrites of CA1 pyramidal neurons is significantly diminished. In contrast, in mice lacking CB1 receptor in glutamatergic cells (Glu-CB1-KO), hippocampal LTP is significantly enhanced and CA1 pyramidal neurons show an increased branching and an increased spine density in the apical dendritic region. Together, these results indicate that the CB1 receptor signaling system both on inhibitory and excitatory neurons controls functional and structural synaptic plasticity of pyramidal neurons in the hippocampal CA1 region to maintain an appropriate homeostatic state upon neuronal activation. Consequently, if the CB1 receptor is lost in either neuronal population, an allostatic shift will occur leading to a long-term dysregulation of neuronal functions.

  18. CB1 cannabinoid receptor-mediated modulation of food intake in mice

    OpenAIRE

    Wiley, Jenny L; Burston, James J.; Leggett, Darnica C; Alekseeva, Olga O; Razdan, Raj K.; Mahadevan, Anu; Martin, Billy R

    2005-01-01

    Marijuana's appetite-increasing effects have long been known. Recent research suggests that the CB1 cannabinoid receptor antagonist SR141716A may suppress appetite. This study represents a further, systematic investigation of the role of CB1 cannabinoid receptors in the pharmacological effects of cannabinoids on food intake.Mice were food-restricted for 24 h and then allowed access to their regular rodent chow for 1 h. Whereas the CB1 antagonist SR141716A dose-dependently decreased food consu...

  19. CHROMENOPYRAZOLES: NON-PSYCHOACTIVE AND SELECTIVE CB1 CANNABINOID AGONISTS WITH PERIPHERAL ANTINOCICEPTIVE PROPERTIES

    Science.gov (United States)

    Cumella, Jose; Hernández-Folgado, Laura; Girón, Rocio; Sánchez, Eva; Morales, Paula; Hurst, Dow P.; Gómez-Cañas, Maria; Gómez-Ruiz, Maria; Pinto, Diana C. G. A.; Goya, Pilar; Reggio, Patricia H.; Martin, María Isabel; Fernández-Ruiz, Javier; Silva, Artur M. S.; Jagerovic, Nadine

    2014-01-01

    The unwanted psychoactive effects of cannabinoid receptor agonists have limited their development as medicines. These CB1 mediated side effects are due to the fact that CB1 receptors are largely expressed in the Central Nervous System (CNS). Since it is known that CB1 receptors are also located peripherally, there is a growing interest in targeting cannabinoid receptors located outside the brain. A library of chromenopyrazoles designed in analogy to the classical cannabinoid cannabinol were synthesized, characterized and tested for cannabinoid activity. Radiolabeled binding assays were used to determine their affinities at CB1 and CB2 receptors. Structural features required for CB1/CB2 affinity and selectivity were explored using molecular modeling. Within the chromenopyrazoles series, some of them showed to be selective CB1 ligands. These modeling studies suggest that CB1 full selectivity over CB2 can be accounted for the presence of a pyrazole ring in the structure. The functional activities of selected chromenopyrazoles were evaluated in isolated tissues. Behavioral tests, in vivo, were then carried on the most effective CB1 cannabinoid agonist (13a). Chromenopyrazole 13a did not induce modifications in any of the tested parameters on the mouse cannabinoid tetrad, discarding CNS-mediated effects. This lack of agonistic activity in the CNS suggests that it does not readily cross the blood-brain barrier. Moreover, compound 13a can induce antinociception in a peripheral model of orofacial pain in rat. Taking into account the negative results obtained in the hot plate test, it could be suggested that the antinociception induced by 13a in the orofacial test may be mediated through peripheral mechanisms. PMID:22302767

  20. Behavioral phenotypes of mice lacking cannabinoid CB1 receptors in different neuronal subpopulations

    OpenAIRE

    Bernardes Terzian, Ana Luisa

    2014-01-01

    Abnormalities in social behavior are found in almost all psychiatric disorders, such as anxiety, depression, autism and schizophrenia. Thus, comprehension of the neurobiological basis of social interaction is important to better understand numerous pathologies and improve treatments. Several evidences suggest that an alteration of cannabinoid CB1 receptor function could be involved in the pathophysiology of such disorders. However, the role of CB1 receptor is still unclear and its localizatio...

  1. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    Science.gov (United States)

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  2. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  3. Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area.

    Science.gov (United States)

    Simonnet, Amelie; Cador, Martine; Caille, Stephanie

    2013-11-01

    Cannabinoid type 1 (CB1) receptors control the motivational properties and reinforcing effects of nicotine. Indeed, peripheral administration of a CB1 receptor antagonist dramatically decreases both nicotine taking and seeking. However, the neural substrates through which the cannabinoid CB1 receptors regulate the voluntary intake of nicotine remain to be elucidated. In the present study, we sought to determine whether central injections of a CB1 receptor antagonist delivered either into the ventral tegmental area (VTA) or the nucleus accumbens (NAC) may alter nicotine intravenous self-administration (IVSA). Rats were first trained to self-administer nicotine (30 μg/kg/0.1 ml). The effect of central infusions of the CB1 antagonist AM 251 (0, 1 and 10 μg/0.5 μl/side) on nicotine-taking behavior was then tested. Intra-VTA infusions of AM 251 dose dependently reduced IVSA with a significant decrease for the dose 10 μg/0.5 μl/side. Moreover, operant responding for water was unaltered by intra-VTA AM 251 at the same dose. Surprisingly, intra-NAC delivery of AM 251 did not alter nicotine behavior at all. These data suggest that in rats chronically exposed to nicotine IVSA, the cannabinoid CB1 receptors located in the VTA rather than in the NAC specifically control nicotine reinforcement and, subsequently, nicotine-taking behavior. PMID:22784230

  4. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    Science.gov (United States)

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders. PMID:27528659

  5. Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity.

    Science.gov (United States)

    Reich, C G; Mihalik, G R; Iskander, A N; Seckler, J C; Weiss, M S

    2013-12-01

    Endocannabinoids (eCBs) are involved in the stress response and alterations in eCB signaling may contribute to the etiology of mood disorders. Exposure to chronic mild stress (CMS), a model of depression, produces downregulation of the cannabinoid 1 (CB1) receptor in the hippocampus of male rats. However, it is unknown how this stress-induced change in CB1 levels affects eCB-mediated neurotransmission. In vitro, field potential recordings from CMS-exposed (21-days) rats were performed to assess the effects of stress on eCB-regulated glutamatergic neurotransmission in/on hippocampal area CA1. We observed that application of the CB1 agonist, WIN 55,212-5 (1 μM), in stress animals resulted in a ∼135% increase in excitatory neurotransmission, whereas CB1 activation in non-stress animals leads to a ∼30% decrease. However, during blockade of GABA(A) neurotransmission with picrotoxin, CB1 activation yielded a ∼35% decrease in stress animals. These findings indicate that CMS does not directly affect glutamatergic neurotransmission. Rather, CMS sensitizes CB1 function on GABAergic terminals, leading to less inhibition and an increase in excitatory neurotransmission. This finding is reinforced in that induction of weak long-term-potentiation (LTP) is enhanced in CMS-exposed animals compared to controls and this enhancement is CB1-dependent. Lastly, we observed that the LTP-blocking property of WIN 55,212-5 shifts from being glutamate-dependent in non-stress animals to being GABA-dependent in stress animals. These results effectively demonstrate that CMS significantly alters hippocampal eCB-mediated neurotransmission and synaptic plasticity.

  6. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals.

    Science.gov (United States)

    Lenkey, Nora; Kirizs, Tekla; Holderith, Noemi; Máté, Zoltán; Szabó, Gábor; Vizi, E Sylvester; Hájos, Norbert; Nusser, Zoltan

    2015-04-20

    The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals. Basket cell boutons have on average 78% higher CB1 content than those of dendritic-layer-innervating (DLI) cells, a consequence of larger bouton surface and higher CB1 density. The CB1 antagonist AM251 caused a 54% increase in action potential-evoked [Ca(2+)] in boutons of basket cells, but not in DLI cells. However, the effect of AM251 did not correlate with CB1 immunoreactivity of individual boutons. Moreover, a CB1 agonist decreased [Ca(2+)] in a cell type- and CB1-content-independent manner. Replica immunogold labelling demonstrated the colocalization of CB1 with the Cav2.2 Ca(2+) channel subunit. Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release.

  7. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism.

    Science.gov (United States)

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Doyle, Máire E; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D; Witek, Rafal P; O'Connell, Jennifer F; Egan, Josephine M

    2016-09-19

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism.

  8. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism

    Science.gov (United States)

    González-Mariscal, Isabel; Krzysik-Walker, Susan M.; Doyle, Máire E.; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D.; Witek, Rafal P.; O’Connell, Jennifer F.; Egan, Josephine M.

    2016-01-01

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism. PMID:27641999

  9. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism.

    Science.gov (United States)

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Doyle, Máire E; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D; Witek, Rafal P; O'Connell, Jennifer F; Egan, Josephine M

    2016-01-01

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism. PMID:27641999

  10. CB1 receptor blockade counters age-induced insulin resistance and metabolic dysfunction.

    Science.gov (United States)

    Lipina, Christopher; Vaanholt, Lobke M; Davidova, Anastasija; Mitchell, Sharon E; Storey-Gordon, Emma; Hambly, Catherine; Irving, Andrew J; Speakman, John R; Hundal, Harinder S

    2016-04-01

    The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant-mediated insulin sensitization in aged adipose tissue coincided with amelioration of low-grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging-related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging. PMID:26757949

  11. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

    Science.gov (United States)

    Lowin, Torsten; Straub, Rainer H

    2015-09-06

    Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.

  12. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina.

    Science.gov (United States)

    Wang, Xiao-Han; Wu, Yi; Yang, Xiao-Fang; Miao, Yanying; Zhang, Chuan-Qiang; Dong, Ling-Dan; Yang, Xiong-Li; Wang, Zhongfeng

    2016-01-01

    In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca(2+) channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca(2+) channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca(2+) channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.

  13. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.

    Science.gov (United States)

    Albayram, Önder; Passlick, Stefan; Bilkei-Gorzo, Andras; Zimmer, Andreas; Steinhäuser, Christian

    2016-04-01

    A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits. The hippocampus is vital for the generation of spatial, declarative and working memory. Here, we addressed the question how CB1 receptors in GABAergic neurons influence hippocampal function. Patch clamp and field potential recordings in mice devoid of CB1 receptors in GABAergic neurons revealed an enhanced frequency and faster kinetics of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons while tonic inhibition, paired-pulse facilitation and long-term potentiation in the hippocampus were not affected. Evaluation of cognitive functions demonstrated impaired acquisition of spatial memory and deficits in novel object recognition and partner recognition in the knockout mice, while working memory and spatial memory remained intact. The density of GABAergic neurons was also similar in knockout mice and their littermates, which argues against global deficits in hippocampal development. Together, these results suggest that CB1 receptors in GABAergic neurons influence specific aspects of neuronal excitability and hippocampal learning.

  14. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    Science.gov (United States)

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  15. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor.

    Science.gov (United States)

    Ahn, Kwang H; Mahmoud, Mariam M; Samala, Sushma; Lu, Dai; Kendall, Debra A

    2013-03-01

    Allosteric modulation of G-protein coupled receptors (GPCRs) represents a novel approach for fine-tuning GPCR functions. The cannabinoid CB1 receptor, a GPCR associated with the CNS, has been implicated in the treatment of drug addiction, pain, and appetite disorders. We report here the synthesis and pharmacological characterization of two indole-2-carboxamides:5-chloro-3-ethyl-1-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-a) and 5-chloro-3-pentyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-b). Although both ICAM-a and ICAM-b enhanced CP55, 940 binding, ICAM-b exhibited the strongest positive cooperativity thus far demonstrated for enhancing agonist binding to the CB1 receptor. Although it displayed negative modulatory effects on G-protein coupling to CB1, ICAM-b induced β-arrestin-mediated downstream activation of extracellular signal-regulated kinase (ERK) signaling. These results indicate that this compound represents a novel class of CB1 ligands that produce biased signaling via CB1.

  16. Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain.

    Science.gov (United States)

    Seltzman, Herbert H; Shiner, Craig; Hirt, Erin E; Gilliam, Anne F; Thomas, Brian F; Maitra, Rangan; Snyder, Rod; Black, Sherry L; Patel, Purvi R; Mulpuri, Yatendra; Spigelman, Igor

    2016-08-25

    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene's antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain. PMID:27482723

  17. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    Science.gov (United States)

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  18. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

    Science.gov (United States)

    Bow, Eric W; Rimoldi, John M

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  19. Inclusive prompt χ{sub c,b}(1{sup ++}) production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaev, A. G. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, St. Petersburg (Russian Federation); Khoze, V. A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, St. Petersburg (Russian Federation); Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, Durham (United Kingdom); Martin, A. D., E-mail: a.d.martin@durham.ac.uk [Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, Durham (United Kingdom); Ryskin, M. G. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, St. Petersburg (Russian Federation); Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, Durham (United Kingdom)

    2015-12-28

    We study the prompt production of the χ{sub c}(1{sup +}) and χ{sub b}(1{sup +}) mesons at high energies. Unlike χ(0{sup +},2{sup +}) production, χ(1{sup +}) mesons cannot be created at LO via the fusion of two on-mass-shell gluons, that is, gg→χ{sub c,b}(1{sup +}) are not allowed. However, the available experimental data show that the cross sections for χ{sub c}(1{sup +}) and χ{sub c}(2{sup +}) are comparable. We therefore investigate four other χ(1{sup +}) production mechanisms: namely, (i) the standard NLO process gg→χ{sub c,b}(1{sup +})+g, (ii) via gluon virtuality, (iii) via gluon reggeisation and, finally, (iv) the possibility to form χ{sub c,b}(1{sup +}) by the fusion of three gluons, where one extra gluon comes from another parton cascade, as in the Double Parton Scattering processes.

  20. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release.

    Science.gov (United States)

    Kola, Blerina; Wittman, Gábor; Bodnár, Ibolya; Amin, Faisal; Lim, Chung Thong; Oláh, Márk; Christ-Crain, Mirjam; Lolli, Francesca; van Thuijl, Hinke; Leontiou, Chrysanthia A; Füzesi, Tamás; Dalino, Paolo; Isidori, Andrea M; Harvey-White, Judith; Kunos, George; Nagy, György M; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-12-01

    This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.

  1. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Sofia B Gustafsson

    Full Text Available BACKGROUND: There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1 receptor immunoreactive intensity (CB(1IR intensity is associated with disease severity and outcome. METHODOLOGY/PRINCIPAL FINDINGS: CB(1IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483 and invasive front (n = 486 CB(1IR was scored from 0 (absent to 3 (intense staining and the data was analysed as a median split i.e. CB(1IR <2 and ≥2. In microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins, there was a significant positive association of the tumour grade with the CB(1IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1IR<2 and CB(1IR≥2 groups, respectively. CONCLUSIONS/SIGNIFICANCE: The level of CB(1 receptor expression in colorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients.

  2. Neural endocannabinoid CB1 receptor expression, social status, and behavior in male European starlings.

    Science.gov (United States)

    DeVries, M Susan; Cordes, Melissa A; Rodriguez, Jonathan D; Stevenson, Sharon A; Riters, Lauren V

    2016-08-01

    Many species modify behavior in response to changes in resource availability or social status; however, the neural mechanisms underlying these modifications are not well understood. Prior work in male starlings demonstrates that status-appropriate changes in behavior involve brain regions that regulate social behavior and vocal production. Endocannabinoids are ubiquitously distributed neuromodulators that are proposed to play a role in adjusting behavior to match social status. As an initial step to provide insight into this hypothesis we observed flocks of male starlings in outdoor aviaries during the breeding season. We used quantitative real-time PCR to measure expression of endocannabinoid CB1 receptors in brain regions involved in social behavior and motivation (lateral septum [LS], ventral tegmental area [VTA], medial preoptic nucleus [POM]) and vocal behavior (Area X and robust nucleus of the arcopallium; RA). Males with nesting sites sang to females and displaced other males more than males without nesting sites. They also had higher levels of CB1 receptor expression in LS and RA. CB1 expression in LS correlated positively with agonistic behaviors. CB1 expression in RA correlated positively with singing behavior. CB1 in VTA also correlated positively with singing when only singing birds were considered. These correlations nicely map onto the well-established role of LS in agonistic behavior and the known role of RA in song production and VTA in motivation and song production. Studies are now needed to precisely characterize the role of CB1 receptors in these regions in the production of status-appropriate social behaviors. PMID:27206544

  3. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses.

  4. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    Science.gov (United States)

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  5. Calculation of the CB1 burnup credit benchmark reaction rates with MCNP4B

    International Nuclear Information System (INIS)

    The first calculational VVER-440 burnup credit benchmark CB1 in 1996. VTT Energy participated in the calculation of the CB1 benchmark with three different codes: CASMO-4, KENO-VI and MCNP4B. However, the reaction rates and the fission ν were calculated only with CASMO-4. Now, the neutron absorption and production reaction rates and the fission ν values have been calculated at VTT Energy with the MCNP4B Monte Carlo code using the ENDF60 neutron data library. (author)

  6. Cannabinoid type 1 (CB1) receptors on Sim1-expressing neurons regulate energy expenditure in male mice.

    Science.gov (United States)

    Cardinal, Pierre; Bellocchio, Luigi; Guzmán-Quevedo, Omar; André, Caroline; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Gonzales, Delphine; Cannich, Astrid; Marsicano, Giovanni; Cota, Daniela

    2015-02-01

    The paraventricular nucleus of the hypothalamus (PVN) regulates energy balance by modulating not only food intake, but also energy expenditure (EE) and brown adipose tissue thermogenesis. To test the hypothesis that cannabinoid type 1 (CB1) receptor in PVN neurons might control these processes, we used the Cre/loxP system to delete CB1 from single-minded 1 (Sim1) neurons, which account for the majority of PVN neurons. On standard chow, mice lacking CB1 receptor in Sim1 neurons (Sim1-CB1-knockout [KO]) had food intake, body weight, adiposity, glucose metabolism, and EE comparable with wild-type (WT) (Sim1-CB1-WT) littermates. However, maintenance on a high-fat diet revealed a gene-by-diet interaction whereby Sim1-CB1-KO mice had decreased adiposity, improved insulin sensitivity, and increased EE, whereas feeding behavior was similar to Sim1-CB1-WT mice. Additionally, high-fat diet-fed Sim1-CB1-KO mice had increased mRNA expression of the β3-adrenergic receptor, as well as of uncoupling protein-1, cytochrome-c oxidase subunit IV and mitochondrial transcription factor A in the brown adipose tissue, all molecular changes suggestive of increased thermogenesis. Pharmacological studies using β-blockers suggested that modulation of β-adrenergic transmission play an important role in determining EE changes observed in Sim1-CB1-KO. Finally, chemical sympathectomy abolished the obesity-resistant phenotype of Sim1-CB1-KO mice. Altogether, these findings reveal a diet-dependent dissociation in the CB1 receptor control of food intake and EE, likely mediated by the PVN, where CB1 receptors on Sim1-positive neurons do not impact food intake but hinder EE during dietary environmental challenges that promote body weight gain.

  7. Biphasic Effects of Cannabinoids in Anxiety Responses: CB1 and GABAB Receptors in the Balance of GABAergic and Glutamatergic Neurotransmission

    Science.gov (United States)

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-01-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABAB receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals. PMID:22850737

  8. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    Science.gov (United States)

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  9. CB1系列控制与保护开关电器

    Institute of Scientific and Technical Information of China (English)

    管瑞良; 张志刚; 季春华; 徐晓阳; 焦志刚

    2011-01-01

    CB1系列控制与保护开关电器(以下简称CB1)是将断路器、接触器、过载继电器以及隔离器的主要功能集成化的控制与保护开关电器(Control and Protective Switching Device,简称CPS,又称多功能电器),主要应用于交流50Hz,额定电压至690V,额定电流0.15~32A的电动机控制与保护。CB1适用于频繁操作控制,能够接通、承载、分断正常条件下的电流,并能接通、承载、分断非正常条件下的电流。CB1特别适用于自动化集中控制系统和基于现场总线的分布式生产线的控制与保护。

  10. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The expression patterns of the cannabinoid receptor type 1 (CB1R and the cannabinoid receptor type 2 (CB2R are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells and CB2R is exclusively found in the retinal glia (Müller cells. However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp. in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  11. Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists.

    Science.gov (United States)

    Veeraraghavan, P; Nistri, A

    2015-09-10

    Sustained administration of cannabinoid agonists acting on neuronal CB1 receptors (CB1Rs) are proposed for treating spasticity and chronic pain. The impact of CB1Rs on mammalian locomotor networks remains, however, incompletely understood. To clarify how CB1Rs may control synaptic activity and locomotor network function, we used the rat spinal cord in vitro which is an advantageous model to investigate locomotor circuit mechanisms produced by the local central pattern generator. Neither the CB1 agonist anandamide (AEA) nor the CB1R antagonist AM-251 evoked early (3-24h largely impaired locomotor network activity induced by DR stimuli or neurochemicals, and depressed disinhibited bursting without changing reflex amplitude or inducing neurotoxicity even if CB1R immunoreactivity was lowered in the central region. Since CB1R activation usually inhibits cyclic adenosine monophosphate (cAMP) synthesis, we investigated how a 24-h application of AEA or AM-251 affected basal or forskolin-stimulated cAMP levels. While AEA decreased them in an AM-251-sensitive manner, AM-251 per se did not change resting or stimulated cAMP. Our data suggest that CB1Rs may control the circuit gateway regulating the inflow of sensory afferent inputs into the locomotor circuits, indicating a potential site of action for restricting peripheral signals disruptive for locomotor activity.

  12. CB1 cannabinoid receptor participates in the vascular hyporeactivity resulting from hemorrhagic shock in rats

    Institute of Scientific and Technical Information of China (English)

    HOU Li-chao; LI Nan; ZHENG Li-na; LU Yan; XIE Ke-liang; WANG Yue-min; JI Gen-lin; XIONG Li-ze

    2009-01-01

    Background Vascular hyporeactivity, which occurs in the terminal stage of hemorrhagic shock, is believed to be critical for treating hemorrhagic shock. The present study was designed to examine whether the CB1 cannabinoid receptor (CB1R) was involved in the development of vascular hyporeactivity in rats suffering from hemorrhagic shock.Methods Sixteen animals were randomly divided into two groups (n=8 in each group): sham-operated (Sham) and hemorrhagic shock (HS) groups. Hemorrhagic shock was induced by bleeding. The mean arterial pressure (MAP) was reduced to and stabilized at (25±5) mmHg for 2 hours. The vascular reactivity was determined by the response of MAP to norepinephrine (NE). In later experiments another twelve animals were used in which the changes of CB1R mRNA and protein in aorta and superior mesenteric artery (SMA) were analyzed by RT-PCR and Western blotting. In addition, we investigated the effects of a CB1R antagonist on the vascular hyporeactivity and survival rates in rats with hemorrhagic shock. Survival rates were analyzed by the Fisher's exact probability test. The MAP response was analyzed by one-way analysis of variance (ANOVA).Results Vascular hyporeactivity developed in all animals suffering from hemorrhagic shock. The expression of CB1R mRNA and protein in aorta and 2-3 branches of the SMA were significantly increased in the HS group after the development of vascular hyporeactivity when compared to those in Sham group. When SR141716A or AM251 was administered, the MAP response to NE was (41.75±4.08) mmHg or (44.78±1.80) mmHg respectively, which was higher than that in saline groups with (4.31±0.36) mmHg (P<0.01). We also showed an increased 4-hour survival rate in the SR141716A or AM251-treated group with 20% or 30%, but with a statistically significant difference present between the AM251-treated and saline groups (P<0.05).Conclusions CB1R is involved in vascular hyporeactivity resulting from hemorrhagic shock in rats, and CB1R

  13. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G

    2015-07-01

    Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation.

  14. Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Bedse, Gaurav; Romano, Adele; Cianci, Silvia; Lavecchia, Angelo M; Lorenzo, Pace; Elphick, Maurice R; Laferla, Frank M; Vendemiale, Gianluigi; Grillo, Caterina; Altieri, Fabio; Cassano, Tommaso; Gaetani, Silvana

    2014-01-01

    The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.

  15. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users.

    Science.gov (United States)

    Ceccarini, Jenny; Kuepper, Rebecca; Kemels, Dieter; van Os, Jim; Henquet, Cécile; Van Laere, Koen

    2015-03-01

    Δ(9) -Tetrahydrocannabinol, the main psychoactive component of cannabis, exerts its central effects through activation of the cerebral type 1 cannabinoid (CB1 ) receptor. Pre-clinical studies have provided evidence that chronic cannabis exposure is linked to decreased CB1 receptor expression and this is thought to be a component underlying drug tolerance and dependence. In this study, we make first use of the selective high-affinity positron emission tomography (PET) ligand [(18) F]MK-9470 to obtain in vivo measurements of cerebral CB1 receptor availability in 10 chronic cannabis users (age = 26.0 ± 4.1 years). Each patient underwent [(18) F]MK-9470 PET within the first week following the last cannabis consumption. A population of 10 age-matched healthy subjects (age = 23.0 ± 2.9 years) was used as control group. Parametric modified standardized uptake value images, reflecting CB1 receptor availability, were calculated. Statistical parametric mapping and volume-of-interest (VOI) analyses of CB1 receptor availability were performed. Compared with controls, cannabis users showed a global decrease in CB1 receptor availability (-11.7 percent). VOI-based analysis demonstrated that the CB1 receptor decrease was significant in the temporal lobe (-12.7 percent), anterior (-12.6 percent) and posterior cingulate cortex (-13.5 percent) and nucleus accumbens (-11.2 percent). Voxel-based analysis confirmed this decrease and regional pattern in CB1 receptor availability in cannabis users. These findings revealed that chronic cannabis use may alter specific regional CB1 receptor expression through neuroadaptive changes in CB1 receptor availability, opening the way for the examination of specific CB1 -cannabis addiction interactions which may predict future cannabis-related treatment outcome.

  16. Homology Modeling and Docking Studies of Cannabinoid Receptor CB1%大麻素受体CB1三维结构的同源模建及其对接研究

    Institute of Scientific and Technical Information of China (English)

    涂国刚; 李少华

    2011-01-01

    大麻素CB1受体属于G蛋白偶联受体.以牛视紫红质的晶体结构为模板,利用同源模建法对CB1受体的三维结构进行了模拟,并采用分子动力学方法对模型进行了修正和优化.在此基础上,分析了活性位点的组成和结构,研究了拮抗剂利莫那班与CBi受体的对接,明确了CB1受体与利莫那班结合时起重要作用的氨基酸残基.发现利莫那班与CB1受体残基Lys192形成氢键相互作用是CB1受体拮抗剂的重要分子作用基础.%CB1 receptor belongs to G protein-coupled receptor.Using bovine rhodopsin as structural template, the 3D structure of CB1 receptor was built by homology modeling, and refined using molecular dynamics method.On the basis of the modeling, the components and strncture of active site in CB1 receptor were analyzed, and the docking of rimonabant with CB1 receptor was investigated.The binding pattern revealed important residues that interacted with the rimonabant.The hydrogen bonding interaction between Lys192 and rimonabant is crucial for CB1 receptor antagonist.

  17. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.

    Science.gov (United States)

    Shim, Joong-Youn; Ahn, Kwang H; Kendall, Debra A

    2013-11-01

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.

  18. Effects of Intra-Amygdala Infusion of CB1 Receptor Agonists on the Reconsolidation of Fear-Potentiated Startle

    Science.gov (United States)

    Lin, Hui-Ching; Mao, Sheng-Chun; Gean, Po-Wu

    2006-01-01

    The cannabinoid CB1 receptor has been shown to be critically involved in the extinction of fear memory. Systemic injection of a CB1 receptor antagonist prior to extinction training blocked extinction. Conversely, administration of the cannabinoid uptake inhibitor AM404 facilitated extinction in a dose-dependent manner. Here we show that bilateral…

  19. CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin.

    Science.gov (United States)

    Cardinal, Pierre; André, Caroline; Quarta, Carmelo; Bellocchio, Luigi; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Maitre, Marlene; Gonzales, Delphine; Cannich, Astrid; Pagotto, Uberto; Marsicano, Giovanni; Cota, Daniela

    2014-10-01

    Metabolic flexibility allows rapid adaptation to dietary change, however, little is known about the CNS mechanisms regulating this process. Neurons in the hypothalamic ventromedial nucleus (VMN) participate in energy balance and are the target of the metabolically relevant hormone leptin. Cannabinoid type-1 (CB1) receptors are expressed in VMN neurons, but the specific contribution of endocannabinoid signaling in this neuronal population to energy balance regulation is unknown. Here we demonstrate that VMN CB1 receptors regulate metabolic flexibility and actions of leptin. In chow-fed mice, conditional deletion of CB1 in VMN neurons (expressing the steroidogenic factor 1, SF1) decreases adiposity by increasing sympathetic activity and lipolysis, and facilitates metabolic effects of leptin. Conversely, under high-fat diet, lack of CB1 in VMN neurons produces leptin resistance, blunts peripheral use of lipid substrates and increases adiposity. Thus, CB1 receptors in VMN neurons provide a molecular switch adapting the organism to dietary change.

  20. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    Science.gov (United States)

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-10-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.

  1. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-01

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  2. A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects.

    Science.gov (United States)

    Ignatowska-Jankowska, Bogna M; Baillie, Gemma L; Kinsey, Steven; Crowe, Molly; Ghosh, Sudeshna; Owens, Robert A; Damaj, Imad M; Poklis, Justin; Wiley, Jenny L; Zanda, Matteo; Zanato, Chiara; Greig, Iain R; Lichtman, Aron H; Ross, Ruth A

    2015-12-01

    The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [(3)H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [(35)S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.

  3. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1.

    Science.gov (United States)

    Fay, Jonathan F; Farrens, David L

    2015-07-01

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.

  4. The CB1 receptor as an important mediator of hedonic reward processing.

    Science.gov (United States)

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-09-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing.

  5. The CB1 receptor as an important mediator of hedonic reward processing.

    Science.gov (United States)

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-09-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  6. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  7. Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host-targeting agents.

    Science.gov (United States)

    Shahidi, Mahsa; Tay, Enoch S E; Read, Scott A; Ramezani-Moghadam, Mehdi; Chayama, Kazuaki; George, Jacob; Douglas, Mark W

    2014-11-01

    Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.

  8. Benzyl-1,2,4-triazoles as CB1 Cannabinoid Receptor Ligands: Preparation and In Vitro Pharmacological Evaluation

    Science.gov (United States)

    Hernandez-Folgado, Laura; Decara, Juan; Rodríguez de Fonseca, Fernando; Goya, Pilar; Jagerovic, Nadine

    2016-01-01

    In a previous study, we have identified 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type 1 receptor (CB1R) antagonists. In order to expand the number of cannabinoid ligands with a central 1,2,4-triazole scaffold, we have synthesized a novel series of 1-benzyl-1H-1,2,4-triazoles, and some of them were evaluated by CB1R radioligand binding assays. Compound 12a showed the most interesting pharmacological properties, possessing a CB1R affinity in the nanomolar range. PMID:27127651

  9. CB1 cannabinoid receptors are involved in neuroleptic-induced enhancement of brain neurotensin

    Directory of Open Access Journals (Sweden)

    Parichehr Hassanzadeh

    2014-03-01

    Full Text Available Objective(s: Targeting the neuropeptide systems has been shown to be useful for the development of more effective antipsychotic drugs. Neurotensin, an endogenous neuropeptide, appears to be involved in the mechanism of action of antipsychotics. However, the available data provide conflicting results and the mechanism(s by which antipsychotics affect brain neurotensin neurotransmission have not been identified. Therefore, we aimed to investigate the effects of fluphenazine and amisulpride on brain regional contents of neurotensin considering the role of cannabinoid CB1 receptors which interact with neurotensin neurotransmission. Materials and Methods:Fluphenazine (0.5, 1, and 3 mg/kg or amisulpride (3, 5, and 10 mg/kg were administered intraperitoneally to male Wistar rats either for one day or 28 consecutive days.Twenty four hours after the last injection of drug or vehicle, neurotensin contents were determined in the mesocorticolimbic and nigrostriatal dopamine regions by radioimmunoassay. In the case of any significant change, the effect of pre-treatment with CB1 receptor antagonist, AM251 was investigated. Results:Chronic, but not acute, treatment with the highest dose of fluphenazine or amisulpride resulted in significant enhancement of neurotensin contents in the prefronatal cortex and nucleus accumbens. Fluphenazine also elevated neurotensin levels in the anterior and posterior caudate nuclei and substantia nigra. Neither amisulpride nor fluphenazine affected neurotensin contents in the amygdala or hippocampus. Pre-treatment with AM251 (3 mg/kg prevented the neuroleptic-induced elevation of neurotensin. AM251 showed no effect by itself. Conclusion:The brain neurotensin under the regulatory action of CB1 receptors is involved in[T1]  the effects of amisulpride and fluphenazine.

  10. Perspectives of CB1 Antagonist in Treatment of Obesity: Experience of RIO-Asia

    Directory of Open Access Journals (Sweden)

    Changyu Pan

    2011-01-01

    Full Text Available Rimonabant, a selective cannabinoid-1 (CB1 receptor antagonist, has been shown to reduce weight and enhance improvements in cardiometabolic risk parameters in Western populations. This study assessed these effects of rimonabant in Asian population. A total of 643 patients (BMI 25 kg/m2 or greater without diabetes from China, Republic of Korea, and Taiwan were prescribed a hypocaloric diet (600 kcal/day deficit and randomized to rimonabant 20 mg (n=318 or placebo (n=325 for 9months. The primary efficacy variable was weight change from baseline after 9 months of treatment. Results showed that rimonabant group lost more weight than placebo, (LSM ± SEM of −4.7 ± 0.3 kg vs. −1.7 ± 0.3 kg, P<.0001. The 5% and 10% responders were 2 or 3 folds more in the rimonabant group (53.0% vs. 20.0% and 21.5% vs. 5.7%, resp. (P<.0001. Rimonabant also significantly increased HDL-cholesterol, decreased triglycerides and waist circumference,by 7.1%, 10.6%, and 2.8 cm, respectively (P<.0001. This study confirmed the comparable efficacy and safety profile of rimonabant in Asian population to Caucasians. Owing to the recent suspension of all the CB1 antagonists off the pharmaceutical market for weight reduction in Europe and USA, a perspective in drug discovery for intervening peripheral CB1 receptor in the management of obesity is discussed.

  11. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    Science.gov (United States)

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-01

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  12. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Satpathy, Shankha; Kohlmeier, Kristi Anne

    2014-01-01

    Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating...... the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular...

  13. Novel Method for Synthesis of Diarylpyrazole Derivatives as Cannabinoid CB1 Receptor Antagonists

    Institute of Scientific and Technical Information of China (English)

    WU Ying-qiu; ZHENG Guo-jun; WANG Ya-ping; WANG Xiang-jing; XIANG Wen-sheng

    2011-01-01

    A novel and efficient method was developed for the synthesis of diarylpyrazole derivatives as cannabinoid CB1 receptor antagonist via four step reactions. The key step was the synthesis of a diarylpyrazole skeleton, which involved initial condensation of the sodium salt of compound 12 with diazonium compounds, and further cyclization by heating at reflux in acetic acid. Eight diarylpyrazole derivatives and nine new synthesized compounds were cha racterized by 1H NMRy IR, MS, and elemental analysis. The reaction conditions were mild and the overall yields of the target compounds ranged from 26% to 44%.

  14. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  15. Localization and function of the cannabinoid CB1 receptor in the anterolateral bed nucleus of the stria terminalis.

    Directory of Open Access Journals (Sweden)

    Nagore Puente

    Full Text Available BACKGROUND: The bed nucleus of the stria terminalis (BNST is involved in behaviors related to natural reward, drug addiction and stress. In spite of the emerging role of the endogenous cannabinoid (eCB system in these behaviors, little is known about the anatomy and function of this system in the anterolateral BNST (alBNST. The aim of this study was to provide a detailed morphological characterization of the localization of the cannabinoid 1 (CB1 receptor a necessary step toward a better understanding of the physiological roles of the eCB system in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS: We have combined anatomical approaches at the confocal and electron microscopy level to ex-vivo electrophysiological techniques. Here, we report that CB1 is localized on presynaptic membranes of about 55% of immunopositive synaptic terminals for the vesicular glutamate transporter 1 (vGluT1, which contain abundant spherical, clear synaptic vesicles and make asymmetrical synapses with alBNST neurons. About 64% of vGluT1 immunonegative synaptic terminals show CB1 immunolabeling. Furthermore, 30% and 35% of presynaptic boutons localize CB1 in alBNST of conditional mutant mice lacking CB1 mainly from GABAergic neurons (GABA-CB1-KO mice and mainly from cortical glutamatergic neurons (Glu-CB1-KO mice, respectively. Extracellular field recordings and whole cell patch clamp in the alBNST rat brain slice preparation revealed that activation of CB1 strongly inhibits excitatory and inhibitory synaptic transmission. CONCLUSIONS/SIGNIFICANCE: This study supports the anterolateral BNST as a potential neuronal substrate of the effects of cannabinoids on stress-related behaviors.

  16. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  17. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  18. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    Science.gov (United States)

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  19. 大鼠CB1基因真核表达载体的构建及初步鉴定%Construction and Preliminary Identification of the Eukaryotic Expression Vector of CB1 Gene in Rats

    Institute of Scientific and Technical Information of China (English)

    刘佳; 李晶; 严磊; 赵婷婷; 王慧娟; 赖国旗; 龙明

    2015-01-01

    目的:构建大鼠Ⅰ型大麻素受体(CB1)真核基因表达载体,并检测其在细胞中的表达情况.方法:从大鼠海马组织中提取总RNA,逆转录-聚合酶链反应(RT-PCR)扩增出CB1基因片段,产物连接到pMD18-T载体上.阳性实验筛选出阳性克隆,经EcoR Ⅰ、BamH Ⅰ双酶切及测序鉴定后,将其连接到载体pcDNA 3.1(+)中,构建质粒载体pcDNA3.1(+)-CB1,脂质体转染原代人胚肾293细胞(HEK293细胞).用Western blot实验鉴定细胞中CB1蛋白的表达,用免疫荧光细胞染色联合激光扫描共聚焦法检测其在细胞中表达的部位.结果:采用RT-PCR成功获得大鼠CB1基因,PCR扩增得到1 500 bp左右的CB1基因片段,双酶切鉴定及DNA测序证实质粒载体pcDNA3.1(+)-CB1构建成功.Western blot实验、免疫荧光细胞染色联合激光扫描共聚焦法证实载体pcDNA3.1 (+)-CB1能在HEK293细胞中表达,且表达产物主要分布在细胞膜表面和细胞质中.结论:构建的pcDNA3.1 (+)-CB1表达载体能成功转入真核HEK293细胞,并在细胞膜表面和细胞质中表达CB1蛋白.

  20. Novel selective cannabinoid CB1 receptor antagonist MJ08 with potent in vivo bioactivity and inverse agonistic effects

    Institute of Scientific and Technical Information of China (English)

    Wei CHEN; Cheng XU; Hong-ying LIU; Long LONG; Wei ZHANG; Zhi-bing ZHENG; Yun-de XIE; Li-li WANG; Song LI

    2011-01-01

    To characterize the biological profiles of M J08,a novel selective CB1 receptor antagonist.Methods:Radioligand binding assays were performed using rat brain and spleen membrane preparations.CB1 and CB2 receptor redistribution and intracellular Ca2+ ([Ca2+]1) assays were performed with IN CELL Analyzer.Inverse agonism was studied using intracellular cAMP assays,and in guinea-pig ileum and mouse vas deferens smooth muscle preparations.In vivo pharmacologic profile was assessed in diet-induced obesity (DIO) mice.Results:In radioligand binding assay,M J08 selectively antagonized CB1 receptor (IC50=99.9 nmol/L).In EGFP-CB1_U20S cells,its IC50 value against CB1 receptor activation was 30.23 nmol/L (SR141716A:32.16 nmol/L).WIN 55,212-2 (1 μmol/L) increased [Ca2+]1 in the primary cultured hippocampal neuronal cells and decreased cAMP accumulation in CHO-hCB1 cells.M J08 (10 nmol/L-1O μmol/L)blocked both the WIN 55,212-2-induced effects.Furthermore,M J08 reversed the inhibition of electrically evoked twitches of mouse vas deferens by WIN 55,212-2 (pA2=10.29±1.05).M J08 and SR141716A both showed an inverse agonism activity by markedly promoting the contraction force and frequency of guinea pig ileum muscle.M J08 significantly increased the cAMP level in CHO-hCB1 cells with an EC50 value of 78.6 nmol/L,which was lower than the EC50 value for SR141716A (159.2 nmol/L).Besides the more potent pharmacological effects of cannabinoid CB1 receptor antagonism in DIO mice,such as reducing food intake,decreasing body weight,and ameliorating dyslipidemia,M J08 (10 mg/kg) unexpectedly raised the fasted blood glucose in vivo.Conclusion:M J08 is a novel,potent and selective CB1 receptor antagonist/inverse agonist with potent bioactive responses in vitro and in vivo that may be useful for disclosure the versatile nature of CB1 receptors.

  1. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    Science.gov (United States)

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.

  2. The interactive role of CB(1) and GABA(B) receptors in hippocampal synaptic plasticity in rats.

    Science.gov (United States)

    Nazari, Masoumeh; Komaki, Alireza; Karamian, Ruhollah; Shahidi, Siamak; Sarihi, Abdolrahman; Asadbegi, Masoumeh

    2016-01-01

    Long-term potentiation (LTP) of synaptic transmission is a cellular process underlying learning and memory. Cannabinoids are known to be powerful modulators of this kind of synaptic plasticity. Changes in GABAergic inhibition have also been shown to affect synaptic plasticity in the hippocampus. GABA receptor type B (GABAB) and cannabinoid receptor type 1 (CB1) exhibit overlapping anatomical localization in some brain areas including the hippocampus. CB1 and GABAB are also localized to the same cells and share a common signaling pathway in some brain areas. In this study, we examined the hippocampal effects of co-administrating AM251 and CGP55845, which are CB1 and GABAB antagonists, respectively, on LTP induction in the dentate gyrus (DG) of rats. LTP in the hippocampal area was induced by high-frequency stimulation (HFS) of the perforant path. Our results showed that HFS coupled with administration of the CB1 antagonist increased both the population spike (PS) amplitude and field excitatory post-synaptic potential (fEPSP). Conversely, the GABAB antagonist decreased these parameters along with decreased LTP induction. We also demonstrated that the co-administration of CB1 and GABAB antagonists had different effects on the PS amplitude and fEPSP slope. It is likely that GABAB receptor antagonists modulate cannabinoid outputs that cause a decrease in synaptic plastisity, while in the simultaneous consumption of two antagonists, CB1 antagonists can alter the release of GABA which in turn results in enhancement of LTP induction. These findings suggest that there are functional interactions between the CB1 and GABAB receptor in the hippocampus. PMID:26611204

  3. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    Science.gov (United States)

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action. PMID:27179908

  4. Activation of type 1 cannabinoid receptor (CB1R promotes neurogenesis in murine subventricular zone cell cultures.

    Directory of Open Access Journals (Sweden)

    Sara Xapelli

    Full Text Available The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive, neurons and astrocytes. Stimulation of the CB1R by (R-(+-Methanandamide (R-m-AEA increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation, at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca(2+]i in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.

  5. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding

    Science.gov (United States)

    Montgomery, David R.; Dietrich, William E.; Heffner, John T.

    2002-12-01

    Experimental observations comparing two steep unchanneled valleys in the Oregon Coast Range, one intensively instrumented (CB1) and the other monitored for runoff but which produced a debris flow (CB2), shed light on the mechanisms of shallow flow in bedrock, its interaction with the vadose zone, and its role in generating landslides. Previous work at CB1 led to the proposal that during storms pulses of rainfall transmit pressure waves through the vadose zone and down to the saturated zone to create rapid pore pressure response and runoff [, 1998]. Here, we document the associated rapid pore pressure response in the shallow fractured bedrock that underlies these colluvium-mantled sites and examine its influence on the generation of storm flow, seasonal variations in base flow, and slope stability in the overlying colluvial soil. Our observations document rapid piezometric response in the shallow bedrock and a substantial contribution of shallow fracture flow to both storm flow and seasonal variations in base flow. Saturated hydraulic conductivity in the colluvial soil decreases with depth below the ground surface, but the conductivity of the near-surface bedrock displays no depth dependence and varies over five orders of magnitude. Analysis of runoff intensity and duration in a series of storms that did and did not trigger debris flows in the surrounding area shows that the landslide inducing storms had the greatest intensity over durations similar to those predicted by a simple model of piezometric response. During a monitored storm in February 1992, the channel head at the base of the neighboring CB2 site failed as a debris flow. Automated piezometric measurements document that the CB2 debris flow initiated several hours after peak discharge, coincident with localized development of upward spikes of pressure head from near-surface bedrock into the overlying colluvial soil in CB1. Artesian flow observed exfiltrating from bedrock fractures on the failure surfaces

  6. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?

    Science.gov (United States)

    Zlebnik, Natalie E; Cheer, Joseph F

    2016-07-01

    The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy. PMID:27023732

  7. Evaluation of the abuse potential of AM281, a new synthetic cannabinoid CB1 receptor antagonist.

    Science.gov (United States)

    Botanas, Chrislean Jun; de la Peña, June Bryan; Dela Pena, Irene Joy; Tampus, Reinholdgher; Kim, Hee Jin; Yoon, Seong Shoon; Seo, Joung-Wook; Jeong, Eun Ju; Cheong, Jae Hoon

    2015-11-01

    AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) is a new synthetic cannabinoid CB1 receptor antagonist. Similar to other cannabinoid antagonists, AM281 has been suggested to have therapeutic indications. However, recent reports have suggested that cannabinoid CB1 receptor antagonists may share similar behavioral effects with other drugs of abuse such as cocaine and amphetamine. These reports cast doubts on the safety profile of AM281. Thus, in the present study we evaluated the abuse potential (rewarding and reinforcing effects) of AM281 through two of the most widely used animal models for assessing the abuse potential of drugs: the conditioned place preference (CPP) and self-administration (SA) tests. Experiments were performed in Sprague-Dawley rats in various dosages [CPP (0.1, 0.5 or 2.5mg/kg), SA (0.005, 0.025 or 0.1mg/kg/infusion)]. We also delved into the consequences of repeated drug exposure on the subsequent response to the drug. Thus, parallel experiments were carried out in rats pretreated with AM281 for 7 or 14 days. Our findings indicated that AM281, at any dose, did not induce CPP and SA in drug-naïve rats. Interestingly, significant CPP (0.5mg/kg of AM281), but not SA, was observed in 14 days pretreated rats. These observations suggest that AM281 per se has no or minimal rewarding and reinforcing properties, but alterations in neuronal functions and behavior due to repeated AM281 exposure may contribute in part to the abuse potential of this drug. In view of this finding, we advocate the careful use, monitoring, and dispensation of AM281.

  8. CB1介导△~9-THC抑制CA1区LTD的作用%CB1 modulates △~9-THC-induced inhibition of LTD in the CA1 area

    Institute of Scientific and Technical Information of China (English)

    杨红卫

    2009-01-01

    目的 探讨大麻素受体1(CB1)在四氢大麻酚(△~9-THC)抑制CA1区长时程抑制(LTD)中的作用.方法 在小鼠腹腔注射△~9-THC(10 mg/ks)或CB1受体的选择性抑制剂SR141716(SR,5 mg/kg)24 h后切片,在海马CA1区记录场电位EPSP.结果 ①给予低频电刺激(1 Hz 15 min)诱导CA1区LTD,△~9-THC可显著降低LTD(P0.05).结论 CB1受体介导△~9-THC抑制离体海马CA1区LTD的作用.

  9. Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Reisiger, Anne-Ruth; Kaufling, Jennifer; Manzoni, Olivier; Cador, Martine; Georges, François; Caillé, Stephanie

    2014-03-19

    Nicotine addiction is characterized by repetitive drug taking and drug seeking, both tightly controlled by cannabinoid CB1 receptors. The responsiveness of neurons of the bed nucleus of the stria terminalis (BNST) to infralimbic cortex (ILCx) excitatory inputs is increased in rats with active, but not passive, nicotine taking. Therefore, we hypothesize that acquisition of the learned association between nicotine infusion and a paired cue light permits the strengthening of the ILCx-BNST synapses after ILCx tetanic stimulation. We exposed rats to intravenous nicotine self-administration for 2 months. Using a combination of in vivo protocols (electrical stimulations, extracellular recordings, and pharmacological manipulations), we characterized the effects of 10 Hz stimulation of the ILCx on BNST excitatory responses, under different conditions of exposure to nicotine. In addition, we tested whether the effects of the stimulation were CB1 receptor-dependent. The results show that nicotine self-administration supports the induction of evoked spike potentiation in the BNST in response to 10 Hz stimulation of ILCx afferents. Although not altered by nicotine abstinence, this cellular adaptation was blocked by CB1 receptor antagonism. Moreover, blockade of BNST CB1 receptors prevented increases in time-out responding subsequent to ILCx stimulation and decreased cue-induced reinstatement. Thus, the synaptic potentiation within the BNST in response to ILCx stimulation seems to contribute to the cue-elicited responding associated with nicotine self-administration and is tightly controlled by CB1 receptors.

  10. The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas.

    Directory of Open Access Journals (Sweden)

    Eiron Cudaback

    Full Text Available BACKGROUND: Cannabinoids represent unique compounds for treating tumors, including astrocytomas. Whether CB(1 and CB(2 receptors mediate this therapeutic effect is unclear. PRINCIPAL FINDINGS: We generated astrocytoma subclones that express set levels of CB(1 and CB(2, and found that cannabinoids induce apoptosis only in cells expressing low levels of receptors that couple to ERK1/2. In contrast, cannabinoids do not induce apoptosis in cells expressing high levels of receptors because these now also couple to the prosurvival signal AKT. Remarkably, cannabinoids applied at high concentration induce apoptosis in all subclones independently of CB(1, CB(2 and AKT, but still through a mechanism involving ERK1/2. SIGNIFICANCE: The high expression level of CB(1 and CB(2 receptors commonly found in malignant astrocytomas precludes the use of cannabinoids as therapeutics, unless AKT is concomitantly inhibited, or cannabinoids are applied at concentrations that bypass CB(1 and CB(2 receptors, yet still activate ERK1/2.

  11. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    Science.gov (United States)

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  12. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

    Science.gov (United States)

    Lu, Dai; Dopart, Rachel; Kendall, Debra A

    2016-01-01

    Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two Gprotein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.

  13. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration.

    Science.gov (United States)

    Pisanti, Simona; Picardi, Paola; Pallottini, Valentina; Martini, Chiara; Petrosino, Stefania; Proto, Maria Chiara; Vitale, Mario; Laezza, Chiara; Gazzerro, Patrizia; Di Marzo, Vincenzo; Bifulco, Maurizio

    2015-12-01

    The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.

  14. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions.

    Science.gov (United States)

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  15. Mead ethanolamide, a novel eicosanoid, is an agonist for the central (CB1) and peripheral (CB2) cannabinoid receptors.

    Science.gov (United States)

    Priller, J; Briley, E M; Mansouri, J; Devane, W A; Mackie, K; Felder, C C

    1995-08-01

    The recently discovered endogenous agonist for the cannabinoid receptor, anandamide (arachidonylethanolamide), can be formed enzymatically by the condensation of arachidonic acid with ethanolamine. 5Z,8Z,11Z-Eicosatrienoic acid (mead acid) has been found to substitute for arachidonic acid in the sn-2 position of phospholipids and accumulate during periods of dietary fatty acid deprivation in rats. In the present study, the chemically synthesized ethanolamide of mead acid was evaluated as a potential agonist at the two known subtypes of cannabinoid receptor: CB1 (central) and CB2 (peripheral). This compound was equipotent to anandamide in competing with [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the human CB1 receptor and from ATt-20 cells expressing the human CB2 receptor. Mead ethanolamide was also equipotent to anandamide in inhibiting forskolin-stimulated cAMP accumulation in cells expressing the CB1 receptor. It inhibited N-type calcium currents with a lower potency than anandamide. Mead and arachidonic acid were equally efficacious as substrates for the enzymatic synthesis of their respective ethanolamides in rat and adult human hippocampal P2 membranes. Palmitic acid was not an effective substrate for the enzymatic synthesis of palmitoyl ethanolamide. Mead ethanolamide exhibits several characteristics of a novel agonist to CB1 and CB2 receptors and may represent another candidate endogenous ligand for the CB1 receptor. Due to the anticonvulsant properties of GABA and the positional similarity of L-serine to ethanolamine in membrane phospholipids, these compounds were synthetically coupled to arachidonic acid, and their resulting arachidonamides were tested as potential cannabinoid agonists. The arachidonamides of GABA and L-serine were inactive in both binding and functional assays at the CB1 receptor. PMID:7651362

  16. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    Directory of Open Access Journals (Sweden)

    Eleftheria Lakiotaki

    2015-01-01

    Full Text Available The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2, their endogenous ligands (endocannabinoids, and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins’ expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n=43 and malignant (n=44 lesions and was statistically analyzed with clinicopathological parameters, follicular cells’ proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p=0.0010 and p=0.0005, resp.. Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p=0.0097 and p=0.0110, resp.. In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p=0.0301. Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p=0.1165, lymphatic (p=0.1989, and vascular invasion (p=0.0555, as well as in those with increased risk of recurrence rate (p=0.1165, at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  17. WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges

    NARCIS (Netherlands)

    Rijn, C.M. van; Gaetani, S.; Santolini, I.; Badura, A.; Fu, J.; Watanabe, M.; Cuomo, V.; Luijtelaar, E.L.J.M. van; Nicoletti, F.; Ngomba, R.T.

    2010-01-01

    Purpose: Genetically epileptic WAG/Rij rats develop spontaneous absence-like seizures after 3 months of age. We used WAG/Rij rats to examine whether absence seizures are associated with changes in the expression of type-1 cannabinoid (CB1) receptors. Methods: Receptor expression was examined by in s

  18. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission.

    Science.gov (United States)

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-11-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABA(B) receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals.

  19. Dose-dependent effects of celecoxib on CB-1 agonist-induced antinociception in the mice

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zarrindast

    2009-04-01

    Full Text Available "nObjective: Endocannabinoid produce analgesia that is comparable which of opioids. The mechanism of antinociceptive effects of (∆ - 9 tetrahydrocannabinol (THC is suggested to be through cyclooxygenase (COX pathway. In the present work, the effect of two extreme dose ranges of celecoxib (mg/kg and ng/kg, a cyclooxygenase-2 (COX-2 antagonist, on arachidonylcyclopropylamide (ACPA, a selective CB1 agonist induced antinociception in mice was examined. "nMethods: We have investigated the interaction between celecoxib, at the doses of mg/kg (50, 100, 200 and 400 i.p.  and ultra low dose (ULD (25 and 50 ng/kg, i.p., on the antinociceptive effect of intracerebroventricular (i.c.v. administration of ACPA (0.004, 0.0625 and 1 μg/mice, using formalin test in mice. "nResults: I.C.V. administration of ACPA induced antinociception. Intraperitoneal administration of celecoxib (mg/kg and its ULD (ng/kg attenuated and potentiated, ACPA antinociceptive effects, respectively. "nConclusion: It is concluded that the mg/kg doses of COX-2 antagonist showed opposite effects compare to the ultra-low dose of the drug.

  20. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators.

    Science.gov (United States)

    Nguyen, Thuy; German, Nadezhda; Decker, Ann M; Li, Jun-Xu; Wiley, Jenny L; Thomas, Brian F; Kenakin, Terry P; Zhang, Yanan

    2015-05-01

    A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators.

  1. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  2. Curcumin and hemopressin treatment attenuates cholestasis-induced liver fibrosis in rats: role of CB1 receptors.

    Science.gov (United States)

    El Swefy, Sahar; Hasan, Rehab A; Ibrahim, Amal; Mahmoud, Mona F

    2016-01-01

    Curcumin exerts hepatoprotective effects via poorly defined mechanisms. Recently, some studies suggested that this effect was mediated by antagonizing CB1 receptors in hepatic stellate cells. The current study aimed to investigate whether CB1 antagonist, hemopressin, could potentiate the hepatoprotective effect of curcumin, in comparison with silymarin in bile duct-ligated (BDL) rats. Curcumin and hemopressin each alone and in combination ameliorated biochemical and structural fibrotic injury, and downregulated cyclooxygenase-2 (COX-2) and both mRNA and protein levels of nuclear factor kappa B (NF-κB) in fibrotic liver. In contrast to the previous studies, curcumin alone did not affect the gene expression of cannabinoid receptors. However, the combination of hemopressin and curcumin reduced the expression of CB1 in fibrotic liver. Surprisingly, silymarin upregulated CB2 receptors and downregulated CB1 at mRNA level more than all the administered drugs. Both curcumin and hemopressin each alone decreased lipid peroxidation product, malondialdehyde (MDA), while the combination increased the reduced glutathione content. All the administered drugs increased the hepatic antiapoptotic marker, Bcl2. Our study suggests that hemopressin potentiates the hepatoprotective effect of curcumin on fibrotic liver. We identified a new mechanism of the hepatoprotective effect of silymarin via modulation of cannabinoid receptors in fibrotic liver.

  3. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors.

    Science.gov (United States)

    Talani, Giuseppe; Licheri, Valentina; Biggio, Francesca; Locci, Valentina; Mostallino, Maria Cristina; Secci, Pietro Paolo; Melis, Valentina; Dazzi, Laura; Carta, Gianfranca; Banni, Sebastiano; Biggio, Giovanni; Sanna, Enrico

    2016-04-01

    The endogenous endocannabinoid system has a crucial role in regulating appetite and feeding behavior in mammals, as well as working memory and reward mechanisms. In order to elucidate the possible role of cannabinoid type-1 receptors (CB1Rs) in the regulation of hippocampal plasticity in animals exposed to food restriction (FR), we limited the availability of food to a 2-h daily period for 3 weeks in Sprague-Dawley rats. FR rats showed a higher long-term potentiation at hippocampal CA1 excitatory synapses with a parallel increase in glutamate release when compared with animals fed ad libitum. FR rats showed a significant increase in the long-term spatial memory determined by Barnes maze. FR was also associated with a decreased inhibitory effect of the CB1R agonist win55,212-2 on glutamatergic field excitatory postsynaptic potentials, together with a decrease in hippocampal CB1R protein expression. In addition, hippocampal brain-derived neurotrophic factor protein levels and mushroom dendritic spine density were significantly enhanced in FR rats. Altogether, our data suggest that alterations of hippocampal CB1R expression and function in FR rats are associated with dendritic spine remodeling and functional potentiation of CA1 excitatory synapses, and these findings are consistent with increasing evidence supporting the idea that FR may improve cognitive functions.

  4. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Paul L. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M. [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Ford, Benjamin M.; Franks, Lirit N. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Radominska-Pandya, Anna, E-mail: RadominskaAnna@uams.edu [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States)

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  5. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    Science.gov (United States)

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors.

  6. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons.

    Science.gov (United States)

    Palomba, Letizia; Silvestri, Cristoforo; Imperatore, Roberta; Morello, Giovanna; Piscitelli, Fabiana; Martella, Andrea; Cristino, Luigia; Di Marzo, Vincenzo

    2015-05-29

    The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.

  7. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    Science.gov (United States)

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  8. Bi-directional CB1 receptor-mediated cardiovascular effects of cannabinoids in anaesthetized rats: role of the paraventricular nucleus.

    Science.gov (United States)

    Grzeda, E; Schlicker, E; Luczaj, W; Harasim, E; Baranowska-Kuczko, M; Malinowska, B

    2015-06-01

    The activation of cannabinoid CB1 receptors decreases and increases blood pressure (BP) in anaesthetized and conscious rats, respectively. The aim of our study was to check the possible involvement of CB1 receptors in the paraventricular nucleus of the hypothalamus (PVN) in the cardiovascular effects of cannabinoids in rats. Methanandamide (metabolically stable analogue of the endocannabinoid anandamide) and the synthetic cannabinoid receptor agonist CP55940 were microinjected into the PVN of urethane-anaesthetized rats twice (S1 and S2, 20 min apart). Receptor antagonists were administered intravenously (i.v.) 5 min before S1. Methanandamide and CP55940 decreased blood pressure by 15 - 20%. The CB1 receptor antagonist AM251 reversed the depressor effect into a pressor response of 20 - 30%. The pressor effect of CP55940 observed in the presence of AM251 i.v. was reduced by AM251 given additionally into the PVN but not by the i.v. injection of the CB2 antagonist SR144528 or the vanilloid TRPV1 antagonist ruthenium red. In the presence of the peripherally restricted CB1 receptor antagonist AM6545, CP55940 given into the PVN increased BP by 40%. AM6545 reversed the decrease in BP induced by CP55940 i.v. into a marked increase. Bilateral chemical lesion of the PVN by kainic acid abolished all cardiovascular effects of CP55940 i.v. In conclusion, the cannabinoid CP55940 administered to the PVN of urethane-anaesthetized rats can induce depressor and pressor effects. The direction of the response probably depends on the sympathetic tone. The centrally induced hypertensive response of CP55940 can, in addition, be masked by peripheral CB1 receptors.

  9. Dorsolateral periaqueductal gray matter CB1 and TRPV1 receptors exert opposite modulation on expression of contextual fear conditioning.

    Science.gov (United States)

    Uliana, D L; Hott, S C; Lisboa, S F; Resstel, L B M

    2016-04-01

    Cannabinoid type 1 (CB1) and Transient Potential Vanilloid type 1 (TRPV1) receptors in the dorsolateral periaqueductal gray (dlPAG) matter are involved in the modulation of conditioned response. Both CB1 and TRPV1 receptors are related to glutamate release and nitric oxide (NO) synthesis. It was previously demonstrated that both NMDA glutamate receptors and NO are involved in the conditioned emotional response. Therefore, one aim of this work was to verify whether dlPAG CB1 and TRPV1 receptors modulate the expression of contextual conditioned emotional response. Moreover, we also investigated the involvement of NMDA receptors and the NO pathway in this response. Male Wistar rats with local dlPAG guide cannula were submitted to contextual fear conditioning. Following 24 h, a polyethylene catheter was implanted in the femoral artery for cardiovascular recordings. After an additional 24 h, drugs were administered in the dlPAG and freezing behavior and autonomic responses were recorded during chamber re-exposure. Both a CB1 antagonist (AM251) and a TRPV1 agonist (Capsaicin; CPS) increased the expression of a conditioned emotional response. This response was prevented by an NMDA antagonist, a preferential neuronal NO synthase inhibitor, an NO scavenger and a soluble guanylate cyclase inhibitor (sGC). Furthermore, pretreatment with a TRPV1 antagonist also prevented the increased conditioned emotional response induced by AM251. Considering that GABA can counterbalance glutamate effects, we also investigated whether GABAA receptors were involved in the effect of a higher dose of AM251. Pretreatment with a GABAA receptor antagonist caused an increased conditioned emotional response by AM251. Our results support the possibility that dlPAG CB1 and TRPV1 receptors are involved in the expression of conditioned emotional response through the NMDA/NO/sGC pathway. Moreover, the opposite effects exerted by GABA and glutamate could produce different outcomes of drugs modulating eCBs.

  10. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  11. The relationship between cb1-b gene and androgen independent prostate cancer during the immunotherapy%Cb1-b基因与免疫治疗激素非依赖性前列腺癌

    Institute of Scientific and Technical Information of China (English)

    李学峰; 史振铎

    2010-01-01

    前列腺肿瘤主要的治疗手段包括手术、放化疗、内分泌治疗等.大多数晚期前列腺癌往往转变为激素非依赖性,对于激素非依赖性前列腺癌(Androgen Independent Prostate Cancer,AIPC)目前缺乏有效的治疗手段.研究发现Cb1-b(Casitas B cell lymphoma-b)基因在调节抗肿瘤免疫方面发挥着重要作用.通过沉默T细胞Cb1-b基因的表达从而增强机体的抗肿瘤免疫有望在AIPC治疗上实现重大突破.

  12. CB1 Mediates the Inhibitory Effect of AEA on Inhibitory Synapses in Dentate Gyrus%CB1受体介导AEA对齿状回抑制性突触的抑制作用

    Institute of Scientific and Technical Information of China (English)

    杨红卫

    2010-01-01

    目的 探讨大麻素受体1(CB1)在N-花生四烯酸乙醇胺(AEA)对海马齿状回颗粒细胞的抑制性突触的作用.方法 应用电压钳技术在海马脑片齿状回颗粒细胞记录抑制性突触后电流(IPSC),观察CB1受体的特异性抑制剂SR141716A(SR)和AEA对齿状回IPSC的影响.结果 (1)AEA对齿状回的抑制性突触具有抑制作用;(2)SR可翻转AEA对齿状回IPSC的抑制效应.结论 CB1受体介导AEA对齿状回抑制性突触的抑制作用.

  13. 哺乳动物体内大麻CB1受体分子生物学功能概述

    Institute of Scientific and Technical Information of China (English)

    李晶; 王馨; 龙云; 王娜

    2011-01-01

    目的 探讨大麻CB1受体分子生物学功能.方法 回顾大麻CB1受体相关文献.结果 大麻受体CB1在CNS表达并结合Gi/o蛋白转换胞内信号,下调一系列广泛的信号机制.结论 大麻CB1受体可能与神经类疾病和代谢失衡有关,选择性调节CB1受体是这类疾病首选治疗方法.

  14. Advances in research on CB1receptor antagonists%大麻Ⅰ型受体抑制剂研究进展

    Institute of Scientific and Technical Information of China (English)

    张伟; 钟武; 李松

    2007-01-01

    临床试验表明,大麻Ⅰ型受体(CB1)抑制剂利莫那班(rimonabant)在治疗肥胖和戒烟方面具有良好效果[1],CB1受体抑制剂还具有治疗药物成瘾、认知和记忆紊乱、神经错乱等疾病的潜力.CB1受体抑制剂与诸多疾病的相关性大大推进了新的CB1受体抑制剂的发展.本文主要对各种CB1受体抑制剂的结构及活性研究的最新进展进行综述.

  15. Mapping CB1 cannabinoid receptors with [3H]OMAR in the Flinders rodent model of depression

    DEFF Research Database (Denmark)

    Nahimi, A.; Gjedde, A.; Wong, D. F.;

    2012-01-01

    Background: The endocannabinoid system regulates cognitive and emotional processes and pathology of this system is implicated in psychiatric disorders, including depression and schizophrenia. The precise role of the endocannabinoid system in psychiatric disorders remains unclear, but changes......H]OMAR, a highly selective CB1 receptor antagonist (Horti et al, 2006) in the Flinders rodent model of depression. Methods: The Flinders sensitive line (FSL) (N = 5-6) was used as a model of depression and the Flinders resistant line (FRL) (N= 6-8) served as controls (Wegener et al. 2010...... not significantly different. Conclusions: Although changes in CB1 receptor expression have been demonstrated in human suicide victims with depression and in animal models of depression, the present maps of [3H]OMAR binding revealed no difference between FSL and FRL rats. We used a single concentration of [3H...

  16. Anatomically heterogeneous populations of CB1 cannabinoid receptor-expressing interneurons in the CA3 region of the hippocampus show homogeneous input-output characteristics.

    Science.gov (United States)

    Szabó, Gergely G; Papp, Orsolya I; Máté, Zoltán; Szabó, Gábor; Hájos, Norbert

    2014-12-01

    A subpopulation of GABAergic cells in cortical structures expresses CB1 cannabinoid receptors (CB1 ) on their axon terminals. To understand the function of these interneurons in information processing, it is necessary to uncover how they are embedded into neuronal circuits. Therefore, the proportion of GABAergic terminals expressing CB1 and the morphological and electrophysiological properties of CB1 -immunoreactive interneurons should be revealed. We investigated the ratio and the origin of CB1 -expressing inhibitory boutons in the CA3 region of the hippocampus. Using immunocytochemical techniques, we estimated that ∼40% of GABAergic axon terminals in different layers of CA3 also expressed CB1 . To identify the inhibitory cell types expressing CB1 in this region, we recorded and intracellularly labeled interneurons in hippocampal slices. CB1 -expressing interneurons showed distinct axonal arborization, and were classified as basket cells, mossy-fiber-associated cells, dendritic-layer-innervating cells or perforant-path-associated cells. In each morphological category, a substantial variability in axonal projection was observed. In contrast to the diverse morphology, the active and passive membrane properties were found to be rather similar. Using paired recordings, we found that pyramidal cells displayed large and fast unitary postsynaptic currents in response to activating basket and mossy-fiber-associated cells, while they showed slower and smaller synaptic events in pairs originating from interneurons that innervate the dendritic layer, which may be due to dendritic filtering. In addition, CB1 activation significantly reduced the amplitude of the postsynaptic currents in each cell pair tested. Our data suggest that CB1 -expressing interneurons with different axonal projections have comparable physiological characteristics, contributing to a similar proportion of GABAergic inputs along the somato-dendritic axis of CA3 pyramidal cells.

  17. Influence of G1359A polimorphysm of the cannabinoid receptor gene (CNR1 on insulin resistance and adipokines in patients with non alcoholic fatty liver disease Influencia del polimorfismo G1359a del gen del receptor cannabinoide (CNR1 sobre la resistencia a la insulina y adipocinas en pacientes con enfermedad hepática no alcohólica

    Directory of Open Access Journals (Sweden)

    R. Aller

    2012-10-01

    Full Text Available Background: Considering the evidence that endogenous cannabinoid system plays a role in metabolic aspects of body weight and metabolic syndrome components such as non alcoholic fatty liver disease (NAFLD. The aim of our study was to investigate the influence of this polymorphism on insulin resistance, liver histological changes, anthropometric parameters and adipocytokines in patients with NAFLD. Material and methods: A population of 71 patients with NAFLD was recruited in a cross sectional study. A biochemical analysis of serum was measured. Genotype of G1359A polymorphism of CB1 receptor gene CB1 receptor was studied. Forty one patients (36.9% had the genotype G1359G (wild type group and twenty nine (26.1% patients G1359A or A1359A (mutant type group. Results: Twenty four 24 patients (32,3% had a Brunt grade > 4 and 12 patients (17% had a significative fibrosis (F > = 2. HOMA values were higher in wild type group than mutant type group. Adiponectin and visfatin levels were higher in mutant type group. Moreover, TNF-alpha and resistin levels were higher in wild type group than mutant type group. Patients with mutant genotype showed less frequently elevated levels of AST. AST > 40 UI/L was detected in 28.5% of patients in the mutant vs. 53% of patients with wild genotype, p = 4 less frequently than patients with wild type group (28.5%vs 7.1%. Conclusion: A variant of the polymorphism G1359A CBR1 is associated with lower levels of HOMA, TNF-alpha, resistin and higher levels of adiponectin than patients with the wild variant of this polymorphism. Besides, patients with A allele variant shown lower Brunt grade in liver biopsy.Antecedentes: Teniendo en cuenta la evidencia de que el sistema cannabinoide endógeno juega un papel importante en aspectos metabólicos, peso corporal y componentes del síndrome metabólico como la enfermedad hepática NO alcohólica (EHNA. El objetivo de nuestro estudio fue investigar la influencia de este polimorfismo en

  18. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.

    Science.gov (United States)

    Bermudez-Silva, Francisco J; Romero-Zerbo, Silvana Y; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases.

  19. The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)).

    Science.gov (United States)

    Grabiec, Urszula; Koch, Marco; Kallendrusch, Sonja; Kraft, Robert; Hill, Kerstin; Merkwitz, Claudia; Ghadban, Chalid; Lutz, Beat; Straiker, Alex; Dehghani, Faramarz

    2012-03-01

    Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased between 100 pM and 10 μM NADA (p NADA mediated neuroprotection, we applied the cannabinoid (CB) receptor 1 (CB(1)) inverse agonist/antagonist AM251, CB(2) inverse agonist/antagonist AM630, abnormal-cannabidiol (abn-CBD)-sensitive receptor antagonist O-1918, transient receptor potential channel V1 (TRPV1) antagonist 6-iodonordihydrocapsaicin and A1 (TRPA1) antagonist HC-030031. Neuroprotective properties of low (1 nM) but not high (10 μM) NADA concentrations were solely blocked by AM251 and were absent in CB(1)(-/-) mice. AM630, O-1918, 6-iodonordihydrocapsaicin and HC-030031 showed no effects at all NADA concentrations applied. Our findings demonstrate that NADA protects dentate gyrus granule cells by acting via CB(1). NADA reduced the number of microglial cells at distinct concentrations. TRPV1 and TRPA1 were not involved in NADA mediated neuroprotection. Thus, our data implicate that NADA mediated activation of neuronal CB(1) may serve as a novel pharmacological target to mitigate symptoms of neuronal damage.

  20. NESS038C6, a novel selective CB1 antagonist agent with anti-obesity activity and improved molecular profile.

    Science.gov (United States)

    Mastinu, Andrea; Pira, Marilena; Pani, Luca; Pinna, Gérard Aimè; Lazzari, Paolo

    2012-10-01

    The present work aims to study the effects induced by a chronic treatment with a novel CB1 antagonist (NESS038C6) in C57BL/6N diet-induced obesity (DIO) mice. Mice treated with NESS038C6 and fed with a fat diet (NESS038C6 FD) were compared with the following three reference experimental groups: DIO mice fed with the same fat diet used for NESS038C6 and treated with vehicle or the reference CB1 antagonist/inverse agonist rimonabant, "VH FD" and "SR141716 FD", respectively; DIO mice treated with vehicle and switched to a normal diet (VH ND). NESS038C6 chronic treatment (30 mg/kg/day for 31 days) determined a significant reduction in DIO mice weight relative to that of VH FD. The entity of the effect was comparable to that detected in both SR141716 FD and VH ND groups. Moreover, if compared to VH FD, NESS038C6 FD evidenced: (i) improvement of cardiovascular risk factors; (ii) significant decrease in adipose tissue leptin expression; (iii) increase in mRNA expression of hypothalamic orexigenic peptides and a decrease of anorexigenic peptides; (iv) expression increase of metabolic enzymes and peroxisome proliferator-activated receptor-α in the liver; (v) normalization of monoaminergic transporters and neurotrophic expression in mesolimbic area. However, in contrast to the case of rimonabant, the novel CB1 antagonist improved the disrupted expression profile of genes linked to the hunger-satiety circuit, without altering monoaminergic transmission. In conclusion, the novel CB1 antagonist compound NESS038C6 may represent a useful candidate agent for the treatment of obesity and its metabolic complications, without or with reduced side effects relative to those instead observed with rimonabant. PMID:22771813

  1. A role of CB1R in inducing θ-rhythm coordination between the gustatory and gastrointestinal insula

    Science.gov (United States)

    Kang, Youngnam; Sato, Hajime; Saito, Mitsuru; Yin, Dong Xu; Park, Sook Kyung; Oh, Seog Bae; Bae, Yong Chul; Toyoda, Hiroki

    2016-01-01

    Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA. However, this possibility has never been investigated. In rat slice preparations, we demonstrate with voltage-sensitive dye imaging that activation of CB1Rs by AEA induces θ-rhythm oscillatory synchronization in the Gu-I which propagates into the GI-Au-I but stops at its caudal end, displaying an oscillatory coordination. The AEA-induced oscillation was abolished by a CB1R antagonist or OEA through activation of GPR119. Our results demonstrate that the neural coordination between the Gu-I and GI-Au-I is generated or suppressed by the opposing activities between CB1R and GPR119. This mechanism may be involved in the feeding behavior based on taste recognition. PMID:27581068

  2. A role of CB1R in inducing θ-rhythm coordination between the gustatory and gastrointestinal insula.

    Science.gov (United States)

    Kang, Youngnam; Sato, Hajime; Saito, Mitsuru; Yin, Dong Xu; Park, Sook Kyung; Oh, Seog Bae; Bae, Yong Chul; Toyoda, Hiroki

    2016-01-01

    Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA. However, this possibility has never been investigated. In rat slice preparations, we demonstrate with voltage-sensitive dye imaging that activation of CB1Rs by AEA induces θ-rhythm oscillatory synchronization in the Gu-I which propagates into the GI-Au-I but stops at its caudal end, displaying an oscillatory coordination. The AEA-induced oscillation was abolished by a CB1R antagonist or OEA through activation of GPR119. Our results demonstrate that the neural coordination between the Gu-I and GI-Au-I is generated or suppressed by the opposing activities between CB1R and GPR119. This mechanism may be involved in the feeding behavior based on taste recognition. PMID:27581068

  3. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    Science.gov (United States)

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. PMID:26707595

  4. GABABR-Dependent Long-Term Depression at Hippocampal Synapses between CB1-Positive Interneurons and CA1 Pyramidal Cells.

    Science.gov (United States)

    Jappy, Dave; Valiullina, Fliza; Draguhn, Andreas; Rozov, Andrei

    2016-01-01

    Activity induced long lasting modifications of synaptic efficacy have been extensively studied in excitatory synapses, however, long term plasticity is also a property of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be subdivided according to the compartment they target on the pyramidal cell. Some interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Another characteristic feature allowing functional classification of interneurons is cell type specific expression of different neurochemical markers and receptors. In the hippocampal CA1 region, nearly 90% of the interneurons expressing cannabinoid type 1 receptors (CB1R) also express cholecystokinin (CCK). Therefore, the functional presence of CB1 receptors can be used for identification of the inhibitory input from CCK positive (CCK+) interneurons to CA1 pyramidal cells. The goal of this study was to explore the nature of long term plasticity at the synapses between interneurons expressing CB1Rs (putative CCK+) and pyramidal neurons in the CA1 region of the hippocampus in vitro. We found that theta burst stimulation triggered robust long-term depression (LTD) at this synapse. The locus of LTD induction was postsynaptic and required activation of GABAB receptors. We also showed that LTD at this synaptic connection involves GABABR-dependent suppression of adenylyl cyclase and consequent reduction of PKA activity. In this respect, CB1+ to pyramidal cell synapses differ from the majority of the other hippocampal inhibitory connections where theta burst stimulation results in long-term potentiation. PMID:26858602

  5. Photoperiodic changes in endocannabinoid levels and energetic responses to altered signalling at CB1 receptors in Siberian hamsters.

    Science.gov (United States)

    Ho, J M; Smith, N S; Adams, S A; Bradshaw, H B; Demas, G E

    2012-07-01

    Siberian hamsters (Phodopus sungorus) adapt to seasonal environmental conditions with marked changes in body mass, primarily in the form of adiposity. Winter-like conditions (e.g. short days) are sufficient to decrease body mass by approximately 30% in part via reductions in food intake. The neuroendocrine mechanisms responsible for these changes are not well understood, and homeostatic orexigenic/anorexigenic systems of the hypothalamus provide little explanation. We investigated the potential role of endocannabinoids, which are known modulators of appetite and metabolism, in mediating seasonal changes in energy balance. Specifically, we housed hamsters in long or short days for 0, 3, or 9 weeks and measured endocannabinoid levels in the hypothalamus, brainstem, liver and retroperitoneal white adipose tissue (RWAT). An additional group of males housed in short days for 25 weeks were also compared with long-day controls. Following 9 weeks in short days, levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) were significantly elevated in RWAT and reduced in brainstem, although they returned to long-day levels by week 25 in short-day males that had cycled back to summer-like energy balance. Endocannabinoid levels in these tissues correlated significantly with adiposity and change in body mass. No photoperiodic changes were observed in the hypothalamus or liver; however, sex differences in 2-AG levels were found in the liver (males > females). We further tested the effects of CB(1) receptor signalling on ingestive behaviour. Five daily injections of CB(1) antagonist SR141716 significantly reduced food intake and body mass but not food hoarding. Although the CB(1) agonist arachidonyl-2-chloroethylamide did not appreciably affect either ingestive behaviour, body mass was significantly elevated following 2 days of injections. Taken altogether, these findings demonstrate that endocannabinoid levels vary with sex and photoperiod in a site-specific manner, and that

  6. A novel non-CB1/TRPV1 endocannabinoid-mediated mechanism depresses excitatory synapses on hippocampal CA1 interneurons

    OpenAIRE

    Edwards, Jeffrey G.; Gibson, Helen E.; Jensen, Tyron; Nugent, Fereshteh; Walther, Curtis; Blickenstaff, Jacob; Kauer, Julie A.

    2010-01-01

    Endocannabinoids (eCBs) mediate various forms of synaptic plasticity at excitatory and inhibitory synapses in the brain. The eCB anandamide binds to several receptors including the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptor 1 (CB1). We recently identified that TRPV1 is required for long-term depression at excitatory synapses on hippocampal stratum radiatum interneurons. Here we performed whole-cell patch clamp recordings from CA1 stratum radiatum interneurons in...

  7. Differential effects of CB1 receptor agonism in behavioural tests of unconditioned and conditioned fear in adult male rats.

    Science.gov (United States)

    Simone, Jonathan J; Green, Matthew R; Hodges, Travis E; McCormick, Cheryl M

    2015-02-15

    We investigated the effects of the highly selective CB1 receptor agonist ACEA and the CB1 receptor antagonist/inverse agonist AM251 on two behavioural tests of unconditioned fear, the elevated plus maze (EPM) and open field test (OFT), as well as on the recall and extinction of a conditioned auditory fear. Both ACEA and AM251 increased anxiety-like behaviour in the EPM and OFT. There was no effect of either drug on recall of the conditioned fear, and ACEA enhanced and AM251 impaired fear extinction. Further, though both the low (0.1 mg/kg) and high (0.5 mg/kg) dose of ACEA facilitated fear extinction, the low dose attenuated, and the high dose potentiated, fear induced corticosterone release suggesting independent effects of the drug on fear and stress responses. Although the extent to which cannabinoids are anxiogenic or anxiolytic has been proposed to be dose-dependent, these results indicate that the same dose has differential effects across tasks, likely based in differences in sensitivities of CB1 receptors to the agonist in the neural regions subserving unconditioned and conditioned fear.

  8. Long-term consequences of URB597 administration during adolescence on cannabinoid CB1 receptor binding in brain areas.

    Science.gov (United States)

    Marco, Eva María; Rubino, Tiziana; Adriani, Walter; Viveros, María-Paz; Parolaro, Daniela; Laviola, Giovanni

    2009-02-27

    Despite the alarming increment in the use and abuse of cannabis preparations among young people, little is known about possible long-term consequences of targeting the endocannabinoid system during the critical developmental period of adolescence. Therefore, we aimed to analyze possible long-lasting neurobiological consequences of enhancing endocannabinoid signalling during adolescence, by means of blocking anandamide (AEA) hydrolysis. Adolescent Wistar male rats were administered an inhibitor of AEA hydrolysis, i.e. URB597 (0, 0.1 or 0.5 mg/kg/day from postnatal days 38 to 43). The expression of brain cannabinoid receptor type 1 (CB1R) was then analyzed by [(3)H]CP-55,940 auto-radiographic binding at adulthood. Repeated URB597 administration during adolescence persistently modified CB1R binding in a region-dependent manner. A long-lasting decrease of CB1R binding levels was found in caudate-putamen, nucleus accumbens, ventral tegmental area and hippocampus, while an opposite increment was observed in the locus coeruleus. Present results provide evidence for long-lasting effects of adolescent URB597 administration. Activation of endocannabinoid transmission during the still plastic phase of adolescence may have implications for the maturational end-point of the endocannabinoid system itself, which could lead to permanent alterations in neuronal brain circuits and behavioural responses. Insights into the developmental trajectories of this neuromodulatory system may help us to better understand and prevent outcomes of neonatal and adolescent cannabis exposure.

  9. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Muñoz María

    2009-03-01

    Full Text Available Abstract Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than

  10. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats.

    Science.gov (United States)

    Monge-Roffarello, Boris; Labbe, Sebastien M; Roy, Marie-Claude; Lemay, Marie-Laurence; Coneggo, Estelle; Samson, Pierre; Lanfray, Damien; Richard, Denis

    2014-09-01

    The present study was designed to investigate the involvement of the cannabinoid receptor 1 (CB1) in the stimulating effects of the melanocortin-4 receptor (MC4R) agonism on whole-body and brown adipose tissue (BAT) thermogenesis. In a first series of experiments, whole-body and BAT thermogenesis were investigated in rats infused in the third ventricle of the brain with the MC4R agonist melanotan II (MTII) and the CB1 agonist δ9-tetrahydrocannabinol (δ(9)-THC) or the CB1 antagonist AM251. Whole-body thermogenesis was measured by indirect calorimetry and BAT thermogenesis assessed from interscapular BAT (iBAT) temperature. δ(9)-THC blunted the effects of MTII on energy expenditure and iBAT temperature, whereas AM251 tended to potentiate the MTII effects. δ(9)-THC also blocked the stimulating effect of MTII on (14)C-bromopalmitate and (3)H-deoxyglucose uptakes in iBAT. Additionally, δ(9)-THC attenuated the stimulating effect of MTII on the expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1α), type II iodothyronine deiodinase (Dio2), carnitine palmitoyltransferase 1B (Cpt1b), and uncoupling protein 1 (Ucp1). In a second series of experiments, we addressed the involvement of the paraventricular hypothalamic nucleus (PVH) in the CB1-mediated effects of MTII on iBAT thermogenesis, which were assessed following the infusion of MTII in the PVH and δ(9)-THC or AM251 in the fourth ventricle of the brain. We demonstrated the ability of δ(9)-THC to blunt MTII-induced iBAT temperature elevation. δ(9)-THC also blocked the PVH effect of MTII on (14)C-bromopalmitate uptake as well as on Pgc1α and Dio2 expression in iBAT. Altogether the results of this study demonstrate the involvement of the PVH in the CB1-mediated stimulating effects of the MC4R agonist MTII on whole-body and BAT thermogenesis.

  11. CB1 Cannabinoid Receptor-Dependent Activation of mTORC1/Pax6 Signaling Drives Tbr2 Expression and Basal Progenitor Expansion in the Developing Mouse Cortex.

    Science.gov (United States)

    Díaz-Alonso, Javier; Aguado, Tania; de Salas-Quiroga, Adán; Ortega, Zaira; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-09-01

    The CB1 cannabinoid receptor regulates cortical progenitor proliferation during embryonic development, but the molecular mechanism of this action remains unknown. Here, we report that CB1-deficient mouse embryos show premature cell cycle exit, decreased Pax6- and Tbr2-positive cell number, and reduced mammalian target of rapamycin complex 1 (mTORC1) activation in the ventricular and subventricular cortical zones. Pharmacological stimulation of the CB1 receptor in cortical slices and progenitor cell cultures activated the mTORC1 pathway and increased the number of Pax6- and Tbr2-expressing cells. Likewise, acute CB1 knockdown in utero reduced mTORC1 activation and cannabinoid-induced Tbr2-positive cell generation. Luciferase reporter and chromatin immunoprecipitation assays revealed that the CB1 receptor drives Tbr2 expression downstream of Pax6 induction in an mTORC1-dependent manner. Altogether, our results demonstrate that the CB1 receptor tunes dorsal telencephalic progenitor proliferation by sustaining the transcriptional activity of the Pax6-Tbr2 axis via the mTORC1 pathway, and suggest that alterations of CB1 receptor signaling, by producing the missexpression of progenitor identity determinants may contribute to neurodevelopmental alterations.

  12. Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.

    Science.gov (United States)

    Lisboa, Sabrina F; Borges, Anna A; Nejo, Priscila; Fassini, Aline; Guimarães, Francisco S; Resstel, Leonardo B

    2015-06-01

    Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC). Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic. However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP). Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT). We observed that drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting that CB1 signaling in these brain regions modulates defensive responses to both innate and learned threatening stimuli. This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.

  13. Effects of the novel cannabinoid CB1 receptor antagonist PF 514273 on the acquisition and expression of ethanol conditioned place preference.

    Science.gov (United States)

    Pina, Melanie M; Cunningham, Christopher L

    2014-08-01

    The centrally expressed cannabinoid receptor (CB1) has been considered a potential therapeutic target in treating alcoholism. Though CB1 receptors have been shown to modulate primary and conditioned ethanol reward, much of this research employed animal models that require ethanol ingestion or oral routes of administration. This is problematic considering CB1 antagonist drugs have high anorectic liability and have been used clinically in the treatment of obesity. Therefore, the present study examined CB1 antagonism in DBA/2J mice using an unbiased ethanol-induced conditioned place preference (CPP) procedure, a paradigm that does not require ethanol ingestion. To evaluate the role of CB1 receptors in primary ethanol reward, the highly potent and selective novel CB1 antagonist 2-(2-chlorophenyl)-3-(4-chlorophenyl)-7-(2,2-difluoropropyl)-6,7-dihydro-2H-pyrazolo[3,4-f][1,4]oxazepin-8(5H)-one (PF 514273) was administered 30 min before place preference conditioning with a fixed dose of ethanol (acquisition). To evaluate the role of CB1 receptors in ethanol-conditioned reward, PF 514273 was administered 30 min before place preference testing (expression). Although PF 514273 reduced ethanol-stimulated and basal locomotor activity, it did not perturb the acquisition or expression of ethanol-induced CPP. Results from the present study appear inconsistent with other studies that have demonstrated a role for CB1 antagonism in ethanol reward using oral administration paradigms. Our findings suggest that CB1 antagonism may have greater involvement in consummatory behavior than ethanol reward.

  14. O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus.

    Science.gov (United States)

    Jergas, Bernd; Schulte, Kirsten; Bindila, Laura; Lutz, Beat; Schlicker, Eberhard

    2014-07-01

    The cannabinoid CB1 receptors on the noradrenergic neurons in guinea pig hippocampal slices show an endogenous endocannabinoid tone. This conclusion is based on rimonabant, the facilitatory effect of which on noradrenaline release might be due to its inverse CB1 receptor agonism and/or the interruption of a tonic inhibition elicited by endocannabinoids. To examine the latter mechanism, a neutral antagonist would be suitable. Therefore, we studied whether O-2050 is a neutral CB1 receptor antagonist in the guinea pig hippocampus and whether it mimics the facilitatory effect of rimonabant. CB1 receptor affinity of O-2050 was quantified in cerebrocortical membranes, using (3)H-rimonabant binding. Its CB1 receptor potency and effect on (3)H-noradrenaline release were determined in superfused hippocampal slices. Its intrinsic activity at CB1 receptors was studied in hippocampal membranes, using (35)S-GTPγS binding. Endocannabinoid levels in hippocampus were determined by liquid chromatography-multiple reaction monitoring. O-2050 was about ten times less potent than rimonabant in its CB1 receptor affinity, potency and facilitatory effect on noradrenaline release. Although not affecting (35)S-GTPγS binding by itself, O-2050 shifted the concentration-response curve of a CB1 receptor agonist to the right but that of rimonabant to the left. Levels of anandamide and 2-arachidonoyl glycerol in guinea pig hippocampus closely resembled those in mouse hippocampus. In conclusion, our results with O-2050 confirm that the CB1 receptors on noradrenergic neurons of the guinea pig hippocampus show an endogenous tone. To differentiate between the two mechanisms leading to an endogenous tone, O-2050 is not superior to rimonabant since O-2050 may increase the inverse agonistic effect of endocannabinoids.

  15. Alterations in Corticolimbic Dendritic Morphology and Emotional Behavior in Cannabinoid CB1 Receptor–Deficient Mice Parallel the Effects of Chronic Stress

    OpenAIRE

    Hill, Matthew N.; Hillard, Cecilia J.; McEwen, Bruce S.

    2011-01-01

    Many changes produced by chronic stress are similar to those seen in cannabinoid CB1 receptor–deficient mice. In the current study, we examined both anxiety-like behavior and dendritic complexity within the prefrontal cortex and basolateral amygdala (BLA) in wild-type and CB1 receptor–deficient mice, under basal conditions and following exposure to 21 days of protracted restraint stress. CB1 receptor–deficient mice exhibited increased indices of anxiety in the elevated plus maze under basal c...

  16. The gastric CB1 receptor modulates ghrelin production through the mTOR pathway to regulate food intake.

    Science.gov (United States)

    Senin, Lucia L; Al-Massadi, Omar; Folgueira, Cintia; Castelao, Cecilia; Pardo, Maria; Barja-Fernandez, Silvia; Roca-Rivada, Arturo; Amil, Maria; Crujeiras, Ana B; Garcia-Caballero, Tomas; Gabellieri, Enrico; Leis, Rosaura; Dieguez, Carlos; Pagotto, Uberto; Casanueva, Felipe F; Seoane, Luisa M

    2013-01-01

    Over the years, the knowledge regarding the relevance of the cannabinoid system to the regulation of metabolism has grown steadily. A central interaction between the cannabinoid system and ghrelin has been suggested to regulate food intake. Although the stomach is the main source of ghrelin and CB1 receptor expression in the stomach has been described, little information is available regarding the possible interaction between the gastric cannabinoid and ghrelin systems in the integrated control of energy homeostasis. The main objective of the present work was to assess the functional interaction between these two systems in terms of food intake using a combination of in vivo and in vitro approaches. The present work demonstrates that the peripheral blockade of the CB1 receptor by rimonabant treatment decreased food intake but only in food-deprived animals. This anorexigenic effect is likely a consequence of decreases in gastric ghrelin secretion induced by the activation of the mTOR/S6K1 intracellular pathway in the stomach following treatment with rimonabant. In support of this supposition, animals in which the mTOR/S6K1 intracellular pathway was blocked by chronic rapamycin treatment, rimonabant had no effect on ghrelin secretion. Vagal communication may also be involved because rimonabant treatment was no longer effective when administered to animals that had undergone surgical vagotomy. In conclusion, to the best of our knowledge, the present work is the first to describe a CB1 receptor-mediated mechanism that influences gastric ghrelin secretion and food intake through the mTOR pathway. PMID:24303008

  17. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic.

    Science.gov (United States)

    Marcus, David J; Zee, Michael L; Davis, Brian J; Haskins, Chris P; Andrews, Mary-Jeanette; Amin, Randa; Henderson-Redmond, Angela N; Mackie, Ken; Czyzyk, Traci A; Morgan, Daniel J

    2016-01-01

    Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45%) and low fat (10%) chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast. PMID:27501235

  18. Low Temperature Creep of a Titanium Alloy Ti-6Al-2Cb-1Ta-0.8Mo

    Science.gov (United States)

    Chu, H. P.

    1997-01-01

    This paper presents a methodology for the analysis of low temperature creep of titanium alloys in order to establish design limitations due to the effect of creep. The creep data on a titanium Ti-6Al-2Cb-1Ta-0.8Mo are used in the analysis. A creep equation is formulated to determine the allowable stresses so that creep at ambient temperatures can be kept within an acceptable limit during the service life of engineering structures or instruments. Microcreep which is important to design of precision instruments is included in the discussion also.

  19. Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol.

    Science.gov (United States)

    Ofogh, Sattar Norouzi; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2016-09-01

    Ethanol and morphine are largely co-abused and affect memory formation. The present study intended to investigate the involvement of cannabinoid CB1 receptors of the basolateral amygdala (BLA) in cross state-dependent memory retrieval between morphine and ethanol. Adult male Wistar rats received bilateral cannulation of the BLA, and memory retrieval was measured in step-through type passive avoidance apparatus. Our results showed that post-training intraperitoneal (i.p.) administration of morphine (6mg/kg) induced amnesia. Pre-test administration of ethanol (0.5g/kg, i.p.) significantly improved morphine-induced memory impairment, suggesting that there is cross state-dependent memory retrieval between morphine and ethanol. It should be considered that pre-test administration of ethanol (0.1 and 0.5g/kg, i.p.) by itself had no effect on memory retrieval in the passive avoidance task. Interestingly, pre-test intra-BLA microinjection of different doses of WIN55,212-2 (0.1, 0.2 and 0.3μg/rat), a non-selective CB1/CB2 receptor agonist, plus an ineffective dose of ethanol (0.1g/kg, i.p.) improved morphine-induced memory impairment. Intra-BLA microinjection of AM251 (0.4-0.6ng/rat), a selective CB1 receptor antagonist, inhibited the improved effect of ethanol (0.5g/kg, i.p.) on morphine response. Pre-test intra-BLA microinjection of WIN55,212-2 or AM251 had no effect on memory retrieval or morphine-induced amnesia. Taken together, it can be concluded that morphine and ethanol can induce state-dependent memory retrieval. In addition, the BLA endocannabinoid system mediates via CB1 receptors the functional interaction of morphine and ethanol state-dependent memory retrieval which may depend on the rewarding effects of the drugs. PMID:27327764

  20. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    Science.gov (United States)

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis.

  1. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress.

    Science.gov (United States)

    Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio

    2015-08-01

    There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats.

  2. Changes and overlapping distribution in the expression of CB1/OX1-GPCRs in rat hippocampus by kainic acid-induced status epilepticus.

    Science.gov (United States)

    Zhu, Fei; Wang, Xiang-Qing; Chen, Ya-Nan; Yang, Nan; Lang, Sen-Yang; Zuo, Ping-Ping; Zhang, Jia-Tang; Li, Rui-Sheng

    2015-02-01

    Status epilepticus (SE) is a life-threatening neurological disorder. It is important to discover new drugs to control SE without the development of pharmacoresistance. Focus on the cannabinoid receptor and cannabinoid-related compounds might be a good option. Cannabinoid receptor 1 (CB1) and orexin receptor 1 (OX1) both belong to the GPCR superfamily and display "cross-talk" interactions, however, there has been no study of the effect of OX1/CB1 in epilepsy. Therefore, we investigated the potential long-term effects of SE on CB1 and OX1 expression in rat hippocampus, aiming to elucidate whether they are involved in the causative mechanism of epilepsy and whether they might form a heterodimer. In this study, SE was induced with kainic acid, and results of immunohistochemistry and RT-PCR both showed that the expression of CB1 in the hippocampus increased after SE and was significantly higher compared to controls especially 1 week post-SE. However we did not find any significant difference in the expression of OX1 between the SE group and the controls at any time. Under immunofluorescence staining, we observed an overlapping distribution of CB1 and OX1 in the hippocampus. The increased expression of CB1 in the hippocampus indicates that CB1 may play an important role in the underlying mechanism of SE, but the effect of OX1 was not obvious. The overlapping distribution of CB1 and OX1 in the hippocampus indicates that they may form a heterodimer to exert their effect in epilepsy.

  3. AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior and emotional reactivity

    Directory of Open Access Journals (Sweden)

    Matthias eKlugmann

    2011-07-01

    Full Text Available The endocannabinoid (ECB system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus (AAV vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity (e.g. elevated plus maze (EPM, light/dark emergence test (EMT, social interaction and the attentional set shift task (ASST - an adaptation of the human Wisconsin card sorting test - for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R compared to empty vector injected controls (Empty in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior towards the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients.

  4. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    Science.gov (United States)

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis. PMID:26320250

  5. Altered CB1 receptor coupling to G-proteins in the post-mortem caudate nucleus and cerebellum of alcoholic subjects.

    Science.gov (United States)

    Erdozain, Amaia M; Rubio, Marina; Meana, J Javier; Fernández-Ruiz, Javier; Callado, Luis F

    2015-11-01

    Biochemical, pharmacological and genetic evidence suggests the involvement of the endocannabinoid system in alcohol dependence. The aim of the present study was to evaluate the state of CB1 receptors in post-mortem caudate nucleus, hippocampus and cerebellum of alcoholic subjects.CB1 protein levels were measured by Western blot, CB1 receptor density and affinity by [(3)H]WIN55,212-2 saturation assays and CB1 functionality by [(35)S]GTPγS binding assays. Experiments were performed in samples from 24 subjects classified as non-suicidal alcoholics (n = 6), suicidal alcoholics (n = 6), non-alcoholic suicide victims (n = 6) and control subjects (n = 6).Alcoholic subjects presented hyperfunctional CB1 receptors in the caudate nucleus resulting in a higher maximal effect in both alcoholic groups compared to the non-alcoholic groups (p CB1 protein expression in either region. In the hippocampus of alcoholic subjects, no changes were observed either in the functionality, density or protein levels.Our data support an association between endocannabinoid system activity and alcoholism. The modifications reported here could be either a consequence of high lifetime ethanol consumption or a vulnerability factor to develop alcohol addiction.

  6. Cannabinoid receptor CB1 is involved in nicotine-induced protection against Aβ1-42 neurotoxicity in HT22 cells.

    Science.gov (United States)

    Wu, Mingchun; Jia, Ji; Lei, Chong; Ji, Ling; Chen, Xiaodan; Sang, Hanfei; Xiong, Lize

    2015-03-01

    Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.

  7. 大麻素CB1受体对条件性药物渴求的控制作用

    Institute of Scientific and Technical Information of China (English)

    周培岚; 苏瑞斌

    2006-01-01

    最近研究表明,大麻素CB1受体是用于治疗药物成瘾的一个新靶标.CB1受体存在于大脑激动环路,能调节药物摄取.在模拟人类成瘾的诱导复发动物模型上,阻断CB1受体能减弱暗示诱导性药物渴求的恢复.在多种滥用药物如精神兴奋剂、阿片、尼古丁及酒精等均可观察到防复发的作用.此外,CB1受体在奖赏相关性记忆中也有重要作用,这与内源性大麻素在记忆相关的可塑性中的作用相一致.临床试验证明,CB1受体拮抗剂利莫那班能够抑制复发反应和体重增加.总之,临床及临床前研究均表明,CB1受体拮抗剂为成瘾行为开辟了一种新的治疗途径.

  8. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Siopi, Eleni; Finn, David P; Marchand-Leroux, Catherine; Garcia-Segura, Luis M; Jafarian-Tehrani, Mehrnaz; Viveros, Maria-Paz

    2015-01-01

    Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. Recent studies show that minocycline suppresses microglial activation, reduces the lesion volume, and decreases TBI-induced locomotor hyperactivity up to 3 months. The endocannabinoid system (ECS) plays an important role in reparative mechanisms and inflammation under pathological situations by controlling some mechanisms that are shared with minocycline pathways. We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.

  9. CB1基因的生物信息学分析%Bioinformatics Analysis on Cannabinoid Receptors 1 of Swine

    Institute of Scientific and Technical Information of China (English)

    魏星灿; 贾青; 陶隽; 胡慧艳

    2013-01-01

    运用生物信息学方法分析了猪和其他21个物种 CB1基因CDs序列的系统进化关系和猪C B1基因编码蛋白质的理化性质与结构。结果显示,C B1基因同源性较高,且在进化中受到纯化选择的作用。猪CB1蛋白为疏水性跨膜蛋白,包含472个氨基酸残基,不含信号肽。其一级结构含有23个磷酸化位点、6个糖基化位点;二级结构含有47.67%的α螺旋、39.62%的无规则卷曲、12.71%的延长链;三级结构由7个α螺旋和无规则卷曲组成。研究结果表明,C B1基因可能是哺乳动物的看家基因,7条相连的α螺旋结构是猪CB1的活性位点。%In the study ,the phylogenetic relationship of the coding sequences (CDS) of CB1 gene between swine and other 21 species ,and the physicochemical characters and structural properties of CB1-encoding protein in swine were analyzed with bioinformatics methods .The results showed that the homology of CB1 gene was high as purifying selection could exist in its evolution .The CB1 protein was a hydrophobic transmembrane protein consisting of 472 amino acid residues without signal peptide .The primary structure of the protein CB1 contained 23 phosphorylation sites and 6 glycosylation sites ,the secondary structure was made up of 47 .67% of α-helix , 39 .62% of random coil ,12 .71% of extended strand ,the tertiary structure was composed of 7α-heli-ces and random coil .The results indicate that CB1 maybe is a housekeeping gene of mammals and the 7 connected α-helices are active sites of CB1 in swine .

  10. Anti Proliferative and Pro Apoptotic Effects of Flavonoid Quercetin Are Mediated by CB1 Receptor in Human Colon Cancer Cell Lines.

    Science.gov (United States)

    Refolo, Maria Grazia; D'Alessandro, Rosalba; Malerba, Natascia; Laezza, Chiara; Bifulco, Maurizio; Messa, Caterina; Caruso, Maria Gabriella; Notarnicola, Maria; Tutino, Valeria

    2015-12-01

    Quercetin, the major constituent of flavonoid and widely present in fruits and vegetables, is an attractive compound for cancer prevention due to its beneficial anti proliferative effects, showing a crucial role in the regulation of apoptosis and cell cycle signaling. In vitro studies have demonstrated that quercetin specifically influences colon cancer cell proliferation. Our experiments, using human colon adenocarcinoma cells, confirmed the anti proliferative effect of quercetin and gave intriguing new insight in to the knowledge of the mechanisms involved. We observed a significant increase in the expression of the endocannabinoids receptor (CB1-R) after quercetin treatment. CB1-R can be considered an estrogen responsive receptor and quercetin, having a structure similar to that of the estrogens, can interact with CB1-R leading to the regulation of cell growth. In order to clarify the contribution of the CB1-R to the quercetin action, we investigated some of the principal molecular pathways that are inhibited or activated by this natural compound. In particular we detected the inhibition of the major survival signals like the PI3K/Akt/mTOR and an induction of the pro apoptotic JNK/JUN pathways. Interestingly, the metabolism of β-catenin was modified by flavonoid both directly and through activated CB1-R. In all the experiments done, the quercetin action has proven to be reinforced by anandamide (Met-F-AEA), a CB1-R agonist, and partially counteracted by SR141716, a CB1-R antagonist. These findings open new perspectives for anticancer therapeutic strategies.

  11. Opposite regulation of cannabinoid CB1 and CB2 receptors in the prefrontal cortex of rats treated with cocaine during adolescence.

    Science.gov (United States)

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2016-02-26

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction, although it is not clear how cocaine regulates brain CB1 and CB2 receptors, especially during adolescence, a critical moment for shaping adult response to drug use. This study evaluated CB1 and CB2 protein levels in prefrontal cortex (PFC) and hippocampus (HC) by western blot analysis with specific and validated antibodies: (1) basally during adolescence (post-natal day PND 40, PND 47, PND 54), (2) by a sensitizing regimen of cocaine (15mg/kg, 7 days, i.p.) during different windows of adolescence vulnerability (PND 33-39, PND 40-46, PND 47-53), and (3) following repeated cocaine administration during adolescence (PND 33-39) in adulthood (PND 64). The results demonstrated a dynamic and opposite basal modulation of CB1 and CB2 receptors in PFC and HC during adolescence. CB1 receptor levels were increased while CB2 receptors were decreased as compared to adulthood with asymptotes values around mid adolescence (PND 47) both in PFC (CB1: +45±22, pCB1: +53±23, pCB1 (+55±10%, p<0.05) and CB2 (-25±10%, p<0.05) receptors when administered during early adolescence and only in PFC. However, the changes observed in PFC by repeated cocaine administration in adolescence were transient and did not endure into adulthood. These results identified a period of vulnerability during adolescence at which cocaine dysregulated the content of CB receptors in PFC, suggesting an opposite role for these receptors in the effects mediated by cocaine.

  12. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice.

    Science.gov (United States)

    Kruk-Slomka, Marta; Biala, Grażyna

    2016-03-15

    The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders.

  13. 埕岛油田CB1井区精细油藏描述研究

    Institute of Scientific and Technical Information of China (English)

    郭林园

    2009-01-01

    本文针对CB1井区开发过程中出现的矛盾及问题,重点研究了精细油藏描述. 主要包括层位对比,构造特征、沉积特征、流体特征、储层特征研究、油藏类型确立和模型建立以及储量计算等方面,取得了油藏开发调整的科学认识,为下步科学、高效开发埕北1井区提供技术保障.

  14. Contrasting effects of lithium chloride and CB1 receptor blockade on enduring changes in the valuation of reward.

    Directory of Open Access Journals (Sweden)

    Giovanni eHernandez

    2011-09-01

    Full Text Available When an organism has been trained to respond for a reward, its learned behavior can be characterized as goal-directed or habitual based on whether or not it is susceptible to reward devaluation. Here, we evaluated whether instrumental responding for brain stimulation reward (BSR can devalued using a paradigm traditionally used for natural rewards. Rats were trained to lever press for BSR. Subsequently, BSR was paired with either lithium chloride (LiCl, 5 mg/kg, i.p, a pro-emetic, or AM251, a CB1 receptor antagonist (3 mg/kg, i.p.. Pairings of BSR with these two compounds or their respective vehicle were performed in a novel environment so that only unconditional effects of BSR were affected by the pharmacological manipulations. Subsequently, in a probe test, all rats were returned in the drug-free state to the boxes where they had received training instrumental responding was reassessed in the absence of BSR delivery. LiCl produced enduring decreases in the number of responses during the test session, whereas AM251 had no effect. These results show that instrumental responding for BSR is susceptible to devaluation, in accord with the proposal that this behavior is supported at least in part by associations between the response and the rewarding outcome. Furthermore, they suggest that the reward modulation observed in studies involving the use of CB1 receptor antagonists arises from changes in the organism’s motivation rather than due to drug-induced changes in the intrinsic value of reward.

  15. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  16. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  17. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons.

    Science.gov (United States)

    Njoo, Christian; Agarwal, Nitin; Lutz, Beat; Kuner, Rohini

    2015-10-01

    The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.

  18. Effects of cannabinoid CB(1) receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda P; Werge, Thomas;

    2011-01-01

    . Endocannabinoids modulate striatal dopamine activity via type 1 cannabinoid (CB(1)) receptors, and studies in rats and humans suggest beneficial effects of CB(1) ligands on EPS. The present study explored the effects of CB(1) receptor ligands on oral dyskinesia induced by the dopamine D(1) receptor agonist SKF......81297 (SKF) and acute dystonia induced by the dopamine D(2) receptor antagonist haloperidol in Cebus apella monkeys. The monkeys were sensitised to EPS by prior exposure to D(2) receptor antagonists. SKF (0.3 mg/kg) was administered alone and in combination with the CB(1) agonist CP55,940 (0.......0025-0.01 mg/kg) or the CB(1) antagonist SR141716A (0.25-0.75 mg/kg). Haloperidol (individual doses at 0.01-0.02 mg/kg) was administered alone and in combination with CP55,940 (0.005 or 0.01 mg/kg) or SR141716A (0.5 or 0.75 mg/kg). Subsequently, the monkeys were videotaped, and the recordings were rated...

  19. Systemic or intra-amygdala infusion of an endocannabinoid CB1 receptor antagonist AM251 blocked propofol-induced anterograde amnesia.

    Science.gov (United States)

    Ren, Y; Wang, J; Xu, P B; Xu, Y J; Miao, C H

    2015-01-01

    Propofol is well-known for its anterograde amnesic actions. However, a recent experiment showed that propofol can also produce retrograde memory enhancement effects via an interaction with the endocannabinoid CB1 system. Therefore, the authors hypothesized that the regulating effect of propofol on the endocannabinoid CB1 system might also decrease the anterograde amnesic effect of propofol under some conditions, which might be a risk factor for intraoperative awareness. Since, the basolateral amygdala (BLA) has been confirmed to mediate propofol-induced anterograde amnesia and the BLA contains a high concentration of CB1 receptors, the authors investigated whether and how the endocannabinoid system, particularly the CB1 receptor within BLA, influences propofol-induced anterograde amnesia. Male Sprague-Dawley rats trained with inhibitory avoidance (IA) were systematically pre-trained using a memory-impairing dose of propofol (25 mg/kg). Before propofol administration, rats received an intraperitoneal injection of a CB1 receptor antagonist AM251 (1 mg/kg or 2 mg/kg) or a bilateral intra-BLA injection of AM251 (0.6 ng or 6 ng per 0.5 μl). Twenty-four hours after IA training, the IA retention latency was tested. It was found that systemic or intra-BLA injection of a non-regulating dose of AM251 (2 mg/kg or 6 ng per 0.5 μl, respectively) blocked the memory-impairing effect of propofol. These results indicate that the anterograde amnesic effect of propofol is mediated, in part, by activation of the CB1 cannabinoid receptors in the BLA.

  20. Anandamide reverses depressive-like behavior, neurochemical abnormalities and oxidative-stress parameters in streptozotocin-diabetic rats: Role of CB1 receptors.

    Science.gov (United States)

    de Morais, Helen; de Souza, Camila P; da Silva, Luisa M; Ferreira, Daniele M; Baggio, Cristiane Hatsuko; Vanvossen, Ana Carolina; Cristina de Carvalho, Milene; da Silva-Santos, José Eduardo; Bertoglio, Leandro José; Cunha, Joice M; Zanoveli, Janaina M

    2016-10-01

    The pathophysiology associated with increased prevalence of depression in diabetics is not completely understood, although studies have pointed the endocannabinoid system as a possible target. Then, we aimed to investigate the role of this system in the pathophysiology of depression associated with diabetes. For this, diabetic (DBT) male Wistar rats were intraperitoneally treated with cannabinoid CB1 (AM251, 1mg/kg) or CB2 (AM630, 1mg/kg) receptor antagonists followed by anandamide (AEA, 0.005mg/kg) and then submitted to the forced swimming test (FST). Oxidative stress parameters, CB1 receptor expression and serotonin (5-HT) and noradrenaline levels in the hippocampus (HIP) and prefrontal cortex (PFC) were also performed. It was observed that DBT animals presented a more pronounced depressive-like behavior and increase of CB1 receptor expression in the HIP. AEA treatment induced a significant improvement in the depressive-like behavior, which was reversed by the CB1 antagonist AM251, without affecting the hyperglycemia or weight gain. AEA was also able to restore the elevated CB1 expression and also to elevate the reduced level of 5-HT in the HIP from DBT animals. In addition, AEA restored the elevated noradrenaline levels in the PFC and induced a neuroprotective effect by restoring the decreased reduced glutathione and increased lipid hydroperoxides levels along with the decreased superoxide dismutase activity observed in HIP or PFC. Together, our data suggest that in depression associated with diabetes, the endocannabinoid anandamide has a potential to induce neuroadaptative changes able to improve the depressive-like response by its action as a CB1 receptor agonist.

  1. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure.

    Science.gov (United States)

    Llorente-Berzal, Alvaro; Assis, María A; Rubino, Tiziana; Zamberletti, Erica; Marco, Eva M; Parolaro, Daniela; Ambrosio, Emilio; Viveros, María-Paz

    2013-08-01

    Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females.

  2. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Directory of Open Access Journals (Sweden)

    Xavier Viñals

    2015-07-01

    Full Text Available Activation of cannabinoid CB1 receptors (CB1R by delta9-tetrahydrocannabinol (THC produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  3. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure.

    Science.gov (United States)

    Llorente-Berzal, Alvaro; Assis, María A; Rubino, Tiziana; Zamberletti, Erica; Marco, Eva M; Parolaro, Daniela; Ambrosio, Emilio; Viveros, María-Paz

    2013-08-01

    Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females. PMID:23680694

  4. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Highlights: • OX1 and OX2 orexin and CB1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX1, OX2 and CB1 receptors, C-terminally fused with either Renilla luciferase or GFP2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP2 to CB1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX1–OX2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for

  5. Continuation of the VVER burnup credit benchmark. Evaluation of CB1 results, overview of CB2 results to date, and specification of CB3

    International Nuclear Information System (INIS)

    A calculational benchmark focused on VVER-440 burnup credit, similar to that of the OECD/NEA/NSC Burnup Credit Benchmark Working Group, was proposed on the 96'AER Symposium. Its first part, CB1, was specified there whereas the second part, CB2, was specified a year later, on 97'AER Symposium in Zittau. A final statistical evaluation is presented of CB1 results and summarizes the CB2 results obtained to date. Further, the effect of an axial burnup profile of VVER-440 spent fuel on criticality ('end effect') is proposed to be studied in the CB3 benchmark problem of an infinite array of VVER-440 spent fuel rods. (author)

  6. Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

    Science.gov (United States)

    Zhang, Jianbo; Wang, Na; Chen, Bo; Wang, Yi'nan; He, Jing; Cai, Xintong; Zhang, Hongbo; Wei, Shuguang; Li, Shengbin

    2016-09-01

    Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse. Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction. However, the downstream signaling of CB1R is not fully elucidated. In the present study, we investigated the relationship between CB1R and the extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) signaling in the nucleus accumbens (NAc) and hippocampus in morphine-induced conditioned place preference (CPP), which is used to assess the morphine-induced reward memory. The protein level of CB1R, ERK, CREB, and BDNF were detected by western blotting. Additionally, a CB1R antagonist, AM251, was used to study whether blockade of CB1R altered the CPP and above-mentioned molecules. We found an increase of CB1R expression in the NAc and hippocampus of the mice following morphine CPP, but not those after repeated morphine in home cage without context exposure (NO-CPP). Both morphine CPP and NO-CPP induced an upregulation of ERK, CREB phosphorylation and BDNF expression. Furthermore, pretreatment with AM251 before morphine attenuated the CPP acquisition and CB1R expression as well as the activation of ERK-CREB-BDNF cascade. Collectively, these findings demonstrate that (1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. (2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP. PMID:27461790

  7. Vascular Dysfunction in a Transgenic Model of Alzheimer's Disease: Effects of CB1R and CB2R Cannabinoid Agonists

    Science.gov (United States)

    Navarro-Dorado, Jorge; Villalba, Nuria; Prieto, Dolores; Brera, Begoña; Martín-Moreno, Ana M.; Tejerina, Teresa; de Ceballos, María L.

    2016-01-01

    There is evidence of altered vascular function, including cerebrovascular, in Alzheimer's disease (AD) and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN) and the CB2 selective agonist JWH-133 (JWH). In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh) was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology. PMID:27695396

  8. Arachidonic acid mediates non-capacitative calcium entry evoked by CB1-cannabinoid receptor activation in DDT1 MF-2 smooth muscle cells

    NARCIS (Netherlands)

    Demuth, D.G.; Gkoumassi, Effimia; Droge, M.J.; Dekkers, B.G.J.; Esselink, H.J.; van Ree, Rutger; Parsons, M.E.; Zaagsma, Hans; Molleman, A; Nelemans, Herman

    2005-01-01

    Cannabinoid CB1-receptor stimulation in DDT1 MF-2 smooth muscle cells induces a rise in [Ca2+](i), which is dependent on extracellular Ca2+ and modulated by thapsigargin-sensitive stores, suggesting capacitative Ca2+ entry (CCE), and by MAP kinase. Non-capacitative Ca2+ entry (NCCE) stimulated by ar

  9. 实时荧光定量RT-PCR检测肥胖大鼠胰岛细胞CB1的基因表达

    Institute of Scientific and Technical Information of China (English)

    闫晓洁; 秦贵军; 马晓君; 樊大贝

    2008-01-01

    目的 定量分析大麻素受体1 (CB1)基因在成年肥胖大鼠和正常大鼠胰岛细胞的表达情况.方法 采用高脂饲料喂养成年雄性SD大鼠,同批正常非肥胖对照组采用常规饲料喂养20周,分离纯化2组大鼠的胰岛细胞,通过TaqMan实时荧光定量RT-PCR法检测肥胖大鼠和对照大鼠胰岛细胞mRNA的表达水平.结果 肥胖大鼠胰岛细胞中CB1的mRNA表达水平显著高于正常对照组(比值为16.7∶1,P<0.05) .结论 利用高脂饲料喂养20周的肥胖大鼠胰岛内CB1的表达水平显著增加,肥胖时主要表达于胰岛B细胞,CB1表达水平的变化可能与2型糖尿病的发病相关.

  10. Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice.

    Science.gov (United States)

    Naydenov, Alipi V; Sepers, Marja D; Swinney, Katie; Raymond, Lynn A; Palmiter, Richard D; Stella, Nephi

    2014-11-01

    Huntington's disease (HD) is caused by an expanded polyglutamine repeat in huntingtin protein that disrupts synaptic function in specific neuronal populations and results in characteristic motor, cognitive and affective deficits. Histopathological hallmarks observed in both HD patients and genetic mouse models include the reduced expression of synaptic proteins, reduced medium spiny neuron (MSN) dendritic spine density and decreased frequency of spontaneous excitatory post-synaptic currents (sEPSCs). Early down-regulation of cannabinoid CB1 receptor expression on MSN (CB1(MSN)) is thought to participate in HD pathogenesis. Here we present a cell-specific genetic rescue of CB1(MSN) in R6/2 mice and report that treatment prevents the reduction of excitatory synaptic markers in the striatum (synaptophysin, vGLUT1 and vGLUT2), of dendritic spine density on MSNs and of MSN sEPSCs, but does not prevent motor impairment. We conclude that loss of excitatory striatal synapses in HD mice is controlled by CB1(MSN) and can be uncoupled from the motor phenotype.

  11. Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

    Science.gov (United States)

    Schindler, Charles W; Redhi, Godfrey H; Vemuri, Kiran; Makriyannis, Alexandros; Le Foll, Bernard; Bergman, Jack; Goldberg, Steven R; Justinova, Zuzana

    2016-08-01

    Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence. PMID:26888056

  12. Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats.

    Science.gov (United States)

    Marco, Eva M; Granstrem, Oleg; Moreno, Enrique; Llorente, Ricardo; Adriani, Walter; Laviola, Giovanni; Viveros, Maria-Paz

    2007-02-14

    There is evidence for the existence of functional interactions between nicotine and cannabinoids and opioid compounds in adult experimental animals. However, there is scarce information about these relationships in young animals. In the present study we evaluated short and long-term effects of a subchronic nicotine treatment [0.4 mg/kg daily i.p. injections from postnatal day (PND) 34 to PND 43], upon hippocampal and striatal cannabinoid-CB(1) and mu-opioid receptors in Wistar rats of both genders. Rats were sacrificed 2 h after the last nicotine injection (short-term effects, PND 43) or one month later (long-term effects, PND 75). Hippocampal and striatal cannabinoid CB(1) and mu-opioid receptors were quantified by Western blotting. The subchronic nicotine treatment induced a region-dependent long-lasting effect in cannabinoid CB(1) receptor: a significant increase in hippocampal cannabinoid CB(1) receptors and a significant decrease in striatal cannabinoid CB(1) receptors, with these effects being similar in males and females. With respect to mu-opioid receptors, subchronic nicotine induced a significant down-regulation in hippocampal and striatal mu-opioid receptors in the long-term, and within the striatum the effects were more marked in adult males than in females. The present results indicate that juvenile nicotine taking may have implications for the endocannabinoid and endogenous opioid function and for the behaviors served by those systems, this includes possible modification of the response of adults to different psychotropic drugs, i.e. cannabis and morphine/heroin when taken later in life.

  13. Contribution of hypothermia and CB1 receptor activation to protective effects of TAK-937, a cannabinoid receptor agonist, in rat transient MCAO model.

    Directory of Open Access Journals (Sweden)

    Noriko Suzuki

    Full Text Available BACKGROUND: Cannabinoid (CB receptor agonists are expected to alleviate ischemic brain damage by modulating neurotransmission and neuroinflammatory responses via CB(1 and CB(2 receptors, respectively. In a previous study, TAK-937, a novel potent and selective CB(1 and CB(2 receptor agonist, was shown to exert significant cerebroprotective effects accompanied by hypothermia after transient middle cerebral artery occlusion (MCAO in rats. Sustained hypothermia itself induces significant neuroprotective effects. In the present studies, we examined the relative contribution of hypothermia and CB(1 receptor activation to the cerebroprotective effects of TAK-937. METHODOLOGY/PRINCIPAL FINDINGS: Using a multichannel brain temperature controlling system we developed, the brain temperature of freely moving rats was telemetrically monitored and maintained between 37 and 38°C during intravenous infusion of TAK-937 (100 µg/kg/h or vehicle for 24 h after 2 h MCAO. AM251, a selective CB(1 receptor antagonist, was administered intraperitoneally at 30 mg/kg 30 min before starting intravenous infusion of TAK-937 (100 µg/kg/h for 24 h. Rats were sacrificed and their brains were isolated 26 h after MCAO in both experiments. When the hypothermic effect of TAK-937 was completely reversed by a brain temperature controlling system, the infarct-reducing effect of TAK-937 was attenuated in part, but remained significant. On the other hand, concomitant AM251 treatment with TAK-937 completely abolished the hypothermic and infarct-reducing effects of TAK-937. CONCLUSIONS/SIGNIFICANCE: We conclude that the cerebroprotective effects of TAK-937 were at least in part mediated by induction of hypothermia, and mainly mediated by CB(1 receptor activation.

  14. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    Science.gov (United States)

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning. PMID:25747605

  15. (4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229): a new cannabinoid CB1 receptor inverse agonist from the class of benzhydryl piperazine analogs.

    Science.gov (United States)

    Mahmoud, Mariam M; Olszewska, Teresa; Liu, Hui; Shore, Derek M; Hurst, Dow P; Reggio, Patricia H; Lu, Dai; Kendall, Debra A

    2015-02-01

    Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5'-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A.

  16. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/β-arrestin activation of ERK1/2 and Src kinase.

    Science.gov (United States)

    Mahavadi, Sunila; Sriwai, Wimolpak; Huang, Jiean; Grider, John R; Murthy, Karnam S

    2014-03-01

    We examined whether CB1 receptors in smooth muscle conform to the signaling pattern observed with other Gi-coupled receptors that stimulate contraction via two Gβγ-dependent pathways (PLC-β3 and phosphatidylinositol 3-kinase/integrin-linked kinase). Here we show that the anticipated Gβγ-dependent signaling was abrogated. Except for inhibition of adenylyl cyclase via Gαi, signaling resulted from Gβγ-independent phosphorylation of CB1 receptors by GRK5, recruitment of β-arrestin1/2, and activation of ERK1/2 and Src kinase. Neither uncoupling of CB1 receptors from Gi by pertussis toxin (PTx) or Gi minigene nor expression of a Gβγ-scavenging peptide had any effect on ERK1/2 activity. The latter was abolished in muscle cells expressing β-arrestin1/2 siRNA. CB1 receptor internalization and both ERK1/2 and Src kinase activities were abolished in cells expressing kinase-deficient GRK5(K215R). Activation of ERK1/2 and Src kinase endowed CB1 receptors with the ability to inhibit concurrent contractile activity. We identified a consensus sequence (102KSPSKLSP109) for phosphorylation of RGS4 by ERK1/2 and showed that expression of a RGS4 mutant lacking Ser103/Ser108 blocked the ability of anandamide to inhibit acetylcholine-mediated phosphoinositide hydrolysis or enhance Gαq:RGS4 association and inactivation of Gαq. Activation of Src kinase by anandamide enhanced both myosin phosphatase RhoA-interacting protein (M-RIP):RhoA and M-RIP:MYPT1 association and inhibited Rho kinase activity, leading to increase of myosin light chain (MLC) phosphatase activity and inhibition of sustained muscle contraction. Thus, unlike other Gi-coupled receptors in smooth muscle, CB1 receptors did not engage Gβγ but signaled via GRK5/β-arrestin activation of ERK1/2 and Src kinase: ERK1/2 accelerated inactivation of Gαq by RGS4, and Src kinase enhanced MLC phosphatase activity, leading to inhibition of ACh-stimulated contraction.

  17. The endocannabinoid system and its role in schizophrenia: a systematic review of the literature O sistema endocanabinoide e seu papel na esquizofrenia: uma revisão sistemática da literatura

    Directory of Open Access Journals (Sweden)

    Rodrigo Ferretjans

    2012-10-01

    Full Text Available OBJECTIVE: Schizophrenia is a psychiatric disorder whose mechanisms have remained only partially elucidated. The current proposals regarding its biological basis, such as the dopaminergic hypothesis, do not fully explain the diversity of its symptoms, indicating that other processes may be involved. This paper aims to review evidence supporting the involvement of the endocannabinoid system (ECS, a neurotransmitter group that is the target of Cannabis sativa compounds, in this disorder. METHODS: A systematic review of original papers, published in English, indexed in PubMed up to April, 2012. RESULTS: Most studies employed genetics and histological, neuroimaging or neurochemical methods - either in vivo or post-mortem - to investigate whether components of the ECS are compromised in patients. Overall, the data show changes in cannabinoid receptors in certain brain regions as well as altered levels in endocannabinoid levels in cerebrospinal fluid and/or blood. CONCLUSIONS: Although a dysfunction of the ECS has been described, results are not entirely consistent across studies. Further data are warrant to better define a role of this system in schizophrenia.OBJETIVO: A esquizofrenia é um transtorno psiquiátrico cujos mecanismos permanecem apenas parcialmente elucidados. As atuais propostas relativas à base biológica, tais como a hipótese dopaminérgica, não explicam por completo a diversidade de seus sintomas, o que indica que outros processos podem estar envolvidos. Este artigo tem como objetivo revisar indícios que sustentem o envolvimento do sistema endocanabinoide (SECB, um grupo de neurotransmissoresalvo dos compostos da Cannabis sativa, nesse transtorno. MÉTODOS: Revisão sistemática dos artigos originais, publicados em inglês e indexados no PubMed até abril de 2012. RESULTADOS: A maioria dos estudos empregou métodos neuroquímicos ou de neuroimagem genéticos e histológicos - tanto in vivo quanto post-mortem - para investigar se

  18. 外周型Ⅰ型大麻素受体选择性拮抗剂的研究进展%Peripherally restricted CB1 receptor antagonist:research advances

    Institute of Scientific and Technical Information of China (English)

    税凤春; 陈伟; 徐静华; 王莉莉

    2014-01-01

    Ⅰ型大麻素受体(cannabinoid 1 receptor,CB1R)是肥胖症治疗药物研发的最重要靶标之一,然而以利莫那班为代表的 CB1R 拮抗剂因中枢作用产生的副作用限制了其临床应用。不透过血脑屏障的外周型 CB1R 选择性拮抗剂在保留第1代CB1R 拮抗剂减肥效应的同时,避免了其中枢相关的副作用,成为当前 CB1R 拮抗剂类新型减肥药物研发的方向。本文综述了外周型 CB1R 选择性拮抗剂的研究进展。%Cannabinoid 1 receptor (CB1R) is one of most important targets for the treatment of obesity. However, the clinical application of CB1R antagonist rimonabant is restricted because of the central nervous system-related unwanted liabilities. Peripherally restricted CB1R antagonist with limited blood-brain-barrier penetration may maintain the antiobesity efficacy of rimonabant without unwanted side effects. This strategy has become the new hot spot for the development of antiobesity drugs. In this paper, we review the recent progress in peripherally restricted CB1 receptor antagonist .

  19. ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

    Science.gov (United States)

    Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Miroslaw; Rola, Radoslaw; Maj, Maciej; Chrościńska-Krawczyk, Magdalena; Luszczki, Jarogniew J

    2015-10-22

    Hippocampal neurogenesis plays a very important role in learning and memory functions. In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties. The aim of this study was to evaluate the impact of ACEA (arachidonyl-2'-chloroethylamide--a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells' proliferation and differentiation in the mouse brain. All experiments were performed on adolescent CB57/BL male mice injected i.p. with VPA (10mg/kg), ACEA (10mg/kg) and PMSF (30 mg/kg) (phenylmethylsulfonyl fluoride--a substance protecting ACEA against degradation by the fatty-acid amidohydrolase) for 10 days. Next an acute response of proliferating neural precursor cells to ACEA and VPA administration was evaluated with Ki-67 staining (Time point 1). Next, in order to determine whether acute changes translated into long-term alterations in neurogenesis, proliferating cells were labeled with 5-bromo-2deoxyuridine (BrdU) followed by confocal microscopy used to determine the percentage of BrdU-labeled cells that showed mature cell phenotypes (Time point 2). Results indicate that ACEA with PMSF significantly increase the total number of Ki-67-positive cells when compared to the control group. Moreover, ACEA in combination with VPA increased the number of Ki-67-positive cells, whereas VPA administered alone had no impact on proliferating cells' population. Accordingly, neurogenesis study results indicate that the combination of ACEA+PMSF administered alone and in combination with VPA considerably increases the total number of BrdU-positive cells in comparison to the control group while ACEA+PMSF alone and in combination with VPA increased total numbers of BrdU-positive cells, newly born neurons and astrocytes as compared to VPA group but not to

  20. Arginine Catabolism by Sourdough Lactic Acid Bacteria: Purification and Characterization of the Arginine Deiminase Pathway Enzymes from Lactobacillus sanfranciscensis CB1

    OpenAIRE

    De Angelis, Maria; Mariotti, Liberato; Rossi, Jone; Servili, Maurizio; Fox, Patrick F.; Rollán, Graciela; Gobbetti, Marco

    2002-01-01

    The cytoplasmic extracts of 70 strains of the most frequently isolated sourdough lactic acid bacteria were screened initially for arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) activities, which comprise the ADI (or arginine dihydrolase) pathway. Only obligately heterofermentative strains such as Lactobacillus sanfranciscensis CB1; Lactobacillus brevis AM1, AM8, and 10A; Lactobacillus hilgardii 51B; and Lactobacillus fructivorans DD3 and DA106 showed al...

  1. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    Science.gov (United States)

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats. PMID:23829370

  2. Involvement of Central Endothelin ETA and Cannabinoid CB1 Receptors and Arginine Vasopressin Release in Sepsis Induced by Cecal Ligation and Puncture in Rats.

    Science.gov (United States)

    Leite-Avalca, Mariane C G; Lomba, Luis A; Bastos-Pereira, Amanda L; Brito, Haissa O; Fraga, Daniel; Zampronio, Aleksander R

    2016-09-01

    We previously reported that endothelin-1 (ET-1) reduced the frequency of spontaneous excitatory currents in vasopressinergic magnocellular cells through the activation of endothelin ETA receptors in rat brain slices. This effect was abolished by a cannabinoid CB1 receptor antagonist, suggesting the involvement of endocannabinoids. The present study investigated whether the blockade of ETA or CB1 receptors during the phase of increased levels of ET-1 after severe sepsis increases the survival rate of animals concomitantly with an increase in plasma arginine vasopressin (AVP) levels. Sepsis was induced in male Wistar rats by cecal ligation and puncture (CLP). Treatment with the CB1 receptor antagonist rimonabant (Rim; 10 and 20 mg/kg, orally) 4 h after CLP (three punctures) significantly increased the survival rate compared with the CLP per vehicle group. Intracerebroventricular treatment with the ETA receptor antagonist BQ123 (100 pmol) or with Rim (2 μg) 4 and 8 h after CLP but not the ETB receptor antagonist BQ788 (100 pmol), also significantly improved the survival rate. Sham-operated and CLP animals that were treated with Rim had significantly lower core temperature than CLP animals. However, oral treatment with Rim did not change bacterial count in the peritoneal exudate, neutrophil migration to the peritoneal cavity, leucopenia or increased plasma interleukin-6 levels induced by CLP. Both Rim and BQ123 also increased AVP levels 12 h after CLP. The blockade of central CB1 and ETA receptors in the late phase of sepsis increased the survival rate, reduced body temperature and increased the circulating AVP levels. PMID:26925810

  3. 内源性大麻受体CB1拮抗剂制备及工艺研究

    Institute of Scientific and Technical Information of China (English)

    张红; 李阳

    2008-01-01

    临床试验表明,大麻I型受体(CB1)抑制剂利莫那班frimonabant,N-哌啶基-1,5-二(4-氯苯基)-4-甲基吡唑-3-甲酰胺)在治疗肥胖和戒烟方面具有良好效果,CB,受体抑制剂还可降低由肥胖产生的心血管疾病危险因素,显著改善血脂代谢参数,包括降低甘油三酯和升高高密度脂蛋白,还可预防2-型糖尿病。CB1受体抑制剂与诸多疾病的相关性大大推进了新的CB1受体抑制剂的发展。

  4. Lipopolysaccharide-induced murine embryonic resorption involves changes in endocannabinoid profiling and alters progesterone secretion and inflammatory response by a CB1-mediated fashion.

    Science.gov (United States)

    Wolfson, Manuel L; Correa, Fernando; Leishman, Emma; Vercelli, Claudia; Cymeryng, Cora; Blanco, Julieta; Bradshaw, Heather B; Franchi, Ana María

    2015-08-15

    Genital tract infections are a common complication of human pregnancy that can result in miscarriage. We have previously shown that a lipopolysaccharide (LPS) induces embryonic resorption in a murine model of inflammatory miscarriage. This is accompanied by a dramatic decrease in systemic progesterone levels associated with a robust pro-inflammatory response that results in embryo resorption. Here, we tested the hypothesis that the endogenous cannabinoid system (eCS), through cannabinoid receptor 1 (CB1), plays a role in regulating progesterone levels and, therefore, the pro-inflammatory response. We show that LPS treatment in pregnant mice causes significant changes in the eCS ligands, which are reversed by progesterone treatment. We further show the CB1-KO mice maintain higher plasma progesterone levels after LPS treatment, which is associated with a feebler uterine inflammatory response and a significant drop in embryo resorption. These data suggest that manipulation of CB1 receptors and/or ligands is a potential therapeutic avenue to decrease infection-induced miscarriage.

  5. CB1 receptor antagonism prevents long-term hyperexcitability after head injury by regulation of dynorphin-KOR system and mGluR5 in rat hippocampus.

    Science.gov (United States)

    Wang, Xiu; Wang, Yao; Zhang, Chao; Liu, Chang; Zhao, Baotian; Wei, Naili; Zhang, Jian-Guo; Zhang, Kai

    2016-09-01

    Both endocannabinoids and dynorphin are feedback messengers in nervous system that act at the presynaptic nerve terminal to inhibit transmitter release. Many studies showed the cannabinoid-opioid cross-modulation in antinociception, hypothermia, sedation and reward. The aim of this study was to assess the influence of early application of cannabinoid type 1 (CB1) receptor antagonism SR141716A after brain injury on dynorphin-κ opioid receptor (KOR) system and the expression of metabotropic glutamate receptors (mGluRs) in a rat model of fluid percussion injury (FPI). Firstly, seizure latency induced by pentylenetetrazole was significantly prolonged 6 weeks after brain injury in group of SR141716A treatment. Then, PCR and western blot showed that SR141716A inhibited the long-term up-regulation of CB1 receptors in hippocampus. However, SR141716A resulted in long-term potentiation of dynorphin release and did not influence the up-regulation of KOR in hippocampus after brain injury. Furthermore, SR141716A reverse the overexpression of mGluR5 in the late stage of brain injury. We propose that during the induction of epileptogenesis after brain injury, early application of CB1 receptor antagonism could prevent long-term hyperexcitability by up-regulation of dynorphin-KOR system and prevention of mGluR5 induced epileptogenesis in hippocampus. PMID:27262683

  6. Involvement of the infralimbic cortex and CA1 hippocampal area in reconsolidation of a contextual fear memory through CB1 receptors: Effects of CP55,940.

    Science.gov (United States)

    Santana, Fabiana; Sierra, Rodrigo O; Haubrich, Josué; Crestani, Ana Paula; Duran, Johanna Marcela; de Freitas Cassini, Lindsey; de Oliveira Alvares, Lucas; Quillfeldt, Jorge A

    2016-01-01

    The endocannabinoid system (ECS) has a pivotal role in different cognitive functions such as learning and memory. Recent evidence confirm the involvement of the hippocampal CB1 receptors in the modulation of both memory extinction and reconsolidation processes in different brain areas, but few studies focused on the infralimbic cortex, another important cognitive area. Here, we infused the cannabinoid agonist CP55,940 either into the infralimbic cortex (IL) or the CA1 area of the dorsal hippocampus (HPC) of adult male Wistar rats immediately after a short (3min) reactivation session, known to labilize a previously consolidated memory trace in order to allow its reconsolidation with some modification. In both structures, the treatment was able to disrupt reconsolidation in a relatively long lasting way, reducing the freezing response. To our notice, this is the first demonstration of ECS involvement in reconsolidation in the Infralimbic Cortex. Despite poorly discriminative between CB1 and CB2 receptors, CP55,940 is a potent agent, and these results suggest that a similar CB1-dependent circuitry is at work both in HPC and in the IL during memory reconsolidation.

  7. 大麻素CB1受体对大鼠视网膜神经节细胞诱发动作电位的作用%Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    蒋淑霞; 李倩; 王霄汉; 李芳; 王中峰

    2013-01-01

    Activation of cannabinoid CB1 receptors (CB 1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels.The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques.The results showed that under current-clamped condition perfusing WIN55212-2 (WIN,5 μmol/L),a CB1R agonist,did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs.In the presence of cocktail synaptic blockers,including excitatory postsynaptic receptor blockers CNQX and D-APV,and inhibitory receptor blockers bicuculline and strychnine,perfusion of WIN (5 μmol/L)hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA).Phaseplane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN.However,WIN significantly decreased +dV/dtmax and-dV/dtmax of action potentials,suggestive of reduced rising and descending velocities of action potentials.The effects of WIN were reversed by co-application of SR141716,a CB1R selective antagonist.Moreover,WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked.These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.%激活大麻素CB1受体(CB1Rs)通过调控多种离子通道,从而调节脊椎动物视网膜的功能.本文旨在利用膜片钳全细胞记录技术,在大鼠视网膜薄片上研究CB1Rs对神经节细胞兴奋性的作用.结果显示,在电流钳制状态下,灌流CB1R激动剂WIN55212-2 (WIN,5μmol/L)对神经节细胞的自发动作电位发放频率和静息膜电位均没有显著影响.在灌流液中加入CNQX,D-APV,bicuculline

  8. Involvement of a non-CB1/CB2 cannabinoid receptor in the aqueous humor outflow-enhancing effects of abnormal-cannabidiol

    Science.gov (United States)

    Qiao, Zhuanhong; Kumar, Akhilesh; Kumar, Pritesh; Song, Zhao-Hui

    2016-01-01

    The purpose of this study was to investigate the effects of abnormal-cannabidiol (abn-cbd), a non-psychoactive cannabinoid agonist, on aqueous humor outflow via the trabecular meshwork (TM) of porcine eye, and to examine the involvement of a non-CB1/CB2 cannabinoid receptor and the p42/44 mitogen-activated protein kinase (p42/44 MAPK) pathway. The effects of abn-cbd on aqueous humor outflow were measured using a porcine anterior segment perfused organ culture model. The activation of p42/44 MAPK by abn-cbd was determined in cultured TM cells with western blot analysis using an anti-phospho-p42/44 MAPK antibody. Administration of abn-cbd caused a concentration-dependent enhancement of aqueous humor outflow facility with a maximum effect (155.0 ± 11.7% of basal outflow facility) after administration of 30 nM abn-cbd. Pretreatment with 1 μM of O-1918, a cannabidiol analog that acts as a selective antagonist at the non-CB1/CB2 receptor, produced a full antagonism of 30 nM abn-cbd induced increase of aqueous humor outflow facility. Pretreatment with 1 μM of CB1 antagonist SR141716A partially blocked, whereas pretreatment with either 1 μM of CB1 antagonist AM251 or 1 μM of CB2 antagonist SR144528 had no effect on abn-cbd induced enhancement of outflow facility. Treatment of TM cells with 30 nM of abn-cbd activated p42/44 MAPK, which was blocked completely by pretreatment with O-1918, and partially by pretreatment with SR141716A, but not by either AM251 or SR144528. In addition, PD98059, an inhibitor of p42/44 MAPK pathway, blocked completely the abn-cbd induced p42/44 MAPK activation and blocked partially the abn-cbd induced enhancement of outflow facility. In conclusion, the results from this study demonstrate that abn-cbd increases aqueous humor outflow through the TM pathway of the eye, and this effect is mediated by a non-CB1/CB2 cannabinoid receptor, with an involvement of p42/44 MAPK signaling pathway. PMID:22580290

  9. EFFECTS OF REPEATED ELECTRO-ACUPUNCTURE ON PROTEIN AND GENE EXPRESSION OF CANNABINOID CB1 RECEPTOR IN NUCLEUS ACCUMBENS AND CAUDATE NUCLEUS IN INFLAMMATORY-PAIN RATS%反复电针对佐剂性关节炎大鼠伏膈核尾状核内大麻素CB1受体表达的影响

    Institute of Scientific and Technical Information of China (English)

    寿崟; 赵颖倩; 徐鸣曙; 葛林宝

    2010-01-01

    目的:研究大麻素CB1受体是否参与电针镇痛.方法:以完全弗氏佐剂造成AA大鼠模型,在电针治疗四次后以大麻素CB1受体拮抗剂AM251进行干预,检测各组大鼠缩爪反射潜伏期(PWL)的变化,并应用实时荧光定量PCR(FQ-PCR)和Western blot检测伏膈核、尾状核内CB1受体mRNA和蛋白质表达情况.结果:(1)电针治疗后大鼠PWL延长,电针+AM251组的电针镇痛效果显著弱于电针组(P<0.01);(2)电针+AM251组较电针组大鼠伏膈核、尾状核内CB1受体mRNA表达水平显著降低(P<0.01),但与假模型组和模型组比较,无显著性差异(P>0.05).(3)Western blot结果与FQ-PCR结果一致:电针+AM251组较电针组大鼠伏膈核、尾状核内CB1受体蛋白质表达水平显著降低(P<0.01).但与假模型组和模型组比较,无显著性差异(P>0.05).结论:AM251能够翻转电针后大鼠伏膈核、尾状核内CB1受体的高表达,减弱电针镇痛作用,提示CB1受体可能参与电针镇痛作用.

  10. 一色齿毛菌对活性染料的脱色研究%Decolorization to two reactive dyes of Cerena unicolor CB1

    Institute of Scientific and Technical Information of China (English)

    于存; 池玉杰

    2014-01-01

    为进一步鉴定试验菌株及明确一色齿毛菌CBl(Cerena unicolor CBl)对活性染料的脱色效果,在对该菌株ITS序列克隆的基础上,进行了其对活性黑和活性红2种活性染料脱色条件的研究.结果表明,C.unicolor CB1与17个同种其他菌株的ITS序列相似性为93%~99%,说明试验菌株为一色齿毛菌.染料脱色结果表明,250 mg/L的活性黑对C.unicolor CB1的脱色产生明显的抑制,而500 mg/L的活性红对该菌株的脱色抑制不明显.C.unicolorCB1对活性黑和活性红的脱色最适碳源分别是果糖和葡萄糖;最适氮源分别是尿素和硝酸铵;最适Cu2+和Mn2+添加浓度都为0.1 mmol/L;最适pH为5;最适接种量为直径d=8mm的新鲜菌丝7片.

  11. Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery.

    Directory of Open Access Journals (Sweden)

    Angel Arevalo-Martin

    Full Text Available Spinal cord injury (SCI induces a cascade of processes that may further expand the damage (secondary injury or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG and arachidonoyl ethanolamide (anandamide, AEA. Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation. We observed that AM281, AM630 or AM281 plus AM630 administration impairs the spontaneous motor recovery of rats according to the Basso-Beattie-Bresnahan (BBB locomotor scale. However, blockade of CB1, CB2 or both receptors produced different effects at the histopathological level. Thus, AM630 administration results at 90 days after lesion in increased MHC-II expression by spinal cord microglia/monocytes and reduced number of serotoninergic fibres in lumbar spinal cord (below the lesion. AM281 exerted the same effects but also increased oedema volume estimated by MRI. Co-administration of AM281 and AM630 produced the effects observed with the administration of either AM281 or AM630 and also reduced white matter and myelin preservation and enhanced microgliosis in the epicentre. Overall, our results suggest that the endocannabinoids acting through CB1 and CB2 receptors are part of an early neuroprotective response triggered after SCI that is involved in the spontaneous recovery after an incomplete lesion.

  12. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  13. Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats.

    Science.gov (United States)

    Suárez, Juan; Llorente, Ricardo; Romero-Zerbo, Silvana Y; Mateos, Beatriz; Bermúdez-Silva, Francisco J; de Fonseca, Fernando Rodríguez; Viveros, María-Paz

    2009-07-01

    Early maternal deprivation (MD) in rats (24 h, postnatal day 9-10) is a model for neurodevelopmental stress. There are some data proving that MD affects the endocannabinoid system (ECS) in a gender-dependent manner, and that these changes may account for the proposed schizophrenia-like phenotype of MD rats. The impact of MD on cannabinoid receptor distribution in the hippocampus is unknown. The aim of this study is to evaluate the expression of CB(1) and CB(2) receptors in diverse relevant subregions (DG, CA1, and CA3) of the hippocampus in 13-day-old rats by immunohistochemistry and densitometry. MD induced a significant decrease in CB(1) immunoreactivity (more marked in males than in females), which was mainly associated with fibers in the strata pyramidale and radiatum of CA1 and in the strata oriens, pyramidale, and radiatum of CA3. In contrast, MD males and females showed a significant increase in CB(2) immunoreactivity in the three hippocampal areas analyzed that was detected in neuropil and puncta in the stratum oriens of CA1 and CA3, and in the polymorphic cell layer of the dentate gyrus. A marked sex dimorphism was observed in CA3, with females exhibiting higher CB(1) immunoreactivity than males, and in dentate gyrus, with females exhibiting lower CB(2) immunoreactivity than males. These results point to a clear association between developmental stress and dysregulation of the ECS. The present MD procedure may provide an interesting experimental model to further address the role of the ECS in neurodevelopmental mental illnesses such as schizophrenia.

  14. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion.

    Science.gov (United States)

    López-Gallardo, M; López-Rodríguez, A B; Llorente-Berzal, Á; Rotllant, D; Mackie, K; Armario, A; Nadal, R; Viveros, M-P

    2012-03-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments.

  15. CB1 Cannabinoid Receptor-Dependent and -Independent Inhibition of Depolarization-Induced Calcium Influx in Oiigodendrocytes

    Institute of Scientific and Technical Information of China (English)

    SUSANA MATO; ELENA ALBERDI; CATHERINE LEDENT; MASAHIKO WATANABE; AND CARLOS MATUTE

    2009-01-01

    Regulation of Ca2+ homeostasis plays a critical role in oligodendrocyte function and survival. Canna-binoid CB2 and CB2 receptors have been shown to regulate Ca2+ levels and/or K+ currents in a variety of cell types. In this study we investigated the effect of cannabinoid compounds on the Ca2+ influx elicited in cultured oligodendro-cytes by transient membrane depolarization with an elevated extracellular K+ concentration (50 mM). The CB2 re-ceptor agonist arachidonoyl-chloro-ethanolamide (ACEA) elicited a concentration-dependent inhibition of depolariza-tion-evoked Ca2+ transients in oligodendroglial somata with a maximal effect (94 ± 3)% and an EC50 of 1.3 ±0.03 μM. This activity was mimicked by the CB2/CB2 agonist CP55,940, as well as by the endocannabinoids N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), whereas the CB2 receptor se-lective agonist JWH133 was ineffective. The CB2 receptor antagonist AM251 (1 μM) also reduced the Ca2+ response evoked by high extracellular K+ and did not prevent the inhibition elicited by ACEA (3 μM). Nevertheless, the a-bility of ACEA and AEA to reduce depolarization-evoked Ca2+ transients was significantly reduced in oligodendro-cytes from CB2 receptor knockout mice, as well as by pretreatment with pertussis toxin. Bath application of the in-wardly rectifying K+ channels (Kir channels) blockers BaCl2 (300 μM) and CsCl2 (1 mM) reduced the size of volt-age-induced Ca2+ influx and partially prevented the inhibitory effect of ACEA. Our results indicate that eannabinoids inhibit depolarization-evoked Ca2+ transients in oligodendrocytes via CB2 receptor-independent and -dependent mech-anisms that involve the activation of PTX-sensitive Gi/o proteins and the blockade of Kir channels. C 2008 Wiley-Liss, Inc.%Ca2+稳态平衡的调节在少突胶质细胞功能和存活中起重要作用.大麻素CB1和CB2受体在许多细胞中调节Ca2+水平和/或K+电流.本文利用培养的少突胶质细

  16. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors.

    Science.gov (United States)

    Valdeolivas, Sara; Satta, Valentina; Pertwee, Roger G; Fernández-Ruiz, Javier; Sagredo, Onintza

    2012-05-16

    We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this

  17. 1-Aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamide: an effective scaffold for the design of either CB1 or CB2 receptor ligands.

    Science.gov (United States)

    Piscitelli, Francesco; Ligresti, Alessia; La Regina, Giuseppe; Gatti, Valerio; Brizzi, Antonella; Pasquini, Serena; Allarà, Marco; Carai, Mauro Antonio Maria; Novellino, Ettore; Colombo, Giancarlo; Di Marzo, Vincenzo; Corelli, Federico; Silvestri, Romano

    2011-11-01

    New 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides were synthesized as cannabinoid (CB) receptor ligands. Compound 11 (CB(1)K(i) = 2.3 nM, CB(1) SI = 163.6) showed CB(1) receptor affinity and selectivity superior to Rimonabant and AM251. Acute administration of 2mg/kg 11 reduced sucrose, but not regular food, intake in rats. On the other hand, compound 23 (CB(2)K(i) = 0.51 nM, CB(2) SI = 30.0) showed significant affinity and selectivity for the CB(2) receptor. The results presented here show that the 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamide may serve as an effective scaffold for the design of either CB(1) or CB(2) receptor ligands. PMID:21996466

  18. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    Science.gov (United States)

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  19. Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure-activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1).

    Science.gov (United States)

    German, Nadezhda; Decker, Ann M; Gilmour, Brian P; Gay, Elaine A; Wiley, Jenny L; Thomas, Brian F; Zhang, Yanan

    2014-09-25

    The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [(3)H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.

  20. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα and degrading (MAGL, FAAH enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin and parvalbumin in the adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2014-06-01

    Full Text Available The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e. DAGLα enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL and FAAH and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. CB1, DAGLα and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB1+ fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons, and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  1. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    Science.gov (United States)

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol.

  2. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    Science.gov (United States)

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. PMID:26311003

  3. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  4. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB(1) receptors and endovanilloids.

    Science.gov (United States)

    De Petrocellis, Luciano; Starowicz, Katarzyna; Moriello, Aniello Schiano; Vivese, Marta; Orlando, Pierangelo; Di Marzo, Vincenzo

    2007-05-15

    The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.

  5. Anticonvulsant effects of N-arachidonoyl-serotonin, a dual fatty acid amide hydrolase enzyme and transient receptor potential vanilloid type-1 (TRPV1) channel blocker, on experimental seizures: the roles of cannabinoid CB1 receptors and TRPV1 channels.

    Science.gov (United States)

    Vilela, Luciano R; Medeiros, Daniel C; de Oliveira, Antonio Carlos P; Moraes, Marcio F; Moreira, Fabricio A

    2014-10-01

    Selective blockade of anandamide hydrolysis, through the inhibition of the FAAH enzyme, has anticonvulsant effects, which are mediated by CB1 receptors. Anandamide, however, also activates TRPV1 channels, generally with an opposite outcome on neuronal modulation. Thus, we suggested that the dual FAAH and TRPV1 blockade with N-arachidonoyl-serotonin (AA-5-HT) would be efficacious in inhibiting pentylenetetrazole (PTZ)-induced seizures in mice. We also investigated the contribution of CB1 activation and TRPV1 blockade to the overt effect of AA-5-HT. In the first experiment, injection of AA-5-HT (0.3-3.0 mg/kg) delayed the onset and reduced the duration of PTZ (60 mg)-induced seizures in mice. These effects were reversed by pre-treatment with the CB1 antagonist, AM251 (1.0-3.0 mg/kg). Finally, we observed that administration of the selective TRPV1 antagonist, SB366791 (0.1-1 mg/kg), did not entirely mimic AA-5-HT effects. In conclusion, AA-5-HT alleviates seizures in mice, an effect inhibited by CB1 antagonism, but not completely mimicked by TRPV1 blockage, indicating that the overall effect of AA-5-HT seems to depend mainly on CB1 receptors. This may represent a new strategy for the development of drugs against seizures, epilepsies and related syndromes.

  6. 大麻素受体在成年大鼠脑组织中的分布特点%Distributions of CB1 and CB2-positive cells In adult rat's brain

    Institute of Scientific and Technical Information of China (English)

    吴永涛; 刘宏亮; 陈兴书; 蔡其燕; 姚忠祥

    2009-01-01

    目的:研究大麻素CB1、CB2受体在成年大鼠脑组织的分布特点和规律,为进一步研究其功能打下基础.方法:用兔抗鼠CB1、CB2受体特异性抗体免疫组化染色,检测大鼠脑组织主要部位两种受体的表达分布情况.结果:CB1受体阳性细胞在脑组织有广泛大量的分布,大脑皮质、胼胝体、海马、基底核区及小脑浦肯野细胞层、脑桥等区域均有较明显表达.CB2受体阳性细胞的数量及分布部位与CB1受体表达基本一致,少数区域如胼胝体、小脑白质阳性细胞数相差较大,CB2受体明显多于CB1受体的表达.结论:大麻素CB1、CB2受体在成年大鼠脑组织均广泛分布,并在多数部位表达情况一致,少数部位存在表达程度差异,提示其在神经系统中参与了某些生理及病理作用.

  7. CB1大麻素受体激动剂抑制基质金属蛋白酶参与脊髓损伤后血-脊髓屏障通透性调节%Involvement of CB1 cannabinoid receptor agonist in the permeability of blood spinal cord barrier after acute spinal cord in-jury in rat model

    Institute of Scientific and Technical Information of China (English)

    董宝铁; 李泓; 费良健; 王岩峰

    2015-01-01

    目的:探讨CB1大麻素受体激动剂在大鼠脊髓损伤后对血-脊髓屏障通透性调节的作用。方法将150只雌性SD大鼠随机分为假手术组( Sham组)、脊髓损伤组( SCI组)和CB1激动剂处理组( ACEA组)。采用改良Allen法建立T9脊髓损伤实验动物模型。 Sham组仅行T9椎板切除术,SCI组和ACEA组以30 g·cm致伤力制作模型。 ACEA组建模成功后,每日腹腔给药ACEA 3mg/(kg·d);Sham组和SCI组以生理盐水代替。建模术后12、24、72 h分时段处死动物,取T8~T10脊髓节段,Evans蓝含量测定法检测SCI后血-脊髓屏障通透性变化,定量RT-PCR法检测脊髓组织基质金属蛋白酶9(MMP9)表达水平。结果 Sham组脊髓通透性无改变,脊髓组织中无Evans蓝渗入,ACEA组Evans蓝通过血-脊髓屏障渗漏至脊髓,但渗漏量明显低于SCI组。 ACEA组MMP9表达水平显著低于Sci组。结论 CB1受体激动剂ACEA能降低Allen′s大鼠脊髓损伤模型血-脊髓屏障的破坏,其作用机制可能与MMP9的表达下调相关。%Objective To investigate whether the CB1 cannabinoid receptor agonist has regulating effect on permeability of blood spi-nal cord barrier( BSCB) after spinal cord injury( SCI) in rat model. Methods Totally 150 female SD rats were randomly divided into three groups,including sham operation group(Sham group),spinal cord injury group(SCI group)and ACEA treatment group(ACEA group). Modified Allen′s method was carried out at T9 level spinal segment for SCI group and ACEA group to induce acute SCI. While Sham group only underwent laminectomy. Rats in ACEA group were treated with ACEA 3 mg/( kg·d) after surgery until killed. After modeling,the animals were sacrificed at 12,24 and 72 hours,and the level of permeability for BSC was detected by Evans blue assay at T8-T10. The expression level of MMP9 was detected by quantitative RT-PCR method. Results There was no change in the permeabil-ity of BSCB for the Sham group,no Evans blue in the

  8. Phylogenetic Analysis and Detection on the Major Ligninolytic Enzymes of Hericium erinaceum Strain CB1%猴头菌菌株CB1的系统发育分析与木质素降解酶的检测

    Institute of Scientific and Technical Information of China (English)

    尹立伟; 池玉杰

    2013-01-01

    首先对猴头菌菌株CBI进行培养特性观察,表明菌株能产生较多的厚垣孢子;对其ITS序列进行扩增(GenBank登录号为GU584100),并与猴头菌属5个种的17个不同地域菌株进行基于ITS序列的系统发育分析,结果表明菌株CB1与猴头菌同种其他菌株遗传距离较近并聚类在一起.明确该菌株的分类地位后,对其进行木质素降解酶系统的检测,结果表明猴头菌可产生锰过氧化物酶(MnP)和漆酶(laccase),但不产生木质素过氧化物酶(LiP).MnP和漆酶的酶活性变化是有规律的,Mn2是猴头菌产生MnP的必要因子,而漆酶的产生则不受该条件的制约.在含Mn2+的LNAS培养基中加入木屑为底物的条件下,猴头菌MnP最大酶活性为45.56 U·L-1,漆酶最大酶活性为61.85 U·L-1.%Researches on ligninolytic enzymes of white-rot fungi could lay a foundation for exploring their degrading mechanism and expression and regulation mechanism of genes encoding for them.The study firstly observed and described the cultural characteristic of Hericium erinaceum strain CB1,result showed that CB1could produce some chlamydospores.Then,its ITS sequence was amplified (GenBank accession number:GU584100),and phylogenetic analyses was made based on the ITS sequences for 5 species including 17 different regional strains from Hericium,results showed that H.erinaceum strain CB1 and other strains from H.erinaceum were nearer in genetic distance and clustered together with them.After the classification status of H.erinaceum strain CB1 was fixed,its major ligninolytic enzymes were detected.The results indicated that H.erinaceum could produce MnP and laccase simultaneously,but no LiP excreted.The activities of MnP and laccase are regular.Mn2 + was proved to be the essential factor for H.erinaceum to produce MnP,but not for laccase.The highest MnP and laccase activity were reached when sawdust was added to LNAS culture solution with Mn2+ substrate which were 45.56 U·L-1 and 61

  9. N-花生四烯酸氨基乙醇通过CB1受体及脂筏介导抑制结肠癌细胞的生长%Anandamide inhibits the growth of colorectal cancer cells through CB1 and lipid rafts

    Institute of Scientific and Technical Information of China (English)

    廖宇圣; 吴杰; 王萍; 张姮

    2011-01-01

    Objective To study the influences of endocannabinoid-anandamide (AEA) on the proliferation and apoptosis of the colorectal cancer cell line ( CaCo-2 ) and to elucidate the effects of CB1 and lipid rafts, and to further elucidate the molecular mechanism and the effect of AEA on the generation and development of colorectal cancer.Methods Human colorectal cancer cell line CaCo-2 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum in 5% CO2 atmosphere at 37℃.CaCo-2cells were divided into different groups and treated with different concentrations of AEA, AEA + SR141716A,AEA + AM630 and AEA + methyl-β-cyclodextrin (MCD).MTT assay was used to determine the effects of AEA, its putative CB1, CB2 receptor antagonists (SR141716A and AM630) and MCD on the proliferation of CaCo-2 cells.Annexin V-PE/7AAD binding assay was used to detect apoptosis in the CaCo-2 cells.Western-blot was applied to check the expressions of CB1, CB2, p-AKT and caspase-3 proteins in different groups of CaCo-2 cells.Results AEA inhibited the proliferation of CaCo-2 cells in a concentrationdependent manner and the effect could be antagonized by SR141716A and MCD.The inhibiting rates were (21.52±0.45)%, (42.16±0.21)%, (73.64 ±0.73)% and(83.28 ±0.71)%, respectively, at different concentrations of AEA (5, 10, 20 and 40 μ mol/L).The three groups (20 μmol/L AEA, 20 μmol/L AEA + 10 μ mol/L SR141716A and 20 μ mol/L AEA + 1 mmol/L MCD) showed different inhibiting rates [(73.64±0.73)%, (16.15±0.75)% and ( 12.58 ± 0.63 ) %], respectively.Annexin V-PE/7AAD binding assay showed that AEA induced apoptosis in the CaCo-2 cells and MCD could antagonize this effect.The apoptosis rates of the three groups (control, 20 μmol/L AEA and 20 μmol/L AEA + 1 mmol/L MCD)were (2.95±0.73)%, (39.61±0.73) % and ( 14.10 ± 0.64) %, respectively.The expressions of CB1,CB2, p-AKT and Caspase-3 proteins were all observed in the CaCo-2 cells.AEA inhibited p-AKT protein expression and induced caspase

  10. Localization of cannabinoid CB1 receptor mRNA using ribonucleotide probes: methods for double- and single-label in situ hybridization.

    Science.gov (United States)

    Hohmann, Andrea G

    2006-01-01

    This chapter presents a reliable, detailed method for performing double-label in situ hybridization (ISH) that has been validated for use in studies identifying the co-localization of cannabinoid CB1 receptor mRNA with other distinct species of mRNAs. This method permits simultaneous detection of two different species of mRNA within the same tissue section. Double-label ISH may be accomplished by hybridizing tissue sections with a combination of radiolabeled and digoxigenin-labeled RNA probes that are complementary to their target mRNAs. Single-label ISH may be accomplished by following the procedures described for use with radioisotopic probes (here [35S]-labeled) only. Silver grains derived from conventional emulsion autoradiography are used to detect the radiolabeled cRNA probe. An alkaline phosphatase-dependent chromogen reaction product is used to detect the nonisotopic (here, digoxigenin-labeled) cRNA probe. Necessary controls that are required to document the specificity of the labeling of the digoxigenin and radiolabeled probes are described. The methods detailed herein may be employed to detect even low levels of a target mRNA. These methods may be utilized to study co-localization and coregulation of expression of a particular gene within identified neurons in multiple systems.

  11. The combined inhibitory effect of the adenosine A1 and cannabinoid CB1 receptors on cAMP accumulation in the hippocampus is additive and independent of A1 receptor desensitization.

    Science.gov (United States)

    Serpa, André; Correia, Sara; Ribeiro, Joaquim A; Sebastião, Ana M; Cascalheira, José F

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3-30 μM) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6±2.7 μM and an Emax of 31%±2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10-150 nM), an EC50 of 35±19 nM, and an Emax of 29%±5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM) and CPA (100 nM) on cAMP accumulation was 41%±6% (n=4), which did not differ (P>0.7) from the sum of the individual effects of each agonist (43%±8%) but was different (PCB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  12. 免疫组化及原位杂交的方法检测内源性大麻素受体1在肥胖大鼠胰腺的表达%Expression of endocannabinoid receptor1(CB1) in obese rats' pancreas with immunohistochemical tests in situ hybridization means

    Institute of Scientific and Technical Information of China (English)

    闫晓洁; 陆泽元; 柳岚

    2010-01-01

    目的 研究内源性大麻素受体1(CB1)在大鼠胰腺的表达,了解CB1在肥胖大鼠胰腺表达量的改变.方法 高脂饲料喂养雄性SD大鼠20周,制备肥胖大鼠(HF)模型,并设正常对照组(NC).取两组大鼠胰腺,免疫组化法检测CB1蛋白表达,原位杂交法检测CB1mRNA表达.结果 CB1在胰腺存在,HF组胰腺CB1蛋白及CB1mRNA表达均高于NC组.结论 CB1在大鼠胰腺有表达,且在肥胖大鼠胰腺的表达量增加.肥胖时胰岛细胞CB1表达增加可能与胰岛素抵抗的发生相关.

  13. The Combined Inhibitory Effect of the Adenosine A1 and Cannabinoid CB1 Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A1 Receptor Desensitization

    Directory of Open Access Journals (Sweden)

    André Serpa

    2015-01-01

    Full Text Available Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3–30 μM decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ± 2.7 μM and an Emax⁡ of 31% ± 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10–150 nM, an EC50 of 35 ± 19 nM, and an Emax⁡ of 29% ± 5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM and CPA (100 nM on cAMP accumulation was 41% ± 6% (n=4, which did not differ (P>0.7 from the sum of the individual effects of each agonist (43% ± 8% but was different (P<0.05 from the effects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  14. CB1 receptor agonist WIN55212-2 improves motor complications in Parkinson's disease%CB1受体激动剂WIN55212-2改善帕金森病运动并发症的实验研究

    Institute of Scientific and Technical Information of China (English)

    马雅萍; 宋璐; 刘振国; 巴茂文; 卞雷斯

    2011-01-01

    目的 探讨CB1受体激动剂WIN55212-2对左旋多巴诱发的运动并发症的行为学及细胞学作用.方法通过6-OHDA立体定向注射至大鼠右侧前脑内侧束建立PD动物模型,成功的PD大鼠模型分别接受左旋多巴/苄丝肼(50mg/kg加12.5mg/kg苄丝肼,每天2次)+溶剂、左旋多巴/苄丝肼+WIN55212-2(1 mg/kg)腹腔注射,共持续21d.评估用药后大鼠的旋转反应时间、剂峰旋转圈数变化和关期发生率;采用Western blot方法检测纹状体信号转导蛋白DARPP-32(Thr75)和ERK1/2 (Thr202/Tyr204)的磷酸化表达.结果长期联合应用WIN55212-2和左旋多巴,缓解了左旋多巴单独用药所致的PD大鼠旋转反应时间缩短、剂峰旋转圈数增加的趋势,并明显降低关期发生频率.WIN55212-2与左旋多巴合用显著降低了纹状体内DARPP-32(Thr75)的磷酸化;但未使ERK1/2磷酸化表达降低至对照组水平.结论激动CB1受体可能有益于预防帕金森病运动并发症.%Objective To investigate cellular and behavioural effects of CB1 receptor agonist WIN55212-2 in a rat model of levodopa-induced motor complications. Methods The hemi-Parkinsonian rat model was produced by stereotaxically injecting 6-OHDA to right medial forebrain bundle( MFB). Animals were intraperitoneally treated with levodopa/ benserazide (50mg/kg levodopa plus 12.5mg/kg benserazide) or WIN55212-2( lmg/kg) + levodopa/benserazide twice a day for 21 days. Rotational duration,peak rotation and the frequency of failures to L-dopa were estimated. After sacrificed,the phosphorylation of dopamine and cAMP- regulated phosphoprotein of Mr 32,000( DARPP-32) at Thr75 site and extracellular signal-regulated kinase (ERK) at Thr202 and Tyr204 site was observed by Western blot. Results W1N55212-2 plus L-dopa treatment prolonged the duration of the motor response and reduced peak turning. WIN55212-2 plus L-dopa also decreased the frequency of failures to L-dopa. The long-term use of L-dopa reduced the

  15. Delta(9)-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: involvement of cannabinoid CB(1) receptor and serotonergic system.

    Science.gov (United States)

    Egashira, Nobuaki; Matsuda, Tomomi; Koushi, Emi; Higashihara, Fuminori; Mishima, Kenichi; Chidori, Shozo; Hasebe, Nobuyoshi; Iwasaki, Katsunori; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-07-28

    In the present study, we investigated the effect of Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive component of marijuana, on immobility time during the forced swim test. THC (2 and 6 mg/kg, i.p.) significantly prolonged the immobility time. In addition, THC at the same doses did not significantly affect locomotor activity in the open-field test. The selective cannabinoid CB(1) receptor antagonist rimonabant (3 mg/kg, i.p.) significantly reduced the enhancement of immobility by THC (6 mg/kg). Similarly, the selective serotonin (5-HT) reuptake inhibitor (SSRI) citalopram (10 mg/kg, i.p.) and 5-HT(1A/7) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.3 mg/kg, i.p.) significantly reduced this THC-induced effect. Moreover, the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide dihydrochloride (WAY100635, 1 mg/kg, i.p.) and the postsynaptic 5-HT(1A) receptor antagonist MM-77 (0.1 mg/kg, i.p.) reversed this reduction effect of 8-OH-DPAT (0.3 mg/kg). In contrast, the selective 5-HT(7) receptor antagonist (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulfonyl]phenol hydrochloride (SB269970) had no effect on this reduction effect of 8-OH-DPAT. WAY100635 (1 mg/kg) also reversed the reduction effect of citalopram (10 mg/kg). These findings suggest that the 5-HT(1A) receptors are involved in THC-induced enhancement of immobility.

  16. Expression of cannabinoid receptor 1 in hippocampus of sleep deprived rats following epilepsy%癫(癎)诱发后CB1受体在睡眠剥夺大鼠海马表达的研究

    Institute of Scientific and Technical Information of China (English)

    江佩芳; 夏哲智; 江克文; 杨翠薇; 水泉祥

    2007-01-01

    目的 探讨癫(癎)诱发后大麻素CB1受体在睡眠剥夺大鼠海马的表达变化及其意义.方法 50只Sprague-Dawlev大鼠随机分为癫(癎)诱发前和癫闡诱发后2组,每组25只.每组大鼠又随机分为空白对照组(CC),环境对照组(TC)和睡眠剥夺1 d、3 d、5 d组(SD1d、SD3d、SD5d).用改良多平台睡眠剥夺法建立快速眼球运动(REM)睡眠剥夺模型,戊四氮诱发癫(癎).应用RT-PCR方法检测癫(癎)诱发前后大麻素CB1受体mRNA表达,并电镜观察其海马的超微结构改变.结果 SD1d组神经元轻度固缩,染色质轻度边聚,SD3d组神经元凋亡,SD5d组超微结构改变基本同SD3d组.癫(癎)诱发后发现CC组与TC组大鼠无抽搐,CB1受体mRNA表达较癫(癎)诱发前明显升高(P<0.01).SD1d、SD3d、SD5d组大鼠抽搐严重,CB1受体mRNA表达与癫(癎)诱发前相比差异无统计学意义(P>0.05).结论 睡眠剥夺能够造成神经元凋亡,影响大麻素CB1受体mRNA表达.大麻素CB1受体表达增高可能是一种自身稳定调节的保护机制,能抑制癫(癎)发作.

  17. The cannabinoid receptor 1 expression in rat hippocampus and brainstem after rapid eye movement sleep deprivation%睡眠剥夺对大鼠脑干和海马大麻素CB-1受体的影响

    Institute of Scientific and Technical Information of China (English)

    朱涛; 江佩芳; 夏哲智; 水泉祥; 潘孔寒; 王丽

    2006-01-01

    目的 探讨快速眼动(REM)睡眠剥夺(SD)对大鼠脑干和海马大麻素CB-1受体的影响.方法 采用改良多平台睡眠剥夺法建立REM睡眠剥夺模型.将40只Sprague-Dawley大鼠随机分为空白对照组(CC)、环境对照组(TC),以及睡眠剥夺1 d(SD1 d)、3 d(SD3 d)和5 d(SD5 d)组,每组8只.应用逆转录-聚合酶链反应方法检测大鼠脑干及海马CB-1受体mRNA的表达,电镜观察其超微结构的改变.结果 SD各组大鼠脑干与海马超微结构均有神经元凋亡,SD3 d和SD5 d组尤著.(1)脑干CB-1受体mRNA表达值:SD1 d组(0.789±0.139)和SD3 d组(1.264±0.182)均高于CC组(0.420±0.054),且SD3 d组高于SD1 d组(P<0.05),SD5 d组(0.678±0.145)与CC组的差异无统计学意义(P>0.05).(2)海马CB-1受体mRNA表达值:SD1 d组(0.598±0.098)高于CC组(0.374±0.064),SD3 d组(0.258±0.072)低于CC组,且SD3 d组低于SD1 d组(P<0.05);SD5 d组(0.448±0.177)与CC组的差异无统计学意义(P>0.05).结论 REM睡眠剥夺能造成脑干及海马神经元的损伤,在不同睡眠剥夺时期CB-1受体mRNA表达不同,其中CB-1受体表达增强可能是一种自身稳定调节的保护机制.

  18. Construction of Eukaryotic Expression Vector pCB1-EGFP and its Expression in HeLa Cells%大鼠大麻素Ⅰ型受体绿色荧光融合蛋白真核表达载体的构建与鉴定

    Institute of Scientific and Technical Information of China (English)

    冯睿; 范娟; 刘一辉; 钱召强; 魏春玲; 任维

    2014-01-01

    目的:构建大鼠大麻素型Ⅰ受体绿色荧光融合蛋白真核表达载体并观察其在细胞中的表达.方法:大鼠CB1基因序列设计引物,以大鼠脑组织为模板扩增CB1基因编码区片段,克隆至增强型绿色荧光蛋白表达载体pEGFP-N3中,构建重组融合蛋白表达载体pCB1-EGFP.将pCB1-EGFP质粒转染HeLa细胞,通过观察EGFP报告基因的表达以及免疫荧光,Western Blot方法鉴定CB1可在真核细胞中过表达情况.结果:构建重组融合蛋白表达载体pCB 1-EGFP,单双酶切和测序验证正确.将pCB1-EGFP质粒转染HeLa细胞,荧光显微镜下观察到融合表达的绿色荧光蛋白,且呈胞膜表达.免疫荧光试验也证明重组载体转染后,CB1基因和GFP共同定位于胞膜部分.Western Blot实验证明表达CB1蛋白.结论:成功构建了高表达的CB 1-EGFP融合蛋白真核表达载体.

  19. Effect of the CB1 cannabinoid agonist WIN 55212-2 on the acquisition and reinstatement of MDMA-induced conditioned place preference in mice

    Directory of Open Access Journals (Sweden)

    Miñarro José

    2010-03-01

    Full Text Available Abstract Background Numerous reports indicate that MDMA users consume other psychoactive drugs, among which cannabis is one of the most common. The aim of the present study was to evaluate, using the conditioned place preference, the effect of the cannabinoid agonist WIN 55,212-2 on the rewarding effects of MDMA in mice. Methods In the first experiment adolescent mice were initially conditioned with 1.25, 2.5 or 5 mg/kg of MDMA or 0.1 or 0.5 mg/kg of WIN and subsequently with both drugs. Reinstatement of the extinguished preference by priming doses was performed in the groups that showed CPP. In the second experiment, animals were conditioned with 2.5 or 5 mg/kg of MDMA and, after extinction, reinstatement of the preference was induced by 0.5 or 0.1 mg/kg of WIN. Results A low dose of WIN 55212-2 (0.1 mg/kg increased the rewarding effects of low doses of MDMA (1.25 mg/kg, although a decrease in the preference induced by MDMA (5 and 2.5 mg/kg was observed when the dose of WIN 55212-2 was raised (0.5 mg/kg. The CB1 antagonist SR 141716 also increased the rewarding effects of the lowest MDMA dose and did not block the effects of WIN. Animals treated with the highest WIN dose plus a non-neurotoxic dose of MDMA exhibited decreases of striatal DA and serotonin in the cortex. On the other hand, WIN 55212-2-induced CPP was reinstated by priming injections of MDMA, although WIN did not reinstate the MDMA-induced CPP. Conclusions These results confirm that the cannabinoid system plays a role in the rewarding effects of MDMA and highlights the risks that sporadic drug use can pose in terms of relapse to dependence. Finally, the potential neuroprotective action of cannabinoids is not supported by our data; on the contrary, they are evidence of the potential neurotoxic effect of said drugs when administered with MDMA.

  20. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2

    Science.gov (United States)

    Radziszewska, Elżbieta; Bojanowska, Ewa

    2013-01-01

    Background Glucagon-like peptide-1 (GLP-1) and endocannabinoids are involved in appetite control. Recently we have demonstrated that cannabinoid (CB)1 receptor antagonist and GLP-1 receptor agonist synergistically suppress food intake in the rat. The aim of the present study was to determine the effects of GLP-1 receptor stimulation or blockade on feeding behavior in rats treated with WIN 55,212-2, a CB1 receptor agonist. Material/Methods Experiments were performed on adult male Wistar rats. In the first experiment the effects of increasing doses (0.5–4.0 mg/kg) of WIN 55,212-2 injected intraperitoneally on 24-hour food consumption were tested. In further experiments a GLP-1 receptor antagonist, exendin (9-39), and WIN 55,212-2 or a GLP-1 receptor agonist, exendin-4, and WIN 55,212-2 were injected intraperitoneally at subthreshold doses (that alone did not change food intake and body weight) to investigate whether these agents may interact to affect food intake in rats. Results WIN 55,212-2 administered at low doses (0.5–2 mg/kg) did not markedly change 24-hour food consumption; however, at the highest dose, daily food intake was inhibited. Combined administration of WIN 55,212-2 and exendin (9-39) did not change the amount of food consumed compared to either the control group or to each agent injected alone. Combined injection of WIN 55,212-2 and exendin-4 at subthreshold doses resulted in a significant decrease in food intake and body weight in rats. Conclusions Stimulation of the peripheral CB1 receptor by its agonist WIN 55,212-2 can induce anorexigenic effects or potentiate, even at a subthreshold dose, the effects of exendin-4, a known anorectic agent. Hence, this dual action of the cannabinoid system should be considered in the medical use of CB1 agonists. PMID:23291632

  1. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    OpenAIRE

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alter...

  2. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    OpenAIRE

    EDUARDO eBLANCO-CALVO; PATRICIA eRIVERA; SERGIO eARRABAL; ANTONIO eVARGAS; FRANCISCO JAVIER ePAVON; ANTONIA eSERRANO; PABLO eGALEANO; LETICIA eRUBIO; JUAN eSUAREZ; FERNANDO eRODRIGUEZ DE FONSECA

    2014-01-01

    Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this...

  3. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors.

    Science.gov (United States)

    Mateos, B; Borcel, E; Loriga, R; Luesu, W; Bini, V; Llorente, R; Castelli, M P; Viveros, M-P

    2011-12-01

    We have analysed the long-term effects of adolescent (postnatal day 28-43) exposure of male and female rats to nicotine (NIC, 1.4 mg/kg/day) and/or the cannabinoid agonist CP 55,940 (CP, 0.4 mg/kg/day) on the following parameters measured in the adulthood: (1) the memory ability evaluated in the object location task (OL) and in the novel object test (NOT); (2) the anxiety-like behaviour in the elevated plus maze; and (3) nicotinic and CB(1) cannabinoid receptors in cingulated cortex and hippocampus. In the OL, all pharmacological treatments induced significant decreases in the DI of females, whereas no significant effects were found among males. In the NOT, NIC-treated females showed a significantly reduced DI, whereas the effect of the cannabinoid agonist (a decrease in the DI) was only significant in males. The anxiety-related behaviour was not changed by any drug. Both, nicotine and cannabinoid treatments induced a long-lasting increase in CB(1) receptor activity (CP-stimulated GTPγS binding) in male rats, and the nicotine treatment also induced a decrease in nicotinic receptor density in the prefrontal cortex of females. The results show gender-dependent harmful effects of both drugs and long-lasting changes in CB(1) and nicotinic receptors.

  4. Mouse monocyte/macrophage cell line J774A.1 migration induced by the activation of CB1 depends on HuR%激活大麻素受体1诱导的单核巨噬细胞J774A.1的迁移依赖RNA结合蛋白HuR

    Institute of Scientific and Technical Information of China (English)

    赵中新; 常娜; 盖菁菁; 田蕾; 李丽英

    2016-01-01

    目的 研究大麻素受体1(cannabinoid receptor 1,CB1)在单核巨噬细胞迁移中的重要作用以及RNA结合蛋白人抗原R (human antigen R,HuR)参与其中的可能机制.方法 选用单核巨噬细胞系J774A.1,应用琼脂糖凝胶电泳和免疫荧光染色技术鉴定J774A.1中CB1以及HuR的表达;ACEA和AM281分别为CB1的药理学激动剂和拮抗剂,应用Boyden chamber法检测ACEA和AM281对J774A.1迁移活性的影响.HuR的基因干扰用于确定激活CB1诱导的J774A.1迁移功能是否依赖HuR;胞质蛋白的分离用于探究激活CB1是否能引起J774A.1胞质中HuR的富集;RT-qPCR和Western blotting法检测CB1和HuR mRNA和蛋白质的变化情况.结果 该研究证明J774A.1在基因和蛋白质水平上均表达CB1和HuR;激活CB1能够促进J774A.1的迁移(P<0.01)并且能够被其药理学拮抗剂AM281所抑制;激活CB1诱导的J774A.1的迁移依赖HuR;激活CB1促进了J774A.1胞质中HuR的富集进一步影响了CB1的表达,由此HuR参与了激活CB1诱导的J774A.1的迁移.结论 激活CB1能够诱导单核巨噬细胞系J774A.1的迁移,且此过程依赖RNA结合蛋白HuR.

  5. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    Science.gov (United States)

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  6. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    Science.gov (United States)

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline. PMID:23521775

  7. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    Directory of Open Access Journals (Sweden)

    EDUARDO eBLANCO-CALVO

    2014-01-01

    Full Text Available Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this end we examined if pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg or CB2 receptors (AM630, 3 mg/kg affects cell proliferation (labeled with BrdU, found in the subventricular zone (SVZ of the lateral ventricles and the dentate subgranular zone (SGZ. In addition, we measured cell apoptosis (monitored by the expression of cleaved caspase-3 and glial activation ( by analizing the expression of GFAP and Iba-1 in the striatum and hippocampus, during acute or repeated (4 days cocaine administration (20 mg/kg. Results showed that acute cocaine decreased the number of BrdU+ cells in SVZ and SGZ. In contrast, repeated cocaine reduced the number of BrdU+ cells in SVZ only. Both acute and repeated cocaine increased the number of cleaved caspase-3+, GFAP+ and Iba1+ cells in the hippocampus, an effect counteracted by AM630 or Rimonabant that increased the number of BrdU+, GFAP+ and Iba1+ cells in the hippocampus. These results indicate that changes on neurogenic, apoptotic and gliosis processes, which were produced as a consequence of repeated cocaine administration, were normalized by the pharmacological blockade of CB1 and CB2. The restoring effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with a prevention of the induction of conditioned locomotion, but not of cocaine-induced sensitization.

  8. Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model

    OpenAIRE

    Florek-Luszczki, Magdalena; Wlaz, Aleksandra; Kondrat-Wrobel, Maria W.; Tutka, Piotr; Jarogniew J Luszczki

    2014-01-01

    The aim of this study was to characterize the influence of WIN 55,212-2 (WIN—a non-selective cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant effects of various classical antiepileptic drugs (clobazam, clonazepam, phenobarbital and valproate) in the mouse 6 Hz-induced psychomotor seizure model. Limbic (psychomotor) seizure activity was evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3 s stimulus duration) delivered via ocular electrodes. Drug-related adverse effects were...

  9. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  10. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  11. The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

    Science.gov (United States)

    Moreno-Martet, Miguel; Feliú, Ana; Espejo-Porras, Francisco; Mecha, Miriam; Carrillo-Salinas, Francisco J; Fernández-Ruiz, Javier; Guaza, Carmen; de Lago, Eva

    2015-11-01

    Sativex(®), an equimolecular combination of Δ(9)-tetrahydrocannabinol-botanical drug substance (Δ(9)-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain. However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components. In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice. We compared the effect of a Sativex-like combination of Δ(9)-THC-BDS (10 mg/kg) and CBD-BDS (10 mg/kg) with Δ(9)-THC-BDS (20 mg/kg) or CBD-BDS (20 mg/kg) administered separately by intraperitoneal administration to EAE mice. Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease. The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS. These effects were completely reproduced by the treatment with Δ(9)-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord. Next, we investigated the potential targets involved in the effects of Δ(9)-THC-BDS by selectively blocking CB(1) or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB(1) receptor antagonist. Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ(9)-THC-BDS acting through CB(1

  12. Advances in CB1/OX1-GPCR heterodimer and their cross-talk interaction%大麻素受体1/食欲素受体1-G蛋白偶联受体异聚体及其交叉激活作用研究进展

    Institute of Scientific and Technical Information of China (English)

    朱飞; 王湘庆; 陈亚楠; 朗森阳; 张家堂

    2015-01-01

    大麻素受体1(cannabinoid receptor 1,CB1)和食欲素受体1(orexin receptor 1,OX1)同属G蛋白偶联受体(G-proteincoupled receptors,GPCRs),两者在体内分布广泛,均参与调节摄食、能量平衡、睡眠和觉醒、食物和药物的成瘾性等.两者作用位点接近,足以形成异聚体共同参与各项功能调节,多项研究表明,CB1/OX1存在交叉激活作用.本文对CB1和OX1的作用以及CB1/OX1异聚体的交叉激活作用进行综述,以期对其有更深入的认识,从而对CB 1/OX 1-GPCR新药研发起到一定指导作用.

  13. 脂筏蛋白与Cb1相关蛋自在葡萄糖转运中的信号转导机制%The signal transduction mechanism of lipid rafts protein and Cbl associated protein in glucose transport

    Institute of Scientific and Technical Information of China (English)

    杜新; 赖学莉; 黄颂敏

    2006-01-01

    目前发现至少有两条胰岛素刺激葡萄糖转运蛋白4易位的信号转导通路:PI3K途径和Cb1相关蛋白(CAP)/Cb1途径.在CAP/Cb1途径中,CAP是关键性信号分子,这一信号途径依赖于脂筏上的特定蛋白共同参与完成.脂筏蛋白是存在于脂质筏上的一类特殊蛋白,包括小窝蛋白、浮舰蛋白等,有特殊的结构和功能,参与葡萄糖转运中的信号传递.

  14. Expression pattern of cannabinoid receptor 1 in the basal ganglia of Parkinson disease rat model with levodopa-induced dyskinesia%大麻素CB1受体在左旋多巴诱导的异动症大鼠基底节的表达研究

    Institute of Scientific and Technical Information of China (English)

    马雅萍; 宋璐; 刘振国

    2010-01-01

    目的 观察大麻素CB1受体在长期左旋多巴治疗诱导的异动症(LID)大鼠模型基底节表达的特点,探讨LID与CB1受体表达变化的关系.方法 帕金森病(PD)模型大鼠接受左旋多巴腹腔注射21 d,建立LID大鼠模型.采用免疫组化和Western Blot方法检测基底节不同部位CB1受体表达.结果 经左旋多巴治疗的PD大鼠出现类似人类LID的行为学表现.免疫组化结果显示LID组纹状体CB1受体损伤侧与未损侧的累积吸光度(IOD)比值下降,而苍白球和黑质网状部该比值升高(均P<0.01);Western blot检测结果与免疫组化显示了相同变化趋势, LID组纹状体CB1受体损伤侧/未损侧条带密度比值降低(P<0.01).结论 长期左旋多巴治疗可引起基底节纹状体CB1受体表达下调,这种改变可能与LID的发生发展有关.

  15. NCBI nr-aa BLAST: CBRC-CINT-01-0245 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CINT-01-0245 ref|NP_001079173.1| cannabinoid receptor 1/CB1 [Xenopus laevis] sp|Q801M1|CNR1_XENLA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAM28314.1| CB1 cannabinoid receptor [Xenopus laevis] NP_001079173.1 3e-10 22% ...

  16. NCBI nr-aa BLAST: CBRC-PMAR-01-0251 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PMAR-01-0251 ref|NP_001079173.1| cannabinoid receptor 1/CB1 [Xenopus laevis] sp|Q801M1|CNR1_XENLA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAM28314.1| CB1 cannabinoid receptor [Xenopus laevis] NP_001079173.1 1e-119 56% ...

  17. NCBI nr-aa BLAST: CBRC-DRER-16-0069 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-16-0069 ref|NP_001079173.1| cannabinoid receptor 1/CB1 [Xenopus laevis] sp|Q801M1|CNR1_XENLA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAM28314.1| CB1 cannabinoid receptor [Xenopus laevis] NP_001079173.1 1e-72 40% ...

  18. NCBI nr-aa BLAST: CBRC-CINT-01-0243 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CINT-01-0243 ref|NP_001079173.1| cannabinoid receptor 1/CB1 [Xenopus laevis] sp|Q801M1|CNR1_XENLA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAM28314.1| CB1 cannabinoid receptor [Xenopus laevis] NP_001079173.1 2e-10 27% ...

  19. NCBI nr-aa BLAST: CBRC-OLAT-24-0009 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OLAT-24-0009 ref|NP_001079173.1| cannabinoid receptor 1/CB1 [Xenopus laevis] sp|Q801M1|CNR1_XENLA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAM28314.1| CB1 cannabinoid receptor [Xenopus laevis] NP_001079173.1 0.0 71% ...

  20. Benzophenanthridine alkaloid, piperonyl butoxide and (S)-methoprene action at the cannabinoid-1 receptor (CB1-receptor) pathway of mouse brain: Interference with [(3)H]CP55940 and [(3)H]SR141716A binding and modification of WIN55212-2-dependent inhibition of synaptosomal l-glutamate release.

    Science.gov (United States)

    Dhopeshwarkar, Amey Sadashiv; Nicholson, Russell Alfred

    2014-01-15

    Benzophenanthridine alkaloids (chelerythrine and sanguinarine) inhibited binding of [(3)H]SR141716A to mouse brain membranes (IC50s: CB1 receptors versus spleen CB2 receptors. All compounds reduced Bmax of [(3)H]SR141716A binding to CB1 receptors, but only methoprene and piperonyl butoxide increased Kd (3-5-fold). Benzophenanthridines increased the Kd of [(3)H]CP55940 binding (6-fold), but did not alter Bmax. (S)-methoprene increased the Kd of [(3)H]CP55940 binding (by almost 4-fold) and reduced Bmax by 60%. Piperonyl butoxide lowered the Bmax of [(3)H]CP55940 binding by 50%, but did not influence Kd. All compounds reduced [(3)H]SR141716A and [(3)H]CP55940 association with CB1 receptors. Combined with a saturating concentration of SR141716A, only piperonyl butoxide and (S)-methoprene increased dissociation of [(3)H]SR141716A above that of SR141716A alone. Only piperonyl butoxide increased dissociation of [(3)H]CP55940 to a level greater than CP55940 alone. Binding results indicate predominantly allosteric components to the study compounds action. 4-Aminopyridine-(4-AP-) evoked release of l-glutamate from synaptosomes was partially inhibited by WIN55212-2, an effect completely neutralized by AM251, (S)-methoprene and piperonyl butoxide. With WIN55212-2 present, benzophenanthridines enhanced 4-AP-evoked l-glutamate release above 4-AP alone. Modulatory patterns of l-glutamate release (with WIN-55212-2 present) align with previous antagonist/inverse agonist profiling based on [(35)S]GTPγS binding. Although these compounds exhibit lower potencies compared to many classical CB1 receptor inhibitors, they may have potential to modify CB1-receptor-dependent behavioral/physiological outcomes in the whole animal.

  1. 电针对偏头痛大鼠三叉神经节大麻素受体、CGRP表达和血清CGRP浓度影响%Effects of electro-acupuncture on expression of trigeminal ganglion CB1 receptor, CGRP and serum concentrations of CGRP in rats with migraine

    Institute of Scientific and Technical Information of China (English)

    张慧; 胡幼平; 吴佳; 郑晖

    2015-01-01

    目的:观察偏头痛大鼠造模测(右侧)三叉神经节大麻素受体1(CB1)、降钙素基因相关肽(CGRP)的表达和血清CGRP浓度,及电针干预对其影响,探讨电针在偏头痛中发挥镇痛效应的相关机制.方法:SD大鼠随机分为假手术组(A)、模型组(B)、模型+电针组(C)、模型+电针+拮抗剂组(D).电刺激右侧三叉神经节制作偏头痛模型.取“风池”“外关”电针治疗.QPCR和Western blot检测右测三叉神经节CB1/CGRP表达;ELISA检测血清CGRP浓度.结果:QPCR结果显示,CB1mRNA表达:B组、C组、D组均明显高于A组(P<0.05);C组、D组均明显高于B组(P<0.05).CGRP mRNA表达:B组、C组、D组均明显高于A组(P<0.05);B组、D组均明显高于C组(P<0.05).Western blot结果显示:CB1蛋白表达:B组、C组、D组均明显高于A组(P<0.05);C组、D组均明显高于B组(P<0.05).CGRP蛋白表达:B组、C组、D组均明显高于A组(P<0.05);B组、D组均明显高于C组(P<0.05).血清CGRP浓度:针刺前B组、C组、D组明显高于A组(P<0.05);针刺5min及针刺10min后B组、C组、D组明显高于A组(P<0.05),B组、D组明显高于C组(P<0.05).结论:电针干预上调偏头痛大鼠三叉神经节CB1受体表达和下调三叉神经节CGRP表达,降低血清CGRP浓度,CB1拮抗剂可以部分拮抗电针对CGRP的影响.

  2. 睡眠剥夺大鼠癫痫诱发后CB1受体与脑细胞凋亡的关系%The relationship between neuronal apoptosis and expression of cannabinoid receptor 1 after epilepsy in sleep deprivation rats

    Institute of Scientific and Technical Information of China (English)

    江佩芳; 夏哲智; 江克文; 杨翠薇; 朱涛; 高峰; 水泉祥

    2007-01-01

    目的 探讨睡眠剥夺大鼠癫痫诱发后海马大麻素CB1受体表达与脑细胞凋亡的关系.方法 48只Sprague-Dawley(SD)大鼠,随机分为癫痫诱发前和癫痫诱发后两组,每组24只.每组大鼠又随机分为空白对照组(CC),睡眠剥夺1 d、3 d、5 d组(SD 1 d、SD 3 d、SD 5 d).用改良多平台睡眠剥夺法建立快速动眼期(REM)睡眠剥夺模型,戊四氮诱发癫痫.应用RT-PCR方法检测癫痫诱发前后大麻素CB1受体mRNA表达,并观察海马超微结构改变.结果 SD 1 d组神经元轻度固缩,染色质轻度边聚,SD 3 d组和SD 5 d组均出现神经元凋亡.癫痫诱发后发现CC组大鼠无抽搐,CB1受体mRNA表达较癫痫诱发前明显升高(P<0.01).SD 1 d、SD 3 d、SD 5 d组大鼠抽搐严重,CB1受体mRNA表达较癫痫诱发前相比差异无显著性(P>0.05).结论 睡眠剥夺能造成神经元凋亡,影响大麻素CB1受体表达.CB1受体表达增高对脑损伤有一定保护作用,能抑制癫痫发作.

  3. Mise en évidence de deux nouvelles fonctions du système endocannabinoïde dans la physiopathologie de la stéatose hépatique : propriétés stéatogènes du récepteur CB2 et profibrogéniques du récepteur CB1

    OpenAIRE

    Deveaux, Vanessa

    2008-01-01

    Les cannabinoïdes présents dans la marijuana agissent par l'intermédiaire de deux récepteurs, CB1 et CB2, qui sont également activés par des molécules endogènes, les endocannabinoïdes. Les récepteurs CB1, majoritairement exprimés dans le cerveau, relaient les effets psychoactifs du cannabis, mais exercent également de nombreux effets périphériques. Les récepteurs CB2 prédominent dans les cellules du système immunitaire et interviennent notamment dans la régulation de la réponse immune et infl...

  4. CB1 and ERK gene expression in liver tissue of rats with experimental hepatic fibrosis%大麻素受体1和细胞外信号调节激酶在肝纤维化小鼠肝组织中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    杨莉; 赵连英; 刘彦超; 叶立红; 戴二黑

    2012-01-01

    目的 研究大麻素受体1(CB1) mRNA在肝纤维化形成过程中表达的变化,从基因转录水平探讨其与细胞外信号调节激酶(ERK)的关系.方法 采用10%四氯化碳腹腔注射制备肝纤维化模型,分别于造模第2、4、6、8周留取小鼠的肝组织及血清.通过病理对肝组织进行形态学观察,荧光定量RT - PCR检测CB1 mRNA和ERK mRNA水平,生化法检测血清中ALT和AST的含量,放射免疫法检测血清中透明质酸(HA)的含量.结果 与正常对照组相比,各模型组小鼠肝组织中CB1 mRNA和ERK mRNA含量显著升高(P<0.05),而且随造模时间的延长,CB1 mRNA和ERKmRNA含量亦逐渐增高,各组之间差异有统计学意义(P<0.05).各模型组小鼠血清中ALT、AST及HA的水平随造模时间延长而不断升高,各组间差异具有统计学意义(P<0.05).CB1mRNA的含量不但与血清中ALT、AST、HA的含量呈显著正相关(r =0.741、0.763、0.769,P均<0.01),而且与肝组织中ERK mRNA含量也呈显著正相关(r=0.789,P均<0.01).结论 CB1可能通过激活ERK,以ERK通路诱导肝星状细胞(HSC)增殖,促进肝纤维化的形成.%Objective To evaluate the roles of the cannabinoid receptor type 1 (CB1) and extracellular -signal regulated kinase (ERK) in hepatic fibrosis. Methods A rat model of hepatic fibrosis was generated by intraperitoneal injection of 10% carbon tetrachloride. liver tissues and serum samples were collected at post - injection weeks 2,4,6, and 8. Histopathological changes were detected by hematoxylin - eosin staining. Changes in mRNA levels of CB1 and ERK were determined by quantitative reverse transcription - polymerase chain reaction. Biochemical assays were used to detect changes in serum alanine aminotransferase ( ALT) and aspartate aminotransferase (AST) levels, and radio-inimunoassay was used to determine changes in serum hyaluronic acid ( HA) level. Results Compared with the uninduced, non -fibrotic con-trol group, the mRNA levels of

  5. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    Science.gov (United States)

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-01

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways. PMID:25841876

  6. 大麻素受体1、FAK mRNA在小鼠肝纤维化形成过程中肝组织中的表达及相互关系%Hepatic expression of CB1 in rats with fibrosis and the relationship with FAK

    Institute of Scientific and Technical Information of China (English)

    杨莉; 赵召霞; 侯军良; 刘玉珍; 姜惠卿; 戴二黑

    2011-01-01

    Objective To evaluate hepatic expression of CBl mRNA in rats during liver fibrogenesis and study the relationship between CB1 and FAK. Methods Liver fibrosis model was prepared by intraperitoneal injection of carbon tetrachloride ( 10% ). Liver tissues and serum samples were collected at 2, 4, 6 and 8 week. The scores of fibrosis stage (S) were performed. The mRNA levels of CB1 mRNA and FAK were determined by quantitative RT - PCR. The levels of serum TGFβ1 were detected by ELISA. Results Compared with normal control group, CBI mRNA and FAK mRNA levels in every model group were significantly increased ( P < O.05 ). With the modeling time prolonged, CB1 and FAK mRNA levels gradually increased (P <0.05 ). CB1 mRNA level in liver tissue not only had correlation with the degree of liver fibrosis ( r = O. 747, P < 0.01 ), but also with FAK mRNA level in liver tissue ( r = 0.907, P < O. 01 ). With the modeling time prolonged, serum TGFβ1 level gradually increased (P < O. 05 ). CBI mRNA level in liver tissue had positive correlation with serum TGFβ1 level ( r = O. 542, P < 0. O1 ). Conclusion CB1 may promote the activation of FAK in rats with fibrosis, and induce HSC proliferation and secrete plentiful TGFβ1 by PI3K signal transduction. CB1 may promote progression of liver fibrosis.%目的 研究大麻素受体1(CB1)mRNA在肝纤维化形成过程中表达的变化,从基因转录水平探讨其与黏着斑激酶(FAK)的关系.方法 采用10%四氯化碳腹腔注射制备肝纤维化模型,分别于造模第2、4、6、8周留取小鼠的肝组织及血清.通过肝组织病理对肝纤维化程度进行评分,荧光定量PCR检测CB1 mRNA和FAK mRNA水平,ELISA方法检测血清中转化生长因子(TGF)β1的含量.结果 与正常对照组相比,各模型组小鼠肝组织中CBI mRNA和FAK mRNA含量显著升高(P<0.05),而且随造模时间的延长,CB1 mRNA和FAK mRNA含量亦逐渐增高,各组之间差异有统计学意义(P<0.05).CBI mRNA的含

  7. Cannabinoid receptor 1 expression and pathological changes in rat hippocampus after deprivation of rapid eye movement sleep%快速眼动睡眠剥夺后大鼠海马CB1受体表达及病理变化

    Institute of Scientific and Technical Information of China (English)

    江佩芳; 朱涛; 夏哲智; 赵正言; 江克文; 杨翠薇; 水泉祥

    2006-01-01

    目的:探讨不同时间的快速眼动(REM)睡眠剥夺对大鼠海马大麻素CB1受体表达的影响及其意义,并观察海马的结构改变.方法:42只Sprague-Dawley大鼠随机分为睡眠剥夺组、环境对照组和空白对照组.其中睡眠剥夺组和环境对照组又分为1 d、3 d和5 d 3个时点,用改良多平台睡眠剥夺法建立REM睡眠剥夺模型.应用RT-PCR方法检测大麻素CB1受体mRNA表达,并观察海马的病理变化.结果:睡眠剥夺1 d组CB1受体mRNA表达较空白对照组、环境对照组、睡眠剥夺3 d及5 d组显著升高(P<0.05),而睡眠剥夺3 d组较睡眠剥夺1 d及5 d组显著降低(P<0.05),睡眠剥夺5 d组较睡眠剥夺3 d组显著升高(P<0.05).光镜与电镜观察显示睡眠剥夺1 d组神经元轻度固缩,染色质轻度边聚,睡眠剥夺3 d及5 d组有神经元凋亡.结论:REM睡眠剥夺可导致海马神经元凋亡;睡眠剥夺早期CB1受体表达反应性增高而后降低,至晚期出现一定程度恢复.

  8. NCBI nr-aa BLAST: CBRC-SARA-01-0195 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-SARA-01-0195 ref|NP_001009331.1| cannabinoid receptor 1 [Felis catus] sp|O02777|CNR1_FELCA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAB53440.1| CB1 cannabinoid receptor [Felis catus] NP_001009331.1 0.0 96% ...

  9. NCBI nr-aa BLAST: CBRC-RNOR-05-0081 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-05-0081 ref|NP_001009331.1| cannabinoid receptor 1 [Felis catus] sp|O02777|CNR1_FELCA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAB53440.1| CB1 cannabinoid receptor [Felis catus] NP_001009331.1 0.0 96% ...

  10. NCBI nr-aa BLAST: CBRC-FCAT-01-1020 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-1020 ref|NP_001009331.1| cannabinoid receptor 1 [Felis catus] sp|O02777|CNR1_FELCA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAB53440.1| CB1 cannabinoid receptor [Felis catus] NP_001009331.1 0.0 98% ...

  11. NCBI nr-aa BLAST: CBRC-CFAM-12-0016 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-12-0016 ref|NP_001009331.1| cannabinoid receptor 1 [Felis catus] sp|O02777|CNR1_FELCA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAB53440.1| CB1 cannabinoid receptor [Felis catus] NP_001009331.1 0.0 97% ...

  12. NCBI nr-aa BLAST: CBRC-TBEL-01-1883 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TBEL-01-1883 ref|NP_001009331.1| cannabinoid receptor 1 [Felis catus] sp|O02777|CNR1_FELCA Canna...binoid receptor 1 (CB1) (CB-R) gb|AAB53440.1| CB1 cannabinoid receptor [Felis catus] NP_001009331.1 0.0 97% ...

  13. Effects of Repeated Electroacupuncture on Gene Expression of Cannabinoid Receptor-1 and Dopamine 1 Receptor in Nucleus Accumbens-Caudate Nucleus Region in Inflammatory-pain Rats%反复电针对佐剂性关节炎大鼠伏隔核-尾状核区大麻素CB1受体与多巴胺Dl受体基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    寿鉴; 赵颖倩; 徐鸣曙; 葛林宝

    2011-01-01

    Objective To observe the effect of repeated electroacupuncture (EA) on the expression of cannabinoid receptor-1 (CB 1 ) mRNA and dopamine 1 receptor (D 1 ) mRNA in Nucleus Accumbens (NAC)-Caudate Nucleus (CN) region in inflammatory-pain rats, so as to study its underlying mechanism in analgesia. Methods A total of 30 SD rats were randomized into normal control, model, EA, EA + AM 251 and WIN 552 12-2 groups, with 6 cases in each group. EA (2 Hz/100 Hz, 1 - 3 mA)was applied to "Zusanli"(ST 36) and "Kunlun"(BL 60) for 30 min, once every other day, and 4 sessions all together. Arthritis model was established by injection of Freund's complete adjuvant 0.05 mL in the rat's left ankle. Thermal pain threshold (paw withdrawal latency, PWL) was detected before and after modeling and after repeated EA and/or intraperitoneal injection of AM 251 (an inverse antagonist at the CB 1 cannabinoid receptor, 0. 1 mg/1 00 g) and WIN 55212-2 (a potent cannabinoid receptor agonist, 0.2 mg/100 g). The expression of CB 1 receptor mRNA and D 1 receptor mRNA in the NAC-CN region was measured by real time fluorescence quantitative-polymerase chain reaction. Results Compared with the control group, the pain threshold values of the model group was decreased significantly (P<0.01). In comparison with the model group, the pain threshold values of the EA group and WIN 55212-2 group were increased considerably on day 10 (P<0.01). No significant differences were found between the EA+AM 251 and model groups and between the EA and WIN 55212-2 groups in PWL after the treatment (P>0.05).Compared with the control group, both CB 1 R mRNA and D 1 R mRNA expression levels in the model group were increased slightly, while in comparison with the model group and EA+ AM 251 group, CB 1 R mRNA and D 1 R mRNA expression levels in the EAgroup and WIN 55212-2 group were upregulated obviously. No significant differences were found between the EA+ AM 251 and model groups and between the EA and WIN 55212

  14. Total Sugar,Reducing Sugar and Starch Content of Nicotiana tabacum L. CB-1 in Different Ecological Regions%翠碧1号烟叶总糖、还原糖和淀粉含量的区域分布特征

    Institute of Scientific and Technical Information of China (English)

    包可翔

    2011-01-01

    [ Objective ] The carbohydrates of Nicotiana tabacum L. CB-1 in different ecological regions were researched to provide a reference for the formulation of cigarettes. [ Method ] The total sugar,reducing sugar and starch content of Nicotiana tabacum L. CB-1 in 13 townships were analyzed by cluster and ANOVA method. [ Result ] The starch content of upper leaves in Yongding-Hulei and Shanghang-Rufeng were significantly higher than those in other locations. The upper leaves in Wuyi-Zheyang, Pucheng-Linjiang and Pucheng-Yongxing were classified to the sane class,in which the total sugar,reducing sugar and starch content of samples were significantly lower than those in other locations. The total sugar content of cutter leaves in Yongding-Hulei and Shanghang-Rufeng were significantly lower than those in other locations, but the starch content were significantly higher than those in other locations. The reducing sugar content of lower leaves in Yongding-Hulei was significantly lower than those in other locations,which in Wuyi-Zheyang and Pucheng-Zhongxing were significantly higher than those in other locations. The starch content of lower leaves in Yongding-Hulei was significantly higher than those in other locations. [Conclusion] The total sugar,reducing sugar and starch content of Nicotiana tabacum L. CB-1 in some townships had much in common,and those in some townships had significant difference. So it was necessary to classify 13 townships for better cigarettes formulation.%[目的]研究翠碧1号烟叶糖类物质在不同生态区域的分布特征,为卷烟配方提供参考依据.[方法]对13个乡镇翠碧1号烟叶样品的总糖、还原糖和淀粉含量进行聚类分析,并且进行类问方差分析.[结果]上部烟叶中永定湖雷和上杭庐丰样品的淀粉含量在0.05水平显著高于其他地点样品,武夷柘洋、浦城临江和浦城永兴聚为一类,其样品的总糖、还原糖和淀粉含量显著低于其他地点样品;中部烟叶

  15. Effects of compound rehmannia prescription on the cannabinoid receptor 1 in rats with wind syndrome due to deficiency of Yin in levodopa-induced dyskinesia (LID) in Parkinson's disease%阴虚动风证帕金森病异动症大鼠大麻素CB1受体变化及复方地黄方的干预作用

    Institute of Scientific and Technical Information of China (English)

    滕龙; 洪芳; 何建成

    2016-01-01

    目的 探讨阴虚动风证帕金森病(PD)异动症(LID)大鼠纹状体内大麻素CB1受体的表达及复方地黄方的干预作用.方法 采用6-羟基多巴胺(6-OHDA)偏侧损毁黑质制备帕金森病大鼠模型,进一步腹腔注射左旋多巴+苄丝肼(50 mg/kg左旋多巴和12.5 mg/kg苄丝肼)制备LID大鼠模型,并随机分为LID组、复方地黄方组,另取正常对照组、假手术组大鼠为对照,每组6只.分别在4周、6周进行神经行为学检测后,处死大鼠并取纹状体,应用Western blot法测定各组大鼠纹状体内大麻素CB1受体的表达情况.结果 LID大鼠随造模时间延长,AIM评分呈增加趋势(P<0.05),旋转启动时间呈缩短趋势(P>0.05),旋转持续时间呈增加趋势(P<0.01),剂峰旋转圈数呈减少趋势(P>0.05),复方地黄方可改善上述变化.LID大鼠大麻素CB1受体表达增加,且随造模时间延长呈现减少趋势(P<0.01),而复方地黄方干预后大麻素CB1受体的表达呈现逐渐增加的趋势(P<0.01).结论 LID模型大鼠大麻素CB1受体的含量明显升高,其变化能够较好的反映阴虚动风证的严重程度,复方地黄方干预LID模型大鼠可能是通过激活纹状体内大麻素CB1受体,抑制兴奋性氨基酸(主要是谷氨酸)的释放和诱导细胞发生级联反应来减弱神经元的兴奋性,从而起到减轻L-dopa的兴奋毒性的作用.

  16. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Frost, M; Nielsen, T L; Wraae, K;

    2010-01-01

    Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants of the CB1...... receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution....

  17. Cannabinoid receptor 1 gene polymorphisms and marijuana misuse interactions on white matter and cognitive deficits in schizophrenia.

    Science.gov (United States)

    Ho, Beng-Choon; Wassink, Thomas H; Ziebell, Steven; Andreasen, Nancy C

    2011-05-01

    Marijuana exposure during the critical period of adolescent brain maturation may disrupt neuro-modulatory influences of endocannabinoids and increase schizophrenia susceptibility. Cannabinoid receptor 1 (CB1/CNR1) is the principal brain receptor mediating marijuana effects. No study to-date has systematically investigated the impact of CNR1 on quantitative phenotypic features in schizophrenia and inter-relationships with marijuana misuse. We genotyped 235 schizophrenia patients using 12 tag single nucleotide polymorphisms (tSNPs) that account for most of CB1 coding region genetic variability. Patients underwent a high-resolution anatomic brain magnetic resonance scan and cognitive assessment. Almost a quarter of the sample met DSM marijuana abuse (14%) or dependence (8%) criteria. Effects of CNR1 tSNPs and marijuana abuse/dependence on brain volumes and neurocognition were assessed using ANCOVA, including co-morbid alcohol/non-marijuana illicit drug misuse as covariates. Significant main effects of CNR1 tSNPs (rs7766029, rs12720071, and rs9450898) were found in white matter (WM) volumes. Patients with marijuana abuse/dependence had smaller fronto-temporal WM volumes than patients without heavy marijuana use. More interestingly, there were significant rs12720071 genotype-by-marijuana use interaction effects on WM volumes and neurocognitive impairment; suggestive of gene-environment interactions for conferring phenotypic abnormalities in schizophrenia. In this comprehensive evaluation of genetic variants distributed across the CB1 locus, CNR1 genetic polymorphisms were associated with WM brain volume variation among schizophrenia patients. Our findings suggest that heavy cannabis use in the context of specific CNR1 genotypes may contribute to greater WM volume deficits and cognitive impairment, which could in turn increase schizophrenia risk.

  18. Estudio teórico de endocanabinoides análogos a anandamida

    Directory of Open Access Journals (Sweden)

    Luis Carlos García Sánchez

    2013-07-01

    Full Text Available From computational methods, we studied a total of 90 reactions designed by the research group of AAUCTU pharmochemical aimed at determin- ing the possible synthesis and pharmacological activity of anandamide derivatives in Parkinson’s disease. We propose two types of reaction. In the first, part of arachidonic acid and is intended to replace the hydroxyl group by different species (14 in total. In the second part of an arylethanolamine structure in which substitutions are made position and functional group (16 in total. Each of the reactions is carried out under the influence of different media such as thionyl chloride, SOCl2-, NN-Diciclohexilcarboiimida-DCC-and-CH3CN-Acetonitrile. To deter- mine which of the proposed reaction pathways, provides the best con- ditions in terms of favorability, time and performance calculations were made AB-Initio and DFT (Density functional theory, using the 3-21G basis. The results confirm that 16 of the studied reactions are the most via- ble and calculations by DFT methodology are those with higher correla- tion between the theoretical and the experimental.

  19. Paper del receptor de cannabinoides 1 (CB1) a la Cirrosi experimental efecte del bloqueig de CB1 sobre les complicacions de la cirrosi

    OpenAIRE

    Òdena Garcia, Gemma

    2012-01-01

    Descripció del recurs: el 01 setembre 2012 La cirrosi és una malaltia crònica, difusa i considerada irreversible, caracteritzada per l'alteració de l'arquitectura vascular hepàtica provocada pel reemplaçament del teixit parenquimàtic per teixit fibròtic, així com per l'aparició de nòduls de regeneració. Aquesta destrucció del teixit hepàtic i la seva substitució per teixit fibrós provoca un augment marcat de la resistència al flux de la vena porta, així com una greu alteració de la funció ...

  20. NCBI nr-aa BLAST: CBRC-GACU-18-0022 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-18-0022 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  1. NCBI nr-aa BLAST: CBRC-VPAC-01-1554 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-VPAC-01-1554 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp...|P47746|CNR1_MOUSE RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor gb|AAD34624.1|AF153345_1 CB1 cannabinoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannab...inoid receptor [Mus musculus] gb|AAA91176.1| neuronal cannabinoid receptor [Mus m...usculus] emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal cannabinoid recepto

  2. NCBI nr-aa BLAST: CBRC-OANA-01-2200 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OANA-01-2200 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  3. NCBI nr-aa BLAST: CBRC-FCAT-01-1020 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-1020 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  4. NCBI nr-aa BLAST: CBRC-TGUT-05-0032 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-05-0032 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  5. NCBI nr-aa BLAST: CBRC-TTRU-01-0117 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0117 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp...|P47746|CNR1_MOUSE RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor gb|AAD34624.1|AF153345_1 CB1 cannabinoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannab...inoid receptor [Mus musculus] gb|AAA91176.1| neuronal cannabinoid receptor [Mus m...usculus] emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal cannabinoid recepto

  6. NCBI nr-aa BLAST: CBRC-CFAM-12-0016 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-12-0016 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  7. NCBI nr-aa BLAST: CBRC-DRER-20-0002 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-20-0002 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  8. NCBI nr-aa BLAST: CBRC-DNOV-01-3023 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-3023 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  9. NCBI nr-aa BLAST: CBRC-MMUS-04-0013 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-04-0013 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  10. NCBI nr-aa BLAST: CBRC-CJAC-01-1332 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1332 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  11. NCBI nr-aa BLAST: CBRC-HSAP-06-0074 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-HSAP-06-0074 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  12. NCBI nr-aa BLAST: CBRC-OCUN-01-1522 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OCUN-01-1522 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  13. NCBI nr-aa BLAST: CBRC-MLUC-01-1112 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-1112 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp...|P47746|CNR1_MOUSE RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor gb|AAD34624.1|AF153345_1 CB1 cannabinoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannab...inoid receptor [Mus musculus] gb|AAA91176.1| neuronal cannabinoid receptor [Mus m...usculus] emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal cannabinoid recepto

  14. NCBI nr-aa BLAST: CBRC-EEUR-01-1648 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-EEUR-01-1648 ref|NP_031752.1| cannabinoid receptor 1 (brain) [Mus musculus] sp|P47746|CNR1_MOUSE Canna...binoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) gb|AAD34624.1|AF153345_1 CB1 canna...binoid receptor [Mus musculus] gb|AAA64413.1| CB1 cannabinoid receptor gb|AAA91176.1| neuronal canna...binoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb...|AAS91800.1| striatal cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  15. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    Science.gov (United States)

    Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.; Kunos, George

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1−/− but not in nos2−/− mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

  16. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Nielsen, Morten Frost; Nielsen, T L; Wraae, K;

    2010-01-01

    of the CB1 receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution. DESIGN AND METHODS: The single nucleotide polymorphisms (SNPs) rs806381, rs......OBJECTIVE: Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants......10485179 and rs1049353 were genotyped, and body fat and fat distribution were assessed by the use of dual-energy X-ray absorptiometry and magnetic resonance imaging in a population-based study comprising of 783 Danish men, aged 20-29 years. RESULTS: The rs806381 polymorphism was significantly associated...

  17. NCBI nr-aa BLAST: CBRC-TNIG-14-0023 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-14-0023 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 74% ...

  18. NCBI nr-aa BLAST: CBRC-VPAC-01-1554 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-VPAC-01-1554 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 94% ...

  19. NCBI nr-aa BLAST: CBRC-LAFR-01-1734 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1734 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 91% ...

  20. NCBI nr-aa BLAST: CBRC-EEUR-01-1648 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-EEUR-01-1648 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  1. NCBI nr-aa BLAST: CBRC-HSAP-06-0074 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-HSAP-06-0074 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  2. NCBI nr-aa BLAST: CBRC-MMUS-04-0013 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-04-0013 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 99% ...

  3. NCBI nr-aa BLAST: CBRC-PTRO-07-0067 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-07-0067 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  4. NCBI nr-aa BLAST: CBRC-TGUT-05-0032 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-05-0032 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 92% ...

  5. NCBI nr-aa BLAST: CBRC-ETEL-01-1516 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-1516 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  6. NCBI nr-aa BLAST: CBRC-SARA-01-0195 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-SARA-01-0195 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  7. NCBI nr-aa BLAST: CBRC-CJAC-01-1332 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1332 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  8. NCBI nr-aa BLAST: CBRC-MDOM-02-0334 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-02-0334 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 94% ...

  9. NCBI nr-aa BLAST: CBRC-FRUB-02-0074 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FRUB-02-0074 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 1e-159 61% ...

  10. NCBI nr-aa BLAST: CBRC-RNOR-05-0081 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-05-0081 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 100% ...

  11. NCBI nr-aa BLAST: CBRC-PHAM-01-1594 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PHAM-01-1594 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  12. NCBI nr-aa BLAST: CBRC-GGOR-01-1297 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGOR-01-1297 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  13. NCBI nr-aa BLAST: CBRC-DNOV-01-3023 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-3023 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  14. NCBI nr-aa BLAST: CBRC-CFAM-12-0016 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-12-0016 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 98% ...

  15. NCBI nr-aa BLAST: CBRC-MEUG-01-1939 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MEUG-01-1939 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 94% ...

  16. NCBI nr-aa BLAST: CBRC-STRI-01-2565 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-STRI-01-2565 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 2e-82 91% ...

  17. NCBI nr-aa BLAST: CBRC-MMUR-01-1494 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUR-01-1494 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  18. NCBI nr-aa BLAST: CBRC-PABE-07-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PABE-07-0058 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  19. NCBI nr-aa BLAST: CBRC-OPRI-01-0982 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OPRI-01-0982 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  20. NCBI nr-aa BLAST: CBRC-PCAP-01-1368 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PCAP-01-1368 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT RecName: Full=Cannabinoid receptor 1; Short=CB1; Short=CB-R; AltName: Full=Brain-type canna...binoid receptor emb|CAA39332.1| CB1 cannabinoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal canna...binoid receptor [Rattus norvegicus] gb|EDL98589.1| cannabinoid receptor 1 (bra...in) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 97% ...

  1. NCBI nr-aa BLAST: CBRC-GGAL-03-0034 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGAL-03-0034 ref|NP_036916.1| cannabinoid receptor 1 (brain) [Rattus norvegicu...s] sp|P20272|CNR1_RAT Cannabinoid receptor 1 (CB1) (CB-R) (Brain-type cannabinoid receptor) emb|CAA39332.1| CB1 canna...binoid receptor [Rattus norvegicus] gb|AAA99067.1| neuronal cannabinoid receptor gb|EDL98589.1| canna...binoid receptor 1 (brain) [Rattus norvegicus] prf||1613453A cannabinoid receptor NP_036916.1 0.0 93% ...

  2. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies

    NARCIS (Netherlands)

    E. Zurolo; A.M. Iyer; W.G.M. Spliet; P.C. van Rijen; D. Troost; J.A. Gorter; E. Aronica

    2010-01-01

    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression an

  3. Activation of LVGCCs and CB1 Receptors Required for Destabilization of Reactivated Contextual Fear Memories

    Science.gov (United States)

    Suzuki, Akinobu; Mukawa, Takuya; Tsukagoshi, Akinori; Frankland, Paul W.; Kida, Satoshi

    2008-01-01

    Previous studies have shown that inhibiting protein synthesis shortly after reactivation impairs the subsequent expression of a previously consolidated fear memory. This has suggested that reactivation returns a memory to a labile state and that protein synthesis is required for the subsequent restabilization of memory. While the molecular…

  4. Adolescent social rejection alters pain processing in a CB1 receptor dependent manner.

    Science.gov (United States)

    Schneider, Peggy; Pätz, Monique; Spanagel, Rainer; Schneider, Miriam

    2016-07-01

    Experiences of social rejection represent a major source of distress and in particular peer rejection during adolescence has been implicated in various psychiatric disorders. Moreover, experimentally induced acute social rejection alters pain perception in humans, implicating overlapping neurocircuits for social and physical pains. We recently demonstrated that rearing of adolescent Wistar rats with inadequate, less playful play partners (Fischer 344) persistently decreases pain sensitivity, although the detailed mechanisms mediating the aversiveness during the social encounter remained unsettled. With the present study we examined the behavioral performance during acute interaction of female adolescent Wistar rats with either age-matched same-strain partners or rats from the Fischer 344 strain. We here identify the low responsiveness upon playful attacks, which appears to be characteristic for social play in the Fischer 344 strain, as one of the main aversive components for adolescent Wistar animals during cross-strain encounters, which subsequently diminishes thermal pain reactivity. A detailed behavioral analysis further revealed increased ultrasonic vocalization at 50kHz and an increased frequency of playful attacks for adolescent Wistar animals paired with a Fischer 344 rat compared to same-strain control pairs. Finally, an acute injection of a subthreshold dose of the cannabinoid type 1 receptor inverse agonist/antagonist SR141716 before the social encounter abolished enhanced play-soliciting behavior in Wistar/Fischer 344 pairs as well as the behavioral consequences of the rejection experience in adolescent Wistar rats, further emphasizing an important modulatory role of the endocannabinoid system in mediating the effects of social behavior and social pain. PMID:27157075

  5. COMPARATIVE EFFECTS OF CHLOPYRIFOS IN WILD TYPE AND CANNABINIOID CB1 RECEPTOR KNOCKOUT MICE

    OpenAIRE

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-01-01

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55,212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in ti...

  6. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  7. Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ruoxi; Makriyannis, Alexandros [Connecticut Univ., Molecular and Cell Biology Dept., Storrs, CT (United States); Gatley, S.J. [Brookhaven National Lab., Medical Dept., Upton, NY (United States)

    1996-10-01

    We report the synthesis and labeling with iodine-123 of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). This compound is an analog of the recently described cannabinoid receptor antagonist, SR141716A, in which a 4-chlorophenyl group is replaced by 4-iodophenyl. Labeling in good yield (62%) and radiochemical purity (> 95%), and high specific activity (> 2500 Ci/mmol) was achieved by an iododestannylation reaction using the tributyltin precursor, no carrier added I-123 iodide, and chloramine-T. (author).

  8. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation

    NARCIS (Netherlands)

    Kleijn, J.; Wiskerke, J.; Cremers, T. I. F. H.; Schoffelmeer, A. N. M.; Westerink, B. H. C.; Pattij, T.

    2012-01-01

    The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial pre

  9. Cannabinoid CB1 receptor agonists do not decrease, but may increase, acoustic trauma-induced tinnitus in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2015-03-01

    Full Text Available Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In the present study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC and cannabidiol (CBD, delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: 1 sham (i.e. no acoustic trauma with vehicle treatment; 2 sham with drug treatment (i.e. delta-9-THC + CBD; 3 acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and 4 acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioural testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.

  10. Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    NARCIS (Netherlands)

    Pattij, Tommy; Janssen, Mieke; Schepers, Inga; González-Cuevas, Gustavo; Vries, de Taco; Schoffelmeer, Anton

    2007-01-01

    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid syste

  11. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    Science.gov (United States)

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  12. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat.

    Science.gov (United States)

    Elmes, Steven J R; Winyard, Lisa A; Medhurst, Stephen J; Clayton, Nick M; Wilson, Alex W; Kendall, David A; Chapman, Victoria

    2005-12-01

    The aim of the present study was to investigate the effects of cannabinoid agonists on established inflammatory hyperalgesia. We have compared the effects of pre-administration versus post-administration of a potent non-selective cannabinoid agonist HU210 and a selective CB2 receptor agonist JWH-133 on hindpaw weight bearing and paw oedema in the carrageenan model of inflammatory hyperalgesia. For comparative purposes we also determined the effects of the mu-opioid receptor agonist morphine and the COX2 inhibitor rofecoxib in this model. At 3 h following intraplantar injection of carrageenan (2%, 100 microl) there was a significant (P pain responses.

  13. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    OpenAIRE

    Müller Anke; Tauber Svantje; Ramirez-Rodriguez Gerardo; Leal-Galicia Perla; Fabel Klaus; Bick-Sander Anika; Wolf Susanne A; Melnik Andre; Waltinger Tim P; Ullrich Oliver; Kempermann Gerd

    2010-01-01

    Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferatio...

  14. Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor

    International Nuclear Information System (INIS)

    We report the synthesis and labeling with iodine-123 of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). This compound is an analog of the recently described cannabinoid receptor antagonist, SR141716A, in which a 4-chlorophenyl group is replaced by 4-iodophenyl. Labeling in good yield (62%) and radiochemical purity (> 95%), and high specific activity (> 2500 Ci/mmol) was achieved by an iododestannylation reaction using the tributyltin precursor, no carrier added I-123 iodide, and chloramine-T. (author)

  15. Methanandamide attenuates cocaine-induced hyperthermia in rats by a cannabinoid CB1-dopamine D2 receptor mechanism

    OpenAIRE

    Rasmussen, Bruce A.; Kim, Esther; Unterwald, Ellen M.; Rawls, Scott M

    2009-01-01

    Evidence implicates anandamide in dopamine-related cocaine function. In the present study, we investigated the effect of methanandamide (5 mg/kg, i.p.), a stable anandamide analog, on the hyperthermia and hyperactivity induced by a fixed dose of cocaine (15 mg/kg, i.p.). Cocaine administered to rats produced hyperthermia and hyperactivity whereas methanandamide was ineffective. For combined administration, methanandamide attenuated the hyperthermia, but not hyperactivity, induced by cocaine. ...

  16. SIR-C/X-SAR data calibration and ground truth campaign over the NASA-CB1 test-site

    Energy Technology Data Exchange (ETDEWEB)

    Notarnicola, C.; Posa, F.; Refice, A.; Sergi, R.; Smacchia, P. [Istituto Nazionale di Fisica della Materia and Dipartimento Interateneo di Fisica, Bari (Italy); Casarano, D. [ENEA, Centro Ricerche Trisaia, Rotondella, MT (Italy); De Carolis, G.; Mattia, F. [Istituto di Tecnologia Informatica Spaziale-Consiglio Nazionale delle Ricerche, Centro di Geodesia Spaziale G. Colombo, Terlecchia, MT (Italy); Schena, V.D. [Alenia Spazio, Rome (Italy)

    2001-02-01

    During the Space Shuttle Endeavour mission in October 1994, a remote-sensing campaign was carried out with the objectives of both radiometric and polarimetric calibration and ground truth data acquisition of bare soils. This paper presents the results obtained in the experiment. Polarimetric cross-talk and channel imbalance values, as well as radiometric calibration parameters, have been found to be within the science requirements for SAR images. Regarding ground truth measurements, a wide spread in the height rms values and correlation lengths has been observed, which was motivated a critical revisiting of surface parameters descriptors.

  17. Fever Is Mediated by Conversion of Endocannabinoid 2-Arachidonoylglycerol to Prostaglandin E2.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kita

    Full Text Available Fever is a common response to inflammation and infection. The mechanism involves prostaglandin E2 (PGE2-EP3 receptor signaling in the hypothalamus, which raises the set point of hypothalamic thermostat for body temperature, but the lipid metabolic pathway for pyretic PGE2 production remains unknown. To reveal the molecular basis of fever initiation, we examined lipopolysaccharides (LPS-induced fever model in monoacylglycerol lipase (MGL-deficient (Mgll-/- mice, CB1 receptor-MGL compound-deficient (Cnr1-/-Mgll-/- mice, cytosolic phospholipase A2α (cPLA2α-deficient (Pla2g4a-/- mice, and diacylglycerol lipase α (DGLα-deficient (Dagla-/- mice. Febrile reactions were abolished in Mgll-/- and Cnr1-/-Mgll-/- mice, whereas Cnr1-/-Mgll+/+, Pla2g4a-/- and Dagla-/- mice responded normally, demonstrating that MGL is a critical enzyme for fever, which functions independently of endocannabinoid signals. Intracerebroventricular administration of PGE2 caused fever similarly in Mgll-/- and wild-type control mice, suggesting a lack of pyretic PGE2 production in Mgll-/- hypothalamus, which was confirmed by lipidomics analysis. Normal blood cytokine responses after LPS administration suggested that MGL-deficiency does not affect pyretic cytokine productions. Diurnal body temperature profiles were normal in Mgll-/- mice, demonstrating that MGL is unrelated to physiological thermoregulation. In conclusion, MGL-dependent hydrolysis of endocannabinoid 2-arachidonoylglycerol is necessary for pyretic PGE2 production in the hypothalamus.

  18. Cannabinoid Type-1 Receptor Gene Polymorphisms Are Associated with Central Obesity in a Southern Brazilian Population

    Directory of Open Access Journals (Sweden)

    Janaína P. Jaeger

    2008-01-01

    Full Text Available The CB1 cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in energy balance control, stimulating appetite and increasing body weight in wasting syndromes. Different studies have investigated the relationship between polymorphisms of the cannabinoid receptor 1 (CNR1 gene and obesity with conflicting results. In the present study, we investigated the 1359G/A (rs1049353, 3813A/G (rs12720071 and 4895A/G (rs806368 polymorphisms in the CNR1 gene in a Brazilian population of European descent. To verify the association between these variants and obesity-related traits in this population, 756 individuals were genotyped by PCR-RFLP methods. The 4895G allele was associated with waist to hip ratio (WHR (P = 0.014; P = 0.042 after Bonferroni correction. An additive effect with the GAA haplotype was associated with WHR (P = 0.028, although this statistical significance disappeared after Bonferroni correction (P = 0.084. No significant association was observed between the genotypes of the 1359G/A and 3813A/G polymorphisms and any of the quantitative variables investigated. Our findings suggest that CNR1 gene polymorphism is associated with central obesity in this Brazilian population of European ancestry.

  19. Sustained Endocannabinoid Signaling Compromises Decidual Function and Promotes Inflammation-induced Preterm Birth.

    Science.gov (United States)

    Sun, Xiaofei; Deng, Wenbo; Li, Yingju; Tang, Shuang; Leishman, Emma; Bradshaw, Heather B; Dey, Sudhansu K

    2016-04-01

    Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated β-galactosidase (SA-β-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling. PMID:26900150

  20. Creep-fatigue interaction of titanium alloy Ti-6Al-2Cb-1Ta-0.8Mo at room temperature

    Science.gov (United States)

    Chu, H. P.; Mcdonald, B. A.; Arora, O. P.

    1985-01-01

    The present investigation is concerned with the mutual influence of creep and fatigue in the case of Ti-6211, which represents a new weldable, stress-corrosion resistant alloy. Attention is given to the effect of creep on fatigue, the effect of fatigue on creep, and microstructural studies. It is found that prior creep in the amounts investigated, from 0.2 percent to 2.7 percent, is beneficial to low-cycle fatigue life. Hold time at peak strain is found to be beneficial to low-cycle fatigue life. Hold time at constant stress has no effect on low-cycle fatigue when specimens are cycled only once between hold times; but increasing fatigue loading for 50 or more cycles between hold times can prolong the fatigue life. There is an acceleration of creep by cyclic loading when comparison of cyclic and static creep is based on mean stress.

  1. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, andN-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling in cancer and chronic inflammation. PMID:26467187

  2. CB-1 receptors modulate the effect of the selective serotonin reuptake inhibitor, citalopram on extracellular serotonin levels in the rat prefrontal cortex

    NARCIS (Netherlands)

    Kleijn, Jelle; Cremers, Thomas I. F. H.; Hofland, Corry M.; Westerink, Ben H. C.

    2011-01-01

    A large percentage of depressed individuals use drugs of abuse, like cannabis. This study investigates the impact of cannabis on the pharmacological effects of the antidepressant citalopram. Using microdialysis in the prefrontal cortex of rats we monitored serotonin levels before and after cannabino

  3. Kannabinoid tip 1 reseptör (CB1) ve terapötik yaklaşımlara genel bakış-I

    OpenAIRE

    Çınar, Reşat; Gündüz Çınar, Özge

    2011-01-01

    Although marihuana has been used for many years, clarifications on its biological mechanisms are still going on. Δ9-Tetrahidrokannabinol (THC) the psychoactive component of marihuana, synthetic analogs and endogenous lipid derivatives bind to cannabinoid receptor. The endocannabinoid system is very important in the pathophysiological conditions due to their role for regulation of the homeostasis mainly in the central nervous system and the periphery. The endocannabinoid system and its therape...

  4. Characterization of a shortened model of diet alternation in female rats: effects of the CB1 receptor antagonist rimonabant on food intake and anxiety-like behavior.

    Science.gov (United States)

    Blasio, Angelo; Rice, Kenner C; Sabino, Valentina; Cottone, Pietro

    2014-10-01

    The prevalence of eating disorders and obesity in western societies is epidemic and increasing in severity. Preclinical research has focused on the development of animal models that can mimic the maladaptive patterns of food intake observed in certain forms of eating disorders and obesity. This study was aimed at characterizing a recently established model of palatable diet alternation in female rats. For this purpose, females rats were fed either continuously with a regular chow diet (Chow/Chow) or intermittently with a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Following diet cycling, rats were administered rimonabant (0, 0.3, 1, 3 mg/kg intraperitoneally) during access to either palatable diet or chow diet and were assessed for food intake and body weight. Finally, rats were pretreated with rimonabant (0, 3 mg/kg, intraperitoneally) and tested in the elevated plus maze during withdrawal from the palatable diet. Female rats with alternating access to palatable food cycled their intake, overeating during access to the palatable diet and undereating upon returning to the regular chow diet. Rimonabant treatment resulted in increased chow hypophagia and anxiety-like behavior in Chow/Palatable rats. No effect of drug treatment was observed on the compulsive eating of palatable food in the diet-cycled rats. The results of this study suggest that withdrawal from alternating access to the palatable diet makes individuals vulnerable to the anxiogenic effects of rimonabant and provides etiological factors potentially responsible for the emergence of severe psychiatric side-effects following rimonabant treatment in obese patients. PMID:25011007

  5. Novel mGluR- and CB1R-independent suppression of GABA release caused by a contaminant of the group I metabotropic glutamate receptor agonist, DHPG.

    Directory of Open Access Journals (Sweden)

    Carlos A Lafourcade

    Full Text Available BACKGROUND: Metabotropic glutamate receptors (mGluRs are ubiquitous throughout the body, especially in brain, where they mediate numerous effects. MGluRs are classified into groups of which group I, comprising mGluRs 1 and 5, is especially important in neuronal communication. Group I actions are often investigated with the selective agonist, S-3,5-dihydroxyphenylglycine (DHPG. Despite the selectivity of DHPG, its use has often led to contradictory findings. We now report that a particular commercial preparation of DHPG can produce mGluR-independent effects. These findings may help reconcile some discrepant reports. METHODS: We carried out electrophysiological recordings in the rat in vitro hippocampal slice preparation, focusing mainly on pharmacologically isolated GABA(A-receptor-mediated synaptic currents. PRINCIPAL FINDINGS: While preparations of DHPG from three companies suppressed GABAergic transmission in an mGluR-dependent way, one batch had an additional, unusual effect. Even in the presence of antagonists of mGluRs, it caused a reversible, profound suppression of inhibitory transmission. This mGluR-independent action was not due to a higher potency of the compound, or its ability to cause endocannabinoid-dependent responses. Field potential recordings revealed that glutamatergic transmission was not affected, and quantal analysis of GABA transmission confirmed the unusual effect was on GABA release, and not GABA(A receptors. We have not identified the responsible factor in the DHPG preparation, but the samples were 99% pure as determined by HPLC and NMR analyses. CONCLUSIONS: In certain respects our observations with the anomalous batch strikingly resemble some published reports of unusual DHPG effects. The present findings could therefore contribute to explaining discrepancies in the literature. DHPG is widely employed to study mGluRs in different systems, hence rigorous controls should be performed before conclusions based on its use are drawn.

  6. Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future

    OpenAIRE

    George ePanagis; Brian eMackey; Styliani eVlachou

    2014-01-01

    Over the last decades the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain reward circuits and the regulation of motivational processes. Importantly, behavioural studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine and heroin, although the conditions under which cannabinoids exert their rewarding effects may b...

  7. Epigenetic and Proteomic Expression Changes Promoted by Eating Addictive-Like Behavior.

    Science.gov (United States)

    Mancino, Samantha; Burokas, Aurelijus; Gutiérrez-Cuesta, Javier; Gutiérrez-Martos, Miriam; Martín-García, Elena; Pucci, Mariangela; Falconi, Anastasia; D'Addario, Claudio; Maccarrone, Mauro; Maldonado, Rafael

    2015-11-01

    An increasing perspective conceptualizes obesity and overeating as disorders related to addictive-like processes that could share common neurobiological mechanisms. In the present study, we aimed at validating an animal model of eating addictive-like behavior in mice, based on the DSM-5 substance use disorder criteria, using operant conditioning maintained by highly palatable chocolate-flavored pellets. For this purpose, we evaluated persistence of food-seeking during a period of non-availability of food, motivation for food, and perseverance of responding when the reward was associated with a punishment. This model has allowed identifying extreme subpopulations of mice related to addictive-like behavior. We investigated in these subpopulations the epigenetic and proteomic changes. A significant decrease in DNA methylation of CNR1 gene promoter was revealed in the prefrontal cortex of addict-like mice, which was associated with an upregulation of CB1 protein expression in the same brain area. The pharmacological blockade (rimonabant 3 mg/kg; i.p.) of CB1 receptor during the late training period reduced the percentage of mice that accomplished addiction criteria, which is in agreement with the reduced performance of CB1 knockout mice in this operant training. Proteomic studies have identified proteins differentially expressed in mice vulnerable or not to addictive-like behavior in the hippocampus, striatum, and prefrontal cortex. These changes included proteins involved in impulsivity-like behavior, synaptic plasticity, and cannabinoid signaling modulation, such as alpha-synuclein, phosphatase 1-alpha, doublecortin-like kinase 2, and diacylglycerol kinase zeta, and were validated by immunoblotting. This model provides an excellent tool to investigate the neurobiological substrate underlying the vulnerability to develop eating addictive-like behavior.

  8. Epigenetic and Proteomic Expression Changes Promoted by Eating Addictive-Like Behavior.

    Science.gov (United States)

    Mancino, Samantha; Burokas, Aurelijus; Gutiérrez-Cuesta, Javier; Gutiérrez-Martos, Miriam; Martín-García, Elena; Pucci, Mariangela; Falconi, Anastasia; D'Addario, Claudio; Maccarrone, Mauro; Maldonado, Rafael

    2015-11-01

    An increasing perspective conceptualizes obesity and overeating as disorders related to addictive-like processes that could share common neurobiological mechanisms. In the present study, we aimed at validating an animal model of eating addictive-like behavior in mice, based on the DSM-5 substance use disorder criteria, using operant conditioning maintained by highly palatable chocolate-flavored pellets. For this purpose, we evaluated persistence of food-seeking during a period of non-availability of food, motivation for food, and perseverance of responding when the reward was associated with a punishment. This model has allowed identifying extreme subpopulations of mice related to addictive-like behavior. We investigated in these subpopulations the epigenetic and proteomic changes. A significant decrease in DNA methylation of CNR1 gene promoter was revealed in the prefrontal cortex of addict-like mice, which was associated with an upregulation of CB1 protein expression in the same brain area. The pharmacological blockade (rimonabant 3 mg/kg; i.p.) of CB1 receptor during the late training period reduced the percentage of mice that accomplished addiction criteria, which is in agreement with the reduced performance of CB1 knockout mice in this operant training. Proteomic studies have identified proteins differentially expressed in mice vulnerable or not to addictive-like behavior in the hippocampus, striatum, and prefrontal cortex. These changes included proteins involved in impulsivity-like behavior, synaptic plasticity, and cannabinoid signaling modulation, such as alpha-synuclein, phosphatase 1-alpha, doublecortin-like kinase 2, and diacylglycerol kinase zeta, and were validated by immunoblotting. This model provides an excellent tool to investigate the neurobiological substrate underlying the vulnerability to develop eating addictive-like behavior. PMID:25944409

  9. Efecto neuroprotector de los cannabinoides sobre la muerte neuronal inducida por Ampa en la médula espinal: Activación conjunta de los receptores CB1 y CB2

    Directory of Open Access Journals (Sweden)

    Carmen Guaza

    2005-03-01

    Full Text Available La sobreactivación de receptores de glutamato, como el receptor AMPA, induce la muerte neural por un proceso denominado excitotoxicidad, el cual ha sido claramente implicado en enfermedades agudas del sistema nerviso central (SNC, particularmente con daño axonal.

  10. Prophylactic Tetracycline Does Not Diminish the Severity of Epidermal Growth Factor Receptor (EGFR) Inhibitor Induced Rash: Results from the North Central Cancer Treatment Group (Supplementary N03CB)1

    Science.gov (United States)

    Jatoi, Aminah; Dakhil, Shaker R.; Sloan, Jeff A.; Kugler, John W.; Rowland, Kendrith M.; Schaefer, Paul L.; Novotny, Paul J.; Wender, Donald B.; Gross, Howard M.; Loprinzi, Charles L.

    2014-01-01

    PURPOSE Previous studies suggest tetracycline and other antibiotics lessen the severity of epidermal growth factor receptor (EGFR) inhibitor-induced rash. This study sought to confirm such findings. METHODS Patients starting an EGFR inhibitor were eligible for this randomized, double-blinded, placebo-controlled study and had to be rash-free. They were then randomly assigned to tetracycline 500 milligrams orally twice a day for 28 days versus a placebo. Rash development and severity (monthly physician assessment and weekly patient-reported questionnaires), quality of life (SKINDEX-16), and adverse events were monitored during the 4-week intervention and then for an additional 4 weeks. The primary objective was to compare the incidence of grade 2 or worse rash between study arms; 32 patients per group provided a 90% probability of detecting a 40% difference in incidence with a type I error rate of 0.05 (2-sided). RESULTS 65 patients were enrolled, and groups were balanced on baseline characteristics. During the first 4 weeks, healthcare provider-reported data found that 27 tetracycline-treated patients (82%) and 24 placebo-exposed patients (75%) developed a rash. This rash was a grade 2+ in 17 (52%) and 14 (44%), respectively (p=0.62). Comparable grade 2+ rash rates were observed during weeks 5 through 8 as well as with patient-reported rash data throughout the study period. Quality of life was comparable across study arms, and tetracycline was well tolerated. CONCLUSION Although previous studies suggest otherwise, this randomized, double-blinded, placebo-controlled did not find that tetracycline lessened rash incidence or severity in patients who were taking EGFR inhibitors. PMID:20820817

  11. Tetracycline to Prevent Epidermal Growth Factor Receptor Inhibitor-Induced Skin Rashes: Results of a Placebo-Controlled Trial from the North Central Cancer Treatment Group (N03CB)1

    Science.gov (United States)

    Jatoi, Aminah; Rowland, Kendrith; Sloan, Jeff A.; Gross, Howard M.; Fishkin, Paul A.; Kahanic, Stephen P.; Novotny, Paul J.; Schaefer, Paul L.; Johnson, David B.; Tschetter, Loren K.; Loprinzi, Charles L.

    2014-01-01

    PURPOSE Epidermal growth factor receptor inhibitors are effective cancer therapies, but they cause a rash in greater than 50% of patients. This study tested tetracycline for rash prevention. METHODS This placebo-controlled, double-blinded trial enrolled patients who were starting cancer treatment with an epidermal growth factor receptor inhibitor. Patients could not have had a rash at enrollment. All were randomly assigned to either tetracycline 500 milligrams orally twice a day for 28 days versus a placebo. Patients were monitored for rash (monthly physician assessment and weekly patient-reported questionnaires), quality of life (SKINDEX-16), and adverse events. Monitoring occurred during the 4-week intervention and then for an additional 4 weeks. The primary objective was to compare the incidence of rash between study arms, and 30 patients per arm provided a 90% probability of detecting a 40% difference in incidence with a p-value of 0.05 (2-sided). RESULTS Sixty-one evaluable patients were enrolled, and arms were well balanced on baseline characteristics, rates of drop out, and rates of discontinuation of the epidermal growth factor receptor inhibitor. Rash incidence was comparable across arms. Physicians reported that 16 tetracycline-treated patients (70%) and 22 placebo-exposed patients (76%) developed a rash (p=0.61). Tetracycline appears to have lessened rash severity, although high drop out rates invite caution in interpreting findings. By week 4, physician-reported grade 2 rash occurred in 17% of tetracycline-treated patients (n=4) and in 55% of placebo-exposed patients (n=16); (p=0.04). Tetracycline-treated patients reported better scores, as per the SKINDEX-16, on certain quality of life parameters, such as skin burning or stinging, skin irritation, and being bothered by a persistence/recurrence of a skin condition. Adverse events were comparable across arms. CONCLUSION Tetracycline did not prevent epidermal growth factor receptor inhibitor-induced rashes and cannot be clinically recommended for this purpose. However, preliminary observations of diminished rash severity and improved quality of life suggest this antibiotic merits further study. PMID:18543329

  12. Relation of C358A polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH with obesity and insulin resistance Relación del polimorfismo C358A del enzima del sistema endocanabinoide (hidrolasa amida acida con la obesidad y la resistencia a la insulina

    Directory of Open Access Journals (Sweden)

    D. A. de Luis

    2010-12-01

    Full Text Available Background and aims: Recently, it has been demonstrated that the polymorphism 385 C->A of FAAH (fatty acid amide hydrolase was associated with overweight and obesity. The aim of our study was to investigate the relationship of missense polymorphism (cDNA 385 C-A of FAAH gene on obesity anthropometric parameters, cardiovascular risk factors and adipocytokines. Methods: A population of 279 females with obesity (body mass index 30 was analyzed. An indirect calorimetry, tetrapolar electrical bioimpedance, blood pressure, a serial assessment of nutritional intake with 3 days written food records and biochemical analysis (lipid profile, adipocytokines, insulin, CRP and lipoprotein-a were performed. The statistical analysis was performed for the combined C385A and A385A as a group and wild type C385C as second group. Results: One hundred and ninety four patients (69.5% had the genotype C385C (wild type group and 76 (27.2% patients had the genotype C358A or A358A (9 patients, 3.2% (mutant type group. No differences were detected between groups in anthropometric parameters and dietary intakes. Triglycerides (118.9 ± 59.9 mg/dl vs 107.4 + 51.3 mg/dl;p Antecedentes y objetivos: Recientemente, se ha demostrado que el polimorfismo 385 C/A, de FAAH (hidrolasa amida de ácidos grasos se asocia con el sobrepeso y la obesidad. El objetivo de nuestro estudio fue investigar la relación de este polimorfismo del gen de FAAH con parámetros antropométricos, factores de riesgo cardiovascular y adipocitoquinas. Métodos: Una población de 279 mujeres con obesidad (índice de masa corporal> 30 fue analizada. Se realizaron las siguientes determinaciones; calorimetría indirecta, bioimpedancia eléctrica, presión arterial, una evaluación de la ingesta nutricional de 3 días, así como un análisis bioquímico (perfil lipídico, adipocitoquinas, insulina, proteina C reactiva y lipoproteína-(a. El análisis estadístico se realizó combinando C385A y A385A como grupo mutante y C385C como grupo salvaje. Resultados: Un total de 194 pacientes (69,5% tenían el genotipo C385C (genotipo salvaje y 76 (27,2% pacientes tenían el genotipo C358A y 9 pacientes (3,2% el genotipo A358A, formando estos dos el grupo de genotipo mutante. No se detectaron diferencias entre los grupos en los parámetros antropométricos y la ingesta dietética. Sin embargo los pacientes con genotipo salvaje presentaron valores más elevado de triglicéridos (118,9 ± 59,9 mg/dl vs 107,4 + 51,3 mg/dl; p < 0,05, glucosa (100,4 ± 19,9 mg/dl vs 94,8 + 11,5mg/dl; p < 0,05, HOMA (3,74 ± 2,2 vs 3,39 + 2,7; p < 0,05 y de interleukina-6 (3,3 ± 1,4 pg/ml vs 1,4 ± 2,1 pg/ml; p < 0,05 fueron mayores en el grupo de tipo salvaje que el grupo de tipo mutante. Conclusión: El principal hallazgo de este trabajo es la asociación del genotipo mutante (A358C y A358A de FAAH con un mejor perfil cardiovascular (triglicéridos, glucosa, interleucina 6 y HOMA que los pacientes portadores del genotipo salvaje.

  13. Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications.

    Science.gov (United States)

    Onaivi, Emmanuel S

    2009-01-01

    Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the

  14. Consequences of early life stress on the expression of endocannabinoid-related genes in the rat brain.

    Science.gov (United States)

    Marco, Eva M; Echeverry-Alzate, Victor; López-Moreno, Jose Antonio; Giné, Elena; Peñasco, Sara; Viveros, Maria Paz

    2014-09-01

    The endocannabinoid system is involved in several physiological and pathological states including anxiety, depression, addiction and other neuropsychiatric disorders. Evidence from human and rodent studies suggests that exposure to early life stress may increase the risk of psychopathology later in life. Indeed, maternal deprivation (MD) (24 h at postnatal day 9) in rats induces behavioural alterations associated with depressive-like and psychotic-like symptoms, as well as important changes in the endocannabinoid system. As most neuropsychiatric disorders first appear at adolescence, and show remarkable sexual dimorphisms in their prevalence and severity, in the present study, we analysed the gene expression of the main components of the brain cannabinoid system in adolescent (postnatal day 46) Wistar male and female rats reared under standard conditions or exposed to MD. For this, we analysed, by real-time quantitative PCR, the expression of genes encoding for CB1 and CB2 receptors, TRPV1 and GPR55 (Cnr1, Cnr2a, Cnr2b, Trpv1, and Gpr55), for the major enzymes of synthesis, N-acyl phosphatidyl-ethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL) (Nape-pld, Dagla and Daglb), and degradation, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) (Faah, Magl and Cox-2), in specific brain regions, that is, the frontal cortex, ventral and dorsal striatum, dorsal hippocampus and amygdala. In males, MD increased the genetic expression of all the genes studied within the frontal cortex, whereas in females such an increase was observed only in the hippocampus. In conclusion, the endocannabinoid system is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain.

  15. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity

    Science.gov (United States)

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical c...

  16. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    OpenAIRE

    Oosterveer, Maaike H.; Koolman, Anniek H; de Boer, Pieter T; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods: We evaluated adipose tissue differentiation/proliferation markers and q...

  17. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  18. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induc

  19. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  20. Peripheral Cannabinoid-1 Receptor Inverse Agonism Reduces Obesity by Reversing Leptin Resistance

    OpenAIRE

    Tam, Joseph; Cinar, Resat; Liu, Jie; Godlewski, Grzegorz; Wesley, Daniel; Jourdan, Tony; Szanda, Gergö; Mukhopadhyay, Bani; Chedester, Lee; Liow, Jeih-San; Innis, Robert B.; Cheng, Kejun; Rice, Kenner C.; Deschamps, Jeffrey R.; Chorvat, Robert J.

    2012-01-01

    Obesity-related leptin resistance manifests in loss of leptin’s ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB1 receptor (CB1R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB1R inverse agonist...

  1. Feeding Induced by Cannabinoids Is Mediated Independently of the Melanocortin System

    OpenAIRE

    Sinnayah, Puspha; Jobst, Erin E.; Rathner, Joseph A.; Caldera-Siu, Angela D.; Tonelli-Lemos, Luciana; Eusterbrock, Aaron J.; Enriori, Pablo J.; Pothos, Emmanuel N.; Grove, Kevin L.; Cowley, Michael A.

    2008-01-01

    Background Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R) antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. Methodology/Principal Findings Here, we show that peripherally administered CB1-R antagonist (AM251) or agonist equally suppressed or stimulated feeding respectively in Ay , which...

  2. Hypothalamic POMC neurons promote cannabinoid-induced feeding.

    Science.gov (United States)

    Koch, Marco; Varela, Luis; Kim, Jae Geun; Kim, Jung Dae; Hernández-Nuño, Francisco; Simonds, Stephanie E; Castorena, Carlos M; Vianna, Claudia R; Elmquist, Joel K; Morozov, Yury M; Rakic, Pasko; Bechmann, Ingo; Cowley, Michael A; Szigeti-Buck, Klara; Dietrich, Marcelo O; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L

    2015-03-01

    Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide β-endorphin. CB1R activation selectively increases β-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids. PMID:25707796

  3. Molecular-Interaction and Signaling Profiles of AM3677, a Novel Covalent Agonist Selective for the Cannabinoid 1 Receptor

    OpenAIRE

    David R Janero; Yaddanapudi, Suma; Zvonok, Nikolai; Subramanian, Kumar V.; Shukla, Vidyanand G.; Stahl, Edward; Zhou, Lei; Hurst, Dow; Wager-Miller, James; Bohn, Laura M.; Reggio, Patricia H.; Mackie, Ken; Makriyannis, Alexandros

    2015-01-01

    The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system. CB1R involvement in multiple physiological processes, especially neurotransmitter release and synaptic function, has made this GPCR a prime drug discovery target, and pharmacological CB1R activation has been demonstrated to be a tenable therapeutic modality. Accordingly, the design and profiling of novel, drug-like CB1R modulators to inform the receptor’s ligand-int...

  4. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids.

    Science.gov (United States)

    Kuramoto, Kenta; Wang, Nan; Fan, Yuying; Zhang, Weiran; Schoenen, Frank J; Frankowski, Kevin J; Marugan, Juan; Zhou, Yifa; Huang, Sui; He, Congcong

    2016-09-01

    Cannabinoids and related drugs generate profound behavioral effects (such as analgesic effects) through activating CNR1 (cannabinoid receptor 1 [brain]). However, repeated cannabinoid administration triggers lysosomal degradation of the receptor and rapid development of drug tolerance, limiting the medical use of marijuana in chronic diseases. The pathogenic mechanisms of cannabinoid tolerance are not fully understood, and little is known about its prevention. Here we show that a protein involved in macroautophagy/autophagy (a conserved lysosomal degradation pathway), BECN2 (beclin 2), mediates cannabinoid tolerance by preventing CNR1 recycling and resensitization after prolonged agonist exposure, and deletion of Becn2 rescues CNR1 activity in mouse brain and conveys resistance to analgesic tolerance to chronic cannabinoids. To target BECN2 therapeutically, we established a competitive recruitment model of BECN2 and identified novel synthetic, natural or physiological stimuli of autophagy that sequester BECN2 from its binding with GPRASP1, a receptor protein for CNR1 degradation. Co-administration of these autophagy inducers effectively restores the level and signaling of brain CNR1 and protects mice from developing tolerance to repeated cannabinoid usage. Overall, our findings demonstrate the functional link among autophagy, receptor signaling and animal behavior regulated by psychoactive drugs, and develop a new strategy to prevent tolerance and improve medical efficacy of cannabinoids by modulating the BECN2 interactome and autophagy activity. PMID:27305347

  5. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing.

    Science.gov (United States)

    Shire, D; Carillon, C; Kaghad, M; Calandra, B; Rinaldi-Carmona, M; Le Fur, G; Caput, D; Ferrara, P

    1995-02-24

    The cDNA sequences encoding the central cannabinoid receptor, CB1, are known for two species, rat and human. However, little information concerning the flanking, noncoding regions is presently available. We have isolated two overlapping clones from a human lung cDNA library with CB1 cDNA inserts. One of these, cann7, contains a short stretch of the CB1 coding region and 4 kilobase pairs (kb) of the 3'-untranslated region (UTR), including two polyadenylation signals. The other, cann6, is identical to cann7 upstream from the first polyadenylation signal, and in addition, it contains the whole coding region and extends for 1.8 kb into the 5'-UTR. Comparison of cann6 with the published sequence (Gérard, C. M., Mollereau, C., Vassart, G., and Parmentier, M. (1991) Biochem. J. 279, 129-134) shows the coding regions to be identical, but reveals important differences in the flanking regions. Notably, the cann6 sequence appears to be that of an immature transcript, containing 1.8 kb of an intronic sequence in the 5'-UTR. In addition, polymerase chain reaction amplification of the CB1 coding region in the IM-9 cell line cDNA resulted in two fragments, one containing the whole CB1 coding region and the second lacking a 167-base pair intron within the sequence encoding the amino-terminal tail of the receptor. This alternatively spliced form would translate to an NH2-terminal modified isoform (CB1A) of the receptor, shorter than CB1 by 61 amino acids. In addition, the first 28 amino acids of the putative truncated receptor are completely different from those of CB1, containing more hydrophobic residues. Rat CB1 mRNA is similarly alternatively spliced. A study of the distribution of the human CB1 and CB1A mRNAs by reverse transcription-polymerase chain reaction analysis showed the presence of both CB1 and CB1A throughout the brain and in all the peripheral tissues examined, with CB1A being present in amounts of up to 20% of CB1. PMID:7876112

  6. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.

    Science.gov (United States)

    Blázquez, C; Chiarlone, A; Bellocchio, L; Resel, E; Pruunsild, P; García-Rincón, D; Sendtner, M; Timmusk, T; Lutz, B; Galve-Roperh, I; Guzmán, M

    2015-10-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival. PMID:25698444

  7. Lack of association of genetic variants in genes of the endocannabinoid system with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Herpertz-Dahlmann Beate

    2008-11-01

    Full Text Available Abstract Background Several lines of evidence indicate that the central cannabinoid receptor 1 (CNR1 as well as the major endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH, N-acylethanolamine-hydrolyzing acid amidase (NAAA and monoglyceride lipase (MGLL are implicated in mediating the orexigenic effects of cannabinoids. The aim of this study was to analyse whether nucleotide sequence variations in the CNR1, FAAH, NAAA and MGLL genes are associated with anorexia nervosa (AN. Methods We analysed the association of a previously described (AATn repeat in the 3' flanking region of CNR1 as well as a total of 15 single nucleotide polymorphisms (SNPs representative of regions with restricted haplotype diversity in CNR1, FAAH, NAAA or MGLL in up to 91 German AN trios (patient with AN and both biological parents using the transmission-disequilibrium-test (TDT. One SNP was additionally analysed in an independent case-control study comprising 113 patients with AN and 178 normal weight controls. Genotyping was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, ARMS-PCR or using 3730xl capillary sequencers. Results The TDT revealed no evidence for association for any of the SNPs or the (AATn repeat with AN (all two-sided uncorrected p-values > 0.05. The lowest p-value of 0.11 was detected for the A-allele of the CNR1 SNP rs1049353 for which the transmission rate was 59% (95% confidence interval 47%...70%. Further genotyping of rs1049353 in 113 additional independent patients with AN and 178 normal weight controls could not substantiate the initial trend for association (p = 1.00. Conclusion As we found no evidence for an association of genetic variation in CNR1, FAAH, NAAA and MGLL with AN, we conclude that genetic variations in these genes do not play a major role in the etiology of AN in our study groups.

  8. Cannabinoid Receptors Are Overexpressed in CLL but of Limited Potential for Therapeutic Exploitation.

    Science.gov (United States)

    Freund, Patricia; Porpaczy, Edit A; Le, Trang; Gruber, Michaela; Pausz, Clemens; Staber, Philipp; Jäger, Ulrich; Vanura, Katrina

    2016-01-01

    The cannabinoid receptors 1 and 2 (CNR1&2) are overexpressed in a variety of malignant diseases and cannabinoids can have noteworthy impact on tumor cell viability and tumor growth. Patients diagnosed with chronic lymphocytic leukemia (CLL) present with very heterogeneous disease characteristics translating into highly differential risk properties. To meet the urgent need for refinement in risk stratification at diagnosis and the search for novel therapies we studied CNR expression and response to cannabinoid treatment in CLL. Expression levels of CNR1&2 were determined in 107 CLL patients by real-time PCR and analyzed with regard to prognostic markers and survival. Cell viability of primary CLL cells was determined in suspension and co-culture after incubation in increasing cannabinoid concentrations under normal and reduced serum conditions and in combination with fludarabine. Impact of cannabinoids on migration of CLL cells towards CXCL12 was determined in transwell plates. We found CNR1&2 to be overexpressed in CLL compared to healthy B-cells. Discriminating between high and low expressing subgroups, only high CNR1 expression was associated with two established high risk markers and conferred significantly shorter overall and treatment free survival. Viability of CLL primary cells was reduced in a dose dependent fashion upon incubation with cannabinoids, however, healthy cells were similarly affected. Under serum reduced conditions, no significant differences were observed within suspension and co-culture, respectively, however, the feeder layer contributed significantly to the survival of CLL cells compared to suspension culture conditions. No significant differences were observed when treating CLL cells with cannabinoids in combination with fludarabine. Interestingly, biologic activity of cannabinoids was independent of both CNR1&2 expression. Finally, we did not observe an inhibition of CXCL12-induced migration by cannabinoids. In contrast to other tumor

  9. Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy

    NARCIS (Netherlands)

    Vinogradova, L.V.; Shatskova, A.B.; Rijn, C.M. van

    2011-01-01

    Endocannabinoid system and its CB1 receptors are suggested to provide endogeneous protection against seizures. The present study examines whether CB1 receptors contribute to resistance to seizures and kindling epileptogenesis in a model of audiogenic epilepsy. Three groups of Wistar rats were used:

  10. Evaluation of the specificity of antibodies raised against cannabinoid receptor type 2 in the mouse retina

    DEFF Research Database (Denmark)

    Cécyre, Bruno; Thomas, Sébastien; Ptito, Maurice;

    2014-01-01

    Cannabinoid receptors (CB1R and CB2R) are among the most abundant G protein-coupled receptors in the central nervous system. The endocannabinoid system is an attractive therapeutic target for immune system modulation and peripheral pain management. While CB1R is distributed in the nervous system...

  11. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail.

    Science.gov (United States)

    Stadel, Rebecca; Ahn, Kwang H; Kendall, Debra A

    2011-04-01

    The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level have centered on the transmembrane core. This interest has now expanded as we discover that other regions of CB(1), including the CB(1) carboxyl-terminus, have critical structures that are important for CB(1) activity and regulation. Following the recent description of the three dimensional structure of the full-length CB(1) carboxyl-terminal tail [Biopolymers (2009) vol. 91, pp. 565-573], several residues and structural motifs including two α-helices (termed H8 and H9) have been postulated to interact with common G protein-coupled receptor accessory proteins, such as G-proteins and β-arrestins. This discourse will focus on the CB(1) carboxyl-terminus; our current understanding of the structural features of this region, evidence for its interaction with proteins, and the impact of structure on the binding and regulatory function of CB(1) accessory proteins. The involvement of the carboxyl-terminus in the receptor life cycle including activation, desensitization, and internalization will be highlighted.

  12. Constitutive cannabinoid 1 and mu opioid receptor activity in the ventral tegmental area: occurrence, function and therapeutic relevance

    NARCIS (Netherlands)

    Meye, F.J.

    2012-01-01

    Cannabinoid 1 receptors (CB1Rs) play a crucial role in regulating systems dedicated to processing rewards and emotions. It was known that in artificial systems, CB1Rs can exhibit activity that is independent of the typical agonist-driven form. However, it remained largely unclear whether this consti

  13. Control of Inhibition by the Direct Action of Cannabinoids on GABAA Receptors

    NARCIS (Netherlands)

    Golovko, Tatiana; Min, R.; Lozovaya, Natalia; Falconer, Caroline; Yatsenko, Natalia; Tsintsadze, Timur; Tsintsadze, Vera; Ledent, Catherine; Harvey, Robert J; Belelli, Delia; Lambert, Jeremy J; Rozov, Andrei; Burnashev, Nail

    2015-01-01

    Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents a

  14. Distribution of cannabinoid receptor 1 in the CNS of zebrafish.

    Science.gov (United States)

    Lam, C S; Rastegar, S; Strähle, U

    2006-01-01

    The cannabinoid receptor 1 (Cb1) mediates the psychoactive effect of marijuana. In mammals, there is abundant evidence advocating the importance of cannabinoid signaling; activation of Cb1 exerts diverse functions, chiefly by its ability to modulate neurotransmission. Thus, much attention has been devoted to understand its role in health and disease and to evaluate its therapeutic potential. Here, we have cloned zebrafish cb1 and investigated its expression in developing and adult zebrafish brain. Sequence analysis showed that there is a high degree of conservation, especially in residues demonstrated to be critical for function in mammals. In situ hybridization revealed that zebrafish cb1 appears first in the preoptic area at 24 hours post-fertilization. Subsequently, transcripts are detected in the dorsal telencephalon, hypothalamus, pretectum and torus longitudinalis. A similar pattern of expression is recapitulated in the adult brain. While cb1 is intensively stained in the medial zone of the dorsal telencephalon, expression elsewhere is weak by comparison. In particular, localization of cb1 in the telencephalic periventricular matrix is suggestive of the involvement of Cb1 in neurogenesis, bearing strong resemblance in terms of expression and function to the proliferative mammalian hippocampal formation. In addition, a gradient-like expression of cb1 is detected in the torus longitudinalis, a teleost specific neural tissue. In relation to dopaminergic neurons in the diencephalic posterior tuberculum (considered to be the teleostean homologue of the mammalian midbrain dopaminergic system), both cb1 and tyrosine hydroxylase-expressing cells occupy non-overlapping domains. However there is evidence that they are co-localized in the caudal zone of the hypothalamus, implying a direct modulation of dopamine release in this particular region. Collectively, our data indicate the propensity of zebrafish cb1 to participate in multiple neurological processes.

  15. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  16. Expression of Cannabinoid ReceptorⅠ during Mice Skin Incised Wound Healing Course%小鼠皮肤切创愈合过程中大麻素Ⅰ型受体表达

    Institute of Scientific and Technical Information of China (English)

    赵振宾; 官大威; 刘伟伟; 王涛; 范琰琰; 程子惠; 郑吉龙; 胡更奕

    2010-01-01

    目的 探讨小鼠皮肤切创愈合过程中损伤区大麻素Ⅰ型受体(cannabinoid receptor Ⅰ,CB1R)的表达及不同时间的变化规律.方法 应用免疫组织化学和Western印迹法检测小鼠皮肤切创后不同时间段CB1R的变化情况.结果 正常组织中有少量CB1R的表达,位于表皮、毛囊、皮脂腺、皮肌层.伤后6~12 h,中性粒细胞不表达CB1R,伤后1~5 d,阳性染色以单核细胞和成纤维细胞为主.伤后7~14 d,CB1R阳性着色以成纤维细胞为主.阳性细胞率6 h~3 d逐渐升高,5 d达到高峰,7~14 d逐渐降低.经Western印迹法显示各个时间段均有CB1R的阳性条带,其中5 d为CB1R表达的高峰.结论 在皮肤损伤愈合过程中CB1R被激活,CB1R表达于单核细胞,可能参与炎症反应,CB1R在损伤周边区表达于成纤维细胞,可能参与皮肤损伤后的愈合,其变化规律可用于损伤时间的推断.

  17. Cannabinoid Receptor 1 Gene Polymorphisms and Nonalcoholic Fatty Liver Disease in Women with Polycystic Ovary Syndrome and in Healthy Controls

    Directory of Open Access Journals (Sweden)

    Justyna Kuliczkowska Plaksej

    2014-01-01

    Full Text Available Context. Polycystic ovary syndrome (PCOS is frequently associated with nonalcoholic fatty liver disease (NAFLD. The endocannabinoid system may play a crucial role in the pathogenesis of NAFLD. Polymorphism of the cannabinoid receptor 1 gene (CNR1 may be responsible for individual susceptibility to obesity and related conditions. Objective. To determine the role of genetic variants of CNR1 in the etiopathology of NAFLD in women with PCOS. Design and Setting. Our department (a tertiary referral center conducted a cross-sectional, case-controlled study. Subjects. 173 women with PCOS (aged 20–35 and 125 healthy, age- and weight-matched controls were studied. Methods. Hepatic steatosis was assessed by ultrasound evaluation. Single nucleotide polymorphisms of CNR1 (rs806368, rs12720071, rs1049353, rs806381, rs10485170, rs6454674 were genotyped. Results. Frequency of the G allele of rs806381 (P<0.025 and the GG genotype of rs10485170 (P<0.03 was significantly higher in women with PCOS and NAFLD than in PCOS women without NAFLD. Frequency of the TT genotype of rs6454674 was higher in PCOS women with NAFLD (not significantly, P=0.059. In multivariate stepwise regression, allele G of rs806381 was associated with PCOS + NAFLD phenotype. Conclusion. Our preliminary results suggest the potential role of CNR1 polymorphisms in the etiology of NAFLD, especially in PCOS women.

  18. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    Science.gov (United States)

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  19. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk

    Science.gov (United States)

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D.; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-01-01

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction. PMID:27653550

  20. 适用于胎体胶配方的低碘高耐磨炉黑

    Institute of Scientific and Technical Information of China (English)

    宇欣(编译)

    2007-01-01

    实验表明,低碘炭黑(CB1)具有比传统炭黑N660(CB6)更好的焦烧安全性和硫化性能,可以进一步提高生产率;CB1炭黑填充胶的定伸应力比传统炭黑填充胶的高;在严苛条件下使用时,CB1填充胶的耐疲劳性比传统炭黑填充胶的高(用于NR配方时,屈挠疲劳性可提高20%);CB1填充胶的生热稍比CB6填充胶的高(高4~5℃);CB1炭黑填充胶的粘合性更好;CB1填充胶老化后的应力-应变性能优越。已经清楚地证明,CB1炭黑比传统炭黑更适用于胎体胶配方。

  1. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    Directory of Open Access Journals (Sweden)

    Yin Shou

    2013-01-01

    Full Text Available Electroacupuncture (EA has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36 and Kunlun (BL60 acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P=0.001. The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression.

  2. A critical review of both the synthesis approach and the receptor profile of the 8-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide and analogue derivatives.

    Science.gov (United States)

    Lazzari, Paolo; Distinto, Rita; Manca, Ilaria; Baillie, Gemma; Murineddu, Gabriele; Pira, Marilena; Falzoi, Matteo; Sani, Monica; Morales, Paula; Ross, Ruth; Zanda, Matteo; Jagerovic, Nadine; Pinna, Gérard Aimè

    2016-10-01

    8-Chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold. Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed. PMID:27240274

  3. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner.

    Science.gov (United States)

    Nishio, Shin-Ichi; Gibert, Yann; Berekelya, Liubov; Bernard, Laure; Brunet, Frédéric; Guillot, Etienne; Le Bail, Jean-Christophe; Sánchez, Juan Antonio; Galzin, Anne Marie; Triqueneaux, Gerard; Laudet, Vincent

    2012-08-01

    Central and peripheral mechanisms modulate food intake and energy balance in mammals and the precise role of the type 1 cannabinoid receptor (CB1) in these processes is still being explored. Using the zebrafish, Danio rerio, we show that rimonabant, a CB1-specific antagonist with an EC(50) of 5.15 × 10(-8) m, decreases embryonic yolk sac reserve use. We reveal a developmental overlap between CART genes and CB1 expression in the hypothalamus and medulla oblongata, two brain structures that play crucial roles in appetite regulation in mammals. We show that morpholino knockdown of CB1 or fasting decreases cocaine- and amphetamine-related transcript (CART)-3 expression. Strikingly, this down-regulation occurs only in regions coexpressing CB1 and CART3, reinforcing the link between CB1, CART, and appetite regulation. We show that rimonabant treatment impairs the fasting-induced down-regulation of CART expression in specific brain regions, whereas vehicle alone-treated embryos do not display this rescue of CART expression. Our data reveal that CB1 lies upstream of CART and signals the appetite through the down-regulation of CART expression. Thus, our results establish the zebrafish as a promising system to study appetite regulation. PMID:22700585

  4. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-δ

    International Nuclear Information System (INIS)

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-δ (PPAR-δ)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-δ. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-δ. Furthermore, selective silencing of PPAR-δ by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 ± 0.06 (n = 3) to 1.91 ± 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-δ significantly reduced CB1 expression to 0.39 ± 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-δ. Both CB1 and PPAR-δ are intimately involved in therapeutic interventions against a most important cardiovascular risk factor

  5. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    International Nuclear Information System (INIS)

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB1 and CB2) have been suggested. The purpose of this study was to evaluate CB1 and CB2 receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB1 and CB2 microPET imaging was performed at regular time-points up to 2 weeks after stroke using [18F]MK-9470 and [11C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB1 and CB2. Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [18F]MK-9470 PET showed a strong increase in CB1 binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB1 immunohistochemical staining. [11C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB2 revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB1+ and CB2+ cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB1, but not CB2, binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB1 signalling as the role of CB2 seems minor in the acute and subacute phases of stroke. (orig.)

  6. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system.

    Directory of Open Access Journals (Sweden)

    Blerina Kola

    Full Text Available INTRODUCTION: Ghrelin and cannabinoids stimulate appetite, this effect possibly being mediated by the activation of hypothalamic AMP-activated protein kinase (AMPK, a key enzyme in appetite and metabolism regulation. The cannabinoid receptor type 1 (CB1 antagonist rimonabant can block the orexigenic effect of ghrelin. In this study, we have elucidated the mechanism of the putative ghrelin-cannabinoid interaction. METHODS: The effects of ghrelin and CB1 antagonist rimonabant in wild-type mice, and the effect of ghrelin in CB1-knockout animals, were studied on food intake, hypothalamic AMPK activity and endogenous cannabinoid content. In patch-clamp electrophysiology experiments the effect of ghrelin was assessed on the synaptic inputs in parvocellular neurons of the hypothalamic paraventricular nucleus, with or without the pre-administration of a CB1 antagonist or of cannabinoid synthesis inhibitors. RESULTS AND CONCLUSIONS: Ghrelin did not induce an orexigenic effect in CB1-knockout mice. Correspondingly, both the genetic lack of CB1 and the pharmacological blockade of CB1 inhibited the effect of ghrelin on AMPK activity. Ghrelin increased the endocannabinoid content of the hypothalamus in wild-type mice and this effect was abolished by rimonabant pre-treatment, while no effect was observed in CB1-KO animals. Electrophysiology studies showed that ghrelin can inhibit the excitatory inputs on the parvocellular neurons of the paraventricular nucleus, and that this effect is abolished by administration of a CB1 antagonist or an inhibitor of the DAG lipase, the enzyme responsible for 2-AG synthesis. The effect is also lost in the presence of BAPTA, an intracellular calcium chelator, which inhibits endocannabinoid synthesis in the recorded parvocellular neuron and therefore blocks the retrograde signaling exerted by endocannabinoids. In summary, an intact cannabinoid signaling pathway is necessary for the stimulatory effects of ghrelin on AMPK

  7. Expression of cannabinoid receptor in intestinal tissue in patients with ulcerative colitis%大麻素受体在溃疡性结肠炎中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    陶科明; 吴正祥; 李为慧; 王巧民

    2013-01-01

    目的 观察大麻素受体(CNR)在溃疡性结肠炎(UC)中的表达,探讨其作用及意义.方法 采用免疫组织化学方法检测45例UC患者和30例健康对照者肠道组织中CNR1和CNR2的表达,并进一步分析CNR1和CNR2与UC临床特征的关系.结果 CNR1和CNR2在UC患者中表达阳性率分别为62.2%、68.9%,明显高于正常对照组(26.7%、36.7%,P0.05).结论 CNR在UC肠道组织中表达增加,而且与疾病活动性明显相关,提示CNR可能在UC发生、发展中发挥重要的作用.%Objective To investigate the expression and clinical significance of cannabinoid receptor (CNR) in intestinal tissue in patients with ulcerative colitis ( UC ) . Methods 45 UC patients and 30 normal controls were enrolled. Expression of CNR1 and CNR2 in UC intestinal tissue and normal controls were determined by immunohistochemical staining, and the relationship with clinical characteristics was analyzed. Results Expression positive rates of CNR1 and CNR2 in UC patients were 62. 2% and 68. 9% , significantly higher than the normal control (26. 7% , 36. 7% , P 0. 05) . Conclusion Expression of CNR is high in UC patients, and is significant correlate with disease activity, which suggests that CNR may play an important role in the pathogenesis of UC.

  8. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E;

    2010-01-01

    or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some...... deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2...

  9. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Directory of Open Access Journals (Sweden)

    Lisa K Brents

    Full Text Available BACKGROUND: K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R. METHODS/PRINCIPAL FINDINGS: JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251. CONCLUSIONS/SIGNIFICANCE: Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations

  10. Chemical Synthesis Progress of Natural Product Combretastatin A-1%Combretastatin B-1的化学合成及结构衍生化研究

    Institute of Scientific and Technical Information of China (English)

    吕泽良

    2014-01-01

    近来,Combretastatin B-1(CB1)由于在抗肿瘤活性尤其在靶向恶性肿瘤血管的选择性方面引起了医学界广泛关注.该化合物提取自药用植物Combretum caffrum,其抑制肿瘤细胞生长,抑制血管生成和微管蛋白聚合方面的应用前景激发了人们对CB1化学合成的极大兴趣.CB1及其衍生物是一类具有广泛生物活性和良好应用前景的化合物,因此CB1的化学合成及结构衍生化研究显得极为重要.

  11. 大麻素受体1与FAK在血吸虫肝纤维化小鼠肝组织中的表达%Expression and significance of cannabinoid receptor 1 and FAK in hepatic tissues of schistosomal hepatic fibrosis mice

    Institute of Scientific and Technical Information of China (English)

    欧阳兵; 彭忠田; 王培

    2014-01-01

    目的:探讨大麻素受体1(CB1)与黏着斑激酶(FAK)在血吸虫肝纤维化小鼠肝组织中的表达。方法将32只昆明小鼠分为正常组(n=10)和模型组(n=22),两组动物均普通喂养,8周后处死取肝组织。模型组小鼠采用腹壁贴附法建立血吸虫肝纤维化小鼠模型。根据纤维化程度将模型组分为Ⅰ级肝纤维化组(n=4)、Ⅱ级肝纤维化组(n=8)和Ⅲ级肝纤维化组(n=10)。HE染色观察病理变化,Masson染色观察肝纤维化程度,免疫组织化学法检测不同纤维化组CB 1的表达,RT-PCR法检测各组CB 1 mRNA及FAK mRNA的表达。结果模型组可见明显虫卵结节及纤维化改变;不同纤维化组均可见CB 1CB 1 mRNA及FAK mRNA表达,且随着肝脏纤维化程度的增加,CB1CB1 mRNA及FAK mRNA的表达增加(P<0.05)。结论 CB1和FAK参与了血吸虫肝纤维化的发生与发展。%Objective To investigate the expression and significance of cannabinoid receptor 1 (CB1)and focal adhe-sion kinase (FAK)in hepatic tissues of schistosomal hepatic fibrosis mice.Methods A total of 32 Kunming mice were randomly divided into two groups:normal control group (n=10)and model group (n=22).The schistosome-induced liver fibrosis models were established by attaching cercaria to the skin on the ventral side of the mice and allo-wing infection to occur via direct penetration.All mice were raised normally,and at week 8 all mice were sacrificed to gain hepatic tissue samples.Mice in the model group were divided into 3 subgroups according to the severity of hepatic fibrosis.The pathological changes were determined by HE staining,the degrees of fibrosis were examined by Masson staining,the expression of CB1 was detected by immunohistochemical method,and the expressions of FAK mRNA and CB 1 mRNA were tested by reverse transcription polymerase chain reaction (RT-PCR).Results In the model group, significant schistosome egg

  12. 关合空载输电线路过电压

    Institute of Scientific and Technical Information of China (English)

    李学云; 王欣; 苗辉; 苗淑贤

    2004-01-01

    合闸过电压的产生:在图1所示的输电线路中,当线路发生短路故障时,断路器CB1与CB2动作,切除故障,在很短时间后,CB1与CB2又自动重合。若CB1先于CB2重合,且重合时短路故障已消除,则断路器CB1遇到的就是关合空载输电线路。

  13. 大麻素Ⅰ型受体生理调节作用研究进展

    Institute of Scientific and Technical Information of China (English)

    安永超; 任维; 杨唐斌

    2011-01-01

    @@ 大麻素Ⅰ型受体(cannabinoid type 1 receptor,CB1)是大麻素受体的一种,随着它的发现与克隆,越来越多证据表明CB1在内源性大麻素系统各种生理作用中起到重要作用.本文就CB1在生理调节方面作用以及与人类健康之间的关系进行综述,为今后CB1受体研究提供参考资料.

  14. The endocannabinoid system controls food intake via olfactory processes.

    Science.gov (United States)

    Soria-Gómez, Edgar; Bellocchio, Luigi; Reguero, Leire; Lepousez, Gabriel; Martin, Claire; Bendahmane, Mounir; Ruehle, Sabine; Remmers, Floor; Desprez, Tifany; Matias, Isabelle; Wiesner, Theresa; Cannich, Astrid; Nissant, Antoine; Wadleigh, Aya; Pape, Hans-Christian; Chiarlone, Anna Paola; Quarta, Carmelo; Verrier, Daniéle; Vincent, Peggy; Massa, Federico; Lutz, Beat; Guzmán, Manuel; Gurden, Hirac; Ferreira, Guillaume; Lledo, Pierre-Marie; Grandes, Pedro; Marsicano, Giovanni

    2014-03-01

    Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior. PMID:24509429

  15. The endocannabinoid system drives neural progenitor proliferation.

    Science.gov (United States)

    Aguado, Tania; Monory, Krisztina; Palazuelos, Javier; Stella, Nephi; Cravatt, Benjamin; Lutz, Beat; Marsicano, Giovanni; Kokaia, Zaal; Guzmán, Manuel; Galve-Roperh, Ismael

    2005-10-01

    The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is abrogated in CB1-deficient NPs. Accordingly, proliferation of hippocampal NPs is increased in FAAH-deficient mice. Our results demonstrate that endocannabinoids constitute a new group of signaling cues that regulate NP proliferation and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.

  16. NCBI nr-aa BLAST: CBRC-PTRO-07-0067 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  17. NCBI nr-aa BLAST: CBRC-TBEL-01-1883 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  18. NCBI nr-aa BLAST: CBRC-TNIG-14-0023 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  19. NCBI nr-aa BLAST: CBRC-FRUB-02-0074 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  20. NCBI nr-aa BLAST: CBRC-LAFR-01-1734 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  1. NCBI nr-aa BLAST: CBRC-OLAT-24-0009 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  2. NCBI nr-aa BLAST: CBRC-TNIG-10-0006 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  3. NCBI nr-aa BLAST: CBRC-ACAR-01-0845 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  4. NCBI nr-aa BLAST: CBRC-RNOR-05-0081 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  5. NCBI nr-aa BLAST: CBRC-SARA-01-0195 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  6. NCBI nr-aa BLAST: CBRC-ETEL-01-1516 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  7. NCBI nr-aa BLAST: CBRC-RMAC-04-0050 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  8. NCBI nr-aa BLAST: CBRC-PABE-07-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available l cannabinoid receptor emb|CAB42647.1| cannabinoid CB1 receptor [Mus musculus] gb|AAS91800.1| striatal... cannabinoid receptor type 1 protein [Mus musculus] gb|AAS91801.1| striatal cannabinoid

  9. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M;

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  10. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior.

    Science.gov (United States)

    Imperatore, Roberta; Morello, Giovanna; Luongo, Livio; Taschler, Ulrike; Romano, Rosaria; De Gregorio, Danilo; Belardo, Carmela; Maione, Sabatino; Di Marzo, Vincenzo; Cristino, Luigia

    2015-11-01

    Endocannabinoids (eCB) are key regulators of excitatory/inhibitory neurotransmission at cannabinoid-1-receptor (CB1 R)-expressing axon terminals. The most abundant eCB in the brain, that is 2-arachidonoylglycerol (2-AG), is hydrolyzed by the enzyme monoacylglycerol lipase (MAGL), whose chronic inhibition in the brain was reported to cause CB1 R desensitization. We employed the MAGL knock-out mouse (MAGL-/-), a genetic model of congenital and sustained elevation of 2-AG levels in the brain, to provide morphological and biochemical evidence for β-arrestin2-mediated CB1 R desensitization in brain regions involved in the control of emotional states, that is, the prefrontal cortex (PFC), amygdala, hippocampus and cerebellar cortex. We found a widespread CB1 R/β-arrestin2 co-expression in the mPFC, amygdala and hippocampus accompanied by impairment of extracellular signal-regulated kinase signaling and elevation of vesicular glutamate transporter (VGluT1) at CB1 R-positive excitatory terminals in the mPFC, or vesicular GABA transporter (VGAT) at CB1 R-positive inhibitory terminals in the amygdala and hippocampus. The impairment of CB1 R signaling in MAGL-/- mice was also accompanied by enhanced excitatory drive in the basolateral amygdala (BLA)-mPFC circuit, with subsequent elevation of glutamate release to the mPFC and anxiety-like and obsessive-compulsive behaviors, as assessed by the light/dark box and marble burying tests, respectively. Collectively, these data provide evidence for a β-arrestin2-mediated desensitization of CB1 R in MAGL-/- mice, with impact on the synaptic plasticity of brain circuits involved in emotional functions. In this study, the authors provide evidence that congenitally enhanced endocannabinoid levels in the neuronal circuits underlying anxiety-like behavioral states (mainly medial prefrontal cortex, amygdala and hippocampus) lead to CB1R desenistization and anxiety and depression. MAGL-/- mice, a model of congenital overactivity of the e

  11. 大麻素受体与肝病

    Institute of Scientific and Technical Information of China (English)

    彭忠田; 欧阳兵; 王培; 谭思; 唐简; 周军瑜

    2013-01-01

      内源性大麻素系统(the endocannabinoid system,ECS)包括大麻素受体、内源性大麻素及参与生物合成、降解的酶,主要分布于脑部,在外周组织也有分布,包括肝脏。肝脏各种疾病其ECS均可被激活。肝硬化时血管及心脏的CB1受体激活后引起血管舒张及心肌病, CB1受体受阻后,上述作用可受抑制;肝纤维化小鼠模型中,肝星状细胞CB1被激活可引起肝纤维化,CB1受体受阻则可减缓肝纤维化的进展;因高脂饮食或长期饮酒引起的脂肪肝也依赖于外周CB1的激活,包括肝脏CB1受体,同时CB1受体会引起胰岛素抵抗及血脂异常。虽然CB1受体拮抗剂因其精神神经方面的副作用使其临床应用受到限制,但如果能将其副作用限制则有望用于临床。

  12. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    OpenAIRE

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN5...

  13. Inhibition of Recombinant Human T-type Calcium Channels by Δ9-Tetrahydrocannabinol and Cannabidiol*

    OpenAIRE

    Ross, Hamish Redmond; Napier, Ian; Connor, Mark

    2008-01-01

    Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prevalent biologically active constituents of Cannabis sativa. THC is the prototypic cannabinoid CB1 receptor agonist and is psychoactive and analgesic. CBD is also analgesic, but it is not a CB1 receptor agonist. Low voltage-activated T-type calcium channels, encoded by the CaV3 gene family, regulate the excitability of many cells, including neurons involved in nociceptive processing. We examined the eff...

  14. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    Science.gov (United States)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each pAdipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each padipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; padipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; padipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor. PMID:17223076

  15. The evolution and comparative neurobiology of endocannabinoid signalling

    OpenAIRE

    Elphick, Maurice R.

    2012-01-01

    CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-...

  16. Hippocampal Cannabinoid Transmission Modulates Dopamine Neuron Activity: Impact on Rewarding Memory Formation and Social Interaction

    OpenAIRE

    Loureiro, Michael; Renard, Justine; Zunder, Jordan; Laviolette, Steven R

    2015-01-01

    Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion ...

  17. Lower levels of cannabinoid 1 receptor mRNA in female eating disorder patients: association with wrist cutting as impulsive self-injurious behavior.

    Science.gov (United States)

    Schroeder, Marc; Eberlein, Christian; de Zwaan, Martina; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge

    2012-12-01

    The cannabinoid 1 (CB 1) receptor as the primary mediator of the endocannabinoid (EC) system was found to play a role in eating disorders (EDs), depression, anxiety, and suicidal behavior. The CB 1 receptor is assumed to play a crucial role in the central reward circuitry with impact on body weight and personality traits like novelty-seeking behavior. In a previous study we found higher levels of CB 1 receptor mRNA in patients with anorexia nervosa (AN) and bulimia nervosa (BN) compared to healthy control women (HCW). The aim of the present study was to investigate the possible influence of the EC and the CB 1 receptor system on wrist cutting as self-injurious behavior (SIB) in women with EDs (n=43; AN: n=20; BN: n=23). Nine ED patients with repetitive wrist cutting (AN, n=4; BN, n=5) were compared to 34 ED patients without wrist cutting and 26 HCW. Levels of CB 1 receptor mRNA were determined in peripheral blood samples using quantitative real-time PCR. ED patients with self-injurious wrist cutting exhibited significantly lower CB 1 receptor mRNA levels compared with ED patients without wrist cutting and HCW. No significant differences were found between ED patients without a history of wrist cutting and HCW. Furthermore, a negative association was detected between CB 1 receptor mRNA levels and Beck Depression Inventory (BDI) scores. To our knowledge, this is the first study reporting a down-regulation of CB 1 receptor mRNA in patients with EDs and wrist cutting as SIB. Due to the small sample size, our results should be regarded as preliminary and further studies are warranted to reveal the underlying mechanisms.

  18. Roles for the endocannabinoid system in ethanol-motivated behavior.

    Science.gov (United States)

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-01

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.

  19. Enhancing Brain Pregnenolone May Protect Cannabis Intoxication but Should Not Be Considered as an Anti-addiction Therapeutic: Hypothesizing Dopaminergic Blockade and Promoting Anti- Reward

    Directory of Open Access Journals (Sweden)

    Kenneth Blum

    2015-02-01

    Full Text Available Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction, and intoxication. Some research into those harms will be reviewed here and misgivings about the use of Pregnenolone, to treat cannabis addiction and intoxication explained. Pregnenolone considered the inactive precursor of all steroid hormones, has recently been shown to protect the brain from Cannabis intoxication. The major active ingredient of Cannabis sativa (marijuana, Δ9-tetrahydrocannabinol (THC enhances Pregnenolone synthesis in the brain via stimulation of the type-1 cannabinoid (CB1 receptor. This steroid has been shown to inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee et al., incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. In this hypothesis, we caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718 have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. Blocking CB1 receptors would result in reduced neuronal release of Dopamine by disinhibition of GABA signaling. Longterm blockade of cannabinoid receptors could occur with raising Pregnenolone brain levels, may induce a hypodopaminergic state, and lead to aberrant substance and nonsubstance (behavioral addictions.

  20. Therapeutic Potentials and uses of Cannabinoid Agonists in Health and Disease Conditions

    Directory of Open Access Journals (Sweden)

    A.O. Ibegbu

    2012-04-01

    Full Text Available Cannabis and its derivatives have great therapeutic potential and have been used for centuries for medicinal purposes. The side effects of cannabinoids include euphoric mood changes, acute psychotic episodes, initiation and exacerbation of schizophrenic psychosis in predisposed persons, impaired cognitive and psychomotor performance, tachycardia and hypotension. The production of complex behavioural effects by cannabinoids are mediated by cannabinoid receptors (CB1 and CB2 and by interactions with other neurochemical systems. It has been shown that the therapeutic and physiological effects of cannabinoids are dependent upon whether the administration is acute or chronic and on the route of administration. The physiological effects of cannabis and its derivatives include: reduction in psychomotor coordination and performance, alterations in thermoregulation, endocrine and reproductive functions and gut motility. There is also evidence of agonist selectivity for CB1 receptors coupled to different subtypes of Gi proteins or to Gi versus Go proteins. Cannabinoid-activated receptors distinct from CB1 or CB2 exist in the central nervous system. Cannabinoids are known to inhibit GABA-mediated inhibitory postsynaptic currents in the hippocampus via a presynaptic action at CB1 receptors located on GABAergic terminals. CB1 receptors have also been implicated in the inhibition of glutamatergic excitatory postsynaptic currents. The synthetic cannabinoid, Win 55,212-2, a mixed CB1-CB2 cannabinoid receptor agonist, was found to attenuate hyperalgesia in a rat model of neuropathic pain and suppress opioid-induced emesis in ferrets.

  1. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling.

    Science.gov (United States)

    Kopach, Olga; Vats, Juliana; Netsyk, Olga; Voitenko, Nana; Irving, Andrew; Fedirko, Nataliya

    2012-04-15

    Cannabinoid receptors (CBRs) belong to the G protein-coupled receptor superfamily, and activation of CBRs in salivary cells inhibits agonist-stimulated salivation and modifies saliva content. However, the role of different CBR subtypes in acinar cell physiology and in intracellular signalling remains unclear. Here, we uncover functional CB(1)Rs and CB(2)Rs in acinar cells of rat submandibular gland and their essential role in saliva secretion. Pharmacological activation of CB(1)Rs and CB(2)Rs in the submandibular gland suppressed saliva outflow and modified saliva content produced by the submandibular gland in vivo. Using Na(+)-selective microelectrodes to record secretory Na(+) responses in the lumen of acini, we observed a reduction in Na(+) transport following the activation of CBRs, which was counteracted by the selective CB(1)R antagonist AM251. In addition, activation of CB(1)Rs or CB Rs caused inhibition of Na(+)-K(+) 2 -ATPase activity in microsomes derived from the gland tissue as well as in isolated acinar cells. Using a Ca(2+) imaging technique, we showed that activation of CB(1)Rs and CB(2)Rs alters [Ca(2+)](cyt) signalling in acinar cells by distinct pathways, involving Ca(2+) release from the endoplasmic reticulum (ER) and store-operated Ca(2+) entry (SOCE), respectively. Our data demonstrate the expression of CB(1)Rs and CB(2)Rs in acinar cells, and their involvement in the regulation of salivary gland functioning.

  2. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction.

    Science.gov (United States)

    Hutch, C R; Hillard, C J; Jia, C; Hegg, C C

    2015-08-01

    Endocannabinoids modulate a diverse array of functions including progenitor cell proliferation in the central nervous system, and odorant detection and food intake in the mammalian central olfactory system and larval Xenopus laevis peripheral olfactory system. However, the presence and role of endocannabinoids in the peripheral olfactory epithelium have not been examined in mammals. We found the presence of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptor protein and mRNA in the olfactory epithelium. Using either immunohistochemistry or calcium imaging we localized CB1 receptors on neurons, glia-like sustentacular cells, microvillous cells and progenitor-like basal cells. To examine the role of endocannabinoids, CB1- and CB2- receptor-deficient (CB1(-/-)/CB2(-/-)) mice were used. The endocannabinoid 2-arachidonylglycerol (2-AG) was present at high levels in both C57BL/6 wildtype and CB1(-/-)/CB2(-/-) mice. 2-AG synthetic and degradative enzymes are expressed in wildtype mice. A small but significant decrease in basal cell and olfactory sensory neuron numbers was observed in CB1(-/-)/CB2(-/-) mice compared to wildtype mice. The decrease in olfactory sensory neurons did not translate to impairment in olfactory-mediated behaviors assessed by the buried food test and habituation/dishabituation test. Collectively, these data indicate the presence of an endocannabinoid system in the mouse olfactory epithelium. However, unlike in tadpoles, endocannabinoids do not modulate olfaction. Further investigation on the role of endocannabinoids in progenitor cell function in the olfactory epithelium is warranted. PMID:26037800

  3. Comparison of N uptake and internal use efficiency in two tobacco varieties

    Institute of Scientific and Technical Information of China (English)

    Wan; Teng; Wenqing; Li; Chunjian; Li

    2015-01-01

    To explain the observation in field experiments that tobacco variety CB-1 was more nitrogen(N)-efficient than K326, the influence of two N levels on growth, N uptake and N flow within plants of the two tobacco varieties was studied. Xylem sap from the upper and lower leaves of both tobacco varieties cultured in quartz sand was collected by application of pressure to the root system. CB-1 took up more N with smaller roots at both high(HN, 10 mmol L-1) and low(LN, 1 mmol L-1) N levels, and built up more new tissues in upper leaves especially at LN level,than K326. Both varieties showed luxury N uptake, and CB-1 accumulated significantly less NO-3in new tissues than K326, when grown at the HN level. At both N levels, the amount of xylem-transported N and phloem-cycled N from shoot to root in K326 was greater than those in CB-1, indicating higher N use efficiency in CB-1 shoots than in K326 shoots. The major nitrogenous compound in the xylem sap was NO-3irrespective of N level and variety. Low N supply did not cause more NO-3reduction in the root. The results indicated that the N-efficient tobacco variety CB-1 was more efficient in both N uptake by smaller roots and N utilization in shoots, especially when grown at the LN level.

  4. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction.

    Science.gov (United States)

    Hutch, C R; Hillard, C J; Jia, C; Hegg, C C

    2015-08-01

    Endocannabinoids modulate a diverse array of functions including progenitor cell proliferation in the central nervous system, and odorant detection and food intake in the mammalian central olfactory system and larval Xenopus laevis peripheral olfactory system. However, the presence and role of endocannabinoids in the peripheral olfactory epithelium have not been examined in mammals. We found the presence of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptor protein and mRNA in the olfactory epithelium. Using either immunohistochemistry or calcium imaging we localized CB1 receptors on neurons, glia-like sustentacular cells, microvillous cells and progenitor-like basal cells. To examine the role of endocannabinoids, CB1- and CB2- receptor-deficient (CB1(-/-)/CB2(-/-)) mice were used. The endocannabinoid 2-arachidonylglycerol (2-AG) was present at high levels in both C57BL/6 wildtype and CB1(-/-)/CB2(-/-) mice. 2-AG synthetic and degradative enzymes are expressed in wildtype mice. A small but significant decrease in basal cell and olfactory sensory neuron numbers was observed in CB1(-/-)/CB2(-/-) mice compared to wildtype mice. The decrease in olfactory sensory neurons did not translate to impairment in olfactory-mediated behaviors assessed by the buried food test and habituation/dishabituation test. Collectively, these data indicate the presence of an endocannabinoid system in the mouse olfactory epithelium. However, unlike in tadpoles, endocannabinoids do not modulate olfaction. Further investigation on the role of endocannabinoids in progenitor cell function in the olfactory epithelium is warranted.

  5. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase.

    Science.gov (United States)

    Sajid, Mohammed; McKerrow, James H; Hansell, Elizabeth; Mathieu, Mary A; Lucas, Kimberley D; Hsieh, Ivy; Greenbaum, Doron; Bogyo, Matthew; Salter, Jason P; Lim, Kee C; Franklin, Christopher; Kim, Jea-Hyoun; Caffrey, Conor R

    2003-09-01

    Peptidases are essential for the establishment and survival of the medically important parasite, Schistosoma mansoni. This helminth expresses a number of gut-associated peptidases that degrade host blood proteins, including hemoglobin, as a means of nutrition. Using irreversible affinity probes, we demonstrate that S. mansoni cathepsin B-like endopeptidase 1 (SmCB1) is the most abundant papain family cysteine peptidase in both the parasite gut and somatic extracts. SmCB1 zymogen (SmCB1pm) was functionally expressed in Pichia pastoris (4-11mgl(-1)). Monospecific and immunoselected antibodies raised against SmCB1pm localized the enzyme exclusively to the gut lumen and surrounding gastrodermis of adult worms. Recombinant SmCB1pm was unable to catalyze its activation, even at low pH. However, recombinant S. mansoni asparaginyl endopeptidase (SmAE), another gut-associated cysteine peptidase, processed and activated SmCB1pm in trans. Consistent with the known specificity of AEs, processing occurred on the carboxyl side of an asparagine residue, two residues upstream of the start of the mature SmCB1 sequence. The remaining pro-region dipeptide was removed by rat cathepsin C (dipeptidyl-peptidase I)-an action conceivably performed by an endogenous cathepsin C in vivo. The activated recombinant SmCB1 is biochemically identical to the native enzyme with respect to dipeptidyl substrate kinetics and pH profiles. Also, the serum proteins, hemoglobin, serum albumin, IgG, and alpha-2 macroglobulin were efficiently degraded. Further, a novel application of an assay to measure the peptidyl carboxypeptidase activity of SmCB1 and other cathepsins B was developed using the synthetic substrate benzoyl-glycinyl-histidinyl-leucine (Bz-Gly-His-Leu). This study characterizes the major digestive cysteine peptidase in schistosomes and defines novel trans-processing events required to activate the SmCB1 zymogen in vitro which may facilitate the digestive process in vivo.

  6. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations

    DEFF Research Database (Denmark)

    Benzinou, Michael; Chèvre, Jean-Claude; Ward, Kirsten J;

    2008-01-01

    (BMI) in the European population. With the input of CNR1 exons and 3' and 5' regions sequencing and HapMap database, we selected and genotyped 26 tagging single-nucleotide polymorphisms (SNPs) in 1932 obese cases and 1173 non-obese controls of French European origin. Variants that showed significant......The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass index...... associations (P obesity after correction for multiple testing were further tested in two additional European cohorts including 2645 individuals. For the identification of the potential causal variant(s), we further genotyped SNPs in high linkage disequilibrium (LD) with the obesity...

  7. 大麻素受体1在慢性乙型肝炎患者肝组织表达及与血清转化生长因子-β1和瘦素的关系%Expression of cannabinoid receptor 1 in liver tissue of patients with chronic hepatitis B and its relationship with the serum levels of TGF-β1 and Leptin

    Institute of Scientific and Technical Information of China (English)

    叶立红; 戴二黑; 王翀奎; 刘玉珍; 卢建华; 侯军良; 高会霞; 杨莉; 赵召霞; 李兵顺

    2011-01-01

    Objective To observe expression and location of cannabinoid receptor 1 (CB1) in liver tissue of patients with chronic hepatitis B (CHB) ,and analyze the relationship of it with the liver fibrosis score,the serum levels of TGF-β1 and Leptin. Methods Liver biopsies were performed in 118 patients with CHB.The expression of CB1 in liver tissue was observed by immune histochemical staining, and semi-quantitative analysis was carried out to devide the CB1 score into four grades: -, +, + +, + + +. Serum levels of TGF-β1 and Leptin were determined by ABC-ELISA double-antibody sandwich method. Results The expression of CB1 in liver tissue with CHB had significant relationship with the fibrosis score. As the expression of the CB1 increased, the fibrosis score became higher ( F = 23. 369,P = 0. 000). Moreover, the expression of CB1 in liver tissue with CHB had significant relationship with the serum levels of TGF-β1 and Leptin( F values were 8. 762 and 5. 749;P values were 0. 001 and 0. 027, respectively). Conclusion CB1 may play promotive role in the process of hepatic fibrosis through regulation of TGF-β1 and Leptin.%目的 探讨大麻素受体1(CB1)在慢性乙型肝炎(CHB)患者肝组织中定位表达及其与肝纤维化评分、血清转化生长因子(TGF)-β1、瘦素(Leptin)水平的相关性.方法 选择118例CHB患者进行肝组织活检,通过免疫组织化学染色检测肝组织中CB1表达并进行CB1半定量评分.采用双抗体夹心ABC-ELISA法检测血清TGF-β1和keptin含量.据CB1表达量分为4组:(-)组、(+)组、(++)组、(+++)组.结果 随着肝组织CB1阳性表达量的不断增加,肝纤维化评分逐渐升高,各组间差异有统计学意义(F=23.369,P=0.000);血清TGF-β1和Leptin水平也逐渐升高,各组间差异有统计学意义(F值分别为8.762和5.749,P值分别为0.001和0.027).结论 CHB肝组织损伤可使肌纤维母细胞表达CB1增强,CB1可能通过与TGF-β1和kptin共同作用,诱导肝星状细胞

  8. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  9. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  10. Effects of cannabinoid receptor 1 antagonist AM251 on vasoreactivity in hemorrhagic shock rats%大麻素受体1拮抗剂AM251对失血性休克大鼠血管反应性的影响

    Institute of Scientific and Technical Information of China (English)

    李楠; 高娜; 王静; 侯立朝; 高燕

    2012-01-01

    目的 拟观察大麻素受体1(CB1R)在失血性休克大鼠腹主动脉和肠系膜上动脉的表达变化情况,及大麻素CB1受体拮抗剂AM251对血管反应性的影响.方法 将SD大鼠随机分为假手术(Sham)组和失血性休克(HS)组.检测休克动物血管反应性的变化,以及动脉血管大麻素CB1受体mRNA和蛋白表达情况;观察CB1受体拮抗剂AM251对休克后血管低反应性及低血压的影响.结果 HS组动物均发生血管低反应性,腹主动脉和肠系膜上动脉2~3级分支动脉血管组织CB1受体mRNA和蛋白均呈阳性表达;CB1受体拮抗剂AM251能显著提高休克后血管低反应性,并可明显改善休克后的低血压.结论 大麻素CB1受体与大鼠失血性休克后血管低反应性密切相关,其拮抗剂具有抗重度失血性休克作用.

  11. Effect of synthetic cannabinoids on spontaneous neuronal activity: Evaluation using Ca(2+) spiking and multi-electrode arrays.

    Science.gov (United States)

    Tauskela, Joseph S; Comas, Tanya; Hewitt, Melissa; Aylsworth, Amy; Zhao, Xigeng; Martina, Marzia; Costain, Willard J

    2016-09-01

    Activation of cannabinoid receptor 1 (CB1) inhibits synaptic transmission in hippocampal neurons. The goal of this study was to evaluate the ability of benchmark and emerging synthetic cannabinoids to suppress neuronal activity in vitro using two complementary techniques, Ca(2+) spiking and multi-electrode arrays (MEAs). Neuron culture and fluorescence imaging conditions were extensively optimized to provide maximum sensitivity for detection of suppression of neural activity by cannabinoids. The neuronal Ca(2+) spiking frequency was significantly suppressed within 10min by the prototypic aminoalkylindole cannabinoid, WIN 55,212-2 (10µM). Suppression by WIN 55,212-2 was not improved by pharmacological intervention with signaling pathways known to interfere with CB1 signaling. The naphthoylindole CB1 agonist, JWH-018 suppressed Ca(2+) spiking at a lower concentration (2.5µM), and the CB1 antagonist rimonabant (5µM), reversed this suppression. In the MEA assay, the ability of synthetic CB1 agonists to suppress spontaneous electrical activity of hippocampal neurons was evaluated over 80min sessions. All benchmark (WIN 55,212-2, HU-210, CP 55,940 and JWH-018) and emerging synthetic cannabinoids (XLR-11, JWH-250, 5F-PB-22, AB-PINACA and MAM-2201) suppressed neural activity at a concentration of 10µM; furthermore, several of these compounds also significantly suppressed activity at 1µM concentrations. Rimonabant partially reversed spiking suppression of 5F-PB-22 and, to a lesser extent, of MAM-2201, supporting CB1-mediated involvement, although the inactive WIN 55,212-3 also partially suppressed activity. Taken together, synthetic cannabinoid CB1-mediated suppression of neuronal activity was detected using Ca(2+) spiking and MEAs. PMID:27262380

  12. Endocannabinoid modulation of cortical up-states and NREM sleep.

    Directory of Open Access Journals (Sweden)

    Matthew J Pava

    Full Text Available Up-/down-state transitions are a form of network activity observed when sensory input into the cortex is diminished such as during non-REM sleep. Up-states emerge from coordinated signaling between glutamatergic and GABAergic synapses and are modulated by systems that affect the balance between inhibition and excitation. We hypothesized that the endocannabinoid (EC system, a neuromodulatory system intrinsic to the cortical microcircuitry, is an important regulator of up-states and sleep. To test this hypothesis, up-states were recorded from layer V/VI pyramidal neurons in organotypic cultures of wild-type or CB1R knockout (KO mouse prefrontal cortex. Activation of the cannabinoid 1 receptor (CB1 with exogenous agonists or by blocking metabolism of endocannabinoids, anandamide or 2-arachidonoyl glycerol, increased up-state amplitude and facilitated action potential discharge during up-states. The CB1 agonist also produced a layer II/III-selective reduction in synaptic GABAergic signaling that may underlie its effects on up-state amplitude and spiking. Application of CB1 antagonists revealed that an endogenous EC tone regulates up-state duration. Paradoxically, the duration of up-states in CB1 KO cultures was increased suggesting that chronic absence of EC signaling alters cortical activity. Consistent with increased cortical excitability, CB1 KO mice exhibited increased wakefulness as a result of reduced NREM sleep and NREM bout duration. Under baseline conditions, NREM delta (0.5-4 Hz power was not different in CB1 KO mice, but during recovery from forced sleep deprivation, KO mice had reduced NREM delta power and increased sleep fragmentation. Overall, these findings demonstrate that the EC system actively regulates cortical up-states and important features of NREM sleep such as its duration and low frequency cortical oscillations.

  13. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Science.gov (United States)

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  14. Feeding induced by cannabinoids is mediated independently of the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Puspha Sinnayah

    Full Text Available BACKGROUND: Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that peripherally administered CB1-R antagonist (AM251 or agonist equally suppressed or stimulated feeding respectively in A(y , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry. CB1-R antagonist or agonist administered into the ventral tegmental area (VTA equally suppressed or stimulated feeding respectively, in both genotypes. In addition, peripheral and central cannabinoid administration similarly induced c-Fos activation in brain sites suggesting mediation via motivational dopaminergic circuitry. Amperometry-detected increases in evoked dopamine (DA release by the CB1-R antagonist in nucleus accumbens slices indicates that AM251 modulates DA release from VTA terminals. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the effects of cannabinoids on energy balance are independent of hypothalamic melanocortin circuitry and is primarily driven by the reward system.

  15. Rod photoreceptors express GPR55 in the adult vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian;

    2013-01-01

    Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R) and cannabinoid CB2 receptor (CB2R). In recent years, the G-protein coupled receptor 55 (GPR55) was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol....... Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells) and CB2R in glial...... in cones. The labeling of GPR55 in rods was further assessed with a 3D visualization in the XZ and YZ planes thus confirming its exclusive expression in rods. These results provide data on the distribution of GPR55 in the monkey retina, different than CB1R and CB2R. The presence of GPR55 in rods suggests...

  16. 大麻素受体1/食欲素受体1-G蛋白偶联受体异聚体及其交叉激活作用研究进展

    Institute of Scientific and Technical Information of China (English)

    朱飞; 王湘庆; 陈亚楠; 郎森阳; 张家堂

    2015-01-01

    大麻素受体1(cannabinoid receptor 1,CB1)和食欲素受体1(orexin receptor 1,OX1)同属G蛋白偶联受体(G-proteincoupled receptors,GPCRs),两者在体内分布广泛,均参与调节摄食、能量平衡、睡眠和觉醒、食物和药物的成瘾性等。两者作用位点接近,足以形成异聚体共同参与各项功能调节,多项研究表明,CB1/OX1存在交叉激活作用。本文对CB1和OX1的作用以及CB1/OX1异聚体的交叉激活作用进行综述,以期对其有更深入的认识,从而对CB1/OX1-GPCR新药研发起到一定指导作用。

  17. Genetic dissection of behavioural and autonomic effects of Delta(9-tetrahydrocannabinol in mice.

    Directory of Open Access Journals (Sweden)

    Krisztina Monory

    2007-10-01

    Full Text Available Marijuana and its main psychotropic ingredient Delta(9-tetrahydrocannabinol (THC exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1, which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release gamma aminobutyric acid, cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.

  18. Cannabinoid Control of Learning and Memory through HCN Channels.

    Science.gov (United States)

    Maroso, Mattia; Szabo, Gergely G; Kim, Hannah K; Alexander, Allyson; Bui, Anh D; Lee, Sang-Hun; Lutz, Beat; Soltesz, Ivan

    2016-03-01

    The mechanisms underlying the effects of cannabinoids on cognitive processes are not understood. Here we show that cannabinoid type-1 receptors (CB1Rs) control hippocampal synaptic plasticity and spatial memory through the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that underlie the h-current (Ih), a key regulator of dendritic excitability. The CB1R-HCN pathway, involving c-Jun-N-terminal kinases (JNKs), nitric oxide synthase, and intracellular cGMP, exerts a tonic enhancement of Ih selectively in pyramidal cells located in the superficial portion of the CA1 pyramidal cell layer, whereas it is absent from deep-layer cells. Activation of the CB1R-HCN pathway impairs dendritic integration of excitatory inputs, long-term potentiation (LTP), and spatial memory formation. Strikingly, pharmacological inhibition of Ih or genetic deletion of HCN1 abolishes CB1R-induced deficits in LTP and memory. These results demonstrate that the CB1R-Ih pathway in the hippocampus is obligatory for the action of cannabinoids on LTP and spatial memory formation. PMID:26898775

  19. Role of cannabinoids in chronic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Anna Parfieniuk; Robert Flisiak

    2008-01-01

    Cannabinoids are a group of compounds acting primarily via CB1 and CB2 receptors. The expression of cannabinoid receptors in normal liver is low or absent. However, many reports have proven up-regulation of the expression of CB1 and CB2 receptors in hepatic myofibroblasts and vascular endothelial cells, as well as increased concentration of endocannabinoids in liver in the course of chronic progressive liver diseases. It has been shown that CB1 receptor signalling exerts profibrogenic and proinflammatory effects in liver tissue, primarily due to the stimulation of hepatic stellate cells, whereas the activation of CB2 receptors inhibits or even reverses liver fibrogenesis. Similarly, CB1 receptor stimulation contributes to progression of liver steatosis. In end-stage liver disease, the endocannabi-noid system has been shown to contribute to hepatic encephalopathy and vascular effects, such as portal hypertension, splanchnic vasodilatation, relative pe-ripheral hypotension and probably cirrhotic cardiomy-opathy. So far, available evidence is based on cellular cultures or animal models. Clinical data on the effects of cannabinoids in chronic liver diseases are limited. However, recent studies have shown the contribution of cannabis smoking to the progression of liver fibrosis and steatosis. Moreover, controlling CB1 or CB2 signal-ling appears to be an attractive target in managing liver diseases.

  20. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-01

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction. PMID:25463025

  1. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    Science.gov (United States)

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  2. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  3. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-01

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction.

  4. Expression of the endocannabinoid receptors in human fascial tissue.

    Science.gov (United States)

    Fede, C; Albertin, G; Petrelli, L; Sfriso, M M; Biz, C; De Caro, R; Stecco, C

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  5. Cannabinoid type-1 receptors in the paraventricular nucleus of the hypothalamus inhibit stimulated food intake.

    Science.gov (United States)

    Soria-Gómez, E; Massa, F; Bellocchio, L; Rueda-Orozco, P E; Ciofi, P; Cota, D; Oliet, S H R; Prospéro-García, O; Marsicano, G

    2014-03-28

    Cannabinoid receptor type 1 (CB1)-dependent signaling in the brain is known to modulate food intake. Recent evidence has actually shown that CB1 can both inhibit and stimulate food intake in fasting/refeeding conditions, depending on the specific neuronal circuits involved. However, the exact brain sites where this bimodal control is exerted and the underlying neurobiological mechanisms are not fully understood yet. Using pharmacological and electrophysiological approaches, we show that local CB1 blockade in the paraventricular nucleus of the hypothalamus (PVN) increases fasting-induced hyperphagia in rats. Furthermore, local CB1 blockade in the PVN also increases the orexigenic effect of the gut hormone ghrelin in animals fed ad libitum. At the electrophysiological level, CB1 blockade in slices containing the PVN potentiates the decrease of the activity of PVN neurons induced by long-term application of ghrelin. Hence, the PVN is (one of) the site(s) where signals associated with the body's energy status determine the direction of the effects of endocannabinoid signaling on food intake.

  6. Mutual neutralization in H+ - H- collisions by electron capture

    Science.gov (United States)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2013-07-01

    State-selective and total cross-sections for single-electron capture from H- by H+ covering the incident energy range from 10 to 3000 keV are computed by means of the four-body boundary corrected first Born (CB1-4B) approximation. A crucial connection between the Coulomb-distorted asymptotic state in the entrance channel and the pertinent perturbation, which causes the transition in the H+ - H- collisions, is consistently used in our computations of the “prior” version of cross-sections. The obtained results from the CB1-4B method clearly outperform the earlier findings by the close-coupling methods for the same problem. Comparisons with the available measurements are carried out and excellent agreement with the CB1 method is recorded down to impact energies as low as 10 keV.

  7. Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus

    DEFF Research Database (Denmark)

    Hansen, Suzanne L; Nielsen, Ane H; Knudsen, Katrine E;

    2009-01-01

    The ketogenic diet (KD) is used for the treatment of refractory epilepsy in children, however, the mechanism(s) remains largely unknown. Also, the antiepileptogenic potential in animal models of epilepsy has been poorly addressed. Activation of cannabinoid type-1 receptor (CB(1)-R) upon seizure...... activity may mediate neuroprotection as may several N-acylethanolamines. It is unknown how the KD interfere with the endocannabinoid system. We investigated the antiepileptogenic potential of the KD in the pentylenetetrazole kindling model in young mice and measured the hippocampal levels of CB(1)-R...... by Western blot and of endocannabinoids and N-acylethanolamines by mass spectrometry. The KD significantly decreased incidence and severity of seizures, and significantly increased the latency to clonic convulsions. There were no changes in levels of endocannabinoids or CB(1)-R expression by either seizure...

  8. The endocannabinoid system within the dorsal lateral geniculate nucleus of the vervet monkey

    DEFF Research Database (Denmark)

    Javadi, P.; Bouskila, J.; Bouchard, J. -F.;

    2015-01-01

    The endocannabinoid system mainly consists of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), their endogenous ligands termed endocannabinoids (eCBs), and the enzymes responsible for the synthesis and degradation of eCBs. These cannabinoid receptors have been well characterized in rodent...... and monkey retinae. Here, we investigated the expression and localization of the eCB system beyond the retina, namely the first thalamic relay, the dorsal lateral geniculate nucleus (dLGN), of vervet monkeys using immunohistochemistry methods. Our results show that CB1R is expressed throughout the d...... for any of the layers. These proteins are weakly expressed in the koniocellular layers. These results suggest that the presence of the eCB system throughout the layers of the dLGN may represent a novel site of neuromodulatory action in normal vision. The larger amount of CB1R in the dLGN magnocellular...

  9. Müller cells express the cannabinoid CB2 receptor in the vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian;

    2013-01-01

    The presence of the cannabinoid receptor type 1 (CB1R) has been largely documented in the rodent and primate retinae in recent years. There is, however, some controversy concerning the presence of the CB2 receptor (CB2R) within the central nervous system. Only recently, CB2R has been found...... in the rodent retina, but its presence in the primate retina has not yet been demonstrated. The aim of this study was twofold: 1) to characterize the distribution patterns of CB2R in the monkey retina and compare this distribution with that previously reported for CB1R and 2) to resolve the controversy...... on the presence of CB2R in the neural component of the retina. We therefore thoroughly examined the cellular localization of CB2R in the vervet monkey (Chlorocebus sabeus) retina, using confocal microscopy. Our results demonstrate that CB2R, like CB1R, is present throughout the retinal layers, but with striking...

  10. Role of cannabinoid receptors in the control of gastrointestinal motility%大麻素受体在胃肠运动调节中的作用

    Institute of Scientific and Technical Information of China (English)

    兰梅

    2011-01-01

    七次跨膜G蛋白偶联的大麻素受体至少有CB1和CB2两种亚型.尽管两种CB受体在胃肠道的分布不尽相同,但多数分布于肠神经系统.CB1受体激活可通过神经机制抑制瞬时下食管括约肌松弛,抑制小肠收缩和蠕动,减慢胃肠运动.CB2可能与一些特殊病理生理条件下胃肠运动的调节有关.这些结果提示CB特别是CB1受体在胃肠运动调节中的作用.

  11. Positron emission tomographic imaging of the cannabinoid type 1 receptor system with [¹¹C]OMAR ([¹¹C]JHU75528): improvements in image quantification using wild-type and knockout mice.

    Science.gov (United States)

    Herance, Raúl; Rojas, Santiago; Abad, Sergio; Jiménez, Xavier; Gispert, Juan Domingo; Millán, Olga; Martín-García, Elena; Burokas, Aurelijus; Serra, Miquel Àngel; Maldonado, Rafael; Pareto, Deborah

    2011-12-01

    In this study, we assessed the feasibility of using positron emission tomography (PET) and the tracer [¹¹C]OMAR ([¹¹C]JHU75528), an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1) receptor system. Wild-type (WT) and CB1 knockout (KO) animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50%) than in KO animals in baseline conditions. After pretreatment with rimonabant, WT uptake lowered to the level of KO animals. The results of this study support the feasibility of using PET with the radiotracer [¹¹C]JHU75528 to image the brain CB1 receptor system in mice. In addition, this methodology can be used to assess the effect of new drugs in preclinical studies using genetically manipulated animals.

  12. Effects of SR141716A on Cognitive and Depression-Related Behavior in an Animal Model of Premotor Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    M. T. Tadaiesky

    2010-01-01

    Full Text Available A previous study from our laboratory revealed that moderate nigral dopaminergic degeneration caused emotional and cognitive deficits in rats, paralleling early signs of Parkinson's disease. Recent evidence suggests that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinson's disease. Here, we investigated whether antagonism of CB1 receptors would improve emotional and cognitive deficits in a rat model of premotor Parkinson's disease. Depression-like behavior and cognition were assessed with the forced swim test and the social recognition test, respectively. Confirming our previous study, rats injected with 6-hydroxydopamine in striatum presented emotional and cognitive alterations which were improved by acute injection of SR141716A. HPLC analysis of monoamine levels demonstrated alterations in the striatum and prefrontal cortex after SR141716A injection. These findings suggest a role for CB1 receptors in the early symptoms caused by degeneration of dopaminergic neurons in the striatum, as observed in Parkinson's disease.

  13. Controlled-deactivation cannabinergic ligands.

    Science.gov (United States)

    Sharma, Rishi; Nikas, Spyros P; Paronis, Carol A; Wood, Jodianne T; Halikhedkar, Aneetha; Guo, Jason Jianxin; Thakur, Ganesh A; Kulkarni, Shashank; Benchama, Othman; Raghav, Jimit Girish; Gifford, Roger S; Järbe, Torbjörn U C; Bergman, Jack; Makriyannis, Alexandros

    2013-12-27

    We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.

  14. Modulating the endocannabinoid system in human health and disease--successes and failures.

    Science.gov (United States)

    Pacher, Pál; Kunos, George

    2013-05-01

    The discovery of the endocannabinoid system, comprising the G-protein coupled cannabinoid 1 and 2 receptors (CB1/2), their endogenous lipid ligands or endocannabinoids, and synthetic and metabolizing enzymes, has triggered an avalanche of experimental studies implicating the endocannabinoid system in a growing number of physiological/pathological functions. These studies have also suggested that modulating the activity of the endocannabinoid system holds therapeutic promise for a broad range of diseases, including neurodegenerative, cardiovascular and inflammatory disorders; obesity/metabolic syndrome; cachexia; chemotherapy-induced nausea and vomiting; and tissue injury and pain, amongst others. However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and other studies with peripherally-restricted CB1/2 agonists and inhibitors of the endocannabinoid metabolizing enzyme in pain, have introduced unexpected complexities, suggesting that a better understanding of the pathophysiological role of the endocannabinoid system is required to devise clinically successful treatment strategies.

  15. Effects of SR141716A on Cognitive and Depression-Related Behavior in an Animal Model of Premotor Parkinson's Disease

    Science.gov (United States)

    Tadaiesky, M. T.; Dombrowski, P. A.; Da Cunha, C.; Takahashi, R. N.

    2010-01-01

    A previous study from our laboratory revealed that moderate nigral dopaminergic degeneration caused emotional and cognitive deficits in rats, paralleling early signs of Parkinson's disease. Recent evidence suggests that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinson's disease. Here, we investigated whether antagonism of CB1 receptors would improve emotional and cognitive deficits in a rat model of premotor Parkinson's disease. Depression-like behavior and cognition were assessed with the forced swim test and the social recognition test, respectively. Confirming our previous study, rats injected with 6-hydroxydopamine in striatum presented emotional and cognitive alterations which were improved by acute injection of SR141716A. HPLC analysis of monoamine levels demonstrated alterations in the striatum and prefrontal cortex after SR141716A injection. These findings suggest a role for CB1 receptors in the early symptoms caused by degeneration of dopaminergic neurons in the striatum, as observed in Parkinson's disease. PMID:20976080

  16. A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro.

    Science.gov (United States)

    Veeraraghavan, Priyadharishini; Dekanic, Ana; Nistri, Andrea

    2016-10-01

    Endocannabinoids acting on cannabinoid-1 receptors (CB1Rs) are proposed to protect brain and spinal neurons from excitotoxic damage. The ability to recover from spinal cord injury (SCI), in which excitotoxicity is a major player, is usually investigated at late times after modulation of CB1Rs whose role in the early phases of SCI remains unclear. Using the rat spinal cord in vitro as a model for studying SCI initial pathophysiology, we investigated if agonists or antagonists of CB1Rs might affect SCI induced by the excitotoxic agent kainate (KA) within 24h from a transient (1h) application of this glutamate agonist. The CB1 agonist anandamide (AEA or pharmacological block of its degradation) did not limit excitotoxic depolarization of spinal networks: cyclic adenosine monophosphate (cAMP) assay demonstrated that CB1Rs remained functional 24h later and similarly expressed among dead or survived cells. Locomotor-like network activity recorded from ventral roots could not recover with such treatments and was associated with persistent depression of synaptic transmission. Motoneurons, that are particularly vulnerable to KA, were not protected by AEA. Application of 2-arachidonoylglycerol also did not attenuate the electrophysiological and histological damage. The intensification of damage by the CB1 antagonist AM251 suggested that endocannabinoids were operative after excitotoxic stimulation, yet insufficient to contrast it efficiently. The present data indicate that the early phases of excitotoxic SCI could not be arrested by pharmacologically exploiting the endocannabinoid system, consistent with the notion that AEA and its derivatives are more useful to treat late SCI phases. PMID:27450568

  17. Comparison of N uptake and internal use efficiency in two tobacco varieties

    Directory of Open Access Journals (Sweden)

    Department of Plant Nutrition, China Agricultural University, Beijing 100193, China

    2015-02-01

    Full Text Available To explain the observation in field experiments that tobacco variety CB-1 was more nitrogen (N-efficient than K326, the influence of two N levels on growth, N uptake and N flow within plants of the two tobacco varieties was studied. Xylem sap from the upper and lower leaves of both tobacco varieties cultured in quartz sand was collected by application of pressure to the root system. CB-1 took up more N with smaller roots at both high (HN, 10 mmol L− 1 and low (LN, 1 mmol L− 1 N levels, and built up more new tissues in upper leaves especially at LN level, than K326. Both varieties showed luxury N uptake, and CB-1 accumulated significantly less NO3− in new tissues than K326, when grown at the HN level. At both N levels, the amount of xylem-transported N and phloem-cycled N from shoot to root in K326 was greater than those in CB-1, indicating higher N use efficiency in CB-1 shoots than in K326 shoots. The major nitrogenous compound in the xylem sap was NO3− irrespective of N level and variety. Low N supply did not cause more NO3− reduction in the root. The results indicated that the N-efficient tobacco variety CB-1 was more efficient in both N uptake by smaller roots and N utilization in shoots, especially when grown at the LN level.

  18. 动态观察非酒精性脂肪肝大鼠肝脏中大麻素受体的表达%The dynamic expressions of endocannabinoid receptors in livers of rats with non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    潘亮; 陆翠华; 黄华

    2011-01-01

    目的:观察大麻素CB1、CB2受体在非酒精性脂肪性肝病(NAFLD)大鼠肝组织中的动态表达,探讨大麻素受体在大鼠NAFLD发病中的作用.方法:利用高脂饮食建立NAFLD大鼠模型,分别在第8、16、24周处死大鼠,HE染色观察肝脏脂肪变、炎症活动和纤维化程度,用免疫组化染色方法观察CB1、CB2受体在NAFLD不同阶段肝组织中的表达.结果:实验大鼠8周呈单纯性脂肪肝改变,16周肝组织弥漫性脂肪变,伴炎性细胞浸润,24周肝脏脂肪肝仍存在,但炎症程度有所减轻,出现程度不同的纤维化.正常大鼠肝脏CB1,CB2受体无明显表达,而在实验组大鼠中的表达均显著增加,CB1受体在第8、24周的表达强于CB2受体.结论:CB1、CB2受体在NAFLD大鼠肝组织中的表达明显增加,提示CB1、CB2受体在肝脏病变过程中发挥重要的作用.

  19. 大麻素受体1在慢性乙型肝炎患者肝组织中的表达及其与炎症的关系%Relationship between inflammation and expression of cannabinoid receptor 1 in liver tissue of patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    叶立红; 王翀奎; 于虹; 刘云燕; 杨莉; 卢建华; 李兵顺; 戴二黑

    2010-01-01

    目的 探讨大麻素受体1(CB1)在慢性乙型肝炎(CHB)患者肝组织中的定位表达及其与肝组织炎症损伤之间的关系.方法 选择118例CHB患者进行肝组织活检,通过免疫组织化学染色检测肝组织中CB1表达情况.结果 随着炎症分级(G)的不断加重,CB1评分也逐渐增加(P<0.05或<0.01).在肝纤维化分期(S)相同的肝组织中,除S1外,S2、S3、S4患者的G评分与CB1评分呈显著相关性(rs分别为0.617、0.855、0.765,均P<0.01).CB1评分与G评分呈显著相关性(rs=0.705,P<0.01);与血清ALT之间有一定相关性(rs=0.257,P<0.05),与血清HBV DNA之间无相关性(rs=-0.038,P>0.05).结论 内源性CB1在肝组织炎症损伤的演变过程中发挥了重要作用.

  20. Endocannabinoid Signaling Regulates Sleep Stability.

    Directory of Open Access Journals (Sweden)

    Matthew J Pava

    Full Text Available The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184 or fatty acid amide hydrolase (AM3506 produced a transient increase in non-rapid eye movement (NREM sleep due to an augmentation of the length of NREM bouts (NREM stability. Similarly, direct activation of type 1 cannabinoid (CB1 receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  1. Schistosome asparaginyl endopeptidase (legumain) is not essential for cathepsin B1 activation in vivo.

    Science.gov (United States)

    Krautz-Peterson, Greice; Skelly, Patrick J

    2008-05-01

    Schistosomes are parasitic platyhelminths that constitute an important public health problem. Adult parasites live in the vasculature of their vertebrate hosts where they consume blood. Ingested blood proteins are degraded by a proteolytic cascade. One of the best characterized schistosome proteases is cathepsin B1 (SmCB1 or Sm31). This protein is synthesized as a large 38 kDa precursor form which is proteolytically cleaved to yield a mature, active 31 kDa enzyme. A second schistosome protease--the asparaginyl endopeptidase SmAE (also known as Sm32, or schistosome legumain), has been proposed to proteolytically convert the 38 kDa precursor SmCB1 into its mature form. Recombinant activated SmAE has been shown to trans-process SmCB1 into the mature, catalytic form in vitro. In the present study, our aim was to test the hypothesis that in vivo SmAE likewise processes SmCB1 into its active form. To do this, expression of the SmAE gene was suppressed in adult Schistosoma mansoni using RNA interference (RNAi). The results of these experiments show that, even in the absence of detectable SmAE protein, SmCB1 is fully processed and active and support the assertion that SmAE is not essential to activate SmCB1 in vivo. The data indicate that our original hypothesis is incorrect and that SmAE is not pivotal in the in vivo conversion of cathepsin B1 into its mature, active form.

  2. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood.

    Science.gov (United States)

    Alteba, Shirley; Korem, Nachshon; Akirav, Irit

    2016-07-01

    Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES. Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders. Here we examined whether cannabinoids administered during "late adolescence" (extensive cannabis use in humans at the ages 18-25) could reverse the long-term adverse effects of ES on neurocognitive function in adulthood. Male and female rats were exposed to ES during post-natal days (P) 7-14, injected with the cannabinoid CB1/2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg, i.p.) for 2 wk during late adolescence (P45-60) and tested in adulthood (P90) for working memory, anxiety, and alterations in CB1 receptors (CB1r), and glucocorticoid receptors (GRs) in the stress circuit [hippocampus, prefrontal cortex (PFC), and basolateral amygdala (BLA)]. ES males and females exhibited impaired performance in short-term memory in adulthood in the spatial location and social recognition tasks; males were also impaired in the novel object recognition task. WIN administered during late adolescence prevented these stress-induced impairments and reduced anxiety levels. WIN normalized the ES-induced up-regulation in PFC-GRs and CA1-CB1r in females. In males, WIN normalized the ES-induced up-regulation in PFC-GR and down-regulation in BLA-CB1r. There is a crucial role of the endocannabinoid system in the effects of early life stress on behavior at adulthood. Differences in recognition memory and in the expression of GRs and CB1r in the fear circuit suggest sex differences in the mechanism underlying coping with stress. PMID:27317195

  3. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    Directory of Open Access Journals (Sweden)

    Badr M. Ibrahim

    2014-03-01

    Full Text Available Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible underlying signaling mechanisms. The current review focuses on the rostral ventrolateral medulla (RVLM as the primary brainstem nucleus implicated in CB1R-evoked pressor response.

  4. Synaptic action of anandamide and related substances in mammalian brain

    OpenAIRE

    Liao, Cheng Yong

    2007-01-01

    Anandamide and the synthetic cannabimimetic drugs AM 404 and WIN 55,212-2 were found to inhibit the binding of [3H]batrachotoxinin A 20--benzoate (BTX) to voltage-gated sodium channels (VGSCs) and also to depress VGSC-dependent release of GABA and L-glutamic acid. These effects occur independently of CB-1 receptor activation since they were not attenuated by AM251 at concentrations known to antagonize CB-1 receptors, although at higher concentrations AM251 inhibited VGSCs also. These ...

  5. Differential role of the nitric oxide pathway on delta(9)-THC-induced central nervous system effects in the mouse.

    Science.gov (United States)

    Azad, S C; Marsicano, G; Eberlein, I; Putzke, J; Zieglgänsberger, W; Spanagel, R; Lutz, B

    2001-02-01

    This study investigated whether the nitric oxide pathway was involved in the central effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive constituent of cannabis sativa. Body temperature, nociception and locomotion were measured in neuronal nitric oxide synthase (nNOS) knock-out (KO) mice and wild-type (WT) controls after intraperitoneal application of Delta(9)-THC. These Delta(9)-THC-induced effects are known to be mediated through the brain-type cannabinoid receptor 1 (CB1). Therefore, in situ hybridization (ISH) experiments were performed in the adult murine brain to determine possible changes in CB1 mRNA levels in nNOS-KO, compared with WT mice, and to reveal brain areas where CB1 and nNOS were coexpressed in the same neurons. We found that an intraperitoneal injection of 10 mg/kg Delta(9)-THC led to the same increase in the hot plate latencies in both genotypes, suggesting that Delta(9)-THC-mediated antinociception does not involve nNOS. In contrast, a significant Delta(9)-THC-induced decrease of body temperature and locomotor activity was only observed in WT, but not in nNOS-KO mice. ISH revealed significantly lower levels of CB1 mRNA in the ventromedial hypothalamus (VMH) and the caudate putamen (Cpu) of the nNOS-KO animals, compared with WT mice. Both areas are known to be among the regions involved in cannabinoid-induced thermoregulation and decrease of locomotion. A numerical evaluation of nNOS/CB1 coexpression showed that approximately half of the nNOS-positive cells in the dorsolateral Cpu also express low levels of CB1. ISH of adjacent serial sections with CB1 and nNOS, revealed expression of both transcripts in VMH, suggesting that numerous nNOS-positive cells of VMH coexpress CB1. Our findings indicate that the nitric oxide pathway is involved in some, but not all of the central effects of Delta(9)-THC.

  6. State-Selective Capture Cross Sections in Proton-Hydrogen and Proton-Helium Collisions at Intermediate and High Energies

    Science.gov (United States)

    Belkic, Dzevad

    1989-01-01

    Total cross sections are computed for electron capture from the ground states of H and He by fast protons using the Corrected first-Born (CB1) approximation. Particular emphasis is given to the formation of atomic hydrogen in excited states 2s, 2p, 3s, 3p, 3d and 4s for which experimental data are available. Detailed comparisons with the measurements are carried out, with the purpose of assessing the validity and utility of the CB1 method for prediction of state-selective cross sections.

  7. State-Selective and Total Single-Capture Cross Sections for Fast Collisions of Multiply Charged Ions with Helium Atoms

    Science.gov (United States)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2013-11-01

    The four-body boundary corrected first Born approximation (CB1-4B) is used to calculate the single electron capture cross sections for collisions between fully stripped ions (He2+, Be4+, B5+ and C6+) and helium target at intermediate and high impact energies. The main goal of this study is to assess the usefulness of the CB1-4B method at intermediate and high impact energies for these collisions. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  8. 大麻素受体及其Ⅰ型抑制剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘梦佳; 郑志兵; 李松

    2006-01-01

    目前已经确认的大麻素(cannabinoid, CB)受体有两种亚型:CB1和CB2,它们的分布与生理功能各不相同,其选择性抑制剂的研究也是近年来的一个热点.研究表明,CB1受体抑制剂具有良好的抗肥胖活性.本文综述了CB受体及其Ⅰ型抑制剂的研究进展.

  9. Synthesis of Hemopressin Peptides by Classical Solution Phase Fragment Condensation

    Directory of Open Access Journals (Sweden)

    P. Anantha Reddy

    2012-01-01

    Full Text Available A fragment condensation solution phase assembly of the naturally occurring CB1 inverse agonist nonapeptides, Pro-Val-Asn-Phe-Lys-Phe/Leu-Leu-Ser-His-OH (hemopressins, and two other homologues: N-terminal 2-amino acid (dipeptide extended undecapeptide, Val-Asp-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH, and three-amino acid (tripeptide extended dodecapeptide, Arg-Val-Asp-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH, both CB1 agonists, is reported.

  10. Antagonistic and inverse agonistic effect of M J15 on cannabinoid receptors Ⅰ%MJ15对大麻素Ⅰ型受体的阻滞及反相激动作用的研究

    Institute of Scientific and Technical Information of China (English)

    曹宁; 杨洋; 周晓棉; 徐成; 王莉莉

    2011-01-01

    Objective: To observe the antagonistic and inverse agonistic effect of MJ15 on cannabinoid receptors Ⅰ (CB1). Methods: The samples of the ileum smooth muscle isolated from guinea pigs and vas deferens isolated from mice were put into the Magnus' bath, and the contractive activities were investigated. Results: The CB1 receptor agonist WIN55212-2 ( 10 - 10 ~ 10 - 6 mol · L - 1 ) inhibited electrically induced contraction of mouse vas deferens; the concentration-dependency was significant. The concentration-response curse was completely inhibited by SR141716A and MJ15(l0-7 mol· L-1). WIN55212-2 inhibited contraction of mouse vas deferens and guinea pig ileum smooth muscle; while SR141716A and MJ15 accelerated the contraction. Conclusion: MJ15 is an antagonist of CB1 receptor with inverse agoni