WorldWideScience

Sample records for cavity surface emitting

  1. Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  2. Vertical external cavity surface emitting semiconductor lasers

    CERN Document Server

    Holm, M

    2001-01-01

    Active stabilisation showed a relative locked linewidth of approx 3 kHz. Coarse tuning over 7 nm was achieved using a 3-plate birefingent filter plate while fine-tuning using cavity length change allowed tuning over 250 MHz. Vertical external cavity semiconductor lasers have emerged as an interesting technology based on current vertical cavity semiconductor laser knowledge. High power output into a single transverse mode has attracted companies requiring good fibre coupling for telecommunications systems. The structure comprises of a grown semiconductor Bragg reflector topped with a multiple quantum well gain region. This is then included in an external cavity. This device is then optically pumped to promote laser action. Theoretical modelling of AIGaAs based VECSEL structures was undertaken, showing the effect of device design on laser characteristics. A simple 3-mirror cavity was constructed to assess the static characteristics of the structure. Up to 153 mW of output power was achieved in a single transver...

  3. Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Kent D. Choquette

    2012-01-01

    Full Text Available We review the design, fabrication, and performance of photonic crystal vertical cavity surface emitting lasers (VCSELs. Using a periodic pattern of etched holes in the top facet of the VCSEL, the optical cavity can be designed to support the fundamental mode only. The electrical confinement is independently defined by proton implantation or oxide confinement. By control of the refractive index and loss created by the photonic crystal, operation in the Gaussian mode can be insured, independent of the lasing wavelength.

  4. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tunable VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide...... sweep range and high degree of coherence enable deep probing of tissue at acquisition rates that will eliminate the effects of rapid involuntary eye movements. The main achievement of the dissertation work has been the development of an electro-statically tunable VCSEL at 1060 nm with wide tuning range...

  5. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers.

    Science.gov (United States)

    Averlant, Etienne; Tlidi, Mustapha; Thienpont, Hugo; Ackemann, Thorsten; Panajotov, Krassimir

    2016-01-01

    We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology. PMID:26847004

  6. Ultralow Threshold Red Vertical-Cavity Surface-Emitting Lasers

    Institute of Scientific and Technical Information of China (English)

    程澎; 高俊华; 康学军; 林世鸣; 张光斌; 刘世安; 胡国新

    2000-01-01

    Visible Vertical-cavity Surface-emitting Lasers (VCSELs) have been designed and fabricated by using metalorganic vapor phase epitaxy. Using the 8λ optical cavities with 3 quan tum wells in A1GaInP/AlGaAs VCSEL's to reduce the drift leakage current and enhance the model gain, the device can operate continuous wave at wavelength of 670nm. For better performance, a misoriented (100) substrate (6~10° to (110)) has been used to reduce the ordering of AlGaInP. However, as the angle of misorientation increased, the symmetry of the structure became worse. This made it difficult to achieve little aperture device. By using 45° rotated selective oxidation method, a little aperture (1 × 1μm2) device with low threshold of 0.25mA can operate continuous wave at room temperature.

  7. Micromechanical tunable vertical-cavity surface-emitting lasers

    Institute of Scientific and Technical Information of China (English)

    Guan Bao-Lu; Guo Xia; Deng Jun; Qu Hong-Wei; Lian Peng; Dong Li-Min; Chen Min; Shen Guang-Di

    2006-01-01

    We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended above an active region is utilized. Applied bridge-substrate bias produces an electrostatic force which reduces the spacing of air-gap and tunes the resonant wavelength toward a shorter wavelength (blue-shift). Good laser characteristics are obtained:such as continuous tuning ranges over 11 nm near 940 nm for 0-9 V tuning bias, the peak output power near 1 mW and the full-width-half-maximum limited to approximately 3.2-6.8 nm. A detailed simulation of the micromechanical and optical characteristics of these devices is performed, and the ratio of bridge displacement to wavelength shift has been found to be 3:1.

  8. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak;

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  9. Intracavity frequency-doubled green vertical external cavity surface emitting laser

    Institute of Scientific and Technical Information of China (English)

    Yanrong Song; Peng Zhang; Xinping Zhang; Boxia Yan; Yi Zhou; Yong Bi; Zhigang Zhang

    2008-01-01

    @@ An intracavity frequency-doubled vertical external cavity surface emitting laser (VECSEL) with green light is demonstrated. The fundamental frequency laser cavity consists of a distributed Bragg reflector (DBR) of the gain chip and an external mirror. A 12-mW frequency-doubled output has been reached at 540 nm with a nonlinear crystal LBO when the fundamental frequency output is 44 mW at 1080 nm. The frequency doubling efficiency is about 30%.

  10. Integrated optoelectronic probe including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring

    NARCIS (Netherlands)

    Serov, Alexander N.; Nieland, Janharm; Oosterbaan, Sjoerd; Mul, de Frits F.M.; Kranenburg, van Herma; Bekman, Herman H.P.Th.; Steenbergen, Wiendelt

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  11. Integrated Optoelectronic Probe Including a Vertical Cavity Surface Emitting Laser for Laser Doppler Perfusion Monitoring

    NARCIS (Netherlands)

    Serov, A.N.; Nieland, J.; Oosterbaan, S.; Steenbergen, W.; Bekman, H.H.P.T.; Mul, F.F.M. de; Kranenburg, H. van

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  12. Transverse Mode Dynamics and Ultrafast Modulation of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We show that multiple transverse mode dynamics of VCSELs (Vertical-Cavity Surface-Emitting Lasers) can be utilized to generate ultrafast intensity modulation at a frequency over 100 GHz, much higher than the relaxation oscillation frequency. Such multimode beating can be greatly enhanced by taking laser output from part of the output facet.

  13. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent;

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  14. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    DEFF Research Database (Denmark)

    Larsson, David; Greve, Anders; Hvam, Jørn Märcher;

    2009-01-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and t...

  15. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent;

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  16. Sub-gigahertz beam switching of vertical-cavity surface-emitting laser with transverse coupled cavity

    Energy Technology Data Exchange (ETDEWEB)

    Nakahama, M.; Gu, X.; Sakaguchi, T. [Photonics Integration System Research Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Matsutani, A. [Semiconductor and MEMS Processing Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ahmed, M.; Bakry, A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Koyama, F. [Photonics Integration System Research Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-08-17

    We report a high-speed electrical beam switching of vertical cavity surface emitting laser with a transverse coupled cavity. A high speed (sub-gigahertz) and large deflection angle (>30°) beam switching is demonstrated by employing the transverse mode switching. The angular switching speed of 900 MHz is achieved with narrow beam divergence of below 4° and extinction ratio of 8 dB. We also measured the near- and far-field patterns to clarify the origin of the beam switching. We present a simple one-dimensional Bragg reflector waveguide model, which well predicts the beam switching characteristic.

  17. Red vertical-cavity surface-emitting lasers grown by solid-source molecular beam epitaxy

    Science.gov (United States)

    Saarinen, M.; Xiang, N.; Vilokkinen, V.; Melanen, P.; Orsila, S.; Uusimaa, P.; Savolainen, P.; Toivonen, M.; Pessa, M.

    2001-07-01

    Plastic optical fibres, which have a local attenuation minimum at 650 nm, have attracted much interest for low-cost short-haul communication systems. Red vertical-cavity surface-emitting lasers (VCSELs) provide a potential solution as light sources for these systems. The operation of vertical cavity emitters is based on a Fabry-Perot microcavity, which is formed by placing an optically active region inside of two parallel mirrors. These mirrors are usually formed epitaxially. So far, metal organic chemical vapour deposition (MOCVD) has been the major technology used for growing visible VCSELs. Recently, an alternative growth method—solid-source molecular beam epitaxy (SSMBE)—has been introduced to be a viable solution to the fabrication of these structures. The authors present the first MBE-grown visible AlGaInP vertical-cavity surface-emitting lasers. A laser with a 10 μm emitting window has an external quantum efficiency of 6.65% under continuous wave operation and it is still lasing at 45°C. Furthermore, a threshold current less than 1.0 mA is obtained for a device, which has an 8 μm emitting window.

  18. Vertical cavity surface-emitting semiconductor lasers with injection laser pumping

    Science.gov (United States)

    McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.

    1990-05-01

    Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.

  19. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  20. Photonic crystal vertical-cavity surface-emitting laser based on GaAs material

    Institute of Scientific and Technical Information of China (English)

    XU XingSheng; WANG ChunXia; SONG Qian; DU Wei; HU HaiYang; ZHAO ZhiMin; LU Lin; KAN Qiang; CHEN HongDa

    2007-01-01

    A photonic crystal vertical-cavity-surface-emitting laser (PC-VCSEL) with a wavelength of about 850 nm was realized. The direct-current electrically-driven PC-VCSELs with a minimum threshold current of 2 mA and a maximum threshold current of 13.5 mA were obtained. We fabricated a series of PC-VCSEL chips whose lattice constants are in the range from 0.5 to 3 ?m with different filling factors, and found that the laser characterization depends on the lattice constant, the filling factor, the size of cavity, etc.

  1. Double-diamond high-contrast-gratings vertical external cavity surface emitting laser

    International Nuclear Information System (INIS)

    A new design of vertical external cavity surface emitting laser (VECSEL) with diamond-based high contrast gratings is proposed. The self-consistent model of laser operation has been calibrated based on experimental results and used to optimize the new proposed device and to perform comparative thermal and optical analysis of conventional and double-diamond high-contrast-grating VECSELs. The proposed design considerably reduces the dimensions and complexity of the device and provides up to 80% increase of the maximum emitted power as compared with the conventional design. (paper)

  2. Tunable Vertical-Cavity Surface-Emitting Lasers Integrated with Two Wafers

    Institute of Scientific and Technical Information of China (English)

    REN Xiu-Juan; GUAN Bao-Lu; GUO Shuai; LI Shuo; LI Chuan-Chuan; HAO Cong-Xia; ZHOU Hong-Yi; GUO Xiao

    2011-01-01

    A novel two-wafer concept for micro-electro-mechanically tunable vertical cavity surface emitting lasers (VCSELs)is presented. The VCSEL is composed by two wafers: one micro-electromechanical-system membrane wafer with four arms to adjust the cavity length through electrostatic actuation and a "half-VCSEL" wafer consisting of a fixed bottom mirror and an amplifying active region. The measurement results of the electricity pumped tunable VCSEL with more than 9mW output power at room temperature over the tuning range prove the feasibility of the proposition.%@@ A novel two-wafer concept for micro-electro-mechanically tunable vertical cavity surface emitting lasers (VCSELs) is presented.The VCSEL is composed by two wafers: one micro-electromechanical-system membrane wafer with four arms to adjust the cavity length through electrostatic actuation and a "half-VCSEL" wafer consisting of a fixed bottom mirror and an amplifying active region.The measurement results of the electricity pumped tunable VCSEL with more than 9mW output power at room temperature over the tuning range prove the feasibility of the proposition.

  3. Buried heterostructure vertical-cavity surface-emitting laser with semiconductor mirrors

    CERN Document Server

    Zhao, G; Deppe, D G; Konthasinghe, K; Muller, A

    2012-01-01

    We report a buried heterostructure vertical-cavity surface-emitting laser fabricated by epitaxial regrowth over an InGaAs quantum well gain medium. The regrowth technique enables microscale lateral confinement that preserves a high cavity quality factor (loaded $Q\\approx$ 4000) and eliminates parasitic charging effects found in existing approaches. Under optimal spectral overlap between gain medium and cavity mode (achieved here at $T$ = 40 K) lasing was obtained with an incident optical power as low as $P_{\\rm th}$ = 10 mW ($\\lambda_{\\rm p}$ = 808 nm). The laser linewidth was found to be $\\approx$3 GHz at $P_{\\rm p}\\approx$ 5 $P_{\\rm th}$.

  4. Vectorial dissipative solitons in vertical-cavity surface-emitting Lasers with delays

    CERN Document Server

    Marconi, M; Barland, S; Balle, S; Giudici, M

    2014-01-01

    We show that the nonlinear polarization dynamics of a Vertical-Cavity Surface-Emitting Lasers placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These vectorial solitons arise as cycles in the polarization orientation, leaving the total intensity constant. The long cavity enables the observation of different coexisting states with multiple solitons within the same round-trip. Such states encompass either independent or bound solitons, which can be distinguished by their noise-induced motion: while independent solitons exhibit uncorrelated random walks, soliton molecules evolve as rigid bodies. The theoretical proof of localization is given by the analysis of the Floquet exponents. Finally, we reduce the dynamics to a single delayed equation for the polarization orientation allowing interpreting the vectorial solitons as polarization kinks and anti-kinks.

  5. Orbital Angular Momentum (OAM) Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    Li, Huanlu; Wang, Xuyang; Ho, Daniel; Chen, Lifeng; Zhou, Xiaoqi; Zhu, Jiangbo; Yu, Siyuan; Cai, Xinlun

    2015-01-01

    Harnessing the Orbital Angular Momentum (OAM) of light is an appealing approach to developing photonic technologies for future applications in optical communications and high- dimensional Quantum Key Distributions (QKD). An outstanding challenge to the widespread uptake of the OAM resource is its efficient generation. We design a new device which can directly emit an OAM-carrying light beam. By fabricating micro-scale Spiral Phase Plates (SPPs) within the aperture of a Vertical-Cavity Surface-Emitting Laser (VCSELs), the linearly polarized Gaussian beam emitted by the VCSEL is converted into a beam carrying specific OAM modes and their superposition states with high efficiency and high beam quality. The innovative OAM emitter opens a new horizon in the field of OAM-based optical and quantum communications, especially for short reach data interconnects and Quantum Key Distribution (QKD).

  6. The pressure and temperature dependence of vertical cavity surface emitting semiconductor lasers

    CERN Document Server

    Knowles, G

    2002-01-01

    The factors affecting the performance of GalnP/AIGalnP vertical-cavity surface-emitting lasers (VCSELs) emitting at an attenuation minimum of PMMA plastic optical fibres (650nm) have been investigated. Using wide temperature-range and high pressure measurement techniques on equivalent (i.e the same active region) edge emitting lasers (EELs), emitting at 672nm, the temperature sensitive leakage current into the indirect X-minima is shown to be approx 20% of the total threshold current at room temperature. This is then estimated to rise to approx 70% for 655nm emission, but may be reduced to approx 50% by using a graded-index separate confinement heterostructure (GRINSCH). By making the same measurements on the full VCSEL structures and using a combination of thermal and gain spectrum models the performance modifying effect of the Bragg stacks have then been evaluated. It is found that temperature dependent tuning/detuning of the gain-peak and the cavity mode is significant at low temperature due to the relativ...

  7. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    Science.gov (United States)

    Alharthi, S. S.; Orchard, J.; Clarke, E.; Henning, I. D.; Adams, M. J.

    2015-10-01

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  8. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren;

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic co...... compounds. We model the physics as a change in the top mirror loss caused by swelling of the polymer upon absorbing the target volatile organic compound. Further we show how acetone vapors at 82 000 ppm concentration can change the polymer coated VCSEL output power by 20 mu W....

  9. Advances in commercial, mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Hempler, Nils; Lubeigt, Walter; Bialkowski, Bartlomiej; Hamilton, Craig J.; Maker, Gareth T.; Malcolm, Graeme P. A.

    2016-03-01

    In launching the Dragonfly, M Squared Lasers has successfully commercialized recent advances in mode-locked vertical external cavity surface emitting laser technologies operating between 920 nm - 1050 nm. This paper will describe the latest advances in the development of a new generation of Dragonfly lasers. The improved system has been engineered to utilise low-cost semiconductor gain media and integrated diode pumping, whilst exhibiting minimal footprint, diffraction limited beam quality and low intrinsic noise. Early experiments have resulted in pulses with 540mW of average output power and 150fs of duration at 200MHz pulse repetition frequency.

  10. Stable anticipation synchronization in mutually coupled vertical-cavity surface-emitting lasers system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two vertical-cavity surface-emitting lasers(VCSELs) are mutually coupled through a partially transparent mirror (PTM) placed in the pathway. The PTM plays the role of external mirror,which controls the feedback strength and coupling strength.We numerically simulate this system by establishing a visible SIMULINK model.The results demonstrate that the anticipation synchronization is achieved and it can tolerate some extent frequency detuning.Moreover,the system shows similar chaos-pass filtering effect on unidirectionally coupled system even both VCSELs are modulated.This system allows simultaneously bidirectional secure message transmission on public channels.

  11. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    International Nuclear Information System (INIS)

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding

  12. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk [Institute of Photonics, SUPA Department of Physics, University of Strathclyde, TIC Centre, 99 George Street, Glasgow G1 1RD (United Kingdom); Javaloyes, Julien [Departament de Fisica, Universitat de les Illes Balears, c/Valldemossa km 7.5, 07122 Mallorca (Spain)

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  13. Temperature characteristics of InGaAs/GaAs vertical cavity surface emitting laser

    Institute of Scientific and Technical Information of China (English)

    QU Hong-wei; GUO Xia; DONG Li-min; WANG Hong-hang; DENG Jun; LIAN Peng; ZHOU De-shu; SHEN Guang-di

    2005-01-01

    The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 cryostat and LD2002C5 test system.In combination with the simulation results of the reflective spectrum and the gain peak at different temperatures,the measurement results have been analyzed.In addition,the dependence of device size on temperature characteristics is discussed.The experimental data can be used to optimally design of VCSEL at high or cryogenic temperature.

  14. Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold

    International Nuclear Information System (INIS)

    Cavity solitons are stationary self-organized bright intensity peaks which form over a homogeneous background in the section of broad area radiation beams. They are generated by shining a writing/erasing laser pulse into a nonlinear optical cavity, driven by a holding beam. The ability to control their location and their motion by introducing phase or amplitude gradients in the holding beam makes them interesting as mobile pixels for all-optical processing units. We show the generation of a number of cavity solitons in broad-area vertical cavity semiconductor microresonators electrically pumped above transparency but slightly below threshold. We analyze the switching process in details. The observed spots can be written, erased, and manipulated as independent objects, as predicted by the theoretical model. An especially tailored one is used to simulate the studied phenomena and to compare our simulations to the experimental findings with good agreement

  15. Over 10 Watt, collinear blue and green vertical external cavity surface emitting laser

    Science.gov (United States)

    Lukowski, Michal L.; Hessenius, Chris; Meyer, Jason T.; Fallahi, Mahmoud

    2016-03-01

    A high power, two color, collinear, blue and green vertical external cavity surface emitting laser (VECSEL) is demonstrated. Two different InGaAs/GaAs VECSEL chips operating with gain centers near 970 nm and 1070 nm are used to make two separate V-folded laser cavities. Two critically phase-matched intracavity lithium triborate nonlinear crystals are used to generate blue and green outputs which are then combined in a polarizing beam splitter. This results in a single beam which contains over 10 watts of combined blue and green output power. This concept can be expanded upon by adding a red output for the creation of a high power, white laser source.

  16. Progress and issues for high-speed vertical cavity surface emitting lasers

    Science.gov (United States)

    Lear, Kevin L.; Al-Omari, Ahmad N.

    2007-02-01

    Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.

  17. VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    2013-01-01

    The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

  18. Vertical Cavity Surface Emitting Lasers%垂直腔面发射激光器

    Institute of Scientific and Technical Information of China (English)

    SUN Yan-fang; LIU Yun; TAO Ge-tao; LIU Jun; WANG Li-jun; LI Te; NING Yong-qiang; QIN Li; YAN Chang-ling; SHAN Xiao-nan; LU Guo-guang; HE Chun-feng; WANG Chao

    2005-01-01

    The development and application of vertical-cavity surface-emitting lasers (VCSELs) are summarized in this paper. The emphasis is focused on the high power single and 2-D arrays bottom-emitting VCSELs with a wavelength of 980nm. A distinguished device performance is achieved. The maximum continuous-wave (CW) output power of large aperture single devices with active diameters up to 500μm is as high as 1.95W at room temperature,which is to our knowledge the highest value reported for a single device. Size dependence of the output power, the threshold current and the differential resistance are discussed. A 16 elements array with 200μm aperture size (250μm center spacing) of individual elements shows a CW output power of 1.32W at room temperature.

  19. High-speed modulation, wavelength, and mode control in vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Ledentsov, Nikolay N.; Kropp, Jörg-R.; Shchukin, Vitaly A.; Steinle, Gunther; Ledentsov, Nikolay N.; Turkiewicz, Jarek P.; Wu, Bo; Qiu, Shaofeng; Ma, Yanan; Feng, Zhiyong; Burger, Sven; Schmidt, Frank; Caspar, Christoph; Freund, Ronald; Choquette, Kent D.

    2015-03-01

    We address demands and challenges for GaAs-based Vertical-Cavity Surface-Emitting Lasers (VCSEL) in data communication. High speed modulation (~50Gb/s) at a high reliability can be realized with a proper VCSEL design providing a high differential gain. In cases where extreme temperatures are required electrooptic modulation in duo- cavity VCSELs can be applied as the modulation speed and the differential gain are decoupled. Single mode operation of VCSELs is necessary to counteract the chromatic dispersion of glass fibers and extend distances to above 1 km while using standard multimode fibers. Oxide layer engineering or using of photonic crystals can be applied. Parallel error-free 25Gb/s transmission over OM3 and OM4 multimode fiber (~0.5 and 1 km, respectively) is realized in large aperture oxide-engineered VCSEL arrays. Passive cavity VCSELs with gain medium placed in the bottom DBR and the upper part made of dielectric materials a complete temperature insensitivity of the emission wavelength can be realized. Engineering of the oxide aperture region enables near field vertical cavity lasers. Such devices can operate in a high- order transverse mode with an effective mode angle beyond the angle of the total internal reflection at the semiconductor-air interface. Near filed coupling to optical fibers and waveguides becomes possible in this case.

  20. Low power penalty tunable slow light using vertical-cavity surface-emitting laser amplifier

    Institute of Scientific and Technical Information of China (English)

    Yanan Ma; Bin Luo; Lianshan Yan; Wei Pan; Xihua Zou; Jia Ye; Anlin Yi; Di Zheng

    2011-01-01

    A tunable slow light of 2,5-Gb/s pseudo-random binary sequence signal using a 1550-nm vertical-cavity surface-emitting laser (VCSEL) is experimentally demonstrated. The influences of the bias current and the gain saturation on the slow light are investignted. With bias current increasing, tunable optical group delay up to 98 ps is obtalned at room temperature. Demonstration of the time delay between 16 and 24 ps by signal intensity change is reported. Under an appropriate bias current, by tuning the input signal to track the peak gain wavelength of the VCSEL, slow light of a power penalty as low as 1 dB is achieved.With such a low power penalty, the VCSEL has a great potential application as a compact optical buffer.%@@ A tunable slow light of 2.5-Gb/s pseudo-random binary sequence signal using a 1550-nm vertical-cavity surface-emitting laser (VCSEL) is experimentally demonstrated.The influences of the bias current and the gain saturation on the slow light are investigated.With bias current increasing, tunable optical group delay up to 98 ps is obtained at room temperature.Demonstration of the time delay between 16 and 24 ps by signal intensity change is reported.

  1. Comprehensive numerical model for cw vertical-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, G.R.; Lear, K.L.; Warren, M.E.; Choquette, K.D. [Sandia National Labs., Albuquerque, NM (United States); Scott, J.W. [Optical Concepts, Inc., Lompoc, CA (United States); Corzine, S.W. [Univ. of California, Santa Barbara, CA (United States)

    1995-03-01

    The authors present a comprehensive numerical model for vertical-cavity surface-emitting lasers that includes all major processes effecting cw operation of axisymmetric devices. In particular, the model includes a description of the 2D transport of electrons and holes through the cladding layers to the quantum well(s), diffusion and recombination processes of these carriers within the wells, the 2D transport of heat throughout the device, and a multi-lateral-mode effective index optical model. The optical gain acquired by photons traversing the quantum wells is computed including the effects of strained band structure and quantum confinement. They employ the model to predict the behavior of higher-order lateral modes in proton-implanted devices, and to provide an understanding of index-guiding in devices fabricated using selective oxidation.

  2. Characteristics of selective oxidation during the fabrication of vertical cavity surface emitting laser

    Institute of Scientific and Technical Information of China (English)

    Hao Yong-Qin; Zhong Jing-Chang; Ma Jian-Li; Zhang Yong-Ming; Wang Li-Jun

    2006-01-01

    Taking into account oxidation temperature, N2 carrier gas flow, and the geometry of the mesa structures this paper investigates the characteristics of selective oxidation during the fabrication of the vertical cavity surface emitting laser (VCSEL) in detail. Results show that the selective oxidation follows a law which differs from any reported in the literature. Below 435°C selective oxidation of Al0.98 Ga0.02 As follows a linear growth law for the two mesa structures employed in VCSEL. Above 435°C approximately increasing parabolic growth is found, which is influenced by the geometry of the mesa structures. Theoretical analysis on the difference between the two structures for the initial oxidation has been performed, which demonstrates that the geometry of the mesa structures does influence on the growth rate of oxide at higher temperatures.

  3. Vertical cavity surface emitting laser transverse mode and polarization control by elliptical hole photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Cao Tian; Xu Chen; Xie Yi-Yang; Kan Qiang; Wei Si-Min; Mao Ming-Ming; Chen Hong-Da

    2013-01-01

    The polarization of traditional photonic crystal (PC) vertical cavity surface emitting laser (VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a =0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.

  4. Structural Analysis of InGaAs Based Vertical Cavity Surface-Emitting Quantum Well Laser

    Directory of Open Access Journals (Sweden)

    M. A. H SADI

    2011-01-01

    Full Text Available This paper describes the theoretical design of multiple quantum well (MQW vertical cavity surface emitting laser (VCSEL on ternary In0.31Ga0.69As substrate. The 1.3 μm wavelength laser is designed considering the DBR reflectivity, number of quantum wells in the active region and dimension of tunnel junction (TJ. The minimum threshold current density is found to be 84.04 Acm-2 when the number of quantum well is five. The optimum thickness of the tunnel junction (TJ is estimated to be 12 nm to yield low free carrier absorption(FCA loss and maximum tunneling probability. The results indicate that the proposed InGaAs-based quantum well laser is the promising one for the fabrication of high performance laser.

  5. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  6. Polarized optical injection in long-wavelength vertical-cavity surface emitting lasers

    Science.gov (United States)

    Hurtado, A.; Schires, K.; Khan, N.; Al-Seyab, R.; Henning, I. D.; Adams, M. J.

    2011-05-01

    We report a comprehensive study of the effects of polarized optical injection in long-wavelength Vertical-Cavity Surface Emitting Lasers (LW-VCSELs) emitting at the telecom wavelength of 1550nm. We analyze the properties of the polarization switching and bistability that can be induced in a 1550nm-VCSEL under orthogonal and arbitrary polarized optical injection. Additionally, we study the injection locking bandwidth of these devices when subject to different polarized optical injection. Furthermore, we also analyze the relationship existing between the injection locking bandwidth and the polarization switching range when the device is subject to orthogonally-polarized optical injection. Finally, we have identified regions of different nonlinear dynamics outside the injection locking bandwidth, including regions of periodic dynamics (such as limit cycle and period doubling) and chaos when these devices are subject to parallel and to orthogonal optical injection. This rich variety of nonlinear effects observed at 1550nm offers exciting prospects for novel practical uses of VCSELs in optical switching/routing applications in optical networks.

  7. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications

    Science.gov (United States)

    Seurin, Jean-Francois; Xu, Guoyang; Guo, Baiming; Miglo, Alexander; Wang, Qing; Pradhan, Prachi; Wynn, James D.; Khalfin, Viktor; Zou, Wei-Xiong; Ghosh, Chuni; Van Leeuwen, Robert

    2011-03-01

    Infrared illumination is used in the commercial and defense markets for surveillance and security, for high-speed imaging, and for military covert operations. Vertical-cavity surface-emitting lasers (VCSELs) are an attractive candidate for IR illumination applications as they offer advantageous properties such as efficiency, intrinsically low diverging circular beam, low-cost manufacturing, narrow emission spectrum, and high reliability. VCSELs can also operate at high temperatures, thereby meeting the harsh environmental requirements of many illuminators. The efficiency and brightness of these VCSELs also reduce the requirements of the power supply compared to, for example, an LED approach. We present results on VCSEL arrays for illumination applications, as well as results on VCSEL-based illumination experiments. These VCSELs are used in illuminators emitting from a few Watts up to several hundred Watts. The emission of these VCSEL-based illuminators is speckle-free with no interference patterns. Infra-red illumination at up to 1,600ft (500m) from the source has been demonstrated using VCSEL-based illumination, without any optics.

  8. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-08-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  9. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-01-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices. PMID:27491686

  10. Birefringent vertical cavity surface-emitting lasers: toward high-speed spin-lasers

    Science.gov (United States)

    Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.

    2016-04-01

    Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) provide novel opportunities to overcome several limitations of conventional, purely charge-based semiconductor lasers. Presumably the highest potential lies in the spin-VCSEL's capability for ultrafast spin and polarization dynamics which can be significantly faster than the intensity dynamics in conventional devices. By injecting spin-polarized carriers, these coupled spin-photon dynamics can be controlled and utilized for high-speed applications. While relaxation oscillations provide insights in the speed and direct modulation bandwidth of conventional devices, resonance oscillations in the circular polarization degree step in for the spin and polarization dynamics in spin-VCSELs. These polarization oscillations can be generated using pulsed spin injection and achieve much higher frequencies than the conventional intensity relaxation oscillations in these devices. Furthermore polarization oscillations can be switched on and off and it is possible to generate short polarization pulses, which may represent an information unit in polarization-based optical communication. The frequency of polarization oscillations is mainly determined by the birefringence-induced mode splitting between both orthogonal linearly polarized laser modes. Thus the polarization modulation bandwidth of spin-VCSELs can be increased by adding a high amount of birefringence to the cavity, for example by incorporating mechanical strain. Using this technique, we could demonstrate tunable polarization oscillations from 10 to 40 GHz in AlGaAs-based 850nm VCSELs recently. Furthermore a birefringence-induced mode splitting of more than 250 GHz could be demonstrated experimentally. Provided that this potential for ultrafast dynamics can be fully exploited, birefringent spin-VCSELs are ideal devices for fast short-haul optical interconnects. In this paper we review our recent progress on polarization dynamics of birefringent spin

  11. Frequency tuning of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.

    2016-04-01

    Controlling the coupled spin-photon dynamics in vertical-cavity surface-emitting lasers (VCSELs) is an attractive opportunity to overcome the limitations of conventional, purely charge based semiconductor lasers. Such spin-controlled VCSELs (spin-VCSELs) offer several advantages, like reduced threshold, spin amplification and polarization control. Furthermore the coupling between carrier spin and light polarization bears the potential for ultrafast polarization dynamics. By injecting spin-polarized carriers, the complex polarization dynamics can be controlled and utilized for high-speed applications. Polarization oscillations as resonance oscillations of the coupled spin- photon system can be generated using pulsed spin injection, which can be much faster than the intensity dynamics in conventional devices. We already demonstrated that the oscillations can be switched in a controlled manner. These controllable polarization dynamics can be used for ultrafast polarization-based optical data communication. The polarization oscillation frequency and therefore the possible data transmission rate is assumed to be mainly determined by the birefringence-induced mode-splitting. This provides a direct tool to increase the polarization dynamics toward higher frequencies by adding a high amount of birefringence to the VCSEL structure. Using this technique, we could recently demonstrate experimentally a birefringence splitting of more than 250 GHz using mechanical strain. Here, we employ the well-known spin-flip model to investigate the tuning of the polarization oscillation frequency. The changing mechanical strain is represented by a linear birefringence sweep to values up to 80πGHz. The wide tuning range presented enables us to generate polarization oscillation frequencies exceeding the conventional intensity modulation frequency in the simulated device by far, mainly dependent on the birefringence in the cavity only.

  12. Towards monolithic integration of mode-locked vertical cavity surface emitting laser

    Science.gov (United States)

    Aldaz, Rafael I.

    2007-12-01

    The speed and performance of today's high end computing and communications systems have placed difficult but still feasible demands on off-chip electrical interconnects. However, future interconnect systems may need aggregate bandwidths well into the terahertz range thereby making electrical bandwidth, density, and power targets impossible to meet. Optical interconnects, and specifically compact semiconductor mode-locked lasers, could alleviate this problem by providing short pulses in time at 10s of GHz repetition rates for Optical Time Division Multiplexing (OTDM) and clock distribution applications. Furthermore, the characteristic spectral comb of frequencies of these lasers could also serve as a multi-wavelength source for Wavelength Division Multiplexing (WDM) applications. A fully integrated mode-locked Vertical Cavity Surface Emitting Laser (VCSEL) is proposed as a low-cost high-speed source for these applications. The fundamental laser platform for such a device has been developed and a continuous-wave version of these lasers has been fabricated and demonstrated excellent results. Output powers close to 60mW have been obtained with very high beam quality factor of M2 unassisted ultrafast QD saturable absorbers, without the need to incorporate high concentrations of non radiative recombination centers by either ion-implantation or low temperature growth.

  13. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers

    Institute of Scientific and Technical Information of China (English)

    Shi Guo-Zhu; Guan Bao-Lu; Li Shuo; Wang Qiang; Shen Guang-Di

    2013-01-01

    We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16-μm oxide aperture.Optical power,voltage,and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃.Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL.It is found that the carrier leakage induced self-heating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation.In addition,carrier leakage induced self-heating increases as the injection current increases,resulting in a rapid decrease of the internal quantum efficiency,which is a dominant contribution to the thermal rollover of the VCSEL at a larger current.Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.

  14. High-power single-mode vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Samal, Nigamananda

    High-power single-mode vertical-cavity surface-emitting lasers (VCSEL) have a great potential to replace the distributed feedback (DFB) and Fabry-Perot (FP) edge emitting lasers that are currently used in optical communication. VCSELs also have tremendous potential in many niche applications such as "optical read and write," laser printing, bar code scanning and sensing. Despite many of their inherent advantages over its rivals, VCSELs still suffer from some outstanding issues. Most prominent are "limited power" and "multi-mode behavior" at higher injection. This work aims at a few solutions for these fundamental issues. Using strain-compensated GaAsSb as an active material and a standard single-aperture design, 1.3 mum VCSELs are demonstrated and characterized. These devices face basic issues such as "limited output power" and "multi-mode behavior." These VCSELs achieved room temperature CW operation with power outputs from 50--200 muW for wavelengths ranging from 1245 to 1290 nm. To resolve the issue of limited power, several on-wafer thermal-management schemes are proposed. One of the schemes is pursued in this work. To resolve the issue of multi-mode behavior, a novel device design using asymmetric double oxide-apertures is proposed, theoretically modeled, and implemented in this work. The optical mode behavior of this novel design is compared with a traditional single-aperture design using fabricated devices and theoretical modeling. A clear trend of spectral purity in the modal behavior of the devices, under both continuous wave (CW) and pulsed conditions, is demonstrated and is in good agreement with theoretical predictions. One of the novel designs tested on an InGaAs VCSEL has shown a multi-mode power more than 23 mW with maximum wall plug efficiency of 32%, threshold current of 2.5 mA, threshold voltage of 1.2 V, and a slope efficiency of 0.83 W/A. The best design demonstrated a room temperature CW single-mode output power of more than 7 mW with a side

  15. Effect of pump wave reflections on the excitation of a dual-wavelength vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    The effect of pump wave reflections on the carrier generation rate and uniformity of carrier population in quantum wells (QWs) of a dual-wavelength vertical-cavity surface-emitting laser has been numerically analyzed. The laser's active region has been described within a mathematical model allowing any number of QWs and arbitrary distribution of carrier generation rate. It is shown that the optimal arrangement of blocking layers in the active region of a dual-wavelength vertical-cavity surface-emitting laser allows one to obtain a very uniform QW population. It is established that pump wave reflections significantly affect the local carrier generation rate and, therefore, the distribution of excited carriers in the laser structure.

  16. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  17. Molecular beam epitaxial regrowth on diffraction gratings for vertical-cavity, surface-emitting laser-based integrated optoelectronics

    International Nuclear Information System (INIS)

    Epitaxial regrowth techniques, using molecular beam epitaxy, were optimized for the inclusion of submicron diffraction gratings within a vertically resonant structure. Various growth conditions including chemical surface preparation, growth rate, and regrown interfacial structure were studied to determine the quality of the regrown materials and structures. Characteristics such as dislocation density and growth planarity (flatness of the regrown layers) were of particular importance due to the vertical geometry and resonance requirements of the structure. Threading dislocation densities of ≅3x106 cm-2 were measured, by means of transmission electron microscopy, in the regrown structures using optimized regrowth processes. Layer thickness variations, due to growth on nonplanar surfaces (diffraction gratings), were characterized using modeling and optical reflectometry. With these results, inclusion of diffraction gratings has been demonstrated with the accurate control over layer thickness needed for use in vertically oriented devices such as vertical-cavity, surface-emitting lasers, and resonant cavity photodetectors

  18. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    Science.gov (United States)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  19. Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure

    Institute of Scientific and Technical Information of China (English)

    Liu An-Jin; Qu Hong-Wei; Chen Wei; Jiang Bin; Zhou Wen-Jun; Xing Ming-Xin; Zheng Wan-Hua

    2011-01-01

    The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.

  20. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  1. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Orchard, J. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Clarke, E. [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, S1 3JD Sheffield (United Kingdom)

    2015-10-12

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  2. Flip-chip bonding of vertical-cavity surface-emitting lasers using laser-induced forward transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, K. S., E-mail: Kaur.Kamalpreet@elis.ugent.be; Missinne, J.; Van Steenberge, G. [Centre for Microsystems Technology, imec/Ghent University, Technologiepark 914A, B-9052 Gent (Belgium)

    2014-02-10

    This letter reports the use of the Laser-Induced Forward Transfer (LIFT) technique for the fabrication of indium micro-bumps for the flip-chip (FC) bonding of single vertical-cavity surface-emitting laser chips. The FC bonded chips were electrically and optically characterized, and the successful functioning of the devices post-bonding is demonstrated. The die shear and life-time tests carried out on the bonded chips confirmed the mechanical reliability of the LIFT-assisted FC bonded assemblies.

  3. High-sensitivity time-resolved intracavity laser Fourier transform spectroscopy with vertical cavity surface emitting multiple quantum well lasers

    CERN Document Server

    Picqué, N; Kachanov, A A; Picqu\\'e, Nathalie; Guelachvili, Guy; Kachanov, Alexander A.

    2003-01-01

    Spectra comprised of hundreds of time-components for absorption path lengths up to 130 km have been recorded around 1050 nm by combining two recent techniques, intracavity laser spectroscopy with vertical external cavity surface emitting multiple-quantum-well lasers and time-resolved Fourier transform spectroscopy. A sensitivity of 1 10^{-10} cm^{-1}.Hz^{-1/2} is achieved, for simultaneously acquired 10^4 spectral elements, three orders of magnitude better than the sensitivity obtained in previous similar experiments. Specific advantages of the method, especially for frequency and intensity metrology of weak absorption transitions, are discussed.

  4. Temperature stable mid-infrared GaInAsSb/GaSb Vertical Cavity Surface Emitting Lasers (VCSELs)

    Science.gov (United States)

    Ikyo, A. B.; Marko, I. P.; Hild, K.; Adams, A. R.; Arafin, S.; Amann, M.-C.; Sweeney, S. J.

    2016-01-01

    GaInAsSb/GaSb based quantum well vertical cavity surface emitting lasers (VCSELs) operating in mid-infrared spectral range between 2 and 3 micrometres are of great importance for low cost gas monitoring applications. This paper discusses the efficiency and temperature sensitivity of the VCSELs emitting at 2.6 μm and the processes that must be controlled to provide temperature stable operation. We show that non-radiative Auger recombination dominates the threshold current and limits the device performance at room temperature. Critically, we demonstrate that the combined influence of non-radiative recombination and gain peak – cavity mode de-tuning determines the overall temperature sensitivity of the VCSELs. The results show that improved temperature stable operation around room temperature can only be achieved with a larger gain peak – cavity mode de-tuning, offsetting the significant effect of increasing non-radiative recombination with increasing temperature, a physical effect which must be accounted for in mid-infrared VCSEL design.

  5. Design of Synthesized DBRs for Long-Wavelength InP-Based Vertical-Cavity Surface-Emitting Lasers

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhan-Chao; WU Hui-Zhen

    2004-01-01

    @@ We report applications of a metallic film and a phase matching layer (PML) to increase the reflectivity of the cavity mirror in a long-wavelength InP-based vertical-cavity surface-emitting laser (VCSEL). The synthesis of the InGaAsP/InP distributed-Bragg reflector (DBR) with an Au fllm and the InP PML leads to the decrease of periods of the DBR multilayer stacks from 33 to 20 while keeping the reflectivity of the structure over 99%.The reflectivity over the whole forbidden band is significantly increased and become flatter compared to the bare DBR. The use of smaller DBR periods in a long wavelength VCSEL makes the epitaxial growth well controllable,decrease of the heat resistance, and decrease of the in-series electrical resistance of the devices. This can improve the reliability of the VCSEL growth and possibly cut down the cost of VCSEL devices.

  6. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    Science.gov (United States)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  7. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback

    Science.gov (United States)

    Jimenez, J.; Oppo, G.-L.; Ackemann, T.

    2016-03-01

    A systematic experimental and numerical investigation of the conditions for the spontaneous formation of laser cavity solitons in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback by a volume Bragg grating is reported. It is shown that the switching thresholds are controlled by a combination of frequency shifts induced by ambient temperature and Joule heating. The gain level has only a minor influence on the threshold but controls mainly the power of the solitons. At large initial detuning and high threshold gain, the first observed structure can be a high order soliton. In real devices spatial disorder in the cavity length causes a pinning of solitons and a dispersion of thresholds. The experimental observations are in good agreement with numerical simulations taking into account disorder and the coupling of gain and cavity resonance due to Joule heating. In particular, we demonstrate that the existence of the traps explain the spontaneous switch on of the solitons, but do not modify the soliton shape significantly, i.e. the observed solitons are a good approximation of the ones expected in a homogeneous system.

  8. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback

    International Nuclear Information System (INIS)

    A systematic experimental and numerical investigation of the conditions for the spontaneous formation of laser cavity solitons in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback by a volume Bragg grating is reported. It is shown that the switching thresholds are controlled by a combination of frequency shifts induced by ambient temperature and Joule heating. The gain level has only a minor influence on the threshold but controls mainly the power of the solitons. At large initial detuning and high threshold gain, the first observed structure can be a high order soliton. In real devices spatial disorder in the cavity length causes a pinning of solitons and a dispersion of thresholds. The experimental observations are in good agreement with numerical simulations taking into account disorder and the coupling of gain and cavity resonance due to Joule heating. In particular, we demonstrate that the existence of the traps explain the spontaneous switch on of the solitons, but do not modify the soliton shape significantly, i.e. the observed solitons are a good approximation of the ones expected in a homogeneous system. (paper)

  9. Flattop mode shaping of a vertical cavity surface emitting laser using an external-cavity aspheric mirror.

    Science.gov (United States)

    Yang, Zhaohui; Leger, James

    2004-11-01

    Both square-shaped and circular-shaped flattop modes were experimentally demonstrated in extended-cavity broad-area VCSELs using aspheric feedback mirrors. These refractive aspheric mirrors were fabricated by electron-beam lithography on curved substrates. Excellent single-mode operation and improved power extraction efficiency were observed. The three-mirror structure of the VCSEL and the state-of-the-art fabrication of the aspheric mirror contribute to the superior VCSEL performance. The modal loss analysis using a rigid three-mirror-cavity simulation method is discussed. PMID:19484117

  10. A precision fiber bragg grating interrogation system using long-wavelength vertical-cavity surface-emitting laser

    Science.gov (United States)

    Hu, Binxin; Jin, Guangxian; Liu, Tongyu; Wang, Jinyu

    2016-09-01

    This paper presents the development of a cost-effective precision fiber Bragg grating (FBG) interrogation system using long-wavelength vertical-cavity surface-emitting laser (VCSEL). Tuning properties of a long-wavelength VCSEL have been studied experimentally. An approximately quadratic dependence of its wavelength on the injection current has been observed. The overall design and key operations of this system including intensity normalization, peak detection, and quadratic curve fitting are introduced in detail. The results show that the system achieves an accuracy of 1.2 pm with a tuning range of 3 nm and a tuning rate of 1 kHz. It is demonstrated that this system is practical and effective by applied in the FBG transformer temperature monitoring.

  11. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  12. Quantum well intermixing technique using proton implantation for carrier confinement of vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Moriwaki, Shouhei; Saitou, Minoru; Miyamoto, Tomoyuki

    2016-08-01

    We investigated quantum well intermixing (QWI) using proton implantation to form the carrier confinement structure in the active layer of a vertical-cavity surface-emitting laser (VCSEL). The required potential barrier height is discussed referring to the result of numerical analysis. The bandgap change due to the QWI was investigated experimentally for various quantum well structures, proton dose densities, and thermal annealing conditions. A potential barrier height of 30 meV was observed using a high-indium and thin-well structure. High crystalline quality was confirmed by photoluminescence intensity measurement, even after the QWI process, and the lasing of the fabricated QWI-VCSEL was observed without any deterioration. The proposed technique would be effective in improving the device performance in a simple fabrication process.

  13. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  14. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality. PMID:21479012

  15. High brightness imaging system using vertical cavity surface-emitting laser micro-arrays- results and proposed enhancements

    Science.gov (United States)

    Mentzer, Mark A.; Ghosh, Chuni L.

    2011-05-01

    Laser illumination systems for high brightness imaging through the self-luminosity of explosive events, at Aberdeen Proving Ground and elsewhere, required complex pulse timing, extensive cooling, large-scale laser systems (frequencydoubled flash-pumped Nd:YAG, Cu-vapor, Q-switched ruby), making them difficult to implement for range test illumination in high speed videography. A Vertical Cavity Surface-Emitting Laser (VCSEL) array was designed and implemented with spectral filtering to effectively remove self-luminosity and the fireball from the image, providing excellent background discrimination in a variety of range test scenarios. Further improvements to the system are proposed for applications such as imaging through murky water or dust clouds with optimal penetration of obscurants.

  16. Self-Mixing Fringes of Vertical-Cavity Surface-Emitting Lasers under Dual Reflector Feedback

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiang; ZHANG Shu-Lian; ZHANG Lian-Qing; TAN Yi-Dong

    2006-01-01

    The self-mixing fringes which shift due to every one-twentieth wavelength displacement of the target are observed.Taking advantage of the dual reflectors in the external cavity of lasers, the resolution of the sensors has been improved by 10 times. The role of the each reflector has been discussed in detail.

  17. Simulation of Optical Resonators for Vertical-Cavity Surface-Emitting Lasers (vcsel)

    Science.gov (United States)

    Mansour, Mohy S.; Hassen, Mahmoud F. M.; El-Nozahey, Adel M.; Hafez, Alaa S.; Metry, Samer F.

    2010-04-01

    Simulation and modeling of the reflectivity and transmissivity of the multilayer DBR of VCSEL, as well as inside the active region quantum well are analyzed using the characteristic matrix method. The electric field intensity distributions inside such vertical-cavity structure are calculated. A software program under MATLAB environment is constructed for the simulation. This study was performed for two specific Bragg wavelengths 980 nm and 370 nm for achieving a resonant periodic gain (RPG)

  18. Effect of Mesa Size on Thermal Characteristics of Vertical-cavity Surface-emitting Lasers

    Institute of Scientific and Technical Information of China (English)

    HOU Shi-hua; ZHAO Ding; SUN Yong-wei; TAN Man-qing; CHEN Liang-hui

    2005-01-01

    The effect of mesa size on the thermal characteristics of etched mesa vertical-cavity surfaceemitting lasers(VCSELs) is studied. The numerical results show that the mesa size of the top mirror strongly influences the temperature distribution inside the etched mesa VCSEL. Under a certain driving voltage, with decreasing mesa size, the location of the maximal temperature moves towards the p-contact metal, the temperature in the core region of the active layer rises greatly, and the thermal characteristics of the etched mesa VCSELs will deteriorate.

  19. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Zaugg, C. A., E-mail: zauggc@phys.ethz.ch; Mangold, M.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U. [Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Gronenborn, S.; Moench, H.; Weichmann, U. [Philips Technologie GmbH Photonics Aachen, Steinbachstrasse 15, 52074 Aachen (Germany); Miller, M. [Philips Technologie GmbH U-L-M Photonics, Lise-Meitner-Strasse 13, 89081 Ulm (Germany)

    2014-03-24

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM{sub 00} mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN{sub x} and SiO{sub 2}) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm{sup 2} to 1.1 μJ/cm{sup 2}, respectively.

  20. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    International Nuclear Information System (INIS)

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM00 mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiNx and SiO2) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm2 to 1.1 μJ/cm2, respectively

  1. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna [Optical Communications Research Group, NCRLab, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne (United Kingdom)

    2016-01-15

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achieved is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  2. Study on effect of quantum well number on performance characteristics of GaN-based vertical cavity surface emitting laser

    Science.gov (United States)

    Zandi Goharrizi, A.; Alahyarizadeh, Gh.; Hassan, Z.; Abu Hassan, H.

    2013-05-01

    The effect of number of quantum wells and quantum well thickness on the optical performance of InGaN vertical cavity surface emitting laser (VCSEL) was numerically investigated using Integrated System Engineering Technical Computer Aided Design (ISE TCAD) simulation program. The simulation results indicated that the output power and differential quantum efficiency of the double quantum well (DQW) laser were increased and threshold current decreased as compared to the single and triplet quantum wells VCSEL. Threshold current enhancement in the single quantum well (SQW) is attributed to the electron carrier leakage increasing from active layers because of the lower optical confinement factor. Simulation results show that in the double quantum well, the optical material gain and electron and hole carrier densities are approximately uniform with respect to the SQW and TQW. Also these results indicated that the electron current density in the DQW is the lowest. In the active region, electrical field decreased for the double quantum well because of the built-in electrical field reduction inside the quantum well. Finally the effect of quantum well thickness in DQW GaN-based VCSEL was investigated and it was observed that DQW VCSEL with 3 nm quantum wells thickness had the optimum threshold current.

  3. Harmonic distortion dependent on optical feedback, temperature and injection current in a vertical cavity surface emitting laser

    Science.gov (United States)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-04-01

    In this paper, selective optical feedback is used to investigate the nonlinearity behaviours of a vertical cavity surface emitting laser (VCSEL) with the modulation signal. A single mode VCSEL with both parallel and orthogonal optical feedback (OF) signals modulated at 1 MHz frequency over a range of modulation depth is investigated. We also investigate the nonlinear characteristics of the orthogonal polarization modes XP and YP of the VCSEL by changing the injection current and temperature. The results show an enhancement in the harmonic distortions (HDs) of both XP and YP modes with parallel OF, and the total suppression of HDs with orthogonal OF. We show that for the VCSEL with orthogonal OF, the second and third harmonic components of the XP and YP modes decrease and reach the noise floor level of the output power spectrum. Additionally, peaks of second and third harmonic components change radically when varying the bias current and temperature. The results reveal that orthogonal OF can be employed as a new tool to improve the linear dynamic range and to control the nonlinear characteristics of the VCSEL, thus making these devices a promising optical source in present and future optical communication applications.

  4. Highly uniform and reproducible visible to near-infrared vertical-cavity surface-emitting lasers grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Hou, H.Q.; Choquette, K.D.; Hammons, B.E.; Breiland, W.G.; Crawford, M.H.; Lear, K.L. [Sandia National Labs., Albuquerque, NM (United States). Center for Compound Semiconductors Technology

    1997-05-01

    The authors present the growth and characterization of vertical-cavity surface emitting lasers (VCSELs) from visible to near-infrared wavelength grown by metalorganic vapor phase epitaxy. Discussions on the growth issue of VCSEL materials include the control on growth rate and composition using an in situ normal-incidence reflectometer, optimization of ultra-high material uniformity, and comprehensive p- and n-type doping study in AlGaAs by CCl{sub 4} and Si{sub 2}H{sub 6} over the entire Al composition range. They will also demonstrate the recent achievements of selectively-oxidized VCSELs which include the first room-temperature continuous-wave demonstration of all-AlGaAs 700-nm red VCSELs, high-performance n-side up 850-nm VCSELs, and low threshold current and low-threshold voltage 1.06 {micro}m VCSELs using InGaAs/GaAsP strain-compensated quantum wells.

  5. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  6. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    International Nuclear Information System (INIS)

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm2 (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP12,1), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture

  7. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Lee, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm{sup 2} (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP{sub 12,1}), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  8. Indium phosphide-lattice-matched, long-wavelength vertical-cavity surface-emitting lasers for optical fiber communications

    Science.gov (United States)

    Nakagawa, Shigeru

    2001-12-01

    The purpose of this dissertation is to realize reliable and practical long-wavelength vertical-cavity surface- emitting lasers (VCSELs) for real optical fiber communications. The approach is to deploy all-lattice- matched structures on InP, which have been already proven to provide high performance, reliability, low cost, and high manufacturability by GaAs-based shorter-wavelength (850-980 nm) VCSELs. AlGaAsSb is a promising material to implement highly reflecting distributed Bragg reflectors (DBRs) which are lattice-matched to InP. However, the high operating voltage and high thermal impedance caused by the AlGaAsSb/AlAsSb DBRs result in the large temperature rise, preventing CW operation. The primary advance in this dissertation is a double- intracavity contacted structure. This structure allows generated heat and injected current to bypass the Sb- based mirrors, reducing the temperature increase. The device has demonstrated excellent performance such as high maximum output power (>1 mW at 20°C and >100 μW at 80°C) and high maximum operation temperature (88°C) for the 8 μm aperture. The InP-lattice- matched VCSEL fully benefits from the double-intracavity contacted structure in terms of the device temperature, since the measured operating voltage and thermal impedance are comparable with the GaAs-lattice-matched structures. There are several parameters to be improved for the higher temperature and higher output operation. The low injection efficiency results from the small overlap of optical mode and current density profile, which will be increased using two separate oxide apertures for current and optical confinements. The relatively low characteristic temperature of the injection efficiency and threshold current must be improved by optimizing the material quality of the active region.

  9. Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors

    OpenAIRE

    Matharu, Ranveer S.; Perchoux, Julien; Kliese, Russell; Lim, Yah Leng; Rakic, Aleksandar D.

    2011-01-01

    We demonstrate a method for maintaining the maximum signal-to-noise ratio (SNR) of the signal obtained from the self-mixing sensor based on a vertical-cavity surface-emitting laser (VCSEL). It was found that the locus of the maximum SNR in the current-temperature space can be well approximated by a simple analytical model related to the temperature behavior of the VCSEL threshold current. The optimum sensor performance is achieved by tuning the laser current according to the proposed model, t...

  10. Characterization of 2.3 μm GaInAsSb-based vertical-cavity surface-emitting laser structures using photo-modulated reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, G. M. T. [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Hosea, T. J. C., E-mail: j.hosea@surrey.ac.uk [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Fox, N. E.; Hild, K.; Ikyo, A. B.; Marko, I. P.; Sweeney, S. J. [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bachmann, A.; Arafin, S.; Amann, M.-C. [Walter Schottky Institut, Technische Universität Munchen, Am Coulombwall 4, D-85748 Garching (Germany)

    2014-01-07

    We report angle dependent and temperature dependent (9 K–300 K) photo-modulated reflectance (PR) studies on vertical-cavity surface-emitting laser (VCSEL) structures, designed for 2.3 μm mid-infrared gas sensing applications. Changing the temperature allows us to tune the energies of the quantum well (QW) transitions relative to the VCSEL cavity mode (CM) energy. These studies show that this VCSEL structure has a QW-CM offset of 21 meV at room temperature. Consequently the QW ground-state transition comes into resonance with the CM at 220 ± 2 K. The results from these PR studies are closely compared with those obtained in a separate study of actual operating devices and show how the PR technique may be useful for device optimisation without the necessity of having first to process the wafers into working devices.

  11. Photonic generation of polarization-resolved wideband chaos with time-delay concealment in three-cascaded vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Liu, Huijie; Li, Nianqiang; Zhao, Qingchun

    2015-05-10

    Optical chaos generated by chaotic lasers has been widely used in several important applications, such as chaos-based communications and high-speed random-number generators. However, these applications are susceptible to degradation by the presence of time-delay (TD) signature identified from the chaotic output. Here we propose to achieve the concealment of TD signature, along with the enhancement of chaos bandwidth, in three-cascaded vertical-cavity surface-emitting lasers (VCSELs). The cascaded system is composed of an external-cavity master VCSEL, a solitary intermediate VCSEL, and a solitary slave VCSEL. Through mapping the evolutions of TD signature and chaos bandwidth in the parameter space of the injection strength and frequency detuning, photonic generation of polarization-resolved wideband chaos with TD concealment is numerically demonstrated for wide regions of the injection parameters. PMID:25967492

  12. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    Science.gov (United States)

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  13. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Weng, Guoen; Mei, Yang; Liu, Jianping; Hofmann, Werner; Ying, Leiying; Zhang, Jiangyong; Bu, Yikun; Li, Zengcheng; Yang, Hui; Zhang, Baoping

    2016-07-11

    Low threshold continuous-wave (CW) lasing of current injected InGaN quantum dot (QD) vertical-cavity surface-emitting lasers (VCSELs) was achieved at room temperature. The VCSEL was fabricated by metal bonding technique on a copper substrate to improve the heat dissipation ability of the device. For the first time, lasing was obtained at yellow-green wavelength of 560.4 nm with a low threshold of 0.61 mA, corresponding to a current density of 0.78 kA/cm2. A high degree of polarization of 94% were measured. Despite the operation in the range of "green gap" of GaN-based devices, single longitudinal mode laser emission was clearly achieved due to the high quality of active region based on InGaN QDs and the excellent thermal design of the VCSELs. PMID:27410828

  14. Feasibility analysis and demonstration of high-speed digital imaging using micro-arrays of vertical cavity surface-emitting lasers

    Science.gov (United States)

    Mentzer, Mark A.; Ghosh, Chuni L.; Guo, Baiming; Brewer, Kristopher; Nicolai, Robin; Herr, Douglas; Lubking, Carl; Ojason, Neil; Tangradi, Edward; Tarpine, Howard

    2011-04-01

    Previous laser illumination systems at Aberdeen Proving Ground and elsewhere required complex pulse timing, extensive cooling, large-scale laser systems (frequency-doubled flash-pumped Nd:YAG, Cu-vapor, Q-switched ruby), making them difficult to implement for range test illumination in high speed videography. Requirements to illuminate through the self-luminosity of explosive events motivate the development of a high brightness imaging technique obviating the limitations of previous attempts. A lensed vertical cavity surface-emitting laser array is proposed and implemented with spectral filtering to effectively remove self-luminosity and the fireball from the image, providing excellent background discrimination in a variety of range test scenarios.

  15. Dynamics of 1.55 μm Wavelength Single-Mode Vertical-Cavity Surface-Emitting Laser Output under External Optical Injection

    Directory of Open Access Journals (Sweden)

    Kyong Hon Kim

    2012-01-01

    Full Text Available We review the temporal dynamics of the laser output spectrum and polarization state of 1.55 μm wavelength single-mode (SM vertical-cavity surface-emitting lasers (VCSELs induced by external optical beam injection. Injection of an external continuous-wave laser beam to a gain-switched SM VCSEL near the resonance wavelength corresponding to its main polarization-mode output was critical for improvement of its laser pulse generation characteristics, such as pulse timing-jitter reduction, linewidth narrowing, pulse amplitude enhancement, and pulse width shortening. Pulse injection of pulse width shorter than the cavity photon lifetime into the SM VCSEL in the orthogonal polarization direction with respect to its main polarization mode caused temporal delay of the polarization recovery after polarization switching (PS, and its delay was found to be the minimum at an optimized bias current. Polarization-mode bistability was observed even in the laser output of an SM VCSEL of a standard circularly cylindrical shape and used for all-optical flip-flop operations with set and reset injection pulses of very low pulse energy of order of the 3.5~4.5 fJ.

  16. Room-temperature CW operation of a nitride-based vertical-cavity surface-emitting laser using thick GaInN quantum wells

    Science.gov (United States)

    Furuta, Takashi; Matsui, Kenjo; Horikawa, Kosuke; Ikeyama, Kazuki; Kozuka, Yugo; Yoshida, Shotaro; Akagi, Takanobu; Takeuchi, Tetsuya; Kamiyama, Satoshi; Iwaya, Motoaki; Akasaki, Isamu

    2016-05-01

    We demonstrated a room-temperature (RT) continuous-wave (CW) operation of a GaN-based vertical-cavity surface-emitting laser (VCSEL) using a thick GaInN quantum well (QW) active region and an AlInN/GaN distributed Bragg reflector. We first investigated the following two characteristics of a 6 nm GaInN 5 QWs active region in light-emitting diode (LED) structures. The light output power at a high current density (∼10 kA/cm2) from the 6 nm GaInN 5 QWs was the same or even higher than that from standard 3 nm 5 QWs. In addition, we found that hole injection into the farthest QW from a p-layer was sufficient. We then demonstrated a GaN-based VCSEL with the 6 nm 5 QWs, resulting in the optical confinement factor of 3.5%. The threshold current density under CW operation at RT was 7.5 kA/cm2 with a narrow (0.4 nm) emission spectrum of 413.5 nm peak wavelength.

  17. Impact of a large negative gain-to-cavity wavelength detuning on the performance of InGaAlAs oxide-confined vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Blokhin, Sergey A.; Bobrov, Mikhail A.; Maleev, Nikolai A.; Kuzmenkov, Alexander G.; Sakharov, Alexey V.; Blokhin, Alexey A.; Moser, Philip; Lott, James A.; Bimberg, Dieter; Ustinov, Viktor M.

    2015-03-01

    Vertical-cavity surface-emitting lasers (VCSELs) based on the InGaAlAs-materials system on GaAs substrates are the key component for short-reach data and computer communications systems. Several different modulation schemes have been developed to realize high data bit rates based on various oxide-confined near-infrared VCSEL designs operated under direct current modulation. However, one open question to resolve is the optimal gain-to-cavity wavelength detuning to employ for temperature-stable high-speed performance. We investigate the static and dynamic characteristics of 850 nm high-speed oxide-confined VCSELs with different negative gain-to-cavity wavelength detunings. Our oxideconfined 850 nm VCSELs with a more common ~10 nm negative gain-to-cavity detuning demonstrate the conventional optical mode behavior with a classical single-resonance frequency response. With a larger (≥ 20 nm) negative detuning, our devices with large oxide-aperture size (>6 μm) show an anomalous start of lasing via higher order modes with a subsequent switching to lasing via the lowest order modes at higher currents. At intermediate currents, co-lasing via two types of transverse modes and a two-resonance modulation response is observed. The increase of operation temperature as well as the reduction in the oxide-aperture area resulted in classical lasing of index-guided VCSELs. The observed optical mode behavior can be attributed to the specific index guiding profile caused by the oxide-apertures, low internal optical losses, and the large gain-to-cavity detuning. Moreover, one can suggest that the complex shape of the modulation response results from the mode competition for the available gain during an interesting co-lasing operating regime.

  18. Electron beam pumped III-V nitride vertical cavity surface emitting lasers grown by molecular beam epitaxy

    Science.gov (United States)

    Ng, Hock Min

    The design and fabrication by molecular beam epitaxy of a prototype vertical cavity laser based on the III-V nitrides were investigated in this work. The bottom mirror of the laser consists of distributed Bragg reflectors (DBRs) based on quarterwave AlN (or AlxGa1-xN) and GaN layers. Such DBRs were designed for maximum reflectivity in the spectral region from 390--600 nm. The epitaxial growth of these two binaries on each other revealed that while AlN grows on GaN in a two-dimensional mode (Frank-van der Merwe mode), GaN grows on AlN in a three-dimensional mode (Stranski-Krastanov mode). In spite of that, DBRs with peak reflectance up to 99% and bandwidths of 45nm were fabricated. The measured reflectance spectra were compared with simulations using the transmission matrix method. The mechanical stability of these DBR structures due to non-uniform distribution of strain arising from lattice or thermal mismatch of the various components were also addressed. The active region of the laser consists of InGaN/GaN multiple quantum wells (MQWs). The existence of up to the third order diffraction peaks in the x-ray diffraction spectra suggests that the interfaces between InGaN and GaN are sharp with little interdiffusion at the growth temperature. The photoluminescence and cathodoluminescence spectra were analyzed to determine the optical quality of the MQWs. The best MQWs were shown to have a single emission peak at 397nm with full width half maximum (FWHM) of 11nm. Cathodoluminescence studies showed that there are spatially localized areas of intense light emission. The complete device was formed on (0001) sapphire substrates using the previously described DBRs as bottom mirrors and the MQWs as the active region. The top mirror of the device consists of metallic silver. The device was pumped by an electron beam from the top mirror side and the light output was collected from the sapphire side. Measurements at 100K showed narrowing of the linewidth with increasing pump

  19. The study of temperature effect on the performance characteristics of the InGaN-based vertical cavity surface emitting laser (VCSEL) by solving the rate equations

    Science.gov (United States)

    Goharrizi, A. Zandi; Alahyarizadeh, Gh.

    2016-08-01

    The use of semiconductor lasers is beneficial in long-distance communications. Practical communication systems based on these lasers need high ambient temperature, with temperature changes between 40∘C and 85∘C. The study of the temperature-dependent response of these lasers is important to improve them. This study investigates the effect of temperature on InGaN-based vertical cavity surface emitting lasers (VCSEL). The active region in this structure includes a single quantum well (SQW). The rate equations of carriers and densities are numerically solved. The time variations of carrier density, photon density and output power (N, S and P) at 25∘C and the current injection of 0.04 A are obtained. Values obtained for threshold current and output power include 7 mA and 44 mW, respectively. The effect of temperature on the time variations of N, S and P from 10∘C to 35∘C is studied. Results show that these parameters decrease and the threshold current increases with an increase in temperature. Furthermore, the investigation of the effect of injection current on N, S and P shows that raising the injection current can increase these parameters. Moreover, an increase in the injection current reduces the time response.

  20. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    International Nuclear Information System (INIS)

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (Jth) of ∼3.5 kA/cm2, compared to the ITO VCSEL Jth of 8 kA/cm2. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL

  1. Generation of polarization-resolved wideband unpredictability-enhanced chaotic signals based on vertical-cavity surface-emitting lasers subject to chaotic optical injection.

    Science.gov (United States)

    Chen, Jian-Jun; Wu, Zheng-Mao; Tang, Xi; Deng, Tao; Fan, Li; Zhong, Zhu-Qiang; Xia, Guang-Qiong

    2015-03-23

    A system framework is proposed and analyzed for generating polarization-resolved wideband unpredictability-enhanced chaotic signals based on a slave vertical-cavity surface-emitting laser (S-VCSEL) driven by an injected optical chaos signal from a master VCSEL (M-VCSEL) under optical feedback. After calculating the time series outputs from the M-VCSEL under optical feedback and the S-VCSEL under chaotic optical injection by using the spin-flip model (SFM), the unpredictability degree (UD) is evaluated by permutation entropy (PE), and the bandwidth of the polarization-resolved outputs from the M-VCSEL and S-VCSEL are numerically investigated. The results show that, under suitable parameters, both the bandwidth and UD of two polarization components (PCs) outputs from the S-VCSEL can be enhanced significantly compared with that of the driving chaotic signals output from the M-VCSEL. By simulating the influences of the feedback and injection parameters on the bandwidth and UD of the polarization-resolved outputs from S-VCSEL, related operating parameters can be optimized.

  2. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C. [Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, 85748 Garching (Germany)

    2015-04-13

    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF{sub 3}/ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at −18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications.

  3. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  4. Surface state photonic bandgap cavities

    OpenAIRE

    Rahachou, A. I.; Zozoulenko, I. V.

    2005-01-01

    We propose and analyze a new type of a resonant high-Q cavity for lasing, sensing or filtering applications, which is based on a surface states of a finite photonic crystal. We demonstrate that such the cavity can have a Q factor comparable with that one of conventional photonic band-gap defect mode cavities. At the same time, the distinguished feature of the surface mode cavity is that it is situated directly at the surface of the photonic crystal. This might open up new possibilities for de...

  5. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors

    Science.gov (United States)

    Ikeyama, Kazuki; Kozuka, Yugo; Matsui, Kenjo; Yoshida, Shotaro; Akagi, Takanobu; Akatsuka, Yasuto; Koide, Norikatsu; Takeuchi, Tetsuya; Kamiyama, Satoshi; Iwaya, Motoaki; Akasaki, Isamu

    2016-10-01

    The room-temperature continuous-wave operation of a 1.5λ-cavity GaN-based vertical-cavity surface-emitting laser with an n-type conducting AlInN/GaN distributed Bragg reflector (DBR) was achieved. A peak reflectivity of over 99.9% was obtained in the n-type conducting AlInN/GaN DBR so that the current was injected through the DBR for the operation. The threshold current was 2.6 mA, corresponding to the threshold current density of 5.2 kA/cm2, and the operating voltage was 4.7 V. A lasing spectrum with a peak wavelength of 405.1 nm and a full-width at half maximum of 0.08 nm was also observed.

  6. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  7. Composite Resonator Surface Emitting Lasers

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-05-01

    The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

  8. A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well vertical-cavity surface-emitting laser

    Institute of Scientific and Technical Information of China (English)

    Guan Bao-Lu; Ren Xiu-Juan; Li Chuan; Li Shuo; Shi Guo-Zhu; Guo Xia

    2011-01-01

    A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intracavity contacted structure is fabricated. A threshold current of 1.5 mA for a 22 μm oxide aperture device is achieved,which corresponds to a threshold current density of 0.395 kA/cm2. The peak output optical power reaches 17.5 mW at an injection current of 30 mA at room temperature under pulsed operation. While under continuous-wave (CW) operation,the maximum power attains 10.5 mW. Such a device demonstrates a high characteristic temperature of 327 K within a temperature range from-12 0C to 96 0C and good reliability under a lifetime test. There is almost no decrease of the optical power when the device operates at a current of 5 mA at room temperature under the CW injection current.

  9. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    Science.gov (United States)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  10. Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and an oxide current aperture

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, M. A.; Blokhin, S. A., E-mail: blokh@mail.ioffe.ru; Kuzmenkov, A. G.; Maleev, N. A. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Blokhin, A. A. [Saint Petersburg State Polytechnical University (Russian Federation); Zadiranov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Nikitina, E. V. [Russian Academy of Sciences, Saint Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Ustinov, V. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2014-12-15

    The effect of the photon lifetime in an optical microcavity on the characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with fully doped distributed Bragg reflectors (DBRs) and an oxide current aperture is studied. The photon lifetime in the microcavity is controlled by varying the upper DBR reflectance. It is found that the speed of VCSELs with a current-aperture diameter of 10 μm is mainly limited by the self-heating effect, despite an increase in the relaxation-oscillation damping coefficient with increasing photon lifetime in the microcavity. At the same time, the higher level of internal optical loss in lasers with a current-aperture diameter of 1.5 μm leads to dominance of the effect of relaxation-oscillation damping independently of the radiation output loss. In the case of devices with a current-aperture diameter of 5.5 μm, both mechanisms limiting the speed operate, which allow an increase in the VCSEL effective modulation frequency from 21 to 24 GHz as the photon lifetime decreases from 3.7 to 0.8 ps.

  11. Parameter Extraction of Rate Equations for Buried Tunnel Junction Vertical-cavity Surface-emitting Lasers%掩埋隧道结垂直面激光器速率方程参量提取

    Institute of Scientific and Technical Information of China (English)

    彭金花; 吴东升; 徐荃; 平兰兰

    2013-01-01

    In order to design and optimize high frequency performances of laser diodes, accurate extraction methods for the rate equation parameters are very important. A method for the rate equation parameter extraction for long-wavelength and high-bandwidth buried tunnel junction vertical-cavity surface-emitting lasers is presented. This method bases on the threshold current, output power, resonance frequency, damping factor and nonlinear effect of the gain compression factor under high bias currents. By fitting the chip frequency responses with different bias currents, resonance frequency and damping factor values can be obtained. Finally, by considering gain compression factor and nonlinear fitting resonance frequency and damping factor values under different currents, parameters of rate equation model can be extracted.%为了设计和优化高速激光二极管的高频特性,其速率方程模型参量的精确提取方法非常重要.本文针对新型长波长高带宽的掩埋隧道结垂直面激光器,给出一种速率方程模型参量提取方法.此方法是主要基于阈值电流、输出光功率、张弛振荡频率、阻尼因子和高偏置下增益压缩因子非线性效应等因素,根据已测量的不同偏置下芯片的小信号频率响应来拟合出方程中的张弛振荡频率和阻尼因子.通过考虑增益压缩因子,分别非线性拟合已提取的偏置光功率下的张弛振荡频率和阻尼因子,即可提取速率方程模型中的参量.

  12. Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

    Energy Technology Data Exchange (ETDEWEB)

    CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J.; KURTZ,STEVEN R.; BREILAND,WILLIAM G.; SIEG,ROBERT M.; GEIB,KENT M.; SCOTT,J.W.; NAONE,R.L.

    2000-06-05

    Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

  13. Plasma Treatment of Niobium SRF Cavity Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    J. Upadhyay, M. Raskovic, L. Vuskovic, S. Popovic, A.-M. Valente-Feliciano, L. Phillips

    2010-05-01

    Plasma based surface modification provides an excellent opportunity to eliminate non- superconductive pollutants in the penetration depth region of the SRF cavity surface and to remove mechanically damaged surface layer improving surface roughness. We have demonstrated on flat samples that plasma etching in Ar / Cl2 of bulk Nb is a viable alternative surface preparation technique to BCP and EP methods, with comparable etching rates. The geometry of SRF cavities made of bulk Nb defines the use of asymmetric RF discharge configuration for plasma etching. In a specially designed single cell cavity with sample holders, discharge parameters are combined with etched surface diagnostics to obtain optimum combination of etching rates, roughness and homogeneity in a variety of discharge types, conditions, and sequences. The optimized experimental conditions will ultimately be applied to single cell SRF cavities.

  14. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  15. Spontaneous Emission and Light Extraction Enhancement of Light Emitting Diode Using Partially-Reflecting Metasurface Cavity (PRMC)

    CERN Document Server

    Chen, Luzhou; Kallos, Themos; Caloz, Christophe

    2016-01-01

    The enhancement of the power conversion efficiency (PCE), and subsequent reduction of cost, of light emitting diodes (LEDs) is of crucial importance in the current lightening market. For this reason, we propose here a PCE-enhanced LED architecture, based on a partially-reflecting metasurface cavity (PRMC) structure. This structure simultaneously enhances the light extraction efficiency (LEE) and the spontaneous emission rate (SER) of the LED by enforcing the emitted light to radiate perpendicularly to the device, so as to suppress wave trapping and enhance lateral field confinement, while ensuring cavity resonance matching and maximal constructive field interference. The PRMC structure is designed using a recent surface susceptibility metasurface synthesis technique. A PRMC blue LED design is presented and demonstrated by full-wave simulation to provide LEE and SER enhancements by factors 4.0 and 1.9, respectively, corresponding to a PCE enhancement factor of 7.6, suggesting that the PRMC concept has a promis...

  16. High-power diode-pumped AlGaAs surface-emitting laser.

    Science.gov (United States)

    Holm, M A; Burns, D; Cusumano, P; Ferguson, A I; Dawson, M D

    1999-09-20

    We report the development and characterization of an efficient diode-pumped surface-emitting semiconductor laser operating at approximately 870 nm. By using a semiconductor Bragg reflector stack/multiple GaAs quantum well structure, mounted within a conventional laser cavity, we achieved single transverse mode laser output powers of 153 mW. Self-tuning over a 15-nm spectral range has been obtained.

  17. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  18. SRF Cavity Surface Topography Characterization Using Replica Techniques

    Energy Technology Data Exchange (ETDEWEB)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  19. Blue resonant-cavity light-emitting diode with half milliwatt output power

    Science.gov (United States)

    Yeh, Pinghui S.; Chang, Chi-Chieh; Chen, Yu-Ting; Lin, Da-Wei; Wu, Chun Chia; He, Jhao Hang; Kuo, Hao-Chung

    2016-03-01

    GaN-based resonant-cavity light-emitting diode (RCLED) has a circular output beam with superior directionality than conventional LED and has power scalability by using two-dimensional-array layout. In this work, blue RCLEDs with a top reflector of approximately 50% reflectance were fabricated and characterized. An output power of more than 0.5 mW per diode was achieved before packaging under room-temperature continuous-wave (CW) operation. The full width at half maximum (FWHM) of the emission spectrum was approximately 3.5 and 4.5 nm for 10- and 20-μm-diameter devices, respectively. And the peak wavelength as well as the FWHM remained stable at various currents and temperatures.

  20. Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene

    Science.gov (United States)

    Zhu, Peifen

    2016-02-01

    The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) is numerically investigated employing the finite-difference time-domain method. The periodic nanostructures formed by embedding the sphere arrays in polystyrene (PS) are placed on top of OLED to frustrate the total internal reflection at the interface between OLED and free space. These nanostructures serve as an intermediate medium to extract the light out of OLED devices. Efficiently coupling both evanescent waves and propagation waves into spheres and subsequently extracting these light waves out of the sphere is key to achieving high extraction efficiency. By tuning the thickness of PS layer, both of the in-coupling efficiency and out-coupling efficiency are optimized for achieving high light extraction efficiency. Thicker PS layer results in higher in-coupling efficiency in sphere while the thinner PS layer leads to higher out-coupling efficiency. Thus the maximum light extraction is a trade-off between the in-coupling efficiency and out-coupling efficiency. The study shows that light extraction efficiency of 89% can be achieved by embedding 0.90 μm TiO2 sphere in 0.30 μm PS layer with optimized in-coupling efficiency, out-coupling efficiency and cavity effect.

  1. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L. E-mail: lutz.lilje@desy.de; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmueser, P.; Trines, D.; Visentin, B.; Wenninger, H

    2004-01-11

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  2. Improved surface treatment of the superconducting TESLA cavities

    Science.gov (United States)

    Lilje, L.; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmüser, P.; Trines, D.; Visentin, B.; Wenninger, H.

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  3. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L.; Matheisen, A.; Proch, D.; Reschke, D.; Trines, D.; Antoine, C.; Charrier, J.P.; Safa, H.; Visentin, B. [CEA Saclay, DAPHNIA, Gif-sur-Yvette (France); Benvenuti, C.; Bloess, D.; Chiaveri, E.; Ferreira, L.; Losito, R.; Preis, H.; Wenninger, H. [CERN, Geneva (Switzerland); Schmueser, P. [Hamburg Univ. (Germany)

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a center-of-mass energy of 500 GeV an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity. (orig.)

  4. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke;

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  5. Process for treatment of inside surface of superconducting cavities (cavity resonators)

    International Nuclear Information System (INIS)

    A cavity of an acceleration unit built up from one or more individual resonators is filled to about half way with ceramic grinding bodies and with water, and turned slowly at about 9 rpm. The rotation is maintained for about a week. The inner surface of the cavity is thus smoothed and freed of faults, so that the cavity can be used without difficulty in superconducting operation with improved properties. By this simple process, success is achieved in increasing the practically possible longitudinal field strength for acceleration by at least a factor of 2 or more, i.e. one can save at least half the acceleration units. To remove grinding wear, the cavity is also filled with an acid mixture of about 1 part of HF, 1 part of HNO3 and 6 parts of H3PO4 and cleaned, and the surface is etched. (orig.)

  6. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    Science.gov (United States)

    Gentle, A. R.; Yambem, S. D.; Burn, P. L.; Meredith, P.; Smith, G. B.

    2016-06-01

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  7. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.;

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  8. Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    OpenAIRE

    Upadhyay, J.; Im, Do; Popović, S.; Valente-Feliciano, A. -M.; Phillips, L.; Vušković, L.

    2014-01-01

    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, a...

  9. Laser polishing for topography management of accelerator cavity surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. Mike [College of William and Mary, Williamsburg, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kelley, Michael J. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  10. Optimization of Textured-surface Light Emitting Diode

    OpenAIRE

    Li, EH; Chan, CC; Kwok, PCK

    1998-01-01

    We present an analysis of the efficiency and radiation pattern of the textured-surface LED by tracing the light rays that emits from the active layer. Through simulation, we discover that the efficiency depends on the thickness of the textured layer and its separation distance from the active layer. By carefully choosing these two parameters, maximum efficiency an be achieved. The radiation pattern of a texture-surface LED is found to be different from the flat-surfaced LED in that the textur...

  11. Monolithic arrays of surface emitting laser NOR logic devices

    OpenAIRE

    Song, J.-I-; Lee, Y. H.; Yoo, J. Y.; Shin, J H; Scherer, A.; Leibenguth, R. E.

    1993-01-01

    Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input.

  12. Gain chip design, power scaling and intra-cavity frequency doubling with LBO of optically pumped red-emitting AlGaInP-VECSELs

    Science.gov (United States)

    Kahle, Hermann; Mateo, Cherry M. N.; Brauch, Uwe; Bek, Roman; Schwarzbäck, Thomas; Jetter, Michael; Graf, Thomas; Michler, Peter

    2016-03-01

    The wide range of applications in biophotonics, television or projectors, spectroscopy and lithography made the optically-pumped semiconductor (OPS) vertical external cavity surface-emitting lasers (VECSELs) an important category of power scalable lasers. The possibility of bandgap engineering, inserting frequency selective and converting elements into the open laser cavity and laser emission in the fundamental Gaussian mode leads to ongoing growth of the area of applications for tuneable laser sources. We present an AlGaInP-VECSEL system with a multi quantum well structure consisting of compressively strained GaInP quantum wells in an AlxGa1-xInP separate confinement heterostructure with an emission wavelength around 665 nm. The VECSEL chip with its n-λ cavity is pumped by a 532nm Nd:YAG laser under an angle to the normal incidence of 50°. In comparison, a gain chip design for high absorption values at pump wavelengths around 640nm with the use of quantum dot layers as active material is also presented. Frequency doubling is now realized with an antireflection coated lithium borate crystal, while a birefringent filter, placed inside the laser cavity under Brewster's angle, is used for frequency tuning. Further, power-scaling methods like in-well pumping as well as embedding the active region of a VECSEL between two transparent ic heaspreaders are under investigation.

  13. Field dependent surface resistance of niobium on copper cavities

    Science.gov (United States)

    Junginger, T.

    2015-07-01

    The surface resistance RS of superconducting cavities prepared by sputter coating a niobium film on a copper substrate increases significantly stronger with the applied rf field compared to cavities of bulk material. A possible cause is that the thermal boundary resistance between the copper substrate and the niobium film induces heating of the inner cavity wall, resulting in a higher RS. Introducing helium gas in the cavity, and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by less than 120 mK when RS increases with Eacc by 100 n Ω . This is more than one order of magnitude less than what one would expect from global heating. Additionally, the effects of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for the current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered RS.

  14. Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vušković, L

    2014-01-01

    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence...

  15. Plasma Treatment of Bulk Niobium Surface for SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Marija Raskovic; H. Phillips; Anne-Marie Valente

    2006-08-16

    Pulsed electric discharges were used to demonstrate the validity of plasma surface treatment of superconducting radio-frequency cavities. The experiments were performed on disc-shaped Nb samples and compared with identical samples treated with buffer chemical polishing techniques. The results of several standard surface analytical techniques indicate that plasma-treated samples have comparable or superior properties regarding the surface roughness and composition.

  16. Surface plasmon enhanced ultraviolet light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qian [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Shan, Chong-Xin, E-mail: shancx@ciomp.ac.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China); Zheng, Jian [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Li, Bing-Hui; Zhang, Zhen-Zhong; Shen, De-Zhen [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2013-02-15

    In this paper, n-ZnO/i-ZnO/MgO/p-GaN structured light-emitting devices have been designed and constructed, and Ag nanoparticles whose surface plasmon resonance absorption spectrum overlaps well with the electroluminescence (EL) of the structure were employed to improve the emission characteristics of the devices. A noticeable enhancement in the EL intensity has been obtained, and the enhancement can be attributed to the resonant coupling between the electron-hole pairs in the structure and the surface plasmons of the Ag nanoparticles. - Highlights: Black-Right-Pointing-Pointer ZnO-based LEDs with emission at around 400 nm have been constructed. Black-Right-Pointing-Pointer Ag nanoparticles were employed to improve the emission of the LEDs. Black-Right-Pointing-Pointer A noticeable enhancement in the EL intensity has been obtained. Black-Right-Pointing-Pointer The enhancement can be attributed to the coupling of the Ag surface plasmon modes.

  17. Fowler-Nordheim theory for a spherical emitting surface.

    Science.gov (United States)

    Edgcombe, C J

    2003-01-01

    In tests on a field emitter whose dimensions and work function were known, Fowler-Nordheim (F-N) theory as usually stated for a planar emitter was found to give poor agreement with observations. The effect of curvature of the emitting surface has been modelled by including (a) non-linear variation of potential with distance from the surface; (b) the consequent changes in the exponent and pre-exponential terms in the F-N expression for current; and (c) the variation of current density over the surface, modelled by an effective solid angle. Application of the resulting expression to the measured data gives estimates for apex radius which agree much more closely with the measured value than the value from planar theory does. PMID:12535544

  18. Investigation Of Breakdown Induced Surface Damage On 805 Mhz Pillbox Cavity Interior Surfaces

    CERN Document Server

    Jana, M R; Leonova, M; Moretti, A; Tollestrup, A; Yonehara, K; Freemire, B; Torun, Y; Bowring, D; Flanagan, G

    2014-01-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, we have tested two 805 MHz vacuum RF cavities in a multi-Tesla magnetic field to study the effects of the static magnetic field on the cavity operation. This study gives useful information on field emitters in the cavity, dark current, surface conditioning, breakdown mechanisms and material properties of the cavity. All these factors determine the maximum accelerating gradient in the cavity. This paper discusses the image processing technique for quantitative estimation of spark damage spot distribution on cavity interior surfaces. The distribution is compared with the electric field distribution predicted by a computer code calculation. The local spark density is proportional to probability of surface breakdown and shows a power law dependence on the maximum electric field (E). This E dependence is consistent with ...

  19. High efficiency, single-lobe surface-emitting DFB/DBR quantum cascade lasers.

    Science.gov (United States)

    Liu, Ying-Hui; Zhang, Jin-Chuan; Yan, Fang-Liang; Jia, Zhi-Wei; Liu, Feng-Qi; Liang, Ping; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-22

    We demonstrate a surface-emitting quantum cascade laser (QCL) based on second-order buried distributed feedback/distributed Bragg reflector (DFB/DBR) gratings for feedback and outcoupling. The grating fabricated beneath the waveguide was found to fundamentally favor lasing in symmetric mode either through analysis or experiment. Single-lobe far-field radiation pattern with full width at half maximum (FWHM) of 0.18° was obtained along the cavity-length direction. Besides, the buried DFB/DBR grating structure successfully provided an efficient vertical outcoupling mechanism with low optical losses, which manages to achieve a high surface outcouping efficiency of 46% in continuous-wave (CW) operation and 60% in pulsed operation at room temperature. Single-mode emission with a side-mode suppression ratio (SMSR) about 25 dB was continuously tunable by heat sink temperature or injection current. Our work contributes to the realization of high efficiency surface-emitting devices with high far-field beam quality that are significantly needed in many application fields. PMID:27557231

  20. Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes.

    Science.gov (United States)

    Moon, Yoon-Jong; Moon, Daeyoung; Jang, Jeonghwan; Na, Jin-Young; Song, Jung-Hwan; Seo, Min-Kyo; Kim, Sunghee; Bae, Dukkyu; Park, Eun Hyun; Park, Yongjo; Kim, Sun-Kyung; Yoon, Euijoon

    2016-05-11

    Two-dimensional high-index-contrast dielectric gratings exhibit unconventional transmission and reflection due to their morphologies. For light-emitting devices, these characteristics help guided modes defeat total internal reflections, thereby enhancing the outcoupling efficiency into an ambient medium. However, the outcoupling ability is typically impeded by the limited index contrast given by pattern media. Here, we report strong-diffraction, high-index-contrast cavity engineered substrates (CESs) in which hexagonally arranged hemispherical air cavities are covered with a 80 nm thick crystallized alumina shell. Wavelength-resolved diffraction measurements and Fourier analysis on GaN-grown CESs reveal that the high-index-contrast air/alumina core/shell patterns lead to dramatic excitation of the low-order diffraction modes. Large-area (1075 × 750 μm(2)) blue-emitting InGaN/GaN light-emitting diodes (LEDs) fabricated on a 3 μm pitch CES exhibit ∼39% enhancement in the optical power compared to state-of-the-art, patterned-sapphire-substrate LEDs, while preserving all of the electrical metrics that are relevant to LED devices. Full-vectorial simulations quantitatively demonstrate the enhanced optical power of CES LEDs and show a progressive increase in the extraction efficiency as the air cavity volume is expanded. This trend in light extraction is observed for both lateral- and flip-chip-geometry LEDs. Measurements of far-field profiles indicate a substantial beaming effect for CES LEDs, despite their few-micron-pitch pattern. Near-to-far-field transformation simulations and polarization analysis demonstrate that the improved extraction efficiency of CES LEDs is ascribed to the increase in emissions via the top escape route and to the extraction of transverse-magnetic polarized light.

  1. Preparation and handling of surfaces for superconducting radio frequency cavities

    International Nuclear Information System (INIS)

    Fortunately, surface treatment for s.c. cavities knows only one simple rule. If one observes this rule strictly one will be successful, if not, one will fail! The rule is CLEANLINESS. This means: clean material (high purity niobium without inclusions), clean (analytical grade) polishing chemicals and solvents, ultraclean (semiconductor grade) rinsing water, ultraclean (class 100) assembly environment. In general, if one applies the same working practice as the semiconductor industry, one will produce surfaces that are less clean than silicon wafers, due to the shape of the cavity (an inner surface is much more difficult to clean than a flat wafer); due to its size and due to the material (niobium is hydrophilic which makes the water with all the dirt in it stick to the surface). 9 references

  2. Vertical‐cavity surface‐emitting laser based digital coherent detection for multigigabit long reach passive optical links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko;

    2011-01-01

    We report on experimental demonstration of digital coherent detection based on a directly modulated vertical‐cavity surface‐emitting laser with bit rate up to 10 Gbps. This system allows a cooler‐less, free running, and unamplified transmission without optical dispersion compensation up to 105 km...... at 5 Gbps long reach passive optical links. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2462–2464, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26331...

  3. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon.

    Science.gov (United States)

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-04

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~ 200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc.

  4. Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration

    International Nuclear Information System (INIS)

    A high-energy THz-wave output has been experimentally demonstrated with a terahertz-wave parametric oscillator based on a surface-emitted configuration. Through optimizing the cavity length and pump beam size, the maximum THz-wave output energy of 854 nJ pulse−1 was obtained at 1.62 THz. The conversion efficiency was 0.57  ×  10–5, corresponding to the photon conversion efficiency of 0.099%. The THz beam profile was measured with a THz imager, which had a Gaussian profile. The measured beam diameter sizes were 423 μm and 258 μm in the horizontal and vertical directions, respectively. A wide tunable range from 0.75 to 2.81 THz was realized. (paper)

  5. Analytical modelling of end thermal coupling in a solid-state laser longitudinally bonded by a vertical-cavity top-emitting laser diode

    Institute of Scientific and Technical Information of China (English)

    Wu Jian; H.D.Summers

    2009-01-01

    The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.

  6. Influence of Er:YAG laser ablation on cavity surface and cavity shape

    Science.gov (United States)

    Jelinkova, Helena; Dostalova, Tatjana; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-04-01

    The cavity surface and shape after Er:YAG laser ablation at different energies, number of pulses and at a different repetition rate were observed. Longitudinal sections of extracted human incisors and transverse sections of ivory tusk were cut and polished to flat and glazed surfaces. The samples thickness was from 3 to 5 mm. The Er:YAG laser was operating in a free-running (long pulse) mode. The laser radiation was focused onto the tooth surface by CaF2 lens (f equals 55 mm). During the experiment, the teeth were steady and the radiation was delivered by a special mechanical arm fixed in a special holder; fine water mist was also used (water-mJ/min, a pressure of two atm, air-pressure three atm). The shapes of the prepared cavities were studied either by using a varying laser energies (from 70 mJ to 500 mJ) for a constant number of pulses, or a varying number of pulses (from one to thirty) for constant laser energy. The repetition rate was changed from 1 to 2 Hz. For evaluating the surfaces, shapes, and profiles, scanning electron microscopy and photographs from a light microscope were used. The results were analyzed both quantitatively and qualitatively. It is seen that there is no linear relation between the radiation pulse energy and the size of the prepared holes. With increasing the incident energy the cavity depth growth is limited. There exists some saturation not only in the enamel and dentin but especially in the homogeneous ivory.

  7. Cavity Investigation by Surface Wave Tomography and Microgravity

    OpenAIRE

    Bitri, Adnand; Samyn, Kévin; Jacob, Thomas

    2014-01-01

    International audience Shallow cavities, such as karstic caves in carbonate bedrock and near-surface underground mine workings and tunnels, constitute serious hazards for persons and existing constructions due to the risk of collapse and subsidence involving damages to buildings and increased urban development costs. Detection of karstic features, voids, surficial dissolution, fissuring, alteration and unconsolidated material, is thus a major challenge for geophysical methods. Density and ...

  8. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Gregersen, Niels; Mørk, Jesper

    2013-01-01

    A solid-state single-photon source emitting indistinguishable photons on-demand is an essential component of linear optics quantum computing schemes. However, the emitter will inevitably interact with the solid-state environment causing decoherence and loss of indistinguishability. In this paper...

  9. Water entry without surface seal: Extended cavity formation

    KAUST Repository

    Mansoor, Mohammad M.

    2014-03-01

    We report results from an experimental study of cavity formation during the impact of superhydrophobic spheres onto water. Using a simple splash-guard mechanism, we block the spray emerging during initial contact from closing thus eliminating the phenomenon known as \\'surface seal\\', which typically occurs at Froude numbers Fr= V0 2/(gR0) = O(100). As such, we are able to observe the evolution of a smooth cavity in a more extended parameter space than has been achieved in previous studies. Furthermore, by systematically varying the tank size and sphere diameter, we examine the influence of increasing wall effects on these guarded impact cavities and note the formation of surface undulations with wavelength λ =O(10)cm and acoustic waves λa=O(D0) along the cavity interface, which produce multiple pinch-off points. Acoustic waves are initiated by pressure perturbations, which themselves are generated by the primary cavity pinch-off. Using high-speed particle image velocimetry (PIV) techniques we study the bulk fluid flow for the most constrained geometry and show the larger undulations ( λ =O (10cm)) have a fixed nature with respect to the lab frame. We show that previously deduced scalings for the normalized (primary) pinch-off location (ratio of pinch-off depth to sphere depth at pinch-off time), Hp/H = 1/2, and pinch-off time, τ α (R0/g) 1/2, do not hold for these extended cavities in the presence of strong wall effects (sphere-to-tank diameter ratio), ε = D 0/Dtank 1/16. Instead, we find multiple distinct regimes for values of Hp/H as the observed undulations are induced above the first pinch-off point as the impact speed increases. We also report observations of \\'kinked\\' pinch-off points and the suppression of downward facing jets in the presence of wall effects. Surprisingly, upward facing jets emanating from first cavity pinch-off points evolve into a \\'flat\\' structure at high impact speeds, both in the presence and absence of wall effects.

  10. Manipulation of the p olarization switching and the nonlinear dynamic b ehaviors of the vertical-cavity surface-emitting laser sub jected to optical injection by EO mo dulation%电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究∗

    Institute of Scientific and Technical Information of China (English)

    钟东洲; 计永强; 邓涛; 周开利

    2015-01-01

    For the polarization switching (PS) and the nonlinear dynamic behaviors (NDBs) of the optically injected laser system composed of master vertical-cavity surface-emitting laser (M-VCSEL) and slave vertical-cavity surface-emitting laser (S-VCSEL), we put forward a novel manipulation scheme and explore their control law by means of electro-optic (EO) modulation with quasi-phase matched technology in periodically poled LiNbO3. It is found that the PS of the S-VCSEL subjected to parallel or orthogonal optical injection undergoes a change of periodic oscillation with the applied transverse electric field. The envelope trajectory of the oscillation peak appears to be a cosine curve, and that of the oscillation wave trough becomes a sine curve. Besides, the PS of the S-VCSEL only depends on the applied transverse electric field and the bias current of the M-VCSEL, and is independent of the bias current of the S-VCSEL. When the bias current of the M-VCSEL takes a different value, the PS of the S-VCSEL shows a different evolution law in one period of the applied electric field. For a certain fixed bias current of the M-VCSEL, the optically injected S-VCSEL can emit an arbitrary polarization mode and its NDBs experience different evolutions when the light from the M-VCSEL goes through EO intensity modulation. If the output light of the M-VCSEL is subjected to EO intensity modulation and EO phase modulation simultaneously, while the bias current of the S-VCSEL is fixed at 1.06, that of the M-VCSEL is fixed at 1.18, and the optical injection strength is set at 5 ns−1, then the output polarization of the S-VCSEL is in turn switched from the y-LP to the left-handed elliptic polarization (EP), then the right-handed EP circular polarization, and lastly the left-handed EP. And its NDB shows in turn a single period, four doubled periods, chaos, four doubled periods, and chaos with the increase of the applied electric field.%针对主和副垂直腔表面发射激光器构成的外

  11. Field-dependent surface resistance of a superconducting RF cavity caused by impurity of surface

    CERN Document Server

    Ge, M; Liepe, M; Hoffstaetter, G

    2015-01-01

    Q-slope issue, which is caused by the field dependent surface resistance, puzzled people for a long time in SRF fields. In this paper, we related the Q-slope with surface treatments; and proposed a surface-impurity model to explain the field-dependent of surface resistance of SRF cavities. Eighteen cavity-test results have been analyzed to examine the model. These cavities were treated by different recipes: Nitrogen-doping; BCP and HF-rinsing; EP with 120{\\deg}C baking; and EP without 120{\\deg}C baking. The performance of these cavities, which is normally represented by cavity quality factor versus accelerating gradient or surface magnetic field curves (Q0 vs. Eacc or Q0 vs. B), has included all types of Q-slope, such as Low-field Q-slope, Medium-field Q-slope, and Anti-Q-slope. The data fittings are quite successful; the fitting results will be shown. The model can be used to evaluate the effectiveness of the surface treatments. At last, the paper discussed the way to build a high-Q high-gradient SRF cavity.

  12. Cavities

    Science.gov (United States)

    ... the bacteria produce acids that cause decay. Tooth pain occurs after decay reaches the inside of the tooth. Dentists can detect cavities by examining the teeth and taking x-rays periodically. Good oral hygiene and regular dental care plus a healthy diet can help prevent cavities. ...

  13. Continuous-wave 1.55 $\\mu$m diode-pumped surface emitting semiconductor laser for broadband multiplex spectroscopy

    CERN Document Server

    Jacquemet, M; Guelachvili, G; Picqué, N; Sagnes, I; Strassner, M; Symonds, C; Garnache, Arnaud; Guelachvili, Guy; Jacquemet, Mathieu; Picqu\\'{e}, Nathalie; Sagnes, Isabelle; Strassner, Martin; Symonds, Cl\\'{e}mentine

    2007-01-01

    A room temperature operating Vertical External Cavity Surface Emitting Laser is applied around 1550 nm to intracavity laser absorption spectroscopy analyzed by time-resolved Fourier transform interferometry. At an equivalent pathlength of 15 km, the high resolution spectrum of the semiconductor disk laser emission covers 17 nm simultaneously. A noise equivalent absorption coefficient at one second averaging equal to 1.5 10^{-10} cm^{-1}.Hz^{-1/2} per spectral element is reported for the 65 km longest path length employed.

  14. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode

    Science.gov (United States)

    Boyle, C.; Sigler, C.; Kirch, J. D.; Lindberg, D. F.; Earles, T.; Botez, D.; Mawst, L. J.

    2016-03-01

    Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%-41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ˜0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.

  15. INVESTIGATION OF BREAKDOWN INDUCED SURFACE DAMAGE ON 805 MHZ PILLBOX CAVITY INTERIOR SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M. R.; Chung, M.; Leonova, M.; Moretti, A.; Tollestrup, A.; Yonehara, K.; Freemire, B.; Torun, Y.; Bowring, D.; Flanagan, G.

    2013-09-25

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, we have tested two 805 MHz vacuum RF cavities in a multi-Tesla magnetic field to study the effects of the static magnetic field on the cavity operation. This study gives useful information on field emitters in the cavity, dark current, surface conditioning, breakdown mechanisms and material properties of the cavity. All these factors determine the maximum accelerating gradient in the cavity. This paper discusses the image processing technique for quantitative estimation of spark damage spot distribution on cavity interior surfaces. The distribution is compared with the electric field distribution predicted by a computer code calculation. The local spark density is proportional to probability of surface breakdown and shows a power law dependence on the maximum electric field (E). This E dependence is consistent with the dark current calculated from the Fowler-Nordheim equation.

  16. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  17. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is

  18. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  19. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses

    CERN Document Server

    Fuchs, Cornelius; Wieczorek, Martin; Gather, Malte C; Hofmann, Simone; Reineke, Sebastian; Leo, Karl; Scholz, Reinhard

    2015-01-01

    We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within ot...

  20. Final report on LDRD project: Semiconductor surface-emitting microcavity laser spectroscopy for analysis of biological cells and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; McDonald, A.E. [Sandia National Labs., Albuquerque, NM (United States). Nanostructure and Semiconductor Physics Dept.; Gourley, M.F. [Washington Hospital Center, DC (United States); Bellum, J. [Coherent Technologies, Boulder, CO (United States)

    1997-08-01

    This article discusses a new intracavity laser technique that uses living or fixed cells as an integral part of the laser. The cells are placed on a GaAs based semiconductor wafer comprising one half of a vertical cavity surface-emitting laser. After placement, the cells are covered with a dielectric mirror to close the laser cavity. When photo-pumped with an external laser, this hybrid laser emits coherent light images and spectra that depend sensitively on the cell size, shape, and dielectric properties. The light spectra can be used to identify different cell types and distinguish normal and abnormal cells. The laser can be used to study single cells in real time as a cell-biology lab-on-a-chip, or to study large populations of cells by scanning the pump laser at high speed. The laser is well-suited to be integrated with other micro-optical or micro-fluidic components to lead to micro-optical-mechanical systems for analysis of fluids, particulates, and biological cells.

  1. Defect Detection in Superconducting Radiofrequency Cavity Surface Using C + + and OpenCV

    Science.gov (United States)

    Oswald, Samantha; Thomas Jefferson National Accelerator Facility Collaboration

    2014-03-01

    Thomas Jefferson National Accelerator Facility (TJNAF) uses superconducting radiofrequency (SRF) cavities to accelerate an electron beam. If theses cavities have a small particle or defect, it can degrade the performance of the cavity. The problem at hand is inspecting the cavity for defects, little bubbles of niobium on the surface of the cavity. Thousands of pictures have to be taken of a single cavity and then looked through to see how many defects were found. A C + + program with Open Source Computer Vision (OpenCV) was constructed to reduce the number of hours searching through the images and finds all the defects. Using this code, the SRF group is now able to use the code to identify defects in on-going tests of SRF cavities. Real time detection is the next step so that instead of taking pictures when looking at the cavity, the camera will detect all the defects.

  2. Theoretical and exp erimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser%基于平行偏振光注入的1550 nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究∗

    Institute of Scientific and Technical Information of China (English)

    孙波; 吴加贵; 王顺天; 吴正茂; 夏光琼

    2016-01-01

    Photonic microwave generation has attracted much attention in recent years due to its potential applications in various fields such as radio-over-fiber communication, signal processing and radar systems. So far, different photonic microwave generation schemes have been proposed and investigated, such as the optical heterodyne method based on the beat of two independent lasers with a certain wavelength difference, the external modulation method based on electro-optical modulator, the dual-mode beat method based on the monolithic dual-mode semiconductor lasers, and the optoelectronic microwave oscillator method based on optoelectronic feedback loops. These schemes have their own advantages and deficiencies. Unlike the above schemes, in this paper we propose an all optical scheme for generating high-quality microwave based on a 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL). For such a scheme, high frequency microwave can be obtained based on a 1550 nm-VCSEL subjected to external optical injection, where the polarization of the injected light is the same as that of the dominant mode of the free-running 1550 nm-VCSEL (named parallel-polarized optical injection) and its wavelength is adjusted to being close to the wavelength of the suppressed polarization mode of the free-running 1550 nm-VCSEL. With the aid of double optical feedback, the linewidth of the obtained microwave can be narrowed. In this work, firstly, the feasibility of microwave generation based on parallel-polarized optically injected 1550 nm-VCSEL is analyzed theoretically by using the spin-flip model. Next, a corresponding experimental system is constructed, and the performance of microwave generation is preliminarily investigated experi-mentally. The experimental results show that 30 GHz microwave signals could be obtained based on a parallel-polarized, optically injected 1550 nm-VCSEL under suitable injection parameters, but the linewidth of microwave signal is relatively wide (hundreds

  3. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors

    Science.gov (United States)

    Ooi, K. J. A.; Bai, P.; Gu, M. X.; Ang, L. K.

    2012-07-01

    A plasmonic coupled-cavity system, which consists of a quarter-wave coupler cavity, a resonant Fabry-Pérot detector nanocavity, and an off-resonant reflector cavity, is used to enhance the localization of surface plasmons in a plasmonic detector. The coupler cavity is designed based on transmission line theory and wavelength scaling rules in the optical regime, while the reflector cavity is derived from off-resonant resonator structures to attenuate transmission of plasmonic waves. We observed strong coupling of the cavities in simulation results, with an 86% improvement of surface plasmon localization achieved. The plasmonic coupled-cavity system may find useful applications in areas of nanoscale photodetectors, sensors, and an assortment of plasmonic-circuit devices.

  4. One Innovation of Mechanical Polishing Apparatus for Surface Treatment of 6 GHz TESLA Superconducting Cavity

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long; A.A.Rossi; R.K.Thakur; V.Palmieri

    2013-01-01

    6 GHz spinning seamless superconducting radio frequency(SRF)cavities are a very useful tool for testing alternative surface treatments in the fabrication of TESLA cavity.However,the surface is damaged in internal part for the using of the collapsible mandrel during spinning.The first important step of the

  5. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2015-07-15

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  6. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    International Nuclear Information System (INIS)

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  7. Study on the GaAs(110) surface using emitted atom spectrometry

    International Nuclear Information System (INIS)

    The facilities implemented at Bariloche for the ion scattering spectrometry is described, and recent examples of the technique application to determine the atomic structure and the composition of metallic and semiconductor surfaces, pure and with different adsorbates. The surface analysis technique using emitted atom spectrometry is discussed. The sensitivity to the GaAs(110) surface atomic relaxation is presented, and the kinetic of hydrogen adsorption by the mentioned surface is studied

  8. Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces

    Science.gov (United States)

    Czarske, Jürgen; Möbius, Jasper; Moldenhauer, Karsten

    2005-09-01

    A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry-Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

  9. Improving the work function of the niobium surface of SRF cavities by plasma processing

    Science.gov (United States)

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-04-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5-1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  10. A Computational Study of Transient Couette Flow Over an Embedded Cavity Surface

    Science.gov (United States)

    Thompson, Michael; Lang, Amy; Schreiber, Will; Leibenguth, Chase; Palmore, John

    2011-11-01

    Insect flight has become a topic of increased study due to bio-inspired applications for Micro-Air-Vehicles (MAVs). The complex yet efficient flight mechanism of butterflies relies upon flexible, micro-geometrically surface patterned, scaled wings. Effective vortex control, when flapping as well as low-drag gliding, may result from the wing's texture. This hypothesis was tested by focusing on the formation of embedded vortices between the rows of scales on butterfly wings. To calculate the total surface drag induced on the moving cavity surface a computational fluid dynamics study using FLUENT simulated the flow inside and above the embedded cavities under transient Couette flow conditions with Reynolds numbers varied from 0.01 to 100. The computational model consisted of a single embedded cavity with a periodic boundary condition. Based on SEM pictures of Monarch (Danaus plexippus) butterfly scales, various cavity geometries were tested to deduce drag reduction. Results showed that the embedded vortex size and shape generated within the cavity depended on which surface moved (top, flat wall or bottom, cavity wall) as well as aspect ratio. Surface drag reduction was confirmed over the cavity surfaces when compared to that of a flat plate, and increased with aspect ratio. Funded by REU SITE EEC - 1062611.

  11. Laterally emitted surface second harmonic generation in a single ZnTe nanowire

    CERN Document Server

    Liu, Weiwei; Liu, Zhe; Shen, Guozhen; Lu, Peixiang

    2012-01-01

    We report a direct observation on the unique laterally emitted surface second harmonic generation (SHG) in a single ZnTe nanowire. The highly directional surface SHG signal that polarizes along the direction vertical to the nanowire growth axis, is significantly larger than the bulk SHG contribution, indicating a high efficiency of surface SHG. Two strong SHG peaks are observed on both sides of the nanowire surfaces in the far-field scanning images, which is further supported by FDTD simulations, demonstrating that the unique laterally emitted signal is ascribed to surface SHG in the ZnTe nanowire. The surface SHG in a single ZnTe nanowire with unique lateral emission and high conversion efficiency shows great potential applications in short-wavelength nanolasers, nonlinear microscopy and polarization dependent photonic integrating.

  12. Light emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS): a novel technique for monitoring atmospheric trace gases

    Science.gov (United States)

    Thalman, Ryan M.; Volkamer, Rainer M.

    2009-08-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light- Emitting Diodes, LEDs) lends itself to the application of cavity enhanced DOAS (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e., does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), iodine monoxide (IO), water (H2O) and oxygen dimers (O4). Aerosol extinction is retrieved at two wavelengths by means of observing water and O4 and measuring pressure, temperature and relative humidity independently. The instrument components are presented, and the approach to measure aerosol extinction is demonstrated by means of a set of experiments where laboratory generated monodisperse aerosols are added to the cavity. The aerosol extinction cross section agrees well with Mie calculations, demonstrating that our setup enables measurements of the above gases in open cavity mode.

  13. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb2O5) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  14. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-12-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.

  15. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  16. Dependence of the surface resistance of niobium coated copper cavities on the coating temperature

    International Nuclear Information System (INIS)

    Six hydro-formed copper 1.5 GHz cavities have been baked and coated with niobium at different temperatures between 100 deg C and 200 deg C, while keeping the other discharge parameters unchanged. Their surface resistance has been measured as a function RF field and trapped magnetic field. Its dependence on deposition temperature confirms earlier indications obtained using 350 MHz LEP cavities that 150 deg C leads to optimal performances. The critical temperatures of Nb/Cu and bulk niobium cavities have also been measured. (author)

  17. Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity

    Science.gov (United States)

    Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia

    2016-08-01

    The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.

  18. LATTICE BOLTZMANN SIMULATIONS OF TRIAGULAR CAVITY FLOW AND FREE-SURFACE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    DUAN Ya-li; LIU Ru-xun

    2007-01-01

    The Lattice Boltzmann Method (LBM) was investigated to solve triangular cavity flow and free-surface problems in hydraulic dynamics. Some cases of triangular cavity flow and backward step flow were simulated to show the efficiency and stability of this method. Two-dimensional partial dam breaking problem and the propagation and diffraction of dam-break wave around rectangular and circular cylinder were numerically studied successfully. Excellent agreement was obtained between numerical predictions and available results.

  19. Pool boiling on surfaces with mini-fins and micro-cavities

    International Nuclear Information System (INIS)

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 – 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids – smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  20. Evanescent-wave cavity ring-down detection of cytochrome c on surface-modified prisms

    NARCIS (Netherlands)

    Sneppen, van der L.; Gooijer, C.; Ubachs, W.M.G.; Ariese, F.

    2009-01-01

    Adsorption kinetics and molecular interactions on different Surface interfaces are studied by means of evanescent-wave cavity ring-down spectroscopy, using total internal reflection surfaces Onto Which different self-assembled monolayers are covalently attached. The adsorption of cytochrome c (a pos

  1. Comparison of 3 methods on fabricating micro- /nano- structured surface on 3D mold cavity

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2015-01-01

    limited to flat or simple shaped geometries. In this paper, 3 approaches for fabricating micro and nano- structured surfaces on a mold cavity for injection moulding are investigated and compared. The first approach is to use pre-fabricated plate with micro-structured surface as an insert for the mold, in...

  2. The HIE-ISOLDE Superconducting Cavities: Surface Treatment and Niobium Thin Film Coating

    CERN Document Server

    Lanza, G; Ferreira, L M A; Gustafsson, A E; Pasini, M; Trilhe, P; Palmieri, V

    2010-01-01

    CERN has designed and prepared new facilities for the surface treatment and niobium sputter coating of the HIE-ISOLDE superconducting cavities. We describe here the design choices, as well as the results of the first surface treatments and test coatings.

  3. Transition radiation emitted by a particle moving along the axis of a perfectly conducting conical surface

    Energy Technology Data Exchange (ETDEWEB)

    Kol' tsov, A. V., E-mail: koltsov@x4u.lebedev.ru; Serov, A. V., E-mail: serov@x4u.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2011-12-15

    The spatial field distribution is determined for the transition radiation emitted by a relativistic particle moving along the axis of a perfectly conducting circular conical surface with a fixed apex. Emission from particles moving away from and towards the apex is examined. Expressions are obtained that can be used to calculate the angular distribution of radiation intensity for various apex angles between 0 and {pi}. Significant differences are demonstrated between the spatial distributions of radiation generated by outgoing and incoming particles.

  4. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes

    OpenAIRE

    Schnitzer, I.; Yablonovitch, E.; Caneau, C.; Gmitter, T. J.; Scherer, A.

    1993-01-01

    There is a significant gap between the internal efficiency of light-emitting diodes (LEDs) and their external efficiency. The reason for this shortfall is the narrow escape cone for light in high refractive index semiconductors. We have found that by separating thin-film LEDs from their substrates (by epitaxial lift-off, for example), it is much easier for light to escape from the LED structure and thereby avoid absorption. Moreover, by nanotexturing the thin-film surface using "natural litho...

  5. On the field dependent surface resistance of niobium on copper cavities

    CERN Document Server

    Junginger, Tobias

    2015-01-01

    The surface resistance Rs of superconducting cavities prepared by sputter coating a thin niobium film on a copper substrate increases significantly stronger with the applied RF field compared to cavities of bulk material. A possible cause is that due to the thermal boundary resistance between the copper substrate and the niobium film Rs is enhanced due to global heating of the inner cavity wall. Introducing helium gas in the cavity and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by only 60+/-60 mK when Rs increases with Eacc by 100 nOhm. This is more than one order of magnitude less than what one would expect from global heating. Additionally the effect of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered Rs.

  6. Theory and Modeling of Lasing Modes in Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Benjamin Klein

    1998-01-01

    modes that the VCSEL can support are then determined by matching the gain necessary for the optical system in both magnitude and phase to the gain available from the laser's electronic system. Examples are provided.

  7. Vertical-Cavity Surface-Emitting Lasers: Advanced Modulation Formats and Coherent Detection

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto

    for direct current modulated VCSELs. A coherent receiver approach that exploits adiabatic frequency chirping of direct modulated VCSELs to improve the extinction ratio of received signals is introduced. This concept enables coherent detection systems to be fully based on VCSELs in contrast to conventional...... at 50 Gb/s is achieved. This is the highest data rate ever transmitted with a single VCSEL at the time of this thesis work. The capacity of this system is increased to 100 Gb/s by using polarization multiplexing emulation and forward error correction techniques. Compared to a non return-to-zero on...

  8. Surfaces of electron-emitting glasses studied by a slow positron beam

    International Nuclear Information System (INIS)

    Semi-conducting glasses used for electron multipliers and microchannel plate devices are obtained by surface modification of Pb or Bi-reach silicon-based glasses. The reduced layer extends down to 200-500 nm, much more than the effective depth of the electron-emitting layer. By the use of slow-positron beam we monitor the structural changes undergoing in near-to-surface layers after isothermal annealing. The measurements suggest a possible correlation between secondary-electron emission coefficient and the Doppler- broadening S-parameter. On these samples there were also performed atomic force microscopy, secondary electron emission, differential scanning calorimetry, and electric conductivity measurements. (author)

  9. Controlled impact of a disk on a water surface: Cavity dynamics

    CERN Document Server

    Bergmann, Raymond; Gekle, Stephan; van der Bos, Arjan; Lohse, Detlef

    2008-01-01

    In this paper we study the transient surface cavity which is created by the controlled impact of a disk of radius h0 on a water surface at Froude numbers below 200. The dynamics of the transient free surface is recorded by high speed imaging and compared to boundary integral simulations. An excellent agreement is found between both. The flow surrounding the cavity is measured with high speed particle image velocimetry and is found to also agree perfectly with the flow field obtained from the simulations. We present a simple model for the radial dynamics of the cavity based on the collapse of an infinite cylinder. This model accounts for the observed asymmetry of the radial dynamics between the expansion and contraction phase of the cavity. It reproduces the scaling of the closure depth and total depth of the cavity which are both found to scale roughly proportional to Fr^{1/2} with a weakly Froude number dependent prefactor. In addition, the model accurately captures the dynamics of the minimal radius of the ...

  10. Experimental Observation of Dark Soliton Emitting with Spectral Sideband in an All-Fiber Ring Cavity Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-Yi; XU Wen-Cheng; LUO Zhi-Chao; LUO Ai-Ping; CAO Wen-Jun; DONG Jiang-Li; WANG Lu-Yan

    2011-01-01

    @@ The dark soliton pulse with spectral sideband is experimentally observed in a dispersion-managed ail-fiber ring laser with net negative cavity group velocity dispersion.We find that, for single or multiple dark solitons, the spectral sidebands always appear and exhibit asymmetric characteristics which are similar to bright solitons.The experimental measurements of spectral sideband positions are carried out and the results are in good agreement with the calculated values.Our results show that spectral sideband effect is also an intrinsic feature of a dark soliton fiber laser.%The dark soliton pulse with spectral sideband is experimentally observed in a dispersion-managed all-fiber ring laser with net negative cavity group velocity dispersion. We find that, for single or multiple dark solitons, the spectral sidebands always appear and exhibit asymmetric characteristics which are similar to bright solitons. The experimental measurements of spectral sideband positions are carried out and the results are in good agreement with the calculated values. Our results show that spectral sideband effect is also an intrinsic feature of a dark soliton fiber laser.

  11. Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources.

    Science.gov (United States)

    van der Sneppen, Lineke; Hancock, Gus; Kaminski, Clemens; Laurila, Toni; Mackenzie, Stuart R; Neil, Simon R T; Peverall, Robert; Ritchie, Grant A D; Schnippering, Mathias; Unwin, Patrick R

    2010-01-01

    A white light-emitting diode (LED) with emission between 420 and 700 nm and a supercontinuum (SC) source with emission between 450 and 2500 nm have been compared for use in evanescent wave broadband cavity-enhanced absorption spectroscopy (EW-BB-CEAS). The method is calibrated using a dye with known absorbance. While the LED is more economic as an excitation source, the SC source is superior both in terms of baseline noise (noise equivalent absorbances lower than 10(-5) compared to 10(-4) absorbance units (a.u.)) and accuracy of the measurement; these baseline noise levels are comparable to evanescent wave cavity ringdown spectroscopy (EW-CRDS) studies while the accessible spectral region of EW-BB-CEAS is much larger (420-750 nm in this study, compared to several tens of nanometres for EW-CRDS). The improvements afforded by the use of an SC source in combination with a high sensitivity detector are demonstrated in the broadband detection of electrogenerated Ir(IV) complexes in a thin-layer electrochemical cell arrangement. Excellent signal to noise is achieved with 10 micros signal accumulation times at a repetition rate of 600 Hz, easily fast enough to follow, in real time, solution kinetics and interfacial processes. PMID:20024193

  12. Protection of enamel surfaces in the oral cavity

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo

    inorganic interactions between different fluids and dental caries and little is also known about which saliva proteins are able to protect the enamel surface against dental erosion. Therefore, the overall aim of this thesis was to examine simple inorganic and protein related protective effects with dental...... diseases of the dental enamel can be attributed to simple inorganic and organic interactions with the dental enamel....

  13. Surface plasmon polaritons in a topological insulator embedded in an optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. L., E-mail: lllihfcas@foxmail.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, W., E-mail: wenxu-issp@aliyun.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics, Yunnan University, Kunming 650091 (China)

    2014-03-17

    Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidth and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.

  14. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Tian Hui [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States); Ribeill, Guilhem [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Dept. of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Xu Chen [Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kelley, Michael J., E-mail: mkelley@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States)

    2011-03-15

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  15. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  16. Magnetohydrodynamic motion of a colloidal sphere with self-electrochemical surface reactions in a spherical cavity.

    Science.gov (United States)

    Hsieh, Tzu H; Keh, Huan J

    2013-02-21

    An analytical study is presented for the magnetic-field-induced motion of a colloidal sphere with spontaneous electrochemical reactions on its surface situated at the center of a spherical cavity filled with an electrolyte solution at the quasi-steady state. The zeta potential associated with the particle surface may have an arbitrary distribution, whereas the electric double layers adjoining the particle and cavity surfaces are taken to be thin relative to the particle size and the spacing between the solid surfaces. The electric current and magnetic flux density distributions are solved for the particle and fluid phases of arbitrary electric conductivities and magnetic permeabilities. Applying a generalized reciprocal theorem to the Stokes equations with a Lorentz force term resulting from these density distributions for the fluid motion, we obtain explicit formulas for the translational and angular velocities of the colloidal sphere valid for all values of the particle-to-cavity size ratio. The particle velocities decrease monotonically with an increase in this size ratio. For the limiting case of an infinitely large cavity, our result reduces to the relevant solution for an unconfined spherical particle. The boundary effect on the movement of the particle with interfacial self-electrochemical reactions induced by the magnetohydrodynamic force is equivalent to that in sedimentation and much stronger than that in general phoretic motions.

  17. Cryosurgery for hemangiomas of the body surface and oral cavity.

    Science.gov (United States)

    Ohtsuka, H; Shioya, N; Tanaka, S

    1980-06-01

    The indications for and limitations of cryosurgery for various types of hemangiomas on the body surface or in the intraoral region are reported based on our clinical experience. In our opinion, cryosurgery is not the method of choice in the management of hemangiomas but is useful under certain conditions, as with a localized cavernous under certain conditions, as with a localized cavernous hemangioma in the facial or intraoral region. It is also valuable for strawberry marks with bleeding or infection and may be acceptable for small port-wine stains; in the treatment of extensive port-wine stains, a resulting hypertrophic scar or depigmentation may present difficulties. PMID:7436280

  18. Cavity Light-Emitting Diode for Durable, High-Brightness and High-Efficiency Lighting Applications: First Budget Period Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Yijian Shi

    2009-09-30

    COLED will be exposed to air and processing chemicals during the COLED fabrication process, these low-work-function metals cannot be used directly in the COLED structure. Thus, new materials with low work function and better chemical stability are needed for the COLED cathode. (3) Increase active device area: Since photons are only generated from perimeters of the cavities, the actual active area in a COLED device is smaller than the device surface area. The cavity diameter and cavity spacing of the COLED devices previously produced at SRI by conventional photolithography processing are typically in the range of 3 to 7 {mu}m with an estimated active area of 2-3%. To achieve the same brightness of a traditional OLED at the same applied voltage, the active device area of a COLED should be at least 20% (1/5) of the device surface area, provided the COLED has 5 times higher EQE. This requires reducing the cavity diameter and cavity spacing to the sub-micrometer region, which can be achieved by electron-beam lithography or nanoimprint lithography. (4) Improve metal/polymer interfaces: The polymer/metal interfaces are critical issues to improve and optimize since they directly affect the effectiveness and balance of hole and electron injection, and consequently the device performance. Conventional approaches for improving a metal/polymer interface include deposition of a special interfacial material on the selected electrode surface or applying a proper surface treatment prior to deposition of the LEP. Since these approaches are generally nonselective to the cathode and anode, they cannot be directly adopted for COLED devices. Generally, the interface integration in current OLED technology still needs a better chemical approach. Hence, advanced methodology developed for the COLED technology as promoted in this project may be also suitable for other OLED devices.

  19. Field emission of electrons from cathodes made of carbon fibers with a nanostructured emitting surface

    Science.gov (United States)

    Lupekhin, S. M.; Ibragimov, A. A.

    2011-06-01

    Field electron emission from cathodes made of a bunch of carbon fibers under the condition of technical vacuum is studied experimentally. A model to optimize the field emission properties of the cathode by optimizing its macrogeometry with regard to the emitting surface structure is suggested. The current-voltage characteristics of the cathode are taken in the working voltage range 1-3 kV and for anode-cathode spacings varying from 1 to 10 mm. The current density from the cathode may reach 10 A/cm2 or more.

  20. Surface-plasmon-polariton hybridized cavity modes in submicrometer slits in a thin Au film

    Science.gov (United States)

    Walther, R.; Fritz, S.; Müller, E.; Schneider, R.; Maniv, T.; Cohen, H.; Matyssek, C.; Busch, K.; Gerthsen, D.

    2016-06-01

    The excitation of cavity standing waves in double-slit structures in thin gold films, with slit lengths between 400 and 2560 nm, was probed with a strongly focused electron beam in a transmission electron microscope. The energies and wavelengths of cavity modes up to the 11 th mode order were measured with electron energy loss spectroscopy to derive the corresponding dispersion relation. For all orders, a significant redshift of mode energies accompanied by a wavelength elongation relative to the expected resonator energies and wavelengths is observed. The resultant dispersion relation is found to closely follow the well-known dispersion law of surface-plasmon polaritons (SPPs) propagating on a gold/air interface, thus providing direct evidence for the hybridized nature of the detected cavity modes with SPPs.

  1. Dependence of the surface resistance of niobium coated copper cavities on the coating temperature

    International Nuclear Information System (INIS)

    Six hydro-formed copper 1.5 GHz cavities have been baked and coated with niobium at different temperatures between 100 deg C and 200 deg C, while keeping the other discharge parameters unchanged. Their surface resistance has been measured as a function of RF field and trapped magnetic field. Its dependence on deposition temperature confirms earlier indications obtained using 350 MHz LEP cavities that 150 deg C leads to optimal performances. The critical temperatures of Nb/Cu and bulk niobium cavities have also been measured: the result obtained for Nb/Cu, 9.56 K±0.02 K, differs from the Nb value, 9.231 K±0.007 K, in qualitative agreement with expectation from the different lattice parameters. (author)

  2. Surface-Plasmon-Polariton Laser based on an Open-Cavity Fabry-Perot Resonator

    CERN Document Server

    Zhu, Wenqi; Agrawal, Amit; Lezec, Henri J

    2016-01-01

    Recent years have witnessed growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface-plasmons, electromagnetic modes evanescently confined to metal-dielectric interfaces, offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain-medium. Here, we achieve visible frequency ultra-narrow linewidth lasing at room-temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically-pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. Low perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high-figure-of-merit refractive-index sensing of analytes interacting with the open cavity.

  3. Surface tension of cavities and Tolman’s length in n-alkanes. A positron study

    International Nuclear Information System (INIS)

    Highlights: ► Surface tension in cavities produced by Ps in alkanes is larger than in flat surface. ► Absolute value of Tolman’s length rises with temperature. ► Ortho-Ps lifetime near the melting point is identical for all liquid alkanes. ► No change of ortho-Ps lifetime at the transition liquid–rotator phase for n > 24. - Abstract: Positron annihilation lifetime spectra were measured in n-alkanes. From the lifetime of ortho-positronium (o-Ps) one can determine the surface tension and Tolman’s length for the cavity produced by positronium in the liquid. This tension is found increased by factor of 1.4 ÷ 1.7 comparing to that of flat surface. The Tolman’s length is temperature dependent; in n-nonadecane it rises from about 0.06 nm at melting point to 0.08 nm at the temperature 100 K higher. Near the melting point the value of surface tension of Ps cavities is practically identical for all alkanes under study, i.e. from heptane C7H16 to pentacontane C50H102

  4. Morphology of gas cavities on patterned hydrophobic surfaces under reduced pressure

    Science.gov (United States)

    Xue, Yahui; Lv, Pengyu; Liu, Ying; Shi, Yipeng; Lin, Hao; Duan, Huiling

    2015-09-01

    Gas cavities trapped on structured hydrophobic surfaces play important roles in realizing functionalities such as superhydrophobicity, drag reduction, and surface cleaning. The morphology of the cavities exhibits strong dependence on system parameters which impact the performance of these surfaces. In this work, a complete theoretical analysis is presented to predict cavity morphological change under reduced liquid pressure, on a submerged hydrophobic surface patterned with cylindrical pores. Equilibrium solutions are derived for five different phases, namely, (I) pinned recession, (II) depinned recession, (III) Cassie-Baxter, (IV) expansion, and (V) coalescence; their stabilities are also analyzed. A phase map is developed outlining the different regimes with respect to the gas amount and liquid pressure. Importantly, phase (IV) exhibits a complex stability behavior that leads to two possible routes to coalescence, which lends two different mechanisms of cavitation. Accordingly, the threshold pressure for cavitation can be calculated. The theoretical model is supported by direct experimental measurements via confocal microscopy and demonstrates good quantitative accuracy. This work provides a predictive tool for the design of functional structured hydrophobic surfaces.

  5. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ping Zhou; Dianyuan Fan

    2011-01-01

    We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahert-wave source.%@@ We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahertz-wave source.

  6. Metasurface external cavity laser

    Science.gov (United States)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Chen, Qi-Sheng; Itoh, Tatsuo; Williams, Benjamin S.

    2015-11-01

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  7. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  8. Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities

    Science.gov (United States)

    Hafiz, Shopan din Ahmad

    InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1-xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving more efficient visible light emitters and terahertz generating nanocavities and in colloidal Ge1-xSnx quantum dots (QDs) for developing efficient silicon compatible optoelectronics. To alleviate the electron overflow, which through strong experimental evidence is revealed to be the dominating mechanism responsible for efficiency degradation at high injection in InGaN based blue LEDs, different strategies involving electron injectors and optimized active regions have been developed. Effectiveness of optimum electron injector (EI) layers in reducing electron overflow and increasing quantum efficiency of InGaN based LEDs was demonstrated by photoluminescence (PL) and electroluminescence spectroscopy along with numerical simulations. Increasing the two-layer EI thickness in double heterostructure LEDs substantially reduced the electron overflow and increased external quantum efficiency (EQE) by three fold. By incorporating delta p-doped InGaN barriers in multiple quantum well (MQW) LEDs, 20% enhancement in EQE was achieved due to improved hole injection without degrading the layer quality. Carrier diffusion length, an important physical parameter that directly affects the performance of optoelectronic devices, was measured in epitaxial GaN using PL spectroscopy. The obtained diffusion lengths at room

  9. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    Science.gov (United States)

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; Cook, Russell; Schlepütz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzinski, John; Proslier, Thomas

    2015-02-01

    We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ˜2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  10. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Chaoyue [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Posen, Sam; Hall, Daniel Leslie [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Groll, Nickolas; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cook, Russell [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlepütz, Christian M. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liepe, Matthias [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Pellin, Michael [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zasadzinski, John [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  11. Microleakage in conservative cavities varying the preparation method and surface treatment

    Directory of Open Access Journals (Sweden)

    Juliana Abdallah Atoui

    2010-08-01

    Full Text Available OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE. Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05. RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.

  12. Interaction between natural convection and surface thermal radiation in tilted slender cavities

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, R.; Xaman, J.; Alvarez, G. [Centro Nacional de Investigacion y Desarrollo Tecnologico, CENIDET-DGEST-SEP, Prol. Av. Palmira s/n, Col. Palmira, Cuernavaca, Morelos, C.P. 62490 (Mexico); Hinojosa, J. [Universidad de Sonora, Blvd. Luis Encinas y Rosales, Col. Centro, Hermosillo, Sonora, C.P. 83000 (Mexico)

    2008-04-15

    In this paper a numerical investigation of the interaction between two modes of heat transfer, natural convection and surface thermal radiation, in a tilted slender cavity is studied. The bottom and top surfaces of the cavity are heated and cooled at constant temperatures, while its sidewalls remain thermally insulated. The studied parameters are: the Rayleigh number (10{sup 4}{<=}Ra{<=}10{sup 6}), the aspect ratio (8{<=} A{<=}16) and the inclination angle (15 {<=}{lambda}{<=}35 ). The steady state 2-D governing equations have been solved by the finite volume method. All the inner surfaces are assumed to be gray diffuse emitters and reflectors of radiation. The numerical model was reduced and compared to cases reported in the literature finding a good agreement. Streamlines, isotherms and total Nusselt numbers as a function of Rayleigh number for different inclinations are presented. The interaction between the two modes of heat transfer reveals that the decoupling of two mechanisms of heat transfer is not possible; the performance of the flow patterns, the isotherms and the radiative behavior on the walls was different for the uncoupled and coupled modes of heat transfer in the tilted slender cavity. The steady state results indicated that the radiative surface radiation coupled with natural convection modifies appreciably the flow patterns and the average heat transfer in the slender cavity. The total heat transfer increases when the inclination angle increases, except when the flow structure changes from the multi-cell to the unit-cell pattern. However, the total heat transfer decreases when the aspect ratio increases. A comprehensive correlation for the total Nusselt number has been proposed. (author)

  13. Thermal simulation and analysis of flat surface flip-chip high power light-emitting diodes

    International Nuclear Information System (INIS)

    Conventional GaN-based flip-chip light-emitting diodes (CFC-LEDs) use Au bumps to contact the LED chip and Si submount, however the contact area is constrained by the number of Au bumps, limiting the heat dissipation performance. This paper presents a flat surface high power GaN-based flip-chip light emitting diode (SFC-LED), which can greatly improve the heat dissipation performance of the device. In order to understand the thermal performance of the SFC-LED thoroughly, a 3-D finite element model (FEM) is developed, and ANSYS is used to simulate the thermal performance. The temperature distributions of the SFC-LED and the CFC-LED are shown in this article, and the junction temperature simulation values of the SFC-LED and the CFC-LED are 112.80 °C and 122.97 °C, respectively. Simulation results prove that the junction temperature of the new structure is 10.17 °C lower than that of the conventional structure. Even if the CFC-LED has 24 Au bumps, the thermal resistance of the new structure is still far less than that of the conventional structure. The SFC-LED has a better thermal property. (semiconductor devices)

  14. Surface-emitting superconductor laser spectroscopy for characterizing normal and sickled red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Meissner, K.E.; Brennan, T.M.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States); Gourley, M.F. [National Institutes of Health, Bethesda, MD (United States)

    1995-02-01

    We have developed a new intracavity laser technique that uses a living or a fixed cell as an integral component of the laser. The cells are placed on an AlGaAs/GaAs surface-emitting semiconductor wafer and covered with a glass dielectric mirror to form a laser resonator. In this arrangement, the cells serve as optical waveguides (or lens elements) to confine (or focus) light generated in the resonator by the semiconductor. Because of the high transparency, the cells aid the lasing process to generate laser light. This ultra sensitive laser provides a novel imaging/spectroscopic technique for histologic examination which we demonstrate with normal and sickled human red blood cells. Extremely high contrast microscopic images of the cells are observed near 830-850 nm. These images correspond to electromagnetic modes of cell structures and are sensitive to shape of the cell. Using a high resolution spectrometer, we resolve the light emitted from these images into very narrow spectral peaks associated with the lasing modes. Analysis of the spectra reveals that the distribution of peaks is quite different for normal and sickled red blood cells. This technique, in a more developed form, may be useful for the rapid analysis of other kinds of normal and abnormal cells.

  15. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States)

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  16. Interfacial Cavity Filling To Optimize CD4-Mimetic Miniprotein Interactions with HIV-1 Surface Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier; Michiels, Johan; Descours, Anne; Ramos, Oscar H.P.; Yang, Yongping; Vanham, Guido; Ariën, Kevin K.; Kwong, Peter D.; Martin, Loïc; Kessler, Pascal [ITM-Antwerp; (CEA-CNRS); (NIH)

    2013-08-05

    Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.

  17. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    Science.gov (United States)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  18. Effect of the surface thermal radiation on turbulent natural convection in tall cavities of facade elements

    Energy Technology Data Exchange (ETDEWEB)

    Xaman, J.P.; Flores, J.J. [Centro Nacional de Investigacion y Desarrollo Tecnologico, CENIDET-DGEST-SEP, Departamento de Ingenieria Mecanica-Termica, Cuernavaca, Morelos (Mexico); Hinojosa, J.F.; Cabanillas, R.E. [Universidad de Sonora, Departamento de Ingenieria Quimica y Metalurgia, Hermosillo, Sonora (Mexico)

    2008-12-15

    The effect of the surface thermal radiation in tall cavities with turbulent natural convection regime was analyzed and quantified numerically. The parameters considered were: the Rayleigh number 10{sup 9}-10{sup 12}, the aspect ratio 20, 40 and 80 and the emmisivity 0.0-1.0. The percentage contribution of the radiative surface to the total heat transfer has a maximum value of 15.19% (Ra=10{sup 9}, A=20) with emissivity equal to 1.0 and a minimum of 0.5% (Ra=10{sup 12}, A=80) with {epsilon}*=0.2. The average radiative Nusselt number for a fixed emissivity is independent of the Rayleigh number, but for a fixed Rayleigh number diminishes with the increase of the aspect ratio. The results indicate that the surface thermal radiation does not modify significantly the flow pattern in the cavity, just negligible effects in the bottom and top of the cavity were observed. Two different temperature patterns were observed a conductive regime Ra=10{sup 9} and a boundary layer regime Ra=10{sup 12}. (orig.)

  19. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    Science.gov (United States)

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

  20. Localized surface plasmon resonance effect in organic light-emitting devices with Ag islands

    Science.gov (United States)

    Shimazaki, Noritaka; Naka, Shigeki; Okada, Hiroyuki

    2014-04-01

    We report on luminescence enhancement of organic light-emitting devices (OLEDs) with silver islands (i-Ag) by a localized surface plasmon resonance (LSPR) effect. The devices were fabricated using tetraphenylporphyrin (TPP) as the red emission material, bis[N-(1-naphthyl)-N-phenyl] benzidine (α-NPD) as the blue emission and hole transport material, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as the electron transport material. To clarify the position of emission enhancement by energy transfer from i-Ag, an ultrathin TPP layer located within the α-NPD layer. In the device with i-Ag and the TPP layer located over 10 nm from i-Ag, TPP emission was enhanced in comparison with the device without i-Ag. The enhancement of TPP emission was suggested to be the effect of the enhanced electric field resulting from LSPR excited by α-NPD emission.

  1. Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers

    International Nuclear Information System (INIS)

    In this paper we describe elements of photonic crystal surface-emitting laser (PCSEL) design and operation, highlighting that epitaxial regrowth may provide advantages over current designs incorporating voids. High coupling coefficients are shown to be possible for all-semiconductor structures. We introduce type I and type II photonic crystals (PCs), and discuss the possible advantages of using each. We discussed band structure and coupling coefficients as a function of atom volume for a circular atom on a square lattice. Additionally we explore the effect PC atom size has on in-plane and out-of-plane coupling. We conclude by discussing designs for a PCSEL combined with a distributed Bragg reflector to maximize external efficiency. (paper)

  2. Enhancing the brightness of Si nanocrystal light-emitting devices with electro-excited surface plasmons

    Science.gov (United States)

    Chen, Jia-Rong; Zhou, Zhi-Quan; Hao, Hong-Chen; Lu, Ming

    2014-09-01

    The use of electro-excited surface plasmons (SPs) in Ag nanoparticles (Ag-NPs) is shown to enhance the brightness of Si nanocrystal light-emitting devices (Si-NC LEDs). The Ag-NPs are prepared on the Si-NC thin film by ultrasonic irradiation and postannealing treatments. Electro-excited SPs on Ag-NPs are found, which are induced by electron impact on Ag-NPs and the front electrode Al layer during the charge injection process of LED. The electro-excited SPs enhance the electroluminescence of Si-NC, or LED brightness, via the SP field coupling to the exciton dipole moment of Si-NC. A maximal 5.2-fold brightness enhancement of Si-NC LED is achieved at the postannealing temperature of 200 °C. Remnant far-field radiations arising from electro-excited SPs are detected, which further supports the existence of such SPs.

  3. Investigation of the peak power enhancement available from a surface emitting GaAlAs near-infrared light emitting diode by cooling and pulsing

    Science.gov (United States)

    Chambers, Paul; Austin, Ed A. D.; Gunning, Mark J.; Dakin, John P.

    2003-11-01

    Light emitting diode (LED) light sources are required for many illumination and optical sensing applications, due to their compact dimensions, low cost and low power consumption. The optimization of optical power output in a specific wavelength band is often of critical importance. We are interested in using LEDs for optical sensing systems, particularly for gas sensing. We have conducted a very comprehensive engineering study to show that, by packaging a commercial surface emitting LED in a cooled heat-sunk package and optimizing the drive current for this lower temperature, the power from the LED may be substantially improved, particularly when pulsed at low duty cycle. We have found that, even with moderate cooling using a Peltier heat pump, the intensity in our required spectral band was improved by a factor of 5 compared to that attainable under normal drive conditions. We have also verified that almost all spectral changes in the LED were due to temperature changes in the emitting chip, rather than from other effects related to injection current, such as internal optical gain.

  4. Detection of near-surface cavities by generalized S-transform of Rayleigh waves

    Science.gov (United States)

    Shao, Guang-zhou; Tsoflias, George P.; Li, Chang-jiang

    2016-06-01

    The near-surface cavities can cause a huge hidden trouble for urban infrastructure construction, such as, foundation settlement and roadbed subsidence, and so on. So, it is an important task to detect the underground cavities effectively for many engineering projects. At the same time, because of the complexity of near-surface materials and the limited resolution of geophysical methods, detecting the location of the hidden cavities quantitatively is still a technical challenge which needs to be studied further. Base on the study of Xia et al. (Xia et al., 2007), we performed a little modification to the travel time equation for the Rayleigh-wave diffraction. We put forward another way to detect the shallow subsurface voids. The generalized S-transform was adopted to extract the arrival times of the diffracted Rayleigh waves from the near and far-offset boundaries of the void at a certain receiver. Then the arrival times were used to calculate the boundary locations of the void. Three half-space void models and a two-layered void model were used to demonstrate the feasibility and effect of detecting a void with the generalized S-transform. A rotated staggered-grid finite-difference method was adopted in wave field modeling to obtain the synthetic seismic record. Finally, a real world field data was used to verify the detecting effect. The theoretical models and the real world example showed that it is feasible and effective to use the generalized S-transform to detect the near-surface cavities.

  5. Analysis of Nb3Sn surface layers for superconducting RF cavity applications

    OpenAIRE

    Becker, Chaoyue; Posen, Samuel; Groll, Nickolas; Cook, Russell; Schlepuetz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzsinski, John; Proslier, Thomas

    2015-01-01

    We present an analysis of the Nb3Sn surface layers grown on a bulk niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 meV and superconducting critical temperature (Tc) up to 16.3 K. Scanning Electron microscopy (STEM) performed on cross section of the s...

  6. Energetic neutral atoms emitted from ice by ion bombardment under Ganymede surface conditions

    Science.gov (United States)

    Wieser, Martin; Barabash, Stas; Futaana, Yoshifumi; Wurz, Peter

    2013-04-01

    Magnetospheric or solar wind ions directly interacting with a planetary surface result in backscattering or sputtering of energetic neutral atoms. One example is the solar wind interaction with the surface of the Moon, where the produced energetic neutral atoms were observed by the Sub-keV Atom Reflecting Analyzer instrument (SARA) on Chandrayaan-1. At Jupiter, magnetospheric plasma interacts in a similar way with the surface of the Galilean moons. However, the emission of energetic neutral atoms from "dirty" ices as found e.g. on Ganymede's surface is poorly understood. We set up an experiment to study the ion to surface interaction under Ganymede surface environment conditions using the unique capabilities of the MEFISTO test facility at University of Bern. Ions of various species and energies up to 33 keV/q were impacted on a block of ice made from a mixture of water, NaCl and dry ice. The energetic neutral atoms produced by the interaction were detected with the prototype of the Jovian Neutrals Analyzer instrument (JNA.) JNA is proposed as part of the Particle Environment Package (PEP) for ESA's JUICE mission to Jupiter and instrument is based on the Energetic Energetic Neutral Atom instrument (ENA) built for the BepiColombo Magnetospheric Orbiter. We present energy spectra for different ion beam species and energetic neutral atom species combinations. The data show high yields for energetic neutral atoms up to the upper end of the instrument energy range of 3.3 keV. The energy spectra of the neutral atom flux emitted from the ice could only partially be fitted by the Sigmund-Thompson formula. In some cases, but not all, a Maxwellian distribution provides a reasonable description of the data.

  7. Plasma Processing of Large Surfaces with Application to SRF Cavity Modification

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan; Popovic, Svetozar; Vuskovic, Leposova; Im, Do; Valente, Anne-Marie; Phillips, H

    2013-09-01

    Plasma based surface modifications of SRF cavities present promising alternatives to the wet etching technology currently applied. To understand and characterize the plasma properties and chemical kinetics of plasma etching processes inside a single cell cavity, we have built a specially-designed cylindrical cavity with 8 observation ports. These ports can be used for holding niobium samples and diagnostic purposes simultaneously. Two frequencies (13.56 MHz and 2.45 GHz) of power source are used for different pressure, power and gas compositions. The plasma parameters were evaluated by a Langmuir probe and by an optical emission spectroscopy technique based on the relative intensity of two Ar 5p-4s lines at 419.8 and 420.07 nm. Argon 5p-4s transition is chosen to determine electron temperature in order to optimize parameters for plasma processing. Chemical kinetics of the process was observed using real-time mass spectroscopy. The effect of these parameters on niobium surface would be measured, presented at this conference, and used as guidelines for optimal design of SRF etching process.

  8. Efficient semiconductor light-emitting device and method

    Science.gov (United States)

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  9. Fundamental Restructuring of the Collisional Presheath Near Electron-Emitting Surfaces

    Science.gov (United States)

    Campanell, Michael

    2015-11-01

    Recent work showed that intense electron emission can make the sheath potential become positive. This ``inverse sheath'' differs strongly from the ``space-charge limited sheath'' predicted in conventional models. Here we show that intense emission also makes the plasma interior restructure. The collisional presheath structure is dominated not by ion acceleration but by emission thermalization. Since the sheath potential is positive, emitted electrons are not accelerated away from the surface. They enter the presheath with low velocities and actually have a higher spatial density than the hotter plasma electrons by a ratio √{ Tep / Temit } . This leads to a surprising result that the quasineutral plasma density must increase from the bulk towards the presheath edge, opposite from the case of Bohm presheaths. The force balance throughout the plasma interior is altered by the electrons originating from the surface. Simulation and experimental evidence of ``inverted presheaths'' will be shown. The results could be pertinent to various plasma systems with intense emission. *M.D. Campanell, POP 22, 040702 (2015). Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-674970.

  10. Simultaneous 60-GHz RoF Transmission of Lightwaves Emitted by ECL, DFB, and VCSEL

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Pang, Xiaodan; Vegas Olmos, Juan José;

    2014-01-01

    Simultaneous 60-GHz radio over fiber upconversion and fiber transmission of lightwaves produced by an external cavity laser, a distributed feedback laser, and a $C$ -band vertical cavity surface emitting laser are demonstrated. The 1.25-Gb/s data are transmitted concurrently on each of the...

  11. Initial bioadhesion on surfaces in the oral cavity investigated by scanning force microscopy

    Science.gov (United States)

    Schwender, N.; Huber, K.; Marrawi, F. Al; Hannig, M.; Ziegler, Ch.

    2005-09-01

    Scanning force microscopy (SFM) was used to measure the adhesion forces between BSA, a saliva protein, and two dental surfaces, natural enamel and a filling material (Dyract AP™). Measurements were taken in phosphate buffered aqueous solutions (PBS). Forces were resolved down to the piconewton regime. The dependency of the adhesion force on the interaction time, pH-value and substrate surface was monitored. In a further step, surface samples were fixed on an enamel brace and carried for a defined time in the oral cavity. The formed biofilm, called pellicle, shows a different morphology on the different substrates. This can be explained by the above-mentioned substrate dependence of the adhesion force.

  12. Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying; Shi, Xiao-Bo; Gao, Chun-Hong; Cai, Shi-Duan; Jin, Yue; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn

    2014-09-30

    Graphical abstract: - Highlights: • A combination of scattering layer and roughened substrate is used for light extraction from OLEDs. • The scattering layer is readily achieved by spin-coating the TiO{sub 2} sol. • The enhancement relying scattering depends on the size of TiO{sub 2} nano particles. • With the light extraction techniques the uniform emission is achieved. - Abstract: A combination of a scattering medium layer and a roughened substrate was proposed to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Comparing with a reference OLED without any scattering layer, 65% improvement in the forward emission has been achieved with a scattering layer formed on an intentionally roughened external substrate surface of the OLED by spin-coating a sol–gel fabricated matrix containing well dispersed titania (TiO{sub 2}) particles. Such a combination method not only demonstrated efficient extraction of the light trapped in the glass substrate but also achieved homogenous emission from the OLED panel. The proposed technique, convenient and inexpensive, is believed to be suitable for the large area OLED production in lighting applications.

  13. Comparison of two tooth-saving preparation techniques for one-surface cavities.

    Science.gov (United States)

    Rahimtoola, Salim; van Amerongen, Evert

    2002-01-01

    The atraumatic restorative treatment technique (ART) is based on removing infected tooth material using only hand instruments and filling the subsequently cleaned cavity with adhesive material such as glass ionomer. As its name suggests, the ART technique should be atraumatic during treatment, as well as for the tooth itself as for the patient. It was primarily developed for treating people living in underserved areas of the world where resources and facilities such as electricity and trained manpower are limited. Many studies have evaluated the ART technique and the results have supported its application. However, a very limited number of studies have compared ART with more conventional techniques. For that reason, a study was conducted in Pakistan, to compare the ART technique with another more conventional treatment technique. The results of this study show that the preparations with hand instruments resulted in smaller sized cavities and therefore may be less traumatic to the tooth. It was also associated with less pain reactions compared to the more conventional technique. Although preparations with hand instruments required more time, this did not seem to affect the survival of restorations. The survival of glass ionomer cement restorations made with hand instruments was comparable with single surface amalgam restorations made with a more conventional technique. Recurrent caries was not associated with any glass ionomer cement restorations made with hand instruments. The retention rate of glass ionomer sealants was low, however one dentist had a sealant retention rate of 81.5 percent that suggests that this procedure can be performed satisfactorily in conjunction with a glass ionomer cement restoration. Operator variances did seem to affect the restorations. Survival of glass ionomer restorations made with both hand and rotary instruments varied for different operators. Similarly, the retention of fissure sealant also varied amongst operators. Operator

  14. Temperature variation on root surface with three root-end cavity preparation techniques

    Directory of Open Access Journals (Sweden)

    Bodrumlu Emre

    2013-01-01

    Full Text Available Introduction. Thermal changes can occur on the external root surface when root-end cavity preparation is performed, which may damage periodontal ligament cells and alveolar bone. Objective. The purpose of this study was to evaluate the temperature changes during preparation of the root-end cavities at 1 and 3 mm to the sectioned apical root surfaces when either tungsten carbide round bur, diamond round bur or ultrasonic diamond tip was used. Methods. Root-end resection was performed at 90° to the long axis of the root, 3 mm from the apex. Specimens were randomly divided into three groups of 12 teeth each for three different root-end cavity preparation techniques to be used, i.e. tungsten carbide bur, diamond bur and ultrasonic diamond retro tip. Thermocouples were used to measure temperature changes at 1 mm (T1 and 3 mm (T2 to the cutting plane during the preparations. Results. For T1, the lowest and the highest mean temperature increases of 3.53°C and 4.34°C were recorded for the carbide and diamond burs, respectively. For T2, the lowest and the highest mean temperature increases of 2.62°C and 4.39°C where recorded for the carbide and diamond burs, respectively. The mean temperatures with the ultrasonic tip were 3.68 and 3.04 ºC at T1 and T2 region, respectively. For root-end preparation, the ultrasonic preparation technique took the shortest preparation time (10.25 sec and the diamond bur took the longest time (28.17 sec. Conclusion. Ultrasonic retro tips and burs caused temperature to rise from 2.62° to 4.39°C, and these rises were within safety levels.

  15. Surface studies of niobium chemically polished under conditions for superconducting radiofrequency cavity production

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian; Michael Kelley; Charles Reece

    2005-11-14

    The performance of niobium superconducting radiofrequency accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant data sets. We found that the predominant general surface orientation is (100), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3 - 1.4 times that resulting from static solution. The standard deviation of the roughness measurements is ?? 30% and that of the surface composition is ?? 5%.

  16. Surface studies of niobium chemically polished under conditions for superconducting radio frequency (SRF) cavity production

    Energy Technology Data Exchange (ETDEWEB)

    Tian Hui [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States)]. E-mail: mkelley@jlab.org; Wang Shancai [Department of Physics, Boston University (United States); Plucinski, Lukasz [Department of Physics, Boston University (United States); Smith, Kevin E. [Department of Physics, Boston University (United States); Nowell, Matthew M. [EDAX TSL (United States)

    2006-11-30

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is {+-}30% and that of the surface composition is {+-}5%.

  17. Study on hydrogen sulfide plasma passivation of 790-nm laser diode cavity surface

    Institute of Scientific and Technical Information of China (English)

    Chunling Liu; Yanping Yao; Chunwu Wang; Xin Gao; Zhongliang Qiao; Mei Li; Yuxia Wang; Baoxue Bo

    2008-01-01

    In order to improve the optical properties of the Ⅲ-Ⅴ laser diodes(LDs) by means of H2S plasma passivation technology,H2S plasma passivation treatment is performed on the GaAs(110) surface.The optimum passivation conditions obtained are 60-W radio frequency(RF)power and 20-min duration.So the laser cavity surfaces axe treated under the optimum passivation conditions.Consequently,compared with unpassivated lasers with only AR/HR-coatings,the catastrophic optical damage (COD) threshold value of the passivated lasers by H2S plasma treatment is increased by 33%,which is almost the same as that of (NH4)2Sx treatment.And the life-test experiment has demonstrated that this passivation method is more stable than(NH4)2Sx solution wet-passivated treatment.

  18. Study of the surface resistance of niobium sputter-coated copper cavities

    CERN Document Server

    Benvenuti, Cristoforo; Campisi, I E; Darriulat, Pierre; Peck, M A; Russo, R; Valente, A M

    1999-01-01

    A systematic study of the superconducting properties of niobium films deposited on the inner wall of copper radiofrequency cavities is presented. Films are grown by sputtering with different discharge gases (Xe, Kr, Ar and Ar/Ne mixtures) on substrates prepared under different conditions. The measured quantities include the surface resistance at 1.5 GHz, the critical temperature and the penetration depth. The surface resistance is analyzed in terms of its dependence on temperature, RF field and the density of trapped fluxons. Once allowance for electron scattering is made by means of a single mean free path parameter, good agreement with BCS theory is observed. The residual resistance is observed to be essentially noncorrelated with the superconducting properties, although influenced by specific coating conditions. On occasions, very low residual resistances, in the nano-ohm range, have been maintained over a broad range of RF field, indicating the absence of fundamental limitations specific to the film techn...

  19. High-Q operation of SRF cavities: The potential impact of thermocurrents on the RF surface resistance

    CERN Document Server

    Vogt, J -M; Knobloch, J

    2015-01-01

    For many new accelerator applications, superconducting radio frequency (SRF) systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance) of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [1], a procedure of warming up a cavity after initial cooldown to about 20K and cooling it down again. In subsequent studies [2], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature depende...

  20. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  1. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Janardan Upadhyay, Larry Phillips, Anne-Marie Valente

    2011-09-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  2. Efficiency enhancement of organic light emitting diodes by NaOH surface treatment of the ITO anode

    Science.gov (United States)

    Cusumano, P.

    2009-09-01

    Organic light emitting diodes (OLEDs) based on tris-(8-idroxyquinoline)aluminum (Alq 3) with enhanced efficiency are reported here. This is obtained by improving the charge carrier balance, through a preliminary NaOH surface treatment of the indium tin oxide (ITO) anode, in order to decrease its work function and, consequently, reduce the hole injection. The obtained devices exhibit a 1.36% external quantum efficiency and a 1.2 lm/W power efficiency at a current density of 60 mA/cm 2. These values are more than double as compared with those of identical reference devices fabricated without the preliminary NaOH surface treatment.

  3. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    Science.gov (United States)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  4. R&D Status for In-Situ Plasma Surface Cleaning of SRF Cavities at Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    S.-H. Kim, M.T. Crofford, M. Doleans, J.D. Mammosser, J. Saunders

    2011-03-01

    The SNS SCL is reliably operating at 0.93 GeV output energy with an energy reserve of 10MeV with high availability. Most of the cavities exhibit field emission, which directly or indirectly (through heating of end groups) limits the gradients achievable in the high beta cavities in normal operation with the beam. One of the field emission sources would be surface contaminations during surface processing for which mild surface cleaning, if any, will help in reducing field emission. An R&D effort is in progress to develop in-situ surface processing for the cryomodules in the tunnel without disassembly. As the first attempt, in-situ plasma processing has been applied to the CM12 in the SNS SRF facility after the repair work with a promising result. This paper will report the R&D status of plasma processing in the SNS.

  5. Dependence of the residual surface resistance of SRF cavities on the cooling rate through $T_\\mathrm{c}$

    CERN Document Server

    Romanenko, A; Melnychuk, O; Sergatskov, D A

    2014-01-01

    We report a strong effect of the cooling rate through $T_\\mathrm{c}$ on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for all surface treatments including electropolishing with and without 120$^\\circ$C baking, and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency at different cooling rates. Slow cooling leads to almost complete flux trapping and higher residual resistance while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  6. Surface Emitting, High Efficiency Near-Vacuum Ultraviolet Light Source with Aluminum Nitride Nanowires Monolithically Grown on Silicon.

    Science.gov (United States)

    Zhao, S; Djavid, M; Mi, Z

    2015-10-14

    To date, it has remained challenging to realize electrically injected light sources in the vacuum ultraviolet wavelength range (∼200 nm or shorter), which are important for a broad range of applications, including sensing, surface treatment, and photochemical analysis. In this Letter, we have demonstrated such a light source with molecular beam epitaxially grown aluminum nitride (AlN) nanowires on low cost, large area Si substrate. Detailed angle dependent electroluminescence studies suggest that, albeit the light is TM polarized, the dominant light emission direction is from the nanowire top surface, that is, along the c axis, due to the strong light scattering effect. Such an efficient surface emitting device was not previously possible using conventional c-plane AlN planar structures. The AlN nanowire LEDs exhibit an extremely large electrical efficiency (>85%), which is nearly ten times higher than the previously reported AlN planar devices. Our detailed studies further suggest that the performance of AlN nanowire LEDs is predominantly limited by electron overflow. This study provides important insight on the fundamental emission characteristics of AlN nanowire LEDs and also offers a viable path to realize an efficient surface emitting near-vacuum ultraviolet light source through direct electrical injection. PMID:26375576

  7. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up.

    Science.gov (United States)

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars. PMID:26038665

  8. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up.

    Science.gov (United States)

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars.

  9. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up

    Science.gov (United States)

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars. PMID:26038665

  10. Materials and surface aspects in the development of SRF Niobium cavities

    CERN Document Server

    Antoine, C

    2012-01-01

    Foreword from author; When I joined the CEA Saclay SRF group in 1989, my initial background was physical chemistry and surface science, which I completed later on with solid state physics and metallurgy. Most accelerator physicists at that time had training in RF, plasma physics, nuclear or particle physics. We were very few with a background in material science. Working with people with a different background than yours reveals to be both challenging and funny: you can impress them with things you consider basic while they simply do not believe you for other things you consider so well admitted that you do not even remember where it comes from. At the end it obliges you to reconsider your basics and re-question many results, which opens many new and sometimes unexpected paths. Like usual in science, answering one question rises many new ones, and trying to improve cavities performance led to fascinating physics problems. Exploring some of these problems often requires techniques and expertise that are far be...

  11. Microwave band gap and cavity mode in spoof–insulator–spoof waveguide with multiscale structured surface

    International Nuclear Information System (INIS)

    We propose a multiscale spoof–insulator–spoof (SIS) waveguide by introducing periodic geometry modulation in the wavelength scale to a SIS waveguide made of a perfect electric conductor. The MSIS consists of multiple SIS subcells. The dispersion relationship of the fundamental guided mode of the spoof surface plasmon polaritons (SSPPs) is studied analytically within the small gap approximation. It is shown that the multiscale SIS possesses microwave band gap (MBG) due to the Bragg scattering. The ‘gap maps’ in the design parameter space are provided. We demonstrate that the geometry of the subcells can efficiently adjust the effective refraction index of the elementary SIS and therefore further control the width and the position of the MBG. The results are in good agreement with numerical calculations by the finite element method (FEM). For finite-sized MSIS of given geometry in the millimeter scale, FEM calculations show that the first-order symmetric SSPP mode has zero transmission in the MBG within frequency range from 4.29 to 5.1 GHz. A cavity mode is observed inside the gap at 4.58 GHz, which comes from a designer ‘point defect’ in the multiscale SIS waveguide. Furthermore, ultrathin MSIS waveguides are shown to have both symmetric and antisymmetric modes with their own MBGs, respectively. The deep-subwavelength confinement and the great degree of control of the propagation of SSPPs in such structures promise potential applications in miniaturized microwave device. (paper)

  12. Guyana dolphins (Sotalia guianensis) from Costa Rica emit whistles that vary with surface behaviors.

    Science.gov (United States)

    May-Collado, Laura J

    2013-10-01

    Guyana dolphins show remarkable intraspecific whistle variation. This variation has been largely explained in terms of distance among populations; however, other factors such as behavior may also be important. A broadband recording system recorded the whistles of Guyana dolphins under three behavioral states. A discriminant analysis found that during social and travel events, dolphins emit whistles with high delta and minimum frequency, respectively. Whistle duration was also important in discriminating behaviors. This study indicates that behavior is an important factor contributing to whistle variation of Guyana dolphins. Understanding how dolphin whistles vary with behavioral context will advance our understanding of dolphin communication and enable appropriate comparative studies.

  13. Photoelectron emission from metal surfaces induced by radiation emitted by a 14 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Laulainen, Janne, E-mail: janne.p.laulainen@student.jyu.fi; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli [Department of Physics, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla (Finland)

    2016-02-15

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma.

  14. Photoelectron emission from metal surfaces induced by radiation emitted by a 14 GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Laulainen, Janne; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli

    2016-02-01

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma.

  15. Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

    CERN Document Server

    Laulainen, Janne; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli

    2015-01-01

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10 % of the estimated total electron losses from the plasma.

  16. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  17. Improved performance of organic light-emitting devices with plasma treated ITO surface and plasma polymerized methyl methacrylate buffer layer

    Science.gov (United States)

    Lim, Jae-Sung; Shin, Paik-Kyun

    2007-02-01

    Transparent indium-tin-oxide (ITO) anode surface was modified using O 3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N, N'-Diphenyl- N, N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq 3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.

  18. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly.

    Science.gov (United States)

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-01-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m(2)) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting. PMID:27324568

  19. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

    Science.gov (United States)

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-06-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m2) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting.

  20. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

    Science.gov (United States)

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-01-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m2) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting. PMID:27324568

  1. Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS)

    Science.gov (United States)

    Goorjian, Peter M. (Inventor); Ning, Cun-Zheng (Inventor)

    2005-01-01

    Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.

  2. Oscillations of the fluid flow and the free surface in a cavity with a submerged bifurcated nozzle

    International Nuclear Information System (INIS)

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • Three flow regimes are detected depending on nozzle depth and inlet velocity. • The three flow regimes have been summarized in a flow regime map. • PIV measurements are performed to link free surface behavior to the bulk-flow. • We report a close correlation between jet-behavior and free surface dynamics. -- Abstract: The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur. For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity

  3. Effects of A Top SiO2 Surface Layer on Cavity Formation and Helium Desorption in Silicon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cz n-type Si (100) samples with and without a top SiO2 layer were implanted with 40 keV helium ions at the same dose of 5×1016 cm-2. Cross-sectional transmission electron microscopy (XTEM) and thermal desorption spectroscopy (THDS) were used to study the thermal evolution of cavities upon and helium thermal release, respectively. XTEM results show that the presence of the top SiO2 layer could suppress the thermal growth of cavities mainly formed in the region close to the SiO2/Si interface, which leads to the reduction in both the cavity band and cavity density. THDS results reveal that the top oxide layer could act as an effective barrier for the migration of helium atoms to the surface, and it thus gives rise to the formation of more overpresurrized bubbles and to the occurrence of a third release peak located at about 1100 K. The results were qualitively discussed by considering the role of the oxide surface layer in defect migration and evolution upon annealing.

  4. Interaction of surface radiation and free convection in open and closed cavities

    International Nuclear Information System (INIS)

    Research focussing on the interaction of all the modes of heat transfer in closed cavities, open cavities and L corners are scarce. Hence an earnest attempt to explore the interaction between the various modes of heat transfer in the above mentioned geometries to gain insight into the nature of interaction, and, develop useful correlations for computing the overall heat transfer are the main thrusts of the present study. 21 refs., 20 figs., 3 tabs

  5. WAFER TEST CAVITY -Linking Surface Microstructure to RF Performance: a ‘Short-­Sample Test Facility’ for characterizing superconducting materials for SRF cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Pogue, Nathaniel; Comeaux, Justin; McIntyre, Peter

    2014-05-30

    The Wafer Test cavity was designed to create a short sample test system to determine the properties of the superconducting materials and S-I-S hetero-structures. The project, funded by ARRA, was successful in accomplishing several goals to achieving a high gradient test system for SRF research and development. The project led to the design and construction of the two unique cavities that each severed unique purposes: the Wafer test Cavity and the Sapphire Test cavity. The Sapphire Cavity was constructed first to determine the properties of large single crystal sapphires in an SRF environment. The data obtained from the cavity greatly altered the design of the Wafer Cavity and provided the necessary information to ascertain the Wafer Test cavity’s performance.

  6. Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test

    Science.gov (United States)

    Abe, Tetsuo; Kageyama, Tatsuya; Sakai, Hiroshi; Takeuchi, Yasunao; Yoshino, Kazuo

    2016-10-01

    We have developed normal-conducting accelerating single-cell cavities with a complete higher-order-mode (HOM) heavily damped structure, into which we feed a 508.9-MHz continuous wave. During a high-gradient test of the second production version of the cavity, we performed a breakdown study based on direct in situ observation of the inner surfaces of the cavity. This paper presents our experimental findings obtained from this observation.

  7. Further enhancement of light extraction efficiency from light emitting diode using triangular surface grating and thin interface layer.

    Science.gov (United States)

    Ghosh, R; Haldar, A; Ghosh, K K; Chakraborty, R

    2015-02-01

    Analysis has been done of improvement of forward directional light extraction efficiency of light emitting diodes (LEDs) by surface patterning of different types of one-dimensional profiles on indium-zinc-oxide films developed recently by our group using sol-gel technique. Finite-difference time-domain simulations by MEEP software have been used for this purpose. From the analysis, it is found that the patterned film is suitable for near-infrared LED. The optimized structure, which gives maximum improvement at around 1.040 μm wavelength, is determined and fabricated using soft lithography. Further enhancement of the light output of the LED with the fabricated gratings is possible by introducing an interlayer within the top contact layer. The mathematical formulation of the coupling of light in structured/multilayered surfaces is also discussed. PMID:25967806

  8. RF surface resistance of copper-on-beryllium at cryogenic temperatures measured by a 22-GHZ demountable cavity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianfei; Krawczyk, F. L. (Frank L.); Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Shapiro, A. H. (Alan H.); Tajima, T. (Tsuyoshi); Wood R. L. (Richard L.)

    2003-01-01

    A 22-GHz demountable cavity on the cold head of a compact refrigerator system was used to measure the RF performance of several coppt:r-plated Beryllium samples. The cavity inner surfce was treated by chemical polishing and heat treatment., as well as an OFE copper coupon to provide a baseline for comparison. The measured surhce resistance was reasonable and repeatable during either cooling or warming. Materials tested included four grades of Beryllium, OFE copper, alumina-dispersion strengthened copper (Glidcop), and Cu-plated versions of all of the above. Two coupons, Cuplated on Beryllium 0-30 and 1-70, offered comparable surface resistance to pure OFE copper or Cu-plated Glidcop. The RF surface resistance of Cu-on-Beryllium samples at cryogenic temperatures is reported together with that of other reference materials.

  9. Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity

    Science.gov (United States)

    Abdurakhimov, L. V.; Yamashiro, R.; Badrutdinov, A. O.; Konstantinov, D.

    2016-07-01

    The strong coupling regime is observed in a system of two-dimensional electrons whose cyclotron motion is coupled to an electromagnetic mode in a Fabry-Perot cavity resonator. Rabi splitting of eigenfrequencies of the coupled motion is observed both in the cavity reflection spectrum and ac current of the electrons, the latter probed by measuring their bolometric photoresponse. Despite the fact that similar observations of Rabi splitting in many-particle systems have been described as a quantum-mechanical effect, we show that the observed splitting can be explained completely by a model based on classical electrodynamics.

  10. Evanescent-wave cavity ring-down spectroscopy for enhanced detection of surface binding under flow injection analysis conditions.

    Science.gov (United States)

    van der Sneppen, L; Buijs, J B; Gooijer, C; Ubachs, W; Ariese, F

    2008-06-01

    The feasibility of liquid-phase evanescent-wave cavity ring-down spectroscopy (EW-CRDS) for surface-binding studies under flow-injection analysis (FIA) conditions is demonstrated. The EW-CRDS setup consists of an anti-reflection coated Dove prism inside a linear cavity (with standard or super-polishing of the total internal reflective (TIR) surface). A teflon spacer with an elliptical hole clamped on this surface acts as a 20 muL sized flow cell. The baseline noise of this system is of the order of 10(-4) absorbance units; the baseline remains stable over a prolonged time and the prism surface does not become contaminated during repeated injections of the reversibly adsorbing test dyes Crystal Violet (CV) and Direct Red 10 (DR10). At typical FIA or liquid chromatography (LC) flow rates, the system has sufficient specificity to discriminate between species with different surface affinities. For CV a much stronger decrease in ring-down time is observed than calculated based on its bulk concentration and the effective depth probed by the evanescent wave, indicating binding of this positively charged dye to the negatively charged prism surface. The amount of adsorption can be influenced by adjusting the flow rate or the eluent composition. At a flow rate of 0.5 mL/min, an enrichment factor of 60 was calculated for CV; for the poorly adsorbing dye DR10 it is 5. Super-polishing of the already polished TIR surface works counter-productively. The adsorbing dye Crystal Violet has a detection limit of 3 muM for the standard polished surface; less binding occurs on the super-polished surface and the detection limit is 5 muM. Possible applications of EW-CRDS for studying surface binding or the development of bio-assays are discussed. PMID:18559152

  11. Adsorption of cytochrome c to silica surfaces studied using evanescent wave broadband cavity-enhanced absorption spectroscopy

    Science.gov (United States)

    Moore, L. J.; van der Sneppen, L.; Peverall, R.; Hancock, G.; Ritchie, G. A. D.

    2010-08-01

    The adsorption of cytochrome c (cyt c) to a silica surface has been studied by use of evanescent wave broadband cavityenhanced absorption spectroscopy (EW-BBCEAS). Visible radiation from a supercontinuum source is coupled into an optical cavity consisting of a pair of broadband high reflectivity mirrors, and a total internal reflection (TIR) event at the prism/water interface. Aqueous solutions of cyt c are placed onto the TIR footprint on the prism surface and the subsequent protein adsorption is probed by the resulting evanescent wave. The time integrated cavity output is directed into a spectrometer, where it is dispersed and analysed. The high spectral brilliance of the SC affords a baseline noise comparable to evanescent wave cavity ring-down spectroscopy (EW-CRDS), and the broadband nature of the source allows observation of a wide spectral range (ca 250 nm in the visible). The system is calibrated by measuring the absorption spectra of dyes of a known absorbance. Absorption spectra of cyt c are obtained for both S and P polarized radiation, allowing information about the orientation of the adsorbed protein to be extracted.

  12. Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ceballos, M.A. [Department of Applied Physics, University of Huelva, Huelva (Spain); Hong, G.H. [Korea Ocean Research and Development Institute, Ansan 426-744 (Korea, Republic of); Lozano, R.L. [Department of Applied Physics, University of Huelva, Huelva (Spain); Kim, Y.I. [Korea Ocean Research and Development Institute, Uljin 767-813 (Korea, Republic of); Lee, H.M.; Kim, S.H. [Korea Ocean Research and Development Institute, Ansan 426-744 (Korea, Republic of); Yeh, S.-W. [Department of Environmental Marine Science, Hanyang University, Ansan, 426-791 (Korea, Republic of); Bolivar, J.P., E-mail: bolivar@uhu.es [Department of Applied Physics, University of Huelva, Huelva (Spain); Baskaran, M. [Department of Geology, Wayne State University, Detroit, Michigan (United States)

    2012-11-01

    Massive amounts of anthropogenic radionuclides were released from the nuclear reactors located in Fukushima (northeastern Japan) between 12 and 16 March 2011 following the earthquake and tsunami. Ground level air radioactivity was monitored around the globe immediately after the Fukushima accident. This global effort provided a unique opportunity to trace the surface air mass movement at different sites in the Northern Hemisphere. Based on surface air radioactivity measurements around the globe and the air mass backward trajectory analysis of the Fukushima radioactive plume at various places in the Northern Hemisphere by employing the Hybrid Single-Particle Lagrangian Integrated Trajectory model, we show for the first time, that the uninterrupted complete revolution of the mid-latitude Surface Westerlies took place in less than 21 days, with an average zonal velocity of > 60 km/h. The position and circulation time scale of Surface Westerlies are of wide interest to a large number of global researchers including meteorologists, atmospheric researchers and global climate modellers. -- Highlights: Black-Right-Pointing-Pointer Evidence of the South Korea contamination with released radiocesium from Fukushima. Black-Right-Pointing-Pointer Field samples and air mass analysis were utilized to elucidate the transport of those radionuclides. Black-Right-Pointing-Pointer Characterization of the air mass movements at different sites at the Earth's surface. Black-Right-Pointing-Pointer Verification of the uninterrupted complete revolution of the artificial radionuclides released in Fukushima. Black-Right-Pointing-Pointer Quantification of the velocity of the artificial radionuclides released in Fukushima.

  13. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  14. Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters.

    Science.gov (United States)

    Khadir, Samira; Chakaroun, Mahmoud; Belkhir, Abderrahmane; Fischer, Alexis; Lamrous, Omar; Boudrioua, Azzedine

    2015-09-01

    In this work, we aim to increase the emission of the standard guest-host organic light emitting diode (OLED) thanks to localized surface plasmon and to investigate this effect in a microcavity. As a first step, we consider thermal deposition of silver clusters within an OLED guest-host stack. We investigate both the influence of the size of silver nanoparticles (Ag-NPs) and their position within the OLED heterostructure. Secondly, we study the optimized OLED within a microcavity formed by Al-cathode top mirror and a Distributed Bragg Reflector (DBR) bottom mirror. The experimental results show a substantial enhancement of the electroluminescence (EL) intensity as well as a reduction of the spectral width at a half maximum.

  15. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    CERN Document Server

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for ideal flat surface and a suppression factor that contains effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors are derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by the electropolishing is evaluated by using results of surface topographic study. The estimat...

  16. Charges on the surface of a lentil cavity in a two-dimensional homogeneous conductor

    Science.gov (United States)

    Batkin, V. I.

    2010-09-01

    The linear charge density on arc segments of a lentil cavity in a two-dimensional homogeneous conductor in a uniform external electric field is determined analytically. A singularity of the current density on the edges of the segments makes the resultant relations a helpful test for numerical computational algorithms.

  17. Surface-emitting quantum cascade laser with 2nd-order metal-semiconductor gratings for single-lobe emission

    Science.gov (United States)

    Boyle, C.; Sigler, C.; Kirch, J. D.; Lindberg, D.; Earles, T.; Botez, D.; Mawst, L. J.

    2016-03-01

    Grating-coupled, surface-emitting (GCSE) quantum-cascade lasers (QCLs) are demonstrated with high-power, single-lobe surface emission. A 2nd-order Au-semiconductor distributed-feedback (DFB)/ distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric longitudinal mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. In turn, the antisymmetric longitudinal modes are strongly absorbed by the metal in the grating, causing the symmetric longitudinal mode to be favored to lase, which produces a single lobe beam over a grating duty-cycle range of 36-41 %. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of residual reflections from the device's cleaved ends. Peak pulsed output powers of ~ 0.4 W were measured with single-lobe, single-mode operation near 4.75 μm.

  18. Buffered Electropolishing – A New Way for Achieving Extremely Smooth Surface Finish on Nb SRF Cavities to be Used in Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian, Charles Reece, Michael Kelley

    2009-05-01

    Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nano-smoothness. Electropolishing (EP) is the technique of choice to be developed for high-field superconducting radio frequency (SRF) cavities. Electrochemical impedance spectroscopy (EIS) and related techniques point to the electropolishing mechanism of Nb in a sulphuric and hydrofluoric acid electrolyte controlled by a compact surface salt film under F- diffusion-limited mass transport control. These and other findings are guiding a systematic characterization to form the basis for cavities process optimization.

  19. Morphological evaluation of cavity preparation surface after duraphat and Er:YAG laser treatment by scanning electronic microscopy

    International Nuclear Information System (INIS)

    The treatment of dental surface using different lasers to prevent dental caries has been studied for several on last years. The purpose of this in vitro study was to evaluate the morphological changes on dentin surface from pulpal wall of cavity preparations performed by high-speed drill, treated with 2,26% fluoride varnish (Duraphat) and Er:YAG laser, and then submitted after receiving or not to EDTA 15% treatment. Twenty Class V cavities were performed on ten humans molars. The specimens were randomly divided in to 4 groups: group 1- treatment with Duraphat followed by Er:YAG laser irradiation (120 mJ/ 4 Hz); group 2: Er:YAG laser irradiation, same parameters, followed by Duraphat treatment; group 3- same group 1 followed by immersion in EDTA (5 min); group 4 - same as group 2 followed by immersion in EDTA (5 min). The specimens were processed for SEM analysis. The micrographs showed that Duraphat treatment promoted morphological changes on dentin, closing dentinal tubules; the specimens treated by Duraphat and Er:YAG laser and immersed in EDTA (group 3) showed homogeneous surface, closed and protected dentinal tubules, maintenance of the fluoride varnish on the dentin surface and around the dentinal tubules, showing feasible and efficiency of these therapies the feasibility.(author)

  20. Gamma emitting fission products in surface sediments of the Ravenglass estuary

    Energy Technology Data Exchange (ETDEWEB)

    Aston, S.R.; Stanners, D.A. (Lancaster Univ. (UK))

    1982-04-01

    The occurrence of some fission products from the Sellafield (formerly Windscale) nuclear fuel reprocessing facility has been determined for surface sediments from forty locations in the Ravenglass estuary, North-West England. The influence of the silt-sized fraction in the sediments on the geographic distribution of /sup 137/Cs is clearly important, and to a lesser extent also influences the distributions of /sup 106/Ru, /sup 134/Cs + /sup 95/Zr/Nb and /sup 144/Ce. The data are compared with recently published results reported by the Ministry of Agriculture, Fisheries and Food for a monitoring site in this estuary.

  1. Impact of forming, welding, and electropolishing on pitting and the surface finish of SRF cavity niobium

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, L.D.; Burk, D.; Cooper, C.; Dhanaraj, N.; Foley, M.; Ford, D.; Gould, K.; Hicks, D.; Novitski, R.; Romanenko, A.; Schuessler, R.; /Fermilab

    2010-07-01

    A broad range of coupon electropolishing experiments are described to ascertain the mechanism(s) by which large defects are formed near superconducting radiofrequency (SRF) cavity welds. Cold-worked vs. annealed metal, the presence of a weld, and several variations of electropolishing (EP) parameters were considered. Pitting is strongly promoted by cold work and agitation of the EP solution. Welding also promotes pitting, but less so compared with the other factors above. Temperature increase during EP did not strongly affect glossiness or pitting, but the reduced viscosity made the electrolyte more susceptible to agitation. The experiments suggest that several factors that are rather benign alone are combined by the cavity forming, welding, and processing sequence to promote the formation of defects such as pits. Process changes to mitigate these risks are discussed.

  2. Distribution of gamma-emitting radionuclides in surface subtidal sediments near the Sellafield plant

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.G.; Roberts, P.D.; Miller, J.M.

    1988-08-01

    Detailed distributions of total gamma activity, /sup 137/Cs, /sup 106/Ru and /sup 95/Zr + /sup 95/Nb in surface seabed sediments near the Sellafield plant are presented. The results are derived from a towed seabed gamma-ray spectrometer survey in September, 1982. All the distributions are similar, with contours of equal activity parallel to the coast defining a 'ridge' of higher activity which is displaced northwards relative to the outfall. Nuclide concentrations decrease with increasing distance from Sellafield; rates of decrease being in the order Zr + Nb > Ru > Cs. This can be related to the levels of the nuclides discharged, their sorption characteristics and their half lives. The pattern of seabed activity seems to have been fairly stable over the period 1978-85, but there is evidence of a small northward shift. Concentrations of /sup 137/Cs and /sup 106/Ru in 1985 were considerably lower than in 1978 or 1982. This is explicable in terms of the fall in discharge levels allied, in the case of Ru, to its short half life and, for Cs, the desorption observed in laboratory experiments. Nuclide ratios in sediment samples yield apparent transit times for the transport of nuclides in the survey area of 1.7-3.7 years. These times are generally greater than those obtained from sediments in the more distant Solway Firth and Ravenglass Estuary. It is suggested that they reflect fairly intense bioturbation causing mixing of relatively recent effluent with that from earlier discharges. This is supported by structures observed in X-radiographs of box cores, an abundant burrowing benthos and by interpretations of nuclide profiles and radiocarbon dating of sediment cores by other workers. A lag effect, of up to two years across the survey area, appears to be superimposed on that due to mixing.

  3. Output Enhancement of a THz Wave Based on a Surface-Emitted THz-Wave Parametric Oscillator

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-Yang; YAO Jian-Quan; XU De-Gang; BING Pi-Bin; ZHONG Kai

    2011-01-01

    High-power nanosecond pulsed THz-wave radiation is achieved via a surface-emitted THz-wave parametric oscillator.One MgO:LiNbO3 crystal with large volume is used as the gain medium.THz-wave radiation from 1.084 THz to 2.654 THz is obtained.The maximum THz-wave average power is 5.8 μ W at 1.93 THz when the pump energy is 84 m J,corresponding to a energy conversion efficiency of 6.9 × 10-6.The polarization characteristics of THz wave are analyzed.During the experiments the radiations of the first-order and the second-order Stokes wave are observed.The THz wave has great scientific research value and wide applications in imaging,material detection,environmental monitoring,communication,astronomy,life sciences,national defense security and so on.[1-4] THz-wave parametric oscillators (TPOs)based on stimulated polariton scattering have many advantages,such as high efficient,coherent,tuning,narrow linewidth,compactness and room-temperature operation.[5-7] In recent years,TPOs have been developed rapidly.Stothard et al.[8] reported on a line-narrowed and widely tunable intracavity TPO,in which the linewidth of the THz wave is about 1 GHz,the tunning range is from 1 to 3 THz,and the peak power of the THz wave is about 3W.Wu et al.[9]reported on a TPO with recycled pump beam,and their experiment results show that the THz-wave out-put power increases almost four times in magnitude.%High-power nanosecond pulsed THz-wave radiation is achieved via a surface-emitted THz-wave parametric oscillator. One MgO:LiNbO3 crystal with large volume is used as the gain medium. THz-wave radiation from 1.084THz to 2.654THz is obtained. The maximum THz-wave average power is 5.8μW at 1.93THz when the pump energy is 84mJ, corresponding to a energy conversion efficiency of 6.9×10-6. The polarization characteristics of THz wave are analyzed. During the experiments the radiations of the first-order and the second-order Stokes wave are observed.

  4. The distribution of gamma-emitting radionuclides in surface subtidal sediments near the Sellafield plant

    Science.gov (United States)

    Jones, D. G.; Roberts, P. D.; Miller, J. M.

    1988-08-01

    Detailed distributions of total gamma activity, 137Cs, 106Ru and 95Zr + 95Nb in surface seabed sediments near the Sellafield plant are presented. The results are derived from a towed seabed gamma-ray spectrometer survey in September, 1982. All the distributions are similar, with contours of equal activity parallel to the coast defining a 'ridge' of higher activity which is displaced northwards relative to the outfall. This pattern appears to be largely a response to the transport of particle-associated radioeffluent modified in places by the type of seabed sediment present. At greater distance from Sellafield, the uptake of nuclides from solution seems to be more important. Nuclide concentrations decrease with increasing distance from Sellafield; rates of decrease being in the order Zr + Nb > Ru > Cs. This can be related to the levels of the nuclides discharged, their sorption characteristics and their half lives. The pattern of seabed activity seems to have been fairly stable over the period 1978 - 1985, but there is evidence of a small northward shift. Concentrations of 137Cs and 106Ru in 1985 were considerably lower than in 1978 or 1982. This is explicable in terms of the fall in discharge levels allied, in the case of Ru, to its short half life and, for Cs, the desorption observed in laboratory experiments. Nuclide ratios in sediment samples yield apparent transit times for the transport of nuclides in the survey area of 1·7 - 3·7 years. These times are generally greater than those obtained from sediments in the more distant Solway Firth and Ravenglass Estuary. It is suggested that they reflect fairly intense bioturbation causing mixing of relatively recent effluent with that from earlier discharges. This is supported by structures observed in X-radiographs of box cores, an abundant burrowing benthos and by interpretations of nuclide profiles and radiocarbon dating of sediment cores by other workers. A lag effect, of up to two years across the survey area

  5. A sensitive and quantitative biosensing method for the determination of {gamma}-ray emitting radionuclides in surface water

    Energy Technology Data Exchange (ETDEWEB)

    Wolterbeek, H.Th.; Meer, A.J.G.M. van der [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-11-01

    A quantitative and sensitive biosensing method has been developed for the determination of {gamma}-ray emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the element in the biosensor and the determination of the element level in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Measurements were performed with floating water plants (Azolla filiculoides Lamk., Spirodela polyrhiza/Lemna sp.) and the fully submerged water plant Ceratophyllum demersum L., which were sampled from ditch water. Concentrations of elements and radionuclides were determined in both water and biosensor plants, using Neutron Activation Analysis (NAA), ICP-MS, and {gamma}-ray spectrometry, respectively. For the latter, both 1 litre samples (Marinelli-geometry) and 1 cm{sup 3} samples (well-type detectors) were applied in measurements. (author).

  6. TCO/metal hybrid structures for surface plasmon enhanced light emitting in the near infrared range (Presentation Recording)

    Science.gov (United States)

    Fang, Xu; Zhang, Shiyu; Xia, Liang; Ye, Hui

    2015-09-01

    Transparent conductive oxides (TCOs, such as Sn:In2O3, Al:ZnO, Ga: ZnO et al) have re-drawn people's attention as alternative candidates of noble metals (particularly Ag or Au) in the field of plasmonic for the reasons of property tunable and low losses et al. However even for Sn:In2O3 (ITO, reported highest conductivity), the metallic property lies in the near infrared (NIR) range exhibiting the real part permittivity ɛ' was around -3 at communication wavelength of 1.55μm. Under this circumstance, surface plasma polaritons (SPPs) was hard to be exited on the interface between ITO and surrounded dielectric materials with large permittivity. Hence, in order to explore the potential use of TCOs in the applications of silicon photonics (for permittivity of silicon and germanium are 11.6 and 16 at 300K, respectively), we design a hybrid structure of ITO/metal or ITO/metal/ITO as surface plasmonic materials in NIR. The electrical and optical property of hybrid structure was manipulated accordingly by changing the portion of the introduced metal while maintaining a lower loss than bare metals. The highest carrier concentration of the hybrid structure reached 3×10^22cm^-3, definitely the same magnitude of noble metals. Magnetron sputtering and atomic layer deposition (ALD) can be used to deposit the hybrid ITO/metal structure, in which metal represents gold (Au), and iridium (Ir). The normalized radiative decay rate of light emitted by germanium quantum dots reaches a maximum enhancement of ~8-fold with the assistance of ITO/metal hybrid structure according to the finite difference time domain (FDTD) simulation.

  7. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn; Zhang, Rong, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn; Xie, Zili; Zhuang, Zhe; Dai, JiangPing; Tao, Tao; Zhi, Ting; Zhang, Guogang; Chen, Peng; Ren, Fangfang; Zhao, Hong; Zheng, Youdou [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People' s Republic of China and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-04-21

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620 nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%–53% as compared to that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.

  8. Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces

    Science.gov (United States)

    Yang, Ze-Jian; Hu, De-Jiao; Gao, Fu-Hua; Hou, Yi-Dong

    2016-08-01

    The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc. Project supported by the National Natural Science Foundation of China (Grant No. 61377054).

  9. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  10. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  11. Moving Detectors in Cavities

    CERN Document Server

    Obadia, N

    2007-01-01

    We consider two-level detectors, coupled to a quantum scalar field, moving inside cavities. We highlight some pathological resonant effects due to abrupt boundaries, and decide to describe the cavity by switching smoothly the interaction by a time-dependent gate-like function. Considering uniformly accelerated trajectories, we show that some specific choices of non-adiabatic switching have led to hazardous interpretations about the enhancement of the Unruh effect in cavities. More specifically, we show that the emission/absorption ratio takes arbitrary high values according to the emitted quanta properties and to the transients undergone at the entrance and the exit of the cavity, {\\it independently of the acceleration}. An explicit example is provided where we show that inertial and uniformly accelerated world-lines can even lead to the same ``pseudo-temperature''.

  12. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  13. Evaporation under cavity flow: laser speckle correlation of the wind velocity above the liquid surface

    Science.gov (United States)

    Forestier, Serge; Heymes, Frédéric; Slangen, Pierre; Munier, Laurent; Lapébie, Emmanuel; Dusserre, Gilles

    2012-10-01

    One of the major accident scenarios in industrial safety deals with liquid pool evaporation consequent to a tank rupture. Numerous previous studies have been performed and several correlations are available in the literature. It appears that all of the correlations are strongly dependent on wind velocity but have nevertheless been all created under a boundary layer flow above the pool. However, industrial safety bunds do not allow such a profile because of obstacles and so cavity flows may occur. For such a configuration, is it then possible to describe the evaporation phenomena thanks to correlations in the literature? Experiments involving evaporation under this configuration have thus been performed in this work. Particular care is devoted to the wind profile measurement as the wind velocity is one of the main parameters. Digital speckle correlation insures high accuracy and good spatial resolution. We used a double pulse YAG laser (200mJ, 15Hz at 532 nm) with a high resolution double frame camera (2048 pixel x 2048 pixels, 15Hz). The experiments involve 200 liters (200L) of liquid (acetone and water) in a 58 cm diameter pool. The pool is located in the wind tunnel facility. The study presents 2 different wind velocities (2m.s-1 and 4m.s-1) and four different dike step heights (0 cm, 3 cm, 6 cm and 10 cm). Displacement vector maps are obtained after adaptative correlation and related processing. The final results are also crossed with IR measurements and open new fields of investigation that will be discussed.

  14. Effect of surface roughness of cavity preparations on the microleakage of Class V resin composite restorations.

    Science.gov (United States)

    Shook, Larry W; Turner, Edgar W; Ross, Judith; Scarbecz, Mark

    2003-01-01

    This study determined whether surface roughness of the internal walls of a Class V resin composite preparation, using a carbide bur, a medium-grit diamond bur and a fine-grit diamond bur, affected the degree of microleakage of the restoration. The facial and lingual surfaces of 45 non-carious extracted human molars provided 90 samples for evaluation. The specimen surfaces were assigned randomly in equal numbers to one of three groups (n = 30). Conservative Class V composite preparations were made using one of three different burs: a 330-carbide bur, a 330 fine-grit diamond bur or a 330 medium-grit diamond bur (Brasseler USA). After acid etching, PQ1 (Ultradent Products Inc) primer/bonding resin and Vitalescence (Ultradent Products Inc) were applied and cured following the manufacturers' instructions. After minor finishing, the apices of all root surfaces were sealed with Vitrebond (3M), and the unprepared external surfaces were sealed with nail polish to within 1 mm of the restoration margins. The specimens were stored in distilled water at room temperature for 24 hours, then subjected to 1,200 thermocycles at 5 degrees C and 55 degrees C with a 30-second dwell time. After cycling, the teeth were immersed in a 5% solution of methylene blue dye for 12 hours. The molars were invested in clear acrylic casting resin, labeled, then sectioned once vertically approximately midway through the facial and lingual surfaces using a diamond coated saw blade. Microleakage was evaluated using a 10x microscope for the enamel and cementum surfaces and blindly scored by two independent examiners. In all cases, regardless of the examiner, at both the enamel and the dentin margins, the analysis revealed no statistically significant differences in microleakage across bur types. Further results show that dentin margins leaked significantly more than enamel margins for all bur types.

  15. Surface-emitting circular DFB, disk-, and ring-Bragg resonator lasers with chirped gratings. II: nonuniform pumping and far-field patterns

    OpenAIRE

    Sun, Xiankai; Yariv, Amnon

    2009-01-01

    This is a continuation of our previous work [Opt. Express 16, 9155 (2008)]. In this paper we investigate the effect of nonuniform pumping on the modal properties of surface-emitting chirped circular grating lasers. By numerically solving the coupled-mode equations and matching the boundaries we compare and discuss the threshold pump levels and frequency detuning factors for three pumping profiles: uniform, Gaussian, and annular. Depending on the overlap of the pumping and modal profiles, Gaus...

  16. Enhanced Light Output of Dipole Source in GaN-Based Nanorod Light-Emitting Diodes by Silver Localized Surface Plasmon

    OpenAIRE

    Huamao Huang; Haiying Hu; Hong Wang; Kuiwei Geng

    2014-01-01

    The light output of dipole source in three types of light-emitting diodes (LEDs), including the conventional planar LED, the nanorod LED, and the localized surface plasmon (LSP) assisted LED by inserting silver nanoparticles in the gaps between nanorods, was studied by use of two-dimensional finite difference time domain method. The height of nanorod and the size of silver nanoparticles were variables for discussion. Simulation results show that a large height of nanorod induces strong wavele...

  17. Equilibrator-based measurements of dissolved methane in the surface ocean using an integrated cavity output laser absorption spectrometer

    Institute of Scientific and Technical Information of China (English)

    LI Yuhong; ZHAN Liyang; ZHANG Jiexia; CHEN Liqi

    2015-01-01

    A new off-axis integrated cavity output spectroscopy (ICOS) is coupled to Weiss equilibrator for continuous high-resolution dissolved methane measurement in the surface ocean. The time constant for the equilibrator in freshwater at room temperature is determined via dis-equilibration and re-equilibration experiments. The constant for methane is about 40 min. The system is calibrated using a standard gas of 3.980×10–6, and the precision of the ICOS for methane is 0.07%. This system is equipped onboard to measure the spatial distribution in methane concentrations of South Yellow Sea (SYS) along the cruise track from Shanghai to Qingdao. Result shows that the methane concentration varies from 2.79 to 36.36 nmol/L, reveals a significant pattern of methane source in SYS, and a distinct decreasing trend from south to north. The peak value occurs at the coast area outside mouth of the Changjiang River, likely to be affected by the Changjiang diluted water mass dissolving a large amount of rich in methane. Moreover, all the surface waters are oversaturated, air-to-sea fluxes range from 98.59 to 5 485.35 μmol/(m2·d) (average value (1 169.74±1 398.46) μmol/(m2·d)), indicating a source region for methane to the atmosphere.

  18. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  19. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  20. 200 nm-1000 nm spectra of light emitted in the impact of 40Ar10+ upon Al and Si solid surfaces

    Institute of Scientific and Technical Information of China (English)

    张小安; 赵永涛; 李福利; 杨治虎; 肖国青; 詹文龙

    2003-01-01

    This paper reports the measured results of the 200 nm-1000 nm characteristic spectral lines of Al, Si and Ar atoms when highly charged ions 40Ar10+ are incident upon Al and P-type Si surfaces. The ion 40Ar10+ is provided by the ECR ion source of the National Laboratory of the Heavy Ion Accelerator in Lanzhou. The results show that when the low-speed ions in the highly charged state interact with the solid surfaces, the characteristic spectral lines of the target atoms and ions spurted from the surfaces can be effectively excited. Moreover, because of the competition of the non-radiation de-excitation of the hollow atom by emitting secondary electrons with the de-excitation process by radiating photons, the spectral intensity of the characteristic spectral lines of Ar atoms on the P-type Si surface is, as a whole, greater than that of Ar atoms on the Al surface.

  1. Surface quality of extruding metal special-shape products and frictional behavior in optimized die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2004-01-01

    With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.

  2. Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    International Nuclear Information System (INIS)

    Highlights: • Hydrophilic as well as hydrophobic TiO2 NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO2) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO2 particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species

  3. Interactions between nano-TiO{sub 2} and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Teubl, Birgit J.; Schimpel, Christa [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Leitinger, Gerd [Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010 (Austria); Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Bauer, Bettina [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Fröhlich, Eleonore [Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Roblegg, Eva, E-mail: eva.roblegg@uni-graz.at [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria)

    2015-04-09

    Highlights: • Hydrophilic as well as hydrophobic TiO{sub 2} NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO{sub 2} particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species.

  4. Vertical cavity lasing from melt-grown crystals of cyano-substituted thiophene/phenylene co-oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yosuke; Yanagi, Hisao, E-mail: yanagi@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Goto, Kaname; Yamashita, Kenichi; Yamao, Takeshi; Hotta, Shu [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-10-19

    Vertical-cavity organic lasers are fabricated with melt-grown crystals of a cyano-substituted thiophene-phenylene co-oligomer. Due to lying molecular orientation, surface-emitting lasing is achieved even in the half-cavity crystal grown on a distributed Bragg reflector (DBR) under optical pumping at room temperature. Anticrossing splits in angle-resolved photoluminescence spectra suggest the formation of exciton-polaritons between the cavity photons and the confined Frenkel excitons. By constructing the full-cavity structure sandwiched between the top and bottom DBRs, the lasing threshold is reduced to one order, which is as low as that of the half cavity. Around the threshold, the time profile of the full-cavity emission is collapsed to a pulsed shape accompanied by a finite turn-on delay. We discuss these observed characteristics in terms of a polariton contribution to the conventional photon lasing.

  5. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  6. Passivated niobium cavities

    Science.gov (United States)

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  7. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  8. Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes

    Energy Technology Data Exchange (ETDEWEB)

    Sigler, C.; Kirch, J. D.; Mawst, L. J.; Yu, Z.; Botez, D., E-mail: botez@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706 (United States); Earles, T. [Intraband, LLC, 200 N. Prospect Ave, Madison, Wisconsin 53726 (United States)

    2014-03-31

    Resonant coupling of the transverse-magnetic polarized (guided) optical mode of a quantum-cascade laser (QCL) to the antisymmetric surface-plasmon modes of 2nd-order distributed-feedback (DFB) metal/semiconductor gratings results in strong antisymmetric-mode absorption. In turn, lasing in the symmetric mode, that is, surface emission in a single-lobe far-field beam pattern, is strongly favored over controllable ranges in grating duty cycle and tooth height. By using core-region characteristics of a published 4.6 μm-emitting QCL, grating-coupled surface-emitting (SE) QCLs are analyzed and optimized for highly efficient single-lobe operation. For infinite-length devices, it is found that when the antisymmetric mode is resonantly absorbed, the symmetric mode has negligible absorption loss (∼0.1 cm{sup −1}) while still being efficiently outcoupled, through the substrate, by the DFB grating. For finite-length devices, 2nd-order distributed Bragg reflector (DBR) gratings are used on both sides of the DFB grating to prevent uncontrolled reflections from cleaved facets. Equations for the threshold-current density and the differential quantum efficiency of SE DFB/DBR QCLs are derived. For 7 mm-long, 8.0 μm-wide, 4.6 μm-emitting devices, with an Ag/InP grating of ∼39% duty cycle, and ∼0.22 μm tooth height, threshold currents as low as 0.45 A are projected. Based on experimentally obtained internal efficiency values from high-performance QCLs, slope efficiencies as high as 3.4 W/A are projected; thus, offering a solution for watt-range, single-lobe CW operation from SE, mid-infrared QCLs.

  9. Sediment studies at Bikini Atoll part 3. Inventories of some long-lived gamma-emitting radionuclides associated with lagoon surface sediments

    Energy Technology Data Exchange (ETDEWEB)

    Noshkin, V.E.

    1997-12-01

    Surface sediment samples were collected during 1979 from 87 locations in the lagoon at Bikini Atoll. The collections were made to better define the concentrations and distribution of long-lived radionuclides associated with the bottom material and to show what modifications occurred to the composition of the surface sediment from the nuclear testing program conducted by the United States at the Atoll between 1946 and 1958. This is the last of three reports on Bikini sediment studies. In this report, we discuss the concentrations and inventories of the residual long-lived gamma-emitting radionuclides in sediments from the lagoon. The gamma-emitting radionuclides detected most frequently in sediments collected in 1979, in addition to Americium-241 ({sup 241}Am) (discussed in the second report of this series), included Cesium-137 ({sup 137}Cs), Bismuth-207 ({sup 207}Bi), Europium-155 ({sup 155}Eu), and Cobalt-60 ({sup 60}Co). Other man-made, gamma-emitting radionuclides such as Europium-152,154 ({sup 152,154}Eu), Antimony-125 ({sup 125}Sb), and Rhodium-101,102m ({sup 101,102m}Rh) were occasionally measured above detection limits in sediments near test site locations. The mean inventories for {sup 137}Cs, {sup 207}Ei, {sup 155}Eu, and {sup 60}Co in the surface 4 cm of the lagoon sediment to be 1.7, 0.56, 7.76, and 0.74 TBq, respectively. By June 1997, radioactive decay would reduce these values to 1.1, 0.38, 0.62, and 0.07 TBq, respectively. Some additional loss results from a combination of different processes that continuously mobilize and return some amount of the radionuclides to the water column. The water and dissolved constituents are removed from the lagoon through channels and exchange with the surface waters of the north equatorial Pacific Ocean. Highest levels of these radionuclides are found in surface deposits lagoonward of the Bravo Crater. Lowest concentrations and inventories are associated with sediment lagoonward of the eastern reef. The quantities in

  10. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

    OpenAIRE

    Suelen Balero de Paula; Thais Fernanda Bartelli; Vanessa Di Raimo; Jussevania Pereira Santos; Alexandre Tadachi Morey; Marina Andrea Bosini; Celso Vataru Nakamura; Lucy Megumi Yamauchi; Sueli Fumie Yamada-Ogatta

    2014-01-01

    Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All is...

  11. New surface-modified zinc oxide nanoparticles with aminotriethylene oxide chains linked by 1,2,3-triazole ring: Preparation, and visible light-emitting and noncytotoxic properties

    Science.gov (United States)

    Sato, Moriyuki; Shimatani, Kanako; Iwasaki, Yuko; Morito, Shigekazu; Tanaka, Hidekazu; Fujita, Yasuhisa; Nakamura, Morihiko

    2011-11-01

    Novel surface-modified, visible light-emitting and noncytotoxic ZnO nanoparticles (NPs) (ZPAZ) having aminotriethylene oxide chains linked by 1,4- and/or 1,5-disubstituted 1,2,3-triazole rings were prepared from ZnO NPs (ZPA) with ethynyl groups on the surfaces and an azide derivative of triethylene oxide chain linking terminal amino group (ATA) via 1,3-dipolar azide/alkyne click reaction by heating without Cu(I) catalyst. FTIR spectroscopy, elemental analysis, XRD analysis and TEM observation suggested that the resulting ZPA and ZPAZ NPs have the particle sizes below 10 nm in diameters, triethylene oxide chains linking the terminal amino groups and wurtzite crystal structure. UV-vis absorption spectrum of the ZPAZ NPs in methanol showed maximum absorption band at 346.5 nm, supporting the TEM observation. PL spectra depicted that the ZPA and ZPAZ NPs display broad light green and lightly greenish yellow visible light emitting bands in methanol. Zeta potentials measured in distilled water suggested that the ZPAZ NPs have a low tendency to aggregate and possess better stability than the ZPA NPs. Cytotoxicity assay revealed that the ZPAZ NPs, having water-dispersion properties, are noncytotoxic at low concentrations and almost all RAW264.7 cells are alive after 24 h of treatment.

  12. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination

    KAUST Repository

    Zhao, Chao

    2015-07-24

    We present a detailed study on the effects of dangling bond passivation and the comparison of different sulfides passivation process on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency, and higher peak efficiency. Our results highlighted the research opportunity in employing this technique for further design and realization of high performance NW-LEDs and NW-lasers.

  13. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  14. Nanofriction in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  15. Nanofriction in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. PMID:26684118

  16. Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles

    International Nuclear Information System (INIS)

    We report on the effect of silver (Ag) nanoparticles on the optical transmittance and electrical conductivity of indium tin oxide (ITO) transparent conducting layer deposited on p-GaN layer of light-emitting diodes (LEDs). The sheet resistance of ITO and the series resistance of LEDs were decreased due to the increased electrical conductivity of ITO by Ag nanoparticles, compared with those of the LEDs with a bare ITO only. The ITO transmittance was also improved by localized surface plasmon resonance between the incident light and the randomly distributed Ag nanoparticles on ITO. The optical output power of LEDs with Ag nanoparticles on ITO was increased by 16% at 20 mA of injection current. - Highlights: • We studied the effect of Ag nanoparticles deposited on ITO on the properties of LED. • The optical power of LED and transmittance of ITO were improved by Ag surface plasmon. • The electrical conductivity of ITO was increased by Ag nanoparticles

  17. Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chu-Young [Applied Device and Material Department, Korea Advanced Nano fab Center, Suwon 443–270 (Korea, Republic of); Hong, Sang-Hyun [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500–712 (Korea, Republic of); Park, Seong-Ju, E-mail: esjpark@gist.ac.kr [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500–712 (Korea, Republic of)

    2015-09-01

    We report on the effect of silver (Ag) nanoparticles on the optical transmittance and electrical conductivity of indium tin oxide (ITO) transparent conducting layer deposited on p-GaN layer of light-emitting diodes (LEDs). The sheet resistance of ITO and the series resistance of LEDs were decreased due to the increased electrical conductivity of ITO by Ag nanoparticles, compared with those of the LEDs with a bare ITO only. The ITO transmittance was also improved by localized surface plasmon resonance between the incident light and the randomly distributed Ag nanoparticles on ITO. The optical output power of LEDs with Ag nanoparticles on ITO was increased by 16% at 20 mA of injection current. - Highlights: • We studied the effect of Ag nanoparticles deposited on ITO on the properties of LED. • The optical power of LED and transmittance of ITO were improved by Ag surface plasmon. • The electrical conductivity of ITO was increased by Ag nanoparticles.

  18. Development of a cavity enhanced aerosol albedometer

    OpenAIRE

    Zhao, W.; Xu, X.; Dong, M.; Chen, W.; X. Gu; Hu, C; Huang, Y.; Gao, X; Huang, W.; Zhang, W

    2014-01-01

    We report on the development of a cavity enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach and an integrating sphere (IS) for simultaneous in situ measurements of aerosol scattering and extinction coefficients in the exact same sample volume. The cavity enhanced albedometer employed a blue light-emitting diode (LED) based IBBCEAS approach for the measurement of wavelength-resolv...

  19. Multiscale Micro-Nano Nested Structures: Engineered Surface Morphology for Efficient Light Escaping in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Zhou, Lei; Dong, Xiaoxuan; Zhou, Yun; Su, Wenming; Chen, Xiaolian; Zhu, Yufu; Shen, Su

    2015-12-01

    Various micro-to-nanometer scale structures are extremely attractive for light escaping in organic light-emitting diodes. To develop and optimize such structures, an innovative approach was demonstrated for the first time to fabricate multiscale micro-nano nested structures by photolithography with a well-designed mask pattern followed by a controllable thermal reflow process. The experimental and theoretical characterizations verify that these unique nested structures hold the capability of light concentration, noticeable low haze, and efficient antireflection. As a proof-of-concept, the incorporation of this pattern onto the glass substrate efficiently facilitates light escaping from the device, resulting in current efficiency 1.60 times and external quantum efficiency 1.63 times that of a control flat device, respectively. Moreover, compared to a hexagonally arranged microlens array and quasi-random biomimetic moth eye nanostructures, the nested structures proposed here can magically tune the spatial emission profile to comply with the Lambertian radiation pattern. Hence, this novel structure is expected to be of great potential in related ubiquitous optoelectronic applications and provide scientific inspiration to other novel multiscale micro-nanostructure research.

  20. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  1. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  2. Investigation of GaInNAs/GaAs quantum wells and vertical-cavity surface-emitting laser structures using modulated reflectance spectroscopy

    CERN Document Server

    Choulis, S A

    2001-01-01

    study on a representative InGaAs/GaAs/AlAs/AIGaAs as-grown VCSEL structure, using PR spectroscopy as a function of position on a non-uniform wafer. We also show how temperature dependent PR and the appropriate lineshape model can be used to obtain a full picture of the relative movements between the gain and the CM over the full range of temperature. This information allows calculating the material gain in the temperature range of interest, independent from the effect of the CM and also provides an alternative method for characterising the growth, which can be applied to uniform wafers. PR and non-destructive ER can be used to identify regions suitable for fabrication into devices. For this reason modulation spectroscopy can be very useful for industry to reject wafers where good alignment between the CM and the QW does not occur and can thus save on the time consuming and expensive fabrication procedures. We investigate the electronic band structure of device relevant GaInNAs/GaAs multiple quantum wells (MQW...

  3. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza;

    2015-01-01

    into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has......We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  4. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  5. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  6. Effect of sheath potential on electromagnetic radiation emitted from the rear surface of a metallic foil target

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In ultra-intense laser-matter interactions, intense electric fields formed at the rear surface of a foil target may have strong influences on the motion of energetic electrons, and thereby affect the electromagnetic emissions from the rear surface, usually ascribed to transition radiation. Due to the electric fields, transition radiation occurs twice and bremsstrahlung radiation also happens because the electrons will cross the rear surface twice and have large accelerations.In the optic region, transition radiation is dominant. The radiation spectrum depends on the electric field only when the electrons are monochromatic, and becomes independent of the electric field when the electrons have a broadband momentum distribution. Therefore, in an actual experiment, the electric field at the rear surface of a foil could not be studied just with the measurement of optic emissions. In the terahertz region, both bremsstrahlung and transition radiations should be taken into account, and the radiation power could be enhanced in comparison with that without the inclusion of bremsstrahlung radiation. The frequency at which the maximum terahertz radiation appears depends on the electric field.

  7. Study of ethanolamine surface treatment on the metal-oxide electron transport layer in inverted InP quantum dot light-emitting diodes

    Science.gov (United States)

    Jang, Ilwan; Kim, Jiwan; Park, Chang Jun; Ippen, Christian; Greco, Tonino; Oh, Min Suk; Lee, Jeongno; Kim, Won Keun; Wedel, Armin; Han, Chul Jong; Park, Sung Kyu

    2015-11-01

    The present work shows the effect of ethanolamine surface treatment on inverted InP quantum dot light-emitting diodes (QD-LEDs) with inorganic metal oxide layers. In the inverted structure of ITO/ZnO/InP QDs/CBP/MoO3/Al, a sol-gel derived ZnO film was used as an electron transport layer (ETL) and MoO3 was used as a hole injection layer (HIL). First, ethanolamine was treated as a surface modifier on top of the ZnO electron transport layer. The optical performance of the QD-LED device was improved by the ethanolamine surface treatment. Second, low temperature annealing (<200°C) was performed on the ZnO sol-gel electron transport layer, followed by an investigation of the effect of the ZnO annealing temperature. The efficiency of the inverted QD-LEDs was significantly enhanced (more than 3-fold) by optimization of the ZnO annealing temperature. [Figure not available: see fulltext.

  8. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection.

    Science.gov (United States)

    Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-01-01

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians. PMID:27104535

  9. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection

    Directory of Open Access Journals (Sweden)

    Gil Lopes

    2016-04-01

    Full Text Available This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills—Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels’ image width (1 m width of road surface with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel. Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  10. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    Science.gov (United States)

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  11. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters

    Science.gov (United States)

    Subramaniyam Ramesh, Bala; Giorgakis, Emmanouil; Lopez-Davila, Victor; Kamali Dashtarzheneha, Ashkan; Loizidou, Marilena

    2016-07-01

    Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800–850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.

  12. Cavity magnomechanics.

    Science.gov (United States)

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X

    2016-03-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  13. Dental cavities

    Science.gov (United States)

    ... leading to cavities. Treatment may involve: Fillings Crowns Root canals Dentists fill teeth by removing the decayed tooth ... gold, porcelain, or porcelain attached to metal. A root canal is recommended if the nerve in a tooth ...

  14. An Analysis of the Temperature and Field Dependence of the RF Surface Resistance of Nitrogen-Doped Niobium SRF Cavities with Respect to Existing Theoretical Models

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [Jefferson Lab, Newport News, VA; Palczewski, Ari D. [Jefferson Lab, Newport News, VA; Xiao, Binping [Brookhaven National Laboratory, Upton, NY

    2015-09-01

    Recent progress with the reduction of rf surface resistance (Rs) of niobium SRF cavities via the use of high temperature surface doping by nitrogen has opened a new regime for energy efficient accelerator applications. For particular doping conditions one observes dramatic decreases in Rs with increasing surface magnetic fields. The observed variations as a function of temperature may be analyzed in the context of recent theoretical treatments in hopes of gaining insight into the underlying beneficial mechanism of the nitrogen treatment. Systematic data sets of Q0 vs. Eacc vs. temperature acquired during the high Q0 R&D work of the past year will be compared with theoretical model predictions..

  15. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  16. Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons.

    Science.gov (United States)

    Zhu, Shi-Chao; Yu, Zhi-Guo; Zhao, Li-Xia; Wang, Jun-Xi; Li, Jin-Min

    2015-06-01

    We have fabricated the surface plasmon (SP) coupled GaN-based nanorod LEDs with Ag nanoparticles (Nps), and demonstrate the enhancement of the optical modulation bandwidth by SPs. Compared with the LED without Ag Nps, the optical modulation bandwidth of the LED with Ag Nps increases by a factor of ~2 at 57 A/cm2. The photoluminescence (PL) and electroluminescence (EL) experimental results are consistent with each other, and both suggest the effective coupling between quantum wells (QWs) and SPs. Furthermore, the current dependent modulation frequency characteristics show that the QW-SP coupling can increase the modulation bandwidth, especially for LEDs with high intrinsic internal quantum efficiency (IQE). These findings will help to open a new solution to design the ultrafast LED light source for the application of the visible light communication. PMID:26072747

  17. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Suelen Balero de Paula

    2014-01-01

    Full Text Available Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All isolates were able to form biofilms on different substrate surfaces. Eugenol showed inhibitory activity against planktonic and sessile cells of Candida spp. No metabolic activity in biofilm was detected after 24 h of treatment. Scanning electron microscopy demonstrated that eugenol drastically reduced the number of sessile cells on denture material surfaces. Most Candida species showed hydrophobic behavior and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to eugenol for 1 h. Eugenol also caused a significant reduction in adhesion of most Candida spp. to HEp-2 cells and to polystyrene. These findings corroborate the effectiveness of eugenol against Candida species other than C. albicans, reinforcing its potential as an antifungal applied to limit both the growth of planktonic cells and biofilm formation on different surfaces.

  18. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  19. Optofluidic Fabry-Pérot Micro-Cavities Comprising Curved Surfaces for Homogeneous Liquid Refractometry—Design, Simulation, and Experimental Performance Assessment

    Directory of Open Access Journals (Sweden)

    Noha Gaber

    2016-04-01

    Full Text Available In the scope of miniaturized optical sensors for liquid refractometry, this work details the design, numerical simulation, and experimental characterization of a Fabry-Pérot resonator consisting of two deeply-etched silicon cylindrical mirrors with a micro-tube in between holding the liquid analyte under study. The curved surfaces of the tube and the cylindrical mirrors provide three-dimensional light confinement and enable achieving stability for the cavity illuminated by a Gaussian beam input. The resonant optofluidic cavity attains a high-quality factor (Q—over 2800—which is necessary for a sensitive refractometer, not only by providing a sharp interference spectrum peak that enables accurate tracing of the peak wavelengths shifts, but also by providing steep side peaks, which enables detection of refractive index changes by power level variations when operating at a fixed wavelength. The latter method can achieve refractometry without the need for spectroscopy tools, provided certain criteria explained in the details are met. By experimentally measuring mixtures of acetone-toluene with different ratios, refractive index variations of 0.0005 < Δn < 0.0022 could be detected, with sensitivity as high as 5500 μW/RIU.

  20. Research on Surface Quality Improvement of Drum Cavity Machining%改善鼓筒零件内腔型面加工表面质量研究

    Institute of Scientific and Technical Information of China (English)

    赵鹏飞; 姜雪梅; 陈亚莉; 敖强; 时旭

    2014-01-01

    Rotating drum part is welded by ifve-stage single disc.The complex structure parts require highly precision machining, especially in the cavity be-tween the disc-to-disc surface, as the part is fully enclose deep cavity with narrow machining space left. Using the original method of machining processes,cutting tools chat-ter vibration and interaction are serious because of its low strength. The problem has affected the deliveries of the parts and hardly to avoid. By improving the structure of the cutting tool, the machining parameters and the cut-ting tool tracking are optimized which not only solves the vibration problems and improves the quality of cavity surface to meet the design requirements, but also enhances engine manufacturing technologies.%鼓筒零件是由五级单盘焊接而成的转动部件,零件结构复杂,精度要求高,尤其是各级盘间内腔型面,属于全封闭深腔,空间狭窄,刀具强度低且干涉现象严重,按原工艺方法加工,切削时刀具振动产生的振纹现象严重,去除困难,影响零件交付工作。通过改进鼓筒零件内腔的刀具结构方案,优化刀具切削轨迹与加工参数,解决刀具在加工时的振动问题,提高内腔表面的加工质量,满足零件图纸需求,提升发动机制造的技术水平,实现了该项技术在生产中的工程化应用,取得了明显的技术效果和经济效益。

  1. Cavity-water interface is polar

    OpenAIRE

    Friesen, Allan D.; Matyushov, Dmitry V.

    2010-01-01

    We present the results of numerical simulations of the electrostatics and dynamics of water hydration shells surrounding Kihara cavities given by a Lennard-Jones (LJ) layer at the surface of a hard-sphere cavity. The local dielectric response of the hydration layer substantially exceeds that of bulk water, with the magnitude of the dielectric constant peak in the shell increasing with the growing cavity size. The polar shell propagates into bulk water to approximately the cavity radius. The s...

  2. Theory and technology for superconducting cavities

    CERN Document Server

    Lengeler, Herbert

    1993-01-01

    The course will address Physicist and Engineers who are newcomers in the field of accelerators and accelerating cavities. The elements of RF-Superconductivity will be presented with special relevance to accelerating cavities. The present ststus of achievable accelerating fields and RF losses will be given and their link to the special technologies for cavity fabrication and surface treatments will be stressed. Cavity auxiliaries like main couplers, higher order mode couplers and frequency tuners will be described.

  3. Green (In,Ga,Al)P-GaP light-emitting diodes grown on high-index GaAs surfaces

    Science.gov (United States)

    Ledentsov, N. N.; Shchukin, V. A.; Lyytikäinen, J.; Okhotnikov, O.; Cherkashin, N. A.; Shernyakov, Yu M.; Payusov, A. S.; Gordeev, N. Y.; Maximov, M. V.; Schlichting, S.; Nippert, F.; Hoffmann, A.

    2015-03-01

    We report on green (550-560 nm) electroluminescence (EL) from (Al0.5Ga0.5)0.5In0.5P-(Al0.8Ga0.2)0.5In0.5P double p-i-n heterostructures with monolayer-scale tensile strained GaP insertions in the cladding layers and light-emitting diodes (LEDs) based thereupon. The structures are grown side-by-side on high-index and (100) GaAs substrates by molecular beam epitaxy. Cross-sectional transmission electron microscopy studies indicate that GaP insertions are flat, thus the GaP-barrier substrate orientation-dependent heights should match the predictions of the flat model. At moderate current densities (~500 A/cm2) the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)-grown strictures, the EL spectra of (211) and (311)-grown devices are shifted towards shorter wavelengths (~550 nm at room temperature). At high current densities (>1 kA/cm2) a much higher EL intensity is achieved for the devices grown on high-index substrates. The integrated intensity of (311)-grown structures gradually saturates at current densities above 4 kA/cm2, whereas no saturation is revealed for (211)-grown structures up to the current densities above 14 kA/cm2. We attribute the effect to the surface orientation-dependent engineering of the GaP band structure which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p- doped (Al0.8Ga0.2)0.5In0.5P cladding layers.

  4. Properties of a gold-deposited surface plasmon resonance-based glass rod sensor with various light-emitting diodes and its application to a refractometer

    Science.gov (United States)

    Mitsushio, Masaru; Higo, Morihide

    2012-08-01

    The performance of a simple sensor system prepared using gold (Au)-deposited glass rods of 1 to 4 mm in diameter with a deposition length of 100 mm based on surface plasmon resonance (SPR) is presented. The sensor properties of the Au-deposited glass rods of 2 mm in diameter with deposition lengths of 10 to 100 mm are also presented. The sensor system consists of a light-emitting diode (LED) as the light source and a photodiode (PD) as the detector. The response curves and sensor properties of the Au-deposited glass rod with a Au film thickness of 45 nm obtained by using three LEDs with yellowish green (563 nm), red (660 nm), and infrared (940 nm) emissions were investigated. The results were compared with those of a corresponding Au-deposited optical fiber sensor with a core diameter of 0.2 mm. Though the sensitivity, response, and detection limit of the Au-deposited glass rod sensor are lower than those of the optical fiber sensor, the fabrication and handling of the Au-deposited glass rod sensor are easier because of the robustness. Since the dielectric constant of Au changes with the light wavelength, the sensor properties of both the Au-deposited glass rod sensor and the optical fiber sensor depend strongly on the wavelength of the incident light and can be controlled by changing the LED emission wavelength. This sensor system is a new SPR-based refractometer with easy construction and operation. Ethanol concentrations in various spirits were measured with this SPR-based refractometer and the results agreed well with those measured with an Abbe refractometer.

  5. Effectiveness of charged noncovalent polymer coatings against protein adsorption to silica surfaces studied by evanescent-wave cavity ring-down spectroscopy and capillary electrophoresis.

    Science.gov (United States)

    Haselberg, Rob; van der Sneppen, Lineke; Ariese, Freek; Ubachs, Wim; Gooijer, Cees; de Jong, Gerhardus J; Somsen, Govert W

    2009-12-15

    Protein adsorption to silica surfaces is a notorious problem in analytical separations. Evanescent-wave cavity ring-down spectroscopy (EW-CRDS) and capillary electrophoresis (CE) were employed to investigate the capability of positively charged polymer coatings to minimize the adsorption of basic proteins. Adsorption of cytochrome c (cyt c) to silica coated with a single layer of polybrene (PB), or a triple layer of PB, dextran sulfate (DS), and PB, was studied and compared to bare silica. Direct analysis of silica surfaces by EW-CRDS revealed that both coatings effectively reduce irreversible protein adsorption. Significant adsorption was observed only for protein concentrations above 400 microM, whereas the PB-DS-PB coating was shown to be most effective and stable. CE analyses of cyt c were performed with and without the respective coatings applied to the fused-silica capillary wall. Monitoring of the electroosmotic flow and protein peak areas indicated a strong reduction of irreversible protein adsorption by the positively charged coatings. Determination of the electrophoretic mobility and peak width of cyt c revealed reversible protein adsorption to the PB coating. It is concluded that the combination of results from EW-CRDS and CE provides highly useful information on the adsorptive characteristics of bare and coated silica surfaces toward basic proteins. PMID:19921852

  6. Recent Approaches for Broadening the Spectral Bandwidth in Resonant Cavity Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Gun Wu Ju

    2015-01-01

    Full Text Available Resonant cavity optoelectronic devices, such as vertical cavity surface emitting lasers (VCSELs, resonant cavity enhanced photodetectors (RCEPDs, and electroabsorption modulators (EAMs, show improved performance over their predecessors by placing the active device structure inside a resonant cavity. The effect of the optical cavity, which allows wavelength selectivity and enhancement of the optical field due to resonance, allows the devices to be made thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. However, the narrow spectral bandwidth significantly reduces operating tolerances, which leads to severe problems in applications such as optical communication, imaging, and biosensing. Recently, in order to overcome such drawbacks and/or to accomplish multiple functionalities, several approaches for broadening the spectral bandwidth in resonant cavity optoelectronic devices have been extensively studied. This paper reviews the recent progress in techniques for wide spectral bandwidth that include a coupled microcavity, asymmetric tandem quantum wells, and high index contrast distributed Bragg-reflectors. This review will describe design guidelines for specific devices together with experimental considerations in practical applications.

  7. Guided access cavity preparation using cone-beam computed tomography and optical surface scans - an ex vivo study

    DEFF Research Database (Denmark)

    Buchgreitz, J; Buchgreitz, M; Mortensen, D;

    2016-01-01

    AIM: To evaluate ex vivo, the accuracy of a preparation procedure planned for teeth with pulp canal obliteration (PCO) using a guide rail concept based on a cone-beam computed tomography (CBCT) scan merged with an optical surface scan. METHODOLOGY: A total of 48 teeth were mounted in acrylic bloc...

  8. Light emitting device having peripheral emissive region

    Science.gov (United States)

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  9. Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers

    Science.gov (United States)

    Fördös, Tibor; Postava, Kamil; Jaffrès, Henri; Pištora, Jaromír

    2014-06-01

    Spin-polarized light sources such as the spin-polarized light-emitting diodes (spin-LEDs) and spin-polarized lasers (spin-lasers) are prospective devices in which the radiative recombination of spin-polarized carriers results in emission of circularly polarized photons. The main goal of this article is to model emitted radiation and its polarization properties from spin-LED and spin-controlled vertical-cavity surface-emitting laser (spin-VCSEL) solid-state structures. A novel approach based on 4 × 4 transfer matrix formalism is derived for modeling of the interaction of light with matter in active media of resonant multilayer anisotropic structure and enables magneto-optical effects. Quantum transitions, which result in photon emission, are described using general Jones source vectors.

  10. RF superconducting cavities

    CERN Document Server

    Kojima, Y

    1980-01-01

    The history and present activity in research on RF superconducting cavities in various countries are reviewed. The program of the July 1980 Karlsruhe workshop is reproduced and research activity in this field at Stanford HEPL and SLAC, Cornell, Oregon, Brookhaven, KEK (Japan), Weismann (Israel), Genoa, CERN and Karlsruhe (KfK) listed. The theoretical basis of surface resistance and intracavity magnetic field, multipacing and non-resonant electron loading are outlined. (20 refs).

  11. Sensitivity of surface resistance measurement of HTS thin films by cavity resonator, dielectric resonator and microstrip line resonator

    Indian Academy of Sciences (India)

    N D Kataria; Mukul Misra; R Pinto

    2002-05-01

    Microwave surface resistance s of silver-doped YBa2Cu3O7- (YBCO) thin film, deposited by laser ablation technique on 10 mm × 10 mm LaAlO3 substrate, has been measured by resonant techniques in the frequency range from 5 GHz to 20 GHz. The geometrical factor of the sample and the resonator has been determined theoretically by the knowledge of the electromagnetic field distribution in the resonators. The microwave surface resistance of the superconducting sample is then extracted from the measured value as a function of temperature. The sensitivity of the s measurement, that is, the relative change in the value with the change in the s value is determined for each resonator.

  12. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...

  13. Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities?

    Science.gov (United States)

    Groessner-Schreiber, Birte; Hannig, Matthias; Dück, Alexander; Griepentrog, Michael; Wenderoth, Dirk F

    2004-12-01

    Osseointegrated dental implants play an important role in restorative dentistry. However, plaque accumulation may cause inflammatory reactions around the implants, sometimes leading to implant failure. In this in vivo study the influence of two physical hard coatings on bacterial adhesion was examined in comparison with a pure titanium surface. Thin glass sheets coated with titanium nitride (TiN), zirconium nitride (ZrN) or pure titanium were mounted on removable intraoral splints in two adults. After 60 h of intraoral exposure, the biofilms were analyzed to determine the number of bacteria, the types of bacteria [by applying single-strand conformation polymorphism (SSCP analysis) of 16S rRNA genes], and whether or not the bacteria were active (by SSCP analysis of 16S rRNA). The results showed that bacterial cell counts were higher on the pure titanium-coated glass sheets than on the glass sheets coated with TiN or ZrN. The lowest number of bacterial cells was present on theZrN-coated glass. However, the metabolic activity (RNA fingerprints) of bacteria on TiN- and ZrN-coated glass sheets seemed to be lower than the activity of bacteria on the titanium-coated surfaces, whereas SSCP fingerprints based on 16S rDNA revealed that the major 16S bands are common to all of the fingerprints, independently of the surface coating. PMID:15560835

  14. Cavity magnomechanics

    Science.gov (United States)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  15. Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures

    Science.gov (United States)

    Lee, Jiun-Haw; Chen, Kuan-Yu; Hsiao, Chia-Chiang; Chen, Hung-Chi; Chang, Chih-Hsiang; Kiang, Yean-Woei; Yang, C. C.

    2006-06-01

    We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Pérot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semi-transparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity.

  16. Development of gas cluster ion beam surface treatments for reducing field emission and breakdown in RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, D R; Degenkolb, E; Wu, A T; Insepov, Z

    2006-11-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high voltage electrodes. For this paper, we have processed Nb, Stainless Steel, and Ti electrode materials using beams of Ar, O2, or NF3 +O2 clusters with accelerating potentials up to 35 kV. Using a Scanning Field Emission Microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on Stainless steel and Ti substrates have been evaluated using AFM imaging and show that 200-nm wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB treated stainless steel electrode has now shown virtually no DC field emission current at gradients over 20 MV/m.

  17. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  18. Development mechanism of cavity damage under urban roads and its influence on road surface subsidence%城市道路地下空洞病害发展机理及对路面塌陷的影响

    Institute of Scientific and Technical Information of China (English)

    陶连金; 袁松; 安军海

    2015-01-01

    外界因素作用易引起城市道路地下空洞破坏,甚至向上发展至地面形成地层塌陷。基于离散元软件对城市道路路基下空洞的发展破坏进行数值模拟,分析空洞规模、埋深、施工振动、空洞周围土性对空洞稳定性的影响。结果表明:道路路面沉降随着空洞埋深的减小和尺寸的增大,均出现先急剧增加后趋于平缓的过程。该曲线的拐点为道路安全性预测的关键点。当空洞与扰动土层相距3 m以内时,必须考虑施工扰动的影响。沉降值随空洞所在土层的黏聚力和摩擦角均近似呈线性变化。该研究从颗粒细观角度揭示了地下空洞发展至路面塌陷的破坏机制,为地下病害研究提供了新方法。%This paper is concerned specifically with a deeper study addressing cavity disease—cavity damage more likely to occur under urban roads due to the external factors and even cause road surface subsidence. The study involves simulating the development and damage of cavity under urban road using distinct element software and analyzing the impact of the cavity size, buried depth, the vibration during construction, the property of soil around the cavity on the stability of the cavity. The study demonstrates that, as a result of the decrease of the cavity depth and the increase of size, the road surface is subjected to the typical subsidence tending to sharply increase, followed by a flat increase, suggesting that the point of inflexion holds the key to the road safety prediction; the occurrence of a 3-m-distance between cavity and disturbed soil necessitates the consideration of the influence of vibration during construction;and sur-face has subsidence value approximate to linear variation due to the cohesive force and the friction angle of soil to which the cavity is exposed. The study offers a new insight into failure mechanism behind the underground cavity and the resulting road surface subsidence thanks to

  19. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers

    International Nuclear Information System (INIS)

    The main objective of concentrated solar power is to increase the thermal energy of a fluid, for the fluid to be used, for example, in a power cycle to generate electricity. Such applications present the requirement of appropriately designing the receiver active absorber surface, as the incident radiation flux can be very high. Besides that, the solar image in the receiver is not uniform, so conventional boilers designs are not well suited for these purposes. That point is particularly critical in solar central receivers systems (CRS), where concentrated solar flux is usually above 500 kW/m2, causing thermal and mechanical stress in the absorber panels. This paper analyzes a new thermofluidynamic design of a solar central receiver, which optimizes the heat transfer in the absorber surface. This conceptual receiver presents the following characteristics: the fluid flow pattern is designed according to the radiation flux map symmetry, so more uniform fluid temperatures at the receiver outlet are achieved; the heat transfer irreversibilities are reduced by circulating the fluid from the lower temperature region to the higher temperature region of the absorber surface; the width of each pass is adjusted to the solar flux gradient, to get lower temperature differences between the side tubes of the same pass; and the cooling requirement is ensured by means of adjusting the fluid flow velocity per tube, taking into account the pressure drop. This conceptual scheme has been applied to the particular case of a molten salt single cavity receiver, although the configuration proposed is suitable for other receiver designs and working fluids. - Highlights: ► The solar receiver design proposed optimizes heat transfer in the absorber surface. ► The fluid flow pattern is designed according to the solar flux map symmetry at noon. ► The fluid circulates from the lower to the higher temperature regions. ► The width of each pass is adjusted to the solar flux gradient. ► The

  20. Cavity magnomechanics

    Science.gov (United States)

    Zhang, Xufeng; Zou, Changling; Jiang, Liang; Tang, Hong X.

    Mechanical oscillators have been recently widely utilized to couple with optical and microwave photons in a variety of hybrid quantum systems, but they all lack the tunability. The magnetostrictive force provides an alternative mechanism to allow phonon to couple with a different type of information carrier-magnon, the collective excitation of magnetization whose frequency can be tuned by a bias magnetic field. Here, we demonstrate an intriguing hybrid system that consists of a magnonic, a mechanical, and a microwave resonator. The magnon-phonon interaction results in hallmark coherent phenomena such as magnomechanically induced transparency/absorption and magnomechanical parametric amplification. The magnetic field dependence of magnon provides our system with unprecedented tunability. Moreover, the great flexibility of our system allows us to achieve triple resonance among magnon, phonon and photon, which drastically enhances the magnomechanical interaction. Our work demonstrates the fundamental principle of cavity magnetomechanics, opening up great opportunities in various applications, such as tunable microwave filter and amplifier, long-lifetime quantum memories, microwave-to-optics conversion.

  1. Superconducting RF cavity R&D for future accelerators

    OpenAIRE

    Ginsburg, C.M.

    2009-01-01

    High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SR...

  2. JLab SRF Cavity Fabrication Errors, Consequences and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Frank Marhauser

    2011-09-01

    Today, elliptical superconducting RF (SRF) cavities are preferably made from deep-drawn niobium sheets as pursued at Jefferson Laboratory (JLab). The fabrication of a cavity incorporates various cavity cell machining, trimming and electron beam welding (EBW) steps as well as surface chemistry that add to forming errors creating geometrical deviations of the cavity shape from its design. An analysis of in-house built cavities over the last years revealed significant errors in cavity production. Past fabrication flaws are described and lessons learned applied successfully to the most recent in-house series production of multi-cell cavities.

  3. Scanning electron microscope observations on the monogenean parasite Paraquadriacanthus nasalis from the nasal cavities of the freshwater fish Clarias gariepinus in Egypt with a note on some surface features of its microhabitat.

    Science.gov (United States)

    Arafa, Safaa Zaky

    2012-05-01

    Surface features of the monogenean Paraquadriacanthus nasalis Ergens, 1988 (quoted by Kritsky, 1990) inhabiting the nasal cavities of the freshwater fish Clarias gariepinus were studied for the first time using scanning electron microscopy. The anterior adhesive areas possess two slit-like openings. Many small openings were detected on the tegument covering the anterior-most region of the head. Some considerably large openings were also found in the median region between the two slit-like openings of the adhesive sacs. A transverse slit-like mouth opening with two lip-like structures was detected on the ventral surface of the body. Three types of presumed sensory structures were found associated with the tegument of the anterior adhesive area and anterior region of the body. These are surface ciliary sensilla, dome-shaped structures, and many spherical structures. The possible functions of these presumed sensory structures were discussed. The tegument covering the anterior adhesive area lacks microvilli, while the tegument covering the haptor is associated with microvilli. The haptoral sclerites were found in two different positions. Some surface features of the nasal cavities of C. gariepinus (microhabitat of P. nasalis) were also studied using scanning electron microscopy. Many lamellae-like and spine-like structures were recognized. The epithelium lining in some regions of the nasal cavities has small and large openings and covered with mucus. The possible roles of some haptoral sclerites in the attachment of the parasite to the host tissues were discussed. PMID:22015385

  4. Electroluminescence from InGaN quantum dots in a monolithically grown GaN/AlInN cavity

    Energy Technology Data Exchange (ETDEWEB)

    Dartsch, Heiko; Tessarek, Christian; Figge, Stephan; Aschenbrenner, Timo; Kruse, Carsten; Hommel, Detlef [University of Bremen, Institute of Solid State Physics - Semiconductor Epitaxy (Germany); Schowalter, Marco; Rosenauer, Andreas [University of Bremen, Institute of Solid State Physics - Electron Microscopy (Germany)

    2011-07-01

    InGaN quantum dots (QDs) and their implementation into the micro cavity of a vertical distributed Bragg reflector (DBR) resonator are the key elements to achieve single photon emission required for quantum cryptography. However, the epitaxial overgrowth of InGaN QDs is challenging because they are easily destroyed by elevated temperatures. For this reason a common approach is the fabrication of a hybrid cavity structure by non epitaxial deposition of a dielectric top DBR. We present the first successful implementation of electrically driven InGaN QDs into a monolithic GaN/AlInN cavity structure fully epitaxial grown by metal organic vapor phase epitaxy. A single layer of InGaN QDs has been embedded in a n- and p-type doped 5{lambda} GaN cavity surrounded by a 40 fold bottom- and a 10 fold GaN/AlInN top-DBR. The bottom DBR shows a reflectivity of 97%. Structural properties were investigated by scanning transmission microscopy (STEM) and will be discussed. Electroluminescence of the InGaN QDs was achieved by the application of intra cavity contacts. This demonstrates for the first time the possibility of using InGaN QD in fully epitaxial made devices like vertical cavity surface emitting lasers or single photon sources. We present the first successful implementation of electrically driven InGaN QDs into a monolithic GaN/AlInN cavity structure fully epitaxial grown by metal organic vapor phase epitaxy. Therefore a single layer of InGaN QDs has been embedded in a n- and p-type doped 5{lambda} GaN cavity surrounded by a 40 fold bottom- and a 10 fold GaN/AlInN top-DBR. The bottom DBR shows a reflectivity of 97%. Electroluminescence of the InGaN QDs was achieved by the application of intra cavity contacts. Optical and structural properties of the device are discussed. This demonstrates for the first time the possibility of using InGaN QD in fully epitaxial made devices like vertical cavity surface emitting lasers or single photon sources.

  5. Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays

    CERN Document Server

    Gao, Zihe; Thompson, Bradley J; Carney, P Scott; Choquette, Kent D

    2016-01-01

    Parity-time (PT) symmetry in optics has been demonstrated in a variety of passive or optically pumped platforms. Here we discuss the notion of PT symmetry in the context of electrically pumped coherently coupled vertical cavity surface emitting laser arrays. Effects of both asymmetric gain distribution and local frequency detuning are considered using temporal coupled mode theory. It is shown theoretically that beam steering, mode evolution and mode hopping are all related to PT symmetry. Experimentally we observed the predicted mode evolution, mode hopping and PT symmetry breaking with quantitative agreement with the theory.

  6. Single transverse mode selectively oxidized vertical cavity lasers

    Energy Technology Data Exchange (ETDEWEB)

    CHOQUETTE,KENT D.; GEIB,KENT M.; BRIGGS,RONALD D.; ALLERMAN,ANDREW A.; HINDI,JANA JO

    2000-04-26

    Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.

  7. Wheat Under LED's (Light Emitting Diodes)

    Science.gov (United States)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  8. Crab Cavity Development

    CERN Document Server

    Calaga, R; Burt, G; Ratti, A

    2015-01-01

    The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.

  9. Effective index model predicts modal frequencies of vertical-cavity lasers

    Energy Technology Data Exchange (ETDEWEB)

    SERKLAND,DARWIN K.; HADLEY,G. RONALD; CHOQUETTE,KENT D.; GEIB,KENT M.; ALLERMAN,ANDREW A.

    2000-04-18

    Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

  10. Theoretical study on controlling nonlinear behaviors of a coupled-cavity VCSEL by external optical injection

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Li(李孝峰); Wei Pan(潘炜); Bin Luo(罗斌); Dong Ma(马冬); Zheng Zhao(赵峥); Guo Deng(邓果)

    2004-01-01

    A master-slave configuration used to control the nonlinear behaviors arising in a vertical cavity surface emitting laser (VCSEL) with strong external optical feedback is established. In terms of bifurcation diagram, time and frequency domain, the influence of the continuous optical injection from the master VCSEL on the nonlinear characteristics of the slave is investigated theoretically. For relatively weak injection, the slave still keeps its intrinsic nonlinear state. With increasing the injection strength, these nonlinear behaviors evolve to periodic fluctuation, and at last are replaced by the steady-state (e.g. the critical injection parameter for steady-state is 1.2 when external cavity's reflectivity and length are 4% and 4 cm, respectively). During this evolution the bifurcation-contraction phenomena are also observed.

  11. Theoretical study on controlling nonlinear behaviors of a coupled-cavity VCSEL by external optical injection

    Institute of Scientific and Technical Information of China (English)

    李孝峰; 潘炜; 罗斌; 马冬; 赵峥; 邓果

    2004-01-01

    A master-slave configuration used to control the nonlinear behaviors arising in a vertical cavity surface emitting laser (VCSEL) with strong external optical feedback is established. In terms of bifurcation diagram, time and frequency domain, the influence of the continuous optical injection from the master VCSEL on the nonlinear characteristics of the slave is investigated theoretically. For relatively weak injection, the slave still keeps its intrinsic nonlinear state. With increasing the injection strength, these nonlinear behaviors evolve to periodic fluctuation, and at last are replaced by the steady-state (e.g. the critical injection parameter for steady-state is 1.2 when external cavity's reflectivity and length are 4%and 4 cm, respectively). During this evolution the bifurcation-contraction phenomena are also observed.

  12. High-resolution birefringence cartography of a vertical cavity semiconductor laser

    CERN Document Server

    Wang, T

    2015-01-01

    We report on spatially resolved birefringence measurements in a multimode vertical-cavity surface-emitting laser (VCSEL) by using the emission wavelength distribution mapping. The point-by-point, polarization-resolved spectral information lends itself to the identification of anisotropies in the material and enables the estimate of refractive index differences and gradients in the two orthogonal polarization components with high spatial resolution. Compared with classical optical microscopy techniques, we can easily recognize the position of the emission wavelength split (which carefully points to the position of defects) with a much better spectral sensitivity (potentially as low as 3 GHz). The presented method is general and can be used with any bulk, light-emitting source (even passive, if external illumination is added) and may prove very useful for device fabrication, quality checks and process improvements.

  13. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  14. Surface Plasma Waveguide Filter Based on T-shape Cavity Structure%基于T型腔结构的表面等离子体波导滤波器

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Optical fields can be bound at sub-wavelength level by surface plasma polaritons (SPPs) and dif⁃fraction limit can be broken through. SPP is regarded as one of the most hopeful carrier to implement integrated optical devices in nanometer level. A surface plasma waveguide filter with T-shape cavity structure is designed. And its filtering characteristics are analyzed by finite difference time domain (FDTD) method. The results show that the center wavelength of transmission spectrum can be changed by the changing of length and width of T-shape cavity. Q values of cavities can be adjusted by changing the distances between cavities and coupling waveguide.%  表面等离子体激元(surface plasmon polaritons, SPPs)能将光场束缚在亚波长量级,可以突破衍射极限,被认为是有希望实现纳米集成光学器件的载体之一。设计了一种T型腔结构的表面等离子体波导滤波器,并且利用时域有限差分(FDTD)法对其滤波特性进行了分析。结果表明,改变T型腔的长度和宽度可以改变透射谱的中心波长,而改变腔与耦合波导之间的间距,则可以调节腔的Q值。

  15. Enhancement of RF Breakdown Threshold of Microwave Cavities by Magnetic Insulation

    International Nuclear Information System (INIS)

    surfaces of the cavity are perfect planes. Subsequently, a stream of emitted electrons can be accelerated by the rf electric field toward the opposing cavity walls. Upon impact, they heat a localized region, resulting in the eventual breakdown by a variety of secondary mechanisms. Therefore, it is advantageous to develop techniques that could suppress field emission within rf cavities. It has been proposed that high voltages up to about a gigavolt range may be sustained in voltage transformers, by adopting the principle of magnetic insulation in ultrahigh vacuum. The basic idea is to suppress field emission by applying a suitably directed magnetic field of sufficient strength to force the electrons orbits back on to the rf emitting surface. More recently, it was shown that magnetic insulation could be very effective in suppressing field emission and multipacting in rectangular coupler waveguides. Hence, the question arises whether the same principle is applicable to rf accelerating structures. In this Letter, we shall consider application of the concept to low-frequency (201-805 MHz) muon accelerator cavities.

  16. Updating of Optical Inspection System for 6 GHz Superconducting Cavities

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long

    2013-01-01

    As a validation tool for the material properties and the surface treatment process,6 GHz superconducting cavity needs complex surface treatment process during its manufacture.It is verynecessary to record and monitor the statues of the internal surface of the cavity after each surface treatment,such as ultrasonic washing,mechanical polishing,electronic polishing(EP),buffered chemical

  17. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  18. VECSELs emitting at 976nm designed for second harmonic generation in the blue wavelength region

    Science.gov (United States)

    Muszalski, Jan; Broda, Artur; Jasik, Agata; Wójcik-Jedlińska, Anna; Trajnerowicz, Artur; Kubacka-Traczyk, Justyna; Sankowskaa, Iwona

    2013-01-01

    Using a Vertical Cavity Surface Emitting Laser (VECSEL) "as-grown" heterostructure we set-up a laser emitting at 488 nm with the output power approaching 20mW. The short wavelength emission was due to the conversion of the 976nm emission by a second harmonic generation process in a type-I lithum triborate (LBO). The V-type external cavity permitted efficient focusing of the laser beam on both the VECSEL heterostructure and the non linear crystal. A small diameter focused spot on the gain mirror is required when "as-grown" heterostructures are used. No birefringent filter was used in the resonator. In the case of our heterostructure we observed that the light was spontaneously polarized along the one of the crystallographic direction. The polarization ratio was 1000:1. The VECSEL heterostructure was of the resonant type strongly enhancing a single wavelength emission. The wavelength fine tuning was performed by heatsink temperature adjustment. The heterostructure was grown by molecular beam epitaxy. It consisted of 12 InGaAs quantum wells enclosed by GaAs barriers and a AlAs/GaAs DBR.

  19. A cavity and further radial substructures in the disk around HD~97048

    CERN Document Server

    van der Plas, G; Ménard, F; Casassus, S; Canovas, H; Pinte, C; Maddison, S T; Maaskant, K; Avenhaus, H; Cieza, L; Perez, S; Ubach, C

    2016-01-01

    Context: Gaps, cavities and rings in circumstellar disks are signposts of disk evolution and planet-disk interactions. We follow the recent suggestion that Herbig Ae/Be disks with a flared disk harbour a cavity, and investigate the disk around HD~97048. Aims: We aim to resolve the 34$\\pm$ 4 au central cavity predicted by Maaskant et al. (2013) and to investigate the structure of the disk. Methods: We image the disk around HD~97048 using ALMA at 0.85~mm and 2.94~mm, and ATCA (multiple frequencies) observations. Our observations also include the 12CO J=1-0, 12CO J=3-2 and HCO+ J=4-3 emission lines. Results: A central cavity in the disk around HD~97048 is resolved with a 40-46 au radius. Additional radial structure present in the surface brightness profile can be accounted for either by an opacity gap at ~90 au or by an extra emitting ring at ~150 au. The continuum emission tracing the dust in the disk is detected out to 355 au. The 12CO J=3-2 disk is detected 2.4 times farther out. The 12CO emission can be trac...

  20. Superconducting RF cavity R&D for future accelerators

    CERN Document Server

    Ginsburg, C M

    2009-01-01

    High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SRF cavity R&D in the context of global projects are reviewed.

  1. High brightness angled cavity quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  2. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  3. Cavity QED on a nanofiber using a composite photonic crystal cavity

    CERN Document Server

    Yalla, Ramachandrarao; Nayak, Kali P; Hakuta, Kohzo

    2014-01-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. Using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  4. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.

    Science.gov (United States)

    Yalla, Ramachandrarao; Sadgrove, Mark; Nayak, Kali P; Hakuta, Kohzo

    2014-10-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. By using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  5. RF Cavity Design

    CERN Document Server

    Jensen, E

    2014-01-01

    After a short overview of a general approach to cavity design, we sketch the derivation of waveguide modes from plane waves and of cavity fields from waveguide modes. The characteristic parameters describing cavities and their performance are defined and explained. An equivalent circuit is introduced and extended to explain beam loading and higher order modes. Finally travelling- and standing-wave multi-gap cavities are introduced using the Brillouin diagram.

  6. Dawn of Cavity Spintronics

    OpenAIRE

    Hu, Can-Ming

    2015-01-01

    Merging the progress of spintronics with the advancement in cavity quantum electrodynamics and cavity polaritons, a new field of Cavity Spintronics is forming, which connects some of the most exciting modern physics, such as quantum information and quantum optics, with one of the oldest science on the earth, the magnetism.

  7. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  8. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  9. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  10. Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Ko, Kwok; /SLAC

    2009-03-04

    Omega3P is a parallel eigenmode calculation code for accelerator cavities in frequency domain analysis using finite-element methods. In this report, we will present detailed finite-element formulations and resulting eigenvalue problems for lossless cavities, cavities with lossy materials, cavities with imperfectly conducting surfaces, and cavities with waveguide coupling. We will discuss the parallel algorithms for solving those eigenvalue problems and demonstrate modeling of accelerator cavities through different examples.

  11. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    Science.gov (United States)

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  12. Air flow in a collapsing cavity

    CERN Document Server

    Peters, Ivo R; Lohse, Detlef; van der Meer, Devaraj

    2013-01-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disk on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  13. Performance of 3-cell Seamless Niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, Peter K. [JLAB; Ciovati, Gianluigi [JLBA; Jelezov, I. [DESY, Hamburg; Singer, W. [DESY, Hamburg; Singer, X. [DESY, Hamburg

    2009-11-01

    In the last several months we have surface treated and cryogenically tested three TESLA-type 3-cell cavities, which had been manufactured at DESY as seamless assemblies by hydroforming. The cavities were completed at JLab with beam tube/flange assemblies. All three cavities performed very well after they had been post-purified with titanium at 1250C for 3 hrs. The cavities, two of which consisted of an end cell and 2 center cells and one was a center cell assembly, achieved gradients of Eacc = 32 MV/m, 34 MV/m and 35 MV/m without quenches. The performance was limited by the appearance of the “Q-drop” in the absence of field emission. This contribution reports about the various measurements undertaken with these cavities.

  14. Niobium Cavity Electropolishing Modelling and Optimisation

    CERN Document Server

    Ferreira, L M A; Forel, S; Shirra, J A

    2013-01-01

    It’s widely accepted that electropolishing (EP) is the most suitable surface finishing process to achieve high performance bulk Nb accelerating cavities. At CERN and in preparation for the processing of the 704 MHz high-beta Superconducting Proton Linac (SPL) cavities a new vertical electropolishing facility has been assembled and a study is on-going for the modelling of electropolishing on cavities with COMSOL® software. In a first phase, the electrochemical parameters were taken into account for a fixed process temperature and flow rate, and are presented in this poster as well as the results obtained on a real SPL single cell cavity. The procedure to acquire the data used as input for the simulation is presented. The modelling procedure adopted to optimise the cathode geometry, aimed at a uniform current density distribution in the cavity cell for the minimum working potential and total current is explained. Some preliminary results on fluid dynamics is also briefly described.

  15. Plasmon-Enhanced Photoluminescence of an Amorphous Silicon Quantum Dot Light-Emitting Device by Localized Surface Plasmon Polaritons in Ag/SiOx:a-Si QDs/Ag Sandwich Nanostructures

    Directory of Open Access Journals (Sweden)

    Tsung-Han Tsai

    2015-01-01

    Full Text Available We investigated experimentally the plasmon-enhanced photoluminescence of the amorphous silicon quantum dots (a-Si QDs light-emitting devices (LEDs with the Ag/SiOx:a-Si QDs/Ag sandwich nanostructures, through the coupling between the a-Si QDs and localized surface plasmons polaritons (LSPPs mode, by tuning a one-dimensional (1D Ag grating on the top. The coupling of surface plasmons at the top and bottom Ag/SiOx:a-Si QDs interfaces resulted in the localized surface plasmon polaritons (LSPPs confined underneath the Ag lines, which exhibit the Fabry-Pérot resonance. From the Raman spectrum, it proves the existence of a-Si QDs embedded in Si-rich SiOx film (SiOx:a-Si QDs at a low annealing temperature (300°C to prevent the possible diffusion of Ag atoms from Ag film. The photoluminescence (PL spectra of a-Si QDs can be precisely tuned by a 1D Ag grating with different pitches and Ag line widths were investigated. An optimized Ag grating structure, with 500 nm pitch and 125 nm Ag line width, was found to achieve up to 4.8-fold PL enhancement at 526 nm and 2.46-fold PL integrated intensity compared to the a-Si QDs LEDs without Ag grating structure, due to the strong a-Si QDs-LSPPs coupling.

  16. Striped-double cavity fabry-perot interferometers using both glass and air cavities

    Energy Technology Data Exchange (ETDEWEB)

    Perry, S; Steinmetz, L

    1998-07-08

    We have used piezo-driven Fabry-Perot interferometers in the past far many continuous velocity-time measurements of fast moving surfaces. In order to avoid the annoying drift of some of these devices, we have developed and used inexpensive, solid glass, striped etalons with lengths up to 64 mm. Usable apertures are 35 mm by 80 mm with a finess of 25. A roundabout technique was devised for double cavity operation. We built a passive thermal housing for temperature stability, with tilt and height adjustments. We have also developed and used our first fixed etalon air-spaced cavity with a rotatable glass double- cavity insert. The rotation allows the referee cavity fractional order to be adjusted separately from that of the main cavity. It needs very little thermal protection, and eliminates the need for a roundabout scheme for double cavity operation, but is more costly than the solid glass version I

  17. Light-Emitting Pickles

    Science.gov (United States)

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  18. Inkjet-printed vertically emitting solid-state organic lasers

    Science.gov (United States)

    Mhibik, Oussama; Chénais, Sébastien; Forget, Sébastien; Defranoux, Christophe; Sanaur, Sébastien

    2016-05-01

    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically emitting thin-film organic lasers and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 μJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several μm thicknesses are realized, thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm-1 at 550-680 nm. Standard laser dyes like Pyrromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size "printed pixels" of 50 mm2 present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50 μm × 50 μm AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost, and can be used as fully disposable items. This work opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated.

  19. LHC crab cavity final report

    CERN Document Server

    Burt, G et al

    2013-01-01

    A compact 400 MHz SRF crab cavity is designed for LHC. The design has low surface fields, has no hard multipactor barriers and fits within the transverse space available on the HL-LHC. The structure has been designed to have a constant deflecting voltage across the beam-pipe aperture and this has been verified on an aluminium model. The structure includes designs for the input and lower order mode couplers.

  20. Research on Field Emission and Dark Current in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kexin; Li, Yongming; Palczewski, Ari; Geng, Rongli

    2013-09-01

    Field emission and dark current are issues of concern for SRF cavity performance and SRF linac operation. Complete understanding and reliable control of the issue are still needed, especially in full-scale multi-cell cavities. Our work aims at developing a generic procedure for finding an active field emitter in a multi-cell cavity and benchmarking the procedure through cavity vertical test. Our ultimate goal is to provide feedback to cavity preparation and cavity string assembly in order to reduce or eliminate filed emission in SRF cavities. Systematic analysis of behaviors of field emitted electrons is obtained by ACE3P developed by SLAC. Experimental benchmark of the procedure was carried out in a 9-cell cavity vertical test at JLab. The energy spectrum of Bremsstrahlung X-rays is measured using a NaI(Tl) detector. The end-point energy in the X-ray energy spectrum is taken as the highest kinetic electron energy to predict longitudinal position of the active field emitter. Angular location of the field emitter is determined by an array of silicon diodes around irises of the cavity. High-resolution optical inspection was conducted at the predicted field emitter location.

  1. Large-mode enhancement cavities.

    Science.gov (United States)

    Carstens, Henning; Holzberger, Simon; Kaster, Jan; Weitenberg, Johannes; Pervak, Volodymyr; Apolonski, Alexander; Fill, Ernst; Krausz, Ferenc; Pupeza, Ioachim

    2013-05-01

    In passive enhancement cavities the achievable power level is limited by mirror damage. Here, we address the design of robust optical resonators with large spot sizes on all mirrors, a measure that promises to mitigate this limitation by decreasing both the intensity and the thermal gradient on the mirror surfaces. We introduce a misalignment sensitivity metric to evaluate the robustness of resonator designs. We identify the standard bow-tie resonator operated close to the inner stability edge as the most robust large-mode cavity and implement this cavity with two spherical mirrors with 600 mm radius of curvature, two plane mirrors and a round trip length of 1.2 m, demonstrating a stable power enhancement of near-infrared laser light by a factor of 2000. Beam radii of 5.7 mm × 2.6 mm (sagittal × tangential 1/e(2) intensity radius) on all mirrors are obtained. We propose a simple all-reflective ellipticity compensation scheme. This will enable a significant increase of the attainable power and intensity levels in enhancement cavities. PMID:23670017

  2. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    Science.gov (United States)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  3. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications.

    Science.gov (United States)

    Paquet, Romain; Blin, Stéphane; Myara, Mikhaël; Gratiet, Luc Le; Sellahi, Mohamed; Chomet, Baptiste; Beaudoin, Grégoire; Sagnes, Isabelle; Garnache, Arnaud

    2016-08-15

    We report a continuous-wave highly-coherent and tunable dual-frequency laser emitting at two frequencies separated by 30 GHz to 3 THz, based on compact III-V diode-pumped quantum-well surface-emitting semiconductor laser technology. The concept is based on the stable simultaneous operation of two Laguerre-Gauss transverse modes in a single-axis short cavity, using an integrated sub-wavelength-thick metallic mask. Simultaneous operation is demonstrated theoretically and experimentally by recording intensity noises and beat frequency, and time-resolved optical spectra. We demonstrated a >80  mW output power, diffraction-limited beam, narrow linewidth of 45  dB), and low intensity noise class-A dynamics of <0.3% rms, thus opening the path to a compact low-cost coherent GHz to THz source development. PMID:27519080

  4. Electromagnetic SCRF Cavity Tuner

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.; Borissov, E.; Foster, G.W.; Makulski, A.; Pischalnikov, Y.; Khabiboulline, T.; /Fermilab

    2009-05-01

    A novel prototype of SCRF cavity tuner is being designed and tested at Fermilab. This is a superconducting C-type iron dominated magnet having a 10 mm gap, axial symmetry, and a 1 Tesla field. Inside the gap is mounted a superconducting coil capable of moving {+-} 1 mm and producing a longitudinal force up to {+-} 1.5 kN. The static force applied to the RF cavity flanges provides a long-term cavity geometry tuning to a nominal frequency. The same coil powered by fast AC current pulse delivers mechanical perturbation for fast cavity tuning. This fast mechanical perturbation could be used to compensate a dynamic RF cavity detuning caused by cavity Lorentz forces and microphonics. A special configuration of magnet system was designed and tested.

  5. Clamshell microwave cavities having a superconductive coating

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, D. Wayne (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Piel, Helmut (Wuppertal, DE)

    1994-01-01

    A microwave cavity including a pair of opposing clamshell halves, such halves comprised of a metal selected from the group consisting of silver, copper, or a silver-based alloy, wherein the cavity is further characterized as exhibiting a dominant TE.sub.011 mode is provided together with an embodiment wherein the interior concave surfaces of the clamshell halves are coated with a superconductive material. In the case of copper clamshell halves, the microwave cavity has a Q-value of about 1.2.times.10.sup.5 as measured at a temperature of 10K and a frequency of 10 GHz.

  6. Q degradations in superconducting niobium cavities

    International Nuclear Information System (INIS)

    In the past year, several laboratories around the world have observed degradations of the Q value of superconducting niobium cavities made from high thermal conductivity niobium under certain cooldown conditions. Especially under slow cooldown or warmup to temperatures < 200 K of larger systems severe degradations have been reported. A systematic study of the influence of the cooldown speed, warmup conditions, multiple cooldowns and chemical surface treatment on cavity performance of cavities manufactured from niobium of different purity has been conducted. Possible cures such as anodic oxidation are being explored and results of these investigations are reported

  7. Doppler effect for sound emitted by a moving airborne source and received by acoustic sensors located above and below the sea surface.

    Science.gov (United States)

    Ferguson, B G

    1993-12-01

    The acoustic emissions from a propeller-driven aircraft are received by a microphone mounted just above ground level and then by a hydrophone located below the sea surface. The dominant feature in the output spectrum of each acoustic sensor is the spectral line corresponding to the propeller blade rate. A frequency estimation technique is applied to the acoustic data from each sensor so that the Doppler shift in the blade rate can be observed at short time intervals during the aircraft's transit overhead. For each acoustic sensor, the observed variation with time of the Doppler-shifted blade rate is compared with the variation predicted by a simple ray-theory model that assumes the atmosphere and the sea are distinct isospeed sound propagation media separated by a plane boundary. The results of the comparison are shown for an aircraft flying with a speed of about 250 kn at altitudes of 500, 700, and 1000 ft.

  8. Cryogenic rf test of the first plasma etched SRF cavity

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Im, D; Phillips, L; Vušković, L

    2016-01-01

    Plasma etching has a potential to be an alternative processing technology for superconducting radio frequency (SRF) cavities. An apparatus and a method are developed for plasma etching of the inner surfaces of SRF cavities. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used. The single cell cavity is mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. This cavity is then plasma processed. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  9. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  10. Collapse of Non-Axisymmetric Cavities

    OpenAIRE

    Enriquez, Oscar R.; Peters, Ivo R.; Gekle, Stephan; Schmidt, Laura; Versluis, Michel; van der Meer, Devaraj; Lohse, Detlef

    2009-01-01

    A round disk with a harmonic disturbance impacts on a water surface and creates a non-axisymmetric cavity which collapses under the influence of hydrostatic pressure. We use disks deformed with mode m=2 to m=6. For all mode numbers we find clear evidence for a phase inversion of the cavity wall during the collapse. We present a fluid dynamics video showing high speed imaging of different modes, pointing out the characteristic features during collapse.

  11. Inkjet-printed vertically emitting solid-state organic lasers

    CERN Document Server

    Mhibik, Oussama; Forget, Sébastien; Defranoux, Christophe; Sanaur, Sébastien

    2016-01-01

    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically-emitting thin-film organic lasers, and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 uJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several um thicknesses are realized thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm-1 at 550-680 nm. Standard laser dyes like Pyromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size " printed pixels " of 50 mm 2 present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50um x 50um AFM scan. Finally, as the gain capsules fabricated by Inkjet pri...

  12. Rapid cavity prototyping using mode matching and globalised scattering matrix

    CERN Document Server

    Shinton, I

    2009-01-01

    Cavity design using traditional mesh based numerical means (such as the finite element or finite difference methods) require large mesh calculations in order to obtain accurate values and cavity optimisation is often not achieved. Here we present a mode matching scheme which utilises a globalised scattering matrix approach that allows cavities with curved surfaces (i.e. cavities with elliptical irises and or equators) to be accurately simulated allowing rapid cavity prototyping and optimisation to be achieved. Results on structures in the CLIC main

  13. Resonant cavity Vircator driven by a thermionic cathode electron beam gun

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. [Texas Instrument, Dallas, TX (United States)

    1993-12-01

    A resonant cavity Vircator (virtual cathode oscillator) driven by an electron beam emitted from a broad area thermionic cathode has been tested at Textron Defense Systems. Narrow bandwidth (1.0 MHz at the {minus}3 dB level) excitation of the TM{sub 0.23} mode of a cylindrical resonant cavity was observed at a frequency of 986 MHz with a pulse length of 1.2 {mu}s. The single cavity mode excitation is attributed to the constant voltage and current electron beam emitted form the thermionic cathode.

  14. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons

    Science.gov (United States)

    Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

    2014-12-01

    Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL.Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation

  15. Analysis of Reflectance Characteristics of DBR in Vertical Cavity Surface Emitting Lasers%垂直腔面发射激光器DBR结构反射特性分析

    Institute of Scientific and Technical Information of China (English)

    张存善; 张延生; 段晓峰; 赵红东; 刘文楷

    2002-01-01

    采用等效法布里-珀罗(F-P)腔方法对垂直腔面发射激光器(VCSEL)的上、下两层分布布喇格反射(DBR)结构的特性进行了研究,计算并讨论了上、下两层DBR结构在不同对称模型、不同周期数时对微腔结构的反射率的影响.得出反射面DBR结构的周期数为30左右,出光面DBR结构的周期数20左右,易实现激光输出,与实际设计基本一致.

  16. 垂直腔面发射激光器DBR结构参数的优化设计%Optimal design for the structure parameters of DBR in vertical-cavity surface-emitting lasers

    Institute of Scientific and Technical Information of China (English)

    李孝峰; 潘炜; 罗斌; 邓果; 赵峥

    2004-01-01

    采用光学传递矩阵法,研究了生长偏差对分布布拉格反射(DBR)结构反射特性的影响,并探讨了两种DBR结构改进方案.结果表明,周期厚度偏差将使DBR反射谱发生较大偏移,在相位匹配条件下减小高折射层厚度可以降低DBR吸收损耗、提高反射率,反向改变顶层和底层DBR周期厚度可以提高垂直腔面发射激光器边模抑制比.

  17. Cavity spin optodynamics

    CERN Document Server

    Brahms, N

    2010-01-01

    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.

  18. Superconducting RF cavities

    CERN Document Server

    Bernard, Philippe

    1999-01-01

    It was 20 years ago when the research and development programme for LEP superconducting cavities was initiated. It lasted about 10 years. Today, my aim is not to tell you in great detail about the many innovations made thanks to our research, but I would like to point out some milestones in the development of superconducting cavities where Emilio's influence was particularly important.

  19. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  20. Ferrite loaded rf cavity

    International Nuclear Information System (INIS)

    The mechanism of a ferrite-loaded rf cavity is explained from the point of view of its operation. Then, an analysis of the automatic cavity-tuning system is presented using the transfer function; and a systematic analysis of a beam-feedback system using transfer functions is also presented. (author)

  1. Present status of superconducting cavity developments

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Nobuo; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    An R and D work of a superconducting (SC) cavity for the high intensity proton linac has begun at JAERI in collaboration with KEK. The RF field calculation and the structural analysis have been made to determine the cavity shape in the proton energy range between 100 and 1500 MeV. The results indicate the feasibility of a SC proton linac. A vertical test stand with clean room, water rinsing system, cavity evacuation pumping system, cryostat and data acquisition system has been installed to demonstrate the cavity performance. A single cell cavity of {beta}=0.5 has been fabricated and tested at the test stand to obtain the Q-value and the maximum surface electric field strength. The measured Q-values have been found to be high enough for our requirement while the field strength was limited to about 75% of the specification by the multipacting. We describe the preliminary design of the SC cavity, the overview of the vertical test stand and experimental results of the single cell cavity. (author)

  2. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Institute of Scientific and Technical Information of China (English)

    Youhua Jia; Biao Zhong; Jianping Yin

    2008-01-01

    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  3. Flux expulsion variation in SRF cavities

    CERN Document Server

    Posen, S; Romanenko, A; Melnychuk, O; Sergatskov, D A; Martinello, M; Checchin, M; Crawford, A C

    2015-01-01

    Treating a cavity with nitrogen doping significantly increases $Q_0$ at medium fields, reducing cryogenic costs for high duty factor linear accelerators such as LCLS II. N-doping also makes cavities more sensitive to increased residual resistance due to trapped magnetic flux, making it critical to either have extremely effective magnetic shielding, or to prevent flux from being trapped in the cavity during cooldown. In this paper, we report on results of a study of flux expulsion. We discuss possible ways in which flux can be pinned in the inner surface, outer surface, or bulk of a cavity, and we present experimental results studying these mechanisms. We show that grain structure appears to play a key role and that a cavity that expelled flux poorly changed to expelling flux well after a high temperature furnace treatment. We further show that after furnace treatment, this cavity exhibited a significant improvement in quality factor when cooled in an external magnetic field. We conclude with implications for ...

  4. section of an accelerating cavity from LEP

    CERN Multimedia

    This is a section of an accelerating cavity from LEP, cut in half to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  5. Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity.

    Science.gov (United States)

    Paramo, Teresa; East, Alexandra; Garzón, Diana; Ulmschneider, Martin B; Bond, Peter J

    2014-05-13

    Protein cavities and tunnels are critical in determining phenomena such as ligand binding, molecular transport, and enzyme catalysis. Molecular dynamics (MD) simulations enable the exploration of the flexibility and conformational plasticity of protein cavities, extending the information available from static experimental structures relevant to, for example, drug design. Here, we present a new tool (trj_cavity) implemented within the GROMACS ( www.gromacs.org ) framework for the rapid identification and characterization of cavities detected within MD trajectories. trj_cavity is optimized for usability and computational efficiency and is applicable to the time-dependent analysis of any cavity topology, and optional specialized descriptors can be used to characterize, for example, protein channels. Its novel grid-based algorithm performs an efficient neighbor search whose calculation time is linear with system size, and a comparison of performance with other widely used cavity analysis programs reveals an orders-of-magnitude improvement in the computational cost. To demonstrate its potential for revealing novel mechanistic insights, trj_cavity has been used to analyze long-time scale simulation trajectories for three diverse protein cavity systems. This has helped to reveal, respectively, the lipid binding mechanism in the deep hydrophobic cavity of a soluble mite-allergen protein, Der p 2; a means for shuttling carbohydrates between the surface-exposed substrate-binding and catalytic pockets of a multidomain, membrane-proximal pullulanase, PulA; and the structural basis for selectivity in the transmembrane pore of a voltage-gated sodium channel (NavMs), embedded within a lipid bilayer environment. trj_cavity is available for download under an open-source license ( http://sourceforge.net/projects/trjcavity ). A simplified, GROMACS-independent version may also be compiled. PMID:26580540

  6. Hydroforming of elliptical cavities

    Science.gov (United States)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  7. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  8. Micro-cavity lasers with large device size for directional emission

    Science.gov (United States)

    Yan, Chang-ling; Li, Peng; Shi, Jian-wei; Feng, Yuan; Hao, Yong-qin; Zhu, Dongda

    2014-10-01

    Optical micro-cavity structures, which can confine light in a small mode volume with high quality factors, have become an important platform not only for optoelectronic applications with densely integrated optical components, but also for fundamental studies such as cavity quantum electrodynamics and nonlinear optical processes. Micro-cavity lasers with directional emission feature are becoming a promising resonator for the compact laser application. In this paper, we presented the limason-shaped cavity laser with large device size, and fabricated this type of micro-cavity laser with quantum cascade laser material. The micro-cavity laser with large device size was fabricated by using InP based InGaAs/InAlAs quantum cascade lasers material at about 10um emitting wavelength, and the micro-cavity lasers with the large device size were manufactured and characterized with light output power, threshold current, and the far-field pattern.

  9. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Makita, Junki [Old Dominion Univ., Norfolk, VA (United States); Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  10. Synchronized Q-switching of 1064 and 1342 nm laser cavities using a V:YAG saturable absorber

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Janousek, Jiri; Buchhave, Preben

    We prove that pumping of a V:YAG saturable absorber with 1064 nm pulses modulates the transmission of 1342 nm light. We then demonstrate a dual-cavity laser emitting synchronized, Q-switched pulses at 1064 and 1342 nm.......We prove that pumping of a V:YAG saturable absorber with 1064 nm pulses modulates the transmission of 1342 nm light. We then demonstrate a dual-cavity laser emitting synchronized, Q-switched pulses at 1064 and 1342 nm....

  11. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  12. Comparative numerical studies of ion traps with integrated optical cavities

    CERN Document Server

    Podoliak, Nina; Keller, Matthias; Horak, Peter

    2016-01-01

    We study a range of radio-frequency ion trap geometries and investigate the effect of integrating dielectric cavity mirrors on their trapping potential. We aim to identify ion trap and cavity configurations that are best suited for achieving small cavity volumes and thus large ion-photon coupling as required for scalable quantum information networks. In particular, we investigate the trapping potential distortions caused by the dielectric material of the cavity mirrors for different mirror orientations with respect to the trapping electrodes, as well as for mirror misalignment. We also analyze the effect of the mirror material properties such as dielectric constants and surface conductivity, and study the effect of surface charges on the mirrors. The smallest trapping potential distortions are found if the cavities are aligned along the major symmetry axis of the electrode geometries. These cavity configurations also appear to be the most stable with respect to any mirror misalignment.

  13. >8W GaInNAs VECSEL emitting at 615 nm

    Science.gov (United States)

    Leinonen, Tomi; Penttinen, Jussi-Pekka; Korpijärvi, Ville-Markus; Kantola, Emmi; Guina, Mircea

    2015-03-01

    We report a high-power VECSEL emitting LBO crystal for second harmonic generation. The cavity incorporated also an etalon and a birefringent filter for controlling the output wavelength. With the aid of the secondharmonic output and the infrared light leaking out from the laser cavity, the single-pass conversion efficiency of the crystal was estimated to have a value of 0.75%.

  14. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  15. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  16. Hydroforming of Elliptical Cavities

    OpenAIRE

    W. Singer; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-01-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area ...

  17. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  18. Facet Reflection Coefficient of Phase-locked Diode Laser Array in an External Cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C0). Considering the fact that|C0/S| should be larger than unity if the external cavity is effective,and|C1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.

  19. First Test Results of the 4-ROD Crab Cavity

    CERN Document Server

    Ambattu, P; Burt, G; Calaga, R; Capatina, O; Calatroni, S; Ciapala, E; Doherty, D; Ferreira, L; Jensen, E; Hall, B; Lingwood, C; Maesen, P; Mongelluzzo, A; Renaglia, T; Therasse, M

    2013-01-01

    The first compact prototype crab cavity with the 4rod geometry has undergone surface treatment and cold testing. Due to the complex geometry and unique fabrication procedure, RF validation of the field at beyond the nominal operating voltage at a sufficiently high Q0 is an important pre-requisite. Preliminary results of the first cold tests are presented along with cavity performance at different stages of the cavity processing is described.

  20. Hydrodynamic modeling of semi-planing hulls with air cavities

    Directory of Open Access Journals (Sweden)

    Matveev Konstantin I.

    2015-05-01

    Full Text Available High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  1. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  2. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  3. GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation

    Directory of Open Access Journals (Sweden)

    Hugues Maxime

    2011-01-01

    Full Text Available Abstract Hot electron light emission and lasing in semiconductor heterostructure (Hellish devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA. This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

  4. "Fine grain Nb tube for SRF cavities"

    Energy Technology Data Exchange (ETDEWEB)

    Robert E. Barber

    2012-07-08

    Superconducting radio frequency (SRF) cavities used in charged particle linear accelerators, are currently fabricated by deep drawing niobium sheets and welding the drawn dishes together. The Nb sheet has a non-uniform microstructure, which leads to unpredictable cavity shape and surface roughness, and inconsistent "spring-back" during forming. In addition, weld zones cause hot spots during cavity operation. These factors limit linear accelerator performance and increase cavity manufacturing cost. Equal channel angular extrusion (ECAE) can be used to refine and homogenize the microstructure of Nb tube for subsequent hydroforming into SRF cavities. Careful selection of deformation and heat treatment conditions during the processing steps can give a uniform and consistent microstructure in the tube, leading to improved deformability and lower manufacturing costs. Favorable microstructures were achieved in short test samples of RRR Nb tube, which may be particularly suitable for hydroforming into SRF cavity strings. The approach demonstrated could be applicable to microstructure engineering of other tube materials including tantalum, titanium, and zirconium.

  5. The influence of MoO{sub x} gap states on hole injection from aluminum doped zinc oxide with nanoscale MoO{sub x} surface layer anodes for organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Jitendra Kumar; Santos-Ortiz, Reinaldo; Du, Jincheng; Shepherd, Nigel D., E-mail: Nigel.shepherd@unt.edu [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States)

    2015-08-14

    The effective workfunction of Al doped ZnO films (AZO) increased from 4.1 eV to 5.55 eV after surface modification with nanoscale molybdenum sub-oxides (MoO{sub x}). Hole only devices with anodes consisting of 3 nm of MoO{sub x} on AZO exhibited a lower turn-on voltage (1.5 vs 1.8 V), and larger charge injection (190 vs 118 mA/cm{sup 2}) at the reference voltage, compared to indium tin oxide (ITO). AZO devices with 10 nm of MoO{sub x} exhibited the highest workfunction but performed poorly compared to devices with 3 nm of MoO{sub x}, or standard ITO. Ultraviolet photoelectron, X-ray photoelectron, and optical spectroscopies indicate that the 3 nm MoO{sub x} films are more reduced and farther away from MoO{sub 3} stoichiometry than their 10 nm equivalents. The vacancies associated with non-stoichiometry result in donor-like gap states which we assign to partially occupied Mo 4d levels. We propose that Fowler-Nordheim tunneling from these levels is responsible for the reduction in threshold voltage measured in devices with 3 nm of MoO{sub x}. A schematic band diagram is proposed. The thicker MoO{sub x} layers are more stoichiometric and resistive, and the voltage drop across these layers dominates their electrical performance, leading to an increase in threshold voltage. The results indicate that AZO with MoO{sub x} layers of optimal thickness may be potential candidates for anode use in organic light emitting diodes.

  6. Radionuclide distribution in a nuclear test cavity: the baseball event

    International Nuclear Information System (INIS)

    In 1994 two holes were drilled into the cavity formed in 1981 by the underground nuclear test named Baseball. An extensive set of side wall samples were collected in these holes. We have analyzed the samples for tritium and for gamma-emitting radionuclides (both fission products and neutron activation products). It appears that the distribution pattern of these radioactive materials, established at the time of the detonation, have persisted even though the cavity has been under water for 13 years. These findings are discussed in the context of radionuclide migration and groundwater contamination at the Nevada Test Site. (orig.)

  7. Three-dimensional analysis of the pulp cavity on surface models of molar teeth, using X-ray micro-computed tomography

    DEFF Research Database (Denmark)

    Markvart, Merete; Bjørndal, Lars; Darvann, Tron Andre;

    2012-01-01

    understanding of the number of root canals and their configuration. Methods. Eighteen human molars were scanned using X-ray micro-computed tomography. The reconstruction of the surface models had a precision of quantitative color mapping. In order to relate...... in such cases. Finally, an improved understanding of root canal prevalence was reached, when merging well-defined definitions on root morphology and clinical classification systems....

  8. Superconducting spoke cavities for high-velocity applications

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  9. Light Emitting Diodes (LEDs)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  10. Light Emitting Diode (LED)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  11. Direct Numerical Simulation of Automobile Cavity Tones

    Science.gov (United States)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  12. The effect of a cavity on airfoil tones

    Science.gov (United States)

    Schumacher, Karn L.; Doolan, Con J.; Kelso, Richard M.

    2014-03-01

    The presence of a cavity in the pressure surface of an airfoil has been found via experiment to play a role in the production of airfoil tones, which was attributed to the presence of an acoustic feedback loop. The cavity length was sufficiently small that cavity oscillation modes did not occur for most of the investigated chord-based Reynolds number range of 70,000-320,000. The airfoil tonal noise frequencies varied as the position of the cavity was moved along a parallel section at the airfoil's maximum thickness: specifically, for a given velocity, the frequency spacing of the tones was inversely proportional to the geometric distance between the cavity and the trailing edge. The boundary layer instability waves considered responsible for the airfoil tones were only detected downstream of the cavity. This may be the first experimental verification of these aspects of the feedback loop model for airfoil tonal noise.

  13. The ``Q disease'' in Superconducting Niobium RF Cavities

    Science.gov (United States)

    Knobloch, J.

    2003-07-01

    Superconducting niobium cavities can achieve quality (Q0) factors of 1010-1011, more than six orders of magnitude higher than conventional copper cavities. However, to maintain this performance at high accelerating gradient (20 MV/m) the radio-frequency (rf) surface must be damage and dust free. Cavity preparation techniques therefore routinely include a chemical etch or electropolishing. Under certain conditions, these (and other) treatments can contaminate the niobium with hydrogen. Hydrides may then form when the cavity is cooled through 150 K, even if only a few atomic percent hydrogen are present. If hydrides are formed, the cavity quality can degrade substantially (Q disease). A rapid cooldown often inhibits the hydride formation. Other "cures" include degassing cavities at 900 °C to eliminate the hydrogen. A historical review of the Q disease is provided here, with the emphasis being placed on its discovery, symptoms, mechanism, and cures.

  14. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  15. A Coupled Cavity Micro Fluidic Dye Ring Laser

    OpenAIRE

    Gersborg-Hansen, M.; Balslev, S.; Mortensen, N. A.; Kristensen, A.

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass...

  16. Positron emitting pharmaceuticals

    International Nuclear Information System (INIS)

    Positron Emission Tomography (PET) imaging of physiology at the molecular level bridges the gap between laboratory science and clinical medicine by providing the most specific and sensitive means for imaging molecular pathways and interactions in tissues of man. PET-imaging requires the use Positron Emitting Radiopharmaceuticals (PRPs), which are radioactively labeled 'true metabolites' i.e., sugars, amino acids, fatty acids etc., essentially made of H, C, N and O which the cells in the body can metabolize. The PET-isotopes: 11C, 15O, 13N and 18F (instead of H) are cyclotron produced and are short-lived, which places several constraints on the synthesis time for the PRPs, quality control and their clinical use as compared to the conventional 99mTc- and other SPECT-RPs widely used in nuclear medicine. There are large number of published reports showing the utility of several PRPs labeled with 18F (T1/2 = 110 min) and 11C (T1/2 = 20 min). A few PRPs have been labeled with 13N (T1/2 = 10 min). 15O (T1/2 = 2min) is used mostly as H215O, C15 or C15O2. 18F-radiopharmaceuticals can be made at a medical cyclotron facility and sent to PET -imaging centres, which can be reached in a couple of hours. The sensitivity of PET -imaging has encouraged R and D in several other PRPs, labeled with viz., 68Ga (generator produced, T1/2 68 min), 124I (cyclotron, T1/2 4.2 d), 82Rb (generator, T1/2 75s), 64Cu (cyclotron, T1/2 12h), and 94mTc (cyclotron, T1/2 52 min). Due to its relevance in several diseases, particularly cancer, PET-imaging has made major scientific contribution to drug development, particularly for neurological diseases and cancer treatment. (author)

  17. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    International Nuclear Information System (INIS)

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  18. Very Bright and Efficient Microcavity Top-Emitting Quantum Dot Light-Emitting Diodes with Ag Electrodes.

    Science.gov (United States)

    Liu, Guohong; Zhou, Xiang; Chen, Shuming

    2016-07-01

    The microcavity effect in top-emitting quantum dot light-emitting diodes (TQLEDs) is theoretically and experimentally investigated. By carefully optimizing the cavity length, the thickness of the top Ag electrode and the thickness of the capping layer, very bright and efficient TQLEDs with external quantum efficiency (EQE) of 12.5% are demonstrated. Strong dependence of luminance and efficiency on cavity length is observed, in good agreement with theoretical calculation. By setting the normal-direction resonant wavelength around the peak wavelength of the intrinsic emission, highest luminance of 112 000 cd/m(2) (at a driving voltage of 7 V) and maximum current efficiency of 27.8 cd/A are achieved, representing a 12-fold and a 2.1-fold enhancement compared to 9000 cd/m(2) and 13.2 cd/A of the conventional bottom emitting devices, respectively, whereas the highest EQE of 12.5% is obtained by setting the resonant wavelength 30 nm longer than the peak wavelength of the intrinsic emission. Benefit from the very narrow spectrum of QDs and the low absorption of silver electrodes, the potential of microcavity effect can be fully exploited in TQLEDs.

  19. WE-A-17A-01: Absorbed Dose Rate-To-Water at the Surface of a Beta-Emitting Planar Ophthalmic Applicator with a Planar, Windowless Extrapolation Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Riley, A [of Wisconsin Medical Radiation Research Center, Madison, WI (United States); Soares, C [NIST (Retired), Gaithersburg, MD (United States); Micka, J; Culberson, W [University of Wisconsin Medical Radiation Research Center, Madison, WI (United States); DeWerd, L [University of WIMadison/ ADCL, Madison, WI (United States)

    2014-06-15

    Purpose: Currently there is no primary calibration standard for determining the absorbed dose rate-to-water at the surface of β-emitting concave ophthalmic applicators and plaques. Machining tolerances involved in the design of concave window extrapolation chambers are a limiting factor for development of such a standard. Use of a windowless extrapolation chamber avoids these window-machining tolerance issues. As a windowless extrapolation chamber has never been attempted, this work focuses on proof of principle measurements with a planar, windowless extrapolation chamber to verify the accuracy in comparison to initial calibration, which could be extended to the design of a hemispherical, windowless extrapolation chamber. Methods: The window of an extrapolation chamber defines the electrical field, aids in aligning the source parallel to the collector-guard assembly, and decreases the backscatter due to attenuation of lower electron energy. To create a uniform and parallel electric field in this research, the source was made common to the collector-guard assembly. A precise positioning protocol was designed to enhance the parallelism of the source and collector-guard assembly. Additionally, MCNP5 was used to determine a backscatter correction factor to apply to the calibration. With these issues addressed, the absorbed dose rate-to-water of a Tracerlab 90Sr planar ophthalmic applicator was determined using National Institute of Standards and Technology's (NIST) calibration formalism, and the results of five trials with this source were compared to measurements at NIST with a traditional extrapolation chamber. Results: The absorbed dose rate-to-water of the planar applicator was determined to be 0.473 Gy/s ±0.6%. Comparing these results to NIST's determination of 0.474 Gy/s yields a −0.6% difference. Conclusion: The feasibility of a planar, windowless extrapolation chamber has been demonstrated. A similar principle will be applied to developing a

  20. WE-A-17A-01: Absorbed Dose Rate-To-Water at the Surface of a Beta-Emitting Planar Ophthalmic Applicator with a Planar, Windowless Extrapolation Chamber

    International Nuclear Information System (INIS)

    Purpose: Currently there is no primary calibration standard for determining the absorbed dose rate-to-water at the surface of β-emitting concave ophthalmic applicators and plaques. Machining tolerances involved in the design of concave window extrapolation chambers are a limiting factor for development of such a standard. Use of a windowless extrapolation chamber avoids these window-machining tolerance issues. As a windowless extrapolation chamber has never been attempted, this work focuses on proof of principle measurements with a planar, windowless extrapolation chamber to verify the accuracy in comparison to initial calibration, which could be extended to the design of a hemispherical, windowless extrapolation chamber. Methods: The window of an extrapolation chamber defines the electrical field, aids in aligning the source parallel to the collector-guard assembly, and decreases the backscatter due to attenuation of lower electron energy. To create a uniform and parallel electric field in this research, the source was made common to the collector-guard assembly. A precise positioning protocol was designed to enhance the parallelism of the source and collector-guard assembly. Additionally, MCNP5 was used to determine a backscatter correction factor to apply to the calibration. With these issues addressed, the absorbed dose rate-to-water of a Tracerlab 90Sr planar ophthalmic applicator was determined using National Institute of Standards and Technology's (NIST) calibration formalism, and the results of five trials with this source were compared to measurements at NIST with a traditional extrapolation chamber. Results: The absorbed dose rate-to-water of the planar applicator was determined to be 0.473 Gy/s ±0.6%. Comparing these results to NIST's determination of 0.474 Gy/s yields a −0.6% difference. Conclusion: The feasibility of a planar, windowless extrapolation chamber has been demonstrated. A similar principle will be applied to developing a

  1. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  2. Experiment and Results on Plasma Etching of SRF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan [Old Dominion Univ., Norfolk, VA (United States); Im, Do [Old Dominion Univ., Norfolk, VA (United States); Peshl, J. [Old Dominion Univ., Norfolk, VA (United States); Vuskovic, Leposova [Old Dominion Univ., Norfolk, VA (United States); Popovic, Svetozar [Old Dominion Univ., Norfolk, VA (United States); Valente, Anne-Marie [Jefferson Lab., Newport News, VA (United States); Phillips, H. Lawrence [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    The inner surfaces of SRF cavities are currently chemically treated (etched or electropolished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically etched and RF tested to establish a baseline performance. This cavity is plasma etched and RF tested afterwards. The effect of plasma etching on the RF performance of this cavity will be presented and discussed.

  3. Apparatus and method for plasma processing of SRF cavities

    CERN Document Server

    Upadhyay, J; Peshl, J; Bašović, M; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vuškovića, L

    2015-01-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segment...

  4. LEP superconducting cavity

    CERN Document Server

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  5. Melatonin and oral cavity.

    Science.gov (United States)

    Cengiz, Murat İnanç; Cengiz, Seda; Wang, Hom-Lay

    2012-01-01

    While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  6. Melatonin and Oral Cavity

    Directory of Open Access Journals (Sweden)

    Murat İnanç Cengiz

    2012-01-01

    Full Text Available While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  7. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8302397: View from the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138. Giacomo Primadei stands on the left.

  8. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased choic

  9. Laser cavity modelling

    OpenAIRE

    Damakoa, I.; Audounet, J.; Bouyssou, G.; Vassilieff, G.

    1993-01-01

    Two approachs of modelling nonhomogeneous cavity laser are presented. They are based on the beam propagation method which allows the use of fast Fourier transform (FFT). The resulting procedures provide selfconsistent solutions to the Maxwell and diffusion equations. Results are given to illustrate the two methods.


  10. Niobium superconducting cavity

    CERN Multimedia

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  11. Nitrogen doping study in ingot niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kneisel, Peter [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Myneni, Ganapati Rao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Makita, Junki [Old Dominion Univ., Norfolk, VA (United States)

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  12. Implosion of the small cavity and large cavity cannonball targets

    International Nuclear Information System (INIS)

    Recent results of cannonball target implosion research are briefly reviewed with theoretical predictions for GEKKO XII experiments. The cannonball targets are classified into two types according to the cavity size ; small cavity and large cavity. The compression mechanisms of the two types are discussed. (author)

  13. Teleportation of Cavity Field States via Cavity QED

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss two schemes of teleportation of cavity field states. In the first scheme we consider cavities prepared in a coherent state and in the second scheme we consider cavities prepared in a superposition of zero and one Fock states.

  14. Effects of Electric and Magnetic Fields on the Performance of a Superconducting Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati; Peter Kneisel; Jacek Sekutowicz; Waldemar Singer

    2005-05-01

    A special two-cell cavity was designed to obtain surface field distributions suitable for investigation of electric and magnetic field effects on cavity performance. The cavity design and preliminary results were presented in a previous contribution. The bulk niobium cavity was heat-treated in a vacuum furnace at 1250 C to improve thermal conductivity. Three seamless hydroformed Nb/Cu cavities of the same design were fabricated to investigate the role of the electron beam welds located in high field areas. This paper will present RF test results at 2 K for the bulk niobium and one of the seamless cavities.

  15. Analysis of mechanical fabrication experience with CEBAF`s production SRF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Mammosser, J.; Kneisel, P.; Benesch, J.

    1993-06-01

    CEBAF has received a total of 360 five-cell niobium cavities, the largest group of industrially fabricated superconducting cavities so far. An extensive data base exists on the fabrication, surface treatment, assembly and cavity performance parameters. Analysis of the mechanical features of the cavities includes the following: the spread in fabrication tolerances of the cells derived from field profiles of the ``as fabricated`` cavities and the ``as fabricated`` external Q-values of the fundamental power coupler compared to dimensional deviations. A comparison is made of the pressure sensitivity of cavities made of materials from different manufacturers between 760 torr (4.2 K) and 23 torr (2 K).

  16. Silicon Integrated Cavity Optomechanical Transducer

    Science.gov (United States)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  17. Synchronization of Bloch oscillations by a ring cavity.

    Science.gov (United States)

    Samoylova, M; Piovella, N; Robb, G R M; Bachelard, R; Courteille, Ph W

    2015-06-01

    We consider Bloch oscillations of ultracold atoms stored in a one-dimensional vertical optical lattice and simultaneously interacting with a unidirectionally pumped optical ring cavity whose vertical arm is collinear with the optical lattice. We find that the feedback provided by the cavity field on the atomic motion synchronizes Bloch oscillations via a mode-locking mechanism, steering the atoms to the lowest Bloch band. It also stabilizes Bloch oscillations against noise, and even suppresses dephasing due to atom-atom interactions. Furthermore, it generates periodic bursts of light emitted into the counter-propagating cavity mode, providing a non-destructive monitor of the atomic dynamics. All these features may be crucial for future improvements of the design of atomic gravimeters based on recording Bloch oscillations.

  18. Emissive Ion Thruster -EMIT Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A propulsion system is proposed that is based on acceleration of ions emitted from a thin, solid-state electrochemical ceramic membrane. This technology would...

  19. Seamless/bonded niobium cavities

    Science.gov (United States)

    Singer, W.

    2006-07-01

    Technological aspects and performance of seamless cavities produced by hydroforming are presented. Problems related to the fabrication of seamless cavities from bulk niobium are mainly solved thanks to the progress of the last years. The highest achieved accelerating gradients are comparable for both seamless and welded versions (ca. 40 MV/m) Nevertheless further development of seamless cavities is desirable in order to avoid the careful preparation of parts for welding and get reliable statistic. Fabrication of NbCu clad cavities from bimetallic tubes is an interesting option that gives new opportunity to the seamless technique. On the one hand it allows reducing the niobium costs contribution; on the other hand it increases the thermal stability of the cavity. The highest accelerating gradient achieved on seamless NbCu clad single cell cavities (ca. 40 MV/m) is comparable to the one reached on bulk Nb cavities. Fabrication of multi-cell NbCu cavities by hydroforming was recently proven.

  20. Suppressing Spectral Diffusion of the Emitted Photons with Optical Pulses

    CERN Document Server

    Fotso, H F; Awschalom, D D; Dobrovitski, V V

    2016-01-01

    In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem for implementation of the photon-mediated protocols. Here we show that a sequence of optical pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency. We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically. Taking nitrogen-vacancy (NV) center in diamond as an example, we show that only several pulses, with the width of 1 ns, separated by few ns (which is not difficult to achieve) can suppress spectral diffusion. Our method provides a simple and robust way to greatly improve the efficiency of photon-mediated entanglement and/or coupling to photonic cavities for solid-state qubits.

  1. Glucocorticoid-Induced Changes in the Geometry of Osteoclast Resorption Cavities Affect Trabecular Bone Stiffness

    DEFF Research Database (Denmark)

    Vanderoost, Jef; Søe, Kent; Merrild, Ditte Marie Horslev;

    2012-01-01

    . Specifically, we found that in the presence of GC osteoclasts (OCs) cultured on bone slices make more trenchlike cavities, compared to rather round cavities in the absence of GCs, while the total eroded surface remained constant. For this study, we hypothesized that trenchlike cavities affect bone strength...

  2. Changeability of Oral Cavity Environment

    OpenAIRE

    Surdacka, Anna; Strzyka³a, Krystyna; Rydzewska, Anna

    2007-01-01

    Objectives In dentistry, the results of in vivo studies on drugs, dental fillings or prostheses are routinely evaluated based on selected oral cavity environment parameters at specific time points. Such evaluation may be confounded by ongoing changes in the oral cavity environment induced by diet, drug use, stress and other factors. The study aimed to confirm oral cavity environment changeability. Methods 24 healthy individuals aged 20–30 had their oral cavity environment prepared by having p...

  3. Investigation of top-emitting OLEDs using molybdenum oxide as anode buffer layer

    Institute of Scientific and Technical Information of China (English)

    LIN Hui; YU Jun-sheng; ZHANG Wei

    2012-01-01

    A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs).In this paper,Ag-based top-emitting OLEDs are investigated.Ag has the highest reflectivity for visible light among all metals,yet its hole-injection properties are not ideal for anodes of top-emitting OLED.The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag.By introducing the molybdenum oxide,the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.

  4. RF design and characterisation of Indus-1 RF cavity

    International Nuclear Information System (INIS)

    A new capacitive loaded torrespherical RF cavity at 31.613 MHz was designed, developed and tested for INDUS-1 storage ring. The torrespherical shape is chosen because of its compactness and simplicity in fabrication. The new cavity is made of Stainless Steel and its internal surface is plated with copper to reduce the power loss. The cavity is capable of handling 30 kV gap voltage with calculated 0.635 MΩ shunt impedance. This cavity is equipped with three tuners for the frequency tuning during operation with measured tuning range of ±45 kHz with each tuner. Low power RF characterization and cavity tuning was carried out for this RF cavity. New INDUS-1 RF cavity had been tested up to 1.6 kW RF power during high power RF testing. The new RF cavity in INDUS-1 storage ring has been successfully commissioned and beam current up to 150 mA has been stored at 450 MeV. This paper describes the design feature, low power RF characterisation and high power testing of the new INDUS-1 RF cavity. (author)

  5. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  6. Interaction of a vircator microwave generator with an enclosing resonant cavity

    International Nuclear Information System (INIS)

    Interaction between a vircator microwave generator and a resonant cavity is produced by enclosing the virtual cathode inside a right circular cylinder appended to the anode foil. Cavity diameter is chosen to simultaneously minimize the number of resonant modes and to avoid significant perturbation of the virtual cathode formation. By varying the cavity length frequencies corresponding to the TM/sub 01n/ cavity modes are tuned to resonate with the broad band oscillating virtual cathode. The RF fields stored in the resonant cavities feedback on the virtual cathode and improve the kinetic to microwave power conversion efficiency. For each cavity only a single mode is excited; non-resonant frequencies are suppressed. Measured radiation patterns show that TM/sub 011/ mode microwave power extracted radially from the cavity is 1.5 times that with no cavity, and about 4 times that from a non resonant cavity. Resonant cavities suppress non-resonant frequencies decreasing the bandwidth of the emitting radiation by a factor ≥ 5

  7. Substrate Integrated Waveguide Fed Cavity Backed Slot Antenna for Circularly Polarized Application

    OpenAIRE

    Xiao Hong Zhang; Guo Qing Luo; Lin Xi Dong

    2013-01-01

    A novel planar low-profile cavity-backed slot antenna for circularly polarized applications is presented in this paper. The low-profile substrate integrated waveguide (SIW) cavity is constructed on a single PCB substrate with two metal layers on the top and the bottom surfaces and metallized via array through the substrate. The SIW cavity is fed by a SIW transmission line. The two orthogonal degenerate cavities resonance TM110 mode are successfully stimulated and separated. The circularly pol...

  8. Access cavity preparation.

    Science.gov (United States)

    Adams, N; Tomson, P L

    2014-03-01

    Each stage of root canal treatment should be carried out to the highest possible standard. The access cavity is arguably the most important technical stage, as subsequent preparation of the root canal(s) can be severely comprised if this is not well executed. Inadequate access can lead to canals being left untreated, poorly disinfected, difficult to shape and obturate, and may ultimately lead to the failure of the treatment. This paper highlights common features in root canal anatomy and outlines basic principles for locating root canals and producing a good access cavity. It also explores each phase of the preparation in detail and offers suggestions of instruments that have been specifically designed to overcome potential difficulties in the process. Good access design and preparation will result in an operative environment which will facilitate cleaning, shaping and obturation of the root canal system in order to maximise success.

  9. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  10. Microleakage of composite resin restoration in cavities prepared by Er,Cr:YSGG laser irradiation and etched bur cavities in primary teeth.

    Science.gov (United States)

    Hossain, Mozammal; Nakamura, Yukio; Yamada, Yoshishige; Murakami, Yoshiko; Matsumoto, Koukichi

    2002-01-01

    In this in vitro study, the surface alterations of enamel and dentin in cavities prepared by Er,Cr:YSGG laser irradiation was investigated by scanning electron microscopy and compared to the microleakage degree after composite resin restoration with etched bur cavities in human primary teeth. The results confirmed that laser cavity surface facilitated a good adhesion with the restorative materials; the acid etch step can be easily avoided with the laser treatment.

  11. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers.

    Science.gov (United States)

    Yang, Xuyong; Mutlugun, Evren; Dang, Cuong; Dev, Kapil; Gao, Yuan; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-08-26

    Flexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20,000 cd/m(2) and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting.

  12. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Parsons, Gregory [North Carolina State Univ., Raleigh, NC (United States); Williams, Philip [North Carolina State Univ., Raleigh, NC (United States); Oldham, Christopher [North Carolina State Univ., Raleigh, NC (United States); Mundy, Zach [North Carolina State Univ., Raleigh, NC (United States); Dolgashev, Valery [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  13. Crab Cavities for Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; /Daresbury; Shulte, D.; /CERN; Jones, Roger M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; /Fermilab; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  14. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  15. Machining of cavities for travelling wave LINAC

    International Nuclear Information System (INIS)

    A Traveling Wave (T.W.), 2π/3 mode electron linear accelerator of 2856 MHz is under development at CAT for radiation processing of agricultural products. This LINAC consists of a thermionic triode electron gun, TW buncher section and Regular Section. Machining of input/output couplers, regular section cells and disc were carried out using CNC lathe LAL- 2 BT and CNC milling machine BMV - 40. This paper highlights the dimensional and geometrical requirements of cavities, problems encountered during machining of OFE copper and their solutions to achieve high precision with ultrahigh surface finish. The performance of Linac depends upon a number of factors such as operating vacuum level, accuracies of cavity dimensions, materials, and surface finish of cavities comprising the LINAC. Each of these depends upon material and fabrication techniques used for manufacturing OFE copper of higher purity has been used since they offer lower surface resistivity and lower power losses. With CNC tuning and milling machines, the high surface finish has been achieved with higher dimensional and geometrical accuracies

  16. Angular Dependence of the Sharply Directed Emission in Organic Light Emitting Diodes with a Microcavity Structure

    Science.gov (United States)

    Juang, Fuh-Shyang; Laih, Li-Hong; Lin, Chia-Ju; Hsu, Yu-Jen

    2002-04-01

    An optical microcavity structure was used in organic light emitting diodes. We succeeded in fabricating a device with sharply directed emission vertical to an emission surface. The device shows green emission (bright green) at normal position which turns red (bright red) at the 30° position. The angular dependences of the electroluminescence and the emission patterns versus viewing angle in the microcavity OLED were studied. The resonance wavelength λ decreases with viewing angle. The emission peak at 490 nm is directed vertically to the device surface more sharply than that at 632 nm. The microcavity structure shows non-Lambertian emission. The spectra appear more blue off-axis and the intensity of the green-like emission decreases rapidly with increasing viewing angle. A significantly narrow linewidth of 7.4 nm in the 0° direction for the 490 nm peak was observed. The full-widths at half maximum (FWHM) of the green-like spectra are much smaller than those of the red-like ones, indicating better cavity quality.

  17. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  18. Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ridouane, E. H.; Bianchi, M.

    2011-08-01

    Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

  19. Ionization wave propagation on a micro cavity plasma array

    CERN Document Server

    Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas

    2011-01-01

    Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.

  20. High Quality RF resonant cavity for high gradient linacs

    CERN Document Server

    TianXiu-fang,; Deguo, Xun; Kun, Liu; yong, Hou; Jian, Cheng

    2015-01-01

    In traditional accelerating structures, maximum amplitudes of accelerating fields are restricted by Joule heating losses in conducting walls and electron breakdown. In this paper, a composite accelerating cavity utilizing a resonant, periodic structure with a dielectric sphere located at a spherical conducting cavity center is presented. The presence of the dielectric in the central part of the resonance cavity shifts the magnetic fields maximum from regions close to the metallic wall towards the dielectric surface, which strongly lowers the skin effect losses in the wall. By using the existing ultra-low loss Sapphire dielectrics, we make theory analyze and numerical calculations by MATLAB, and further make simulated calculation by CST for comparison. The results show that all field components at the metallic wall are either zero or very small, so one can expect the cavity to be less prone to electrical breakdowns than the traditional cavity. And the quality factor Q can be three orders of magnitude higher th...