WorldWideScience

Sample records for cavity surface emitting

  1. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  2. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tunable VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide...

  3. Ring cavity surface emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Mujagic, E.

    2010-01-01

    Quantum cascade lasers (QCLs) are electrically driven semiconductor lasers, which have undergone a steady improvement since the first demonstration in 1994. These are now well established as reliable sources of coherent light in the mid-infrared (MIR) and terahertz (THz)range of the electromagnetic spectrum (3-300 μm). The rapid progress of this type of lasers is based on a high degree of freedom in tailoring the emission wavelength within a large variety of semiconductor heterostructure designs and materials. These properties have attracted the attention of various applications such as gas analysis, chemical sensing, spectral imaging and free-space telecommunication. In order to improve the selectivity, sensitivity and efficiency of today's sensor systems, high optical power, continuous wave and room temperature performance, single-mode operation and low divergence optical beams, are highly desirable qualities of a compact laser source in this field of research. Since all of these features cannot be provided by a conventional edge-emitting device at the same time, research has put focus on the development of surface emitting devices. Nowadays, the vertical cavity surface emitting lasers (VCSELs) are the most prominent representative for this type of light emitters. With its capability of producing narrow circular beams, the feasibility of two-dimensional arrays and on-wafer testing, such a coherent light source results in a reduction of the fabrication effort and production costs. Since the radiation in QCLs is strictly polarized normal to the epitaxial layer plane, fabrication of VCSELs based on QC structures is not viable. The subject of this work is the design and realization of 'ring cavity surface emitting lasers' (ring-CSELs). This type of lasers employs a circular ring cavity and a resonant distributed feedback (DFB) surface grating. Ring-CSELs were fabricated on the basis of MIR and THz QC structures, which cover a wavelength range from 4 μm to 93

  4. Emerging applications for vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Harris, J S; O'sullivan, T; Sarmiento, T; Lee, M M; Vo, S

    2011-01-01

    Vertical cavity surface emitting lasers (VCSELs) emitting at 850 nm have experienced explosive growth in the past decade because of their many attractive optical features and incredibly low-cost manufacturability. This review reviews the foundations for GaAs-based VCSEL technology as well as the materials and device challenges to extend the operating wavelength to both shorter and longer wavelengths. We discuss some of the applications that are enabled by the integration of VCSELs with both active and passive semiconductor elements for telecommunications, both in vivo and in vitro biosensing, high-density optical storage and imaging at wavelengths much less than the diffraction limit of light

  5. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  6. Sub-monolayer dot vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Blokhin, S.A.; Maleev, N.A.; Kuz'menkov, A.G.

    2006-01-01

    Vertical-cavity surface-emitting lasers (VCSELs) based on submonolayer InGaAs quantum-dot active region and doped with AlGaAs/GaAs distributed Bragg reflectors were grown by molecular beam epitaxy. 3 μm aperture single-mode VCSELs demonstrate lasing at 980 nm with threshold current of 0.6 mA, maximum output power of 4 mW and external differential efficiency as high as 68%. Ultimately low internal optical losses were measured for these multimode sub-monolayer quantum dot VCSELs [ru

  7. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  8. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic...

  9. Spectral-Modulation Characteristics of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Vas'kovskaya, M. I.; Vasil'ev, V. V.; Zibrov, S. A.; Yakovlev, V. P.; Velichanskii, V. L.

    2018-01-01

    The requirements imposed on vertical-cavity surface-emitting lasers in a number of metrological problems in which optical pumping of alkali atoms is used are considered. For lasers produced by different manufacturers, these requirements are compared with the experimentally observed spectral characteristics at a constant pump current and in the microwave modulation mode. It is shown that a comparatively small number of lasers in the microwave modulation mode make it possible to obtain the spectrum required for atomic clocks based on the coherent population-trapping effect.

  10. Ultrafast directional beam switching in coupled vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Ning, C. Z.; Goorjian, P.

    2001-01-01

    We propose a strategy to performing ultrafast directional beam switching using two coupled vertical-cavity surface-emitting lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 μm in diameter placed about 1 μm apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degree. [copyright] 2001 American Institute of Physics

  11. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  12. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

    Science.gov (United States)

    Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.

    2018-01-01

    The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

  13. VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    2013-01-01

    The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

  14. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  15. Few-mode vertical-cavity surface-emitting laser: Optional emission of transverse modes with different polarizations

    Science.gov (United States)

    Zhong, Chuyu; Zhang, Xing; Hofmann, Werner; Yu, Lijuan; Liu, Jianguo; Ning, Yongqiang; Wang, Lijun

    2018-05-01

    Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.

  16. Spin-controlled ultrafast vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-05-01

    Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.

  17. Steady-state characteristics of lateral p-n junction vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Ryzhii, V.; Tsutsui, N.; Khmyrova, I.; Ikegami, T.; Vaccaro, P. O.; Taniyama, H.; Aida, T.

    2001-09-01

    We developed an analytical device model for lateral p-n junction vertical-cavity surface-emitting lasers (LJVCSELs) with a quantum well active region. The model takes into account the features of the carrier injection, transport, and recombination in LJVCSELs as well as the features of the photon propagation in the cavity. This model is used for the calculation and analysis of the LJVCSEL steady-state characteristics. It is shown that the localization of the injected electrons primarily near the p-n junction and the reabsorption of lateral propagating photons significantly effects the LJVCSELs performance, in particular, the LJVCSEL threshold current and power-current characteristics. The reincarnation of electrons and holes due to the reabsorption of lateral propagating photons can substantially decrease the threshold current.

  18. A GaInAsP/InP Vertical Cavity Surface Emitting Laser for 1.5 m m operation

    Science.gov (United States)

    Sceats, R.; Balkan, N.; Adams, M. J.; Masum, J.; Dann, A. J.; Perrin, S. D.; Reid, I.; Reed, J.; Cannard, P.; Fisher, M. A.; Elton, D. J.; Harlow, M. J.

    1999-04-01

    We present the results of our studies concerning the pulsed operation of a bulk GaInAsP/InP vertical cavity surface emitting laser (VCSEL). The device is tailored to emit at around 1.5 m m at room temperature. The structure has a 45 period n-doped GaInAsP/InP bottom distributed Bragg reflector (DBR), and a 4 period Si/Al2O3 dielectric top reflector defining a 3-l cavity. Electroluminescence from a 16 m m diameter top window was measured in the pulsed injection mode. Spectral measurements were recorded in the temperature range between 125K and 240K. Polarisation, lasing threshold current and linewidth measurements were also carried out at the same temperatures. The threshold current density has a broad minimum at temperatures between 170K and 190K, (Jth=13.2 kA/cm2), indicating a good match between the gain and the cavity resonance in this temperature range. Maximum emitted power from the VCSEL is 0.18 mW at 180K.

  19. 5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.; Sigrist, M. W.

    2010-08-01

    Mid-IR tunable VECSELs (Vertical External-Cavity Surface-Emitting Lasers) emitting at 4-7 μm wavelengths and suitable for spectroscopic sensing applications are described. They are realized with lead-chalcogenide (IV-VI) narrow band gap materials. The active part, a single 0.6-2-μm thick PbTe or PbSe gain layer, is grown onto an epitaxial Bragg mirror consisting of two or three Pb1- y Eu y Te/BaF2 quarter-wavelength layer pairs. All layers are deposited by MBE in a single run employing a BaF2 or Si substrate, no further processing is needed. The cavity is completed with an external curved top mirror, which is again realized with an epitaxial Bragg structure. Pumping is performed optically with a 1.5-μm laser. Maximum output power for pulsed operation is currently up to >1 Wp at -173°C and >10 mW at 10°C. In continuous wave (CW) operation, 18 mW at 100 K are reached. Still higher operating temperatures and/or powers are expected with better heat-removal structures and better designs employing QW (Quantum-Wells). Advantages of mid-IR VECSELs compared to edge-emitting lasers are their very good beam quality (circular beam with 15 μm are accessible with Pb1- y X y Z (X=Sr, Eu, Sn, Z=Se, Te) and/or including QW.

  20. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    DEFF Research Database (Denmark)

    Larsson, David; Greve, Anders; Hvam, Jørn Märcher

    2009-01-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power...... and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was 60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed....

  1. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    Science.gov (United States)

    Larsson, David; Greve, Anders; Hvam, Jørn M.; Boisen, Anja; Yvind, Kresten

    2009-03-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was ˜60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed.

  2. Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime

    International Nuclear Information System (INIS)

    Sciamanna, M.; Rogister, F.; Megret, P.; Blondel, M.; Masoller, C.; Abraham, N. B.

    2003-01-01

    We analyze the dynamics of a vertical-cavity surface-emitting laser with optical feedback operating in the low-frequency fluctuation regime. By focusing on the fast pulsing dynamics, we show that the two linearly polarized modes of the laser exhibit two qualitatively different behaviors: they emit pulses in phase just after a power dropout and they emit pulses out of phase after the recovery process of the output power. As a consequence, two distinct statistical distributions of the fast pulsating total intensity are observed, either monotonically decaying from the noise level or peaked around the mean intensity value. We further show that gain self-saturation of the lasing transition strongly modifies the shape of the intensity distribution

  3. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Science.gov (United States)

    Fill, Matthias; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-01

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  4. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  5. Optoelectronic integrated circuits utilising vertical-cavity surface-emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Zakharov, S D; Fyodorov, V B; Tsvetkov, V V

    1999-01-01

    Optoelectronic integrated circuits with additional optical inputs/outputs, in which vertical-cavity surface-emitting (VCSE) lasers perform the data transfer functions, are considered. The mutual relationship and the 'affinity' between optical means for data transfer and processing, on the one hand, and the traditional electronic component base, on the other, are demonstrated in the case of implementation of three-dimensional interconnects with a high transmission capacity. Attention is drawn to the problems encountered when semiconductor injection lasers are used in communication lines. It is shown what role can be played by VCSE lasers in solving these problems. A detailed analysis is made of the topics relating to possible structural and technological solutions in the fabrication of single lasers and of their arrays, and also of the problems hindering integrating of lasers into emitter arrays. Considerable attention is given to integrated circuits with optoelectronic smart pixels. Various technological methods for vertical integration of GaAs VCSE lasers with the silicon substrate of a microcircuit (chip) are discussed. (review)

  6. Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power

    Science.gov (United States)

    Rahim, M.; Fill, M.; Felder, F.; Chappuis, D.; Corda, M.; Zogg, H.

    2009-12-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSELs) emitting above 1 W output power in pulsed mode and up to 17 mW in continuous mode at -172 °C were realized. Emission wavelength changes from 5 μm at -172 °C to 3.6 μm at 20 °C heat sink temperature. The active medium is a one wavelength thick PbTe layer grown by molecular beam epitaxy on a Si-substrate. It is followed by a 2.5 pair Pb1-yEuyTe/EuTe epitaxial Bragg mirror. The cavity is completed with an external curved Pb1-yEuyTe/BaF2 mirror. The VECSEL is optically pumped with 1.55 μm wavelength laser and In-soldered to Cu heat sink. No microstructural processing is needed.

  7. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-01-01

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  8. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  9. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    Science.gov (United States)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  10. Amplification of an Autodyne Signal in a Bistable Vertical-Cavity Surface-Emitting Laser with the Use of a Vibrational Resonance

    Science.gov (United States)

    Chizhevsky, V. N.

    2018-01-01

    For the first time, it is demonstrated experimentally that a vibrational resonance in a polarization-bistable vertical-cavity surface-emitting laser can be used to increase the laser response in autodyne detection of microvibrations from reflecting surfaces. In this case, more than 25-fold signal amplification is achieved. The influence of the asymmetry of the bistable potential on the microvibration-detection efficiency is studied.

  11. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  12. 4.5 μm wavelength vertical external cavity surface emitting laser operating above room temperature

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.

    2009-05-01

    A midinfrared vertical external cavity surface emitting laser with 4.5 μm emission wavelength and operating above room temperature has been realized. The active part consists of a single 850 nm thick epitaxial PbSe gain layer. It is followed by a 2 1/2 pair Pb1-yEuyTe/BaF2 Bragg mirror. No microstructural processing is needed. Excitation is done optically with a 1.5 μm wavelength laser. The device operates up to 45 °C with 100 ns pulses and delivers 6 mW output power at 27 °C heat-sink temperature.

  13. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5

  14. Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots

    Science.gov (United States)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo

    We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.

  15. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.

    2016-03-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  16. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, Chao; Margalith, T.; Ng, Tien Khee; Denbaars, S. P.; Ooi, Boon S.; Speck, J. S.; Nakamura, S.

    2016-01-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  17. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong

    2013-06-01

    Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.

  18. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    Li Xiaofeng; Pan Wei; Luo Bin; Ma Dong; Wang Yong; Li Nuohan

    2006-01-01

    Nonlinear dynamics of a vertical-cavity surface-emitting laser (VCSEL) with external optical injection are studied numerically. We consider a master-slave configuration where the dynamic characteristics of the slave are affected by the optical injection from the master, and we also establish the corresponding Simulink model. The period-doubling route as well as the period-halving route is observed, where the regular, double-periodic, and chaotic pulsings are found. By adjusting the injection strength properly, the laser can be controlled to work at a given state. The effects of frequency detuning on the nonlinear behaviors are also investigated in terms of the bifurcation diagrams of photon density with the frequency detuning. For weak injection case, the nonlinear dynamics shown by the laser are quite different when the value of frequency detuning varies contrarily (positive and negative direction). If the optical injection is strong enough, the slave can be locked by the master even though the frequency detuning is relatively large

  19. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

    Science.gov (United States)

    Fang, Tianxiao; Cui, Bifeng; Hao, Shuai; Wang, Yang

    2018-02-01

    In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device. Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).

  20. Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Torre, M. S.; Masoller, C.; Mandel, Paul

    2006-01-01

    We study numerically the polarization dynamics of vertical-cavity surface-emitting lasers (VCSEL's) operating in the fundamental transverse mode. We use an extension of the spin-flip model that not only accounts for the vector nature of the laser field, but also considers spatial transverse effects. The model assumes two orthogonal, linearly polarized fields, which are coupled to two carrier populations, associated with different spin sublevels of the conduction and valence bands in the quantum-well active region. Spatial effects are taken into account by considering transverse profiles for the two polarizations, for the two carrier populations, and for the carrier diffusion. The optical profile is the LP 01 mode, suitable for describing index-guided VCSEL's with cylindrical symmetry emitting on the fundamental transverse mode for both polarizations. We find that in small-active-region VCSEL's, fast carrier diffusion induces self-sustained oscillations of the total laser output, which are not present in larger-area devices or with slow carrier diffusion. These self-pulsations appear close to threshold, and, as the injection current increases, they grow in amplitude; however, there is saturation and the self-pulsations disappear at higher injection levels. The dependence of the oscillation amplitude on various laser parameters is investigated, and the results are found to be in good qualitative agreement with those reported by Van der Sande et al. [Opt. Lett. 29, 53 (2004)], based on a rate-equation model that takes into account transverse inhomogeneities through an intensity-dependent confinement factor

  1. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser.

    Science.gov (United States)

    Tuzson, Béla; Jágerská, Jana; Looser, Herbert; Graf, Manuel; Felder, Ferdinand; Fill, Matthias; Tappy, Luc; Emmenegger, Lukas

    2017-06-20

    A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm -1 at 3.38 μm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.

  2. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  3. Comparison of Mesa and Device Diameter Variation in Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface Emitting Lasers

    International Nuclear Information System (INIS)

    Menon, P.S.; Kandiah, K.; Burhanuddin Yeop Majlis; Shaari, S.

    2011-01-01

    Long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs) have profound advantages compared to traditional edge-emitting lasers offering improved properties with respect to mode selectivity, fibre coupling, threshold currents and integration into 2D arrays or with other electronic devices. Its commercialization is gaining momentum as the local and access network in optical communication system expand. Numerical modeling of LW-VCSEL utilizing wafer-fused InP-based multi-quantum wells (MQW) and GaAs-based distributed Bragg reflectors (DBRs) is presented in this paper. Emphasis is on the device and mesa/pillar diameter design parameter comparison and its effect on the device characteristics. (author)

  4. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    International Nuclear Information System (INIS)

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-01-01

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  5. The vertical-cavity surface-emitting laser incorporating a high contrast grating mirror as a sensing device

    Science.gov (United States)

    Marciniak, Magdalena; Gebski, Marcin; Piskorski, Łukasz; Dems, Maciej; Wasiak, M.; Panajotov, Krassimir; Lott, James A.; Czyszanowski, Tomasz

    2018-02-01

    We propose a novel optical sensing system based on one device that both emits and detects light consisting of a verticalcavity surface-emitting laser (VCSEL) incorporating an high contrast grating (HCG) as a top mirror. Since HCGs can be very sensitive to the optical properties of surrounding media, they can be used to detect gases and liquid. The presence of a gas or a liquid around an HCG mirror causes changes of the power reflectance of the mirror, which corresponds to changes of the VCSEL's cavity quality factor and current-voltage characteristic. By observation of the current-voltage characteristic we can collect information about the medium around the HCG. In this paper we investigate how the properties of the HCG mirror depend on the refractive index of the HCG surroundings. We present results of a computer simulation performed with a three-dimensional fully vectorial model. We consider silicon HCGs on silica and designed for a 1300 nm VCSEL emission wavelength. We demonstrate that our approach can be applied to other wavelengths and material systems.

  6. Spectrum study of top-emitting organic light-emitting devices with micro-cavity structure

    International Nuclear Information System (INIS)

    Liu Xiang; Wei Fuxiang; Liu Hui

    2009-01-01

    Blue and white top-emitting organic light-emitting devices OLEDs with cavity effect have been fabricated. TBADN:3%DSAPh and Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 were used as emitting materials of microcavity OLEDs. On a patterned glass substrate, silver was deposited as reflective anode, and copper phthalocyanine (CuPc) layer as HIL and 4'-bis[N-(1-Naphthyl)- N-phenyl-amino]biphenyl (NPB) layer as HTL were made. Al/Ag thin films were made as semi-transparent cathode with a transmittance of about 30%. By changing the thickness of indium tin oxide ITO, deep blue with Commission Internationale de L'Eclairage chromaticity coordinates (CIEx, y) of (0.141, 0.049) was obtained on TBADN:3%DSAPh devices, and different color (red, blue and green) was obtained on Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 devices, full width at half maxima (FWHM) was only 17 nm. The spectral intensity and FWHM of emission in cavity devices have also been studied.

  7. Vertical Cavity Surface Emitting Laser for Operation at 1.5 µm with Integral AlGaInAs/InP Bragg mirrors

    OpenAIRE

    Linnik, M.; Christou, A.

    2001-01-01

    The design and performance of a low threshold selectively oxidized Vertical Cavity Surface Emitting Laser (VCSEL) fabricated for operation at a wavelength of 1.55 µm is based on III-V quaternary semiconductor alloys and is grown by Molecular Beam Epitaxy technique. The theoretical investigation of the optical properties of the compound semiconductor alloys allows one to select the optimum materials for highly reflective Bragg mirrors. The simulation of the designed VCSEL performance has been ...

  8. Self-sustained pulsation in the oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots

    International Nuclear Information System (INIS)

    Kuzmenkov, A. G.; Ustinov, V. M.; Sokolovskii, G. S.; Maleev, N. A.; Blokhin, S. A.; Deryagin, A. G.; Chumak, S. V.; Shulenkov, A. S.; Mikhrin, S. S.; Kovsh, A. R.; McRobbie, A. D.; Sibbett, W.; Cataluna, M. A.; Rafailov, E. U.

    2007-01-01

    The authors report the observation of strong self-pulsations in molecular-beam epitaxy-grown oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. At continuous-wave operation, self-pulsations with pulse durations of 100-300 ps and repetition rates of 0.2-0.6 GHz were measured. The average optical power of the pulsations was 0.5-1.0 mW at the laser continuous-wave current values of 1.5-2.5 mA

  9. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Lee, SeungGeun; Forman, Charles A.; Lee, Changmin; Kearns, Jared; Young, Erin C.; Leonard, John T.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2018-06-01

    We report the first demonstration of III–nitride vertical-cavity surface-emitting lasers (VCSELs) with tunnel junction (TJ) intracavity contacts grown completely by metal–organic chemical vapor deposition (MOCVD). For the TJs, n++-GaN was grown on in-situ activated p++-GaN after buffered HF surface treatment. The electrical properties and epitaxial morphologies of the TJs were first investigated on TJ LED test samples. A VCSEL with a TJ intracavity contact showed a lasing wavelength of 408 nm, a threshold current of ∼15 mA (10 kA/cm2), a threshold voltage of 7.8 V, a maximum output power of 319 µW, and a differential efficiency of 0.28%.

  10. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    Science.gov (United States)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I

  11. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    Science.gov (United States)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  12. Proton irradiation effects in oxide-confined vertical cavity surface emitting laser (VCSEL) diodes

    International Nuclear Information System (INIS)

    Barnes, C.E.; Swift, G.M.; Guertin, S.; Schwank, J.R.; Armendariz, M.G.; Hash, G.L.; Choquette, K.D.

    1999-01-01

    Vertical cavity surface emitting laser (VCSEL) diodes are employed as the emitter portion of opto-couplers that are used in space applications. Proton irradiation studies on VCSELs were performed at the Indiana University cyclotron facility. The beam energy was set at 192 MeV, the beam current was 200 nA that is equivalent to a flux of approximately 1*10 11 protons/cm 2 .s. We conclude that the oxide confined VCSELs examined in this study show more than sufficient radiation hardness for nearly all space applications. The observed proton-induced decreases in light output and the corresponding increases in laser threshold current can be explained in terms of proton-induced displacement damage which introduces non-radiative recombination centers in the active region of the lasers and causes a decrease in laser efficiency. These radiation effects accentuate the detrimental thermal effects observed at high currents. We also note that forward bias annealing is effective in these devices in producing at least partial recovery of the light output, and that this may be a viable hardness assurance technique during a flight mission. (A.C.)

  13. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  14. Transverse mode selection in vertical-cavity surface-emitting lasers via deep impurity-induced disordering

    Science.gov (United States)

    O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.

    2017-02-01

    Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.

  15. A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser

    Science.gov (United States)

    Li, Chung-Yi; Tsai, Wen-Shing

    2018-02-01

    This study proves that an underwater wireless optical communication (UWOC) based on a 6 m/5.2 Gbps 68 nm vertical-cavity surface-emitting laser (VCSEL)-based system is superior to a 405 nm UWOC system. This UWOC application is the first to use a VCSEL at approximately 680 nm. The experiment also proved that a 680 nm VCSEL has the same transmission distance as that of an approximately 405 nm laser diode. The 680 nm VCSEL has a 5.2 Gbps high transmission rate and can transmit up to 6 m. Thus, the setup is the best alternative solution for high-speed UWOC applications.

  16. Attractor hopping between polarization dynamical states in a vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc

    2018-03-01

    We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.

  17. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin, E-mail: pec9@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Liu, Lei; Huang, Xi; Lu, Yongfeng [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  18. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  19. Modular PbSrS/PbS mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Zogg, H.; Cao, D.; Kobayashi, S.; Yokoyama, T.; Ishida, A.

    2011-07-01

    A mid-infrared vertical external cavity surface emitting laser (VECSEL) based on undoped PbS is described herein. A 200 nm-thick PbS active layer embedded between PbSrS cladding layers forms a double heterostructure. The layers are grown on a lattice and thermal expansion mismatched Si-substrate. The substrate is placed onto a flat bottom Bragg mirror again grown on a Si substrate, and the VECSEL is completed with a curved top mirror. Pumping is done optically with a 1.55 μm laser diode. This leads to an extremely simple modular fabrication process. Lasing wavelengths range from 3-3.8 μm at 100-260 K heat sink temperature. The lowest threshold power is ˜210 mWp and highest output power is ˜250 mWp. The influence of the different recombination mechanism as well as free carrier absorption on the threshold power is modeled.

  20. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  1. 1.3 μm wavelength vertical cavity surface emitting laser fabricated by orientation-mismatched wafer bonding: A prospect for polarization control

    Science.gov (United States)

    Okuno, Yae L.; Geske, Jon; Gan, Kian-Giap; Chiu, Yi-Jen; DenBaars, Steven P.; Bowers, John E.

    2003-04-01

    We propose and demonstrate a long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of a (311)B InP-based active region and (100) GaAs-based distributed Bragg reflectors (DBRs), with an aim to control the in-plane polarization of output power. Crystal growth on (311)B InP substrates was performed under low-migration conditions to achieve good crystalline quality. The VCSEL was fabricated by wafer bonding, which enables us to combine different materials regardless of their lattice and orientation mismatch without degrading their quality. The VCSEL was polarized with a power extinction ratio of 31 dB.

  2. Field emitted electron trajectories for the CEBAF cavity

    International Nuclear Information System (INIS)

    Yunn, B.C.; Sundelin, R.M.

    1993-06-01

    Electromagnetic fields of the superconducting 5-cell CEBAF cavity with its fundamental power coupler are solved numerically with URMEL and MAFIA codes. Trajectories of field emitted electrons following the Fowler-Nordheim relation are studied with a numerical program which accepts the URMEL/MAFIA fields. Emission sites and gradients are determined for those electrons which can reach the cold ceramic window either directly or by an energetic backscattering. The peak and average impact energy and current are found. The generation of dark current by field emitted electrons has also been studied, and its relevance to CEBAF operation is briefly discussed

  3. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback.

    Science.gov (United States)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-01

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  4. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  5. Characterization of 2.3 μm GaInAsSb-based vertical-cavity surface-emitting laser structures using photo-modulated reflectance

    International Nuclear Information System (INIS)

    Chai, G. M. T.; Hosea, T. J. C.; Fox, N. E.; Hild, K.; Ikyo, A. B.; Marko, I. P.; Sweeney, S. J.; Bachmann, A.; Arafin, S.; Amann, M.-C.

    2014-01-01

    We report angle dependent and temperature dependent (9 K–300 K) photo-modulated reflectance (PR) studies on vertical-cavity surface-emitting laser (VCSEL) structures, designed for 2.3 μm mid-infrared gas sensing applications. Changing the temperature allows us to tune the energies of the quantum well (QW) transitions relative to the VCSEL cavity mode (CM) energy. These studies show that this VCSEL structure has a QW-CM offset of 21 meV at room temperature. Consequently the QW ground-state transition comes into resonance with the CM at 220 ± 2 K. The results from these PR studies are closely compared with those obtained in a separate study of actual operating devices and show how the PR technique may be useful for device optimisation without the necessity of having first to process the wafers into working devices

  6. Characterization of 2.3 μm GaInAsSb-based vertical-cavity surface-emitting laser structures using photo-modulated reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, G. M. T. [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Hosea, T. J. C., E-mail: j.hosea@surrey.ac.uk [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Fox, N. E.; Hild, K.; Ikyo, A. B.; Marko, I. P.; Sweeney, S. J. [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bachmann, A.; Arafin, S.; Amann, M.-C. [Walter Schottky Institut, Technische Universität Munchen, Am Coulombwall 4, D-85748 Garching (Germany)

    2014-01-07

    We report angle dependent and temperature dependent (9 K–300 K) photo-modulated reflectance (PR) studies on vertical-cavity surface-emitting laser (VCSEL) structures, designed for 2.3 μm mid-infrared gas sensing applications. Changing the temperature allows us to tune the energies of the quantum well (QW) transitions relative to the VCSEL cavity mode (CM) energy. These studies show that this VCSEL structure has a QW-CM offset of 21 meV at room temperature. Consequently the QW ground-state transition comes into resonance with the CM at 220 ± 2 K. The results from these PR studies are closely compared with those obtained in a separate study of actual operating devices and show how the PR technique may be useful for device optimisation without the necessity of having first to process the wafers into working devices.

  7. Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks

    Science.gov (United States)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.

    2008-04-01

    As wavelength division multiplexed passive optical networks (WDM-PONs) are expected to be first deployed to transport high capacity services to business customers, real-time knowledge of fiber/device faults and the location of such faults will be a necessity to guarantee reliability. Nonetheless, the added benefit of implementing fault monitoring capability should only incur minimal cost associated with upgrades to the network. In this work, we propose and experimentally demonstrate a fault monitoring and localization scheme based on a highly-sensitive and potentially low-cost monitor in conjunction with vertical cavity surface-emitting lasers (VCSELs). The VCSELs are used as upstream transmitters in the WDM-PON. The proposed scheme benefits from the high reflectivity of the top distributed Bragg reflector (DBR) mirror of optical injection-locked (OIL) VCSELs to reflect monitoring channels back to the central office for monitoring. Characterization of the fault monitor demonstrates high sensitivity, low bandwidth requirements, and potentially low output power. The added advantage of the proposed fault monitoring scheme incurs only a 0.5 dB penalty on the upstream transmissions on the existing infrastructure.

  8. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  9. Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) as materials for vertical-cavity surface-emitting lasers in the mid-infrared spectral range of 4–5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Pashkeev, D. A., E-mail: d.pashkeev@gmail.com; Selivanov, Yu. G.; Chizhevskii, E. G.; Zasavitskiy, I. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-02-15

    The optical properties of epitaxial layers and heterostructures based on Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) are analyzed in the context of designing Bragg mirrors and vertical-cavity surface-emitting lasers for the midinfrared spectral range. It is shown that the optimal heteropair for laser microcavities is Pb{sub 1–x}Eu{sub x}Te(x ≈ 0.06)/EuTe. On the basis of this heteropair, highly reflective Bragg mirrors consisting of just three periods and featuring a reflectance of R ⩾ 99.8% at the center of the stop band are grown by molecular-beam epitaxy on BaF{sub 2} (111) substrates. Single-mode optically pumped vertical-cavity surface-emitting lasers for the 4–5 μm spectral range operating at liquid-nitrogen temperatures are demonstrated.

  10. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    Science.gov (United States)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  11. Miniature scanning electron microscope for investigation of the interior surface of a superconducting Nb radiofrequency accelerating cavity

    International Nuclear Information System (INIS)

    Mathewson, A.G.; Grillot, A.

    1982-01-01

    A miniature scanning electron microscope with an electron beam diameter approx.1 μm has been constructed for high resolution examination at room temperature of the interior surface of a superconducting Nb radiofrequency accelerating cavity. Various objects and surface structures were observed, some of which could be correlated with lossy regions or ''hot spots'' detected previously on the outside surface during cavity operation at < or =4.2 K by a chain of carbon resistors. No internal surface features were observed which could conclusively be correlated with field emitting electron sources

  12. CW substrate-free metal-cavity surface microemitters at 300 K

    International Nuclear Information System (INIS)

    Lu, Chien-Yao; Chang, Shu-Wei; Chuang, Shun Lien; Germann, Tim D; Pohl, Udo W; Bimberg, Dieter

    2011-01-01

    In this paper substrate-free metal-cavity surface microemitters are demonstrated. The optical cavity is formed by a metal reflector, metal-surrounded sidewall and n-doped distributed-Bragg reflector, which provides optical feedback and carrier injection. We describe a simple design principle with the modal properties modified by geometry and metal-insulator cladding. Both resonant cavity light-emitting diodes (1.85 µm diameter and 0.6 µm height) and lasers (2.0 µm diameter and 2.5 µm height) are successfully fabricated and characterized. These two types of devices operate at room temperature under continuous-wave (CW) operation. Since the devices are substrate-free, they can be bonded to any substrates. From the threshold currents of the lasers, we obtain a high characteristic temperature of 425 K in the range of 10–27 °C. We also discuss a general approach to improve the diffraction from small-aperture devices

  13. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide

    Science.gov (United States)

    Kuramoto, Masaru; Kobayashi, Seiichiro; Akagi, Takanobu; Tazawa, Komei; Tanaka, Kazufumi; Saito, Tatsuma; Takeuchi, Tetsuya

    2018-03-01

    We have achieved a high output power of 6 mW from a 441 nm GaN-based vertical-cavity surface-emitting laser (VCSEL) under continuous wave (CW) operation, by reducing both the internal loss and the reflectivity of the front cavity mirror. A preliminary analysis of the internal loss revealed an enormously high transverse radiation loss in a conventional GaN-based VCSEL without lateral optical confinement (LOC). Introducing an LOC structure enhanced the slope efficiency by a factor of 4.7, with a further improvement to a factor of 6.7 upon reducing the front mirror reflectivity. The result was a slope efficiency of 0.87 W/A and an external differential quantum efficiency of 32% under pulsed operation. A flip-chip-bonded VCSEL also exhibited a high slope efficiency of 0.64 W/A and an external differential quantum efficiency of 23% for the front-side output under CW operation. The reflectivity of the cavity mirror was adjusted by varying the number of AlInN/GaN distributed Bragg reflector pairs from 46 to 42, corresponding to reflectivity values from 99.8% to 99.5%. These results demonstrate that a combination of internal loss reduction and cavity mirror control is a very effective way of obtaining a high output GaN-based VCSEL.

  14. 2 W high efficiency PbS mid-infrared surface emitting laser

    Science.gov (United States)

    Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H.

    2011-09-01

    High efficiency laser operation with output power exceeding 2 W was obtained for vertical external-cavity PbS based IV-VI compound surface emitting quantum-well structures. The laser showed external quantum efficiency as high as 16%. Generally, mid-infrared III-V or II-VI semiconductor laser operation utilizing interband electron transitions are restricted by Auger recombination and free carrier absorption. Auger recombination is much lower in the IV-VI semiconductors, and the free-carrier absorption is significantly reduced by an optically pumped laser structure including multi-step optical excitation layers.

  15. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  16. An efficient approach to characterizing and calculating carrier loss due to heating and barrier height variation in vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Jian, Wu; Summers, H. D.

    2010-01-01

    It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty in deriving the parameters relating to the quantum well structure. In this paper, we describe an efficient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AlInGaAs–AlGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs. (classical areas of phenomenology)

  17. TEM observations of crack tip: cavity interactions

    International Nuclear Information System (INIS)

    Horton, J.A.; Ohr, S.M.; Jesser, W.A.

    1981-01-01

    Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities

  18. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells

    International Nuclear Information System (INIS)

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.

    2015-01-01

    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF 3 /ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at −18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications

  19. X-ray imaging of superconducting radio frequency cavities

    Science.gov (United States)

    Musser, Susan Elizabeth

    The goal of this research was to develop an improved diagnostic technique to identify the location of defects that limit superconducting radio frequency (SRF) cavity performance during cavity testing or in existing accelerators. SRF cavities are primarily constructed of niobium. Electrons within the metal of a cavity under high electric field gradient have a probability of tunneling through the potential barrier. i e. leave the surface or are field emitted in regions where defects are encountered. Field emitted electrons are accelerated in the electric fields within the cavity. The electrons can have complicated trajectories and strike the cavity walls thus producing x-rays via Coulomb interactions and/or bremsstrahlung radiation. The endpoint energy of an x-ray spectrum predicts the electron maximum final kinetic energy within the cavity. Field emission simulations can then predict the source of the field-emitted electrons and the defect(s). In a multicell cavity the cells are coupled together and act as a set of coupled oscillators. There are multiple passbands of excitation for a multicell structure operating in a particular mode. For different passbands of operation the direction and amplitude of the fields within a cavity change from that of the normal accelerating mode. Field emitted electrons have different trajectories depending on the mode and thus produce x-rays in different locations. Using a collimated sodium iodide detector and subjecting a cavity to multiple passband modes at high electric field gradient the source of a cavity's x-rays can be determined. Knowing the location of the x-rays and the maximum electron kinetic energy; field emission simulations for different passband modes can be used to determine and verify the source of the field emitted electrons from mode to mode. Once identified, the defect(s) can be repaired or modifications made to the manufacturing process.

  20. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    International Nuclear Information System (INIS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-01-01

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J th ) of ∼3.5 kA/cm 2 , compared to the ITO VCSEL J th of 8 kA/cm 2 . The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL

  1. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  2. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Lee, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm{sup 2} (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP{sub 12,1}), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  3. SRF Cavity Surface Topography Characterization Using Replica Techniques

    Energy Technology Data Exchange (ETDEWEB)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  4. Highly strained InGaAs oxide confined VCSELs emitting in 1.25 μm

    International Nuclear Information System (INIS)

    Chang, S.J.; Yu, H.C.; Su, Y.K.; Chen, I.L.; Lee, T.D.; Lu, C.M.; Chiou, C.H.; Lee, Z.H.; Yang, H.P.; Sung, C.P.

    2005-01-01

    Highly strained GaAs-based all-epitaxial oxide confined vertical cavity surface emitting lasers (VCSELs) emitting in 1.25 μm were fabricated. Compared with the designed cavity resonance, it was found that lasing wavelength blue shifted by 29 nm when the driving current was small. The observation of such oxide mode is attributed to the effective optical thickness shrinkage of the oxide layer, and large detuning between the gain peak and cavity resonance

  5. Complex-enhanced chaotic signals with time-delay signature suppression based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

    Science.gov (United States)

    Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang

    2018-03-01

    A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.

  6. Design and Fabrication of 850 and 980 nm Vertical Cavity Surface Emitting Laser

    National Research Council Canada - National Science Library

    Das, N

    2004-01-01

    .... VCSELs on GaAs substrates were grown by the molecular beam epitaxy technique. In this report we present detailed procedures to design and fabricate 850-nm top-emitting and 980-nm bottom-emitting VCSELs...

  7. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    Science.gov (United States)

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  8. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  9. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  10. An iterative model for the steady state current distribution in oxide-confined vertical-cavity surface-emitting lasers (VCSELs)

    Science.gov (United States)

    Chuang, Hsueh-Hua

    The purpose of this dissertation is to develop an iterative model for the analysis of the current distribution in vertical-cavity surface-emitting lasers (VCSELs) using a circuit network modeling approach. This iterative model divides the VCSEL structure into numerous annular elements and uses a circuit network consisting of resistors and diodes. The measured sheet resistance of the p-distributed Bragg reflector (DBR), the measured sheet resistance of the layers under the oxide layer, and two empirical adjustable parameters are used as inputs to the iterative model to determine the resistance of each resistor. The two empirical values are related to the anisotropy of the resistivity of the p-DBR structure. The spontaneous current, stimulated current, and surface recombination current are accounted for by the diodes. The lateral carrier transport in the quantum well region is analyzed using drift and diffusion currents. The optical gain is calculated as a function of wavelength and carrier density from fundamental principles. The predicted threshold current densities for these VCSELs match the experimentally measured current densities over the wavelength range of 0.83 mum to 0.86 mum with an error of less than 5%. This model includes the effects of the resistance of the p-DBR mirrors, the oxide current-confining layer and spatial hole burning. Our model shows that higher sheet resistance under the oxide layer reduces the threshold current, but also reduces the current range over which single transverse mode operation occurs. The spatial hole burning profile depends on the lateral drift and diffusion of carriers in the quantum wells but is dominated by the voltage drop across the p-DBR region. To my knowledge, for the first time, the drift current and the diffusion current are treated separately. Previous work uses an ambipolar approach, which underestimates the total charge transferred in the quantum well region, especially under the oxide region. However, the total

  11. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  12. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  13. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  14. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  15. Characteristics of GaN-based 500 nm light-emitting diodes with embedded hemispherical air-cavity structure

    Science.gov (United States)

    Zhang, Minyan; Li, Yufeng; Li, Qiang; Su, Xilin; Wang, Shuai; Feng, Lungang; Tian, Zhenhuan; Guo, Maofeng; Zhang, Guowei; Ding, Wen; Yun, Feng

    2018-03-01

    GaN-based 500 nm light-emitting diodes (LEDs) with an air-cavity formed on a laser-drilled hemispherical patterned sapphire substrate (HPSS) were investigated. The cross-section transmission electron microscopy image of the HPSS-LED epilayer indicated that most of the threading dislocations were bent towards the lateral directions. It was found that in InGaN/GaN multiple quantum wells (MQWs) of HPSS-LEDs, there were fewer V-pits and lower surface roughness than those of conventional LEDs which were grown on flat sapphire substrates (FSSs). The high-resolution x-ray diffraction showed that the LED grown on a HPSS has better crystal quality than that grown on a FSS. Compared to FSS-LEDs, the photoluminescence (PL) intensity, the light output power, and the external quantum efficiency at an injected current of 20 mA for the HPSS-LED were enhanced by 81%, 65%, and 62%, respectively, such enhancements can be attributed to better GaN epitaxial quality and higher light extraction. The slightly peak wavelength blueshift of electroluminescence for the HPSS-LED indicated that the quantum confined Stark effect in the InGaN/GaN MQWs has been reduced. Furthermore, it was found that the far-field radiation patterns of the HPSS-LED have smaller view angles than that of the FSS-LED. In addition, the scanning near field optical microscope results revealed that the area above the air-cavity has a larger PL intensity than that without an air-cavity, and the closer to the middle of the air-cavity the stronger the PL intensity. These nano-light distribution findings were in good agreement with the simulation results obtained by the finite difference time domain method.

  16. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  17. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  18. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  19. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    Science.gov (United States)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  20. Light extraction efficiency improvement in GaN-based blue light emitting diode with two-dimensional nano-cavity structure

    International Nuclear Information System (INIS)

    Cho, Joong-Yeon; Hong, Sung-Hoon; Byeon, Kyeong-Jae; Lee, Heon

    2012-01-01

    The light extraction efficiency of light emitting diode (LED) devices was improved by embedding nano-sized two-dimensional, air cavity photonic crystal (PC) structure on the indium tin oxide (ITO) layer of GaN-based LEDs. The embedded air cavity PC structure was fabricated using a reversal imprint lithography technique. The nano-cavity patterns had a width of 560 nm, a space of 240 nm and a height of 280 nm. According to current–voltage characterization, the electrical performance of the LED devices was not degraded by the fabrication process of air cavity PC structure. The optical output power of the LED device was increased by up to 10% at a drive current of 20 mA by forming the nano-cavity PC structure on the transparent electrode of the blue LED device, which was grown on a patterned sapphire substrate, to maximize the photon extraction. Since photons are scattered with cavities and are unaffected by the packaging process, which is the encapsulation of a LED device with epoxy resin, this enhancement in light extraction efficiency will not be decreased after the packaging process.

  1. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  2. Research and development of an ultra clean surface for RF cavities

    International Nuclear Information System (INIS)

    Miwa, Hajime; Ikeda, Tokumi; Suzuki, Takafusa; Kurosawa, Kiyosi; Kako, Eiji; Noguchi, Shuichi; Saito, Kenji; Kneisel, P.

    1993-01-01

    Suppression of field emission is essentially important in order to attain higher accelerating gradients. Therefore, elimination of residual dust particles on the inner surface of RF cavities is necessary. Surface of a niobium cavity was simulated in silicon wafers, and analysis of dust particles was performed by a particle counter used for semiconductor industries. Experimental results in various surface treatments and applications to niobium cavities are described in this paper. (author)

  3. Laser polishing for topography management of accelerator cavity surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. Mike [College of William and Mary, Williamsburg, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kelley, Michael J. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  4. Development of optical inspection system of L-band SRF cavity

    International Nuclear Information System (INIS)

    Tajima, Yujiro; Iwashita, Yoshihisa; Hayano, Hitoshi

    2008-01-01

    The International Linear Collider (ILC) will require about 15,000 1.3 GHz superconducting radio frequency (SRF) accelerating cavities with high accelerating gradient (>35 MV/m) in its main linac. The high yield (80%) of successful high gradient cavities is necessary. Both of the yield and the accelerating gradient of SRF cavities does not reach the required level at present. We think that the gradient of the SRF cavities is limited by irregularities on the interior surface of the cavities, for example, fine dusts (1μm), balls (100μm) and pits (100μm): electrons emitted from the fine dusts by the tunnel effect are accelerated in the electric field, and consume the stored energy of the cavities (Field Emission). The balls and pits cause a breakdown by a magnetic field enhancement or a thermal current concentration (Thermal Breakdown). To prevent these problems the interior surface are treated by polishing and rinsing. The relation between the surface states and the gradient limitations, however, is still not clarified. To study the relation, we are developing an optical inspection system of the interior surface. (author)

  5. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S.

    2010-01-01

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb 2 O 5 ) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  6. Vertical‐cavity surface‐emitting laser based digital coherent detection for multigigabit long reach passive optical links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2011-01-01

    We report on experimental demonstration of digital coherent detection based on a directly modulated vertical‐cavity surface‐emitting laser with bit rate up to 10 Gbps. This system allows a cooler‐less, free running, and unamplified transmission without optical dispersion compensation up to 105 km...... at 5 Gbps long reach passive optical links. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2462–2464, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26331...

  7. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S. [GUAS, Tsukuba, Ibaraki 305-0801 (Japan); KEK, Tsukuba, Ibaraki 305-0801 (Japan); KAKEN Inc., Hokota, Ibaraki 311-1416 (Japan); GUAS, Tsukuba, Ibaraki 305-0801 (Japan) and KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-07-15

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb{sub 2}O{sub 5}) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  8. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2015-07-15

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  9. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2015-07-01

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  10. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-12-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.

  11. Field dependent surface resistance of niobium on copper cavities

    Directory of Open Access Journals (Sweden)

    T. Junginger

    2015-07-01

    Full Text Available The surface resistance R_{S} of superconducting cavities prepared by sputter coating a niobium film on a copper substrate increases significantly stronger with the applied rf field compared to cavities of bulk material. A possible cause is that the thermal boundary resistance between the copper substrate and the niobium film induces heating of the inner cavity wall, resulting in a higher R_{S}. Introducing helium gas in the cavity, and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by less than 120 mK when R_{S} increases with E_{acc} by 100  nΩ. This is more than one order of magnitude less than what one would expect from global heating. Additionally, the effects of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for the current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered R_{S}.

  12. Optical surface properties and their RF limitations of European XFEL cavities

    Science.gov (United States)

    Wenskat, Marc

    2017-10-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-ray Free Electron Laser and the International Linear Collider HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot ’optical bench for automated cavity inspection with high resolution on short timescales’ OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor-specific surface properties which allow the performance of quality control and assurance during production. In addition, a strong negative correlation of ρ =-0.93 with a significance of 6 σ of the integrated grain boundary area \\sum {A} versus the maximal achievable accelerating field {{E}}{acc,\\max } has been found.

  13. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); Gaafar, M.; Vaupel, M.; Stolz, W.; Rahimi-Iman, A.; Koch, M. [Department of Physics and Materials Science Center, Philipps-Universität Marburg, 35032 Marburg (Germany)

    2015-07-27

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g{sup (2)}(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  14. Investigation of Plasma Etching for Superconducting RF Cavities Surface Preparation. Final Report

    International Nuclear Information System (INIS)

    Vuskovic, Leposava

    2009-01-01

    Our results show that plasma-treated samples are comparable or superior to a BCP sample, both in the size of features and sharpness of the boundaries between individual features at the surface. Plasma treatment of bulk Nb cavities is a promising technique for microwave cavities preparation used in particle acceleration application. Etching rates are sufficiently high to enable efficient removal of mechanically damaged surface layer with high reproducibility. No impurities are deposited on the bulk Nb surface during plasma treatment. Surface topology characteristic are promising for complex cavity geometry, since discharge conforms the profile of the reaction chamber. In view of these experimental results, we propose plasma treatment for producing microwave cavities with high Q factor instead of using bulk Nb treated with wet etching process.

  15. Plasma processing of large curved surfaces for superconducting rf cavity modification

    Directory of Open Access Journals (Sweden)

    J. Upadhyay

    2014-12-01

    Full Text Available Plasma-based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF cavities. We have demonstrated surface layer removal in an asymmetric nonplanar geometry, using a simple cylindrical cavity. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (rf circuit elements, gas pressure, rf power, chlorine concentration in the Cl_{2}/Ar gas mixtures, residence time of reactive species, and temperature of the cavity. Using variable radius cylindrical electrodes, large-surface ring-shaped samples, and dc bias in the external circuit, we have measured substantial average etching rates and outlined the possibility of optimizing plasma properties with respect to maximum surface processing effect.

  16. Aging of residual surface resistance of superconducting lead cavities

    DEFF Research Database (Denmark)

    Danielsen, M.

    1972-01-01

    Measurements of the residual surface resistance of superconducting lead cavities as a function of time during a period of a month showed an oscillating variation. An explanation of the ageing curves is proposed. ©1972 The American Institute of Physics......Measurements of the residual surface resistance of superconducting lead cavities as a function of time during a period of a month showed an oscillating variation. An explanation of the ageing curves is proposed. ©1972 The American Institute of Physics...

  17. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    International Nuclear Information System (INIS)

    Illias, Hazlee A; Chen, George; Lewin, Paul L

    2011-01-01

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  18. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: h.illias@um.edu.my [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2011-06-22

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  19. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  20. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  1. Cavity-enhanced surface-plasmon resonance sensing: modeling and performance

    International Nuclear Information System (INIS)

    Giorgini, A; Avino, S; Malara, P; Zullo, R; Gagliardi, G; Homola, J; De Natale, P

    2014-01-01

    We investigate the performance of a surface-plasmon-resonance refractive-index (RI) sensor based on an optical resonator. The resonator transforms RI changes of liquid samples, interacting with the surface plasmon excited by near-infrared light, into a variation of the intra-cavity optical loss. Cavity ring-down measurements are provided as a proof of concept of RI sensing on calibrated mixtures. A characterization of the overall sensor response and noise features as well as a discussion on possible improvements is carried out. A reproducibility analysis shows that a resolution of 10 −7 –10 −8  RIU is within reach over observation times of 1–30 s. The ultimate resolution is set only by intrinsic noise features of the cavity-based method, pointing to a potential limit below 10 −10  RIU/√Hz. (paper)

  2. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  3. Water entry without surface seal: Extended cavity formation

    KAUST Repository

    Mansoor, Mohammad M.

    2014-03-01

    We report results from an experimental study of cavity formation during the impact of superhydrophobic spheres onto water. Using a simple splash-guard mechanism, we block the spray emerging during initial contact from closing thus eliminating the phenomenon known as \\'surface seal\\', which typically occurs at Froude numbers Fr= V0 2/(gR0) = O(100). As such, we are able to observe the evolution of a smooth cavity in a more extended parameter space than has been achieved in previous studies. Furthermore, by systematically varying the tank size and sphere diameter, we examine the influence of increasing wall effects on these guarded impact cavities and note the formation of surface undulations with wavelength λ =O(10)cm and acoustic waves λa=O(D0) along the cavity interface, which produce multiple pinch-off points. Acoustic waves are initiated by pressure perturbations, which themselves are generated by the primary cavity pinch-off. Using high-speed particle image velocimetry (PIV) techniques we study the bulk fluid flow for the most constrained geometry and show the larger undulations ( λ =O (10cm)) have a fixed nature with respect to the lab frame. We show that previously deduced scalings for the normalized (primary) pinch-off location (ratio of pinch-off depth to sphere depth at pinch-off time), Hp/H = 1/2, and pinch-off time, τ α (R0/g) 1/2, do not hold for these extended cavities in the presence of strong wall effects (sphere-to-tank diameter ratio), ε = D 0/Dtank 1/16. Instead, we find multiple distinct regimes for values of Hp/H as the observed undulations are induced above the first pinch-off point as the impact speed increases. We also report observations of \\'kinked\\' pinch-off points and the suppression of downward facing jets in the presence of wall effects. Surprisingly, upward facing jets emanating from first cavity pinch-off points evolve into a \\'flat\\' structure at high impact speeds, both in the presence and absence of wall effects.

  4. On the field dependent surface resistance of niobium on copper cavities

    CERN Document Server

    Junginger, Tobias

    2015-01-01

    The surface resistance Rs of superconducting cavities prepared by sputter coating a thin niobium film on a copper substrate increases significantly stronger with the applied RF field compared to cavities of bulk material. A possible cause is that due to the thermal boundary resistance between the copper substrate and the niobium film Rs is enhanced due to global heating of the inner cavity wall. Introducing helium gas in the cavity and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by only 60+/-60 mK when Rs increases with Eacc by 100 nOhm. This is more than one order of magnitude less than what one would expect from global heating. Additionally the effect of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered Rs.

  5. Optical surface properties and their RF limitations of European XFEL cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2017-04-15

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-Ray Free Electron Laser (XFEL) and the International Linear Collider (ILC) HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor specific surface properties which allow to perform a quality control and assurance during the production. In addition, a strong negative correlation of ρ=-0.93 with a significance of 6σ of the integrated grain boundary area ΣA versus the maximal achievable accelerating field E{sub acc,max} has been found.

  6. Optical surface properties and their RF limitations of European XFEL cavities

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2017-04-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-Ray Free Electron Laser (XFEL) and the International Linear Collider (ILC) HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor specific surface properties which allow to perform a quality control and assurance during the production. In addition, a strong negative correlation of ρ=-0.93 with a significance of 6σ of the integrated grain boundary area ΣA versus the maximal achievable accelerating field E acc,max has been found.

  7. Modeling of circular-grating surface-emitting lasers

    Science.gov (United States)

    Shams-Zadeh-Amiri, Ali M.

    Grating-coupled surface-emitting lasers became an area of growing interest due to their salient features. Emission from a broad area normal to the wafer surface, makes them very well suited in high power applications and two- dimensional laser arrays. These new possibilities have caused an interest in different geometries to fully develop their potential. Among them, circular-grating lasers have the additional advantage of producing a narrow beam with a circular cross section. This special feature makes them ideal for coupling to optical fibers. All existing theoretical models dealing with circular- grating lasers only consider first-order gratings, or second-order gratings, neglecting surface emission. In this thesis, the emphasis is to develop accurate models describing the laser performance by considering the radiation field. Toward this aim, and due to the importance of the radiation modes in surface-emitting structures, a theoretical study of these modes in multilayer planar structures has been done in a rigorous and systematic fashion. Problems like orthogonality of the radiation modes have been treated very accurately. We have considered the inner product of radiation modes using the distribution theory. Orthogonality of degenerate radiation modes is an important issue. We have examined its validity using the transfer matrix method. It has been shown that orthogonality of degenerate radiation modes in a very special case leads to the Brewster theorem. In addition, simple analytical formulas for the normalization of radiation modes have been derived. We have shown that radiation modes can be handled in a much easier way than has been thought before. A closed-form spectral dyadic Green's function formulation of multilayer planar structures has been developed. In this formulation, both rectangular and cylindrical structures can be treated within the same mathematical framework. The Hankel transform of some auxiliary functions defined on a circular aperture has

  8. Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.

    2010-09-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or "IR-AFPA", adaptive focal plane arrays. We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

  9. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza

    2015-01-01

    into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has......We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  10. Direct visualization of the in-plane leakage of high-order transverse modes in vertical-cavity surface-emitting lasers mediated by oxide-aperture engineering

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Burger, S.; Schmidt, F.; Ledentsov, N. N.

    2016-03-01

    Oxide-confined apertures in vertical cavity surface emitting laser (VCSEL) can be engineered such that they promote leakage of the transverse optical modes from the non- oxidized core region to the selectively oxidized periphery of the device. The reason of the leakage is that the VCSEL modes in the core can be coupled to tilted modes in the periphery if the orthogonality between the core mode and the modes at the periphery is broken by the oxidation-induced optical field redistribution. Three-dimensional modeling of a practical VCSEL design reveals i) significantly stronger leakage losses for high-order transverse modes than that of the fundamental one as high-order modes have a higher field intensity close to the oxide layers and ii) narrow peaks in the far-field profile generated by the leaky component of the optical modes. Experimental 850-nm GaAlAs leaky VCSELs produced in the modeled design demonstrate i) single-mode lasing with the aperture diameters up to 5μm with side mode suppression ratio >20dB at the current density of 10kA/cm2; and ii) narrow peaks tilted at 37 degrees with respect to the vertical axis in excellent agreement with the modeling data and confirming the leaky nature of the modes and the proposed mechanism of mode selection. The results indicate that in- plane coupling of VCSELs, VCSELs and p-i-n photodiodes, VCSEL and delay lines is possible allowing novel photonic integrated circuits. We show that the approach enables design of oxide apertures, air-gap apertures, devices created by impurity-induced intermixing or any combinations of such designs through quantitative evaluation of the leaky emission.

  11. Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity

    Science.gov (United States)

    Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia

    2016-08-01

    The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.

  12. Preparation and handling of surfaces for superconducting radio frequency cavities

    International Nuclear Information System (INIS)

    Bloess, D.

    1988-01-01

    Fortunately, surface treatment for s.c. cavities knows only one simple rule. If one observes this rule strictly one will be successful, if not, one will fail! The rule is CLEANLINESS. This means: clean material (high purity niobium without inclusions), clean (analytical grade) polishing chemicals and solvents, ultraclean (semiconductor grade) rinsing water, ultraclean (class 100) assembly environment. In general, if one applies the same working practice as the semiconductor industry, one will produce surfaces that are less clean than silicon wafers, due to the shape of the cavity (an inner surface is much more difficult to clean than a flat wafer); due to its size and due to the material (niobium is hydrophilic which makes the water with all the dirt in it stick to the surface). 9 references

  13. Investigation of niobium surface structure and composition for improvement of superconducting radio-frequency cavities

    Science.gov (United States)

    Trenikhina, Yulia

    Nano-scale investigation of intrinsic properties of niobium near-surface is a key to control performance of niobium superconducting radio-frequency cavities. Mechanisms responsible for the performance limitations and their empirical remedies needs to be justified in order to reproducibly control fabrication of SRF cavities with desired characteristics. The high field Q-slope and mechanism behind its cure (120°C mild bake) were investigated by comparison of the samples cut out of the cavities with high and low dissipation regions. Material evolution during mild field Q-slope nitrogen treatment was characterized using the coupon samples as well as samples cut out of nitrogen treated cavity. Evaluation of niobium near-surface state after some typical and novel cavity treatments was accomplished. Various TEM techniques, SEM, XPS, AES, XRD were used for the structural and chemical characterization of niobium near-surface. Combination of thermometry and structural temperature-dependent comparison of the cavity cutouts with different dissipation characteristics revealed precipitation of niobium hydrides to be the reason for medium and high field Q-slopes. Step-by-step effect of the nitrogen treatment processing on niobium surface was studied by analytical and structural characterization of the cavity cutout and niobium samples, which were subject to the treatment. Low concentration nitrogen doping is proposed to explain the benefit of nitrogen treatment. Chemical characterization of niobium samples before and after various surface processing (Electropolishing (EP), 800°C bake, hydrofluoric acid (HF) rinsing) showed the differences that can help to reveal the microscopic effects behind these treatments as well as possible sources of surface contamination.

  14. Development of an optical inspection bench for the inspection of internal surfaces of 650 MHz SCRF cavities

    International Nuclear Information System (INIS)

    Kokil, S.V.; Kane, G.V.; Raghavendra, S.; Chauhan, S.K.; Rajpoot, D.S.; Oraon, B.; Om Prakash; Joshi, S.C.

    2015-01-01

    An optical inspection system has been developed for inspection of internal surfaces of 650 MHz superconducting RF cavities. The cavity parts are welded either using Electron Beam or Laser Beam Welding for making a good quality of weld joints. Surface defects like pits, scratches, welding spatters etc. on the internal surface of the cavity deteriorates cavity performance. Surface quality of the cavity equator joint plays an important role in the cavity performance. To study the quality of equator surface, the inspection bench offers high resolution images with a linear resolution of 45 m/pixel at a distance of ∼200 mm. The bench comprises of two major sub-systems, optical imaging system and cavity positioning system. A digital camera and multi coloured illumination system is used to obtain high resolution images. The camera is mounted inside a long cylindrical tube. The cylindrical tube can be inserted into a SCRF cavity. The length of the cylinder is long enough to inspect five-cell 650 MHz SCRF cavity. The cavity is placed on a set of PTFE rollers, which are mounted on a trolley. The cavity can be moved linearly with the help of ball screw-servomotor mechanism. The camera along with cylindrical tube can be rotated around its axis with a stepper motor to scan the cavity's internal surface. The paper presents the details about the optical inspection bench and optical inspection results. (author)

  15. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  16. Improving the work function of the niobium surface of SRF cavities by plasma processing

    International Nuclear Information System (INIS)

    Tyagi, P.V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-01-01

    Highlights: • An in situ plasma processing for SNS SRF cavities has been developed to remove hydrocarbons from cavity surface. • Reactive oxygen plasma is very effective to remove hydrocarbons from niobium top surface. • Reactive oxygen plasma processing increases the work function of niobium surface in the range of 0.5–1.0 eV. • It was observed that hydrocarbons can migrate at plasma cleaned top surface from near surface regions when waiting in vacuum at room temperature. • Multiple cycles of plasma processing with waiting periods in between was found beneficial to mitigate such hydrocarbons migration at plasma cleaned surface. - Abstract: An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5–1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  17. Comparison of 3 methods on fabricating micro- /nano- structured surface on 3D mold cavity

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    The methods to manufacture micro- or nano- structures on surfaces have been an area of intense investigation. Demands are shown for technologies for surface structuring on real 3D parts in many fields. However, most technologies for the fabrication of micro-structured functional surfaces are still...... limited to flat or simple shaped geometries. In this paper, 3 approaches for fabricating micro and nano- structured surfaces on a mold cavity for injection moulding are investigated and compared. The first approach is to use pre-fabricated plate with micro-structured surface as an insert for the mold......, in this way micro holes (Ø4 μm) was obtained. The second approach is to produce the cavity part using anodizing process chain, and in this way sub-micro structures can be obtained all over the cavity surface. The third approach is to machine the surface inside the cavity directly by femtosecond laser combined...

  18. Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene

    International Nuclear Information System (INIS)

    Zhu, Peifen

    2016-01-01

    The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) is numerically investigated employing the finite-difference time-domain method. The periodic nanostructures formed by embedding the sphere arrays in polystyrene (PS) are placed on top of OLED to frustrate the total internal reflection at the interface between OLED and free space. These nanostructures serve as an intermediate medium to extract the light out of OLED devices. Efficiently coupling both evanescent waves and propagation waves into spheres and subsequently extracting these light waves out of the sphere is key to achieving high extraction efficiency. By tuning the thickness of PS layer, both of the in-coupling efficiency and out-coupling efficiency are optimized for achieving high light extraction efficiency. Thicker PS layer results in higher in-coupling efficiency in sphere while the thinner PS layer leads to higher out-coupling efficiency. Thus the maximum light extraction is a trade-off between the in-coupling efficiency and out-coupling efficiency. The study shows that light extraction efficiency of 89% can be achieved by embedding 0.90 μm TiO 2 sphere in 0.30 μm PS layer with optimized in-coupling efficiency, out-coupling efficiency and cavity effect. (paper)

  19. Ultrafast pulse amplification in mode-locked vertical external-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Böttge, C. N., E-mail: boettge@optics.arizona.edu; Hader, J.; Kilen, I.; Moloney, J. V. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Koch, S. W. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2014-12-29

    A fully microscopic many-body Maxwell–semiconductor Bloch model is used to investigate the influence of the non-equilibrium carrier dynamics on the short-pulse amplification in mode-locked semiconductor microlaser systems. The numerical solution of the coupled equations allows for a self-consistent investigation of the light–matter coupling dynamics, the carrier kinetics in the saturable absorber and the multiple-quantum-well gain medium, as well as the modification of the light field through the pulse-induced optical polarization. The influence of the pulse-induced non-equilibrium modifications of the carrier distributions in the gain medium and the saturable absorber on the single-pulse amplification in the laser cavity is identified. It is shown that for the same structure, quantum wells, and gain bandwidth the non-equilibrium carrier dynamics lead to two preferred operation regimes: one with pulses in the (sub-)100 fs-regime and one with multi-picosecond pulses. The recovery time of the saturable absorber determines in which regime the device operates.

  20. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  1. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  2. Defect Detection in Superconducting Radiofrequency Cavity Surface Using C + + and OpenCV

    Science.gov (United States)

    Oswald, Samantha; Thomas Jefferson National Accelerator Facility Collaboration

    2014-03-01

    Thomas Jefferson National Accelerator Facility (TJNAF) uses superconducting radiofrequency (SRF) cavities to accelerate an electron beam. If theses cavities have a small particle or defect, it can degrade the performance of the cavity. The problem at hand is inspecting the cavity for defects, little bubbles of niobium on the surface of the cavity. Thousands of pictures have to be taken of a single cavity and then looked through to see how many defects were found. A C + + program with Open Source Computer Vision (OpenCV) was constructed to reduce the number of hours searching through the images and finds all the defects. Using this code, the SRF group is now able to use the code to identify defects in on-going tests of SRF cavities. Real time detection is the next step so that instead of taking pictures when looking at the cavity, the camera will detect all the defects.

  3. The Path to High Q-Factors in Superconducting Accelerating Cavities: Flux Expulsion and Surface Resistance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatment capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator

  4. The path to high Q-factors in superconducting accelerating cavities: Flux expulsion and surface resistance optimization

    Science.gov (United States)

    Martinello, Martina

    Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatment capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator

  5. Few emitters in a cavity: from cooperative emission to individualization

    International Nuclear Information System (INIS)

    Auffeves, A; Portolan, S; Gerace, D; Drezet, A; Franca Santos, M

    2011-01-01

    We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increasing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well-distinguished statistical properties of the emitted radiation. For small cavity decay rates, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared with the emitter-cavity coupling) and for a few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady-state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows us to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-the-art techniques of Q-switch of resonant cavities, allied with the recent capability of tuning single emitters in and out of resonance, suggest this system to be a versatile source of different quantum states of light.

  6. Few emitters in a cavity: from cooperative emission to individualization

    Energy Technology Data Exchange (ETDEWEB)

    Auffeves, A; Portolan, S [CEA/CNRS/UJF Joint Team ' Nanophysics and Semiconductors' , Institut Neel-CNRS, BP 166, 25 Rue des Martyrs, 38042 Grenoble Cedex 9 (France); Gerace, D [Dipartimento di Fisica ' Alessandro Volta' and UdR CNISM, Universita di Pavia, via Bassi 6, 27100 Pavia (Italy); Drezet, A [Institut Neel-CNRS, BP 166, 25 Rue des Martyrs, 38042 Grenoble Cedex 9 (France); Franca Santos, M, E-mail: msantos@fisica.ufmg.br [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, CP 702, 30123-970 (Brazil)

    2011-09-15

    We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increasing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well-distinguished statistical properties of the emitted radiation. For small cavity decay rates, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared with the emitter-cavity coupling) and for a few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady-state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows us to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-the-art techniques of Q-switch of resonant cavities, allied with the recent capability of tuning single emitters in and out of resonance, suggest this system to be a versatile source of different quantum states of light.

  7. Multi-angle VECSEL cavities for dispersion control and multi-color operation

    Science.gov (United States)

    Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.

    2017-02-01

    We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.

  8. Improving the work function of the niobium surface of SRF cavities by plasma processing

    Science.gov (United States)

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-04-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5-1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  9. Study on the GaAs(110) surface using emitted atom spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.; Sanchez, E.A.; Grizzi, O.; Universidad Nacional de Cuyo, Mendoza

    1998-01-01

    The facilities implemented at Bariloche for the ion scattering spectrometry is described, and recent examples of the technique application to determine the atomic structure and the composition of metallic and semiconductor surfaces, pure and with different adsorbates. The surface analysis technique using emitted atom spectrometry is discussed. The sensitivity to the GaAs(110) surface atomic relaxation is presented, and the kinetic of hydrogen adsorption by the mentioned surface is studied

  10. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States)

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  11. Control of cavity acoustics by surface waviness in landing configurations

    CSIR Research Space (South Africa)

    Dala, L

    2014-08-01

    Full Text Available ): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Control of Cavity Acoustics by Surface Waviness In Landing Configurations Laurent Dala CSIR, DPSS/Aeronautics Systems, Pretoria 0001, South Africa...

  12. Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission

    Science.gov (United States)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jyehong; Ledentsov, N. N.; Yang, Ying-Jay

    2017-02-01

    Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed ( 26 GHz), reasonable resistance ( 70 Ω) and moderate output power ( 1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128.km is confirmed for optical-interconnect applications.

  13. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  14. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  15. The HIE-ISOLDE Superconducting Cavities: Surface Treatment and Niobium Thin Film Coating

    CERN Document Server

    Lanza, G; Ferreira, L M A; Gustafsson, A E; Pasini, M; Trilhe, P; Palmieri, V

    2010-01-01

    CERN has designed and prepared new facilities for the surface treatment and niobium sputter coating of the HIE-ISOLDE superconducting cavities. We describe here the design choices, as well as the results of the first surface treatments and test coatings.

  16. Surface wave resonance and chirality in a tubular cavity with metasurface design

    Science.gov (United States)

    Qin, Yuzhou; Fang, Yangfu; Wang, Lu; Tang, Shiwei; Sun, Shulin; Liu, Zhaowei; Mei, Yongfeng

    2018-06-01

    Optical microcavities with whispering-gallery modes (WGMs) have been indispensable in both photonic researches and applications. Besides, metasurfaces, have attracted much attention recently due to their strong abilities to manipulate electromagnetic waves. Here, combining these two optical elements together, we show a tubular cavity can convert input propagating cylindrical waves into directed localized surface waves (SWs), enabling the circulating like WGMs along the wall surface of the designed tubular cavity. Finite element method (FEM) simulations demonstrate that such near-field WGM shows both large chirality and high local field. This work may stimulate interesting potential applications in e.g. directional emission, sensing, and lasing.

  17. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  18. Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-11-30

    Highlights: • Different varieties, sizes, and shapes for nanoparticles will generate different surface plasmon resonance effects in the devices. • The red-shift phenomenon for absorption peaks is because of an increasing contribution of higher-order plasmon modes for the larger gold nanoparticles. • The mobility of electrons in the electron-transport layer of organic light-emitting diodes is a few orders of magnitude lower than that of holes in the hole-transport layer of organic light-emitting diodes. - Abstract: The influence of gold nanoparticles (GNPs) with different sizes doped into (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device, at a current density of 145 mA/cm, with PEDOT:PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT:PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum surface plasmon resonance effect in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum surface plasmon resonance effect in the device when the mean particle size of GNPs is 8 nm.

  19. Surface displacement imaging by interferometry with a light emitting diode

    International Nuclear Information System (INIS)

    Dilhaire, Stefan; Grauby, Stephane; Jorez, Sebastien; Lopez, Luis David Patino; Rampnoux, Jean-Michel; Claeys, Wilfrid

    2002-01-01

    We present an imaging technique to measure static surface displacements of electronic components. A device is supplied by a transient current that creates a variation of temperature, thus a surface displacement. To measure the latter, a setup that is based on a Michelson interferometer is used. To avoid the phenomenon of speckle and the drawbacks inherent to it, we use a light emitting diode as the light source for the interferometer. The detector is a visible CCD camera that analyzes the optical signal containing the information of surface displacement of the device. Combining images, we extract the amplitude of the surface displacement. Out-of-plane surface-displacement images of a thermoelectric device are presented

  20. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

    KAUST Repository

    Domingues, Eddy

    2017-06-05

    Omniphobic surfaces, i.e. which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact, and preventing applications in harsh environments. There is, thus, a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nano-texturing rather than via chemical make-up, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising of pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibited apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, e.g. hydrodynamic drag reduction and membrane distillation.

  1. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity

  2. DURATION LIMIT OF LASER PULSES EMITTED FROM A Ce-DOPED CRYSTAL SHORT CAVITY

    Directory of Open Access Journals (Sweden)

    Le Hoang Hai

    2017-11-01

    Full Text Available Based on the rate equation set for broadband cavities, the dependence of pulse duration on cavity and pumping parameters is analyzed. The cavity uses a Ce-doped crystal as a gain medium. Computation results show the variation of the pulse width with the change of cavity length, mirror reflectivity, pumping energy and pumping pulse duration. A significant influence of multiple-pulse operation in limiting pulse duration is realized and a pulse-width of the order 200 ps is found to be the limit for the direct generation of ultraviolet single picosecond pulses from a Ce:LLF short cavity.

  3. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    Science.gov (United States)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  4. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    Science.gov (United States)

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; Cook, Russell; Schlepütz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzinski, John; Proslier, Thomas

    2015-02-01

    We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ˜2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  5. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Becker, Chaoyue; Posen, Sam; Hall, Daniel Leslie; Groll, Nickolas; Proslier, Thomas; Cook, Russell; Schlepütz, Christian M.; Liepe, Matthias; Pellin, Michael; Zasadzinski, John

    2015-01-01

    We present an analysis of Nb 3 Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb 3 Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T c ) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb 3 Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb 3 Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T c regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb 3 Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators

  6. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...

  7. Surface characterization of Nb samples electropolished with real superconducting rf accelerator cavities

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2010-12-01

    Full Text Available We report the results of surface characterizations of niobium (Nb samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris, and the beam pipe. Auger electron spectroscopy was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive x ray for elemental analysis was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S were found covering the samples nonuniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  8. Thoracic cavity segmentation algorithm using multiorgan extraction and surface fitting in volumetric CT

    Energy Technology Data Exchange (ETDEWEB)

    Bae, JangPyo [Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul 110-744, South Korea and Department of Radiology, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Kim, Namkug, E-mail: namkugkim@gmail.com; Lee, Sang Min; Seo, Joon Beom [Department of Radiology, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Kim, Hee Chan [Department of Biomedical Engineering, College of Medicine and Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of)

    2014-04-15

    Purpose: To develop and validate a semiautomatic segmentation method for thoracic cavity volumetry and mediastinum fat quantification of patients with chronic obstructive pulmonary disease. Methods: The thoracic cavity region was separated by segmenting multiorgans, namely, the rib, lung, heart, and diaphragm. To encompass various lung disease-induced variations, the inner thoracic wall and diaphragm were modeled by using a three-dimensional surface-fitting method. To improve the accuracy of the diaphragm surface model, the heart and its surrounding tissue were segmented by a two-stage level set method using a shape prior. To assess the accuracy of the proposed algorithm, the algorithm results of 50 patients were compared to the manual segmentation results of two experts with more than 5 years of experience (these manual results were confirmed by an expert thoracic radiologist). The proposed method was also compared to three state-of-the-art segmentation methods. The metrics used to evaluate segmentation accuracy were volumetric overlap ratio (VOR), false positive ratio on VOR (FPRV), false negative ratio on VOR (FNRV), average symmetric absolute surface distance (ASASD), average symmetric squared surface distance (ASSSD), and maximum symmetric surface distance (MSSD). Results: In terms of thoracic cavity volumetry, the mean ± SD VOR, FPRV, and FNRV of the proposed method were (98.17 ± 0.84)%, (0.49 ± 0.23)%, and (1.34 ± 0.83)%, respectively. The ASASD, ASSSD, and MSSD for the thoracic wall were 0.28 ± 0.12, 1.28 ± 0.53, and 23.91 ± 7.64 mm, respectively. The ASASD, ASSSD, and MSSD for the diaphragm surface were 1.73 ± 0.91, 3.92 ± 1.68, and 27.80 ± 10.63 mm, respectively. The proposed method performed significantly better than the other three methods in terms of VOR, ASASD, and ASSSD. Conclusions: The proposed semiautomatic thoracic cavity segmentation method, which extracts multiple organs (namely, the rib, thoracic wall, diaphragm, and heart

  9. Dependence of the surface resistance of niobium coated copper cavities on the coating temperature

    International Nuclear Information System (INIS)

    Darriulat, P.; Durand, C.; Janot, P.; Rensing, N.; Weingarten, W.; Bosland, P.; Gobin, J.; Martignac, J.

    1996-01-01

    Six hydro-formed copper 1.5 GHz cavities have been baked and coated with niobium at different temperatures between 100 deg C and 200 deg C, while keeping the other discharge parameters unchanged. Their surface resistance has been measured as a function RF field and trapped magnetic field. Its dependence on deposition temperature confirms earlier indications obtained using 350 MHz LEP cavities that 150 deg C leads to optimal performances. The critical temperatures of Nb/Cu and bulk niobium cavities have also been measured. (author)

  10. Surface Characterization of Impurities in Superconducting Niobium for Radio Frequency (RF) Cavities used in Particle Accelerators

    Science.gov (United States)

    Maheshwari, Prateek

    Niobium (Nb) is the material of choice for Superconducting Radio Frequency (SRF) Cavities used in particle accelerators owing to its high critical temperature (Tc = 9.2 K) and critical magnetic field (≈ 200mT). However, niobium tends to harbor interstitial impurities such as H, C, O and N, which are detrimental to cavity performance. Since the magnetic field penetration depth (lambda) of niobium is 40nm, it is important to characterize these impurities using surface characterization techniques. Also, it is known that certain heat treatments improve cavity efficiency via interstitial impurity removal from the surface of niobium. Thus, a systematic study on the effect of these heat treatments on the surface impurity levels is needed. In this work, surface analysis of both heat treated and non heat treated (120°C-1400°C) large grain (single crystal) bulk niobium samples was performed using secondary ion mass spectrometry (SIMS) and Transmission Electron Microscopy (TEM). Impurity levels were compared on the surface using SIMS after various types of heat treatments expected to improve cavity performance, and the effect of these heat treatments on the surface impurities were examined. SIMS characterization of ion implanted standards of C, N, O, D showed that quantification of C, N and O impurities in Nb is achievable and indicated that H is very mobile in Nb. It was hence determined that quantification of H in Nb is not possible using SIMS due to its high diffusivity in Nb. However, a comparative study of the high temperature heat treated (600°C-1400°C) and non heat treated (control) samples revealed that hydrogen levels decreased by upto a factor of 100. This is attributed to the dissociation of the niobium surface oxide layer, which acts as a passivating film on the surface, and subsequent desorption of hydrogen. Reformation of this oxide layer on cool down disallows any re-absorption of hydrogen, indicating that the oxide acts as a surface barrier for

  11. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    Science.gov (United States)

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  12. Photodegradation and polarization properties of vertical external surface-emitting organic laser

    International Nuclear Information System (INIS)

    Leang, Tatiana

    2014-01-01

    Although organic solid-state dye lasers can provide wavelength tunability in the whole visible spectrum and offers perspectives of low-cost compact lasers, they are still limited by several drawbacks, especially photodegradation. The geometry of a Vertical External Cavity Surface-emitting Organic Laser (VECSOL) enables organic lasers to reach high energies, excellent conversion efficiencies and good beam quality, it also enables an external control on many parameters, a feature that we have used here to study the photodegradation phenomenon as well as some polarization properties of organic solid-state lasers. In the first part of this thesis, we studied the lifetime of the laser upon varying several parameters (pump pulse-width, repetition rate, output coupling,...) and we found that the intracavity laser intensity, independently of the pump intensity, had a major on photodegradation rate. Moreover, we observed that the profile of the laser beam was also degrading with time: while it is Gaussian in the beginning it gradually shifts to an annular shape. In the second part, we investigated the polarization properties of VECSOLs, with a special emphasis on fluorescence properties of some typical dyes used in lasers. The crucial role played by resonant non-radiative energy transfers between dye molecules (HOMO-FRET) is evidenced and enables explaining the observed fluorescence depolarization, compared to the expected limiting fluorescence anisotropy. Energy transfers happen to play a negligible role above laser threshold, as the organic laser beam is shown to be linearly polarized in a wide range of experimental conditions when excitation occurs in the first singlet state. (author) [fr

  13. Microscopic examination and elemental analysis of surface defects in LEP superconducting cavities

    International Nuclear Information System (INIS)

    Benvenuti, C.; Cosso, R.; Hauer, M.; Hellgren, N.; Lacarrere, D.

    1996-01-01

    A diagnostic tool, based on a computer controlled surface analysis instrument, incorporating secondary electron imaging, static auger electron spectroscopy and scanning auger mapping has been designed and built at CERN to characterize the inner surface of LEP superconducting cavities with provide unsatisfactory radio-frequency performance. The experimental results obtained to date are reported and discussed. (author)

  14. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  15. Microleakage in conservative cavities varying the preparation method and surface treatment

    Directory of Open Access Journals (Sweden)

    Juliana Abdallah Atoui

    2010-08-01

    Full Text Available OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE. Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05. RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.

  16. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.

    Science.gov (United States)

    Zhong, Z Y; Jiang, Y D

    2006-10-15

    In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.

  17. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Science.gov (United States)

    Tian, Hui; Ribeill, Guilhem; Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  18. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    International Nuclear Information System (INIS)

    Tian Hui; Ribeill, Guilhem; Xu Chen; Reece, Charles E.; Kelley, Michael J.

    2011-01-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  19. Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL

    International Nuclear Information System (INIS)

    Czyszanowski, T; Thienpont, H; Panajotov, K; Dems, M

    2008-01-01

    We investigate the modal characteristics of a phosphide photonic-crystal vertical-cavity surface-emitting diode laser (VCSEL) by using the three-dimensional, full vectorial plane wave admittance method. A single-defect, photonic crystal is defined as a regular, hexagonal net of holes with varying depths. The modal gain and confinement factors are compared for two VCSEL structures: with emission either through the DBR with the photonic crystal or through the DBR free of photonic crystal. Significant improvement in the beam quality is demonstrated for the second design

  20. The effect of plasma etching on the surface topography of niobium superconducting radio frequency cavities

    Science.gov (United States)

    Radjenović, B.; Radmilović-Radjenović, M.

    2014-11-01

    In this letter the evolution of the surface topography of a niobium superconducting radio frequency cavity caused by different plasma etching modes (isotropic and anisotropic) is studied by the three-dimensional level set method. The initial rough surface is generated starting from an experimental power spectral density. The time dependence of the rms roughness is analyzed and the growth exponential factors β are determined for two etching modes (isotropic and anisotropic) assuming that isotropic etching is a much more effective mechanism of smoothing. The obtained simulation results could be useful for optimizing the parameters of the etching processes needed to obtain high quality niobium surfaces for superconducting radio frequency cavities.

  1. Flow visualizations, velocity measurements, and surface convection measurements in simulated 20.8-cm Nova box amplifier cavities

    International Nuclear Information System (INIS)

    Julien, J.L.; Molishever, E.L.

    1983-01-01

    Reported are fluid mechanics experiments performed in models of the 20.8-cm Nova amplifier lamp and disk cavities. Lamp cavity nitrogen flows are shown, by both flow visualization and velocity measurements, to be acceptably uniform and parallel to the flashlamps. In contrast, the nitrogen flows in the disk cavity are shown to be disordered. Even though disk cavity flows are disordered, the simplest of three proposed nitrogen introduction systems for the disk cavity was found to be acceptable based on convection measurements made at the surfaces of simulated laser disks

  2. Study on Induction Heating Coil for Uniform Mold Cavity Surface Heating

    OpenAIRE

    Yu-Ting Sung; Sheng-Jye Hwang; Huei-Huang Lee; Durn-Yuan Huang

    2014-01-01

    Recently, energy saving is one of the important issues for polymer processing industry. Electromagnetic induction heating has many advantages such as fast heating and low energy consumption. Previous studies using electromagnetic induction heating for rapid tool heating have indicated that the temperature uniformity on a cavity surface is not easy to be achieved. In this paper, two different coils were used for heating uniform 7 mm thick hot work tool steel (JIS SKD61) surface. One is a four-...

  3. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, A. R., E-mail: angus.gentle@uts.edu.au; Smith, G. B. [School of Mathematical and Physical Sciences and Institute of Nanoscale Technology, University of Technology Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia); Yambem, S. D.; Burn, P. L.; Meredith, P. [Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences and School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072 (Australia)

    2016-06-28

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  4. Improvement of cavity performance in the Saclay/Cornell/DESY's SC cavities

    International Nuclear Information System (INIS)

    Kako, E.; Noguchi, S.; Ono, M.

    2000-01-01

    Development of 1.3 GHz Nb superconducting cavities for TESLA (TeV Energy Superconducting Linear Collider) has been carried out with international collaboration. Three Saclay single-cell cavities, one Cornell two-cell cavity and one DESY nine-cell cavity were sent to KEK in order to compare the cavity performance. These cavities were tested at KEK after the following surface treatment: 1) high pressure rinsing, HPR, 2) chemical polishing and HPR, 3) electropolishing and HPR. The test results, especially, improvement of the cavity performance due to electropolishing are reported in this paper. (author)

  5. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    Science.gov (United States)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  6. Fast Excitation and Photon Emission of a Single-Atom-Cavity System

    International Nuclear Information System (INIS)

    Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.

    2008-01-01

    We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments

  7. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Chaoyue [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Posen, Sam; Hall, Daniel Leslie [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Groll, Nickolas; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cook, Russell [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlepütz, Christian M. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liepe, Matthias [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Pellin, Michael [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zasadzinski, John [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  8. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    Science.gov (United States)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  9. Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples

    Directory of Open Access Journals (Sweden)

    M. Rašković

    2010-11-01

    Full Text Available Accelerator performance, in particular the average accelerating field and the cavity quality factor, depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF cavity surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsuperconductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer, which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb presents an alternative surface preparation method to the commonly used buffered chemical polishing and electropolishing methods. We have optimized the experimental conditions in the microwave glow discharge system and their influence on the Nb removal rate on flat samples. We have achieved an etching rate of 1.7  μm/min⁡ using only 3% chlorine in the reactive mixture. Combining a fast etching step with a moderate one, we have improved the surface roughness without exposing the sample surface to the environment. We intend to apply the optimized experimental conditions to the preparation of single cell cavities, pursuing the improvement of their rf performance.

  10. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide

    International Nuclear Information System (INIS)

    Zhu, Qiong-gan; Wang, Zhi-guo; Tan, Wei

    2014-01-01

    The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal (MDM) surface plasmon polariton (SPP) waveguide is investigated theoretically using Green's function method. Our result suggests that the gain and loss parameters influence the amplitude and phase of the fields localized in the two cavities. For the case of balanced gain and loss, the fields of the two cavities are always of equi-amplitude but out of phase. A plasmon induced transparency (PIT)-like transmission peak can be achieved by the destructive interference of two fields with anti-phase. For the case of unbalanced gain and loss, some unexpected responses of structure are generated. When the gain is more than the loss, the system response is dissipative at around the resonant frequency of the two cavities, where the sum of reflectance and transmittance becomes less than one. This is because the lossy cavity, with a stronger localized field, makes the main contribution to the system response. When the gain is less than the loss, the reverse is true. It is found that the metal loss dissipates the system energy but facilitates the gain cavity to make a dominant effect on the system response. This mechanism may have a potential application for optical amplification and for a plasmonic waveguide switch. (paper)

  11. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    OpenAIRE

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the pro...

  12. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    International Nuclear Information System (INIS)

    Piprek, Joachim

    2014-01-01

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410 nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  13. Study of luminous spots observed on metallic surfaces subjected to high RF fields

    International Nuclear Information System (INIS)

    Junquera, T.; Maissa, S.; Fouaidy, M.; Le Goff, A.; Bonin, B.; Luong, M.; Safa, H.; Tan, J.

    1995-01-01

    The performance of high gradient superconducting RF cavities for electron accelerators is mainly limited by field emission. Major improvements have been recently obtained using different surface conditioning techniques confirming the involvement of metallic particles in field emission enhancement. Results obtained with an optical apparatus attached to an RF copper cavity equipped with a removable sample which is subjected to high RF fields are presented. Stable light spots are observed on the sample surface and their intensities and optical spectra are measured as a function of the surface electric field. The total emitted current is simultaneously measured by an isolated hollow electrode facing the sample. (K.A.)

  14. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    Science.gov (United States)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  15. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  16. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  17. Proton Irradiation Effects in Oxide-Confined Vertical Cavity Surface Emitting Laser (VCSEL) Diodes

    International Nuclear Information System (INIS)

    Armendariz, M.G.; Barnes, C.E.; Choquette, K.D.; Guertin, S.; Hash, G.L.; Schwank, J.R.; Swift, G.M.

    1999-01-01

    Recent space experience has shown that the use of commercial optocouplers can be problematic in spacecraft, such as TOPEX/Poseidon, that must operate in significant radiation environments. Radiation--induced failures of these devices have been observed in space and have been further documented at similar radiation doses in the laboratory. The ubiquitous use of optocouplers in spacecraft systems for a variety of applications, such as electrical isolation, switching and power transfer, is indicative of the need for optocouplers that can withstand the space radiation environment. In addition, the distributed nature of their use implies that it is not particularly desirable to shield optocouplers for use in radiation environments. Thus, it will be important for the space community to have access to radiation hardened/tolerant optocouplers. For many microelectronic and photonic devices, it is difficult to achieve radiation hardness without sacrificing performance. However, in the case of optocouplers, one should be able to achieve both superior radiation hardness and performance for such characteristics as switching speed, current transfer ratio (CTR), minimum power usage and array power transfer, if standard light emitting diodes (LEDs), such as those in the commercial optocouplers mentioned above, are avoided, and VCSELs are employed as the emitter portion of the optocoupler. The physical configuration of VCSELs allows one to achieve parallel use of an array of devices and construct a multichannel optocoupler in the standard fashion with the emitters and detectors looking at each other. In addition, detectors similar in structure to the VCSELs can be fabricated which allows bidirectional functionality of the optocoupler. Recent discussions suggest that VCSELs will enjoy widespread applications in the telecommunications and data transfer fields

  18. 20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions

    Science.gov (United States)

    Lott, J. A.; Shchukin, V. A.; Ledentsov, N. N.; Stinz, A.; Hopfer, F.; Mutig, A.; Fiol, G.; Bimberg, D.; Blokhin, S. A.; Karachinsky, L. Y.; Novikov, I. I.; Maximov, M. V.; Zakharov, N. D.; Werner, P.

    2009-02-01

    We report on the modeling, epitaxial growth, fabrication, and characterization of 830-845 nm vertical cavity surface emitting lasers (VCSELs) that employ InAs-GaAs quantum dot (QD) gain elements. The GaAs-based VCSELs are essentially conventional in design, grown by solid-source molecular beam epitaxy, and include top and bottom gradedheterointerface AlGaAs distributed Bragg reflectors, a single selectively-oxidized AlAs waveguiding/current funneling aperture layer, and a quasi-antiwaveguiding microcavity. The active region consists of three sheets of InAs-GaAs submonolayer insertions separated by AlGaAs matrix layers. Compared to QWs the InAs-GaAs insertions are expected to offer higher exciton-dominated modal gain and improved carrier capture and retention, thus resulting in superior temperature stability and resilience to degradation caused by operating at the larger switching currents commonly employed to increase the data rates of modern optical communication systems. We investigate the robustness and temperature performance of our QD VCSEL design by fabricating prototype devices in a high-frequency ground-sourceground contact pad configuration suitable for on-wafer probing. Arrays of VCSELs are produced with precise variations in top mesa diameter from 24 to 36 μm and oxide aperture diameter from 1 to 12 μm resulting in VCSELs that operate in full single-mode, single-mode to multi-mode, and full multi-mode regimes. The single-mode QD VCSELs have room temperature threshold currents below 0.5 mA and peak output powers near 1 mW, whereas the corresponding values for full multi-mode devices range from about 0.5 to 1.5 mA and 2.5 to 5 mW. At 20°C we observe optical transmission at 20 Gb/s through 150 m of OM3 fiber with a bit error ratio better than 10-12, thus demonstrating the great potential of our QD VCSELs for applications in next-generation short-distance optical data communications and interconnect systems.

  19. Intertwined and vestigial order with ultracold atoms in multiple cavity modes

    Science.gov (United States)

    Gopalakrishnan, Sarang; Shchadilova, Yulia E.; Demler, Eugene

    2017-12-01

    Atoms in transversely pumped optical cavities "self-organize" by forming a density wave and emitting superradiantly into the cavity mode(s). For a single-mode cavity, the properties of this self-organization transition are well characterized both theoretically and experimentally. Here, we explore the self-organization of a Bose-Einstein condensate in the presence of two cavity modes—a system that recently was realized experimentally [Léonard et al., Nature (London) 543, 87 (2017), 10.1038/nature21067]. We argue that this system can exhibit a "vestigially ordered" phase in which neither cavity mode exhibits superradiance but the cavity modes are mutually phase locked by the atoms. We argue that this vestigially ordered phase should generically be present in multimode cavity geometries.

  20. An acoustic radiator with integrated cavity and active control of surface vibration

    NARCIS (Netherlands)

    Berkhoff, Arthur; Tajdari, Farnaz

    2017-01-01

    This paper presents a method to realize an acoustic source for low frequencies with relatively small thickness. A honeycomb plate structure which is open on one side combines the radiating surface and the major part of the air cavity. The vibration of the plate is controlled with a decentralized

  1. Dilute nitride vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Jouhti, T; Okhotnikov, O; Konttinen, J; Gomes, L A; Peng, C S; Karirinne, S; Pavelescu, E-M; Pessa, M

    2003-01-01

    A novel quaternary compound semiconductor material, Ga 1-x In x N y As 1-y (0 0.65 In 0.35 N 0.014 As 0.986 /GaAs quantum wells with special strain-mediating layers. The laser characterization was carried out by using a fibre pigtailed 980 nm pump laser diode, 980/1300 nm wavelength division multiplexer and an optical spectrum analyser. A high optical output power of 3.5 mW was coupled lenslessly into a standard single-mode fibre

  2. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  3. Application of Surface Plasmonics for Semiconductor Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed

    This thesis addresses the lack of an efficient semiconductor light source at green emission colours. Considering InGaN based quantum-well (QW) light-emitters and light-emitting diodes (LEDs), various ways of applying surface plasmonics and nano-patterning to improve the efficiency, are investigated....... By placing metallic thin films or nanoparticles (NPs) in the near-field of QW light-emitters, it is possible to improve their internal quantum efficiency (IQE) through the Purcell enhancement effect. It has been a general understanding that in order to achieve surface plasmon (SP) coupling with QWs......-QW coupling does not necessarily lead to emission enhancement. The findings of this work show that the scattering and absorption properties of NPs play a crucial role in determining whether the implementation will improve or degrade the optical performance. By applying these principles, a novel design...

  4. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Science.gov (United States)

    Chouhan, Vijay; Kato, Shigeki; Nii, Keisuke; Yamaguchi, Takanori; Sawabe, Motoaki; Hayano, Hitoshi; Ida, Yoshiaki

    2017-08-01

    A detailed study on vertical electropolishing (VEP) of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H2 ) gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H2 gas bubbles and stirring were also observed in lab EP experiments.

  5. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Directory of Open Access Journals (Sweden)

    Vijay Chouhan

    2017-08-01

    Full Text Available A detailed study on vertical electropolishing (VEP of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H_{2} gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H_{2} gas bubbles and stirring were also observed in lab EP experiments.

  6. Study of luminous phenomena observed on contaminated metallic surfaces submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Bonin, B.; Luong, M.; Safa, H.; Tan, J.

    1995-01-01

    The RF field emission from a sample subjected to high RF fields in a copper cavity has been investigated. The study is focused on the luminous emissions occurring on the RF surface simultaneously with the electron emission. The optical apparatus attached to the cavity permits to observe the evolution of the emitters and the direct effects of the surface conditioning. Also, the parameters of the emitted radiation (intensity, glowing duration, spectral distribution) may provide additional informations on the field emission phenomena. Some results concerning samples intentionally contaminated with particles (metallic or dielectric) are presented. (K.A.)

  7. Evanescent-wave cavity ring-down spectroscopy for enhanced detection of surface binding under flow injection analysis conditions

    NARCIS (Netherlands)

    Van Der Sneppen, L.; Ariese, F.; Gooijer, C.; Ubachs, W.

    2008-01-01

    In evanescent-wave cavity ring-down spectroscopy, one (or more) of the re°ections inside the cavity is a total internal re°ection (TIR) event. Only the evanescent wave associated with this TIR is being used for prob-ing the sample. This technique is therefore highly surface-speci-c and attractive

  8. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    Science.gov (United States)

    Kubo, Takayuki

    2015-06-01

    The field limit of a superconducting radio-frequency cavity made of a type II superconductor with a large Ginzburg-Landau parameter is studied, taking the effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for an ideal flat surface and a suppression factor that contains the effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors is derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by electropolishing is evaluated by using results of surface topographic study. The estimated field limit is consistent with the present record field of nitrogen-doped Nb cavities. Suppression factors of surfaces of other bulk and multilayer superconductors, and those after various surface processing technologies, can also be evaluated by using the formula.

  9. Oscillations of the fluid flow and the free surface in a cavity with a submerged bifurcated nozzle

    International Nuclear Information System (INIS)

    Kalter, R.; Tummers, M.J.; Kenjereš, S.; Righolt, B.W.; Kleijn, C.R.

    2013-01-01

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • Three flow regimes are detected depending on nozzle depth and inlet velocity. • The three flow regimes have been summarized in a flow regime map. • PIV measurements are performed to link free surface behavior to the bulk-flow. • We report a close correlation between jet-behavior and free surface dynamics. -- Abstract: The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur. For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity

  10. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Science.gov (United States)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.

  11. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  12. Mirror-smooth surfaces and repair of defects in superconducting RF cavities by mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. A. [Fermilab; Cooley, L. D. [Fermilab

    2012-11-22

    Mechanical techniques for polishing the inside surface of niobium superconducting radio-frequency (SRF) cavities have been systematically explored. By extending known techniques to fine polishing, mirror-like finishes were produced, with <15 nm RMS (root mean square) roughness over 1 mm2 scan area. This is an order of magnitude less than the typical roughness produced by the electropolishing of niobium cavities. The extended mechanical polishing (XMP) process was applied to several SRF cavities which exhibited equator defects that caused quench at <20 MV m-1 and were not improved by further electropolishing. Cavity optical inspection equipment verified the complete removal of these defects, and minor acid processing, which dulled the mirror finish, restored performance of the defective cells to the high gradients and quality factors measured for adjacent cells when tested with other harmonics. This innate repair feature of XMP could be used to increase manufacturing yield. Excellent superconducting properties resulted after initial process optimization, with quality factor Q of 3 × 1010 and accelerating gradient of 43 MV m-1 being attained for a single-cell TESLA cavity, which are both close to practical limits. Several repaired nine-cell cavities also attained Q > 8 × 109 at 35 MV m-1, which is the specification for the International Linear Collider. Future optimization of the process and pathways for eliminating requirements for acid processing are also discussed.

  13. Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall.

    Science.gov (United States)

    Zhang, Zhen-yu; Zhang, Hui-sheng

    2004-11-01

    Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.

  14. Laser Processing on the Surface of Niobium Superconducting Radio-Frequency Accelerator Cavities

    Science.gov (United States)

    Singaravelu, Senthilraja; Klopf, Michael; Krafft, Geoffrey; Kelley, Michael

    2011-03-01

    Superconducting Radio frequency (SRF) niobium cavities are at the heart of an increasing number of particle accelerators.~ Their performance is dominated by a several nm thick layer at the interior surface. ~Maximizing its smoothness is found to be critical and aggressive chemical treatments are employed to this end.~ We describe laser-induced surface melting as an alternative ``greener'' approach.~ Modeling guided selection of parameters for irradiation with a Q-switched Nd:YAG laser.~ The resulting topography was examined by SEM, AFM and Stylus Profilometry.

  15. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    International Nuclear Information System (INIS)

    Upadhyay, Janardan; Phillips, Larry; Valente, Anne-Marie

    2011-01-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  16. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Janardan Upadhyay, Larry Phillips, Anne-Marie Valente

    2011-09-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  17. Preparation and handling of superconducting RF cavities

    International Nuclear Information System (INIS)

    Furuya, Takaaki

    1990-01-01

    The present paper outlines the recent preparation methods for superconducting cavities used in various laboratories and universities, and reports the problems of the cavity fabrication at KEK as an example of mass production. Preparation and handling are first addressed, focusing on material, fabrication, surface treatment, rinsing, clean environment, and heat treatment. Cavity production at KEK is then described, centering on defects on the surface and clean environments. Field gradients of more than 20 MV/m have been obtained by 1.5-3 GHz single cavities, for multi-cell cavities Eacc of 10 MV/m are available at any frequency range. The successful construction of thirty-two cavities for TRISTAN at KEK is due to the careful checking of the surface and quality control of all processes against the surface defects and contaminations. Eacc of 5 MV/m has been achieved by 94 % of the TRISTAN cavities at the first cold test, but 6 % of them had to be reworked because of the surface defects. These defects could not be detected by an X-ray photograph or visual inspections during the fabrication processes. (N.K.)

  18. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    Science.gov (United States)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  19. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  20. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Basovic, Milos [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  1. Surface Characterization of Nb Samples Electro-polished Together With Real Superconducting Radio-frequency Accelerator Cavities

    International Nuclear Information System (INIS)

    Zhao, Xin; Geng, Rong-Li; Tyagi, P.V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-01-01

    We report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  2. Vertical-cavity laser with a novel grating mirror

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol

    Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG...... the vertical cavity laterally into the Si waveguide. The measured inplane emission proves the lasing action with a side-mode suppression ratio (SMSR) of 27.5 dB at a peak wavelength of 1486 nm. The threshold pumping power corresponds to a current injection of 1.1 mA. A signature of highly anisotropic cavity...... dispersion has been observed and discussed, which is unique for HCG-based vertical cavities. The second version proves the potential for high-speed operation of hybrid VCL structure. In the hybrid VCL structure, the effective cavity length is substantially reduced by using a dielectric DBR and a TM...

  3. Surface temperature measurements on superconducting cavities in superfluid helium

    International Nuclear Information System (INIS)

    Fouaidy, T.; Junquera, T.; Caruette, A.

    1991-01-01

    Two thermometry systems have been developed: a scanning thermometer system routinely used for the 1.5 GHz monocell cavity studies and a fixed thermometer array used to investigate spatial surface resistance distribution on various SC removable endplates of a cylindrical TE011mode cavity. Thermometers used in these systems are thermally insulated from the surrounding HeII bath by an epoxy housing ('epoxy'thermometers). Accurate calibration of the fixed thermometers was conducted by using different test cells and the experimental results were compared to model calculations performed with a finite element computational code. Measured thermometer efficiency and linearity are in good agreement with numerical results. Some typical temperature maps of different Nb samples obtained with the TE011 array (40 epoxy thermometers) are discussed. On the basis of numerical modelling results, a new type of thermometer with an improved efficiency has been designed. The thermal insulation against Helium II has been drastically improved by placing the sensitive part of the thermometer in a small vacuum jacket ('vacuum' thermometers). Two main goals have been reached with the first prototypes: improved efficiency by a factor of 2.5 - 3, and a bath temperature dependence of the thermal response in good agreement with the expected Kapitza conductance behaviour. Fitting experimental results with numerical modelling data, allow us to estimate the Kapitza conductance. The obtained values are in good agreement with the previous results reported by several authors using a different measurement method. The 'vacuum' thermometers are currently used on the TE011 mode cavity with Nb and NbTiN plates and the first results are presented

  4. Enhanced Performance of Bipolar Cascade Light Emitting Diodes by Doping the Aluminum Oxide Apertures

    National Research Council Canada - National Science Library

    Siskaninetz, William

    2004-01-01

    Performance improvements in multiple-stage, single-cavity bipolar cascade light emitting diodes including reduced operating voltages, enhanced light generation, and reduced device heating are obtained...

  5. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  6. Enhancement of acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities by utilizing surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2017-01-30

    A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.

  7. Surface emission of InxGa1-xN epilayers under strong optical excitation

    International Nuclear Information System (INIS)

    Jiang, H.X.; Lin, J.Y.; Khan, M.A.; Chen, Q.; Yang, J.W.

    1997-01-01

    Effects of strong optical excitation on the properties of surface emission from an InGaN/GaN heterostructure grown by metal-organic chemical-vapor deposition have been investigated. An intriguing feature observed was that as the excitation intensity increased the surface emission spectrum evolved abruptly from a single dominating band to two dominating bands at a critical intensity. This phenomenon has a sharp phase transition or a switching character and can be accounted for by (i) the formation of an electron endash hole plasma state in the InGaN vertical cavity under strong optical excitation, (ii) the photoreflectance effect (variation of index of refraction with excitation intensity), and (c) the Fabry endash Pacute erot interference effect in the InGaN vertical cavity. These findings are expected to have impact on the design of the laser structures, in particular on the design of the vertical-cavity surface-emitting laser diodes based on III-nitride wide-band-gap semiconductors. copyright 1997 American Institute of Physics

  8. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  9. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  10. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  11. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  12. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  13. High-Q operation of superconducting rf cavities: Potential impact of thermocurrents on the rf surface resistance

    Directory of Open Access Journals (Sweden)

    J.-M. Vogt

    2015-04-01

    Full Text Available For many new accelerator applications, superconducting radio frequency systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [O. Kugeler et al., in Proceedings of the 14th International Conference on RF Superconductivity (2009, p. 352], a procedure of warming up a cavity after initial cooldown to about 20 K and cooling it down again. In subsequent studies [J. M. Vogt, O. Kugeler, and J. Knobloch, Phys. Rev. ST Accel. Beams 16, 102002 (2013], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature dependence of the material parameters results in a nonsymmetric current distribution. Hence a significant amount of magnetic flux can be generated at the rf surface.

  14. Full color organic light-emitting devices with microcavity structure and color filter.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  15. Resolving the stratification discrepancy of turbulent natural convection in differentially heated air-filled cavities. Part III: A full convection–conduction–surface radiation coupling

    International Nuclear Information System (INIS)

    Xin, Shihe; Salat, Jacques; Joubert, Patrice; Sergent, Anne; Penot, François; Quéré, Patrick Le

    2013-01-01

    Highlights: ► Turbulent natural convection is studied numerically and experimentally. ► DNS of full conduction–convection–radiation coupling is performed. ► Spectral methods are combined with domain decomposition. ► Considering surface radiation improves strongly numerical results. ► Surface radiation is responsible for the weak stratification. -- Abstract: The present study concerns an air-filled differentially heated cavity of 1 m × 0.32 m × 1 m (width × depth × height) subject to a temperature difference of 15 K and is motivated by the need to understand the persistent discrepancy observed between numerical and experimental results on thermal stratification in the cavity core. An improved experiment with enhanced metrology was set up and experimental data have been obtained along with the characteristics of the surfaces and materials used. Experimental temperature distributions on the passive walls have been introduced in numerical simulations in order to provide a faithful prediction of experimental data. By means of DNS using spectral methods, heat conduction in the insulating material is first coupled with natural convection in the cavity. As heat conduction influences only the temperature distribution on the top and bottom surfaces and in the near wall regions, surface radiation is added to the coupling of natural convection with heat conduction. The temperature distribution in the cavity is strongly affected by the polycarbonate front and rear walls of the cavity, which are almost black surfaces for low temperature radiation, and also other low emissivity walls. The thermal stratification is considerably weakened by surface radiation. Good agreement between numerical simulations and experiments is observed on both time-averaged fields and turbulent statistics. Treating the full conduction–convection–radiation coupling allowed to confirm that experimental wall temperatures resulted from the coupled phenomena and this is another way to

  16. Light emitting device having peripheral emissive region

    Science.gov (United States)

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  17. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  18. Pool Boiling Characteristics on the Microstructure surfaces with Both Rectangular Cavities and Channels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Eok; Myung, Byung-Soo [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Park, Su Cheong; Yu, Dong In [POSTECH, Pohang (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Ahn, Ho Seon [Incheon Nat’l Univ., Incheon (Korea, Republic of)

    2016-06-15

    Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.

  19. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    Science.gov (United States)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  20. Tunneling study of SRF cavity-grade niobium

    International Nuclear Information System (INIS)

    Proslier, T.; Zasadzinski, J.; Cooley, L.; Pellin, M.; Norem, J.; Elam, J.; Antonine, C. Z.; Rimmer, R.; Kneisel, P.

    2009-01-01

    Niobium, with its very high H C1 , has been used in superconducting radio frequency (SRF) cavities for accelerator systems for 40 years with continual improvement. The quality factor of cavities (Q) is governed by the surface impedance R BCS , which depends on the quasiparticle gap, delta, and the superfluid density. Both of these parameters are seriously affected by surface imperfections (metallic phases, dissolved oxygen, magnetic impurities). Loss mechanism and surface treatments of Nb cavities found to improve the Q factor are still unsolved mysteries. We present here an overview of the capabilities of the point contact tunneling spectroscopy and Atomic layer deposition methods and how they can help understanding the High field Q-drop and the mild baking effect. Tunneling spectroscopy was performed on Nb pieces from the same processed material used to fabricate SRF cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap Delta = 1.55 meV, characteristic of clean, bulk Nb, however the tunneling density of states (DOS) was broadened significantly. Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities revealed a much sharper DOS. Good fits to the DOS are obtained using Shiba theory suggesting that magnetic scattering of quasiparticles is the origin of the degraded surface superconductivity and the Q-slope problem of Nb SRF cavities

  1. Triangle islands and cavities on the surface of evaporated Cu(In, Ga)Se2 absorber layer

    International Nuclear Information System (INIS)

    Han Anjun; Zhang Yi; Liu Wei; Li Boyan; Sun Yun

    2012-01-01

    Highlights: ► Lots of uncommon triangle islands and cavities are found on (1 1 2) planes terminated by Se atoms of evaporated Cu(In, Ga)Se 2 thin films. ► Se ad-dimer as a nucleus, Cu atom diffusion from Cu(In, Ga)Se 2 grains brings the epitaxial triangle island. ► The triangle islands grow with a two-dimensional layered mode. ► The triangle cavities are formed due to the insufficient coalescence of triangle islands. ► The performance of solar cell without triangle islands is improved. - Abstract: Cu(In, Ga)Se 2 (CIGS) thin films are co-evaporated at a constant substrate temperature of 500 °C on the Mo/soda lime glass substrates. The structural properties and chemical composition of the CIGS films are studied by an X-ray diffractometer (XRD) and an X-ray fluorescent spectrometer (XRF), respectively. A scanning electron microscope (SEM) is used to study the surface morphology. Lots of uncommon triangle islands and cavities are found on some planes of the CIGS thin films. We investigate the formation mechanism of these triangle islands. It is found that the planes with the triangle islands are (1 1 2) planes terminated by Se atoms. Se ad-dimer as a nucleus, Cu diffusion from CIGS grains brings the epitaxial triangle islands which grow with a two-dimensional layered mode. The film with Cu/(Ga + In) = 0.94–0.98 is one key of the formation of these islands. The triangle cavities are formed due to the insufficient coalescence of triangle islands. The growth of triangle islands brings a compact surface with large layered grains and many jagged edges, but no triangle cavity. Finally, we compare the performance of solar cell with triangle islands and layered gains. It is found that the performance of solar cell with large layered gains is improved.

  2. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    Science.gov (United States)

    Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert

    2018-01-01

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686

  3. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.

    Science.gov (United States)

    Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert

    2018-03-06

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  4. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    Directory of Open Access Journals (Sweden)

    Joanna Mystkowska

    2018-03-01

    Full Text Available Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  5. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  6. Identification and characterization of near surface cavities in Tuwaiq Mountain Limestone, Riyadh, KSA, “detection and treatment”

    Directory of Open Access Journals (Sweden)

    Ahmed Abd El Aal

    2017-03-01

    Full Text Available This study evaluates the capability of surface electrical resistivity technique for identifying the weak zones or subsurface cavities in karst area with limestone rocks. Weak zones or cavities near surface can be potentially dangerous and several problems are associated with collapse of roads or buildings accompanied by subsidence phenomena. Karst environments are characterized by distinctive landforms, which are related to dissolution and dominant subsurface drainage. The interaction of limestone with water is able to create karst features such as cavity, pinnacle, boulder and sinkhole through the dissolution process. The existence of subsurface karst features are always a matter of concern to engineers before any development starts because these features could cause disaster in the future. The study was conducted at Tuwaiq Mountain Limestone, Riyadh region, KSA with the objective to detect and treat karst features at limestone rocks. The karst features such as fill cavity, boulder, pinnacle, discontinuity and overhang were detected in the survey lines. The 2-D ER results showed a good correlation with all the borehole records in determining the subsurface of limestone formation. The 2-D ER method is capable in mapping karst features and bedrock depth. The ability of the electrical technique to produce high resolution images of the subsurface, which are useful for subsidence assessment is illustrated.

  7. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  8. Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm

    International Nuclear Information System (INIS)

    Bachmann, Alexander; Arafin, Shamsul; Kashani-Shirazi, Kaveh

    2009-01-01

    Vertical-cavity surface-emitting lasers (VCSELs) are perfect light sources for spectroscopic applications, where properties such as continuous-wave (cw) operation, single-mode emission, high lifetime and often low power consumption are crucial. For applications such as tunable diode laser absorption spectroscopy (TDLAS), there is a growing interest in laser devices emitting in the near- to mid-infrared wavelength range, where many environmentally and technologically important gases show strong absorption lines. The (AlGaIn)(AsSb) material system based on GaSb is the material of choice for covering the 2.0-3.3 μm range. In this paper, we report on electrically pumped single-mode VCSELs with emission wavelengths of 2.4 and 2.6 μm, operating cw at room temperature and beyond. By (electro-) thermal tuning, the emission wavelength can be tuned mode-hop free over a range of several nanometers. In addition, low threshold currents of several milliamperes promise mobile application. In the devices, a structured buried tunnel junction with subsequent overgrowth has been used in order to achieve efficient current confinement, reduced optical losses and increased electrical conductivity. Furthermore, strong optical confinement is introduced in the lasers due to laterally differing cavity lengths.

  9. Reactive ion beam etching for microcavity surface emitting laser fabrication: technology and damage characterization

    International Nuclear Information System (INIS)

    Matsutani, A.; Tadokoro, T.; Koyama, F.; Iga, K.

    1993-01-01

    Reactive ion beam etching (RIBE) is an effective dry etching technique for the fabrication of micro-sized surface emitting (SE) lasers and optoelectronic devices. In this chapter, some etching characteristics for GaAs, InP and GaInAsP with a Cl 2 gas using an RIBE system are discussed. Micro-sized circular mesas including GaInAsP/InP multilayers with vertical sidewalls were fabricated. RIBE-induced damage in InP substrates was estimated by C-V and PL measurement. In addition, the removal of the induced damage by the second RIBE with different conditions for the InP wafer was proposed. The sidewall damage is characterized by photoluminescence emitted from the etched sidewall of a GaInAsP/InP DH wafer. (orig.)

  10. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    International Nuclear Information System (INIS)

    Fry, C.J.

    1985-08-01

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  11. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  12. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    CERN Document Server

    Stegmaier, Tobias; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with fast time response. In the present work, their capability as a thermal quench mapping device for superconducting radio frequency cavities is proven experimentally by detecting second sound waves emitted by SMD heaters in a He-II bath at saturated vapour pressure. A characterisation of the sensors at steady bath temperatures was conducted to calculate the thermal sensitivity. An intense metallurgical study of gold-tin TES with different compositions revealed important relations between the superconducting behaviour and the ...

  13. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  14. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  15. Near Infrared Cavity Ring-Down Spectroscopy for Isotopic Analyses of CH4 on Future Martian Surface Missions

    Science.gov (United States)

    Chen, Y.; Mahaffy P.; Holmes, V.; Burris, J.; Morey, P.; Lehmann, K.K.; Lollar, B. Sherwood; Lacrampe-Couloume, G.; Onstott, T.C.

    2014-01-01

    A compact Near Infrared Continuous Wave Cavity Ring-Down Spectrometer (near-IR-cw-CRDS) was developed as a candidate for future planetary surface missions. The optical cavity was made of titanium with rugged quartz windows to protect the delicate super cavity from the harsh environmental changes that it would experience during space flight and a Martian surface mission. This design assured the long-term stability of the system. The system applied three distributed feedback laser diodes (DFB-LD), two of which were tuned to the absorption line peaks of (sup 12)CH4 and (sup 13)CH4 at 6046.954 inverse centimeters and 6049.121 inverse centimeters, respectively. The third laser was tuned to a spectral-lines-free region for measuring the baseline cavity loss. The multiple laser design compensated for typical baseline drift of a CRDS system and, thus, improved the overall precision. A semiconductor optical amplifier (SOA) was used instead of an Acousto-Optic Module (AOM) to initiate the cavity ring-down events. It maintained high acquisition rates such as AOM, but consumed less power. High data acquisition rates combined with improved long-term stability yielded precise isotopic measurements in this near-IR region even though the strongest CH4 absorption line in this region is 140 times weaker than that of the strongest mid-IR absorption band. The current system has a detection limit of 1.4 times 10( sup –12) inverse centimeters for (sup 13)CH4. This limit corresponds to approximately 7 parts per trillion volume of CH4 at 100 Torrs. With no further improvements the detection limit of our current near IR-cw-CRDS at an ambient Martian pressure of approximately 6 Torrs (8 millibars) would be 0.25 parts per billion volume for one 3.3 minute long analysis.

  16. Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity.

    Science.gov (United States)

    Paramo, Teresa; East, Alexandra; Garzón, Diana; Ulmschneider, Martin B; Bond, Peter J

    2014-05-13

    Protein cavities and tunnels are critical in determining phenomena such as ligand binding, molecular transport, and enzyme catalysis. Molecular dynamics (MD) simulations enable the exploration of the flexibility and conformational plasticity of protein cavities, extending the information available from static experimental structures relevant to, for example, drug design. Here, we present a new tool (trj_cavity) implemented within the GROMACS ( www.gromacs.org ) framework for the rapid identification and characterization of cavities detected within MD trajectories. trj_cavity is optimized for usability and computational efficiency and is applicable to the time-dependent analysis of any cavity topology, and optional specialized descriptors can be used to characterize, for example, protein channels. Its novel grid-based algorithm performs an efficient neighbor search whose calculation time is linear with system size, and a comparison of performance with other widely used cavity analysis programs reveals an orders-of-magnitude improvement in the computational cost. To demonstrate its potential for revealing novel mechanistic insights, trj_cavity has been used to analyze long-time scale simulation trajectories for three diverse protein cavity systems. This has helped to reveal, respectively, the lipid binding mechanism in the deep hydrophobic cavity of a soluble mite-allergen protein, Der p 2; a means for shuttling carbohydrates between the surface-exposed substrate-binding and catalytic pockets of a multidomain, membrane-proximal pullulanase, PulA; and the structural basis for selectivity in the transmembrane pore of a voltage-gated sodium channel (NavMs), embedded within a lipid bilayer environment. trj_cavity is available for download under an open-source license ( http://sourceforge.net/projects/trjcavity ). A simplified, GROMACS-independent version may also be compiled.

  17. Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.

  18. The quest for high-gradient superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.

    1999-01-01

    Superconducting RF cavities excel in applications requiring continuous waves or long pulse voltages. Since power losses in the walls of the cavity increase as the square of the accelerating voltage, copper cavities become uneconomical as demand for high continuous wave voltage grows with particle energy. For these reasons, RF superconductivity has become an important technology for high energy and high luminosity accelerators. The state of art in performance of sheet metal niobium cavities is best represented by the statistics of more than 300 5-cell, 1.5-GHz cavities built for CEBAF. Key aspects responsible for the outstanding performance of the CEBAF cavities set are the anti-multipactor, elliptical cell shape, good fabrication and welding techniques, high thermal conductivity niobium, and clean surface preparation. On average, field emission starts at the electric field of 8.7 MV/m, but there is a large spread, even though the cavities received nominally the same surface treatment and assembly procedures. In some cavities, field emission was detected as low as 3 MV/m. In others, it was found to be as high as 19 MV/m. As we will discuss, the reason for the large spread in the gradients is the large spread in emitter characteristics and the random occurrence of emitters on the surface. One important phenomenon that limits the achievable RF magnetic field is thermal breakdown of superconductivity, originating at sub-millimeter-size regions of high RF loss, called defects. Simulation reveal that if the defect is a normal conducting region of 200 mm radius, it will break down at 5 MV/m. Producing high gradients and high Q in superconducting cavities demands excellent control of material properties and surface cleanliness. The spread in gradients that arises from the random occurrence of defects and emitters must be reduced. It will be important to improve installation procedures to preserve the excellent gradients now obtained in laboratory test in vertical cryostats

  19. Development of superconducting cavities at JAERI

    International Nuclear Information System (INIS)

    Ouchi, N.

    2001-01-01

    Development of superconducting (SC) cavities is continued for the high intensity proton accelerator in JAERI. In FY-1999, we carried out R and D work; (1) 2nd vertical test of β=0.886 single-cell cavity, (2) vertical test for observation of Q-disease without heat treatment after electropolishing, (3) vertical test of β=0.5 5-cell cavity, (4) pretuning, surface treatment and vertical test of β=0.886 5-cell cavity, (5) pulsed operation of β=0.886 single-cell cavity in the vertical test to confirm the validity of a new model calculation. This paper describes the present status of the R and D work for the SC cavities in JAERI. (author)

  20. Preliminary Results from a Superconducting Photocathode Sample Cavity

    CERN Document Server

    Kneisel, Peter; Lipski, Andrzej; Sekutowicz, Jacek

    2005-01-01

    Pure niobium has been proposed as a photocathode material and recently a successful test has been conducted with a niobium single cell cavity to extract photo-currents from the surface of this cavity. However, the quantum efficiency of niobium is ~2·10-4, whereas electrodeposited lead has a ~15 times higher quantum efficiency. We have designed and tested a photo-injector niobium cavity, which can be used to insert photo-cathodes made of different materials in the high electric field region of the cavity. Experiments have been conducted with niobium and lead, which show that neither the Q- values of the cavity nor the obtainable surface fields are significantly lowered. This paper reports about the results from these tests.

  1. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...

  2. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around Tc

    Science.gov (United States)

    Romanenko, A.; Grassellino, A.; Melnychuk, O.; Sergatskov, D. A.

    2014-05-01

    We report a strong effect of the cooling dynamics through Tc on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  3. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  4. Observation of single quantum dots in GaAs/AlAs micropillar cavities

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Philipp; Karl, Matthias; Hu, Dongzhi; Schaadt, Daniel M.; Kalt, Heinz; Hetterich, Michael [Institut fuer Angewandte Physik, Universitaet Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), Karlsruhe (Germany)

    2009-07-01

    In our contribution we present the fabrication steps of micropillar cavities and their optical properties. The layer structure consisting of a GaAs-based lambda-cavity sandwiched between two GaAs/AlAs distributed Bragg reflectors is grown by molecular-beam epitaxy. In(Ga)As quantum dots, emitting at around 950 nm, are embedded as optically active medium in the middle of the cavity. The pillars are milled out of this structure with a focused ion-beam. A confocal micro-photoluminescence set-up allows to measure optical cavity modes as well as single quantum dots in the pillars when using low excitation intensity. This enables us to observe a (thermal) shift of the single quantum dot peaks relative to the cavity mode. In addition, we increased the numerical aperture of the set-up (originally 0.4) with a solid immersion lens up to 0.8. Thus we are able to detect the fundamental mode of pillars with very small diameters. Furthermore, the collection efficiency increases substantially.

  5. A mode-locked external-cavity quantum-dot laser with a variable repetition rate

    International Nuclear Information System (INIS)

    Wu Jian; Jin Peng; Li Xin-Kun; Wei Heng; Wu Yan-Hua; Wang Fei-Fei; Chen Hong-Mei; Wu Ju; Wang Zhan-Guo

    2013-01-01

    A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest −3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Spectral investigation of hot-spot and cavity resonance effects on the terahertz radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal mesa structures

    Science.gov (United States)

    Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard

    2014-03-01

    Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  7. Design of half-reentrant SRF cavities

    International Nuclear Information System (INIS)

    Meidlinger, M.; Grimm, T.L.; Hartung, W.

    2006-01-01

    The shape of a TeSLA inner cell can be improved to lower the peak surface magnetic field at the expense of a higher peak surface electric field by making the cell reentrant. Such a single-cell cavity was designed and tested at Cornell, setting a world record accelerating gradient [V. Shemelin et al., An optimized shape cavity for TESLA: concept and fabrication, 11th Workshop on RF Superconductivity, Travemuende, Germany, September 8-12, 2003; R. Geng, H. Padamsee, Reentrant cavity and first test result, Pushing the Limits of RF Superconductivity Workshop, Argonne National Laboratory, September 22-24, 2004]. However, the disadvantage to a cavity is that liquids become trapped in the reentrant portion when it is vertically hung during high pressure rinsing. While this was overcome for Cornell's single-cell cavity by flipping it several times between high pressure rinse cycles, this may not be feasible for a multi-cell cavity. One solution to this problem is to make the cavity reentrant on only one side, leaving the opposite wall angle at six degrees for fluid drainage. This idea was first presented in 2004 [T.L. Grimm et al., IEEE Transactions on Applied Superconductivity 15(6) (2005) 2393]. Preliminary designs of two new half-reentrant (HR) inner cells have since been completed, one at a high cell-to-cell coupling of 2.1% (high-k cc HR) and the other at 1.5% (low-k cc HR). The parameters of a HR cavity are comparable to a fully reentrant cavity, with the added benefit that a HR cavity can be easily cleaned with current technology

  8. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  9. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2017-04-15

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97% and the PPV 99% within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ=-0.93 with a significance of 6σ between an obtained surface variable and the maximal accelerating field was found.

  10. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2017-04-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97% and the PPV 99% within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ=-0.93 with a significance of 6σ between an obtained surface variable and the maximal accelerating field was found.

  11. Hydroforming of Tesla Cavities at Desy

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.; Gonin, I.; Zhelezov, I.; Khabibullin, T.; Kneisel, P.; Saito, K.

    2000-01-01

    Since several years the development of seamless niobium cavity fabrication by hydro forming is being pursued at DESY. This technique offers the possibility of lower cost of fabrication and perhaps better rf performance of the cavities because of the elimination of electron-beam welds, which in the standard fabrication technique have sometimes lead to inferior cavity performance due to defects. Several single cell 1300 MHz cavities have been formed from high purity seamless niobium tubes, which are under computer control expanded with internal pressure while simultaneously being swaged axially. The seamless tubes have been made by either back extrusion and flow forming or by spinning or deep drawing. Standard surface treatment techniques such as high temperature post purification, buffered chemical polishing (BCP), electropolishing (EP) and high pressure ultra pure water rinsing (HPR) have been applied to these cavities. The cavities exhibited high Q - values of 2 x 10 10 at 2K and residual resistances as low as 3 n(Omega) after the removal of a surface layer of app. 100 (micro)m by BCP. Surprisingly, even at high gradients up to the maximum measured values of E acc ∼ 33 MV/m the Q-value did not decrease in the absence of field emission as often observed. After electropolishing of additional 100 (micro)m one of the cavities reached an accelerating gradient of E acc (ge) 42 MV/m

  12. Study of the surface resistance of niobium sputter-coated copper cavities

    CERN Document Server

    Benvenuti, Cristoforo; Campisi, I E; Darriulat, Pierre; Peck, M A; Russo, R; Valente, A M

    1999-01-01

    A systematic study of the superconducting properties of niobium films deposited on the inner wall of copper radiofrequency cavities is presented. Films are grown by sputtering with different discharge gases (Xe, Kr, Ar and Ar/Ne mixtures) on substrates prepared under different conditions. The measured quantities include the surface resistance at 1.5 GHz, the critical temperature and the penetration depth. The surface resistance is analyzed in terms of its dependence on temperature, RF field and the density of trapped fluxons. Once allowance for electron scattering is made by means of a single mean free path parameter, good agreement with BCS theory is observed. The residual resistance is observed to be essentially noncorrelated with the superconducting properties, although influenced by specific coating conditions. On occasions, very low residual resistances, in the nano-ohm range, have been maintained over a broad range of RF field, indicating the absence of fundamental limitations specific to the film techn...

  13. Role of thermal resistance on the performance of superconducting radio frequency cavities

    Science.gov (United States)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2017-03-01

    Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order to investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q0(Bp) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. These results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q0(Bp) .

  14. Role of thermal resistance on the performance of superconducting radio frequency cavities

    Directory of Open Access Journals (Sweden)

    Pashupati Dhakal

    2017-03-01

    Full Text Available Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order to investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q_{0}(B_{p} curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. These results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q_{0}(B_{p}.

  15. Cavities produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1976-01-01

    This investigation studied the displacement of rock that formerly occupied cavities produced by underground nuclear explosions. There are three possible explanations for this displacement: the volume could be displaced to the free surface; it could occupy previously air-filled pores removed from the surrounding rock through compaction; or it could be accounted for by persisting compressive stresses induced by the outgoing shock wave. The analysis shows it unlikely that stored residual elastic stresses account for large fractions of cavity volumes. There is limited experimental evidence that free surface displacement accounts for a significant portion of this volume. Whenever the explosion mediums contain air-filled pores, the compaction of these pores most likely accounts for all the volume. Calculations show that 4 percent air-filled porosity can account for all the cavity volume within about 4 cavity radii and that even 1 percent can account for a significant fraction of the volume

  16. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  17. Morphological evaluation of cavity preparation surface after duraphat and Er:YAG laser treatment by scanning electronic microscopy

    International Nuclear Information System (INIS)

    Rodrigues, Luciane Borelli

    2002-01-01

    The treatment of dental surface using different lasers to prevent dental caries has been studied for several on last years. The purpose of this in vitro study was to evaluate the morphological changes on dentin surface from pulpal wall of cavity preparations performed by high-speed drill, treated with 2,26% fluoride varnish (Duraphat) and Er:YAG laser, and then submitted after receiving or not to EDTA 15% treatment. Twenty Class V cavities were performed on ten humans molars. The specimens were randomly divided in to 4 groups: group 1- treatment with Duraphat followed by Er:YAG laser irradiation (120 mJ/ 4 Hz); group 2: Er:YAG laser irradiation, same parameters, followed by Duraphat treatment; group 3- same group 1 followed by immersion in EDTA (5 min); group 4 - same as group 2 followed by immersion in EDTA (5 min). The specimens were processed for SEM analysis. The micrographs showed that Duraphat treatment promoted morphological changes on dentin, closing dentinal tubules; the specimens treated by Duraphat and Er:YAG laser and immersed in EDTA (group 3) showed homogeneous surface, closed and protected dentinal tubules, maintenance of the fluoride varnish on the dentin surface and around the dentinal tubules, showing feasible and efficiency of these therapies the feasibility.(author)

  18. Surface-Passivated AlGaN Nanowires for Enhanced Luminescence of Ultraviolet Light Emitting Diodes

    KAUST Repository

    Sun, Haiding

    2017-12-19

    Spontaneously-grown, self-aligned AlGaN nanowire ultraviolet light emitting diodes still suffer from low efficiency partially because of the strong surface recombination caused by surface states, i.e., oxidized surface and high density surface states. Several surface passivation methods have been introduced to reduce surface non-radiative recombination by using complex and toxic chemicals. Here, we present an effective method to suppress such undesirable surface recombination of the AlGaN nanowires via diluted potassium hydroxide (KOH) solution; a commonly used chemical process in semiconductor fabrication which is barely used as surface passivation solution in self-assembled nitride-based nanowires. The transmission electron microscopy investigation on the samples reveals almost intact nanowire structures after the passivation process. We demonstrated an approximately 49.7% enhancement in the ultraviolet light output power after 30-s KOH treatment on AlGaN nanowires grown on titanium-coated silicon substrates. We attribute such a remarkable enhancement to the removal of the surface dangling bonds and oxidized nitrides (Ga-O or Al-O bonds) at the surface as we observe the change of the carrier lifetime before and after the passivation. Thus, our results highlight the possibility of employing this process for the realization of high performance nanowire UV emitters.

  19. Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Naguib, Ahmed M. [Michigan State University, East Lansing, MI (United States)

    2011-11-15

    The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity's side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity. (orig.)

  20. Superconducting niobium cavities with high gradients

    International Nuclear Information System (INIS)

    Kneisel, P.; Saito, K.

    1992-01-01

    Present accelerator projects making use of superconducting cavity technology are constructed with design accelerating gradients E acc ranging between 5 MV/m and 8 MV/m and Q-values of several 10 9 . Future plans for upgrades of existing accelerators or for linear colliders call for gradients greater than 15 MV/m corresponding to peak surface electric fields above 30 MV/m. These demands challenge state-of-the-art production technology and require improvements in processing and handling of these cavities to overcome the major performance limitation of field emission loading. This paper reports on efforts to improve the performance of cavities made from niobium from different suppliers by using improved cleaning techniques after processing and ultrahigh vacuum annealing at temperatures of 1400 C. In single cell L-band cavities peak surface electric fields as high as 50 MV/m have been measured without significant field emission loading. (Author) 8 refs., fig

  1. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    Science.gov (United States)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  2. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    Science.gov (United States)

    Wenskat, M.

    2017-05-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97 % and the positive predictive value (PPV) 99 % within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ = -0.93 with a significance of 6 σ between an obtained surface variable and the maximal accelerating field was found.

  3. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  4. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  5. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  6. Q0 Degradation of LANL 700-MHZ β = 0.64 Elliptical Cavities and ANL 340 MHZ Spoke Cavities

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Chan, Kwok-Chi D.; Edwards, Randall L.; Gentzlinger, Robert C.; Kelley, John Patrick; Krawczyk, Frank L.; Madrid, Michael A.; Montoya, Debbie I.; Schrage, Dale L.; Shapiro, Alan H.

    2002-01-01

    The quality factor (Q 0 ) of most of the six LANL β = 0.64 700-MHz 5-cell elliptical cavities starts to drop at E acc = 8-10 MV/m, which may be related to multipacting. Residual resistances of these cavities were measured to be 5.0-7.6 n(Omega). The sensitivity of surface resistance to the external magnetic field was measured to be 0.22 n(Omega)/mG. Q disease tests have shown no significant Q 0 degradation for both elliptical cavities and a spoke cavity with our 100 (micro)m BCP.

  7. Three-dimensional simulations of the surface topography evolution of niobium superconducting radio frequency cavities

    Directory of Open Access Journals (Sweden)

    Rađenović Branislav M.

    2014-01-01

    Full Text Available This paper contains results of the three-dimensional simulations of the surface topography evolution of the niobium superconducting radio frequency cavities during isotropic and anisotropic etching modes. The initial rough surface is determined from the experimental power spectral density. The simulation results based on the level set method reveal that the time dependence of the root mean square roughness obeys Family-Viscek scaling law. The growth exponential factors b are determined for both etching modes. Exponential factor for the isotropic etching is 100 times lower than that for the anisotropic etching mode reviling that the isotropic etching is very useful mechanism of the smoothing. [Projekat Ministarstva nauke Republike Srbije, br. O171037 i br. III45006

  8. Ultra-wide-band accumulation of coherent undulator synchrotron radiation in a resonating cavity

    Directory of Open Access Journals (Sweden)

    Y. H. Seo

    2011-06-01

    Full Text Available Cavity accumulation of coherent undulator synchrotron radiation emitted by a train of periodic electron bunches is investigated. Phase-matching conditions for accumulation of radiation emitted by successive bunches are analyzed and numerically confirmed. While the coherent emission of a single bunch is optimal at grazing resonance, the accumulated radiation targeted at the upper resonant frequency of the waveguide mode is found to have much broader bandwidth and higher efficiency as the resonance steps away from the grazing condition. Numerical results confirm that stimulated superradiance is responsible for the accumulated radiation.

  9. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)˜ {10}10{--}{10}11 achieved on the Nb cavities at 1.3-2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  10. Researches on bake effect on RF superconducting cavities

    International Nuclear Information System (INIS)

    Hao Jiankui; Zhao Kui; Zhu Feng

    2005-01-01

    The Q-slope at high gradient affects the performance of superconducting cavity greatly. Recent researches show that low temperature (100-150) degree C heat treatment (bake) has positive effects on the performance of superconducting cavities. A lot of cavity tests are analyzed based on bake treatment. The average gradient E acc,max and E acc at Q=1 x 10 10 are increased by more than 3.5 MV/m. Q at E acc,max is increased and the Q-slope is improved. Analysis on bake temperature shows that higher bake temperature leads to higher Q value. Comparison of BCP and EP cavities shows that at least 60-80 μm EP is needed for BCP surface. More than 10-15 μm removal of the surface by BCP will degrade the performance of an EP cavity. Oxygen diffusion model is used to illustrate bake effect. (authors)

  11. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-01-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting

  12. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  13. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, D. B. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Roach, W. M. [College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science; Clavero, C. [College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science; Reece, C. E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lukaszew, R. A. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science

    2013-02-05

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ~500 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [ Appl. Phys. Lett. 88 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  14. Increasing the mode-locking efficiency of a cw solid-state laser with an auxiliary cavity

    International Nuclear Information System (INIS)

    Kalashnikov, V.L.; Kalosha, V.P.; Mikhailov, V.P.; Demchuk, M.I.

    1992-01-01

    It is predicted theoretically that the efficiency of self-mode locking can be raised by means of a bleachable shutter in the main cavity or an auxiliary cavity. The laser emits a stable train of ultrashort pulses under these conditions. The theory is based on a fluctuation model of the operation of a cw solid-state laser with a linear auxiliary cavity. The increase in efficiency involves a broadening of the region of parameter values of the system in which self-mode locking occurs, a significant decrease in the threshold pump intensity, and a reduced sensitivity of the operation to the phase mismatch of the lengths of the cavities. It is shown, for the first time, that a stable train of double ultrashort pulses can be generated by a system with a shutter in the auxiliary cavity. It is also shown that a self-mode locking is possible in the case in which there is a phase mismatch of the cavity lengths and there is no phase self-modulation in the main cavity. 15 refs., 8 figs

  15. JLab SRF Cavity Fabrication Errors, Consequences and Lessons Learned

    International Nuclear Information System (INIS)

    Marhauser, Frank

    2011-01-01

    Today, elliptical superconducting RF (SRF) cavities are preferably made from deep-drawn niobium sheets as pursued at Jefferson Laboratory (JLab). The fabrication of a cavity incorporates various cavity cell machining, trimming and electron beam welding (EBW) steps as well as surface chemistry that add to forming errors creating geometrical deviations of the cavity shape from its design. An analysis of in-house built cavities over the last years revealed significant errors in cavity production. Past fabrication flaws are described and lessons learned applied successfully to the most recent in-house series production of multi-cell cavities.

  16. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  17. Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution

    DEFF Research Database (Denmark)

    Speranzaa, Vito; Liparotia, Sara; Calaon, Matteo

    2017-01-01

    The production of polymeric components with functional structures in the micrometer and sub-micrometer range is a complex challenge for the injection molding process, since it suffers the use of low cavity surface temperatures that induce the fast formation of a frozen layer, thus preventing...... was sufficient to obtain accurate replication, with adequate surface temperatures. In the case of nano-features, the replication accuracy was affected by the morphology developed on the molding surface, that is aligned along the flow direction with dimensions comparable with the dimension of the nano...

  18. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  19. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  20. Surface studies of niobium chemically polished under conditions for superconducting radio frequency (SRF) cavity production

    Science.gov (United States)

    Tian, Hui; Reece, Charles E.; Kelley, Michael J.; Wang, Shancai; Plucinski, Lukasz; Smith, Kevin E.; Nowell, Matthew M.

    2006-11-01

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is ±30% and that of the surface composition is ±5%.

  1. Surface studies of niobium chemically polished under conditions for superconducting radio frequency (SRF) cavity production

    Energy Technology Data Exchange (ETDEWEB)

    Tian Hui [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States)]. E-mail: mkelley@jlab.org; Wang Shancai [Department of Physics, Boston University (United States); Plucinski, Lukasz [Department of Physics, Boston University (United States); Smith, Kevin E. [Department of Physics, Boston University (United States); Nowell, Matthew M. [EDAX TSL (United States)

    2006-11-30

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is {+-}30% and that of the surface composition is {+-}5%.

  2. Surface Studies of Niobium Chemically Polished Under Conditions for Superconducting Radio Frequency (SRF) Cavity Production

    Energy Technology Data Exchange (ETDEWEB)

    Tian,H.; Reece, C.; Kelley, M.; Wang, S.; Plucinski, L.; Smith, K.; Nowell, M.

    2006-01-01

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is {+-}30% and that of the surface composition is {+-}5%.

  3. Resonant MEMS tunable VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We demonstrate how resonant excitation of a microelectro-mechanical system can be used to increase the tuning range of a vertical-cavity surface-emitting laser two-fold by enabling both blue- and red-shifting of the wavelength. In this way a short-cavity design enabling wide tuning range can...... be realized. A high-index-contrast subwavelength grating verticalcavity surface-emitting laser with a monolithically integrated anti-reflection coating is presented. By incorporating an antireflection coating into the air cavity, higher tuning efficiency can be achieved at low threshold current. The first...

  4. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Gregersen, Niels; Mørk, Jesper

    2013-01-01

    A solid-state single-photon source emitting indistinguishable photons on-demand is an essential component of linear optics quantum computing schemes. However, the emitter will inevitably interact with the solid-state environment causing decoherence and loss of indistinguishability. In this paper......, we present a comprehensive theoretical treatment of the influence of phonon scattering on the coherence properties of single photons emitted from semiconductor quantum dots. We model decoherence using a full microscopic theory and compare with standard Markovian approximations employing Lindblad...

  5. Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation

    International Nuclear Information System (INIS)

    Ferretti, Sara; Andreani, Lucio Claudio; Tuereci, Hakan E.; Gerace, Dario

    2010-01-01

    We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: The master equation for the model, which takes into account both a coherent continuous drive and radiative as well as nonradiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the system - the tunneling and the nonlinear Kerr interaction - into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities, and the emitted light is coherent. In the opposite limit, photon blockade sets in, and the system shows an insulatorlike state with photons locked on each cavity, identified by antibunching of emitted light.

  6. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m{sup 2} corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m{sup 2} and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  7. Characterizing cavities in model inclusion molecules: a comparative study.

    Science.gov (United States)

    Torrens, F; Sánchez-Marín, J; Nebot-Gil, I

    1998-04-01

    We have selected fullerene-60 and -70 cavities as model systems in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecule taken as a unitary sphere, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and a cubic lattice approach to a molecular space. Accurate measures of the molecular volume and surface area have been performed with the pseudo-random Monte Carlo (MCVS) and uniform Monte Carlo (UMCVS) methods. These calculations serve as a reference for the rest of the methods. The SURMO2 and MS methods have not recognized the cavities and may not be convenient for intercalation compounds. The programs that have detected the cavities never exceed 5% deviation relative to the reference values for molecular volume and surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the accessible surfaces has been calculated.

  8. Strong Exciton-photon Coupling in Semiconductor Microcavities

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Hvam, Jørn Märcher

    1999-01-01

    The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high directiona......The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high......-optical switches based on semiconductor microcavities....

  9. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A., E-mail: aroman@fnal.gov; Grassellino, A., E-mail: annag@fnal.gov; Melnychuk, O.; Sergatskov, D. A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2014-05-14

    We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  10. Diagnostics and treatment of 1.3 GHz Nb cavities

    Energy Technology Data Exchange (ETDEWEB)

    Tamashevich, Yegor

    2017-01-15

    The European XFEL and the International Linear Collider are based on superconducting rf cavities. In order to reach the theoretical gradient limits of the superconducting cavities it is necessary to increase the mechanical quality and chemical composition of the inner surface as well as to understand the reason for performance limitations. This work is based on the diagnosis of over 100 XFEL and HiGrade cavities whose performance was limited by several factors: field emission on dust or surface defects, low-field thermal breakdown caused by the defects, Q-slope etc. It was found that some defects were produced during the mechanical production of the cavity and were not removed by electro-chemical polishing, a standard processing technique of the inner cavity surface. On the other hand, some of the defects were produced during the electro-chemical polishing process as the surface initially had imperfections or inclusions of foreign material. One of the opportunities to overcome the aforementioned drawbacks is to replace the ''bulk'' electro-chemical polishing process by mechanical centrifugal barrel polishing. The parameters of the surface after each polishing step were studied using small samples, so called coupons. An undersurface layer was investigated using metallographic techniques and cross sectioning. The influence of centrifugal polishing on the specific parameters of a 9-cell cavity (field flatness, eccentricity etc.) was investigated. As a result, a single-step centrifugal barrel polishing process followed by a standard ''light'' electropolishing was proposed for industrial application. Although the performance-limiting mechanisms are understood in general, the origin of the quench of the cavity is often unclear. To determine the quench locations, a localisation tool for thermal breakdown using the ''second sound'' in superfluid helium has been used. All components of this tool were improved to

  11. Diagnostics and treatment of 1.3 GHz Nb cavities

    International Nuclear Information System (INIS)

    Tamashevich, Yegor

    2017-01-01

    The European XFEL and the International Linear Collider are based on superconducting rf cavities. In order to reach the theoretical gradient limits of the superconducting cavities it is necessary to increase the mechanical quality and chemical composition of the inner surface as well as to understand the reason for performance limitations. This work is based on the diagnosis of over 100 XFEL and HiGrade cavities whose performance was limited by several factors: field emission on dust or surface defects, low-field thermal breakdown caused by the defects, Q-slope etc. It was found that some defects were produced during the mechanical production of the cavity and were not removed by electro-chemical polishing, a standard processing technique of the inner cavity surface. On the other hand, some of the defects were produced during the electro-chemical polishing process as the surface initially had imperfections or inclusions of foreign material. One of the opportunities to overcome the aforementioned drawbacks is to replace the ''bulk'' electro-chemical polishing process by mechanical centrifugal barrel polishing. The parameters of the surface after each polishing step were studied using small samples, so called coupons. An undersurface layer was investigated using metallographic techniques and cross sectioning. The influence of centrifugal polishing on the specific parameters of a 9-cell cavity (field flatness, eccentricity etc.) was investigated. As a result, a single-step centrifugal barrel polishing process followed by a standard ''light'' electropolishing was proposed for industrial application. Although the performance-limiting mechanisms are understood in general, the origin of the quench of the cavity is often unclear. To determine the quench locations, a localisation tool for thermal breakdown using the ''second sound'' in superfluid helium has been used. All components of this tool were improved to increase the accuracy of the measurements. A new program code

  12. Present status of superconducting cavity developments

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Nobuo; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    An R and D work of a superconducting (SC) cavity for the high intensity proton linac has begun at JAERI in collaboration with KEK. The RF field calculation and the structural analysis have been made to determine the cavity shape in the proton energy range between 100 and 1500 MeV. The results indicate the feasibility of a SC proton linac. A vertical test stand with clean room, water rinsing system, cavity evacuation pumping system, cryostat and data acquisition system has been installed to demonstrate the cavity performance. A single cell cavity of {beta}=0.5 has been fabricated and tested at the test stand to obtain the Q-value and the maximum surface electric field strength. The measured Q-values have been found to be high enough for our requirement while the field strength was limited to about 75% of the specification by the multipacting. We describe the preliminary design of the SC cavity, the overview of the vertical test stand and experimental results of the single cell cavity. (author)

  13. Superconducting spoke cavities for high-velocity applications

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  14. Top-emitting organic light-emitting diodes.

    Science.gov (United States)

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  15. Integral analysis of cavity pressurization in a fuel rod during an ULOF driven TOP with inclusion of surface tension effects on froth gas bubbles and variable cavity conditions due to fuel melting and ejection

    International Nuclear Information System (INIS)

    Royl, P.

    1984-02-01

    The transient cavity pressurization in an ULOF driven TOP excursion has been analyzed for the SPX-1 reactor with an equation of state that allows to simulate the contribution of small froth gas bubbles to the pressure build-up in a fuel pin with inclusion of restraints from surface tension. Calculations were performed for various bubble parameters. Estimates are made for effective gas availabilities at fuel melting which can be used in a cavity model with an ideal gas equation to arrive at similar pressure transients

  16. Cavity Heating Experiments Supporting Shuttle Columbia Accident Investigation

    Science.gov (United States)

    Everhart, Joel L.; Berger, Karen T.; Bey, Kim S.; Merski, N. Ronald; Wood, William A.

    2011-01-01

    The two-color thermographic phosphor method has been used to map the local heating augmentation of scaled idealized cavities at conditions simulating the windward surface of the Shuttle Orbiter Columbia during flight STS-107. Two experiments initiated in support of the Columbia Accident Investigation were conducted in the Langley 20-Inch Mach 6 Tunnel. Generally, the first test series evaluated open (length-to-depth less than 10) rectangular cavity geometries proposed as possible damage scenarios resulting from foam and ice impact during launch at several discrete locations on the vehicle windward surface, though some closed (length-to-depth greater than 13) geometries were briefly examined. The second test series was designed to parametrically evaluate heating augmentation in closed rectangular cavities. The tests were conducted under laminar cavity entry conditions over a range of local boundary layer edge-flow parameters typical of re-entry. Cavity design parameters were developed using laminar computational predictions, while the experimental boundary layer state conditions were inferred from the heating measurements. An analysis of the aeroheating caused by cavities allowed exclusion of non-breeching damage from the possible loss scenarios being considered during the investigation.

  17. Analysis of the surface resistance of the superconducting accelerating cavities of the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Brunken, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 9, Darmstadt D-64289 (Germany); Gopych, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 9, Darmstadt D-64289 (Germany); Graef, H.-D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 9, Darmstadt D-64289 (Germany); Laier, U. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 9, Darmstadt D-64289 (Germany)]. E-mail: U.Laier@gsi.de; Mueller, W. [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, Darmstadt D-64289 (Germany); Platz, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 9, Darmstadt D-64289 (Germany); Richter, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 9, Darmstadt D-64289 (Germany); Watzlawik, S. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 9, Darmstadt D-64289 (Germany); Weiland, T. [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, Darmstadt D-64289 (Germany)

    2006-08-01

    The quality factors of the 20 cell, 3GHz niobium cavities of the S-DALINAC are smaller by almost a factor of three compared to their design value. Combined with the limited cryogenic power of the helium refrigerator in use, this restricts the maximum electron energy of the S-DALINAC in continuous wave operation. Extensive studies to elaborate the origin of this degradation are presented. A 120{sup -}bar C baking combined with appropriate diagnostic tools for an attempt to improve the Q values has been applied to nine of the 11 cavities. The impact of this treatment on the BCS and residual resistance was evaluated and both were improved. Additionally, quality factor measurements of all modes of the TM{sub 010} passband allowed to derive a spatial distribution of the mean surface resistance. The RF losses in the end cells are systematically higher compared to the inner cells. The studies presented in this article allowed to develop a model describing the Q degradation of the resonators and thereby identifying possible prospects to cure this limitation.

  18. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  19. Breaking and Moving Hotspots in a Large Grain Nb Cavity with a Laser Beam

    International Nuclear Information System (INIS)

    Ciovati, G.; Cheng, G.; Flood, R. J.; Jordan, K.; Kneisel, P.; Morrone, M. L.; Turlington, L.; Wilson, K. M.; Zhang, S.; Anlage, S. M.; Gurevich, A. V.; Nemes, G.; Baldwin, C.

    2011-01-01

    Magnetic vortices pinned near the inner surface of SRF Nb cavities are a possible source of RF hotspots, frequently observed by temperature mapping of the cavities outer surface at RF surface magnetic fields of about 100 mT. Theoretically, we expect that the thermal gradient provided by a 10 W green laser shining on the inner cavity surface at the RF hotspot locations can move pinned vortices to different pinning locations. The experimental apparatus to send the beam onto the inner surface of a photoinjector-type large-grain Nb cavity is described. Preliminary results on the changes in thermal maps observed after applying the laser heating are also reported

  20. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  1. Resonant cavity enhanced multi-analyte sensing

    Science.gov (United States)

    Bergstein, David Alan

    Biological research and medicine increasingly depend on interrogating binding interactions among small segments of DNA, RNA, protein, and bio-specific small molecules. Microarray technology, which senses the affinity for target molecules in solution for a multiplicity of capturing agents fixed to a surface, has been used in biological research for gene expression profiling and in medicine for molecular biomarker detection. Label-free affinity sensing is preferable as it avoids fluorescent labeling of the target molecules, reducing test cost and variability. The Resonant Cavity Imaging Biosensor (RCIB) is a label-free optical inference based technique introduced that scales readily to high throughput and employs an optical resonant cavity to enhance sensitivity by a factor of 100 or more. Near-infrared light centered at 1512.5 nm couples resonantly through a cavity constructed from Si/SiO2 Bragg reflectors, one of which serves as the binding surface. As the wavelength is swept 5 nm, an Indium-Gallium-Arsenide digital camera monitors cavity transmittance at each pixel with resolution 128 x 128. A wavelength shift in the local resonant response of the optical cavity indicates binding. Positioning the sensing surface with respect to the standing wave pattern of the electric field within the cavity, one can control the sensitivity of the measurement to the presence of bound molecules thereby enhancing or suppressing sensitivity where appropriate. Transmitted intensity at thousands of pixel locations are recorded simultaneously in a 10 s, 5 nm scan. An initial proof-of-principle setup was constructed. A sample was fabricated with 25, 100 mum wide square regions, each with a different density of 1 mum square depressions etched 12 nm into the S1O 2 surface. The average depth of each etched region was found with 0.05 nm RMS precision when the sample remains loaded in the setup and 0.3 nm RMS precision when the sample is removed and replaced. Selective binding of the protein

  2. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  3. Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr; Gregersen, Niels; Lorke, Michael

    2011-01-01

    The modulation bandwidth for a quantum dot light-emitting device is calculated using a detailed model for the spontaneous emission including the optical and electronic density-of-states. We show that the Purcell enhancement of the spontaneous emission rate depends critically on the degree...... of inhomogeneous broadening relative to the cavity linewidth and can improve the modulation speed only within certain parameter regimes....

  4. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  5. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    Science.gov (United States)

    Beringer, D. B.; Roach, W. M.; Clavero, C.; Reece, C. E.; Lukaszew, R. A.

    2013-02-01

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ˜50MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)APPLAB0003-695110.1063/1.2162264] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  6. Roughness analysis applied to niobium thin films grown on MgO(001 surfaces for superconducting radio frequency cavity applications

    Directory of Open Access Journals (Sweden)

    D. B. Beringer

    2013-02-01

    Full Text Available This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ∼50  MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006APPLAB0003-695110.1063/1.2162264] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  7. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Roach, D. B. Beringer, J. R. Skuza, W. A. Oliver, C. Clavero, C. E. Reece, R. A. Lukaszew

    2012-06-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  8. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Directory of Open Access Journals (Sweden)

    W. M. Roach

    2012-06-01

    Full Text Available Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  9. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Roach, W.M.; Beringer, D.B.; Skuza, J.R.; Oliver, W.A.; Clavero, C.; Reece, C.E.; Lukaszew, R.A.

    2012-01-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  10. Mode Engineering of Single Photons from Cavity Spontaneous Parametric Down-Conversion Source and Quantum Dots

    Science.gov (United States)

    Paudel, Uttam

    Over the past decade, much effort has been made in identifying and characterizing systems that can form a building block of quantum networks, among which semiconductor quantum dots (QD) and spontaneous parametric down-conversion (SPDC) source are two of the most promising candidates. The work presented in this thesis will be centered on investigating and engineering the mentioned systems for generating customizable single photons. A type-II SPDC source can generate a highly flexible pair of entangled photons that can be used to interface disparate quantum systems. In this thesis, we have successfully implemented a cavity-SPDC source that emits polarization correlated photons at 942 nm with a lifetime of 950-1050ps that mode matches closely with InAs/GaAs QD photons. The source emits 80 photon pairs per second per mW pump power within the 150MHz bandwidth. Though the detection of idler photons, the source is capable of emitting heralded photons with g2?0.5 for up to 40 mW pump power. For a low pump power of 5 mW, the heralded g2 is 0.06, indicating that the system is an excellent heralded single photon source. By directly exciting a single QD with cavity-SPDC photons, we have demonstrated a heralded-absorption of SPDC photons by QD, resulting in the coupling of the two systems. Due to the large pump bandwidth, the emitted source is highly multimode in nature, requiring us to post-filter the downconverted field, resulting in a lower photon pair emission rate. We propose placing an intra-cavity etalon to suppress the multi-mode emissions and increase the photon count rate. Understanding and experimentally implementing two-photon interference (HOM) measurements will be crucial for building a scalable quantum network. A detailed theoretical description of HOM measurements is given and is experimentally demonstrated using photons emitted by QD. Through HOM measurements we demonstrated that the QD sample in the study is capable of emitting indistinguishable photons, with

  11. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes.

    Science.gov (United States)

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-02

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  12. Heat and mass transfer in porous cavity: Assisting flow

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.

  13. Pill-Box Cavity BPM For TESLA Cryomodul

    CERN Document Server

    Sargsyan, V

    2003-01-01

    A new cavity BPM with 10 μm resolution is designed and fabricated to perform single bunch measurements at the TESLA linear collider. In order to have a low energy dissipation in the cryogenic supermodule, the inner surface of the cavity is copper plated. Cross-talk is minimised by a special polarisation design. The electronics, at 1.5 GHz, is a homodyne receiver normalised to the bunch charge. Its LO-signal for down-conversion is taken from the same cavity.

  14. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  15. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  16. Neutralizing trapped electrons on the hydrogenated surface of a diamond amplifier

    Directory of Open Access Journals (Sweden)

    Xiangyun Chang

    2012-01-01

    Full Text Available We discuss our investigation of electron trapping in a diamond amplifier (DA. Our previous work demonstrated that some electrons reaching the DA’s hydrogenated surface are not emitted. The state and the removal of these electrons is important for DA applications. We found that these stopped electrons are trapped, and cannot be removed by a strong reversed-polarity electric field; to neutralize this surface charge, holes must be sent to the hydrogenated surface to recombine with the trapped electrons through the Shockley-Read-Hall surface-recombination mechanism. We measured the time taken for such recombination on the hydrogenated surface, viz. the recombination time, as less than 5 ns, limited by the resolution of our test system. With this measurement, we demonstrated that DA could be operated in an rf cavity with frequency of a few hundred megahertz.

  17. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc

    Science.gov (United States)

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    2016-08-01

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80 K /m are studied under various applied magnetic fields from 5 to 20 μ T . We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results support and enforce the previous studies. We then analyze all rf measurement results obtained under different applied magnetic fields together by plotting the trapped-flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped-flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. The sensitivity rfl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of d T /d s dependence of Rfl/Ba are also discussed.

  18. Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique.

    Science.gov (United States)

    Avetisyan, Yuri H

    2010-08-01

    A scheme of terahertz (THz)-wave surface-emitted difference-frequency generation (SEDFG), which lacks the drawbacks associated with the usage of periodically orientation-inverted structures, is proposed. It is shown that both material birefringence of the bulk LiNbO(3) crystal and modal birefringence of GaAs/AlAs waveguide are sufficient to obtain SEDFG up to a frequency of approximately 3THz. The simplicity of the proposed scheme, along with the fact that there is a much smaller THz-wave decay in nonlinear crystal, makes it a good candidate for the practical realization of efficient THz generation. The use of a GaAs waveguide with an oxidized AlAs layer is proposed for enhanced THz-wave SEDFG in the vicinity of the GaAs polariton resonance at 8THz.

  19. Mounting system for optical frequency reference cavities

    Science.gov (United States)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  20. Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities.

    Science.gov (United States)

    Shankar, Raji; Bulu, Irfan; Leijssen, Rick; Lončar, Marko

    2011-11-21

    We report the observation of optical bistability in Si-based photonic crystal cavities operating around 4.5 µm. Time domain measurements indicate that the source of this optical bistability is thermal, with a time constant on the order of 5 µs. Quality (Q) factor improvement is shown by the use of surface treatments (wet processes and annealing), resulting in a significant increase in Q-factor, which in our best devices is on the order of ~45,000 at 4.48 µm. After annealing in a N(2) environment, optical bistability is no longer seen in our cavities. © 2011 Optical Society of America

  1. Direct conversion of a three-atom W state to a Greenberger–Horne–Zeilinger state in spatially separated cavities

    International Nuclear Information System (INIS)

    Wang, Guo-Yuan; Wang, Dong-Yang; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    State conversion between the Greenberger–Horne–Zeilinger (GHZ) state and the W state is a challenging open problem because these states cannot be converted to each other by just local operations and classical communication. Here we propose a cavity quantum electrodynamics method based on interference of polarized photons emitted by the atoms trapped in spatially separated optical cavities that can convert a three-atom W state to a GHZ state. We calculate the success probability and fidelity of the converted GHZ state when the cavity decay, spontaneous atomic decay and photon leakage of the cavities are taken into account for a practical system, which shows that the proposed scheme is feasible and within the reach of current experimental technology. (paper)

  2. Apparatus and process for passivating an SRF cavity

    Science.gov (United States)

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  3. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.; Tawfik, Hani H.; Ashour, Mohamed; Graham, Andrew B.; Provine, John W.; Wang, Qingxiao; Zhang, Xixiang; Howe, Roger T.

    2012-01-01

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal

  4. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  5. Detection of hazardous cavities with combined geophysical methods

    Science.gov (United States)

    Hegymegi, Cs.; Nyari, Zs.; Pattantyus-Abraham, M.

    2003-04-01

    Unknown near-surface cavities often cause problems for municipal communities all over the world. This is the situation in Hungary in many towns and villages, too. Inhabitants and owners of real estates (houses, cottages, lands) are responsible for the safety and stability of their properties. The safety of public sites belongs to the local municipal community. Both (the owner and the community) are interested in preventing accidents. Near-surface cavities (unknown caves or earlier built and forgotten cellars) usually can be easily detected by surface geophysical methods. Traditional and recently developed measuring techniques in seismics, geoelectrics and georadar are suitable for economical investigation of hazardous, potentially collapsing cavities, prior to excavation and reinforcement. This poster will show some example for detection of cellars and caves being dangerous for civil population because of possible collapse under public sites (road, yard, playground, agricultural territory, etc.). The applied and presented methods are ground penetrating radar, seismic surface tomography and analysis of single traces, geoelectric 2D and 3D resistivity profiling. Technology and processing procedure will be presented.

  6. Further Insight Relative to Cavity Radiation: A Thought Experiment Refuting Kirchhoff's Law (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2014-01-01

    Full Text Available Kirchhoff’s law of thermal emission demands that all cavities contain blackbody, or normal, radiation which is dependent solely on the temperature and the frequency of observation, while remaining independent of the nature of t he enclosure. For over 150 years, this law has stood as a great pillar for those who believe that gaseous stars could emit a blackbody spectrum. However, it is well-known that, u nder laboratory condi- tions, gases emit in bands and cannot produce a thermal spectrum. Furthermore, all laboratory blackbodies are constructed from nearly ideal a bsorbers. This fact strongly opposes the validity of Kirchhoff’s formulation. Clearly, if Kirchhoff had been correct, then laboratory blackbodies could be constructed of any arbitrary material. Through the use of two cavities in temperature equilibrium with one another, a thought experiment is presented herein which soundly refutes Kirchhoff’s law of thermal emission.

  7. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  8. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer

  9. Apparatus and method for plasma processing of SRF cavities

    Science.gov (United States)

    Upadhyay, J.; Im, Do; Peshl, J.; Bašović, M.; Popović, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vušković, L.

    2016-05-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segmented plasma generation approach. The pill box cavity is filled with niobium ring- and disk-type samples and the etch rate of these samples was measured.

  10. Characterization of Nb SRF cavity materials by white light interferometry and replica techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States); Reece, Charles [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kelley, Michael, E-mail: mkelley@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States)

    2013-06-01

    Much work has shown that the topography of the interior surface is an important contributor to the performance of Nb superconducting radiofrequency (SRF) accelerator cavities. Micron-scale topography is implicated in non-linear loss mechanisms that limit the useful accelerating gradient range and impact cryogenic cost. Aggressive final chemical treatments in cavity production seek to reliably obtain “smoothest” surfaces with superior performance. Process development suffers because the cavity interior surface cannot be viewed directly without cutting out pieces, rendering the cavities unavailable for further study. Here we explore replica techniques as an alternative, providing imprints of cavity internal surface that can be readily examined. A second matter is the topography measurement technique used. Atomic force microscopy (AFM) has proven successful, but too time intensive for routine use in this application. We therefore introduce white light interferometry (WLI) as an alternative approach. We examined real surfaces and their replicas, using AFM and WLI. We find that the replica/WLI is promising to provide the large majority of the desired information, recognizing that a trade-off is being made between best lateral resolution (AFM) and the opportunity to examine much more surface area (WLI).

  11. Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kageyama, Takeo; Miyamoto, Tomoyuki; Ohta, Masataka; Matsuura, Tetsuya; Matsui, Yasutaka; Furuhata, Tatsuya; Koyama, Fumio

    2004-01-01

    A surfactant effect of antimony (Sb) on highly strained GaInAs quantum wells (QWs) was studied by molecular beam epitaxy. Noticeable improvement of the photoluminescence (PL) was observed by adding the dilute Sb. The QWs showed an increased PL intensity and narrow linewidth of 23 meV for the wavelength range up to 1180 nm. An atomic force microscope study showed a flattened surface morphology by the introduction of the Sb. Broad-area lasers with a GaInAsSb/GaAs double-QW active layer emitting at 1170 nm showed a low threshold current density of 125 A/cm 2 per well for an infinite cavity length

  12. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  13. Sediment studies at Bikini Atoll part 3. Inventories of some long-lived gamma-emitting radionuclides associated with lagoon surface sediments

    Energy Technology Data Exchange (ETDEWEB)

    Noshkin, V.E.

    1997-12-01

    Surface sediment samples were collected during 1979 from 87 locations in the lagoon at Bikini Atoll. The collections were made to better define the concentrations and distribution of long-lived radionuclides associated with the bottom material and to show what modifications occurred to the composition of the surface sediment from the nuclear testing program conducted by the United States at the Atoll between 1946 and 1958. This is the last of three reports on Bikini sediment studies. In this report, we discuss the concentrations and inventories of the residual long-lived gamma-emitting radionuclides in sediments from the lagoon. The gamma-emitting radionuclides detected most frequently in sediments collected in 1979, in addition to Americium-241 ({sup 241}Am) (discussed in the second report of this series), included Cesium-137 ({sup 137}Cs), Bismuth-207 ({sup 207}Bi), Europium-155 ({sup 155}Eu), and Cobalt-60 ({sup 60}Co). Other man-made, gamma-emitting radionuclides such as Europium-152,154 ({sup 152,154}Eu), Antimony-125 ({sup 125}Sb), and Rhodium-101,102m ({sup 101,102m}Rh) were occasionally measured above detection limits in sediments near test site locations. The mean inventories for {sup 137}Cs, {sup 207}Ei, {sup 155}Eu, and {sup 60}Co in the surface 4 cm of the lagoon sediment to be 1.7, 0.56, 7.76, and 0.74 TBq, respectively. By June 1997, radioactive decay would reduce these values to 1.1, 0.38, 0.62, and 0.07 TBq, respectively. Some additional loss results from a combination of different processes that continuously mobilize and return some amount of the radionuclides to the water column. The water and dissolved constituents are removed from the lagoon through channels and exchange with the surface waters of the north equatorial Pacific Ocean. Highest levels of these radionuclides are found in surface deposits lagoonward of the Bravo Crater. Lowest concentrations and inventories are associated with sediment lagoonward of the eastern reef. The quantities in

  14. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    Science.gov (United States)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  15. Coupling of an overdriven cavity

    International Nuclear Information System (INIS)

    Garbin, H.D.

    1993-01-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD's ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled

  16. NbN thin films for superconducting radio frequency cavities

    Science.gov (United States)

    Roach, W. M.; Skuza, J. R.; Beringer, D. B.; Li, Z.; Clavero, C.; Lukaszew, R. A.

    2012-12-01

    NbN thin films have the potential to be incorporated into radio frequency cavities in a multilayer coating to overcome the fundamental field gradient limit of 50 MV m-1 for the bulk niobium based technology that is currently implemented in particle accelerators. In addition to having a larger critical field value than bulk niobium, NbN films develop smoother surfaces which are optimal for cavity performance and lead to fewer losses. Here, we present a study on the correlation of film deposition parameters, surface morphology, microstructure, transport properties and superconducting properties of NbN thin films. We have achieved films with bulk-like lattice parameters and superconducting transition temperatures. These NbN films have a lower surface roughness than similarly grown niobium films of comparable thickness. The potential application of NbN thin films in accelerator cavities is discussed.

  17. NbN thin films for superconducting radio frequency cavities

    International Nuclear Information System (INIS)

    Roach, W M; Clavero, C; Lukaszew, R A; Skuza, J R; Beringer, D B; Li, Z

    2012-01-01

    NbN thin films have the potential to be incorporated into radio frequency cavities in a multilayer coating to overcome the fundamental field gradient limit of 50 MV m −1 for the bulk niobium based technology that is currently implemented in particle accelerators. In addition to having a larger critical field value than bulk niobium, NbN films develop smoother surfaces which are optimal for cavity performance and lead to fewer losses. Here, we present a study on the correlation of film deposition parameters, surface morphology, microstructure, transport properties and superconducting properties of NbN thin films. We have achieved films with bulk-like lattice parameters and superconducting transition temperatures. These NbN films have a lower surface roughness than similarly grown niobium films of comparable thickness. The potential application of NbN thin films in accelerator cavities is discussed. (paper)

  18. Assessment of radiation emitted by the colour video monitors using a silicon surface-barrier detection system

    International Nuclear Information System (INIS)

    Tykva, R.; Sabol, J.

    1998-01-01

    About 5% of the commonly used colour monitors tested showed radiation levels on the screen surface approaching the dose rate of 5 μGy/h. There is practically no difference between 'low radiation' monitors and other monitors. The level of radiation emitted to the sides is generally higher than that of X-ray photons emerging from the surface of the screen. Although the contribution to the effective dose of a person exposed to radiation from the monitors may be below the limit set for the general public, the skin and eye lens dose may reach significant levels, taking into account some factors such as a high density of monitors in small rooms, short distance, long exposure time, etc. (M.D.)

  19. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    Science.gov (United States)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an

  20. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  1. Investigations of thin p-GaN light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  2. Multipacting studies in elliptic SRF cavities

    Science.gov (United States)

    Prakash, Ram; Jana, Arup Ratan; Kumar, Vinit

    2017-09-01

    Multipacting is a resonant process, where the number of unwanted electrons resulting from a parasitic discharge rapidly grows to a larger value at some specific locations in a radio-frequency cavity. This results in a degradation of the cavity performance indicators (e.g. the quality factor Q and the maximum achievable accelerating gradient Eacc), and in the case of a superconducting radiofrequency (SRF) cavity, it leads to a quenching of superconductivity. Numerical simulations are essential to pre-empt the possibility of multipacting in SRF cavities, such that its design can be suitably refined to avoid this performance limiting phenomenon. Readily available computer codes (e.g.FishPact, MultiPac,CST-PICetc.) are widely used to simulate the phenomenon of multipacting in such cases. Most of the contemporary two dimensional (2D) codes such as FishPact, MultiPacetc. are unable to detect the multipacting in elliptic cavities because they use a simplistic secondary emission model, where it is assumed that all the secondary electrons are emitted with same energy. Some three-dimensional (3D) codes such as CST-PIC, which use a more realistic secondary emission model (Furman model) by following a probability distribution for the emission energy of secondary electrons, are able to correctly predict the occurrence of multipacting. These 3D codes however require large data handling and are slower than the 2D codes. In this paper, we report a detailed analysis of the multipacting phenomenon in elliptic SRF cavities and development of a 2D code to numerically simulate this phenomenon by employing the Furman model to simulate the secondary emission process. Since our code is 2D, it is faster than the 3D codes. It is however as accurate as the contemporary 3D codes since it uses the Furman model for secondary emission. We have also explored the possibility to further simplify the Furman model, which enables us to quickly estimate the growth rate of multipacting without

  3. Self-determined shapes and velocities of giant near-zero drag gas cavities

    KAUST Repository

    Vakarelski, Ivan Uriev

    2017-09-09

    Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface, made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less than Embedded Image those of solid objects of the same dimensions, which indicates that they experienced very small drag forces. The self-determined shapes of the gas cavities are shown to be consistent with the Bernoulli equation of potential flow applied on the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predicted by the sphere density and cavity volume, so larger cavities have higher characteristic velocities.

  4. Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.

    2014-01-01

    Roč. 25, č. 1 (2014), 015205 ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensors * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014

  5. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Deng, Lei

    2012-01-01

    In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approx......In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs...

  6. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  7. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Deo, M.N.; Roy, S.B.

    2016-01-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  8. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nageshwar [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, BARC, Mumbai 400085 (India); Roy, S.B. [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2016-09-11

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  9. Analysis of mechanical fabrication experience with CEBAF's production SRF cavities

    International Nuclear Information System (INIS)

    Mammosser, J.; Kneisel, P.; Benesch, J.

    1993-06-01

    CEBAF has received a total of 360 five-cell niobium cavities, the largest group of industrially fabricated superconducting cavities so far. An extensive data base exists on the fabrication, surface treatment, assembly and cavity performance parameters. Analysis of the mechanical features of the cavities includes the following: the spread in fabrication tolerances of the cells derived from field profiles of the ''as fabricated'' cavities and the ''as fabricated'' external Q-values of the fundamental power coupler compared to dimensional deviations. A comparison is made of the pressure sensitivity of cavities made of materials from different manufacturers between 760 torr (4.2 K) and 23 torr (2 K)

  10. A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi

    Science.gov (United States)

    Arulanantham, N.; France, K.; Hoadley, K.; Manara, C. F.; Schneider, P. C.; Alcalá, J. M.; Banzatti, A.; Günther, H. M.; Miotello, A.; van der Marel, N.; van Dishoeck, E. F.; Walsh, C.; Williams, J. P.

    2018-03-01

    We present a study of molecular gas in the inner disk (rgas in a surface layer between r = 0.1–10 au, as traced by Lyα-pumped H2. The result shows H2 emission originating in a ring centered at ∼3 au that declines within r gas emitting from radially separated disk regions ( ∼ 0.4+/- 0.1 {au}; ∼ 3+/- 2 {au}). The 4.7 μm 12CO emission lines are also well fit by two-component profiles ( =0.4+/- 0.1 {au}; =15+/- 2 {au}). We combine these results with 10 μm observations to form a picture of gapped structure within the mm-imaged dust cavity, providing the first such overview of the inner regions of a young disk. The HST SED of RY Lupi is available online for use in modeling efforts.

  11. On niobium sputter coated cavities

    International Nuclear Information System (INIS)

    Arnolds-Mayer, G.; Kaufmann, U.; Downar, H.

    1988-01-01

    To coat copper cavities with a thin film of niobium, facilities for electropolishing and sputter deposition have been installed at Dornier. Experiments have been performed on samples to optimize electropolishing and deposition parameters. In this paper, characteristics concerning surface properties, adhesion of the niobium film to the copper substrate, and film properties were studied on planar samples. A 1.5 GHz single cell cavity made from oxygen free high conductivity (OFHC) copper was sputter coated twice. First rf measurements were performed in the temperature range from 300 K to 2 K

  12. PEP-II RF cavity revisited

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Koehler, G.; Li, D.; Hartman, N.; Folwell, N.; Hodgson, J.; Ko, K.; McCandless, B.

    1999-01-01

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed

  13. Influence of radiation on double conjugate diffusion in a porous cavity

    International Nuclear Information System (INIS)

    Azeem,; Idris, Mohd Yamani Idna; Khan, T. M. Yunus; Badruddin, Irfan Anjum; Nik-Ghazali, N.

    2016-01-01

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature T_w and concentration C_w whereas the right surface is maintained at T_c and C_c such that T_w>T_c and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  14. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  15. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  16. Fluxon induced surface resistance and field emission in niobium films at 1.5 GHz

    CERN Document Server

    Benvenuti, Cristoforo; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2001-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, a precursor of electron emission, is observed for the first time in a study using radiofrequency cavities operating at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect. (23 refs).

  17. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    Science.gov (United States)

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  18. Test Results of the 3.9 GHz Cavity at Fermilab

    CERN Document Server

    Solyak, N

    2004-01-01

    Fermilab is developing two types of 3.9 GHz superconducting cavities to improve performances of A0 and TTF photoinjectors. In frame of this project we have built and tested two nine-cell copper models and one 3-cell niobium accelertating cavity and series of deflecting cavities. Properties of the high order modes were carefully studied in a chain of two copper cavities at room temperature. High gradient performance were tested at helium temperature. Achieved gradients and surface resistances are exceed goal parameters. In paper we discuss results of cold tests of the 3-cell accelerating and deflecting cavities.

  19. Unsteady cavity flow around a rectangular cylinder; Kakuchu mawari no hiteijo cavitation nagare

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Kaga, T.; Ota, T. [Tohoku University, Sendai (Japan). Faculty of Engineering; Mori, T. [Hachinohe Institute of Technology, Aomori (Japan)

    1995-08-25

    Unsteady cavity flow around a rectangular cylinder was observed using a high-speed camera. To clarify the correlation between the cavity behavior and fluid dynamic characteristics in the transitional region and supercavitation, fluctuating forces and surface pressures on the cylinder surface were recorded simultaneously. The tested cylinder has a critical width-to-height ration 2.8, in which the shear layer separated from the leading edge intermittently reattaches near the trailing edge. Bubbly cloud originating from the separated region near the leading edge causes fluctuation of cavity termination and induces large oscillations of fluid forces and pressures. As the cavitation number decreases, the low-frequency fluctuation of the cavity developing downstream of the rear surface increases in the fluid dynamic behavior. 24 refs., 12 figs.

  20. Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes

    Science.gov (United States)

    Zhu, Jinyang; Shao, He; Bai, Xue; Zhai, Yue; Zhu, Yongsheng; Chen, Xu; Pan, Gencai; Dong, Biao; Xu, Lin; Zhang, Hanzhuang; Song, Hongwei

    2018-06-01

    Carbon dots (CDs) have emerged as a new type of fluorescent material because of their unique optical advantages, such as high photoluminescence quantum yields (QYs), excellent photo-stability, excitation-dependent emissions, and low toxicity. However, the photoluminescence mechanism for CDs remains unclear, which limits their further practical application. Here, CDs were synthesized via a solvothermal route from citric acid and urea. Through the oxidation and reduction treatment of pristine CDs, the origin of the photoluminescence and the involved mechanism were revealed. We found that the blue/green/red emissions originated from three diverse emitting states, i.e. the intrinsic state, and C=O- and C=N-related surface states, respectively. Based on the as-prepared CDs, a pH sensor depending on the radiometric luminescence detection was developed. Furthermore, we constructed CD/PVP (PVP, polyvinylpyrrolidone) composite films, which exhibited white light emission with photoluminescence QYs of 15.3%. The white light emission with different correlated color temperatures (CCTs), from 4807 K to 3319 K, was obtained by simply changing the amount of PVP solution. Benefiting from the white light-emitting solid-state films, single-component white light-emitting diodes were fabricated with an average color rendering index value (Ra) of 80.0, luminous efficiency of 10.2 lm W‑1, and good working stability, thus indicating a promising potential for practical lighting applications.

  1. Steam exit flow design for aft cavities of an airfoil

    Science.gov (United States)

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  2. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through T_{c}

    Directory of Open Access Journals (Sweden)

    Shichun Huang

    2016-08-01

    Full Text Available Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80  K/m are studied under various applied magnetic fields from 5 to 20  μT. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results support and enforce the previous studies. We then analyze all rf measurement results obtained under different applied magnetic fields together by plotting the trapped-flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped-flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. The sensitivity r_{fl} of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R_{fl}/B_{a} are also discussed.

  3. Red-cockaded woodpecker cavity tree resin avoidance by southern flying squirrels

    Science.gov (United States)

    Richard R. Schaefer; Daniel Saenz

    1998-01-01

    While examining red-cockaded woodpecker (Picoides borealis) cavity contents in eastern Texas, the authors observed cavity tree resin avoidance by southern flying squirrels (Glaucomys volans). The tree surface around an active red-cockaded woodpecker cavity is coated with sticky resin which flows from resin wells created by the woodpecker. The southern flying squirrel...

  4. Controlling spontaneous emission dynamics in semiconductor micro cavities

    Science.gov (United States)

    Gayral, B.

    Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality in other words a long photon storage time are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed. L'émission spontanée de lumière peut être contrôlée, ainsi que nous l'enseigne l'électrodynamique quantique en cavité, ce fait a été démontré expérimentalement en physique atomique. En particulier, coupler un émetteur à un mode photonique résonnant d'une cavité peut exalter son taux d'émission spontanée : c'est l'effet Purcell. Bien qu'il semble très prometteur de mettre en pratique ces concepts pour améliorer les dispositifs semi-conducteurs émetteurs de lumière, le choix du système émetteur/cavité est crucial. Nous montrons que les boîtes quantiques semi-conductrices sont des bons candidats pour observer l'effet Purcell. Il faut par ailleurs des cavités de faible volume ayant une grande qualité optique en d'autres mots un long temps de

  5. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    Science.gov (United States)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  6. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    Science.gov (United States)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  7. Surface ultrastructural (SEM) characteristics of oropharyngeal cavity of house sparrow (Passer domesticus).

    Science.gov (United States)

    Abumandour, Mohamed M A

    2018-06-01

    The focus of the present study is to provide a full morphological description of the oropharyngeal cavity of the house sparrow. The head of six birds was prepared for gross examination and by stereo and electron microscopy. The bifid lingual apex has multiple long, rostrally directed needle-like processes. The lateral border of the apex carries rostromedially directed needle-like processes. The dorsal lingual surface of the apex and body carries numerous caudomedially directed filiform papillae and many orifices of lingual salivary glands. The lingual body is divided into two parts: rostral and caudal. The caudal part is divided into two laterally elevated regions by a median groove, while the rostral part is bounded laterally by a rostrodorsally directed papillary row, which on SEM is formed from two rows. On SEM, the lingual root has many orifices of posterior salivary glands. The pharyngeal papillary row is located at the caudal border of the laryngeal mound, but this single papillary row is formed from two rows at SEM magnification. The laryngeal cleft continues caudally as a laryngeal fissure bounded by two longitudinal rows of caudally directed papillae; at high SEM magnification, this fissure is divided into two halves by a median ridge which carries caudally directed papillae on its posterior part. The choanal cleft proceeds rostrally by the median tubercle. There are a small number of orifices of palatine salivary glands. The morphological characters of the oropharyngeal cavity of the sparrow confirm its adaptation to surrounding environmental conditions and available food particles.

  8. Impact of Lorentz forces on a Spoke cavity with β 0.15 and on a Spiral-2 cavity with β 0.12

    International Nuclear Information System (INIS)

    Gassot, H.

    2007-01-01

    Mono-spoke superconducting cavities have been proposed for the acceleration of radioactive ion beams. The interaction of the electromagnetic field with the surface electrical current generates Lorentz forces that operate on the intern wall of the cavity, the distribution of these forces is highly non-linear and varying. The stability of a superconducting cavity is directly linked to the frequency variation due to Lorentz forces and as a consequence the optimized design of a cavity must take into account these forces. In order to optimize the design of a cavity, 3 complementary software have been developed: Catia, a computer-aided-design software, Soprano for electromagnetic modeling and Cast3m for mechanical modeling. Preliminary results show a good agreement between predicted values and experimental data. (A.C.)

  9. section of an accelerating cavity from LEP

    CERN Multimedia

    This is a section of an accelerating cavity from LEP, cut in half to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  10. In-situ plasma processing to increase the accelerating gradients of superconducting radio-frequency cavities

    Science.gov (United States)

    Doleans, M.; Tyagi, P. V.; Afanador, R.; McMahan, C. J.; Ball, J. A.; Barnhart, D. L.; Blokland, W.; Crofford, M. T.; Degraff, B. D.; Gold, S. W.; Hannah, B. S.; Howell, M. P.; Kim, S.-H.; Lee, S.-W.; Mammosser, J.; Neustadt, T. S.; Saunders, J. W.; Stewart, S.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2016-03-01

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed.

  11. Influence of radiation on double conjugate diffusion in a porous cavity

    Energy Technology Data Exchange (ETDEWEB)

    Azeem,; Idris, Mohd Yamani Idna [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Badruddin, Irfan Anjum, E-mail: irfan-magami@Rediffmail.com; Nik-Ghazali, N. [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2016-05-06

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature T{sub w} and concentration C{sub w} whereas the right surface is maintained at T{sub c} and C{sub c} such that T{sub w}>T{sub c} and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  12. Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications

    Science.gov (United States)

    Garnache, A.; Laurain, A.; Myara, M.; Sellahi, M.; Cerutti, L.; Perez, J. P.; Michon, A.; Beaudoin, G.; Sagnes, I.; Cermak, P.; Romanini, D.

    2017-11-01

    We demonstrate high power (multiwatt) low noise single frequency operation of tunable compact verical-external- cavity surface-emitting-lasers exhibiting a low divergence high beam quality, of great interest for photonics applications. The quantum-well based lasers are operating in CW at RT at 1μm and 2.3μm exploiting GaAs and Sb technologies. For heat management purpose the VECSEL membranes were bonded on a SiC substrate. Both high power diode pumping (using GaAs commercial diode) at large incidence angle and electrical pumping are developed. The design and physical properties of the coherent wave are presented. We took advantage of thermal lens-based stability to develop a short (0.5-5mm) external cavity without any intracavity filter. We measured a low divergence circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (> 30 dB). The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (laser power and coherence will be discussed. These design/properties can be extended to other wavelengths.

  13. The Dimensions of the Orbital Cavity Based on High-Resolution Computed Tomography of Human Cadavers

    DEFF Research Database (Denmark)

    Felding, Ulrik Ascanius; Bloch, Sune Land; Buchwald, Christian von

    2016-01-01

    for surface area. To authors' knowledge, this study is the first to have measured the entire surface area of the orbital cavity.The volume and surface area of the orbital cavity were estimated in computed tomography scans of 11 human cadavers using unbiased stereological sampling techniques. The mean (± SD......) total volume and total surface area of the orbital cavities was 24.27 ± 3.88 cm and 32.47 ± 2.96 cm, respectively. There was no significant difference in volume (P = 0.315) or surface area (P = 0.566) between the 2 orbital cavities.The stereological technique proved to be a robust and unbiased method...... that may be used as a gold standard for comparison with automated computer software. Future imaging studies in blow-out fracture patients may be based on individual and relative calculation involving both herniated volume and fractured surface area in relation to the total volume and surface area...

  14. Evaluation Of Silicon Diodes As IN-SITU Cryogenic Field Emission Detectors For SRF Cavity Development

    International Nuclear Information System (INIS)

    Palczewski, Ari; Geng, Rongli

    2012-01-01

    We performed in-situ cryogenic testing of four silicon diodes as possible candidates for field emission (FE) monitors of superconducting radio frequency (SRF) cavities during qualification testing and in accelerator cryo-modules. We evaluated diodes from 2 companies - from Hamamatsu corporation model S1223-01; and from OSI Optoelectronics models OSD35-LR-A, XUV-50C, and FIL-UV20. The measurements were done by placing the diodes in superfluid liquid helium near the top of a field emitting 9-cell cavity during its vertical test. For each diode, we will discuss their viability as a 2K cryogenic detector for FE mapping of SRF cavities and the directionality of S1223-01 in such environments. We will also present calibration curves between the diodes and JLab's standard radiation detector placed above the Dewar's top plate.

  15. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  16. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  17. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  18. Binding of copper and nickel to cavities in silicon formed by helium ion implantation

    International Nuclear Information System (INIS)

    Myers, S.M.; Follstaedt, D.M.; Bishop, D.M.

    1993-01-01

    Cavities formed in Si by He ion implantation and annealing are shown to be strong traps for Cu and Ni impurities. Experiments utilizing ion-beam analysis and transmission electron microscopy indicate that Cu is trapped at the internal surfaces of cavities up to ∼1 monolayer coverage with a binding energy of 2.2±0.2 eV relative to solution. This is greater than the heat of solution from the precipitated Cu 3 Si phase, determined to be 1.7 eV in agreement with earlier work. Copper at cavity-wall sites is reversibly replaced by H during heating in H 2 gas, indicating the relative stability of the two surface terminations. Initial results for Ni impurities indicate that trapping at cavities is again energetically preferred to silicide formation. The saturation coverage of Ni on the internal surfaces, however, is an order of magnitude smaller for Ni than Cu, consistent with published studies of external-surface adsorption. These results suggest that cavity trapping may getter metallic impurities in Si more effectively than methods based on silicide precipitation

  19. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  20. Alpha particles emitted from the surface of granite, clay, and its fired products, 1

    International Nuclear Information System (INIS)

    Aratani, Michi; Otsuka, Hideko

    1975-01-01

    As a part of an investigation on ''the effect of long-time irradiation from a trace amount of radioisotopes'', the emitting rate of alpha particles per unit surface area (apparent) coming from natural alpha-particle emitters has been measured. The samples measured were granite and its weathered product; clay, especially potter's clay, and its fired product; pottery ware. The values obtained were 39.1 +-0.9--0.73+-0.08 cpm/100 cm 2 in granite, 16.8+-0.4--6.4+-0.2 cpm/100cm 2 in potter's clay, and 1.36+-0.04--0.82+-0.04 cpm/100cm 2 in pottery ware on substrate, and 1.33+-0.05--0.32+-0.02 cpm/100cm 2 on glazer. (auth.)

  1. 3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.

    Science.gov (United States)

    Zhu, Q; Kato, S; Murakami, S; Ito, K

    2007-06-01

    This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity

  2. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  3. 1-W quasi-cw near-diffraction-limited semiconductor laser pumped optically by a fibre-coupled diode bar

    OpenAIRE

    Dhanjal, S.; Hoogland, S.; Roberts, J.S.; Hayward, R.A.; Clarkson, W.A.; Tropper, Anne

    2000-01-01

    We describe a diode-bar-pumped vertical-external-cavity surface-emitting semiconductor laser, which in quasi-cw operation emitted a peak power of >1 W at 1020 nm in a circular, near diffraction-limited beam.

  4. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface.

    Science.gov (United States)

    Teng, Tun-Chien; Tseng, Li-Wei

    2014-10-20

    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  5. Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror

    Science.gov (United States)

    Yao, Hua-Dong; Davidson, Lars

    2018-03-01

    We investigate the interior noise caused by turbulent flows past a generic side-view mirror. A rectangular glass window is placed downstream of the mirror. The window vibration is excited by the surface pressure fluctuations and emits the interior noise in a cuboid cavity. The turbulent flows are simulated using a compressible large eddy simulation method. The window vibration and interior noise are predicted with a finite element method. The wavenumber-frequency spectra of the surface pressure fluctuations are analyzed. The spectra are identified with some new features that cannot be explained by the Chase model for turbulent boundary layers. The spectra contain a minor hydrodynamic domain in addition to the hydrodynamic domain caused by the main convection of the turbulent boundary layer. The minor domain results from the local convection of the recirculating flow. These domains are formed in bent elliptic shapes. The spanwise expansion of the wake is found causing the bending. Based on the wavenumber-frequency relationships in the spectra, the surface pressure fluctuations are decomposed into hydrodynamic and acoustic components. The acoustic component is more efficient in the generation of the interior noise than the hydrodynamic component. However, the hydrodynamic component is still dominant at low frequencies below approximately 250 Hz since it has low transmission losses near the hydrodynamic critical frequency of the window. The structural modes of the window determine the low-frequency interior tonal noise. The combination of the mode shapes of the window and cavity greatly affects the magnitude distribution of the interior noise.

  6. Side-coupled cavity model for surface plasmon-polariton transmission across a groove

    International Nuclear Information System (INIS)

    Liu, J.S.Q.

    2010-01-01

    We demonstrate that the transmission properties of surface plasmon-polaritons (SPPs) across a rectangular groove in a metallic film can be described by an analytical model that treats the groove as a side-coupled cavity to propagating SPPs on the metal surface. The coupling efficiency to the groove is quantified by treating it as a truncated metal-dielectric-metal (MDM) waveguide. Finite-difference frequency-domain (FDFD) simulations and mode orthogonality relations are employed to derive the basic scattering coefficients that describe the interaction between the relevant modes in the system. The modeled SPP transmission and reflection intensities show excellent agreement with full-field simulations over a wide range of groove dimensions, validating this intuitive model. The model predicts the sharp transmission minima that occur whenever an incident SPP resonantly couples to the groove. We also for the first time show the importance of evanescent, reactive MDM SPP modes to the transmission behavior. SPPs that couple to this mode are resonantly enhanced upon reflection from the bottom of the groove, leading to high field intensities and sharp transmission minima across the groove. The resonant behavior exhibited by the grooves has a number of important device applications, including SPP mirrors, filters, and modulators.

  7. Scanning near-field optical microscopy of quantum dots in photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, Matthias; Fiore, Andrea [COBRA Research Institute, Technical University Eindhoven, Den Dolech 2, 5600 MB Eindhoven (Netherlands); Prancardi, Marco; Gerardino, Annamaria [Institute of Photonics and Nanotechnology, CNR, via del Cineto Romano 42, 00156 Roma (Italy); Alloing, Blandine; Li Lianhe, E-mail: m.s.skacel@tue.n [Institute of Photonics and Quantum Electronics, EPFL, CH-1015 Lausanne (Switzerland)

    2010-09-01

    Nanophotonic devices are of major interest for research and future quantum communication applications. Due to their nanometer feature size the resolution limit of far-field microscopy poses a limitation on the characterization of their optical properties. A method to overcome the resolution limit is the Scanning Near-Field Optical Microscope (SNOM). By approaching a fiber tip into the close vicinity of the sample the optical emission in the near-field regime is collected. This way of collecting the light is not affected by the diffraction limit. We employ a low temperature SNOM to investigate the photoluminescence of InAs QDs emitting at 1300nm wavelength embedded in photonic crystal cavities. At each location of an image scan the tip is stopped and a spectrum is acquired. We then plot maps of the photoluminescence for each wavelength. With this instrument it is now possible to directly observe the coupling of QDs to photonic crystal cavities both spectrally and spatially. We show first results of photoluminescence mapping of InAs QDs in photonic crystal cavities.

  8. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  9. Interaction of surface radiation and free convection in open and closed cavities

    International Nuclear Information System (INIS)

    Venkateshan, S.P.; Balaji, C.

    1996-01-01

    Research focussing on the interaction of all the modes of heat transfer in closed cavities, open cavities and L corners are scarce. Hence an earnest attempt to explore the interaction between the various modes of heat transfer in the above mentioned geometries to gain insight into the nature of interaction, and, develop useful correlations for computing the overall heat transfer are the main thrusts of the present study. 21 refs., 20 figs., 3 tabs

  10. Recent Developments in SRF Cavity Science and Performance

    Energy Technology Data Exchange (ETDEWEB)

    G. Ciovati

    2006-08-10

    The performances of SRF cavities made of high purity bulk niobium have been improving in the last few years and surface magnetic fields (Bp) close to the thermodynamic critical field of niobium have been achieved in a few cases. The recommendation made in 2004 in favor of SRF as the technology of choice for the International Linear Collider (ILC), requires improving the reliability of multi-cell cavities operating at accelerating gradients (Eacc) of the order of 35 MV/m. Additionally, a better understanding of the present limitations to cavity performance, such as the high-field Q-drop is needed. This contribution presents some recent developments in SRF cavity science and performance. Among the most significant advances of the last few years, new cavity shapes with lower ratio Bp/Eacc were designed and tested. Cavities made of large-grain niobium became available, promising lower cost at comparable performance to standard fine-grain ones and several tests on single-cell cavities were done to gain a better understanding of high-field losses. In addition, studies to improve the reliability of electropolishing are being carried out by several research groups.

  11. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    Science.gov (United States)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  12. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    Science.gov (United States)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-06-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100-150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  13. Hydroforming of superconducting TESLA cavities

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.

    2003-01-01

    Seamless fabrication of single-cell and multi-cell TESLA shape cavities by hydroforming has been developed at DESY. The forming takes place by expanding the seamless tube with internal water pressure while simultaneously swaging it axially. Tube radius and axial displacement are being computer controlled in accordance with results of FEM simulations and the experimentally obtained strain-stress curve of tube material. Several Nb single cell cavities have been produced. A first bulk Nb double cell cavity has been fabricated. The Nb seamless tubes have been produced by spinning and deep drawing. Surface treatment such as buffered chemical polishing, (BCP), electropolishing (EP), high pressure ultra pure water rinsing (HPR), annealing at 800degC and baking at ca. 150degC have been applied. The best single cell bulk Nb cavity has reached an accelerating gradient of Eacc > 42 MV/m after ca. 250 μm BCP and 100 μm EP. Several bimetallic NbCu single cell cavities of TESLA shape have been fabricated. The seamless tubes have been produced by explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 mm and 3 mm respectively. The RF performance of NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m after ca. 180 μm BCP, annealing at 800degC and baking at 140degC for 30 hours. The degradation of the quality factor Qo after repeated quenching is moderate, after ca. 150 quenches it reaches the saturation point of Qo=1.4x10 10 at low field. This indicates that on the basis of RF performance and material costs the combination of hydroforming with tube cladding is a very promising option. (author)

  14. Materials and surface aspects in the development of SRF Niobium cavities

    CERN Document Server

    Antoine, C

    2012-01-01

    Foreword from author; When I joined the CEA Saclay SRF group in 1989, my initial background was physical chemistry and surface science, which I completed later on with solid state physics and metallurgy. Most accelerator physicists at that time had training in RF, plasma physics, nuclear or particle physics. We were very few with a background in material science. Working with people with a different background than yours reveals to be both challenging and funny: you can impress them with things you consider basic while they simply do not believe you for other things you consider so well admitted that you do not even remember where it comes from. At the end it obliges you to reconsider your basics and re-question many results, which opens many new and sometimes unexpected paths. Like usual in science, answering one question rises many new ones, and trying to improve cavities performance led to fascinating physics problems. Exploring some of these problems often requires techniques and expertise that are far be...

  15. Simulation of three-phase flow and lance height effect on the cavity shape

    Science.gov (United States)

    Dong, Kai; Zhu, Rong; Gao, Wei; Liu, Fu-hai

    2014-06-01

    A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The effect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth decreases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.

  16. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  17. Fabrication, Treatment and Testing of a 1.6 Cell Photo-injector Cavity for HZB

    International Nuclear Information System (INIS)

    Kneisel, P.; Kamps, T.; Knobloch, J.; Kugeler, O.; Neumann, A.; Nietubyc, R.; Sekutowicz, J.K.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Forschungszentrum Dresden (FZD) and JLab we have fabricated and tested after appropriate surface treatment a 1.5 cell, 1300 MHz RRR niobium photo-injector cavity to be used in a demonstration test at BESSY*. Following a baseline test at JLab, the cavity received a lead spot coating of ∼ 8 mm diameter deposited with a cathode arc at the Soltan Institute on the endplate made from large grain niobium. It had been demonstrated in earlier tests with a DESY built 1.5 cell cavity - the original design - that a lead spot of this size can be a good electron source, when irradiated with a laser light of 213 nm. In the initial test with the lead spot we could measure a peak surface electric field of ∼ 29 MV/m; after a second surface treatment, carried out to improve the cavity performance, but which was not done with sufficient precaution, the lead spot was destroyed and the cavity had to be coated a second time. This contribution reports about the experiences and results obtained with this cavity.

  18. Investigation of the superconducting properties of niobium radio-frequency cavities

    Science.gov (United States)

    Ciovati, Gianluigi

    Radio-frequency (rf) superconducting cavities are widely used to increase the energy of a charged particle beam in particle accelerators. The maximum gradients of cavities made of bulk niobium have constantly improved over the last ten years and they are approaching the theoretical limit of the material. Nevertheless, rf tests of niobium cavities are still showing some "anomalous" losses (so-called "Q-drop"), characterized by a marked increase of the surface resistance at high rf fields, in absence of field emission. A low temperature "in-situ" baking under ultra-high vacuum has been successfully applied by several laboratories to reduce those losses and improve the cavity's quality factor. Several models have been proposed to explain the cause of the Q-drop and the baking effect. We investigated the effect of baking on niobium material parameters by measuring the temperature dependence of a cavity's surface impedance and comparing it with the Bardeen-Cooper-Schrieffer's theory of superconductivity. It was found that baking allows interstitial oxygen to diffuse from the surface deeper into the bulk. This produces a significant reduction of the normal electrons' mean free path, which causes an increase of the quality factor. The optimum baking parameters are 120°C for 24-48 h. We were also able to identify the origin of the Q-drop as due to a high magnetic field, rather then electric field, by measuring the quality factor of a cavity as function of the rf field in a resonant mode with only magnetic field present on the surface. With the aid of a thermometry system, we were able to localize the losses in the high magnetic field region. We measured the Q-drop in cavities which had undergone different treatments, such as anodization, electropolishing and post-purification, and with different metallurgical properties and we study the effectiveness of baking in each case. As a result, none of the models proposed so far can explain all the experimental observations. We

  19. Laser frequency stabilization and control of optical cavities with suspended mirrors for the VIRGO interferometric detector of gravitational waves

    International Nuclear Information System (INIS)

    Barsuglia, Matteo

    1999-01-01

    The VIRGO detector is an interferometer with 3 km Fabry-Perot cavities in the arms. It is aimed at the detection of gravitational radiation emitted by astrophysical sources. This thesis comprises two independent parts. The first part is devoted to the laser frequency stabilization. In the second one we present a study of a suspended cavity. We determine the impact of laser frequency fluctuations on the overall VIRGO sensitivity. We study the frequency stabilization of the interferometer considered as an ultra-stable standard and we evaluate the noise pertaining to different signals taken into consideration. A strategy of control is discussed. We then study the VIRGO mode-cleaner prototype, a 30 m suspended triangular cavity, for which we have developed a control in order to keep it locked. Finally, we characterize this cavity in terms of mode spectra, finesse and mechanical transfer functions. (author)

  20. R&D for the Post-EP Processes of Superconducting RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Takayuki [KEK; Funahashi, Y. [KEK; Hayano, H. [KEK; Kato, Seigo [KEK; Nishiwaki, Michiru [KEK; Sawabe, Motoaki [KEK; Ueno, Kenji [KEK; Watanabe, K. [KEK; Antoine, Claire [CEA, Gif-sur-Yvette; Berry, Stefurn [CEA, Gif-sur-Yvette; Eozenou, F. [CEA, Gif-sur-Yvette; Gasser, Y. [CEA, Gif-sur-Yvette; Visentin, B. [CEA, Gif-sur-Yvette; Clemens, William A. [JLAB; Geng, Rongli [JLAB; Manus, Robert [JLAB; Tyagi, Puneet [GUAS/AS, Ibaraki

    2009-11-01

    The Electro-Polishing (EP) process is the best candidate of final surface treatment for the production of ILC cavities. Nevertheless, the broad distribution of the gradient caused by field emitters in cavities is sitll a serious problem for the EP process. A candidate source of field emitter is the sulfur component which is produced in the EP process and remains the inner-surface of cavities. We studied the effect of Ethanole- and degreaser-rinse processes after the EP process by a unique method. Moreover, we tried to test the sponge cleaning as the post-EP process to remove the field emitter inside the cavcity. This article describe the results of series tests of the post-EP process at KEK.

  1. Plasma ignition and tuning in different cells of a 1.3 GHz nine-cell superconducting radio frequency cavity: Proof of principle

    Science.gov (United States)

    Tyagi, P. V.; Moss, Andrew; Goudket, Philippe; Pattalwar, Shrikant; Herbert, Joe; Valizadeh, Reza; McIntosh, Peter

    2018-06-01

    Field emission is one of the critical issues in the superconducting radio frequency (SRF) cavities and can degrade their accelerating gradient during operation. The contamination present at top surface of the SRF cavity is one of the foremost reasons for field emission. Plasma based surface processing can be a viable option to eliminate such surface contaminants and enhance performance of the SRF cavity especially for in-situ applications. These days, 1.3 GHz nine-cell SRF cavity has become baseline standard for many particle accelerators, it is of interest to develop plasma cleaning technique for such SRF cavities. In the development of the plasma processing technique for SRF cavities, the most challenging task is to ignite and tune the plasma in different cells of the SRF cavity. At Daresbury laboratory, UK, we have successfully achieved plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity. The plasma ignition in different cells of the cavity was accomplished at room temperature towards room temperature plasma cleaning of the SRF cavity surface. Here, we report the successful demonstration of the plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity.

  2. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    Science.gov (United States)

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  3. Slot-coupled CW standing wave accelerating cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  4. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Konomi, T., E-mail: konomi@ims.ac.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yasuda, F. [University of Tokyo, Bunkyo-ku, Tokyo 113-8654 (Japan); Furuta, F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853 (United States); Saito, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-11

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q{sub 0} was 1.5×10{sup 10} with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity

  5. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q 0 was 1.5×10 10 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and

  6. Effects of Electric and Magnetic Fields on the Performance of a Superconducting Cavity

    International Nuclear Information System (INIS)

    Gianluigi Ciovati; Peter Kneisel; Jacek Sekutowicz; Waldemar Singer

    2005-01-01

    A special two-cell cavity was designed to obtain surface field distributions suitable for investigation of electric and magnetic field effects on cavity performance. The cavity design and preliminary results were presented in a previous contribution. The bulk niobium cavity was heat-treated in a vacuum furnace at 1250 C to improve thermal conductivity. Three seamless hydroformed Nb/Cu cavities of the same design were fabricated to investigate the role of the electron beam welds located in high field areas. This paper will present RF test results at 2 K for the bulk niobium and one of the seamless cavities

  7. Copper spherical cavity arrays: Fluorescence enhancement in PFO films

    Energy Technology Data Exchange (ETDEWEB)

    Spada, Edna R., E-mail: edspada@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Valente, Gustavo T.; Pereira-da-Silva, Marcelo A. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Sartorelli, Maria L. [Departamento de Física, Universidade Federal de Santa Catarina, Caixa Postal 476, 88040-900, Florianópolis, SC (Brazil); Guimarães, Francisco E.G.; Faria, Roberto M. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil)

    2017-01-15

    This manuscript addresses the use of a well-ordered antidot copper nanostructure as a active substrate for surface enhancement fluorescence (SEF). The antidot array was produced by electrodeposition and nanosphere lithography and characterized by microscopy technique, its successful application as SEF-active substrates was verified using polyfluorene (PFO) as a probe layer. Atomic force microscopy (AFM) was used to evaluate the regularity of the metal surface as well PFO coated process and confocal laser fluorescence microscopy (CLSM) to determine the behavior exhibited by the fluorescent layer due to the existence of the nanostructured surface. No accumulation PFO in the cavities was detected and the more intense emission regions coincides with the position of the cavities and is at about one order of magnitude higher.

  8. Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets.

    Science.gov (United States)

    Chen, Mingming; Shan, Xin; Geske, Thomas; Li, Junqiang; Yu, Zhibin

    2017-06-27

    Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m -2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton-exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors.

  9. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    Science.gov (United States)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  10. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    Science.gov (United States)

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  11. Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal.

    Science.gov (United States)

    Chremmos, Ioannis

    2009-12-01

    A rigorous integral equation (IE) analysis of the interaction between a surface plasmon polariton (SPP) and a circular dielectric cavity embedded in a metal half-space is presented. The device is addressed as the plasmonic counterpart of the established integrated optics filter comprising a whispering gallery (WG) resonator coupled to a waveguide. The mathematical formulation is that of a transverse magnetic scattering problem. Using a magnetic-type Green's function of the two-layer medium with boundary conditions that cancel the line integral contributions along the interface, an IE for the magnetic field inside the cavity is obtained. The IE is treated through an entire-domain method of moments (MoM) with cylindrical-harmonic basis functions. The entries of the MoM matrix are determined analytically by utilizing the inverse Fourier transform of Green's function and the Jacobi-Anger formula for interchanging between plane and cylindrical waves. Complex analysis techniques are applied to determine the transmitted, reflected, and radiated field quantities in series forms. The numerical results show that the scattered SPPs' spectra exhibit pronounced wavelength selectivity that is related to the excitation of WG-like cavity modes. It seems feasible to exploit the device as a bandstop or reflective filter or even as an efficient radiating element. In addition, the dependence of transmission on the cavity refractive index endows this structure with a sensing functionality.

  12. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dai, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Masi, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seda, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kellerman, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tallerico, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Todd, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 108 and at 2 K reached a value of ~6 × 109. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.

  13. Coherent wave packet dynamics in a double-well potential in cavity

    Science.gov (United States)

    Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui

    2018-02-01

    We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.

  14. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    International Nuclear Information System (INIS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R

    2016-01-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0 -values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0 -value of 2 × 10 10 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching. (paper)

  15. Vertical-Cavity Surface-Emitting Lasers: Advanced Modulation Formats and Coherent Detection

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto

    transmission link with real-time demodulation. Furthermore, advanced modulation formats are considered in this thesis to expand the state-of-the-art in high-speed short-range data transmission system based on VCSELs. First, directly modulation of a VCSEL with a 4-level pulse amplitude modulation (PAM-4) signal...... at 50 Gb/s is achieved. This is the highest data rate ever transmitted with a single VCSEL at the time of this thesis work. The capacity of this system is increased to 100 Gb/s by using polarization multiplexing emulation and forward error correction techniques. Compared to a non return-to-zero on-off...

  16. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    International Nuclear Information System (INIS)

    Gianluigi Ciovati

    2004-01-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  17. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  18. 3.1 W narrowband blue external cavity diode laser

    Science.gov (United States)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  19. Surface studies of plasma processed Nb samples

    International Nuclear Information System (INIS)

    Tyagi, Puneet V.; Doleans, Marc; Hannah, Brian S.; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO_2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  20. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    Science.gov (United States)

    Doleans, Marc

    2016-12-01

    An in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface, and to reduce its secondary emission yield. SNS SRF cavities have six accelerating cells and the plasma typically ignites in the cell where the electric field is the highest. This article details the technique to ignite and monitor the plasma in each cell of the SNS cavities.

  1. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  2. Fermilab linac upgrade side coupled cavity temperature control system

    International Nuclear Information System (INIS)

    Crisp, J.; Satti, J.

    1991-05-01

    Each cavity section has a temperature control system which maintains the resonant frequency by exploiting the 17.8 ppm/degree C frequency sensitivity of the copper cavities. Each accelerating cell has a cooling tube brazed azimuthally to the outside surface. Alternate supply and return connection to the water manifolds reduce temperature gradients and maintain physical alignment of the cavity string. Special tubing with spiral inner fins and large flow rate are used to reduce the film coefficient. Temperature is controlled by mixing chilled water with the water circulating between the cavity and the cooling skid located outside the radiation enclosure. Chilled water flow is regulated with a valve controlled by a local microcomputer. The temperature loop set point will be obtained from a slower loop which corrects the phase error between the cavity section and the rf drive during normal beam loaded conditions. Time constants associated with thermal gradients induced in the cavity with the rf power require programming it to the nominal 7.1 MW level over a 1 minute interval to limit the reverse power. 4 refs., 4 figs

  3. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    International Nuclear Information System (INIS)

    Meng Qinghua; Luo Huan; Bao Shiwei; Zhou Yifan; Chen Sihai

    2011-01-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  4. Three-dimensional self-consistent simulations of multipacting in superconducting radio frequency cavities. Final Report

    International Nuclear Information System (INIS)

    Nieter, Chet

    2010-01-01

    Superconducting radio frequency (SRF) cavities are a popular choice among researchers designing new accelerators because of the reduced power losses due to surface resistance. However, SRF cavities still have unresolved problems, including the loss of power to stray electrons. Sources of these electrons are field emission from the walls and ionization of background gas, but the predominant source is secondary emission yield (SEY) from electron impact. When the electron motion is in resonance with the cavity fields the electrons strike the cavity surface repeatedly creating a resonant build up of electrons referred to as multipacting. Cavity shaping has successfully reduced multipacting for cavities used in very high energy accelerators. However, multipacting is still a concern for the cavity power couplers, where shaping is not possible, and for cavities used to accelerate particles at moderate velocities. This Phase II project built upon existing models in the VORPAL simulation framework to allow for simulations of multipacting behavior in SRF cavities and their associated structures. The technical work involved allowed existing models of secondary electron generation to work with the complex boundary conditions needed to model the cavity structures. The types of data produced by VORPAL were also expanded to include data common used by cavity designers to evaluate cavity performance. Post-processing tools were also modified to provide information directly related to the conditions that produce multipacting. These new methods were demonstrated by running simulations of a cavity design being developed by researchers at Jefferson National Laboratory to attempt to identify the multipacting that would be an issue for the cavity design being considered. These simulations demonstrate that VORPAL now has the capabilities to assist researchers working with SRF cavities to understand and identify possible multipacting issues with their cavity designs.

  5. Strategies for waveguide coupling for SRF cavities

    International Nuclear Information System (INIS)

    Doolittle, L.R.

    1998-01-01

    Despite widespread use of coaxial couplers in SRF cavities, a single, simple waveguide coupling can be used both to transmit generator power to a cavity, and to remove a large class of Higher Order Modes (HOMs, produced by the beam). There are balances and tradeoffs to be made, such as the coupling strength of the various frequencies, the transverse component of the coupler fields on the beam axis, and the magnitude of the surface fields and currents. This paper describes those design constraints, categories of solutions, and examples from the CEBAF Energy Upgrade studies

  6. PEP-II RF Cavity Revisited (LCC-0032)

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, R.

    2004-03-23

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed.

  7. Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS

    Science.gov (United States)

    Tao, Runzhe

    Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results

  8. Baking effect on Niobium superconducting RF cavities and its physical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Kneisel, P. [Thomas Jefferson Accelerator Facility, VA, (United States)

    2000-07-01

    Recently a very surprising phenomenon has been discovered at JLab and Saclay with chemically polished niobium cavities, which the baking during vacuum evacuation has benefits to improve the cavity performance: high Q and high gradient. We have confirmed the same effect on the electropolished niobium cavities. We have analyzed the temperature dependence of the surface resistance in order to understand this effect in the frame or BCS theory. In this paper these results will be presented. (author)

  9. Fabrication of plasmonic cavity arrays for SERS analysis

    Science.gov (United States)

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-01

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  10. Improved-Delayed-Detached-Eddy Simulation of cavity-induced transition in hypersonic boundary layer

    International Nuclear Information System (INIS)

    Xiao, Lianghua; Xiao, Zhixiang; Duan, Zhiwei; Fu, Song

    2015-01-01

    Highlights: • This work is about hypersonic cavity-induced transition with IDDES approach. • The length-to-width-to-depth ratio of the cavity is 19.9:3.57:1 at AoA −10° and −15°. • Flow remains laminar at −10°, transition occurs at −15° and cavity changed from open to close type. • Streamwise vortices, impingement shock, traveling shocks and exit shock are observed. • Breakdown of these vortices triggering rapid flow transition. - Abstract: Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition

  11. RF Tests of an 805 MHz Pillbox Cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    D. Li; J. Corlett; R. MacGill; M. Zisman; J. Norem; A. Moretti; Z. Qian; J. Wallig; V. Wu; Y. Torun; R.A. Rimmer

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows over beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, following several weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested with and without the external magnetic field. 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, indicating that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emission significantly. A gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection of the Be window surface found no visual damage, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning the cavity in a strong magnetic field has been developed. More thorough window and cavity surface inspection is under way

  12. RF tests of an 805 MHz pillbox cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Rimmer, R.; Norem, J.; Torun, Y.

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows for beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, and it had to take many weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during the processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested at conditions of with and without the external magnetic field. A conservative 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, it indicated that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emissions significantly. A modest gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection on Be windows surface found no damage at all, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning cavity in a strong magnetic field has been developed. More through window and cavity surface inspection is under way

  13. Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification.

    Science.gov (United States)

    Rastogi, Prachi; Palazon, Francisco; Prato, Mirko; Di Stasio, Francesco; Krahne, Roman

    2018-02-14

    The surface ligands on colloidal nanocrystals (NCs) play an important role in the performance of NC-based optoelectronic devices such as photovoltaic cells, photodetectors, and light-emitting diodes (LEDs). On one hand, the NC emission depends critically on the passivation of the surface to minimize trap states that can provide nonradiative recombination channels. On the other hand, the electrical properties of NC films are dominated by the ligands that constitute the barriers for charge transport from one NC to its neighbor. Therefore, surface modifications via ligand exchange have been employed to improve the conductance of NC films. However, in LEDs, such surface modifications are more critical because of their possible detrimental effects on the emission properties. In this work, we study the role of surface ligand modifications on the optical and electrical properties of CdSe/CdS dot-in-rods (DiRs) in films and investigate their performance in all-solution-processed LEDs. The DiR films maintain high photoluminescence quantum yield, around 40-50%, and their electroluminescence in the LED preserves the excellent color purity of the photoluminescence. In the LEDs, the ligand exchange boosted the luminance, reaching a fourfold increase from 2200 cd/m 2 for native surfactants to 8500 cd/m 2 for the exchanged aminoethanethiol (AET) ligands. Moreover, the efficiency roll-off, operational stability, and shelf life are significantly improved, and the external quantum efficiency is modestly increased from 5.1 to 5.4%. We relate these improvements to the increased conductivity of the emissive layer and to the better charge balance of the electrically injected carriers. In this respect, we performed ultraviolet photoelectron spectroscopy (UPS) to obtain a deeper insight into the band alignment of the LED structure. The UPS data confirm similar flat-band offsets of the emitting layer to the electron- and hole-transport layers in the case of AET ligands, which translates to

  14. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    OpenAIRE

    D. B. Beringer; W. M. Roach; C. Clavero; C. E. Reece; R. A. Lukaszew

    2013-01-01

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ∼50  MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)APPLAB0003-695110.1063/1.2162...

  15. JACoW N-doped niobium accelerating cavities: Analyzing model applicability

    CERN Document Server

    Eichhorn, Ralf; Weingarten, Wolfgang

    2017-01-01

    The goal of this research was to analyse data from multiple cavities in order to test the viability of a model for surface resistance proposed previously. The model intends to describe the behaviour of the quality factor with respect to the RF field strength, while exploring the physical cause of this phenomenon; the model is pretty general, but will be checked here specifically for N-doped niobium cavities. The data were obtained from two single-cell 1.3 GHz cavities manufactured and tested at Jefferson Lab in Newport News, VA, USA.

  16. Fabrication of organic light emitting diode using Molybdenum ...

    Indian Academy of Sciences (India)

    65

    out by measuring sheet resistance, optical transmittance and surface ... role in the organic light-emitting diode (OLED) performance because it determines the .... coated glass by thermal vacuum deposition method and optimize it by using ...

  17. Free-Energy Barrier of Filling a Spherical Cavity in the Presence of Line Tension: Implication to the Energy Barrier between the Cassie and Wenzel States on a Superhydrophobic Surface with Spherical Cavities.

    Science.gov (United States)

    Iwamatsu, Masao

    2016-09-20

    The free-energy barrier of filling a spherical cavity having an inner wall of various wettabilities is studied. The morphology and free energy of a lens-shaped droplet are determined from the minimum of the free energy. The effect of line tension on the free energy is also studied. Then, the equilibrium contact angle of the droplet is determined from the generalized Young's equation. By increasing the droplet volume within the spherical cavity, the droplet morphology changes from spherical with an equilibrium contact angle of 180° to a lens with a convex meniscus, where the morphological complete drying transition occurs. By further increasing the droplet volume, the meniscus changes from convex to concave. Then, the lens-shaped droplet with concave meniscus spreads over the whole inner wall, resulting in an equilibrium contact angle of 0° to leave a spherical bubble, where the morphological complete wetting transition occurs. Finally, the whole cavity is filled with liquid. The free energy shows a barrier from complete drying to complete wetting as a function of droplet volume, which corresponds to the energy barrier between the Cassie and Wenzel states of the superhydrophobic surface with spherical cavities. The free-energy maximum occurs when the meniscus of the droplet becomes flat, and it is given by an analytic formula. The effect of line tension is expressed by the scaled line tension, and this effect is largest at the free-energy maximum. The positive line tension increases the free-energy maximum, which thus increases the stability of the Cassie superhydrophobic state, whereas the negative line tension destabilizes the superhydrophobic state.

  18. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  19. Effect of low-temperature baking on the radio-frequency properties of niobium superconducting cavities for particle accelerators

    International Nuclear Information System (INIS)

    Ciovati, Gianluigi

    2004-01-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some 'anomalous' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low-temperature (100-150 deg. C) 'in situ' bake under ultrahigh vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from 'anomalous' losses (so-called 'Q drop') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37-280 K and resonant frequency shift between 6-9.3 K provide information about the surface resistance, energy gap, penetration depth, and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with nuclear reaction analysis. The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper

  20. Effect of low-temperature baking on the radio-frequency properties of niobium superconducting cavities for particle accelerators

    Science.gov (United States)

    Ciovati, Gianluigi

    2004-08-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some "anomalous" losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low-temperature (100-150°C) "in situ" bake under ultrahigh vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from "anomalous" losses (so-called "Q drop") without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37-280K and resonant frequency shift between 6-9.3K provide information about the surface resistance, energy gap, penetration depth, and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with nuclear reaction analysis. The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes

  1. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...

  2. SQUID-based Nondestructive Testing Instrument of Dished Niobium Sheets for SRF Cavities

    International Nuclear Information System (INIS)

    Q. S. Shu; I. Ben-Zvi; G. Cheng; I. M. Phipps; J. T. Susta; P. Kneisel; G. Myneni; J. Mast; R. Selim

    2007-01-01

    Currently available technology can only inspect flat sheets and allow the elimination of defective flat sheets before the expensive forming and machining of the SRF cavity half-cells, but it does not eliminate the problem of remaining or uncovered surface impurities after partial chemical etching of the half-cells, nor does it detect any defects that may have been added during the fabrication of the half-cells. AMAC has developed a SQUID scanning system based on eddy current technique that allows the scanning of curved Nb samples that are welded to make superconducting RF cavity half-cells. AMAC SQUID scanning system successfully located the defects (Ta macro particles about 100 mm diameter) in a flat Nb sample (top side) and was able to also locate the defects in a cylindrical surface sample (top side). It is more significant that the system successfully located the defects on the backside of the flat sample and curved sample or 3-mm from the top surface. The 3-D SQUID-based Nondestructive instrument will be further optimized and improved in making SRF cavities and allow inspection and detection during cavity manufacturing for achieving highest accelerating fields

  3. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

    Science.gov (United States)

    2013-01-01

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526

  4. A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration

    International Nuclear Information System (INIS)

    Wang, Y Y; Xu, D G; Jiang, H; Zhong, K; Yao, J Q

    2013-01-01

    A high-energy, low-threshold THz-wave output has been experimentally demonstrated with an intracavity terahertz-wave parametric oscillator based on a surface-emitted configuration, which was pumped by a diode-side-pumped Q-switched Nd:YAG laser. Different beam sizes and repetition rates of the pump light have been investigated for high-energy and high-efficiency THz-wave generation. The maximum THz-wave output energy of 283 nJ/pulse was obtained at 1.54 THz under an intracavity 1064 nm pump energy of 59 mJ. The conversion efficiency was 4.8 × 10 −6 , corresponding to a photon conversion efficiency of 0.088%. The pump threshold was 12.9 mJ/pulse. A continuously tunable range from 0.75 to 2.75 THz was realized. (paper)

  5. Determination of γ-rays emitting radionuclides in surface water: application of a quantitative biosensing method

    International Nuclear Information System (INIS)

    Wolterbeek, H. Th.; Van der Meer, A. J. G. M.

    1995-01-01

    A quantitative biosensing method has been developed for the determination of γ-rays emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the related stable isotope (element) in the biosensor and the determination of the element in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters on accumulation levels: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Using water plants, the method is shown to be three to five orders of magnitude more sensitive than the direct analysis of water. (author)

  6. Determination of {gamma}-rays emitting radionuclides in surface water: application of a quantitative biosensing method

    Energy Technology Data Exchange (ETDEWEB)

    Wolterbeek, H Th; Van der Meer, A. J. G. M. [Delft University of Technology, Interfaculty Reactor Institute, Mekelweg 15, 2629 JB Delft (Netherlands)

    1995-12-01

    A quantitative biosensing method has been developed for the determination of {gamma}-rays emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the related stable isotope (element) in the biosensor and the determination of the element in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters on accumulation levels: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Using water plants, the method is shown to be three to five orders of magnitude more sensitive than the direct analysis of water. (author)

  7. Effect of mild baking on superconducting niobium cavities investigated by sequential nanoremoval

    Directory of Open Access Journals (Sweden)

    A. Romanenko

    2013-01-01

    Full Text Available The near-surface nanostructure of niobium determines the performance of superconducting microwave cavities. Subtle variations in surface nanostructure lead to yet unexplained phenomena such as the dependence of the quality factor of these resonating structures on the magnitude of rf fields—an effect known as the “Q slopes”. Understanding and controlling the Q slopes is of great practical importance for particle accelerators. Here we investigate the mild baking effect—120°C vacuum baking for 48 hours—which strongly affects the Q slopes. We used a hydrofluoric acid rinse alternating with oxidation in water as a tool for stepwise material removal of about 2  nanometers/step from the surface of superconducting niobium cavities. Applying removal cycles on mild baked cavities and measuring the quality factor dependence on the rf fields after one or several such cycles allowed us to explore the distribution of lossy layers within the first several tens of nanometers from the surface. We found that a single HF rinse results in the increase of the cavity quality factor. The low field Q slope was shown to be mostly controlled by the material structure within the first six nanometers from the surface. The medium field Q slope evolution was fitted using linear (∝B peak surface magnetic field and quadratic (∝B^{2} terms in the surface resistance and it was found that best fits do not require the quadratic term. We found that about 10 nanometers of material removal are required to bring back the high field Q slope and about 20–50 nanometers to restore the onset field to the prebaking value.

  8. Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures

    DEFF Research Database (Denmark)

    Søndergaard, T.; Tromborg, Bjarne

    2002-01-01

    uses for analyzing the emission of light by sources in some antennas and optical components such as vertical cavity surface emitting lasers, microdisk lasers, and light emitting diodes. The methods also have prospective uses in quantum electrodynamics for studies of spontaneous emission from, e...

  9. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination.

    Science.gov (United States)

    Zhao, Chao; Ng, Tien Khee; Prabaswara, Aditya; Conroy, Michele; Jahangir, Shafat; Frost, Thomas; O'Connell, John; Holmes, Justin D; Parbrook, Peter J; Bhattacharya, Pallab; Ooi, Boon S

    2015-10-28

    We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.

  10. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination

    KAUST Repository

    Zhao, Chao

    2015-07-24

    We present a detailed study on the effects of dangling bond passivation and the comparison of different sulfides passivation process on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency, and higher peak efficiency. Our results highlighted the research opportunity in employing this technique for further design and realization of high performance NW-LEDs and NW-lasers.

  11. Elastic interaction between surface and spherical pore

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kadyrzhanov, K.K.; Kislitsyn, S.B.; Turkebaev, T.Eh.

    2000-01-01

    The energy of elastic interaction of a gas-filled spherical cavity with a boundary of an elastic isotropic half-space is determined. The elastic field of a system of a spherical cavity - boundary is represented as an expansion in series of potential functions. The factors of expansions are determined by boundary conditions on a free surface of an elastic half-space and on a spherical surface of a cavity with pressure of gas P. Function of a Tresca-Miesesa on a surface of elastic surface is defined additionally with purpose creep condition determination caused by gas pressure in the cavity. (author)

  12. Construction and present status of KEKB superconducting cavities

    International Nuclear Information System (INIS)

    Tajima, T.; Akai, K.; Ezura, E; Furuya, T.; Hosoyama, K.; Mitsunobu, S.

    2000-01-01

    The superconducting cavity (SCC) for KEKB is 508 MHz single-cell cavity that has large beam pipes (22 cm and 30 cm i.d.) so that higher-order modes propagate out of the cavity and be absorbed by a lossy material. The input coupler is the TRISTAN-type coaxial one with some modifications such that dc bias voltage can be applied to avoid multipactoring during beam operation, fins to efficiently cool the outer conductor and a heater to remove condensed gases. The higher-order mode absorber is made of ferrite directly sinter-bonded on the inner surface of the copper pipe using a technique called Hot Isostatic Press (HIP). One prototype cavity was tested up to 0.57 A at TRISTAN Accumulation Ring (AR) in 1996. Then, four cavities were constructed for KEKB. One of the cavities achieved an accelerating field of 19 MV/m at a test in a vertical cryostat; this field is the world record at this frequency to our knowledge. No degradation of the field after assembly into horizontal cryostats was observed up to the available power of 300 kW that corresponds to ∼12 MV/m. These four cavities were installed in KEKB tunnel and are expected to supply 6 MV in total voltage to the 1.1 A electron beam in high energy ring (HER). Since beam commissioning started in Dec. 1998, the system has been supplying 6 MV and working very smoothly without any trouble. The maximum current has been 0.51 A and power delivered to beam per cavity is 370-380 kW/cavity up to the end of Apr., 1999. (author)

  13. Passive mode locking in a multisegment laser diode with an external cavity

    International Nuclear Information System (INIS)

    Andreeva, E V; Magnitskiy, Sergey A; Koroteev, Nikolai I; Salik, E; Feinberg, J; Starodubov, D S; Shramenko, M V; Yakubovich, S D

    1999-01-01

    The structure and operating conditions of multisegment laser (GaAl)As diodes with passive locking of the modes of an external cavity (bulk and fibre) were optimised. Regular trains of optical single pulses of picosecond duration were generated in a spectral range 850 - 860 nm. The peak power of these pulses was several watts and the repetition rate was near 1 GHz. Under certain conditions these output pulses were linearly chirped, i.e. they were suitable for subpicosecond time compression. Laboratory prototypes were made of miniature light-emitting modules with these characteristics. (lasers)

  14. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

    KAUST Repository

    Domingues, Eddy; Arunachalam, Sankara; Mishra, Himanshu

    2017-01-01

    immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications

  15. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  16. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures

    Science.gov (United States)

    Grassellino, A.; Romanenko, A.; Sergatskov, D.; Melnychuk, O.; Trenikhina, Y.; Crawford, A.; Rowe, A.; Wong, M.; Khabiboulline, T.; Barkov, F.

    2013-10-01

    We report a surface treatment that systematically improves the quality factor of niobium radio frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial pressure of nitrogen or argon gas and subsequent electropolishing of the niobium cavity surface leads to unprecedented low values of the microwave surface resistance, and an improvement in the efficiency of the accelerating structures up to a factor of 3, reducing the cryogenic load of superconducting cavities for both pulsed and continuous duty cycles. The field dependence of the surface resistance is reversed compared to standardly treated niobium.

  17. Computation of coupled surface radiation and natural convection in an inclined form cavity

    International Nuclear Information System (INIS)

    Amraqui, Samir; Mezrhab, Ahmed; Abid, Cherifa

    2011-01-01

    The present paper is concerned with computation of the radiation-natural convection interactions in an inclined form cavity. The cavity contains two symmetrically identical isothermal blocks and is vented by two opening located in a vertical median axis at the top and the bottom parts of the cavity. Calculations are made by using a finite volume method and an efficient numerical procedure is introduced for calculating the view factors, with shadow effects included. Effects of Rayleigh number Ra and inclination angle φ are investigated for Pr = 0.71 in presence and in absence of the radiation exchange. Results are reported in terms of isotherms, streamlines, local and average Nusselt numbers and mass flow rate. In light of the obtained results, we can conclude that the heat transfer decreases with increasing φ. In addition, the increase of Ra and the taking into account of the radiation exchange produce a considerable increase in the heat transfer.

  18. CMC blade with pressurized internal cavity for erosion control

    Science.gov (United States)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    2016-02-02

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interior fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.

  19. Thermal study of a cryogen-less MgB{sub 2} cavity

    Energy Technology Data Exchange (ETDEWEB)

    Holzbauer, J.P., E-mail: jeremiah@fnal.gov; Nassiri, A.

    2014-12-11

    Recent efforts towards production of high-quality magnesium diboride (MgB{sub 2}) coatings have raised the possibility of producing usable accelerating cavities. Work continues to reliably produce films of sufficient quality over the large, complex surface area of an accelerating cavity, but this technology would open many interesting technical opportunities. One of these is to replace the traditionally required liquid helium cryogenic systems with a dry system based on cryocoolers. This is made possible by the much higher T{sub c} of MgB{sub 2}, allowing operation closer to 30 K where cryocooler efficiency becomes competitive with alternative systems. This removes the need for pressure vessels in the cryomodule as well as internal distribution systems, greatly simplifying cryomodule design and fabrication. The lack of uniform cooling over the cavity surface, however, complicates behavior by coupling RF losses, heat leak, and cooling design in a way not seen in traditional SRF cavities. In this paper, these complexities are explored, including realistic cryocooler performance, temperature dependant RF losses, and standard thermal management challenges.

  20. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    Science.gov (United States)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  1. Modeling of Reduced-Beta Half-Reentrant Cavities: Final Report

    International Nuclear Information System (INIS)

    Popielarksi, J.T.; Hartung, W.; Johnson, M.J.

    2011-01-01

    The linear accelerator for the Spallation Neutron Source uses multi-cell elliptical superconducting cavities to provide much of the accelerating voltage. Similar technology is being considered for other projects, including a proposed superconducting proton linac at Fermilab and the European Spallation Source. A new type of accelerating structure, a 'half-reentrant' elliptical cavity has been studied at Michigan State University. A half-reentrant cavity can potentially improve upon existing elliptical cavity designs by reducing the cryogenic load by as much as 40% for the same accelerating gradient. Alternatively, with the same peak surface magnetic field as traditional elliptical cavities, it is anticipated that half-reentrant designs could operate at up to 25% higher accelerating gradient. With a half-reentrant shape, liquids can drain easily during chemical etching and high pressure rinsing, which allows standard multi-cell processing techniques to be used. Electromagnetic designs have been developed for three half-reentrant cell shapes suitable for an ion or proton linac (β = 0.47, 0.61 and 0.81). The mechanical designs have been done for prototypes at 805 MHz. The design and optimization of the reduced-β half-reentrant cavities are summarized in this report.

  2. Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith

    2011-09-01

    Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth: (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.

  3. Optimizing Centrifugal Barrel Polishing For Mirror Finish SRF Cavity And RF Tests At Jefferson Lab

    International Nuclear Information System (INIS)

    Palczewski, Ari; Geng, Rongli; Tian, Hui

    2012-01-01

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E ACC thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  4. Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van-Cao; Katsuki, Hiroyuki; Yanagi, Hisao, E-mail: yanagi@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-06-27

    A simple “cast-capping” method is adopted to prepare single-crystal perovskites of methyl ammonium lead bromide (CH{sub 3}NH{sub 3}PbBr{sub 3}). By capping a CH{sub 3}NH{sub 3}PbBr{sub 3} solution casted on one substrate with another substrate such as glass, mica, and distributed Bragg reflector (DBR), the slow evaporation of solvent enables large-size cubic crystals to grow between the two substrates. Under optical pumping, edge-emitting lasing is observed based on Fabry–Pérot resonation between parallel side facets of a strip-shaped crystal typically with a lateral cavity length of a few tens of μm. On the other hand, vertical-cavity surface-emitting lasing (VCSEL) is obtained from a planar crystal grown between two DBRs with a cavity thickness of a few μm. Simultaneous detection of those edge- and surface-emissions reveals that the threshold excitation fluence of VCSEL is higher than that of the edge-emitting lasing due to thickness gradient in the planar crystal.

  5. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    Science.gov (United States)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  6. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    International Nuclear Information System (INIS)

    Jin, S.; Wu, A.T.; Lu, X.Y.; Rimmer, R.A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-01-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I–V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson–Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  7. Development of superconducting RF cavity at 1050 MHz frequency for an electron LINAC

    International Nuclear Information System (INIS)

    Sarkar, S.G.; Mondal, J.; Mittal, K.C.

    2011-01-01

    This paper reports the design of a prototype superconducting cavity at 1050 MHz and design of associated die punch and machining fixtures for the cavity fabrication. The cavity is of β= 1 and elliptical in shape. The circle-straight line-ellipse-type structure design has been optimized by 'SUPERFISH' - a 2 dimensional code for cavity tuning. The 3 Dimensional EM field analysis of the cavity structure has been done using 'CST' software. The ratio of the maximum surface electric field to the accelerating gradient, E pk /E acc , is optimised to 1.984 and H pk /E acc is optimised to 4.141 mT/(MV/m). Bore radius of the cavity has been chosen such a way so that the cell-to-cell coupling remains as high as 1.85%. The cavity is designed to achieve 25 MV/m accelerating gradient. (author)

  8. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    -selective immobilization of antibodies in designed cavities in 2D and 3D DNA origami structures. Two tris(NTA) modified strands are inserted into the cavity to form NTA-metal complexes with histidine clusters on the Fc domain. Subsequent covalent linkage to the antibody was achieved by coupling to lysines. Atomic force...... microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  9. Detection of Hazardous Cavities Below a Road Using Combined Geophysical Methods

    Science.gov (United States)

    De Giorgi, L.; Leucci, G.

    2014-07-01

    Assessment of the risk arising from near-surface natural hazard is a crucial step in safeguarding the security of the roads in karst areas. It helps authorities and other related parties to apply suitable procedures for ground treatment, mitigate potential natural hazards and minimize human and economic losses. Karstic terrains in the Salento Peninsula (Apulia region—South Italy) is a major challenge to engineering constructions and roads due to extensive occurrence of cavities and/or sinkholes that cause ground subsidence and both roads and building collapse. Cavities are air/sediment-filled underground voids, commonly developed in calcarenite sedimentary rocks by the infiltration of rainwater into the ground, opening up, over a long period of time, holes and tunnels. Mitigation of natural hazards can best be achieved through careful geoscientific studies. Traditionally, engineers use destructive probing techniques for the detection of cavities across regular grids or random distances. Such probing is insufficient on its own to provide confidence that cavities will not be encountered. Frequency of probing and depth of investigation may become more expensive. Besides, probing is intrusive, non-continuous, slow, expensive and cannot provide a complete lateral picture of the subsurface geology. Near-surface cavities usually can be easily detected by surface geophysical methods. Traditional and recently developed measuring techniques in seismic, geoelectrics and georadar are suitable for economical investigation of hazardous, potentially collapsing cavities. The presented research focused on an integrated geophysical survey that was carried out in a near-coast road located at Porto Cesareo, a small village a few kilometers south west of Lecce (south Italy). The roads in this area are intensively affected by dangerous surface cracks that cause structural instability. The survey aimed to image the shallow subsurface structures, including karstic features, and evaluate

  10. Development of a TE011 Cavity for Thin-Films Study

    CERN Document Server

    Martinet, G; Fouaidy, M; Hammoudi, N

    2010-01-01

    Bulk niobium cavities have almost reached their maximum performances. Maximum accelerating gradient field is above 35-40 MV/m for a multi-cells cavity at 1.8 Kelvin and it achieves 25-30 MV/m with high reliability. The question of increasing the accelerating gradient in a significant way is running regarding the huge amount of units required for new projects (16000 units for ILC). A promising solution is to use thin films of new materials deposited on copper or niobium. In order to investigate the behaviour of these materials for the accelerating cavities, we have developed a dedicated setup based on thermometric method and a TE011 cavity. We present here the design study of the setup and the expected sensitivity of the method for the surface measurement of materials properties under RF fields.

  11. Radiation-induced formation of cavities in amorphous germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  12. Resonant-frequency discharge in a multi-cell radio frequency cavity

    International Nuclear Information System (INIS)

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-01-01

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal

  13. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  14. Dielectric structures with bound modes for microcavity lasers

    NARCIS (Netherlands)

    Visser, P.M.; Allaart, K.; Lenstra, D.

    2002-01-01

    Cavity modes of dielectric microsphcres and vertical cavity surface emitting lasers, in spite of their high Q, are never exactly bound, but have a finite width due to leakage at the borders. We propose types of microstructures that sustain three-dimensionally bound modes of the radiation field when

  15. Characterization of 850nm-15μm GaAs/AlGaAs quantum-well ...

    African Journals Online (AJOL)

    In this report, operating characteristics and performance of 15μm diameter vertical cavity surface emitting lasers (VCSELs) emitting at 850nm and fabricated by gas source molecular beam-epitaxy (GSMBE) is presented. The device characterisation is performed by observing the continuous wave (cw) operation under room ...

  16. Research and development for electropolishing of Nb for ILC accelerator cavities

    International Nuclear Information System (INIS)

    Kelley, Michael J.

    2009-01-01

    The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities

  17. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  18. Development of high pressure rinsing set up for 650 MHz, 5- cell superconducting RF cavity cleaning

    International Nuclear Information System (INIS)

    Suhane, S.K.; Chauhan, S.K.; Bose, A.; Kokil, S.V.; Rajput, D.S.; Oraon, B.; Md Hussain; Sahu, A.; Raghavendra, S.; Joshi, S.C.

    2015-01-01

    High pressure rinsing (HPR) is an ultra-cleanliness process for the surface preparation of high field superconducting RF cavities. Any dust particle or chemical residue on the interior of cavity causes field emission. Jets of high pressure (80-100 bar) ultra pure water dislodge surface contaminants that normally resist removal with conventional rinsing procedures, leading to substantial reduction in field emission and better cavity performance. For cleaning of 650 MHz, 5-cell SRF cavities, a high pressure rinsing set up has been developed at RRCAT. The HPR tool has a rotating wand coaxial with the vertically mounted SRF cavity that is moving up and down. Fan style spray nozzles are attached to the end of the rotating wand and the water jets emerging from spray nozzles scan the entire internal surface of the cavity. The set-up was installed in a specially built clean area meeting cleanliness class 100 standards. The ultrapure water with resistivity 2 ≥ 18 MΩ-cm required for rinsing is obtained from a dedicated water purification system installed for this purpose. The paper describes the salient design and constructional details of the high pressure rinsing set up. Characterization of water jet parameters based on the momentum transfer between the water jet and a load cell is also presented. (author)

  19. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  20. Considerations on the determining factors of the angular distribution of emitted particles in laser ablation

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Kobayashi, T.; Asaoka, T.

    2010-01-01

    Simulations of particles which are emitted in laser ablation have been performed by the method of Direct Simulation Monte Carlo to investigate the deposition profiles of the emitted particles. The influences of the temperature, pressure and stream velocity of the initial evaporated layer formed during laser ablation process on the profile of the deposited film have been examined. It is found that the temperature gives a minor influence on the deposition profile, whereas the stream velocity and the pressure of the initial evaporated layer have a greater impact on the deposition profile. The energy in the direction of surface normal (E perpendicular ) and that in the parallel direction of the surface (E || ) are shown to increase and decrease, respectively after the laser irradiation due to collisions between the emitted particles, and this trend is magnified as the pressure increases. As a consequence, the stream velocity in the direction of surface normal increases with the increase in the pressure. A mechanism of the phenomenon that a metal with a lower sublimation energy shows a broader angular distribution of emitted particles is presented. It is suggested that low density of evaporated layer of a metal with a low sublimation energy at its melting point decreases the number of collisions in the layer, leading to the low stream velocity in the direction of surface normal, which results in the broader deposition profile of the emitted particles.