WorldWideScience

Sample records for cavity resonators

  1. Geometry-Invariant Resonant Cavities

    CERN Document Server

    Liberal, Iñigo; Engheta, Nader

    2015-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modeling to everyday life devices. The eigenfrequencies of conventional cavities are a function of its geometry, and, thus, the size and shape of a resonant cavity is selected in order to operate at a specific frequency. Here, we demonstrate theoretically the existence of geometry-invariant resonant cavities, i.e., resonators whose eigenfrequency is invariant with respect to geometrical deformations. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, which enable decoupling of the time and spatial field variations. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.

  2. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    Science.gov (United States)

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  3. Parametric resonance in tunable superconducting cavities

    OpenAIRE

    Wustmann, Waltraut; Shumeiko, Vitaly

    2013-01-01

    We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radi...

  4. Resonant-cavity antenna for plasma heating

    International Nuclear Information System (INIS)

    This patent describes a magnetic confinement plasma device having a plasma. The plasma is immersed in a strong magnetic field and confined within an evacuated plasma chamber. A wave launcher for launching electromagnetic waves in the range of frequencies of 10 MHz to 200 MHz energizes and thereby heats the plasma. The wave launcher is spaced-apart from the plasma. The wave launcher comprises: a resonant cavity, including resonant chamber walls for containing electromagnetic fields; connection means connecting the resonant cavity to a transmission line carrying electromagnetic wave energy to the resonant cavity; at least one capacitive reactive element, and at least one inductive reactive element disposed within the resonant cavity; the capacitive reactive member separated from the chamber walls of the resonant cavity by a first predefined gap, with the capacitive reactive member and the chamber walls of the resonant cavity oriented approximately tangential to the strong magnetic field; the capacitive and the inductive reactive elements spaced apart from the plasma a second predetermined distance which at least partially determines the frequency of the launched waves; and the resonant cavity cooperating with the capacitive and the inductive reactive elements so as to launch electromagnetic waves in the range of frequencies, toward the plasma

  5. Cavities for electron spin resonance: predicting the resonant frequency

    Science.gov (United States)

    Colton, John; Miller, Kyle; Meehan, Michael; Spencer, Ross

    Microwave cavities are used in electron spin resonance to enhance magnetic fields. Dielectric resonators (DRs), pieces of high dielectric material, can be used to tailor the resonant frequency of a cavity. However, designing cavities with DRs to obtain desired frequencies is challenging and in general can only be done numerically with expensive software packages. We present a new method for calculating the resonant frequencies and corresponding field modes for cylindrically symmetric cavities and apply it to a cavity with vertically stacked DRs. The modes of an arbitrary cavity are expressed as an expansion of empty cavity modes. The wave equation for D gives rise to an eigenvalue equation whose eigenvalues are the resonant frequencies and whose eigenvectors yield the electric and magnetic fields of the mode. A test against theory for an infinitely long dielectric cylinder inside an infinite cavity yields an accuracy better than 0.4% for nearly all modes. Calculated resonant frequencies are also compared against experiment for quasi-TE011 modes in resonant cavities with ten different configurations of DRs; experimental results agree with predicted values with an accuracy better than 1.0%. MATLAB code is provided at http://www.physics.byu.edu/research/coltonlab/cavityresonance.

  6. Hyperbolic Resonances of Metasurface Cavities

    CERN Document Server

    Keene, David

    2015-01-01

    We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications.

  7. Hyperbolic Resonances of Metasurface Cavities

    OpenAIRE

    Keene, David; Durach, Maxim

    2015-01-01

    We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties wh...

  8. Hyperbolic resonances of metasurface cavities.

    Science.gov (United States)

    Keene, D; Durach, M

    2015-07-13

    We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications. PMID:26191916

  9. Optical cavity resonator in an expanding universe

    Science.gov (United States)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  10. Chemical sensors based on the modification of a resonator cavity

    Science.gov (United States)

    Hennig, Oliver; Mendes, Sergio B.; Fallahi, Mahmoud; Peyghambarian, Nasser

    1999-02-01

    In this paper, we present a chemical sensor based on the modification of an optical resonator: the optical path length of the resonant cavity is changed by the chemical in question, thus shifting its resonant frequency.

  11. Optical cavity resonator in an expanding universe

    CERN Document Server

    Kopeikin, Sergei

    2014-01-01

    We study evolution of frequency of a standing electromagnetic (EM) wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. One builds a local coordinate system in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate. Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to decide whether atomic clocks ticks at the same rate as the clocks based on EM modes of a cavity. To resolve the ambiguity we analyzed the cavity rigidity and the oscillation of its EM modes in an expanding universe by employing the Maxwell equations. We found out that both the size of the cavity and the EM frequency experience an adiabatic drift in conformal coordinates as the universe expands. We set up the oscillation equation f...

  12. Tunable cavity resonator including a plurality of MEMS beams

    Energy Technology Data Exchange (ETDEWEB)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  13. THz parallel-plate waveguides with resonant cavities

    DEFF Research Database (Denmark)

    Reichel, Kimberly S.; Astley, Victoria; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd; Mendis, Rajind; Mittleman, Daniel M.

    2015-01-01

    We characterize the terahertz resonance due to a cavity inside aparallel-plate waveguide, and discuss its use for refractive index sensing. Insidethe waveguide, we observe a broadband field enhancement associated with thisnarrowband resonance. © 2015 OSA.......We characterize the terahertz resonance due to a cavity inside aparallel-plate waveguide, and discuss its use for refractive index sensing. Insidethe waveguide, we observe a broadband field enhancement associated with thisnarrowband resonance. © 2015 OSA....

  14. Cavity-resonator-integrated guided-mode resonance filters

    Science.gov (United States)

    Ura, Shogo; Kintaka, Kenji; Inoue, Junichi; Nishio, Kenzo; Awatsuji, Yasuhiro

    2013-03-01

    A cavity-resonator-integrated guided-mode-resonance filter (CRIGF) consisting of a grating coupler (GC) and a pair of distributed-Bragg-reflectors (DBRs) on a thin-film dielectric waveguide is reviewed. The CRIGF has been recently proposed by the authors to provide a narrow-band reflection spectrum for an incident wave of a small beam width from the free space. A newly developed analysis model for device design with performance simulation is introduced. Curved gratings are utilized to construct a resonator for a small-aperture CRIGF. Design, fabrication and characterization of CRIGFs of 10 μm aperture are described with a resonance wavelength of 850 nm. A Ge:SiO2 guiding core layer was deposited on a SiO2 glass substrate, and GC and DBRs were formed by the electron-beam direct writing lithography. A normal polarization-dependent CRIGF is shown with a obtained narrowband reflection spectrum of 0.2 nm full width at half maximum. A crossed-CRIGF is also discussed to eliminate the polarization dependence. It is successfully demonstrated that measured reflection spectra for TE and TM incident beams were well coincident with each other.

  15. Feedback-free optical cavity with self-resonating mechanism

    Science.gov (United States)

    Uesugi, Y.; Hosaka, Y.; Honda, Y.; Kosuge, A.; Sakaue, K.; Omori, T.; Takahashi, T.; Urakawa, J.; Washio, M.

    2016-05-01

    We demonstrated the operation of a high finesse optical cavity without utilizing an active feedback system to stabilize the resonance. The effective finesse, which is a finesse including the overall system performance, of the cavity was measured to be 394 000 ± 10 000, and the laser power stored in the cavity was 2.52 ± 0.13 kW, which is approximately 187 000 times greater than the incident power to the cavity. The stored power was stabilized with a fluctuation of 1.7%, and we confirmed continuous cavity operation for more than two hours. This result has the potential to trigger an innovative evolution for applications that use optical resonant cavities such as compact photon sources with laser-Compton scattering or cavity enhanced absorption spectroscopy.

  16. Resonance statistics in a microwave cavity with a thin antenna

    OpenAIRE

    Exner, P.; Šeba, P.

    1997-01-01

    We propose a model for scattering in a flat resonator with a thin antenna. The results are applied to rectangular microwave cavities. We compute the resonance spacing distribution and show that it agrees well with experimental data provided the antenna radius is much smaller than wavelengths of the resonance wavefunctions.

  17. High Quality RF resonant cavity for high gradient linacs

    CERN Document Server

    TianXiu-fang,; Deguo, Xun; Kun, Liu; yong, Hou; Jian, Cheng

    2015-01-01

    In traditional accelerating structures, maximum amplitudes of accelerating fields are restricted by Joule heating losses in conducting walls and electron breakdown. In this paper, a composite accelerating cavity utilizing a resonant, periodic structure with a dielectric sphere located at a spherical conducting cavity center is presented. The presence of the dielectric in the central part of the resonance cavity shifts the magnetic fields maximum from regions close to the metallic wall towards the dielectric surface, which strongly lowers the skin effect losses in the wall. By using the existing ultra-low loss Sapphire dielectrics, we make theory analyze and numerical calculations by MATLAB, and further make simulated calculation by CST for comparison. The results show that all field components at the metallic wall are either zero or very small, so one can expect the cavity to be less prone to electrical breakdowns than the traditional cavity. And the quality factor Q can be three orders of magnitude higher th...

  18. Einstein-Maxwell equations for asymmetric resonant cavities

    CERN Document Server

    Frasca, Marco

    2015-01-01

    We analyze the behavior of electromagnetic fields inside a resonant cavity by solving Einstein--Maxwell field equations. It is shown that the modified geometry of space-time inside the cavity due to a propagating mode can affect the propagation of a laser beam. It is seen that components of laser light with a shifted frequency appear originating from the coupling between the laser field and the mode cavity due to gravity. The analysis is extended to the case of an asymmetric resonant cavity taken to be a truncated cone. It is shown that a proper choice of the geometrical parameters of the cavity and dielectric can make the gravitational effects significant for an interferometric setup. This could make possible to realize table-top experiments involving gravitational effects.

  19. High-Q resonant cavities for terahertz quantum cascade lasers.

    Science.gov (United States)

    Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P

    2015-02-01

    We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference. PMID:25836227

  20. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance

    Science.gov (United States)

    Colton, J. S.; Wienkes, L. R.

    2009-03-01

    We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption as microwave frequencies were swept, by performing ODMR on a zinc-doped InP sample, and by performing optically detected NMR on a GaAs sample. The results confirm the suitability of the cavity for ODMR with simultaneous NMR.

  1. Resonance control in SRF cavities at FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, W.; Pischalnikov, Y.; /Fermilab; Scorrano, M.; /INFN, Pisa

    2011-03-01

    The Lorentz force can dynamically detune pulsed Superconducting RF cavities. Considerable additional RF power can be required to maintain the accelerating gradient if no effort is made to compensate for this detuning. Compensation systems using piezo actuators have been used successfully at DESY and elsewhere to control Lorentz Force Detuning (LFD). Recently, Fermilab has developed an adaptive compensation system for cavities in the Horizontal Test Stand, in the SRF Accelerator Test Facility, and for the proposed Project X.

  2. Ray and wave chaos in asymmetric resonant optical cavities

    CERN Document Server

    Nöckel, J U; Noeckel, Jens U.

    1998-01-01

    Optical resonators are essential components of lasers and other wavelength-sensitive optical devices. A resonator is characterized by a set of modes, each with a resonant frequency omega and resonance width Delta omega=1/tau, where tau is the lifetime of a photon in the mode. In a cylindrical or spherical dielectric resonator, extremely long-lived resonances are due to `whispering gallery' modes in which light circulates around the perimeter trapped by total internal reflection. These resonators emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has been predicted to give rise to a universal, frequency-independent broadening of the whispering-gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting frequency-dependent effects charac...

  3. A Resonant Cavity for Single-Shot Emittance Measurement

    CERN Document Server

    Kim, J S; Whittum, D H; Miller, R H; Tantawi, S G; Weidemann, A W

    2002-01-01

    We present a non-invasive, resonant cavity based approach to beam emittance measurement of a shot-to-shot non-circular beam pulse of multi-bunches. In a resonant cavity, desired field components can be enhanced up to Q_L_lambda/pi, where Q_L_lambda is the loaded Q of the resonance mode lambda, when the cavity resonant mode matches with the beam operating frequency. In particular, a Quad-cavity, with its quadrupole mode at beam operating frequency, extracts the beam quad-moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole moment measurements, performed at different betatron phases in a linear transport system, allow us to determine the beam emittance, i.e., the beam size and shape in the beam's phase space. One measurement alone provides the rms-beam size if the beam position is given, for instance, by nearby beam-position-monitors. This paper describes the basic design and analysis of a Quad-cavity beam monitoring system.

  4. Subwavelength metallic cavities with high-Q resonance modes

    International Nuclear Information System (INIS)

    Metallic cavities have been extensively studied to realize small-volume nanocavities and nanolasers. However cavity-resonance quality (Q) factors of nanolasers observed up to now remain low (up to ∼500) due to metal optical absorption. In this paper, we report the observation of highest Q factors of 9000 at low temperature and ∼6000 near room temperature in a metallic cavity with a probe of sub-bandgap emission of Si-doped GaAs. We analyze the temperature dependence of cavity-mode resonance wavelengths and show that the refractive-index term dominates the measured temperature dependence. We also show that this refractive-index term is cavity-mode dependent and the fitting procedure offers a new method to identify cavity modes. We simulate the metallic cavity with finite-element method and attribute the high-Q cavity mode to a whispering gallery optical mode. This mode is shown to have isotropic polarization dependence of the output emission, which is preferable for quantum information applications. (paper)

  5. Cavity QED with atom chips and micro-resonators

    Science.gov (United States)

    Lev, Benjamin; Barclay, Paul; Kerckhoff, Joseph; Painter, Oskar; Mabuchi, Hideo

    2006-05-01

    Cavity QED provides a rich experimental setting for quantum information processing, both in the implementation of quantum logic gates and in the development of quantum networks. Moreover, studies of cavity QED will help elucidate the dynamics of continuously observed open quantum systems with quantum- limited feedback. To achieve these goals in cavity QED, a neutral atom must be tightly confined inside a high-finesse cavity with small mode volume for long periods of time. Microfabricated wires on a substrate---known as an atom chip---can create sufficiently high-curvature magnetic potentials to trap atoms in the Lamb- Dicke regime. The integration of micro-resonators, such as microdisks and photonic bandgap cavities, with atom chips forms a robust and scalable system capable of probing the strong- coupling regime of cavity QED with magnetically trapped atoms. We have recently built an atom-cavity chip utilizing a fiber taper coupled microdisk resonator. This device combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver cold atoms to the small mode volume of the high-Q cavity. We will relate our progress toward detecting single atoms with this device.

  6. Cavity polariton optomechanics: Polariton path to fully resonant dispersive coupling in optomechanical resonators

    OpenAIRE

    Rozas, G.; Bruchhausen, A. E.; Fainstein, A.; Jusserand, B.; Lemaître, A.

    2014-01-01

    Resonant photoelastic coupling in semiconductor nanostructures opens new perspectives for strongly enhanced light-sound interaction in optomechanical resonators. One potential problem, however, is the reduction of the cavity Q-factor induced by dissipation when the resonance is approached. We show in this letter that cavity-polariton mediation in the light-matter process overcomes this limitation allowing for a strongly enhanced photon-phonon coupling without significant lifetime reduction in...

  7. Slow wave cavity resonance in periodic stacks of anisotropic layers

    CERN Document Server

    Figotin, Alex

    2007-01-01

    We consider Fabry-Perot cavity resonance in periodic layered structures involving birefringent layers. Previously we have shown that the presence of birefringent layers with misaligned in-plane anisotropy can dramatically enhance the performance of the photonic-crystal cavity. It allows to reduce the size of a Fabry-Perot resonator by an order of magnitude without compromising on its performance. The key characteristic of the enhanced photonic-crystal cavity is that its Bloch dispersion relation displays a degenerate photonic band edge, rather than only regular ones. This can be realized in specially arranged stacks of misaligned anisotropic layers. On the down side, the presence of birefringent layers results in the Fabry-Perot resonance being coupled only with one (elliptic) polarization component of the incident wave, while the other polarization component is reflected back to space. In this paper we show how a small modification of the periodic layered array can solve the above fundamental problem and pro...

  8. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  9. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  10. Harmonically resonant cavity as a bunch-length monitor

    Science.gov (United States)

    Roberts, B.; Hannon, F.; Ali, M. M.; Forman, E.; Grames, J.; Kazimi, R.; Moore, W.; Pablo, M.; Poelker, M.; Sanchez, A.; Speirs, D.

    2016-05-01

    A compact, harmonically resonant cavity with fundamental resonant frequency 1497 MHz was used to evaluate the temporal characteristics of electron bunches produced by a 130 kV dc high voltage spin-polarized photoelectron source at the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector, delivered at 249.5 and 499 MHz repetition rates and ranging in width from 45 to 150 picoseconds (FWHM). A cavity antenna attached directly to a sampling oscilloscope detected the electron bunches as they passed through the cavity bore with a sensitivity of ˜1 mV /μ A . The oscilloscope waveforms are a superposition of the harmonic modes excited by the beam, with each cavity mode representing a term of the Fourier series of the electron bunch train. Relatively straightforward post-processing of the waveforms provided a near-real time representation of the electron bunches revealing bunch-length and the relative phasing of interleaved beams. The noninvasive measurements from the harmonically resonant cavity were compared to measurements obtained using an invasive RF-deflector-cavity technique and to predictions from particle tracking simulations.

  11. Indirect Coupling between Two Cavity Photon Systems via Ferromagnetic Resonance

    CERN Document Server

    Hyde, Paul; Harder, Michael; Match, Christophe; Hu, Can-Ming

    2016-01-01

    We experimentally realize indirect coupling between two cavity modes via strong coupling with the ferromagnetic resonance in Yttrium Iron Garnet (YIG). We find that some indirectly coupled modes of our system can have a higher microwave transmission than the individual uncoupled modes. Using a coupled harmonic oscillator model, the influence of the oscillation phase difference between the two cavity modes on the nature of the indirect coupling is revealed. These indirectly coupled microwave modes can be controlled using an external magnetic field or by tuning the cavity height. This work has potential for use in controllable optical devices and information processing technologies.

  12. Resonance frequencies of a cavity containing a compressible viscous fluid

    Science.gov (United States)

    Conca, C.; Planchard, J.; Vanninathan, M.

    1993-03-01

    The aim of this paper is to study the resonance spectrum of a cavity containing a compressible viscous fluid. This system admits a discrete infinite sequence of eigenvalues whose real parts are negative, which is interpreted as the damping effect introduced by viscosity. Only a finite number of them have non-zero imaginary parts and this number depends on viscosity; a simple criterion is given for their position in the complex plane. The case of a cavity containing an elastic mechanical system immersed in the fluid is also examined; from a qualitative point of view, the nature of the resonance spectrum remains unchanged.

  13. Complex dielectric constant measurements by the microwave resonant cavities method

    International Nuclear Information System (INIS)

    A complex dielectric constant measurement method for solids, using cylindrical and parallelipipedic microwave resonant cavities is presented. This method provides high accuracy when calculating the value of epsilonsup(*) for dielectric, semiconductor, ferroelectric and ferromagnetic materials. The paper contains a short theoretical approach, the description of the experimental method, as well as some experimental results obtained in the frequency band (19500 MHz). (author)

  14. Temperature compensation of resonant cavities with a teflon post

    OpenAIRE

    Bará Temes, Francisco Javier

    1982-01-01

    The negative temperature coefficient of E for teflon is used to compensate the frequency drift of a metal cavity due to thermal expansion. An experimental X-band transmission resonator was compensated in this way with a 10 mm teflon post. The results are considered of great interest for the compensation of waveguide millimiter wave oscillators. Peer Reviewed

  15. Dielectric microwave resonators in TE(011) cavities for electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Mett, Richard R; Sidabras, Jason W; Golovina, Iryna S; Hyde, James S

    2008-09-01

    The coupled system of the microwave cylindrical TE(011) cavity and the TE(01delta) dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE(01delta) mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Lambda for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell's equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Lambda than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE(01delta) mode dielectric resonator alone, Lambda congruent with40 G/W(1/2) at X-band for a KTaO(3) crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone. PMID:19044441

  16. Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

    2008-09-01

    The coupled system of the microwave cylindrical TE011 cavity and the TE01δ dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01δ mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Λ for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell's equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Λ than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01δ mode dielectric resonator alone, Λ ≅40 G/W1/2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone.

  17. Cavity optomechanics on a microfluidic resonator

    CERN Document Server

    Kim, Kyu Hyun; Lee, Wonsuk; Liu, Jing; Tomes, Matthew; Fan, Xudong; Carmon, Tal

    2012-01-01

    Light pressure is known to excite or cool vibrations in microresonators for sensing quantum-optomechanical effects and we now show that it can be explored for investigations with liquids. Currently, optical resonances are utilized to detect analytes in liquids. However, optomechanical oscillations have never been excited when devices were immersed in liquid. This is because replacing the surrounding air with water inherently increases the acoustical impedance and the associated acoustical-radiation losses. Here we fabricate a hollow optomechanical bubble resonator with water inside, and use light pressure to excite 8 MHz - 140 MHz vibrations with 1 mW optical-threshold power and >2000 mechanical Q, constituting the first time that any microfluidic system is optomechanically actuated. Bridging between optomechanics and microfluidics will enable recently developed capillaries and on-chip bubbles to vibrate via optical excitation; and allow optomechanics with non-solid material phases including bio-analytes, sup...

  18. Cavity enhanced optical processes in microsphere resonators

    OpenAIRE

    Mazzei, Andrea

    2008-01-01

    Diese Arbeit beschreibt eine ausfŸhrliche Untersuchung der physikalischen Eigenschaften von Mikrokugelresonatoren aus Quarzglas. Diese Resonatoren unterstŸtzen sogennante whispering-gallery Moden (WGM), die GŸten so hoch bis 109 bieten. Als experimentelle Hilfsmittel wurden ein Nahfeld- und ein Konfokalmikroskop benutzt, um die Struktur der Moden bezŸglich der Topographie des Resonators eindeutig zu identifizieren, oder um einzelne Quantenemitter zu detektieren und anzuregen. Die resonante...

  19. Cylindrical Resonator Utilizing a Curved Resonant Grating as a Cavity Wall

    Directory of Open Access Journals (Sweden)

    Hirohito Yamada

    2012-02-01

    Full Text Available A thin-film grating on a curved substrate functions as a highly reflective and wavelength sensitive mirror for a diverging wave that has the same curvature as the substrate. In this paper we propose a cylindrical cavity surrounded by a curved resonant grating wall, and describe its resonance characteristics. Through finite-difference time-domain (FDTD simulation we have clarified that this type of cavity supports two resonance modes: one is confined by Fresnel reflection and the other by resonance reflection of the wall. We have also demonstrated that the latter mode exhibits a Q factor several orders of magnitude higher than that of the former mode.

  20. Classical and wave chaos in asymmetric resonant cavities

    Science.gov (United States)

    Stone, A. Douglas

    2000-12-01

    Deformed cylindrical and spherical dielectric optical resonators are analyzed from the perspective of non-linear dynamics and quantum chaos theory. In the short-wavelength limit such resonators behave like billiard systems with non-zero escape probability due to refraction. A ray model is introduced to predict the resonance lifetimes and emission patterns from such a cavity. A universal wavelength-independent broadening is predicted and found for large deformations of the cavity, however there are significant wave-chaotic corrections as well. Highly directional emission is predicted from chaotic “whispering gallery” modes for index of refraction less than two. The detailed nature of the emission pattern can be understood from the nature of the phase space flow in the billiard, and a dramatic variation of this pattern with index of refraction is found due to an effect called “dynamical eclipsing”. Semiconductor resonators of this type also show highly directional emission and high output power but from different modes associated with periodic orbits. A semiclassical approach to these modes is briefly reviewed. These asymmetric resonant cavities (ARCs) show promise as components in future integrated optical devices.

  1. Process for treatment of inside surface of superconducting cavities (cavity resonators)

    International Nuclear Information System (INIS)

    A cavity of an acceleration unit built up from one or more individual resonators is filled to about half way with ceramic grinding bodies and with water, and turned slowly at about 9 rpm. The rotation is maintained for about a week. The inner surface of the cavity is thus smoothed and freed of faults, so that the cavity can be used without difficulty in superconducting operation with improved properties. By this simple process, success is achieved in increasing the practically possible longitudinal field strength for acceleration by at least a factor of 2 or more, i.e. one can save at least half the acceleration units. To remove grinding wear, the cavity is also filled with an acid mixture of about 1 part of HF, 1 part of HNO3 and 6 parts of H3PO4 and cleaned, and the surface is etched. (orig.)

  2. Resonant cavity spectroscopy of radical species

    Science.gov (United States)

    Ritchie, Grant

    2015-04-01

    Photo-oxidation in the troposphere is highly complex, being initiated by short lived radical species, in the daytime dominated by the hydroxyl radical, OH, with contributions from Cl atoms, and at night by either NO3 radicals or ozone. Chemical oxidation cycles, which couple OH, HO2 and peroxy (RO2) radical species, remove primary emitted trace species which are harmful to humans or to the wider environment. However, many of the secondary products produced by atmospheric photo-oxidation are also directly harmful, for example O3, NO2, acidic and multifunctional species, many of which are of low volatility and are able to partition effectively to the condensed phase, creating secondary organic aerosol (SOA), which contributes a significant fraction of tropospheric aerosol, with associated impacts on climate and human health. The accuracy of atmospheric models to predict these impacts necessarily requires accurate knowledge of the chemical oxidative cycling. Two of the simplest intermediates are the hydroperoxy radical, HO2, and the smallest and dominant organic peroxy radical, CH3O2, formed directly by the reactions of OH with CO/O2 and CH4/O2, respectively, and indirectly following the oxidation of larger VOCs. OH, HO2 and RO2 (collectively known as ROx) are rapidly cycled, being at the centre of tropospheric oxidation, and hence are some of the best targets for models to compare with field data. The reaction of HO2 and RO2 with NO constitutes the only tropospheric in-situ source of O3. Despite their importance, neither HO2 nor CH3O2 is measured directly in the atmosphere. HO2 is only measured indirectly following its conversion to OH and CH3O2 is not measured at all. Typically only the sum of RO2 radicals is measured, making no distinction between different organic peroxy radicals. This contribution will detail recent studies using (i) optical feedback cavity enhanced absorption spectroscopy with both quantum and inter-band cascade lasers in the mid-IR, and (ii

  3. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Pfenning, Andreas, E-mail: Andreas.Pfenning@physik.uni-wuerzburg.de; Hartmann, Fabian; Langer, Fabian; Höfling, Sven; Kamp, Martin; Worschech, Lukas [Technische Physik, Physikalisches Institut, Universität Würzburg and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany)

    2014-03-10

    An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3 μm. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29 μm. At resonance a high sensitivity of 3.1×10{sup 4} A/W and a response up to several pA per photon at room temperature were found.

  4. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths

    International Nuclear Information System (INIS)

    An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3 μm. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29 μm. At resonance a high sensitivity of 3.1×104 A/W and a response up to several pA per photon at room temperature were found

  5. High-Q 3D coaxial resonators for cavity QED

    Science.gov (United States)

    Yoon, Taekwan; Owens, John C.; Naik, Ravi; Lachapelle, Aman; Ma, Ruichao; Simon, Jonathan; Schuster, David I.

    Three-dimensional microwave resonators provide an alternative approach to transmission-line resonators used in most current circuit QED experiments. Their large mode volume greatly reduces the surface dielectric losses that limits the coherence of superconducting circuits, and the well-isolated and controlled cavity modes further suppress coupling to the environment. In this work, we focus on unibody 3D coaxial cavities which are only evanescently coupled and free from losses due to metal-metal interfaces, allowing us to reach extremely high quality-factors. We achieve quality-factor of up to 170 million using 4N6 Aluminum at superconducting temperatures, corresponding to an energy ringdown time of ~4ms. We extend our methods to other materials including Niobium, NbTi, and copper coated with Tin-Lead solder. These cavities can be further explored to study their properties under magnetic field or upon coupling to superconducting Josephson junction qubits, e.g. 3D transmon qubits. Such 3D cavity QED system can be used for quantum information applications, or quantum simulation in coupled cavity arrays.

  6. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator

    International Nuclear Information System (INIS)

    A coupled plasmonic waveguide resonator system which can produce sharp and asymmetric Fano resonances was proposed and analyzed. Two Fano resonances are induced by the interactions between the narrow discrete whispering gallery modes in a plasmonic square cavity resonator and the broad spectrum of the metal–insulator–metal stub resonator. The relative peak amplitudes between the 1st and 2nd order Fano resonances can be adjusted by changing the structure parameters, such as the square cavity size, the stub size and the center-to-center distance between the square cavity and the stub resonators. And the 1st order Fano resonant peak, which is a standing-wave mode, will split into two resonant peaks (one standing-wave mode and one traveling-wave mode) when it couples with the 2nd Fano resonance. Also, the potential of the proposed Fano system as an integrated slow-light device and refractive index sensor was investigated. The results show that a maximum group index of about 100 can be realized, and a linear refractive index sensitivity of 938 nm/RIU with a figure of merit of about 1.35 × 104 can be obtained. (paper)

  7. Observation of generalized optomechanical coupling and cooling on cavity resonance

    CERN Document Server

    Sawadsky, Andreas; Nia, Ramon Moghadas; Tarabrin, Sergey P; Khalili, Farid Ya; Hammerer, Klemens; Schnabel, Roman

    2014-01-01

    Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g. via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative optomechanical coupling, with a macroscopic (1.5mm)^2-sized silicon nitride (SiN) membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection.

  8. Hybrid III-V/SOI resonant cavity enhanced photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol;

    2016-01-01

    as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid......A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated...... RCE-PD sample has been fabricated by heterogeneously integrating an InP-based material onto a silicon-on-insulator wafer and has been characterized, which shows a clear enhancement in photo-current at the designed wavelength. This indicates that the HG reflector provides a field enhancement sufficient...

  9. Conditioning for the RF Resonant Cavities of the CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    YIN; Zhi-guo; JI; Bin; ZHAO; Zhen-lu; FU; Xiao-liang; LEI; Yu; WANG; Chuan; YANG; Jian-jun; WEI; Jun-yi; LI; Peng-zhan; LV; Yin-long; ZHANG; Tian-jue; GE; Tao; CAI; Hong-ru; PAN; Gao-feng; ZHU; Peng-fei; AN; Shi-zhong; XING; Jian-sheng; YIN; Meng; CAO; Lei; ZHANG; Su-ping; WEN; Li-peng; HOU; Shi-gang; WU; Long-cheng; LIU; Geng-shou; LI; Zhen-guo; CUI; Bai-yao; DONG; Huan-jun

    2013-01-01

    The CYCIAE-100 cyclotron developed by the BRIF project group had finished installation of its main equipments and parts in 2012.The field mapping of the main magnet has been done afterward.In Dec.13th,2012,the vacuum of the main chamber reached 4×10-7 mbar,conditioning for the RF resonant cavities were started shortly after.When the cyclotron is opened the interior surface is exposed to air and

  10. Mechanical design of RFQ resonator cavities in the 400-MHz frequency range

    International Nuclear Information System (INIS)

    Many RFQ resonator-cavity design concepts have been proposed in the 400-MHz frequency range. Los Alamos has been evaluating RFQ resonator-cavity designs that provide acceptable combinations of necessary mechanical features, easy tunability and long-term stability. Four RFQ resonator test cavities have been fabricated to test rf joints between the RFQ vanes and the resonator cavity. Two of these joints (the C-seal and the rf clamp-joint) allow vane movement for tuning. These test data, and the design of the present generation of RFQ resonator cavities, are presented

  11. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    Directory of Open Access Journals (Sweden)

    Hans Zogg

    2008-09-01

    Full Text Available Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA.

  12. Cavity-assisted backaction cooling of mechanical resonators

    International Nuclear Information System (INIS)

    We analyze the quantum regime of the dynamical backaction cooling of a mechanical resonator assisted by a driven harmonic oscillator (cavity). Our treatment applies to both optomechanical and electromechanical realizations and includes the effect of thermal noise in the driven oscillator. In the perturbative case, we derive the corresponding motional master equation using the Nakajima-Zwanzig formalism and calculate the corresponding output spectrum for the optomechanical case. Then we analyze the strong optomechanical coupling regime in the limit of small cavity linewidth. Finally, we consider the steady state covariance matrix of the two coupled oscillators for arbitrary input power and obtain an analytical expression for the final mechanical occupancy. This is used to optimize the drive's detuning and input power for an experimentally relevant range of parameters that includes the resolved-sideband-limit ground state cooling regime.

  13. Resonant cavity operation of a virtual cathode oscillator

    International Nuclear Information System (INIS)

    Gigawatt level virtual cathode sources have been proposed for several applications. These include microwave weapons and drivers for high-energy particle accelerators. Both of these require a microwave source with very high power output that is controllable in frequency and phase. A conventional virtual cathode oscillator will not meet these requirements. The addition of a resonant cavity surrounding the oscillating virtual cathode either alone or pumped with a low-power injection signal, causing it to operate as an amplifier, could greatly influence the performance of this type of source making it more practical for accelerator and weapon applications. The progress on an experiment to test these concepts will be discussed

  14. Dynamics of a Josephson Array in a Resonant Cavity

    OpenAIRE

    Almaas, E.; Stroud, D.

    2001-01-01

    We derive dynamical equations for a Josephson array coupled to a resonant cavity by applying the Heisenberg equations of motion to a model Hamiltonian described by us earlier [Phys. Rev. B {\\bf 63}, 144522 (2001); Phys. Rev. B {\\bf 64}, 179902 (E)]. By means of a canonical transformation, we also show that, in the absence of an applied current and dissipation, our model reduces to one described by Shnirman {\\it et al} [Phys. Rev. Lett. {\\bf 79}, 2371 (1997)] for coupled qubits, and that it co...

  15. QND Measurements in a Resonant Cavity-QED System

    Science.gov (United States)

    Chen, Zilong; Bohnet, Justin G.; Dai; Thompson, James K.

    2010-03-01

    We demonstrate QND measurements on an ensemble of 10^6 ^87Rb atoms. Quantum state-dependent populations are determined at the projection noise level by measurements of the collective Vacuum Rabi Splitting for the resonantly coupled atom-cavity system. The splitting is measured by simultaneously scanning the frequency of two probes across the two transmission resonances and phase coherently detecting the full IQ response of the reflected electric fields. Measurement back-action imposes AC Stark shifts on the atoms, resulting in a reduction of the Ramsey fringe contrast due to inhomogeneity in the probe-atom coupling. We show that the spin-echo sequences that will be needed to achieve atomic spin-squeezing on the Rb clock transition also strongly suppress these AC stark shifts. The remaining probe-induced decoherence is close to the fundamental limit imposed by free space scattering of the probe photons.

  16. Chaotic light a theory of asymmetric resonant cavities

    CERN Document Server

    Nöckel, J U

    1996-01-01

    Spherical and cylindrical dielectric cavities support high Q whispering gallery modes due to total internal reflection of the trapped light. When such a cavity is deformed smoothly the ray dynamics of these modes becomes chaotic in a manner determined by the KAM theory of classical hamiltonian dynamics. The universal properties of the ray dynamics predicted by KAM theory allow a general understanding of the whispering gallery modes of such asymmetric resonant cavities (ARCs). This theory combined with simulations of the non-linear map describing the ray motion provides the basis for a ray-optics model of the Q-spoiling of these whispering gallery modes for large deformations (greater than 1% of the radius). The model predicts a sharp onset as a function of deformation for significant Q-spoiling of these modes and highly directional emission above this threshold. Solution of the wave equation for typical whispering gallery modes confirms the qualitative behavior predicted by the ray-optics model even when the ...

  17. Plasmonic mediated nucleation of resonant nano-cavities in metallic layers

    OpenAIRE

    Karpov, V. G.; Nardone, M.; Subashiev, A. V.

    2012-01-01

    We predict plasmonic mediated nucleation of pancake shaped resonant nano-cavities in metallic layers that are penetrable to laser fields. The underlying physics is that the cavity provides a narrow plasmonic resonance that maximizes its polarizability in an external field. The resonance yields a significant energy gain making the formation of such cavities highly favorable. Possible implications include nano-optics and generation of the dielectric bits in conductive films that underlie the ex...

  18. Interaction of a vircator microwave generator with an enclosing resonant cavity

    International Nuclear Information System (INIS)

    Interaction between a vircator microwave generator and a resonant cavity is produced by enclosing the virtual cathode inside a right circular cylinder appended to the anode foil. Cavity diameter is chosen to simultaneously minimize the number of resonant modes and to avoid significant perturbation of the virtual cathode formation. By varying the cavity length frequencies corresponding to the TM/sub 01n/ cavity modes are tuned to resonate with the broad band oscillating virtual cathode. The RF fields stored in the resonant cavities feedback on the virtual cathode and improve the kinetic to microwave power conversion efficiency. For each cavity only a single mode is excited; non-resonant frequencies are suppressed. Measured radiation patterns show that TM/sub 011/ mode microwave power extracted radially from the cavity is 1.5 times that with no cavity, and about 4 times that from a non resonant cavity. Resonant cavities suppress non-resonant frequencies decreasing the bandwidth of the emitting radiation by a factor ≥ 5

  19. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiyuan; Rogers, Steven [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Jiang, Wei C. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2014-10-13

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  20. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    CERN Document Server

    Lu, Xiyuan; Jiang, Wei C; Lin, Qiang

    2014-01-01

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  1. Quantum nondemolition measurement of photon-number distribution for a weak cavity field with resonant atoms

    Institute of Scientific and Technical Information of China (English)

    郑仕标

    2003-01-01

    We propose a quantum nondemolition measurement of the photon-number distribution for a weak cavity field with no more than two photons. The scheme is based on the resonant interaction of atoms with the cavity field, and thus the required interaction time is much shorter than that using dispersive interaction. This is important in view of decoherence. Our scheme can also be used to generate even and odd coherent states for a weak cavity field with resonant atoms.

  2. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB. PMID:26974073

  3. Realization of a Double-Barrier Resonant Tunneling Diode for Cavity Polaritons

    OpenAIRE

    Nguyen, Hai Son; Vishnevsky, Dmitry; Sturm, Chris; Tanese, Dimitrii; Solnyshkov, Dmitry; Galopin, Elisabeth; Lemaître, Aristide; Sagnes, Isabelle; Amo, Alberto; Malpuech, Guillaume; Bloch, Jacqueline

    2013-01-01

    We report on the realization of a double barrier resonant tunneling diode for cavity polaritons, by lateral patterning of a one-dimensional cavity. Sharp transmission resonances are demonstrated when sending a polariton flow onto the device. We use a non-resonant beam can be used as an optical gate and control the device transmission. Finally we evidence distortion of the transmission profile when going to the high density regime, signature of polariton-polariton interactions.

  4. Fano resonances control and slow light with Bose-Einstein Condensate in a cavity setup

    CERN Document Server

    Akram, M Javed; Khan, M Miskeen; Saif, Farhan

    2015-01-01

    We theoretically investigate the probe field transmission in an optomechanical cavity setup with Bose-Einstein Condensate (BEC), where the standing wave that forms in the cavity results in an one-dimensional optical lattice potential. We report that in the presence of atom-atom interactions, the coupling of the cavity field with condensate (Bogoliubov mode), the cavity field fluctuations and the condensate fluctuations leads to the emergence of the tunable Fano resonances in the probe absorption spectrum. Within the experimental reach, based on analytical and numerical simulations, we find that the optomechanical system with BEC provides great flexibility to tune the Fano resonances, as the width of the resonance is controllable by the coupling field and additionally, with the atom-atom interaction. Moreover, Fano resonances are analyzed for the fluctuations of the cavity field and the fluctuations of the condensate with finite atomic two-body interaction, which shows an excellent compatibility with the origi...

  5. A tuneable doubly stacked dielectric resonator housed in an intact TE 102 cavity for electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Mattar, Saba M.; Emwas, Abdul H.

    2003-01-01

    An EPR resonator is constructed by inserting a pair of dielectric ceramic rings in an unmodified rectangular TE 102 cavity. It is tuneable over the range of 8.0-10.0 GHz. Therefore, existing EPR cavities can be easily converted to resonators with superior signal-to-noise ratios that are at least 24 times larger than the original ones in this extended frequency range. The resonator's performance is tested using DPPH, TEMPONE, MnO and Cu 2+ complexes and displays excellent resolution and sensitivity. Thus EPR spectra of small paramagnetic organic and inorganic samples and spin labeled biomolecules may be obtained without resorting to loop gap resonators.

  6. A microwave cavity resonator based sensor for the detection of carbon monoxide in hydrogen

    International Nuclear Information System (INIS)

    A resonant-cavity based microwave differential technique is proposed for the detection of carbon monoxide (CO) in hydrogen in the low-ppm range. The determination of the contaminant content is related to the shift in the resonant frequency of a measuring cavity compared to a reference cavity. We expect a CO-detection threshold of about 60 ppm in hydrogen at atmospheric pressure. Accordingly, preliminary measurements carried out when both cavities are filled with helium as a test gas show an equivalent detection threshold around 100 ppm of CO, which compares well with theoretical predictions. (author)

  7. Preparation of W state in resonant bimodal cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a Ⅴ-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the second cavity,the four cavity modes are prepared in the W state. On the other hand we can obtain three-atom W states by sending three Ⅴ-type three-level atoms through a two-mode cavity in turn. The present scheme does not require conditional measurement, and it is easily generalized to preparing 2n-mode W states and n-atom W states.

  8. Enhanced Performance of Substrate Integrated Waveguide Bandstop Filter using Circular and Radial Cavity Resonator

    OpenAIRE

    M. N. Husain; G. S. Tan; K.S. Tan

    2014-01-01

    Circular and Radial SIW cavity resonators are proposed to enhance the performance of SIW bandstop filter. Prior to this research work, rectangular cavity resonator was used to produce bandstop response. The design of the circular and radial SIW bandstop filters are done by directly coupling circular and radial cavity resonators to the SIW line. The SIW bandstop filters are designed to operate at X-band and implemented on Rogers RO4350 substrate with a thickness of 0.508mm. Simulated and measu...

  9. Enhanced Performance of Substrate Integrated Waveguide Bandstop Filter using Circular and Radial Cavity Resonator

    Directory of Open Access Journals (Sweden)

    M. N. Husain

    2014-05-01

    Full Text Available Circular and Radial SIW cavity resonators are proposed to enhance the performance of SIW bandstop filter. Prior to this research work, rectangular cavity resonator was used to produce bandstop response. The design of the circular and radial SIW bandstop filters are done by directly coupling circular and radial cavity resonators to the SIW line. The SIW bandstop filters are designed to operate at X-band and implemented on Rogers RO4350 substrate with a thickness of 0.508mm. Simulated and measured results show good bandstop responses and thus useful in microwave bandstop filter design.

  10. Resonant-frequency discharge in a multi-cell radio frequency cavity

    International Nuclear Information System (INIS)

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal

  11. Observation of Spatiotemporal Chaos Induced by a Cavity Soliton in a Fiber Ring Resonator

    CERN Document Server

    Anderson, Miles; Coen, Stephane; Erkintalo, Miro; Murdoch, Stuart G

    2016-01-01

    We report on the experimental observation of temporal cavity soliton destabilization via spatiotemporal chaos in a coherently-driven optical fiber ring resonator. Numerical simulations and theoretical analyses are in good agreement with experimental observations.

  12. Detecting body cavity bombs with nuclear quadrupole resonance

    Science.gov (United States)

    Collins, Michael London

    Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

  13. A model for flow-induced noise of Helmholtz resonator-like cavities

    NARCIS (Netherlands)

    Golliard, J.

    2003-01-01

    This paper presents a single prediction model for the noise generated by a turbulent boundry layer flow grazing on the opening of a Helmholtz-resonator like cavity. The prediction model is validated by comparison with an experimental study. The measured spectra inside the cavity are correctly predic

  14. Realization of a double-barrier resonant tunneling diode for cavity polaritons.

    Science.gov (United States)

    Nguyen, H S; Vishnevsky, D; Sturm, C; Tanese, D; Solnyshkov, D; Galopin, E; Lemaître, A; Sagnes, I; Amo, A; Malpuech, G; Bloch, J

    2013-06-01

    We report on the realization of a double-barrier resonant tunneling diode for cavity polaritons, by lateral patterning of a one-dimensional cavity. Sharp transmission resonances are demonstrated when sending a polariton flow onto the device. We show that a nonresonant beam can be used as an optical gate and can control the device transmission. Finally, we evidence distortion of the transmission profile when going to the high-density regime, signature of polariton-polariton interactions. PMID:25167519

  15. Realization of a Double-Barrier Resonant Tunneling Diode for Cavity Polaritons

    Science.gov (United States)

    Nguyen, H. S.; Vishnevsky, D.; Sturm, C.; Tanese, D.; Solnyshkov, D.; Galopin, E.; Lemaître, A.; Sagnes, I.; Amo, A.; Malpuech, G.; Bloch, J.

    2013-06-01

    We report on the realization of a double-barrier resonant tunneling diode for cavity polaritons, by lateral patterning of a one-dimensional cavity. Sharp transmission resonances are demonstrated when sending a polariton flow onto the device. We show that a nonresonant beam can be used as an optical gate and can control the device transmission. Finally, we evidence distortion of the transmission profile when going to the high-density regime, signature of polariton-polariton interactions.

  16. Perturbing Open Cavities: Anomalous Resonance Frequency Shifts in a Hybrid Cavity-Nanoantenna System.

    Science.gov (United States)

    Ruesink, Freek; Doeleman, Hugo M; Hendrikx, Ruud; Koenderink, A Femius; Verhagen, Ewold

    2015-11-13

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems. PMID:26613442

  17. Recent Approaches for Broadening the Spectral Bandwidth in Resonant Cavity Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Gun Wu Ju

    2015-01-01

    Full Text Available Resonant cavity optoelectronic devices, such as vertical cavity surface emitting lasers (VCSELs, resonant cavity enhanced photodetectors (RCEPDs, and electroabsorption modulators (EAMs, show improved performance over their predecessors by placing the active device structure inside a resonant cavity. The effect of the optical cavity, which allows wavelength selectivity and enhancement of the optical field due to resonance, allows the devices to be made thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. However, the narrow spectral bandwidth significantly reduces operating tolerances, which leads to severe problems in applications such as optical communication, imaging, and biosensing. Recently, in order to overcome such drawbacks and/or to accomplish multiple functionalities, several approaches for broadening the spectral bandwidth in resonant cavity optoelectronic devices have been extensively studied. This paper reviews the recent progress in techniques for wide spectral bandwidth that include a coupled microcavity, asymmetric tandem quantum wells, and high index contrast distributed Bragg-reflectors. This review will describe design guidelines for specific devices together with experimental considerations in practical applications.

  18. The use of microperforated plates to attenuate cavity resonances

    DEFF Research Database (Denmark)

    Fenech, Benjamin; Keith, Graeme; Jacobsen, Finn

    2006-01-01

    The use of microperforated plates to introduce damping in a closed cavity is examined. By placing a microperforated plate well inside the cavity instead of near a wall as traditionally done in room acoustics, high attenuation can be obtained for specific acoustic modes, compared with the lower...... attenuation that can be obtained in a broad frequency range with the conventional position of the plate. An analytical method for predicting the attenuation is presented. The method involves finding complex eigenvalues and eigenfunctions for the modified cavity and makes it possible to predict Green......'s functions. The results, which are validated experimentally, show that a microperforated plate can provide substantial attenuation of modes in a cavity. One possible application of these findings is the treatment of boiler tones in heat-exchanger cavities....

  19. Cavity-coupled guided resonances with high quality factors in photonic crystal heterostructures

    CERN Document Server

    Reddy, M Srinivas

    2015-01-01

    We study the optical characteristics of a photonic crystal (PhC) heterostructure cavity consisting of two-dimensional monolayer PhC, sandwiched between two identical passive multilayers. In the range of stopband of the multilayer, guided resonance of the sandwiched PhC are excited by the evanescent waves of the multilayer stack and the quality factor of these cavity-coupled guided resonances is about 10e6. The calculated field distribution facilitates the distinction between the cavity defect modes and the coupled guided resonances of the proposed design. The line shapes of the resonances are explained using a theoretical model. Significant decrease in the lasing threshold is observed for these resonant modes in comparison to the defect modes. These results will find use in designing compact PhC-based ultra-low threshold lasers and narrow band filters.

  20. High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching

    CERN Document Server

    Gil-Santos, Eduardo; Lemaitre, Aristide; Gomez, Carmen; Ducci, Sara; Leo, Giuseppe; Favero, Ivan

    2015-01-01

    We present a simple method to tune optical micro- and nanocavities with picometer precision in the resonant wavelength, corresponding to an effective sub atomic monolayer control of the cavity dimension. This is obtained through resonant photo-electrochemical etching, with in-situ monitoring of the optical spectrum. We employ this technique to spectrally align an ensemble of resonant cavities in a permanent manner, overcoming the dimension variability resulting from current nanofabrication techniques. In a device containing several resonators, each is individually addressed and tuned, with no optical quality factor degradation. The technique is general and opens the way to multiple applications, such as the straightforward fabrication of networks of identical coupled resonators, or the tuning of chip-based cavities to external references.

  1. Implementation of n-qubit Deutsch-Jozsa algorithm using resonant interaction in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Wang Hong-Fu; Zhang Shou

    2008-01-01

    We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.

  2. Resonant cavity Vircator driven by a thermionic cathode electron beam gun

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. [Texas Instrument, Dallas, TX (United States)

    1993-12-01

    A resonant cavity Vircator (virtual cathode oscillator) driven by an electron beam emitted from a broad area thermionic cathode has been tested at Textron Defense Systems. Narrow bandwidth (1.0 MHz at the {minus}3 dB level) excitation of the TM{sub 0.23} mode of a cylindrical resonant cavity was observed at a frequency of 986 MHz with a pulse length of 1.2 {mu}s. The single cavity mode excitation is attributed to the constant voltage and current electron beam emitted form the thermionic cathode.

  3. Modeling resonant cavities for single-photon waveguide sources

    International Nuclear Information System (INIS)

    Spectral correlations between photon pairs generated by spontaneous parametric down conversion (SPDC) in bulk non-linear optical crystals remain a hindrance to the implementation of efficient quantum communication architectures. It has been demonstrated that SPDC within a distributed micro-cavity can result in little or no correlation between photon pairs. We present results on modeling three different cavity configurations based on integrated Bragg gratings. Output from the SPDC process can be tailored by altering the periodicity and geometry of such nanostructures. We will discuss the merits of each cavity configuration from the standpoint of degenerate Type-II SPDC

  4. New resonant cavity-enhanced absorber structures for mid-infrared detector application

    OpenAIRE

    Zohar, Moshe; Auslender, Mark; Faraone, Lorenzo; Hava, Shlomo

    2012-01-01

    A new dielectric Fabry-Perot cavity was designed for a resonant enhancing optical absorption by a thin absorber layer embedded into the cavity. In this cavity, the front mirror is a subwavelength grating with $\\sim 100$% retroreflection. For a HgCdTe absorber in a matching cavity of the new type, the design is shown to meet the combined challenges of increasing the absorbing efficiency of the entire device up to $\\sim 100$% and reducing its size and overall complexity, compared to a conventio...

  5. Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator.

    Science.gov (United States)

    Luo, Kathy; Jang, Jae K; Coen, Stéphane; Murdoch, Stuart G; Erkintalo, Miro

    2015-08-15

    We report on the experimental observation of spontaneous creation and annihilation of temporal cavity solitons (CSs) in a coherently driven, macroscopic optical fiber resonator. Specifically, we show that CSs are spontaneously created when the frequency of the cavity driving field is tuned across a resonance, and that they can individually disappear at different stages of the scan. In contrast to previous experiments in monolithic microresonators, we are able to identify these dynamics in real time, thanks to the macroscopic dimensions of our resonator. Our experimental observations are in excellent agreement with numerical simulations. We also discuss the mechanisms responsible for the one-by-one disappearance of CSs. PMID:26274647

  6. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  7. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  8. Study of low work function materials for hot cavity resonance ionization laser ion sources

    International Nuclear Information System (INIS)

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  9. Resonant-cavity approach to noninvasive, pulse-to-pulse emittance measurement

    International Nuclear Information System (INIS)

    We present a resonant-cavity approach for noninvasive, pulse-to-pulse, beam emittance measurements of noncircular multibunch beams. In a resonant cavity, desired field components can be enhanced up to QLλ/π, where QLλ is the loaded quality factor of the resonant mode λ, when the cavity resonant mode matches the bunch frequency of a bunch-train beam pulse. In particular, a quad cavity, with its quadrupole mode (TM220 for rectangular cavities) at beam operating frequency, rotated 45 deg. with respect to the beamline, extracts the beam quadrupole moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole-moment measurements, performed at different betatron phases in a linear transport system, determine the beam emittance, i.e., the beam size and shape in the beam's phase space, if the beam current and position at these points are known. In the presence of x-y beam coupling, ten measurements are required. One measurement alone provides the rms beam size of a large aspect ratio beam. The resolution for such a measurement of rms beam size with the rectangular quad-cavity monitor presented in this article is estimated to be on the order of 10 μm. A prototype quad cavity was fabricated and preliminary beam tests were performed at the Next Linear Collider Test Accelerator at the Stanford Linear Accelerator Center. The results were mainly limited by beam jitter and uncertainty in the beam position measurement at the cavity location. This motivated the development of a position-emittance integrated monitor [J. S. Kim et al., Rev. Sci. Instrum. 76, 073302 (2005)

  10. Resonant-cavity approach to noninvasive, pulse-to-pulse emittance measurement

    Science.gov (United States)

    Kim, J. S.; Nantista, C. D.; Miller, R. H.; Weidemann, A. W.

    2005-12-01

    We present a resonant-cavity approach for noninvasive, pulse-to-pulse, beam emittance measurements of noncircular multibunch beams. In a resonant cavity, desired field components can be enhanced up to QLλ/π, where QLλ is the loaded quality factor of the resonant mode λ, when the cavity resonant mode matches the bunch frequency of a bunch-train beam pulse. In particular, a quad cavity, with its quadrupole mode (TM220 for rectangular cavities) at beam operating frequency, rotated 45° with respect to the beamline, extracts the beam quadrupole moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole-moment measurements, performed at different betatron phases in a linear transport system, determine the beam emittance, i.e., the beam size and shape in the beam's phase space, if the beam current and position at these points are known. In the presence of x-y beam coupling, ten measurements are required. One measurement alone provides the rms beam size of a large aspect ratio beam. The resolution for such a measurement of rms beam size with the rectangular quad-cavity monitor presented in this article is estimated to be on the order of 10μm. A prototype quad cavity was fabricated and preliminary beam tests were performed at the Next Linear Collider Test Accelerator at the Stanford Linear Accelerator Center. The results were mainly limited by beam jitter and uncertainty in the beam position measurement at the cavity location. This motivated the development of a position-emittance integrated monitor [J. S. Kim et al., Rev. Sci. Instrum. 76, 073302 (2005)].

  11. Reliable and integrated technique for determining resonant frequency in radio frequency resonators. Application to a high-precision resonant cavity-based displacement sensor

    Science.gov (United States)

    Jauregui, Rigoberto; Asua, Estibaliz; Portilla, Joaquin; Etxebarria, Victor

    2015-03-01

    This paper presents a reliable and integrated technique for determining the resonant frequency of radio frequency resonators, which can be of interest for different purposes. The approach uses a heterodyne scheme as phase detector coupled to a voltage-controlled oscillator. The system seeks the oscillator frequency that produces a phase null in the resonator, which corresponds to the resonant frequency. A complete explanation of the technique to determine the resonant frequency is presented and experimentally tested. The method has been applied to a high-precision displacement sensor based on resonant cavity, obtaining a theoretical nanometric precision.

  12. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    Science.gov (United States)

    Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-01

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  13. Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao

    2007-01-01

    An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.

  14. Resonance suppression and electromagnetic shielding effectiveness improvement of an apertured rectangular cavity by using wall losses

    Institute of Scientific and Technical Information of China (English)

    Jiao Chong-Qing; Zhu Hong-Zhao

    2013-01-01

    The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies.In this paper,the influence of coated wall loss on the suppression of the resonance effect is investigated.For this purpose,an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material.The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide.Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.

  15. A new boundary integral approach to the determination of the resonant modes of arbitrary shaped cavities

    International Nuclear Information System (INIS)

    Computer codes for the electromagnetic analysis of arbitrarily shaped cavities are very important for many applications, in particular for the design of interaction structures for particle accelerators. The design of accelerating cavities results in complicated shapes, that are obtained carrying on repeated analyses to optimize a number of parameters, such as Q-factors, beam coupling impedances, higher-order-mode spectrum, and so on. The interest in the calculation of many normalized modes derives also from the important role they play in the eigenvector expansion of the electromagnetic field in a closed region. The authors present an efficient algorithm to determine the resonant frequencies and the normalized modal fields of arbitrarily shaped cavity resonators filled with a lossless, isotropic, and homogeneous medium. The algorithm is based on the boundary integral method (BIM). The unknown current flowing on the cavity wall is considered inside a spherical resonator, rather than in free-space, as it is usual in the standard BIM. The electric field is expressed using the Green's function of the spherical resonator, approximated by a real rational function of the frequency. Consequently, the discretized problem can be cast into the form of a real matrix linear eigenvalue problem, whose eigenvalues and eigenvectors yield the resonant frequencies and the associated modal currents. Since the algorithm does not require any frequency-by-frequency recalculation of the system matrices, computing time is much shorter than in the standard BIM, especially when many resonances must be found

  16. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.

    Science.gov (United States)

    Mattar, Saba M; Elnaggar, Sameh Y

    2011-04-01

    The frequency, field distributions and filling factors of a DR/TE₁₀₂ probe, consisting of two cylindrical dielectric resonators (DR1 and DR2) in a rectangular TE₁₀₂ cavity, are simulated and analyzed by finite element methods. The TE(+++) mode formed by the in-phase coupling of the TE₀₁(δ)(DR1), TE₀₁(δ)(DR2) and TE₁₀₂ basic modes, is the most appropriate mode for X-band EPR experiments. The corresponding simulated B(+++) fields of the TE(+++) mode have significant amplitudes at DR1, DR2 and the cavity's iris resulting in efficient coupling between the DR/TE₁₀₂ probe and the microwave bridge. At the experimental configuration, B(+++) in the vicinity of DR2 is much larger than that around DR1 indicating that DR1 mainly acts as a frequency tuner. In contrast to a simple microwave shield, the resonant cavity is an essential component of the probe that affects its frequency. The two dielectric resonators are always coupled and this is enhanced by the cavity. When DR1 and DR2 are close to the cavity walls, the TE(+++) frequency and B(+++) distribution are very similar to that of the empty TE₁₀₂ cavity. When all the experimental details are taken into account, the agreement between the experimental and simulated TE(+++) frequencies is excellent. This confirms that the resonating mode of the spectrometer's DR/TE₁₀₂ probe is the TE(+++) mode. Additional proof is obtained from B₁(x), which is the calculated maximum x component of B(+++). It is predominantly due to DR2 and is approximately 4.4 G. The B₁(x) maximum value of the DR/TE₁₀₂ probe is found to be slightly larger than that for a single resonator in a cavity because DR1 further concentrates the cavity's magnetic field along its x axis. Even though DR1 slightly enhances the performance of the DR/TE₁₀₂ probe its main benefit is to act as a frequency tuner. A waveguide iris can be used to over-couple the DR/TE₁₀₂ probe and lower its Q to ≈150. Under

  17. Analysis of two stacked cylindrical dielectric resonators in a TE 102 microwave cavity for magnetic resonance spectroscopy

    Science.gov (United States)

    Mattar, Saba M.; ElNaggar, Sameh Y.

    2011-04-01

    The frequency, field distributions and filling factors of a DR/TE 102 probe, consisting of two cylindrical dielectric resonators (DR1 and DR2) in a rectangular TE 102 cavity, are simulated and analyzed by finite element methods. The TE +++ mode formed by the in-phase coupling of the TE 01δ(DR1), TE 01δ(DR2) and TE 102 basic modes, is the most appropriate mode for X-band EPR experiments. The corresponding simulated B +++ fields of the TE +++ mode have significant amplitudes at DR1, DR2 and the cavity's iris resulting in efficient coupling between the DR/TE 102 probe and the microwave bridge. At the experimental configuration, B +++ in the vicinity of DR2 is much larger than that around DR1 indicating that DR1 mainly acts as a frequency tuner. In contrast to a simple microwave shield, the resonant cavity is an essential component of the probe that affects its frequency. The two dielectric resonators are always coupled and this is enhanced by the cavity. When DR1 and DR2 are close to the cavity walls, the TE +++ frequency and B +++ distribution are very similar to that of the empty TE 102 cavity. When all the experimental details are taken into account, the agreement between the experimental and simulated TE +++ frequencies is excellent. This confirms that the resonating mode of the spectrometer's DR/TE 102 probe is the TE +++ mode. Additional proof is obtained from B1x, which is the calculated maximum x component of B +++. It is predominantly due to DR2 and is approximately 4.4 G. The B1x maximum value of the DR/TE 102 probe is found to be slightly larger than that for a single resonator in a cavity because DR1 further concentrates the cavity's magnetic field along its x axis. Even though DR1 slightly enhances the performance of the DR/TE 102 probe its main benefit is to act as a frequency tuner. A waveguide iris can be used to over-couple the DR/TE 102 probe and lower its Q to ≈150. Under these conditions, the probe has a short dead time and a large bandwidth

  18. Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavity for the LHC Update

    International Nuclear Information System (INIS)

    Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R and D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.

  19. Analysis of photonic crystal double heterostructure resonant cavities

    Science.gov (United States)

    Mock, Adam

    Two-dimensional photonic crystals represent a versatile technology platform for constructing photonic integrated circuits. Low-loss and small footprint waveguides and cavities can be combined to make delay lines, modulators, filters and lasers for efficient optical signal processing. However, this diverse functionality comes at the expense of higher complexity in both the fabrication and themodeling of these devices. This Thesis discusses the finite-difference time-domain numerical modeling of large quality factor photonic crystal cavities for chip-scale laser applications. In Chapter 2 the role of the quality factor in estimating laser threshold is derived starting from Maxwell's equations. Expressions for modal loss and gain are derived. Chapter 3 discusses methods for extracting the quality factor from finite-difference time-domain simulations. Even with large-scale parallel computing, only a short record of the time evolution of the fields can be recorded. To get around this issue, Pade functions are fitted to the available data in the frequency domain. Once the analysis tools have been described and demonstrated, they are applied to the photonic crystal double heterostructure cavity which has been shown to have quality factors in excess of one million and mode volumes on the order of a cubic wavelength. A detailed description of the spectral and modal properties of heterostructure cavities is presented, and a method for mode discrimination is discussed. The effect of heat sinking dielectric lower substrates on the optical loss of the heterostructure cavity is investigated, and it is seen that the quality factor is significantly reduced as the index of the lower substrate is increased. A modified heterostructure cavity with glide plane symmetry is shown to have significantly reduced out-of-plane leakage. An optimized design is proposed for continuous wave edge-emitting laser operation. Finally, a novel approach for laser simulation is introduced in which a

  20. Cavity optomechanics nano- and micromechanical resonators interacting with light

    CERN Document Server

    Kippenberg, Tobias; Marquardt, Florian

    2014-01-01

    During the last few years cavity-optomechanics has emerged as a new field of research. This highly interdisciplinary field studies the interaction between micro- and nanomechanical systems and light. Possible applications range from novel high-bandwidth mechanical sensing devices through the generation of squeezed optical or mechanical states to even tests of quantum theory itself. This is one of the first books in this relatively young field. it is aimed at scientists, engineers, and students who want to obtain a concise introduction to the state of the art in the field of cavity optomechanics. It is valuable to researchers in nanoscience, quantum optics, quantum information, gravitational wave detection and other cutting edge fields. Possible applications include biological sensing, frequency comb applications, silicon photonics etc. The technical content will be accessible to those who have familiarity with basic undergraduate physics.

  1. Two-Dimensional Cavity Resonant Modes of Si Based Bragg Reflection Ridge Waveguide

    Institute of Scientific and Technical Information of China (English)

    CHEN San; Lu Hong-Yan; CHEN Kun-Ji; XU Jun; MA Zhong-Yuan; LI Wei; HUANG Xin-Fan

    2011-01-01

    @@ Si-based ridge-waveguides with Bragg reflectors are fabricated based on our method.Three resonant peaks could be obviously identified from the photoluminescence spectra, and field patterns of these resonant peaks, simulated by the finite difference time domain (FDTD) method, confirm that these peaks originate from cavity resonances.The resonant wavelengths and spatial angular distribution are given by the resonant models, which agree well with the experimental data.Experimentally, a simple method is proposed to testify the experimental and theoretical results.Such devices based on Bragg reflectors may have potential applications in light-emitting diodes, lasers and integrated photonic circuits.%Si-based ridge-waveguides with Bragg reflectors are fabricated based on our method. Three resonant peaks could be obviously identified from the photoluminescence spectra, and field patterns of these resonant peaks, simulated by the finite difference time domain (FDTD) method, confirm that these peaks originate from cavity resonances. The resonant wavelengths and spatial angular distribution are given by the resonant models, which agree well with the experimental data. Experimentally, a simple method is proposed to testify the experimental and theoretical results. Such devices based on Bragg reflectors may have potential applications in light-emitting diodes, lasers and integrated photonic circuits.

  2. Noise Reduction in Double‐Panel Structures by Cavity and Panel Resonance Control

    OpenAIRE

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2011-01-01

    This paper presents an investigation of the cavity and the panel resonance control in a double‐panel structure. The double‐panel structure, which consists of two panels with air in the gap, is widely adopted in many applications such as aerospace due to its light weight and effective transmission‐loss at high frequency. However, the resonance of the cavity and the poor transmission‐loss at low frequency limit its noise control performance. Applying active control forces on the panels or utili...

  3. Simulation of an axial vircator with a three-cavity resonator

    CERN Document Server

    Molchanov, P V; Tikhomirov, V V; Siahlo, S E

    2014-01-01

    We simulated an axial vircator with a three-cavity resonator and expected generation efficiency 6-7 percents. For adequate description of physical processes taking place inside a vircator we used two independent PIC codes: self-developed INPIC and free XOOPIC. Based on both the analysis of the vircator proposed in [1] and consideration of the devices operating at cathode-anode voltages under 450 kV we suggest 3 possible designs of a three-cavity resonator such that enable one to produce High Power Microwave in GW power range.

  4. Simulation of an axial vircator with a three-cavity resonator

    OpenAIRE

    Molchanov, P. V.; Gurnevich, E. A.; Tikhomirov, V. V.; Siahlo, S. E.

    2014-01-01

    We simulated an axial vircator with a three-cavity resonator and expected generation efficiency 6-7 percents. For adequate description of physical processes taking place inside a vircator we used two independent PIC codes: self-developed INPIC and free XOOPIC. Based on both the analysis of the vircator proposed in [1] and consideration of the devices operating at cathode-anode voltages under 450 kV we suggest 3 possible designs of a three-cavity resonator such that enable one to produce High ...

  5. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs/AlAs Multiple Quantum Wells.

    Science.gov (United States)

    Jusserand, B; Poddubny, A N; Poshakinskiy, A V; Fainstein, A; Lemaitre, A

    2015-12-31

    Polariton-mediated light-sound interaction is investigated through resonant Brillouin scattering experiments in GaAs/AlAs multiple-quantum wells. Photoelastic coupling enhancement at exciton-polariton resonance reaches 10(5) at 30 K as compared to a typical bulk solid room temperature transparency value. When applied to GaAs based cavity optomechanical nanodevices, this result opens the path to huge displacement sensitivities and to ultrastrong coupling regimes in cavity optomechanics with couplings g(0) in the range of 100 GHz. PMID:26765028

  6. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators

    Science.gov (United States)

    Gu, Ping; Wan, Mingjie; Wu, Wenyang; Chen, Zhuo; Wang, Zhenlin

    2016-05-01

    Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a nearly perfect metal shell layer around a dielectric sphere. We demonstrate that these Fano resonances originate from the interference between the Mie cavity and sphere plasmon resonances. Moreover, we present that the variation on either the dielectric core size or core refractive index allows for easily tuning the observed Fano resonances over a wide spectral range. Our findings are supported by excellent agreement with analytical calculations, and offer unprecedented opportunities for realizing ultrasensitive bio-sensors, lasing and nonlinear optical devices.Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a

  7. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  8. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.

    Science.gov (United States)

    Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity. PMID:25353549

  9. Quantum feedback in a non-resonant cavity QED system

    International Nuclear Information System (INIS)

    Photon correlation measurements reveal the response of the conditional evolution of the cavity QED system to a novel quantum feedback protocol. A photodetection collapses the state of the system and triggers a feedback pulse with an adjustable delay and amplitude that alters the intensity driving the system. The conditional evolution of the system freezes into a new steady state where it resides until, after an amount of time determined by the experimenter, it re-equilibrates into the original steady state. We carry out a sensitivity analysis using a theoretical model with atomic detuning and make quantitative comparisons with measured results

  10. Morphologic Differences in the Vocal Tract Resonance Cavities of Voice Professionals: An MRI-Based Study

    OpenAIRE

    Sandra M. Rua Ventura; Diamantino Rui S. Freitas; Ramos, Isabel Maria A. P.; João Manuel R. S. Tavares

    2013-01-01

    The processes that take place during singing and acting are complex. However, morphologic and dynamic studies of the vocal tracts during speech have been gaining greater attention, mainly because of the rapid technical advances being made with magnetic resonance imaging (MRI) and image analysis and processing techniques. Objectives/Hypothesis and Methods. Our aim was to describe the morphologic differences in the vocal tract resonance cavities among voice professionals using MRI, and with the...

  11. Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics

    CERN Document Server

    Li, J; Malossi, N; Zippilli, S; Vitali, D

    2015-01-01

    We investigate a general scheme for generating, either dynamically or in the steady state, continuous variable entanglement between two mechanical resonators with different frequencies. We employ an optomechanical system in which a single optical cavity mode driven by a suitably chosen two-tone field is coupled to the two resonators. Significantly large mechanical entanglement can be achieved, which is extremely robust with respect to temperature.

  12. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953. ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmon s * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  13. Bright cavity solitons in metamaterials with internal resonances

    Czech Academy of Sciences Publication Activity Database

    Yulin, A.V.; Kuzmiak, Vladimír; Eyderman, Sergey

    2015-01-01

    Roč. 91, č. 6 (2015), s. 063820. ISSN 1050-2947 R&D Projects: GA MŠk(CZ) LD14028 Grant ostatní: COST(XE) MP1204 Institutional support: RVO:67985882 Keywords : Plasmons * Dissipative solitons * Resonators Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.808, year: 2014

  14. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  15. Electrical conductivity of Jupiter's shallow interior and the formation of a resonant of a resonant planetary-ionospheric cavity

    International Nuclear Information System (INIS)

    The present consideration of hydrogenic atmospheric reactions on Jupiter, to a depth of 4000 km, notes the primary ion constituents at these depths to be both positive and negative ions of molecular hydrogen contributing less than 20 percent to total electrical conductivity by free electrons. An electrical surface defined by the boundary beneath which the interior is electrically conducting exists at depths which vary according to EM wave frequency, from 1100 km for 1 mHz to 3000 for 1 MHz. The presence of a lower electrical boundary within the shallow interior suggests that a planetary-ionosphere resonant cavity analogous to the earth-ionosphere cavity may exist. 36 refs

  16. Properties of Optical Resonant Modes in Ⅲ-Nitride Semiconductor Micro-Cone Cavities

    Institute of Scientific and Technical Information of China (English)

    DAI Lun; ZHANG Bei; LIN Jing-Yu; JIANG Hong-Xing

    2001-01-01

    Arrays of Ⅲ-nitride semiconductor micro-cone cavities with a base diameter of 3.3μm were fabricated by ion beam etching. The micro-cones consisted of 58 nm thick multiple quantum wells of ln0.22Ga0.78N/In0.06Ga0.94N as well as a 1.5μm thick epilayer of GaN. Optical resonant modes from a single micro-cone could be clearly observed in the photoluminescence spectra at temperatures up to 200K under a pumping power density two orders of magnitude lower than that for the Ⅲ-nitride semiconductor micro-disk or micro-ring cavity. Using a novel optical ray tracing method, we have figured out four main types of optical resonant cavities inside the three-dimensional micro-cone, including two Fabry-Perot (F-P) mode types as well as two Whispering Gallery mode types. The three corresponding mode spacings among the four agree perfectly with the experimental results. The advantages of this new class of micro-cavity over the other micro-cavities are discussed. These findings are expected to have an impact on the design of the ultraviolet/blue micro-cavity laser diodes.

  17. Comparing the linewidths from single-pass SPDC and singly resonant cavity SPDC

    Science.gov (United States)

    Slattery, Oliver; Ma, Lijun; Kuo, Paulina; Tang, Xiao

    2015-09-01

    Spontaneous parametric down-conversion (SPDC) is a common method to generate entangled photon pairs for use in quantum communications. The generated single photon linewidth is a critical issue for photon-atom interactions in quantum memory applications. We compare the linewidths of greatly non-degenerate single photon pairs from SPDC generated in the single-pass case and the singly-resonant cavity case. For a 6 mm periodically poled lithium niobate (PPLN) crystal, the linewidth of the generated signal photons is reduced from 1 THz in the single pass case to tens of MHz in the singly-resonant cavity case, while the brightness within the modal lineiwdth is increased by a factor of the cavity finesse, though the overall SPDC generation rate remains unchanged.

  18. A study of tyre cavity resonance and noise reduction using inner trim

    Science.gov (United States)

    Mohamed, Zamri; Wang, Xu

    2015-01-01

    A study of tyre inner trim as a method for reducing tyre cavity resonance noise is presented. The tyre is modelled as a rectangular toroid where only the outside shell is flexible. A modal series solution of the sound pressure frequency response inside the tyre cavity is derived from the wave equation using modal superposition. In the solution with the rigid and flexible wall boundary condition, the effect of placing a trim layer onto the inner surface of the tyre tread plate wall is reflected by adding a damping loss term in the sound pressure frequency response function. The numerical simulation result was then compared with the result obtained from a roving impact test performed on a tyre. The results show that selective trim material may be effective for reducing the structure-borne noise magnitude resulting from the tyre cavity resonance.

  19. Development of 400- to 450-MHz RFQ resonator-cavity mechanical designs

    International Nuclear Information System (INIS)

    In the development of the radio-frequency quadrupole (RFQ) linac, the resonator cavity's mechanical design may be a challenge similar in magnitude to that of the development of the accelerator structure itself. Experience with the all-copper 425-MHz RFQ proof-of-principle linac has demonstrated that the resonator cavity must be structurally stiff and easily tunable. This experience has led to development of copper-plated steel structures having vanes that may be moved within a cylinder for tuning. Design of a flexible vane-to-cylinder radio-frequency (rf) joint, the vane, and the cylinder has many constraints dictated by the small-diameter cavities in the 400-MHz-frequency region. Two types of flexible, mechanical vane-to-cylinder rf joints are being developed at Los Alamos: the C-seal and the rf clamp-joint

  20. Cooling enhancement in optical refrigeration by non-resonant optical cavities

    Science.gov (United States)

    Farfan, B. G.; Gragossian, A.; Symonds, G.; Ghasemkhani, M. R.; Albrecht, A. R.; Sheik-Bahae, M.; Epstein, R. I.

    2016-05-01

    We present a study of cooling enhancement in optical refrigerators by the implementation of advanced non-resonant optical cavities. Cavity designs have been studied to maximize pump light-trapping to improve absorption and thereby increase the efficiency of optical refrigeration. The approaches of non-resonant optical cavities by Herriott-cell and totalinternal- reflection were studied. Ray-tracing simulations and experiments were performed to analyze and optimize the different light-trapping configurations. Light trapping was studied for laser sources with high quality beams and for beams with large divergences, roughly corresponding to the output from fiber lasers and from diode lasers, respectively. We present a trade-off analysis between performance, reliability, and manufacturability.

  1. Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.

    2014-01-01

    Roč. 25, č. 1 (2014), 015205. ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensor s * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014

  2. Cavitation tunnel analysis of radiated sound from the resonance of a propeller tip vortex cavity

    NARCIS (Netherlands)

    Pennings, P.C.; Westerweel, J.; Van Terwisga, T.J.C.

    2016-01-01

    The goal of this study is to test the hypothesis that the resonance of a tip vortex cavity is responsible for high-amplitude broadband pressure-fluctuations, typically between 40 and 70 Hz,Hz, for a full scale propeller. This is achieved with a model propeller in a cavitation tunnel. Simultaneous hi

  3. Demonstration of the stabilization technique for nonplanar optical resonant cavities utilizing polarization

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, T.; Araki, S.; Funahashi, Y.; Honda, Y.; Okugi, T.; Omori, T.; Shimizu, H.; Terunuma, N.; Urakawa, J. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Miyoshi, S.; Takahashi, T., E-mail: tohru-takahashi@hiroshima-u.ac.jp; Tanaka, R.; Uesugi, Y.; Yoshitama, H. [AdSM Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima 739-8530 (Japan); Sakaue, K.; Washio, M. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555 (Japan)

    2015-04-15

    Based on our previously developed scheme to stabilize nonplanar optical resonant cavities utilizing polarization caused by a geometric phase in electromagnetic waves traveling along a twisted path, we report an application of the technique for a cavity installed in the Accelerator Test Facility, a 1.3-GeV electron beam accelerator at KEK, in which photons are generated by laser-Compton scattering. We successfully achieved a power enhancement of 1200 with 1.4% fluctuation, which means that the optical path length of the cavity has been controlled with a precision of 14 pm under an accelerator environment. In addition, polarization switching utilizing a geometric phase of the nonplanar cavity was demonstrated.

  4. Cavities

    Science.gov (United States)

    ... the bacteria produce acids that cause decay. Tooth pain occurs after decay reaches the inside of the tooth. Dentists can detect cavities by examining the teeth and taking x-rays periodically. Good oral hygiene and regular dental care plus a healthy diet can help prevent cavities. ...

  5. Modeling of Fano resonances in the reflectivity of photonic crystal cavities with finite spot size excitation.

    Science.gov (United States)

    Vasco, J P; Vinck-Posada, H; Valentim, P T; Guimãraes, P S S

    2013-12-16

    We study the reflectivity spectra of photonic crystal slab cavities using an extension of the scattering matrix method that allows treating finite sizes of the spot of the excitation beam. The details of the implementation of the method are presented and then we show that Fano resonances arise as a consequence of the electromagnetic interference between the discrete contribution of the fundamental cavity mode and the continuum contribution of the light scattered by the photonic crystal pattern. We control the asymmetry lineshape of the Fano resonance through the polarization of the incident field, which determines the relative phase between the two electromagnetic contributions to the interference. We analyse the electric field profile inside and outside of the crystal to help in the understanding of the dependence on polarization of the reflectivity lineshape. We also study with our implementation the dependence of the Fano resonances on the size of the incident radiation spot. PMID:24514709

  6. Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity

    International Nuclear Information System (INIS)

    Plasmon modes in graphene can be tuned into resonance with an incident terahertz electromagnetic wave in the range of 1–4 THz by setting a proper gate voltage. By using the finite-difference-time-domain (FDTD) method, we simulate a graphene plasmon device comprising a single-layer graphene, a metallic grating, and a terahertz cavity. The simulations suggest that the terahertz electric field can be enhanced by several times due to the grating–cavity configuration. Due to this near-field enhancement, the maximal absorption of the incident terahertz wave reaches up to about 45%. (paper)

  7. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    International Nuclear Information System (INIS)

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current

  8. A non-resonant RF cavity loaded with amorphous alloy for proton cancer therapy

    CERN Document Server

    Makita, Y; Nayayama, T; Tsuchidate, H; Tsukishima, C; Yoshida, K

    1999-01-01

    A non-resonant RF cavity loaded with amorphous alloy cores has been designed and tested. The cavity has a re-entrant structure loaded with 8 amorphous alloy toroidal core and its characteristic impedance is designed as 450 Omega . The RF power is fed by 1 kW solid state amplifier using a step-up transformer with 1:9 impedance ratio. In the high power test, an accelerating gap voltage of more than 900 V was measured with input power of 1 kW in the frequency range of 1 to 10 MHz. The voltage standing wave ratio (VSWR) was less than 2.0. The results prove that the cavity may be used successfully within a compact proton synchrotron for a cancer therapy facility. (3 refs).

  9. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Yu; CHEN Ying; WANG Ping

    2007-01-01

    We present a new detecting scheme of high-frequency gravitational waves(HFGWs) in the GHz band,the scheme consists of a high-quality-factor open microwave cavity,a static magnetic field passing through the cavity and an electromagnetic (EM)normal mode stored in the cavity.It is found that under the resonant condition firstand second-order perturbation EM effects have almost the same detecting sensitivity to the HFGWs in the GHz band (h~10-26,v~5GHz),but the former contains more information from the HFGWs.We akso provide a very brief review for possible improving way of the sensitivity.This scheme would be Highly complementary to other schemes of detecting the HFGWs.

  10. A deterministic and statistical energy analysis of tyre cavity resonance noise

    Science.gov (United States)

    Mohamed, Zamri; Wang, Xu

    2016-03-01

    Tyre cavity resonance was studied using a combination of deterministic analysis and statistical energy analysis where its deterministic part was implemented using the impedance compact mobility matrix method and its statistical part was done by the statistical energy analysis method. While the impedance compact mobility matrix method can offer a deterministic solution to the cavity pressure response and the compliant wall vibration velocity response in the low frequency range, the statistical energy analysis method can offer a statistical solution of the responses in the high frequency range. In the mid frequency range, a combination of the statistical energy analysis and deterministic analysis methods can identify system coupling characteristics. Both methods have been compared to those from commercial softwares in order to validate the results. The combined analysis result has been verified by the measurement result from a tyre-cavity physical model. The analysis method developed in this study can be applied to other similar toroidal shape structural-acoustic systems.

  11. Resonance Cavities in Parallel-Hetero Perturbation Photonic Crystal Waveguide Structures

    International Nuclear Information System (INIS)

    We design a series of W1 waveguide-like parallel-hetero cavities (PHCs) made from the combination of parallelhetero perturbation (PHP) waveguides and photonic crystal waveguides and investigate their optical properties. Spectral properties are calculated numerically using the three-dimensional finite-difierence time-domain method. The resonant frequencies and quality factors are obtained for each type of PHC and comparisons are made among different types of PHC, which is helpful for predicting and understanding the properties of PHC and designing PHC based high-performance cavities. The PHCs can broaden the category of cavity design and find interesting applications in integrated optical devices and solid state lasers. (fundamental areas of phenomenology(including applications))

  12. Microwave resonant cavity method for the investigation of the corona discharge

    International Nuclear Information System (INIS)

    A specially adjusted and modified microwave cavity method was applied in determining the electron density in the corona discharge at atmospheric pressure in air and in argon. The discharge was sustained between the inner and outer cylinders of an open coaxial cavity which had been specially developed for the investigation of the corona. The electromagnetic waves of TM011 mode and 3 cm resp. 10 cm wavelength bands were used for measurements. The modified method made it possible to measure electron densities in the corona about 4 orders lower as against the waveguide method. The shift observed in the resonance frequency of the cavity showed that the mean electron density in the corona discharge is less than 108 cm-3. (author)

  13. Phonon-mediated squeezing of the cavity field off-resonantly coupled with a coherently driven quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia-pei [Department of Physics, Huazhong Normal University, Wuhan 430079 (China); College of Science, Honghe University, Mengzi 661100 (China); Huang, Hui; Li, Gao-xiang, E-mail: gaox@phy.ccnu.edu.cn [Department of Physics, Huazhong Normal University, Wuhan 430079 (China)

    2014-01-21

    We theoretically propose a scheme for the quadrature squeezing of the cavity field via dissipative processes. The effects of the electron-phonon interaction (EPI) on the squeezing are investigated, where the cavity is off-resonantly coupled with a coherently driven quantum dot (QD) which is allowed to interact with an acoustic-phonon reservoir. Under certain conditions, the participation of the phonon induced by both the EPI and the off-resonant coupling of the cavity with the QD enables some dissipative processes to occur resonantly in the dressed-state basis of the QD. The cavity-mode photons emitted or absorbed during the phonon-mediated dissipative processes are correlated, thus leading to the squeezing of the cavity field. A squeezed vacuum reservoir for the cavity field is built up due to the EPI plus the off-resonant coupling between the cavity and the QD. The numerical results obtained with an effective polaron master equation derived using second-order perturbation theory indicate that, in low temperature limit, the degree of squeezing is maximal but the increasing temperature of the phonon reservoir could hinder the squeezing and degrade the degree of the squeezing of the cavity field. In addition, the presence of the photonic crystal could enhance the quadrature squeezing of the cavity field.

  14. High-performance Refractive Index Sensor Based on Photonic Crystal Single Mode Resonant Micro-cavity

    Institute of Scientific and Technical Information of China (English)

    Shengye Huang; Junfeng Shi; Dongsheng Wang; Wei Li

    2006-01-01

    An effective refractive index sensor built with square lattice photonic crystal is proposed, which can be applicable to photonic integrated circuits. Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity. Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity. The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation. At the resonant wavelength of about 1500 nm, the resonant wavelength shifts up by 0.7 nm for each increment of △n=0.001. A transmission of more than 0.75 is observed. Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor,the transmission reduces rapidly as the disorder increases.

  15. Density measurement of a magnetized plasma column using a resonant cavity technique

    International Nuclear Information System (INIS)

    A study of the application of high order TMomo modes of a cylindrical cavity to the measurement of the density of a magnetized plasma column is presented. It is shown theoretically that judiciously chosen high order modes have the potential advantages of both a wide operational range of densities, and a wide range for which a simple perturbation theory is valid. Furthermore, an experiment is described which shows that the TMo6o mode can be excited with a sufficiently high Q value to allow accurate determination of the resonant frequencies, and hence plasma density. Favourable comparison between densities in the range 1010 - 1012 cm-3 measured by means of the resonant cavity technique and microwave interferometry is presented. (author) 7 figs., 10 refs

  16. Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities.

    Science.gov (United States)

    Fan, Cairong; Shi, Fenghua; Wu, Hongxing; Chen, Yihang

    2015-06-01

    Tunable all-optical plasmonic diode is proposed based on the Fano resonance in an asymmetric and nonlinear system, comprising metal-insulator-metal waveguides coupled with nanocavities. The spatial asymmetry of the system gives rise to the nonreciprocity of the field localizations at the nonlinear gap between the coupled cavities and to the nonreciprocal nonlinear response. Nonlinear Fano resonance, originating from the interference between the discrete cavity mode and the continuum traveling mode, is observed and effectively tuned by changing the input power. By combining the unidirectional nonlinear response with the steep dispersion of the Fano asymmetric line shape, a transmission contrast ratio up to 41.46 dB can be achieved between forward and backward transmission. Our all-optical plasmonic diode with compact structure can find important applications in integrated optical nanocircuits. PMID:26030529

  17. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    KAUST Repository

    Sergeant, Nicholas P.

    2013-04-24

    Dielectric/metal/dielectric (DMD) electrodes have the potential to significantly increase the absorption efficiency and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband cavity resonance. Silver-based semitransparent DMD electrodes with sheet resistances below 10 ohm/sq. are fabricated on flexible polyethylene terephthalate (PET) substrates in a high-throughput roll-to-roll sputtering tool. We carefully study the effect of the semitransparent DMD electrode (here composed of ZnxSnyOz/Ag/InxSn yOz) on the optical device performance of a copper phthalocyanine (CuPc)/fullerene (C60) bilayer cell and illustrate that a resonant cavity enhanced light trapping effect dominates the optical behavior of the device. © 2013 Optical Society of America.

  18. Electrically detected magnetic resonance in a W-band microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.

    2011-01-14

    We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.

  19. Design of guided-mode resonance mirrors for short laser cavities.

    Science.gov (United States)

    Kondo, Tomohiro; Ura, Shogo; Magnusson, Robert

    2015-08-01

    A guided-mode resonance mirror (GMRM) consists of a waveguide grating integrated on an optical buffer layer on a high-reflection substrate. An incident free-space wave at the resonance wavelength is once coupled by the grating to a guided mode and coupled again by the same grating back to free space. The reflection characteristics of a GMRM are numerically calculated and theoretically analyzed. It is predicted that notch filtering or flat reflection spectra are obtained depending on the optical buffer layer thickness. Design of short cavities using a GMRM is discussed for potential application in surface-mount packaging of diode lasers onto a photonic circuit board. PMID:26367288

  20. Simulation of Optical Resonators for Vertical-Cavity Surface-Emitting Lasers (vcsel)

    Science.gov (United States)

    Mansour, Mohy S.; Hassen, Mahmoud F. M.; El-Nozahey, Adel M.; Hafez, Alaa S.; Metry, Samer F.

    2010-04-01

    Simulation and modeling of the reflectivity and transmissivity of the multilayer DBR of VCSEL, as well as inside the active region quantum well are analyzed using the characteristic matrix method. The electric field intensity distributions inside such vertical-cavity structure are calculated. A software program under MATLAB environment is constructed for the simulation. This study was performed for two specific Bragg wavelengths 980 nm and 370 nm for achieving a resonant periodic gain (RPG)

  1. Pathologies of the uterine endometrial cavity: usual and unusual manifestations and pitfalls on magnetic resonance imaging

    International Nuclear Information System (INIS)

    The endometrial cavity may demonstrate various imaging manifestations such as normal, reactive, inflammatory, and benign and malignant neoplasms. We evaluated usual and unusual magnetic resonance imaging (MRI) findings of the uterine endometrial cavity, and described the diagnostic clues to differential diagnoses. Surgically proven pathologies of the uterine endometrial cavity were evaluated retrospectively with pathologic correlation. The pathologies included benign endometrial neoplasms such as endometrial hyperplasia and polyp, malignant endometrial neoplasms such as endometrial carcinoma and carcinosarcoma, endometrial-myometrial neoplasm such as endometrial stromal sarcoma, pregnancy-related lesions in the endometrial cavity such as gestational trophoblastic diseases (hydatidiform mole, invasive mole and choriocarcinoma) and placental polyp, myometrial lesions simulating endometrial lesions such as submucosal leiomyoma and some adenomyosis, endometrial neoplasms simulating myometrial lesions such as adenomyomatous polyp and endometrial lesions arising in the hemicavity of a septate/bicornate uterus, and fluid collections in the uterine cavity (hydro/hemato/pyometra). It is important to recognize various imaging findings in these diseases, in order to make a correct preoperative diagnosis. (orig.)

  2. Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator

    International Nuclear Information System (INIS)

    A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM110,π mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%–40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 ∼ 50 MeV electron beam and 70–80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a ∼5 K maximum temperature increase, corresponding to a ∼4.3 μm/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation

  3. Pathologies of the uterine endometrial cavity: usual and unusual manifestations and pitfalls on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mayumi; Matsuzaki, Kenji; Yoshida, Shusaku; Nishitani, Hiromu [University of Tokushima, Department of Radiology, Tokushima (Japan); Uehara, Hisanori [University of Tokushima, Department of Molecular and Environmental Pathology, Tokushima (Japan); Shimazu, Hideki [Oe Kyoudo Hospital, Department of Radiology (Japan)

    2005-11-01

    The endometrial cavity may demonstrate various imaging manifestations such as normal, reactive, inflammatory, and benign and malignant neoplasms. We evaluated usual and unusual magnetic resonance imaging (MRI) findings of the uterine endometrial cavity, and described the diagnostic clues to differential diagnoses. Surgically proven pathologies of the uterine endometrial cavity were evaluated retrospectively with pathologic correlation. The pathologies included benign endometrial neoplasms such as endometrial hyperplasia and polyp, malignant endometrial neoplasms such as endometrial carcinoma and carcinosarcoma, endometrial-myometrial neoplasm such as endometrial stromal sarcoma, pregnancy-related lesions in the endometrial cavity such as gestational trophoblastic diseases (hydatidiform mole, invasive mole and choriocarcinoma) and placental polyp, myometrial lesions simulating endometrial lesions such as submucosal leiomyoma and some adenomyosis, endometrial neoplasms simulating myometrial lesions such as adenomyomatous polyp and endometrial lesions arising in the hemicavity of a septate/bicornate uterus, and fluid collections in the uterine cavity (hydro/hemato/pyometra). It is important to recognize various imaging findings in these diseases, in order to make a correct preoperative diagnosis. (orig.)

  4. Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling

    CERN Document Server

    Sokolov, Sergei; Yüce, Emre; Combrié, Sylvain; Lehoucq, Gaelle; De Rossi, Alfredo; Mosk, Allard P

    2015-01-01

    We perform a spatially dependent tuning of a GaInP photonic crystal cavity using a continuous wave violet laser. Local tuning is obtained by laser heating of the photonic crystal membrane. The cavity resonance shift is measured for different pump positions and for two ambient gases: helium and nitrogen. The use of high-conducting gas in combination with low-conducting semiconductor leads to a resonance control with a spatial resolution better than 4 microns.

  5. Malignant tumors of the nasal cavity: computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the role of computed tomography and magnetic resonance imaging in the characterization of deep tissue extension of malignant tumors of the nasal cavity. Twelve patients diagnosed with malignant tumors of the nasal cavity were retrospectively evaluated at the Departments of Diagnostic Imaging and Head and Neck Surgery of the 'Complexo Hospitalar Heliopolis', Sao Paulo, Brazil, between 1990 and 2000. All cases were confirmed by histopathologic examination. The results were: extension to the maxillary and ethmoid sinuses was identified in six patients, extension to contralateral nasal cavity, orbit and lamina cribosa in five patients, extension to nasal pharynx and masticator space in two patients, extension to cavernous sinus, anterior/middle cranial fossa, pterygomaxillary fossa, inferior/superior orbital fissure, frontal sinus, contralateral ethmoid sinus, contralateral lamina cribosa, hard palate and pterygopalatine fossa in one patient. Conclusion: It is important to precisely assess the local extension and spread of tumor by computed tomography and magnetic resonance imaging in order to plan the approach to treatment, which will influence the prognosis. (author)

  6. Narrow-band spectral features of structured silver surface with rectangular resonant cavities

    International Nuclear Information System (INIS)

    This paper is aimed to investigate spectral properties of structured silver surface with periodic rectangular hollow cavities. Numerical computation is conducted to obtain spectral distribution of surface absorptance with different structural parameters using the finite-difference time-domain (FDTD) method. By means of numerical examples, the effects of structural parameters, incident angle and azimuthal angle on the spectral features of the structured surface are discussed. It is found that the structured surface shows the characteristics of the peak absorption in the vicinity of resonant wavelength of rectangular cavity. For some special structure parameters, the peak absorptance of the incident plane wave can reach as high as above 80% due to the excitation of microcavity effect. The optimal narrow-band absorption can be achieved by the rational design of the structural parameters of rectangular cavity. The directional dependence of spectral absorptance is also analyzed and the results reveal that the absorption peak positions are incident-angle-independent. The results show that the microscaled rectangular cavities fabricated on the low-emissivity silver surface are very efficient for selective improvement of the radiative features, which provides guidance for the design of narrow-band infrared thermal emitters.

  7. A study of nasal cavity volume in patients with cleft lip and palate by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Kenichi [Showa Univ., Tokyo (Japan). School of Medicine

    1996-02-01

    Nasal cavity volume was studied in 11 patients with cleft lip and palate by magnetic resonance imaging. The areas of horizontal sections of the nasal cavity on the cleft and non-cleft sides were measured with the help of a personal computer and image analyzing software. Nasal cavity volume was determined by integrated volume calculation. The volume of each side was measured before and after cleft lip repair. Before cleft lip repair nasal cavity volume on the non-cleft side was larger than on the cleft side. However there was no significant difference in the volume of the cleft and non-cleft sides after cleft lip repair. (author)

  8. A study of nasal cavity volume in patients with cleft lip and palate by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Nasal cavity volume was studied in 11 patients with cleft lip and palate by magnetic resonance imaging. The areas of horizontal sections of the nasal cavity on the cleft and non-cleft sides were measured with the help of a personal computer and image analyzing software. Nasal cavity volume was determined by integrated volume calculation. The volume of each side was measured before and after cleft lip repair. Before cleft lip repair nasal cavity volume on the non-cleft side was larger than on the cleft side. However there was no significant difference in the volume of the cleft and non-cleft sides after cleft lip repair. (author)

  9. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity

    International Nuclear Information System (INIS)

    We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature

  10. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul

    2012-08-10

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity\\'s width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.

  11. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere

    DEFF Research Database (Denmark)

    Orozco Santillan, Arturo; Cutanda Henríquez, Vicente

    2008-01-01

    An investigation on the resonance frequency shift for a plane-wave mode in a cylindrical cavity produced by a rigid sphere is reported in this paper. This change of the resonance frequency has been previously considered as a cause of oscillational instabilities in singlemode acoustic levitation...

  12. Critical fields and anomalous loss mechanisms in superconducting cavity resonators made of niobium

    International Nuclear Information System (INIS)

    To increase the accelerating gradients and the quality factors of superconducting niobium cavities, this work aims at understanding and avoiding the limiting anomalous loss mechanisms. Special interest is applied to the non-resonant electron loading (field emission) and to the field dependent residual surface resistance. To study these effects, new types of high resolution X-ray- and temperature-mapping systems are developed. The experimental observations are interpreted on the basis of analytical approximations and numerical simulation calculations. In addition to the avoidance of anomalous losses, it is shown by model calculations and then confirmed experimentally that a high thermal conductivity of the cavity wall shifts the thermal breakdown of superconductivity at local surface defects to higher field strengths. To make use of this effect, solid state gettering techniques that lower the oxygen content of the niobium by evaporating a thin titanium layer onto the niobium surface at 1350 C are developed. In addition, this postpurification technique is shown to be necessary to prevent oxygen pickup from the residual gas of the vacuum furnace at temperatures above 1200 C. The experimental findings, obtained in test series on nineteen cavities with different chemical purity, are used to optimize the techniques to clean, handle, mount, and operate niobium cavities. This results in promising acceleration gradients of Eacc = 27, 22, 20, and 10 MV/m in the best 3-GHz-cavities with one, five, nine, and twenty cells, respectively. The quality factor at 1.4 K is always close to 1010. The advantages and disadvantages of the different surface preparation techniques are reported. (orig./MM)

  13. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels. PMID:22714427

  14. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells

    KAUST Repository

    Sergeant, Nicholas P.

    2012-01-03

    The use of an ITO-free MoO 3/Ag/MoO 3 anode to control the photon harvesting in PCDTBT:PC 70BM solar cells is proposed. At first sight, the fact that these anodes possess reduced far-field transmission compared to ITO may seem to be a disadvantage. But, despite this, we show that by carefully tuning the resonant optical cavity we can enhance the external quantum efficiency close to the band edge of PCDTBT, resulting in high photocurrent and power conversion efficiency on par with ITO. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    CERN Document Server

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  16. Back-action evasion and squeezing of a mechanical resonator using a cavity detector

    International Nuclear Information System (INIS)

    We study the quantum measurement of a cantilever using a parametrically coupled electromagnetic cavity which is driven at the two sidebands corresponding to the mechanical motion. This scheme, originally due to Braginsky et al (Braginsky V, Vorontsov Y I and Thorne K P 1980 Science 209 547), allows a back-action free measurement of one quadrature of the cantilever's motion, and hence the possibility of generating a squeezed state. We present a complete quantum theory of this system, and derive simple conditions on when the quantum limit on the added noise can be surpassed. We also study the conditional dynamics of the measurement, and discuss how such a scheme (when coupled with feedback) can be used to generate and detect squeezed states of the oscillator. Our results are relevant to experiments in optomechanics, and to experiments in quantum electromechanics employing stripline resonators coupled to mechanical resonators.

  17. Resonant cavity enhanced photodetectors for high-speed and polarization-sensing applications

    Science.gov (United States)

    Onat, Bora M.

    1998-08-01

    The performance of today's optical components utilized in communication systems have reached the conventional limitations and require innovations in device structures for further improvements. We employ the unique properties of the resonant cavity enhanced (RCE) photodetection scheme to increase the functionality and performance of semiconductor photodiodes. The operation principle of RCE photodetection is based on a new family of opto-electronic devices whose performance is enhanced by placing the active device structure inside a Fabry-Perot resonant microcavity. The RCE devices benefit from the wavelength sensitivity and the large increase of the resonant optical field introduced by the cavity. The increased optical field allows photodetectors to be made thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. The research effort implemented all aspects of the device development including simulation, design, fabrication and characterization of photodiodes for high-speed and polarization-sensing applications. We studied the performance of RCE photodiodes through simulations and experimentally demonstrated their high- speed operation. Our simulation results predict a three- fold increase in the bandwidth-efficiency product (BWE) for RCE photodiodes. We designed, fabricated and characterized RCE Schottky photodiodes where the semi- transparent metal contact also functions as the top reflector. The RCE Schottky photodiode design for 900 nm wavelength operation exhibited a 10 ps temporal pulse width, corresponding to an estimated device bandwidth of 100 GHz. A peak quantum efficiency of 20% was measured and the theoretical expected value is 70%. A similar RCE Schottky photodiode structure designed for 840 nm operation exhibited a quantum efficiency of 50%. High- speed characterization of these devices revealed an estimated 50 GHz bandwidth, corresponding to a BWE product of 25 GHz. To the best of our knowledge

  18. Sensitivity of surface resistance measurement of HTS thin films by cavity resonator, dielectric resonator and microstrip line resonator

    Indian Academy of Sciences (India)

    N D Kataria; Mukul Misra; R Pinto

    2002-05-01

    Microwave surface resistance s of silver-doped YBa2Cu3O7- (YBCO) thin film, deposited by laser ablation technique on 10 mm × 10 mm LaAlO3 substrate, has been measured by resonant techniques in the frequency range from 5 GHz to 20 GHz. The geometrical factor of the sample and the resonator has been determined theoretically by the knowledge of the electromagnetic field distribution in the resonators. The microwave surface resistance of the superconducting sample is then extracted from the measured value as a function of temperature. The sensitivity of the s measurement, that is, the relative change in the value with the change in the s value is determined for each resonator.

  19. Investigation of ultra-high sensitivity klystron cavity transducers for broadband resonant-mass gravitational wave detectors

    Science.gov (United States)

    Pimentel, G. L.; Aguiar, O. D.; Barroso, J. J.; Tobar, M. E.

    2008-07-01

    Since the Stanford pioneering work of Paik in the 1970s, cryogenic resonant-mass gravitational wave detectors have used resonant transducers, which have the effect of increasing both the detector sensitivity and bandwidth. Now nanotechnology is opening new possibilities towards the construction of ultra-high sensitivity klystron cavity transducers. It might be feasible to construct TeraHz/micron parametric transducers in a near future. They would be so sensitive that there would be no need for multimode resonant transducers. The resonant-antenna would act as a broadband detector for gravitational waves. A spherical antenna, such as Schenberg or Mini-Grail, could add to this quality the advantage of wave position and polarity determination. Here we propose an extreme geometry for a re-entrant klystron cavity (df/dg ~ 1018 Hz/m, where f stands for the microwave pump frequency and g for variations in the cavity gap), obtaining a frequency response for the strain sensitivity of the Schenberg gravitational wave detector such that its bandwidth increases from 50 Hz (using the so-called resonant mode coupling) to ~4000 Hz when operating @ 20 mK, and, when compared to LIGO experimental curve, shows a competitive band of about 2000 Hz. We also study some of the technological complications that can be foreseen to design such a resonant cavity.

  20. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities

    International Nuclear Information System (INIS)

    To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ∼30 µm, gap of ∼115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities. (paper)

  1. Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Ward, Jonathan M; Chormaic, Síle Nic

    2016-01-01

    In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady state transmission spectrum through the coupling waveguide. Alternatively, cavity ring-up spectroscopy (CRUS) sensing can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh \\textit{Q}-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which might improve the data collection rate.

  2. Blue resonant-cavity light-emitting diode with half milliwatt output power

    Science.gov (United States)

    Yeh, Pinghui S.; Chang, Chi-Chieh; Chen, Yu-Ting; Lin, Da-Wei; Wu, Chun Chia; He, Jhao Hang; Kuo, Hao-Chung

    2016-03-01

    GaN-based resonant-cavity light-emitting diode (RCLED) has a circular output beam with superior directionality than conventional LED and has power scalability by using two-dimensional-array layout. In this work, blue RCLEDs with a top reflector of approximately 50% reflectance were fabricated and characterized. An output power of more than 0.5 mW per diode was achieved before packaging under room-temperature continuous-wave (CW) operation. The full width at half maximum (FWHM) of the emission spectrum was approximately 3.5 and 4.5 nm for 10- and 20-μm-diameter devices, respectively. And the peak wavelength as well as the FWHM remained stable at various currents and temperatures.

  3. Cavity-aided magnetic-resonance microscopy of atoms in optical lattices

    CERN Document Server

    Purdy, Tom P; Brooks, Daniel W C; Botter, Thierry; Stamper-Kurn, Dan M

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful technique for investigating the microscopic properties and dynamics of physical systems. In this work we demonstrate state-sensitive MRI of ultracold atoms in an optical lattice. Single-shot spatial resolution is 120 nm, well below the lattice spacing, and number sensitivity is +/-2.4 for 150 atoms on a single site, well below Poissonian atom-number fluctuations. We achieve this by combining high-spatial-resolution control over the atomic spin using an atom chip, together with nearly quantum-limited spin measurement, obtained by dispersively coupling the atoms to light in a high-finesse optical cavity. The MRI is minimally disruptive of the atoms' internal state, preserving the magnetisation of the gas for subsequent experiments. Using this technique, we observe the nonequilibrium transport dynamics of the atoms among individual lattice sites. We see the atom cloud initially expand ballistically, followed by the onset of interaction-inhibited transport.

  4. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  5. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E.; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment.

  6. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity

    Institute of Scientific and Technical Information of China (English)

    Chen Cheng; Zhao Ling-Juan; Qiu Ji-Fang; Liu Yang; Wang Wei; Lou Cai-Yun

    2012-01-01

    We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity.The device consists of three sections,a DBR grating section,a passive phase section,and an active gain section.The gain section facet is cleaved to work as a laser cavity mirror.The other laser mirror is the DBR grating,which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action.The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state.We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process.By tuning the injection currents on the DBR and the gain sections,the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.

  7. Effects of Energetic Solar Emissions on the Earth-Ionosphere Cavity of Schumann Resonances

    Science.gov (United States)

    Sátori, Gabriella; Williams, Earle; Price, Colin; Boldi, Robert; Koloskov, Alexander; Yampolski, Yuri; Guha, Anirban; Barta, Veronika

    2016-03-01

    Schumann resonances (SR) are the electromagnetic oscillations of the spherical cavity bounded by the electrically conductive Earth and the conductive but dissipative lower ionosphere (Schumann in Z Naturforsch A 7:6627-6628, 1952). Energetic emissions from the Sun can exert a varied influence on the various parameters of the Earth's SR: modal frequencies, amplitudes and dissipation parameters. The SR response at multiple receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003). Distinct differences are noted in the ionospheric depths of penetration for X-radiation and solar protons with correspondingly distinct signs of the frequency response. The preferential impact of the protons in the magnetically unshielded polar regions leads to a marked anisotropic frequency response in the two magnetic field components. The general immunity of SR amplitudes to these extreme external perturbations serves to remind us that the amplitude parameter is largely controlled by lightning activity within the Earth-ionosphere cavity.

  8. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    International Nuclear Information System (INIS)

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible

  9. Effects of Energetic Solar Emissions on the Earth-Ionosphere Cavity of Schumann Resonances

    Science.gov (United States)

    Sátori, Gabriella; Williams, Earle; Price, Colin; Boldi, Robert; Koloskov, Alexander; Yampolski, Yuri; Guha, Anirban; Barta, Veronika

    2016-07-01

    Schumann resonances (SR) are the electromagnetic oscillations of the spherical cavity bounded by the electrically conductive Earth and the conductive but dissipative lower ionosphere (Schumann in Z Naturforsch A 7:6627-6628, 1952). Energetic emissions from the Sun can exert a varied influence on the various parameters of the Earth's SR: modal frequencies, amplitudes and dissipation parameters. The SR response at multiple receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003). Distinct differences are noted in the ionospheric depths of penetration for X-radiation and solar protons with correspondingly distinct signs of the frequency response. The preferential impact of the protons in the magnetically unshielded polar regions leads to a marked anisotropic frequency response in the two magnetic field components. The general immunity of SR amplitudes to these extreme external perturbations serves to remind us that the amplitude parameter is largely controlled by lightning activity within the Earth-ionosphere cavity.

  10. Efficient intracavity frequency doubling of an Yb-doped fiber laser using an internal resonant enhancement cavity

    OpenAIRE

    Cieslak, R.; Sahu, J.K.; Clarkson, W. A.

    2010-01-01

    We describe a simple approach for efficient generation of visible light in high-power continuous-wave fiber lasers via second harmonic generation in an internal resonant cavity. Preliminary results for a cladding-pumped Yb fiber laser are presented.

  11. Methods for calculation of the coupling coefficients in the Coupling Cavity Model of arbitrary chain of resonators

    CERN Document Server

    Ayzatsky, M I

    2016-01-01

    We present the short description of the methods for calculation of the coupling coefficients in the Coupling Cavity Model of arbitrary chain of resonators. In the first part the procedure that is based on the Mode Matching Method is given. Then we present the new method that used only one eigen vector.

  12. Resonance ionization mass spectrometric analysis of thorium by external laser cavity enhancement techniques

    International Nuclear Information System (INIS)

    Over the last several years, extensive effort has been directed towards the demonstration of Resonance Ionization Mass Spectrometry (RIMS) as a generally-applicable isotopic analysis technique. The major problems in this task have been to achieve a high overall ionization efficiency as well as good sample utilization. Several aspects of these problems are apparent in the choice of the excitation and ionization sources for the selective RIMS process. Pulsed lasers have typically had low repetition rates, poor spectral and temporal behavior, and short pulse durations. These characteristics have limited the general utility of pulsed lasers because of the low duty cycle (low efficiency), pulse pile-up detection difficulties (limited dynamic range), and relatively poor stability (poor precision). In contrast, cw lasers offer 100% effective duty cycles, well-controlled laser profiles (spectrally, spatially and temporally), and excellent power stability. The main feature limiting the utility of cw lasers has been power. While sufficient intensity is available to saturate the resonant transition, efficient promotion of excited atoms to the ionization continuum is difficult. This last aspect is where the authors efforts have centered. Presently, they are pursuing an external cavity technique which will generate overall ionization efficiencies of tens of percent, as well as increase the available spectral range. Experimental aspects and process to date on thorium will be discussed in detail

  13. Resonant cavity mode dependence of anomalous and inverse spin Hall effect

    International Nuclear Information System (INIS)

    The direct current electric voltage induced by the Inverse Spin Hall Effect (ISHE) and Anomalous Hall Effect (AHE) was investigated in the TE011 and TE102 cavities. The ISHE and AHE components were distinguishable through the fitting of the voltage spectrum. The unwanted AHE was minimized by placing the DUT (Device Under Test) at the center of both the TE011 and TE102 cavities. The voltage of ISHE in the TE011 cavity was larger than that in the TE102 cavity due to the higher quality factor of the former. Despite optimized centering, AHE voltage from TE011 cavity was also higher. The reason was attributed to the E-field distribution inside the cavity. In the case of the TE011 cavity, the DUT was easily exposed to the E-field in all directions. Therefore, the parasitic AHE voltage in the TE102 cavity was less sensitive than that in the TE011 cavity to decentering problem

  14. Efficient second-harmonic generation of continuous-wave Yb fiber lasers coupled with an external resonant cavity

    Science.gov (United States)

    Kim, J. W.; Jeong, J.; Lee, K.; Lee, S. B.

    2012-09-01

    Efficient second-harmonic generation of continuous-wave Yb fiber lasers is reported. A simple bow-tie external resonant cavity incorporating a type I LBO nonlinear optical crystal was employed for second harmonic frequency conversion of a multi-longitudinal-mode Yb fiber laser. It is shown that strong coupling was formed between the Yb fiber laser and the external cavity and, as a result, the laser produced 9.1 W of green output at 535 nm for 43 W of absorbed diode pump power at 975 nm corresponding to an optical conversion efficiency of 21 % with respect to absorbed diode pump power. The prospects for further improvement are discussed.

  15. Calculation of the resonance frequency change for a cavity charged by a plasma with or without a static magnetic field

    International Nuclear Information System (INIS)

    In the mere case of a cold plasma with or without static magnetic field, are given two methods of calculation of resonance frequency shift and absorption in a cylindrical cavity crossed by a plasma column: 1. A perturbation method, already known and used for electronic density measurements is restated and its application is used for several high frequency cavity modes. 2. An exact method employing Maxwell's equations, which however necessitates a computer, is compared with the first one; it permits a determination of the validity limits of the perturbation method and to draw conclusions,

  16. A Novel Micro- and Nano-Scale Positioning Sensor Based on Radio Frequency Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Estibaliz Asua

    2014-05-01

    Full Text Available In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.

  17. Fano-resonance induced strong-coupling of a hyperbolic cavity to a quantum emitter

    CERN Document Server

    Hasan, Mehedi; Belov, Pavel

    2015-01-01

    Light-matter interaction is studied for an open quantum system in the strong-coupling regime. A quantum dot and a hyperbolic cavity of spherical geometry is shown to couple light with large Rabi frequency and the role of Fano resonance is shown in the coupling mechanism. High Purcell factor and large Lamb shift are outlined. In the near-field spectrum, two distinct anti-crossings are evident, namely -- the one near the epsilon near zero (ENZ) frequency (from the effective medium description) which is detectable in the far-field, and the second anti-crossing is a pseudomode that does not appear in the far-field spectrum. This delineates the phenomenon `farfield propagating large Purcell factor'. Finally, we remark the fidelity of the strong-coupling, i.e. how prone the strong-coupling with respect to the loss mechanisms. This study on strong-coupling will have applications for spectroscopy, control over chemical reaction rate, microcavity, and in quantum information technology.

  18. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    Science.gov (United States)

    Gentle, A. R.; Yambem, S. D.; Burn, P. L.; Meredith, P.; Smith, G. B.

    2016-06-01

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  19. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    CERN Document Server

    Liu, Yu-Long; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2016-01-01

    We theoretically study a strongly-driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar those observed in $\\mathcal{PT}$-symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that: (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically-induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultra-long group delay. The time delay $\\tau$ can be optimized by regulating the optomechanical coupling strength through the control field and improved up to several orders of magnitude ($\\tau\\sim2$ $\\math...

  20. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors

    Science.gov (United States)

    Zhang, Zhidong; Luo, Liang; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2016-01-01

    A refractive index sensor based on metal-insulator-metal (MIM) waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM). The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU. PMID:27164101

  1. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors.

    Science.gov (United States)

    Zhang, Zhidong; Luo, Liang; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2016-01-01

    A refractive index sensor based on metal-insulator-metal (MIM) waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM). The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU. PMID:27164101

  2. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors

    Directory of Open Access Journals (Sweden)

    Zhidong Zhang

    2016-05-01

    Full Text Available A refractive index sensor based on metal-insulator-metal (MIM waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM. The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU.

  3. DESIGN OF SQUARE SUBSTRATE INTEGRATED WAVEGUIDE CAVITY RESONATORS: COMPENSATION OF MODELLING ERRORS BY SUPPORT VECTOR REGRESSION MACHINES

    Directory of Open Access Journals (Sweden)

    Giovanni Angiulli

    2012-01-01

    Full Text Available The design of Substrate Integrated Waveguide (SIW resonators is usually a cumbersome process, especially due to the length “trial and error” procedure involved in this task. In this study Support Vector Regression Machines (SVRMs are employed to compensate the modeling errors associated to the design of SIW rectangular cavity resonators. To validate the proposed approach, we have compared the design outputs provided by our method with the results provided by commercial full wave software. The comparison between our predictions and the full wave simulations validate the effectiveness of the proposed approach.

  4. Cavity optomechanical cooling of a mechanical resonator in presence of a quantum well

    CERN Document Server

    Sarma, Bijita

    2015-01-01

    Ground state cooling of micromechanical oscillator is a paradigmatic goal for observing quantum mechanical effects in cavity optomechanics. We study theoretically the ground state cooling of a mechanical oscillator in an optomechanical cavity in presence of a quantum well placed inside the cavity. Due to mode tailoring in presence of the quantum well, the cavity response gets modified and leads to asymmetric heating and cooling processes. This facilitates the cooling of the mechanical oscillator even in the unresolved-sideband regime, via inhibition of Stokes scattering.

  5. Computed tomography and magnetic resonance imaging findings of nasal cavity hemangiomas according to histological type

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Ho; Park, Sun Won; Lim, Myung Kwan; Kim, Yeo Ju; Lee, Ha Young [Dept. of Radiology, Inha University School of Medicine, Incheon (Korea, Republic of); Kim, Soo Jin [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jang, Tae Young [Dept. of Otolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon (Korea, Republic of); Kang, Young Hye [Dept. of Radiology, nha University Hospital, Incheon (Korea, Republic of)

    2015-06-15

    To compare computed tomography (CT) and magnetic resonance imaging (MRI) findings between two histological types of nasal hemangiomas (cavernous hemangioma and capillary or lobular capillary hemangioma). CT (n = 20; six pre-contrast; 20 post-enhancement) and MRI (n = 7) images from 23 patients (16 men and seven women; mean age, 43 years; range, 13-73 years) with a pathologically diagnosed nasal cavity hemangioma (17 capillary and lobular capillary hemangiomas and six cavernous hemangiomas) were reviewed, focusing on lesion location, size, origin, contour, enhancement pattern, attenuation or signal intensity (SI), and bony changes. The 17 capillary and lobular hemangiomas averaged 13 mm (range, 4-37 mm) in size, and most (n = 13) were round. Fourteen capillary hemangiomas had marked or moderate early phase enhancement on CT, which dissipated during the delayed phase. Four capillary hemangiomas on MRI showed marked enhancement. Bony changes were usually not seen on CT or MRI (seen on five cases, 29.4%). Half of the lesions (2/4) had low SI on T1-weighted MRI images and heterogeneously high SI with signal voids on T2-weighted images. The six cavernous hemangiomas were larger than the capillary type (mean, 20.5 mm; range, 10-39 mm) and most had lobulating contours (n = 4), with characteristic enhancement patterns (three centripetal and three multifocal nodular), bony remodeling (n = 4, 66.7%), and mild to moderate heterogeneous enhancement during the early and delayed phases. CT and MRI findings are different between the two histological types of nasal hemangiomas, particularly in the enhancement pattern and size, which can assist in preoperative diagnosis and planning of surgical tumor excision.

  6. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere.

    Science.gov (United States)

    Santillan, Arturo O; Cutanda-Henríquez, Vicente

    2008-11-01

    An investigation on the resonance frequency shift for a plane-wave mode in a cylindrical cavity produced by a rigid sphere is reported in this paper. This change of the resonance frequency has been previously considered as a cause of oscillational instabilities in single-mode acoustic levitation devices. It is shown that the use of the Boltzmann-Ehrenfest principle of adiabatic invariance allows the derivation of an expression for the resonance frequency shift in a simpler and more direct way than a method based on a Green's function reported in literature. The position of the sphere can be any point along the axis of the cavity. Obtained predictions of the resonance frequency shift with the deduced equation agree quite well with numerical simulations based on the boundary element method. The results are also confirmed by experiments. The equation derived from the Boltzmann-Ehrenfest principle appears to be more general, and for large spheres, it gives a better approximation than the equation previously reported. PMID:19045761

  7. Linear and nonlinear resonance features of an erbium-doped fibre ring laser under cavity-loss modulation

    Indian Academy of Sciences (India)

    Aditi Ghosh; R Vijaya

    2014-07-01

    The continuous-wave output of a single-mode erbium-doped fibre ring laser when subjected to cavity-loss modulation is found to exhibit linear as well as nonlinear resonances. At sufficiently low driving amplitude, the system resembles a linear damped oscillator. At higher amplitudes, the dynamical study of these resonances shows that the behaviour of the system exhibits features of a nonlinear damped oscillator under harmonic modulation. These nonlinear dynamical features, including harmonic and subharmonic resonances, have been studied experimentally and analysed with the help of a simple time-domain and frequency-domain information obtained from the output of the laser. All the studies are restricted to the modulation frequency lying in a regime near the relaxation oscillation frequency.

  8. Triple-resonant Brillouin light scattering in magneto-optical cavities

    CERN Document Server

    Haigh, J A; Ramsay, A J; Ferguson, A J

    2016-01-01

    An enhancement in Brillouin light scattering of optical photons with magnons is demonstrated in magneto-optical whispering gallery mode resonators tuned to a triple resonance point. This occurs when both the input and output optical modes are resonant with those of the whispering gallery resonator, with a separation given by the ferromagnetic resonance (FMR) frequency. The identification and excitation of specific optical modes allows us to gain a clear understanding of the mode-matching conditions. A selection rule due to wavevector matching leads to an intrinsic single-sideband excitation. Strong suppression of one sideband is essential for one-to-one frequency mapping in coherent optical-to-microwave conversion.

  9. Fano-resonance boosted cascaded field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application

    CERN Document Server

    Zhu, Zhendong; You, Oubo; Li, Qunqing; Fan, Shoushan

    2015-01-01

    Cascaded optical field enhancement (CFE) can be realized in some specially designed multiscale plasmonic nanostructures, where the generation of extremely strong field at nanoscale volume is crucial for many applications, for example, surface enhanced Raman spectroscopy (SERS). Here, we propose a strategy of realizing a high-quality plasmonic nanoparticle-in-cavity (PIC) nanoantenna array, where strong coupling between a nanoparticle dark mode with a high order nanocavity bright mode can produce Fano resonance at a target wavelength. The Fano resonance can effectively boost the CFE in the PIC, with a field enhancement factor up to 5X10^2. A cost-effective and reliable nanofabrication method is developed with room temperature nanoimprinting lithography to manufacture high-quality PIC arrays. This technique guarantees the generation of only one gold nanoparticle at the bottom of each nanocavity, which is crucial for the generation of the expected CFE. As a demonstration of the performance and application of the...

  10. Nonlinear resonance phenomena of a doped fibre laser under cavity-loss modulation: Experimental demonstrations

    Indian Academy of Sciences (India)

    A Ghosh; B K Goswami; R Vijaya

    2010-11-01

    Our experiments with an erbium-doped fibre ring laser (CW, single transverse mode and multiaxial mode) with an intracavity LiNbO3 electro-optic modulator (EOM) display the characteristic features of a nonlinear oscillator (e.g., harmonic and period-2 sub-harmonic resonances) when the EOM driver voltage is modulated periodically. Harmonic resonance leads to period-1 bistability and hysteresis. Inside the period-2 sub-harmonic resonance region, the laser exhibits Feigenbaum sequence and generalized bistability.

  11. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry-Pérot and photonic crystal nanobeam cavities

    Science.gov (United States)

    Lin, Tong; Chau, Fook Siong; Deng, Jie; Zhou, Guangya

    2015-11-01

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry-Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.

  12. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    International Nuclear Information System (INIS)

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator

  13. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-11-30

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.

  14. Studies of niobium and development of niobium resonant RF cavities for accelerator driven system

    International Nuclear Information System (INIS)

    The present approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Jefferson Laboratory pioneered the use of large-grain/single-crystal Nb directly sliced from an ingot for the fabrication of single-crystal high-purity Nb SRF cavities. The large grain/single crystal niobium has several potential advantages over the polycrystalline niobium and has become a viable alternative to the standard fine grain (ASTM grain size>6 μm), high purity (RRR ≥ 250 ) niobium for the fabrication of high-performance SRF cavities for particle accelerators. The present study includes the prototype single cell low beta cavity design, fabrication, EB welding and low temperature RF test at 2K. In this study also the medium field Q-Slope has been analyzed with the help of an added non linear term in Heabel's analytical model and a linear increase of surface resistance Rs with the magnetic field

  15. Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode

    DEFF Research Database (Denmark)

    Ulhaq, A.; Ates, Serkan; Weiler, S.; Ulrich, S.M.; Reitzenstein, S.; Löffler, A.; Höfling, S.; Worschech, L.; Forchel, A.; Michler, P.

    2010-01-01

    We report on the robustness of a detuned mode channel for reading out the relevant s-shell properties of a resonantly excited coupled quantum dot (QD) in a pillar microcavity. The line broadening of the QD s-shell is “monitored” by the mode signal with high conformity to the directly measured QD ...

  16. Gamma-rays generation experiment with the optical resonant cavity for ILC polarized positron source at the KEK-ATF 1

    International Nuclear Information System (INIS)

    We performed a gamma-rays generation experiment by laser-Compton scattering at the KEK-ATF, aiming to develop a Compton based polarized positron source for linear colliders. In the experiment, laser pulses with a 357 MHz repetition rate were accumulated and their power was enhanced by up to 250 times in the Fabry-Perot optical resonant cavity. The control system for the laser pulse accumulation was improved because it had not been possible to accumulate in the optical resonant cavity until last summer. As a result, we succeeded in synchronizing the laser pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while maintaining the laser pulse accumulation in the optical resonant cavity. (author)

  17. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: Stability theory, disorder, and laminates

    CERN Document Server

    Liarte, Danilo B; Transtrum, Mark K; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P

    2016-01-01

    We review our work on theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces. These limits are of key relevance to current and future accelerating cavities, especially those made of new higher-$T_c$ materials such as Nb$_3$Sn, NbN, and MgB$_2$. We summarize our calculations of the so-called superheating field $H_{\\mathrm{sh}}$, beyond which flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and disorder. Will we need to control surface orientation in the layered compound MgB$_2$? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. T...

  18. Resonant cavity enhanced InGaAs photodiodes for high speed detection of 1.55 μm infrared radiation

    Science.gov (United States)

    Kaniewski, J.; Muszalski, J.; Pawluczyk, J.; Piotrowski, J.

    2005-05-01

    Resonant cavity enhanced photodetectors are promising candidates for applications in high-speed optical communications due to their high quantum efficiency and large bandwidth. This is a consequence of placing the thin absorber of the photodetector inside a Fabry-Perot microcavity so the absorption could be enhanced by recycling the photons with resonance wavelength. The performance of uncooled resonant cavity enhanced InGaAs/InAlAs photovoltaic devices operating near 1.55 μm has been studied both theoretically and experimentally. The analyses include two different types of structures with cavity end mirrors made of semiconducting and metallic reflectors as well as semiconducting and hybrid (dielectric Si3N4/SiO2 + metal) Bragg reflectors. Optimization of the device design includes: absorption layer thickness, position of absorption layer within the cavity and number of layers in distributed Bragg reflectors. Dependence of absorption on wavelength and incidence angle are discussed. Various issues related to applications of resonance cavity enhanced photodiodes in optical systems are considered. Practical devices with metallic and hybrid mirrors were fabricated by molecular beam epitaxy and by microwave-compatible processing. A properly designed device of this type has potential for subpicosecond response time.

  19. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  20. Ovenized microelectromechanical system (MEMS) resonator

    Science.gov (United States)

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  1. Microwave cavity piezo-opto-mechanical resonators based on film thickness modes operating beyond 10 GHz

    Science.gov (United States)

    Han, Xu; Tang, Hong

    Micromechanical resonators, which support and confine microwave frequency phonons on a scale comparable to optical wavelength, provide a valuable intermediate platform facilitating interactions among electrical, optical, and mechanical domains. High-frequency mechanical resonances ease the refrigeration conditions for reaching quantum mechanical ground state and also hold promise for practical device applications. However, efficient actuation of the highly stiff mechanical motions above gigahertz frequencies remains a challenging task. Here, we demonstrate a high-performance piezo-opto-mechanical resonator operating at 10.4 GHz by exploiting the acoustic thickness mode of an aluminum nitride micro-disk. In contrast to the in-plane mechanical modes, the thickness mode can be easily scaled to high frequencies with low mechanical and optical dissipations. A high f . Q product of 1 . 9 ×1013 ?Hz is achieved in ambient air at room temperature. Moreover, strong piezo-electro-mechanical coupling can be achieved by coupling the thickness mode with a microwave resonator, making it possible for coherent signal conversion. The thickness mode-based piezo-opto-mechanical resonators can be expected to serve as essential elements for advanced hybrid information networks.

  2. Roles of the vacuum field bath in a cavity QED system beyond the Weisskopf-Wigner approximation: Coupling renormalization, off-resonance assisted feeding, and pure dephasing

    Science.gov (United States)

    Zhang, Shu-Qun; Chen, Zhi-De

    2014-02-01

    We present nonperturbative treatment of the vacuum field bath for two cases, a two-level emitter (TLE) in free space and a lossy TLE coupled to a cavity mode (CM), and the condition that guarantees the validity of the perturbative treatment in both cases is studied. It is shown that the perturbative treatment in the first case is always valid for a real system. In the second case, nevertheless, the perturbative treatment ignores a coupling term, which can bring effects similar to a phonon bath, e.g., coupling renormalization, off-resonance assisted feeding, and pure dephasing inside the resonance region. All of these effects are important for understanding the experimental observations, including the far-off-resonance cavity fluorescence and the additional CM line inside the resonance region in the strong coupling regime.

  3. Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes

    Science.gov (United States)

    Song, Qinghai; Ge, Li; Wiersig, Jan; Cao, Hui

    2013-08-01

    The recent progresses in single crystalline wide bandgap hexagonal disk have stimulated intense research attention on pursuing ultraviolet (UV) laser diodes with low thresholds. While whispering-gallery modes based UV lasers have been successfully obtained in GaN, ZnO nanorods, and nanopillars, the reported thresholds are still very high, due to the low-quality (Q) factors of the hexagonal resonances. Here we demonstrate resonances whose Q factors can be more than two orders of magnitude higher than the hexagonal modes, promising the reduction of the energy consumption. The key to our finding is the avoided resonance crossing between superscar states along two sets of nearly degenerated triangle orbits, which leads to the formation of hexagram modes. The mode couplings suppress the field distributions at the corners and the deviations from triangle orbits simultaneously and therefore enhance the Q factors significantly.

  4. Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe

    Science.gov (United States)

    Roberts, J. A.; Imholt, T.; Ye, Z.; Dyke, C. A.; Price, D. W.; Tour, J. M.

    2004-04-01

    A resonant microwave cavity operating in the TM010 mode was used to determine the microwave susceptibility of single walled carbon nanotubes (SWNT) that are blended in polymer matricies. The frequencies of the probe signal were 9.8, 11.4, and 35.93 GHz. Samples of 3%-19% blends of SWNT in polycarbonate were tested to determine the best blends for shielding of devices from microwaves at these frequencies. It appears that blends of 9%-11% are very effective in shielding the electric vector of electromagnetic waves. Both the electric vector and the magnetic vectors were probed by the process to determine the nature of coupling between the SWNTs and the applied fields. Some details are given about the apparatus design that enables computer collection and processing of the data to be achieved. An electronic differentiation technique was used to allow the second derivative of the cavity absorption profile to be displayed for precise measurement. Data are presented to show the relative microwave absorption for different blends of the SWNTs with polycarbonates.

  5. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  6. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  7. Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters.

    Science.gov (United States)

    Lee, Kyu-Tae; Seo, Sungyong; Lee, Jae Yong; Guo, L Jay

    2014-09-01

    Spectrum filters with a wide viewing angle exploiting strong resonance effects in lossy media are demonstrated. The designed filters show significantly improved color purity and the angle-robust characteristic can be preserved up to ±65° due to an interesting phase-cancellation effect. This strategy could provide new routes for numerous applications, such as image sensors and displays. PMID:25070749

  8. A new method for measuring the low-temperature dielectric property of a low-loss material with a superconducting resonant cavity

    International Nuclear Information System (INIS)

    A superconducting 6.5 GHz cylindrical TE011 mode cavity was used to measure the small dielectric loss of polytetrafluoroethylene at liquid helium temperature. First, the Q value and the resonance frequency of the unperturbed niobium cavity was measured by the decrement method. Then a thin cylindrical rod sample, suspended from the magnetic loop, was inserted into it through the coupling port. By the use of a gate valve and a vacuum by-pass the sample can be drawn out and reassembled without introducing air into the cavity. From the decrease of the Q value and the shift of the resonance frequency, the complex dielectric constant was obtained (epsilon'/epsilon0=1.9 and epsilon''/epsilon0=4.4x10-6 at 1.3 K). Loss tangent tan delta was estimated as 2.4x10-6. (auth.)

  9. Cavity optomechanics with whispering-gallery-mode optical micro-resonators

    CERN Document Server

    Schliesser, Albert

    2010-01-01

    Parametric coupling of optical and mechanical degrees of freedom forms the basis of many ultra-sensitive measurements of both force and mechanical displacement. An optical cavity with a mechanically compliant boundary enhances the optomechanical interaction, but also gives rise to qualitatively new coupled dynamics. As early as 1967, in a pioneering work, V. Braginsky analyzed theoretically the role of radiation pressure in the interferometric measurement process, but it has remained experimentally unexplored for many decades. Here, we use whispering-gallery-mode (WGM) optical microresonators to study these radiation pressure phenomena. Optical microresonators simultaneously host optical and mechanical modes, which are systematically analyzed and optimized to feature ultra-low mechanical dissipation, photon storage times exceeding the mechanical oscillation period (i.e. the "resolved-sideband regime") and large optomechanical coupling. It is demonstrated that dynamical backaction can be employed to cool mecha...

  10. Influence of Intrinsic Decoherence on Entanglement of Superconducting Charge Qubit in a Resonant Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Nan; SHAO Bin; ZOU Jian

    2005-01-01

    @@ Taking the intrinsic decoherence effect into account, we investigate the entanglement dynamics of a superconducting charge qubit in a single-mode optical cavity. Concurrence, as the measure of entanglement of the coupled field-junction system, is calculated. In comparison, we also consider the entanglement of the system by using the entanglement parameter based on the ratio between mutual entropy and partial Von-Neumann entropy to investigate how the intrinsic decoherence affects the entanglement of the coupling system. Our results show that the evolution of the entanglement parameter has the behaviour similar to the concurrence and it is thus the well measure of entanglement for the mixed state in such a coupling system.

  11. Optimization of a hot-cavity type resonant ionization laser ion source

    International Nuclear Information System (INIS)

    Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d’Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results concerning emittance and time profile development as a function of the temperature for different ion source versions will be presented

  12. Optimization of a hot-cavity type resonant ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Henares, J. L., E-mail: henares@ganil.fr; Lecesne, N.; Hijazi, L.; Bastin, B.; Leroy, R.; Osmond, B.; Vignet, J. L. [GANIL, BP 55027, 14076 Caen Cedex 5 (France); Kron, T.; Naubereit, P.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz (Germany); Lassen, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Le Blanc, F. [IPN Orsay, BP 1-91406 Orsay (France)

    2016-02-15

    Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d’Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results concerning emittance and time profile development as a function of the temperature for different ion source versions will be presented.

  13. Optimization of a hot-cavity type resonant ionization laser ion source

    Science.gov (United States)

    Henares, J. L.; Lecesne, N.; Hijazi, L.; Bastin, B.; Kron, T.; Lassen, J.; Le Blanc, F.; Leroy, R.; Naubereit, P.; Osmond, B.; Vignet, J. L.; Wendt, K.

    2016-02-01

    Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d'Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results concerning emittance and time profile development as a function of the temperature for different ion source versions will be presented.

  14. Analysis of the resonance frequency shift in cylindrical cavities containing a sphere and its prediction based on the Boltzmann-Ehrenfest principle

    DEFF Research Database (Denmark)

    Orozco Santillán, Arturo; Cutanda Henriquez, Vicente

    2008-01-01

    It is known that forces generated by high-level acoustic waves can compensate for the weight of small samples, which can be suspended in a fluid. To achieve this, a standing wave is created in a resonant enclosure, which can be open or closed to the external medium. This phenomenon, called Acoustic...... levitation, has numerous applications in containerless study and processing of materials. Although it is possible to levitate a sample for long periods of time, instabilities can appear under certain conditions. One of the causes of oscillational instabilities is the change of the resonance frequency...... of the cavity due to the presence of the levitated object. The Boltzmann-Ehrenfest principle has been used to obtain an analytical expression for the resonance frequency shift in a cylindrical cavity produced by a small sphere, with kR

  15. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Saverio Avino

    2015-02-01

    Full Text Available The measurement of ionizing radiation (IR is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.

  16. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity

    Science.gov (United States)

    Faraon, Andrei; Barclay, Paul E.; Santori, Charles; Fu, Kai-Mei C.; Beausoleil, Raymond G.

    2011-05-01

    Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.

  17. Non-linear resonance of fluids in a crystal growth cavity

    Science.gov (United States)

    Wang, Francis C.

    1996-01-01

    In the microgravity environment, the effect of gravity on fluid motion is much reduced. Hence, secondary effects such as vibrations, jitters, surface tension, capillary effects, and electromagnetic forces become the dominant mechanism of fluid convection. Numerous studies have been conducted to investigate fluid behavior in microgravity with the ultimate goal of developing processes with minimal influence from convection. Industrial applications such as crystal growth from solidification of melt and protein growth for pharmatheutical application are just a few examples of the vast potential benefit that can be reaped from material processing in space. However, a space laboratory is not immune from all undesirable disturbances and it is imperative that such disturbances be well understood, quantifiable, and controlled. Non-uniform and transient accelerations such as vibrations, jitters, and impulsive accelerations exist as a result of crew activities, space vehicle maneuvering, and the operations of on-board equipment. Measurements conducted on-board a U.S. Spacelab showed the existence of vibrations in the frequency range of 1 to 100 Hz with a dominant mode of 17 Hz and harmonics of 54 Hz. The observed vibration is not limited to any coordinate plane but exists in all directions. Similar situation exists on-board the Russian MIR space station. Due to the large structure of its design, the future International Space Station will have its own characteristic vibration spectrum. It is well known that vibration can exert substantial influence on heat and mass transfer processes, thus hindering any attempts to achieve a diffusion-limited process. Experiments on vibration convection for a liquid-filled enclosure under one-g environment showed the existence of different flow regimes as vibration frequency and intensity changes. Results showed the existence of a resonant frequency, near which the enhancement is the strongest, and the existence of a high frequency asymptote

  18. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gurevich, Alexander V. [Old Dominion University, Norfolk, VA (United States)

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by {approx_equal} 10%–30% with increasing radio-frequency (rf) field, H, up to {approx} 15-20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to {approx_equal} 50%–100% and extend it to much higher fields, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  19. Hot-cavity studies for the Resonance Ionization Laser Ion Source

    Science.gov (United States)

    Henares, J. L.; Lecesne, N.; Hijazi, L.; Bastin, B.; Kron, T.; Lassen, J.; Le Blanc, F.; Leroy, R.; Osmond, B.; Raeder, S.; Schneider, F.; Wendt, K.

    2016-09-01

    The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency and beam emittance. Furthermore, a low work function material was tested to reduce the contaminants and molecular sidebands generated inside the ion source. First results with ZrC ionizer tubes will be presented. Furthermore, a method to measure the energy distribution of the ion beam as a function of the time of flight will be discussed.

  20. Nonlinear bang-bang eigenproblems and optimization of resonances in layered cavities

    CERN Document Server

    Karabash, Illya M; Verbytskyi, Ievgen V

    2015-01-01

    Quasi-normal-eigenvalue optimization is studied under constraints $b_1(x) \\le B(x) \\le b_2 (x)$ on structure functions $B$ of 2-side open optical or mechanical resonators. We prove existence of various optimizers and provide an example when different structures generate the same optimal quasi-(normal-)eigenvalue. To show that quasi-eigenvalues locally optimal in various senses are in the spectrum $\\Sigma^{nl}$ of the bang-bang eigenproblem $y" = - \\omega^2 y [ b_1 + (b_2 - b_1) \\chi_{\\mathbb{C}_+} (y^2 ) ]$, where $\\chi_{\\mathbb{C}_+} (\\cdot)$ is the indicator function of the upper complex half-plane $\\mathbb{C}_+$, we obtain a variational characterization of the nonlinear spectrum $\\Sigma^{nl}$ in terms of quasi-eigenvalue perturbations. To address the minimization of the decay rate $| \\mathrm{Im} \\ \\omega |$, we study the bang-bang equation and explain how it excludes an unknown optimal $B$ from the optimization process. Computing one of minimal decay structures for 1-side open settings, we show that it res...

  1. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    Directory of Open Access Journals (Sweden)

    Paolo Bardella

    2016-01-01

    Full Text Available In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35 GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ digital signal up to 80 GHz . Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.

  2. Cavity-enhanced AlGaAs/GaAs resonant tunneling photodetectors for telecommunication wavelength light detection at 1.3 μm

    Science.gov (United States)

    Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Kamp, Martin; Höfling, Sven; Worschech, Lukas

    2015-09-01

    We demonstrate a cavity-enhanced photodetector at the telecommunication wavelength of λ = 1.3 μm based on a resonant tunneling diode (RTD). The cavity-enhanced RTD photodetector consists of three integral parts: First, a Ga0.89In0.11N0.04As0.96 absorption layer that can be grown lattice-matched on GaAs and which is light-active in the near infrared spectral region due to its reduced bandgap energy. Second, an Al0.6Ga0.4As/GaAs double barrier resonant tunneling structure (RTS) that serves as high gain internal amplifier of weak electric signals caused by photogenerated electron-hole pairs within the GaInNAs absorption layer. Third, an optical distributed Bragg reflector (DBR) cavity consisting of five top and seven bottom alternating GaAs/AlAs mirror pairs, which provides an enhanced quantum efficiency at the resonance wavelength. The samples were grown by molecular beam epitaxy. Electro-optical properties of the RTDs were studied at room temperature. From the reflection-spectrum the optical resonance at λ = 1.29 μm was extracted. The current-voltage characteristics were studied in the dark and under illumination and a wellpronounced photo-response was found and is attributed to accumulation of photogenerated holes in the vicinity of the RTS. The maximum photocurrent was found at the optical resonance of 1.29 μm. At resonance, a sensitivity of S = 3.97 × 104 A/W was observed. From the sensitivity, a noise equivalent power of NEP = 1.18 × 10-16 W/Hz1/2, and a specific detectivity of D∗ ≅ 6.74 × 1012 cm Hz1/2/W were calculated. For a single absorbed photon a photocurrent of ISP = 50 pA was determined.

  3. Dual-resonances approach to broadband cavity-assisted optical signal processing beyond the carrier relaxation rate

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    We propose and analyze a differential control scheme for cavity-enhanced optical signal processing devices based on carrier nonlinearities. The scheme relies on two optical cavities to increase the bandwidth beyond the limit given by the slowest carrier relaxation rate of the medium. Practical...

  4. Approximate Teleportation of an Unknown Atomic-Entangled State with Dissipative Atom-Cavity Resonant Jaynes-Cummings Model

    International Nuclear Information System (INIS)

    We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED. It is the further development of the scheme of [Phys. Rev. A 69 (2004) 064302], where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state. In this paper, we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state, which is different from that teleportated in [Phys. Rev. A 69 (2004) 064302] and then give the fidelity of the teleportation, which depends on the cavity mode decay. The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap

  5. Approximate Teleportation of an Unknown Atomic-Entangled State with Dissipative Atom-Cavity Resonant Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; LI Shao-Hua; CHEN Chang-Yong

    2008-01-01

    We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED.It is the further development of the scheme of [Phys.Rev.A 69 (2004) 064302],where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state.In this paper,we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state,which is different from that teleportated in [Phys.Rev.A 69 (2004) 064302] and then give the fidelity of the teleportation,which depends on the cavity mode decay.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap.

  6. Magnetic resonance tomographic staging of tumors of the oropharynx and oral cavity with respect to a dynamic FLASH-2D-sequence

    International Nuclear Information System (INIS)

    The findings and dignostic value of magnetic resonance tomographic staging of tumors of the oropharynx and oral cavity is reviewed. The i.v.-application of paramagnetic contrast medium Gd-DTPA enhances tumor-to-tissue contrast and improves delineation of a pathological process. On account of the short examination time the application of a contrast enhanced dynamic FLASH-2D-sequence reduces moving artifacts. Concerning contrast behavior this sequence proves to be superior to a contrast medium enhanced T1-weighted Se-sequence. Additionally to clinical-endoscopical methods MRI is recommended as the imaging procedure of choice to evaluate tumors of the oropharynx. (orig.)

  7. HF power couplers for pulsed superconducting cavity resonators; Coupleurs de puissance HF pour cavites supraconductrices en mode pulse

    Energy Technology Data Exchange (ETDEWEB)

    Jenhani, Hassen [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex (France)

    2006-11-15

    Recent years have seen an impressive improvement in the accelerating gradients obtained in superconducting cavities. Consequently, such cavities have become attractive candidates for large superconducting linear accelerator projects such as the European XFEL and the International Linear Collider (ILC). As a result, there is a strong interest in reducing RF conditioning time and improving the performance of the input power couplers for these cavities. The so-called TTF-III input power coupler, adopted for the XFEL superconducting RF cavities are complex components. In order to better understand the behavior of this component we have performed a series of experiments on a number of such couplers. Initially, we developed a fully automated RF high power test stand for coupler conditioning procedure. Following this, we performed a series of coupler conditioning tests. This has allowed the study of the coupler behavior during processing. A number of experiments were carried out to evaluate the in-situ baking effect on the conditioning time. Some of the conditioned couplers were sent to DESY in order to be tested on 9-cells TESLA cavities under cryogenic conditions. These tests have shown that the couplers in no way limit the cavity performance, even up to gradients of 35 MV/m. The main objective of our coupler studies was the reduction of their conditioning time, which represents one of the most important criteria in the choice of coupler for high energy linacs. Excellent progress in reducing the conditioning time has been demonstrated by making appropriate modifications to the conditioning procedure. Furthermore, special attention was paid to electron generation processes in the couplers, via multipacting. Simulations of this process were made on both the TTF-III coupler and on a new coupler prototype, TTF-V. Experiments aimed at suppressing multipacting were also successfully achieved by using a DC bias on the inner conductor of the co-axial coupler. (author)

  8. Effect of cavity design on optical parametric oscillator performance

    International Nuclear Information System (INIS)

    The effect of resonator cavity design on parametric oscillator performance is investigated theoretically. Certain unstable resonators produce superior energy conversion and beam quality than traditional resonators

  9. The cavity resonance mode of Bi2Sr2CaCu2O8 mesa terahertz sources as probed by scanning laser thermal microscopy

    Science.gov (United States)

    Benseman, Timothy; Koshelev, Alexei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Hao, Yang; Gross, Boris; Lange, Matthias; Koelle, Dieter; Kleiner, Reinhold; Kadowaki, Kazuo

    Stacked Intrinsic Josephson Junctions (IJJs) in the extremely anisotropic high-Tc superconductor Bi2Sr2CaCu2O8 are a promising solid-state source of coherent terahertz radiation in the so-called ``THz gap'' range. In these devices, a geometric resonant mode of a stack of IJJs of typical dimensions 300 x 60 x 1 microns3 acts to synchronize the individual junctions, resulting in coherent far-field THz emission. This resonance can be probed by scanning thermal laser microscopy, in which a modulated optical laser beam is rastered across the top surface of a stack. The resulting thermal perturbation to the stack's cavity mode can thus be mapped via the resulting xy-dependent modulation of the stack's electrical resistance. Here we discuss the experimentally measured scanning laser pattern of such a THz cavity mode, and the implications of its symmetry for the mechanism of IJJ synchronization in these devices. This research was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. De-AC02-06CH11357.

  10. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  11. Spontaneous creation and persistence of ground-state coherence in a resonantly driven intra-cavity atomic ensemble

    CERN Document Server

    Norris, D G; Orozco, L A; Barberis-Blostein, P; Carmichael, H J; 10.1103/PhysRevA.86.053816

    2012-01-01

    The spontaneous creation and persistence of ground-state coherence in an ensemble of intracavity Rb atoms has been observed as a quantum beat. Our system realizes a quantum eraser, where the detection of a first photon prepares a superposition of ground-state Zeeman sublevels, while detection of a second erases the stored information. Beats appear in the time-delayed photon-photon coincidence rate (intensity correlation function). We study the beats theoretically and experimentally as a function of system parameters, and find them remarkably robust against perturbations such as spontaneous emission. Although beats arise most simply through single-atom-mediated quantum interference, scattering pathways involving pairs of atoms interfere also in our intracavity experiment. We present a detailed model which identifies all sources of interference and accounts for experimental realities such as imperfect pre-pumping of the atomic beam, cavity birefringence, and the transit of atoms across the cavity mode.

  12. Electro-optical resonant switching in two-dimensional side-coupled waveguide-cavity photonic crystal systems

    International Nuclear Information System (INIS)

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We have investigated the electro-optical resonant switching in two-dimensional photonic crystal structures. The optical microcavity side coupled with a waveguide composed of a dielectric cylinder in air is studied by solving Maxwell's equations using the plane wave expansion method and finite-difference time-domain method. The switching mechanism is a change in the conductance of the microcavity and hence modulating the resonant mode and eventually resonant switching is achieved. Such a mechanism of switching should open up a new application for designing components in photonic integrated circuits. -- Highlights: → We report the electro-optical resonant switching in 2-D photonic crystal structures. → The defect modes are made by reducing the radius of a single rod in the microcavity. → The switching mechanism is a change in the conductance of the microcavity.

  13. Fano-resonance boosted cascaded field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application

    OpenAIRE

    Zhu, Zhendong; Bai, Benfeng; You, Oubo; Li, Qunqing; Fan, Shoushan

    2015-01-01

    Cascaded optical field enhancement (CFE) can be realized in some specially designed multiscale plasmonic nanostructures, where the generation of extremely strong field at nanoscale volume is crucial for many applications, for example, surface enhanced Raman spectroscopy (SERS). Here, we propose a strategy of realizing a high-quality plasmonic nanoparticle-in-cavity (PIC) nanoantenna array, where strong coupling between a nanoparticle dark mode with a high order nanocavity bright mode can prod...

  14. Cavity launchers for ICRF

    International Nuclear Information System (INIS)

    A type of resonant coil cavity is analyzed as a launcher for ICRF. This approach offers the advantages of: (1) convenient and flexible sizing, (2) ease of operation and maintenance, and (3) high power handling capability. We present results for resonance conditions, mode structures, power handling capabilities, and sensitivity to variation in plasma parameters

  15. Superconducting cavity development

    International Nuclear Information System (INIS)

    Design and development work of the superconducting cavities for the Neutron Science Project is being continued since 1995. In the cavity design work, RF and structural analyses were carried out in order to determine the cavity shape and to obtain the RF and structural parameters. In the cavity development work, preparation of the test facility, fabrication and tests of the two single-cell prototype cavities of β=0.5 were performed. Good performance of the cavity was demonstrated in the test; obtained surface peak electric field of 44 MV/m is much higher than the design value of 16 MV/m. Resonant frequency shifts due to the vacuum load and the Lorentz force were also measured in the test. (author)

  16. Reply to "Comment on "Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators" " by E. A. Muljarov and W. Langbein

    CERN Document Server

    Kristensen, Philip Trøst; Hughes, Stephen

    2016-01-01

    We refute all claims of the "Comment on "Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators" " by E. A. Muljarov and W. Langbein (arXiv:1602.07278v1). Based entirely on information already contained in our original article (P. T. Kristensen, R.-C. Ge and S. Hughes, Physical Review A 92, 053810 (2015)), we dismiss every point of criticism as being completely unjustified and point out how important parts of our argumentation appear to have been overlooked by the Comment Authors. In addition, we provide additional calculations showing directly the link between the normalizations by Sauvan et al. and Muljarov et al., which were not included in our original article.

  17. Potential sodium D2 resonance radiation generated by intra-cavity SHG of a c-cut Nd:YVO4 self-Raman laser.

    Science.gov (United States)

    Duan, Yanmin; Zhu, Haiyong; Huang, Chenghui; Zhang, Ge; Wei, Yong

    2011-03-28

    Intra-cavity frequency doubling with 589 nm emission from a compact c-cut Nd:YVO4 crystal self-Raman laser was investigated. A 15-cm-length LBO with non-critical phase-matching cut (θ = 90°, ϕ = 0°) was used for efficient second-harmonic generation. At a pump power of 16.2 W and a pulse repetition frequency of 40 kHz, output power up to 2.15 W was achieved with a pulse width of 16 ns and a conversion efficiency of 13.3% with respect to the diode pump power. The center wavelength was measured to be 589.17 nm with a Half-Maximum-Full-Width of 0.2 nm, which was well in accordance with the sodium D2 resonance radiation. PMID:21451660

  18. Development of Control System for Fast Frequency Tuners of Superconducting Resonant Cavities for FLASH and XFEL Experiments

    CERN Document Server

    Przygoda, K

    2011-01-01

    This dissertation covers the recent research and development (R&D) activities of control systems for the fast frequency tuners of TESLA cavities and predicts the implications foreseen for large scale machines such as the FLASH and the planned XFEL. In particular, the framework of the presented activities is the effort toward the: 1. R&D of the driving circuit, 2. R&D of the control algorithm, 3. R&D of the control system. The main result of these activities is the permanent installation of the target piezo control system and its commissioning for 40 cavities divided into 5 accelerating modules at the DESY FLASH facility. The author’s contribution was the study of possible designs of high-voltage, high-current power amplifiers, used for driving the fast frequency tuners, shows that several parameters of such a device needs to be considered. The most important parameter is the input and output power estimation. This arises from the fact that the estimation is the most crucial issue for both po...

  19. An ultrahigh Finesse Fabry-Perot superconducting resonator as a photon box for cavity-QED experiments

    CERN Document Server

    Kuhr, S; Guerlin, C; Bernu, J; Hoff, U B; Del'eglise, S; Brune, M; Raimond, J M; Haroche, S; Osnaghi, S; Jacques, E; Bosland, P; Visentin, B; Kuhr, Stefan; Guerlin, Christine; Bernu, Julien; Hoff, Ulrich Busk; Del\\'{e}glise, Samuel; Brune, Michel; Raimond, Jean-Michel; Haroche, Serge; Osnaghi, Stefano

    2006-01-01

    We have built a microwave Fabry-Perot resonator made of diamond-machined copper mirrors coated with superconducting niobium. Its damping time (Tc = 130 ms at 51 GHz and 0.8 K) corresponds to a finesse of 4.6 e9, the highest ever reached for a Fabry-Perot in any frequency range. We have tested this resonator by sending across it two circular Rydberg atoms, the first emitting a photon and the second absorbing it after a delay of 1/10 s. This long storage time photon box opens novel perspectives for quantum information. It can be used to perform sequences of hundreds of gate operations on individual atomic qubits. A set-up with one or two photon boxes can store mesoscopic fields made of hundreds of photons for decoherence and non-locality studies.

  20. RRR Characteristics for SRF Cavities

    OpenAIRE

    Jung, Yoochul; Hyun, Myungook; Joung, Mijoung

    2015-01-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes were fabricated such as a quarter wave resonator (QWR), a half wave resonator (HWR) and a single spoke resonator (SSR). One of the critical factors determining performances of the superconducting cavities is a residual resistance ratio (RRR). The RRR values...

  1. Cavity magnomechanics

    Science.gov (United States)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  2. Single ion cavity QED experiments

    International Nuclear Information System (INIS)

    Full text: We have set up a spherical Paul trap for a storing a single Ca+ ion placed in the center of a high finesse near confocal resonator. We report on experiments demonstrating the coupling of the narrow S1/2-D5/2 transition to the cavity internal light field. Due to the coupling, the ion acts as sensitive probe for the cavity internal field. We are able to map the field distribution by measuring the excitation probability. Scanning the cavity over the resonance imprints a Doppler frequency shift on the cavity field which leads to a spectral shift and a asymmetric broadening of the S-D transition. (author)

  3. Cavity magnomechanics

    Science.gov (United States)

    Zhang, Xufeng; Zou, Changling; Jiang, Liang; Tang, Hong X.

    Mechanical oscillators have been recently widely utilized to couple with optical and microwave photons in a variety of hybrid quantum systems, but they all lack the tunability. The magnetostrictive force provides an alternative mechanism to allow phonon to couple with a different type of information carrier-magnon, the collective excitation of magnetization whose frequency can be tuned by a bias magnetic field. Here, we demonstrate an intriguing hybrid system that consists of a magnonic, a mechanical, and a microwave resonator. The magnon-phonon interaction results in hallmark coherent phenomena such as magnomechanically induced transparency/absorption and magnomechanical parametric amplification. The magnetic field dependence of magnon provides our system with unprecedented tunability. Moreover, the great flexibility of our system allows us to achieve triple resonance among magnon, phonon and photon, which drastically enhances the magnomechanical interaction. Our work demonstrates the fundamental principle of cavity magnetomechanics, opening up great opportunities in various applications, such as tunable microwave filter and amplifier, long-lifetime quantum memories, microwave-to-optics conversion.

  4. Three-photon resonance ionization of atomic Mn in a hot-cavity laser ion source using Ti:sapphire lasers

    Science.gov (United States)

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2015-06-01

    Three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti:sapphire lasers has been demonstrated. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d54s5s f 6S5/2 level at 49 415.35 cm-1, while Rydberg transitions were reached from the 3d54s4d e 6D9/2,7/2,5/2 levels at around 47 210 cm-1. Analyses of the strong Rydberg transitions associated with the 3d54s4d e 6D7/2 lower level indicate that they belong to the dipole-allowed 4d → nf 6F°9/2,7/2,5/2 series converging to the 3d54s 7S3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm-1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.

  5. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to...... realize theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall...

  6. GaInNAs/GaAs Multiple-Quantum Well Resonant-Cavity-Enhanced Photodetectors at 1.3μm

    Institute of Scientific and Technical Information of China (English)

    潘钟; 李联合; 徐应强; 张伟; 林耀望; 张瑞康; 钟源; 任晓敏

    2001-01-01

    A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced photodetector (RCE-PD) operated at a wavelength of 1.3μm with the full width at half maximum of 4nm has been demonstrated. The GaInNAs RCE-PD was grown by molecular beam epitaxy using a homemade ion-removed dc plasma cell as a nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature, which is very beneficial for applications in long-wavelength absorption devices. For a 100μm diameter RCE-PD, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3 dB bandwidth is 308 MHz, which is limited by the resistance of p-type distributed Bragg reflector mirror. The tunable wavelength in a range of 18nm with the angle of incident light was observed.

  7. 谐振腔增强型光探测器的优化设计%Optimized Design of Resonant Cavity Enhanced Photo Detector

    Institute of Scientific and Technical Information of China (English)

    彭秀艳; 彭秀川; 吴利华; 徐倩

    2007-01-01

    在光通信系统中,量子效率和响应速率是光电探测器的2个重要的参数,要获得高的量子效率就必须增大吸收层的厚度,而增大吸收层的厚度将导致载流子渡越时间的延长,从而使响应速率下降.谐振腔增强型光探测器(Resonant Cavity Enhanced Photo Detector,简称REC)可以有效地解决量子效率与响应速率之间相互制约关系.笔者从实际的长波长RCE出发,充分考虑器件制备的工艺难度,综合分析其各方面因素,并对器件整体设计进行优化.

  8. The self-started 10 GHz harmonic mode-locking of a hybrid weak-resonant-cavity laser diode and fiber ring link

    International Nuclear Information System (INIS)

    A self-started harmonic mode-locking of a hybrid weak-resonant-cavity Fabry–Perot laser diode and fiber ring link is demonstrated to serve as a pulsed optical for future 10 Gb s−1 RZ data transmission. Beginning with the optical injection-locking rate equation describing the optoelectronic oscillator structure, the pulsewidth formula in the active mode-locking theory is modified and illuminates the shortening of the pulsewidth as a function of the optical feedback ratio and the microwave power gain. The pulsewidth is narrower with the higher optical injection power and the higher microwave power gain because of the gain saturation of the laser diode and the increase of the modulation depth. The lowest jitter and pulsewidth of the pulse train are 0.9 ps and 20 ps, respectively. With the higher microwave power gain, the SNR and ER are improved up to 10.2 dB and 13.8 dB, respectively, due to the enhancement of the peak power and the elimination of the residual carrier. Under the optimized operation condition, the pulsed optical carrier can be externally encoded at 10 Gbit/s for RZ-OOK data transmission. (letter)

  9. Continuous-wave mid-infrared intra-cavity singly resonant PPLN-OPO under 880 nm in-band pumping.

    Science.gov (United States)

    Sheng, Quan; Ding, Xin; Shi, Chunpeng; Yin, Sujia; Li, Bin; Shang, Ce; Yu, Xuanyi; Wen, Wuqi; Yao, Jianquan

    2012-03-26

    We report herein a continuous-wave mid-infrared intra-cavity singly resonant optical parametric oscillator (ICSRO) which is the first example of ICSRO that utilize in-band pumped Nd-doped vanadate laser as pump source. A 1064 nm Nd:YVO₄ laser in-band pumped by 880 nm LD and a periodically poled lithium niobate (PPLN) crystal are employed as the parent pump laser and the nonlinear medium, respectively. The idler output wavelength tuning range is 3.66-4.22 µm. A maximum output power of 1.54 W at 3.66 µm is obtained at absorbed pump power of 21.9 W, with corresponding optical efficiency being 7.0%. The control experiment of ICSRO under 808 nm traditional pumping is also carried out. The results show that in-band pumped ICSRO has better performance in terms of threshold, power scaling, efficiency and power stability than ICSRO traditionally pumped at 808 nm. PMID:22453475

  10. Frequency control of radiofrequency cavity

    OpenAIRE

    Menart, Jure

    2014-01-01

    This work describes the design, development and application of the system for frequency control of EMMA accelerator radiofrequency cavity. The problem with the radiofrequency cavities is, that because of various factors (change in the environmental temperature, mechanical stress, ...), they are continuously frequency detuning. The consequence of the frequency detuning is that electromagnetic field in the cavity is not optimal for the acceleration of the particles. For this reason the resonant...

  11. Study on superconducting accelerating cavities

    International Nuclear Information System (INIS)

    A test cavity of cylindrical shape has been designed and constructed to study superconducting accelerating cavities for TRISTAN e+e- Ring. Higher order modes have been calculated by using SUPERFISH program and an analytical method, and measured. The measured resonant frequencies well agree with the calculated results. (author)

  12. Moving Detectors in Cavities

    CERN Document Server

    Obadia, N

    2007-01-01

    We consider two-level detectors, coupled to a quantum scalar field, moving inside cavities. We highlight some pathological resonant effects due to abrupt boundaries, and decide to describe the cavity by switching smoothly the interaction by a time-dependent gate-like function. Considering uniformly accelerated trajectories, we show that some specific choices of non-adiabatic switching have led to hazardous interpretations about the enhancement of the Unruh effect in cavities. More specifically, we show that the emission/absorption ratio takes arbitrary high values according to the emitted quanta properties and to the transients undergone at the entrance and the exit of the cavity, {\\it independently of the acceleration}. An explicit example is provided where we show that inertial and uniformly accelerated world-lines can even lead to the same ``pseudo-temperature''.

  13. Superconducting cavities

    International Nuclear Information System (INIS)

    The basic properties of superconducting cavities for electron accelerators are discussed with special emphasis on the following topics: technical motivation for the use of superconducting cavities; surface impedance; the critical field of superconductors; anomalous losses; materials other than niobium; technological achievements for accelerating cavities. (author)

  14. Prognostic value of 18F-fluorodeoxyglucose positron emission tomography, computed tomography and magnetic resonance imaging in oral cavity squamous cell carcinoma with pathologically positive neck lymph node

    International Nuclear Information System (INIS)

    To evaluate the prognostic value of preoperative neck lymph node (LN) assessment with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), computed tomography (CT), and magnetic resonance imaging (MRI) in oral cavity squamous cell carcinoma (OSCC) patients with pathologically positive LN. In total, 47 OSCC patients with pathologically positive LN were retrospectively reviewed with preoperative 18F-FDG PET and CT/MRI. All patients underwent surgical resection, neck dissection and postoperative adjuvant radiotherapy and/or chemotherapy between March 2002 and October 2010. Histologic correlation was performed for findings of 18F-FDG PET and CT/MRI. Thirty-six (76.6%) of 47 cases were correctly diagnosed with neck LN metastasis by 18F-FDG PET and 32 (68.1%) of 47 cases were correctly diagnosed by CT/MRI. Follow-up ranged from 20 to 114 months (median, 56 months). Clinically negative nodal status evaluated by 18F-FDG PET or CT/MRI revealed a trend toward better clinical outcomes in terms of overall survival, disease-free survival, local recurrence-free survival, regional nodal recurrence-free survival, and distant metastasis-free survival rates even though the trends were not statistically significant. However, there was no impact of neck node standardized uptake value (SUVmax) on clinical outcomes. Notably, SUVmax showed significant correlation with tumor size in LN (p 2 = 0.62). PET and CT/MRI status of LN also had significant correlation with the size of intranodal tumor deposit (p 2 = 0.37 and p 2 = 0.48, respectively). 18F-FDG PET and CT/MRI at the neck LNs might improve risk stratification in OSCC patients with pathologically positive neck LN in this study, even without significant prognostic value of SUVmax.

  15. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    Science.gov (United States)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  16. Surface state photonic bandgap cavities

    OpenAIRE

    Rahachou, A. I.; Zozoulenko, I. V.

    2005-01-01

    We propose and analyze a new type of a resonant high-Q cavity for lasing, sensing or filtering applications, which is based on a surface states of a finite photonic crystal. We demonstrate that such the cavity can have a Q factor comparable with that one of conventional photonic band-gap defect mode cavities. At the same time, the distinguished feature of the surface mode cavity is that it is situated directly at the surface of the photonic crystal. This might open up new possibilities for de...

  17. Controlled coupling of photonic crystal cavities using photochromic tuning

    CERN Document Server

    Cai, Tao; Solomon, Glenn S; Waks, Edo

    2013-01-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  18. RF superconducting cavities

    CERN Document Server

    Kojima, Y

    1980-01-01

    The history and present activity in research on RF superconducting cavities in various countries are reviewed. The program of the July 1980 Karlsruhe workshop is reproduced and research activity in this field at Stanford HEPL and SLAC, Cornell, Oregon, Brookhaven, KEK (Japan), Weismann (Israel), Genoa, CERN and Karlsruhe (KfK) listed. The theoretical basis of surface resistance and intracavity magnetic field, multipacing and non-resonant electron loading are outlined. (20 refs).

  19. Teleportation of a Weak Coherent Cavity Field State

    Science.gov (United States)

    Cardoso, Wesley B.; Qiang, Wen-Chao; Avelar, Ardiley T.

    2016-07-01

    In this paper we propose a scheme to teleport a weak coherent cavity field state. The scheme relies on the resonant atom-field interaction inside a high-Q cavity. The mean photon-number of the cavity field is assumed much smaller than one, hence the field decay inside the cavity can be effectively suppressed.

  20. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  1. Teleportation of a Weak Coherent Cavity Field State

    Science.gov (United States)

    Cardoso, Wesley B.; Qiang, Wen-Chao; Avelar, Ardiley T.

    2016-02-01

    In this paper we propose a scheme to teleport a weak coherent cavity field state. The scheme relies on the resonant atom-field interaction inside a high-Q cavity. The mean photon-number of the cavity field is assumed much smaller than one, hence the field decay inside the cavity can be effectively suppressed.

  2. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.; A. Sukhorukov, Andrey

    This book collects chapters on different theoretical and experimental aspects of photonics crystals for Nanophotonics applications. It is divided in two parts - a theoretical section and an experimental and applicative section. The first part includes chapters developing several numerical methods...... for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic...

  3. Nanofriction in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. PMID:26684118

  4. RRR Characteristics for SRF cavities

    Science.gov (United States)

    Jung, Yoochul; Hyun, Myungook; Joung, Mijoung

    2015-10-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes such as a quarter-wave resonator (QWR), a half-wave resonator (HWR) and a single-spoke resonator (SSR) were fabricated. One of the critical factors determining the performances of superconducting cavities is the residual resistance ratio (RRR). The RRR values essentially represent how pure niobium is and how fast niobium can transmit heat. In general, the RRR degrades during electron beam welding due to impurity incorporation. Thus, it is important to maintain the RRR above a certain value at which a niobium cavity shows target performance. In this study, RRR degradation related with electron beam welding conditions, for example, the welding power, welding speed, and vacuum level, will be discussed.

  5. RRR Characteristics for SRF Cavities

    CERN Document Server

    Jung, Yoochul; Joung, Mijoung

    2015-01-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes were fabricated such as a quarter wave resonator (QWR), a half wave resonator (HWR) and a single spoke resonator (SSR). One of the critical factors determining performances of the superconducting cavities is a residual resistance ratio (RRR). The RRR values essentially represent how much niobium is pure and how fast niobium can transmit heat as well. In general, the RRR degrades during electron beam welding due to the impurity incorporation. Thus it is important to maintain RRR above a certain value at which a niobium cavity shows target performance. In this study, RRR degradation related with electron beam welding conditions, for example, welding power, welding speed, and vacuum level will be discussed.

  6. Dental cavities

    Science.gov (United States)

    ... leading to cavities. Treatment may involve: Fillings Crowns Root canals Dentists fill teeth by removing the decayed tooth ... gold, porcelain, or porcelain attached to metal. A root canal is recommended if the nerve in a tooth ...

  7. Mechanical Properties of Niobium Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Matalevich, Joseph R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Myneni, Ganapati Rao [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  8. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  9. Three-dimensional cavity calculations

    International Nuclear Information System (INIS)

    The existence of a code that solves for the resonant electromagnetic modes of oscillation in arbitrarily-shaped three-dimensional cavities opens new possibilities in rf-structure analysis and research. The URMEL-3D code, the product of a multi-year collaboration between DESY, KFA-Juelich, and Los Alamos, has been used in some exploratory studies to determine the feasibility of using a 3-D code to calculate the properties of several practical rf structures. The results are reported here for three cases: the jungle gym, two coupled cavities, and a waveguide-cavity coupling problem

  10. Controlling dipole squeezing of two atoms inside a cavity via manipulating an atom outside the cavity

    Institute of Scientific and Technical Information of China (English)

    Liu Tang-Kun; Wang Ji-Suo; Feng Jian; Zhan Ming-Sheng

    2004-01-01

    Considering that three two-level atoms are initially in the GHZ single state and two of the atoms are simultaneously put into a cavity initially in the coherent state, we investigate the dipole squeezing properties of the two atoms inside the cavity under the condition of resonant interaction. It is shown that dipole squeezing properties of the two atoms inside the cavity are strongly affected by rotation manipulating of the atom outside the cavity.

  11. Electrical Control of Silicon Photonic Crystal Cavity by Graphene

    OpenAIRE

    Majumdar, Arka; Kim, Jonghwan; Vuckovic, Jelena; Wang, Feng

    2012-01-01

    Efficient conversion of electrical signal to optical signal in nano-photonics enables solid state integration of electronics and photonics. Combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A ~2nm change in the cavity resonance linewidth and almost 400% (6 dB) change in resonance re...

  12. Pathways for the direct extension of malignant pleural mesothelioma into peritoneal cavity. Assessment using computed tomography (CT) and magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi; Inoue, Yasushi; Iida, Shinichiro; Tonomura, Atsushi; Miyake, Mitsutomi; Togawa, Naoki; Hada, Toshikazu [Hyogo Coll. of Medicine, Nishinomiya (Japan); Chahinian, A.P.

    2000-01-01

    We investigated pathways for the direct extension of malignant pleural mesothelioma into peritoneal cavity using CT and MRI, and compared the radiographic findings with the corresponding gross pathologic features at thoracotomy or autopsy to make sure an accurate radiologic assessment. Three different pathways could be recognized ; direct invasion of diaphragmatic muscle to penetrate into peritoneal cavity, direct contiguous extension along the descending aorta into retroperitoneum through the aortic hiatus, and extension from the medial and lateral arcuate ligaments into retroperitoneum along the psoas major muscle and quadratus lumbrum muscle. MRI could evaluate a diaphragmatic muscle invasion and differentiate it from transdiaphragmatic extension. Irregularity of the infradiaphragmatic fat tissue in T1-weighted image was a reliable indicator of transdiaphragmatic extension. MRI is of value in assessing diaphragmatic involvement in patients with malignant pleural mesothelioma. (author)

  13. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  14. Cavity-enhanced absorption for optical refrigeration

    CERN Document Server

    Seletskiy, Denis V; Sheik-Bahae, Mansoor

    2009-01-01

    A 20-fold increase over the single path optical absorption is demonstrated with a low loss medium placed in a resonant cavity. This has been applied to laser cooling of Yb:ZBLAN glass resulting in 90% absorption of the incident pump light. A coupled-cavity scheme to achieve active optical impedance matching is analyzed.

  15. Superconducting drift-tube cavity development for the RIA driver

    International Nuclear Information System (INIS)

    This paper reports the design and development of two intermediate-velocity superconducting cavities and design of an associated cryomodule for the RIA driver linac. The two cavity types are a 115 MHz, βGEOM = 0.15 quarter-wave resonant (QWR) cavity, and a 173 MHz, βGEOM = 0.26 half-wave loaded cavity. Both cavities are well-corrected for dipole and quadrupole asymmetries in the accelerating field. The cryomodule is being designed to incorporate a separate vacuum system for cavity vacuum to provide a particulate-free environment for the superconducting cavities

  16. CRAB Cavity in CERN SPS

    International Nuclear Information System (INIS)

    Beam collisions with a crossing angle at the interaction point are often necessary in colliders to reduce the effects of parasitic collisions which induce emittance growth and decrease beam lifetime. The crossing angle reduces the geometrical overlap of the beams and hence the luminosity. Crab cavity offer a promising way to compensate the crossing angle and to realize effective head-on collisions. Moreover, the crab crossing mitigates the synchro-betatron resonances due to the crossing angle. A crab cavity experiment in SPS is proposed as a proof of principle before deciding on a full crab-cavity implementation in the LHC. In this paper, we investigate the effects of a single crab cavity on beam dynamics in the SPS and life time.

  17. CHECHIA cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    The initial control of the superconductive cavity has recently been performed by applying the FPGA (Field Programmable Gate Array) technology system in DESY Hamburg. This first experiment turned attention to the general recognition of the cavity features and projected control methods. The electrical model of the cavity is taken as a consideration origin. The calibration of the signal channel is considered as a key preparation for an efficient cavity driving. The cavity parameters identification is confirmed as a proper approach for the required performance: driving on resonance during filling and field stabilization during flattop time with reasonable power consumption. The feed-forward and feedback modes were applied successfully for the CHECHIA cavity driving. Representative results of experiments are presented for different levels of the cavity field gradient. (orig.)

  18. Methods for precisely controlling the residual stress and temperature coefficient of the frequency of a MEMS resonator based on an AlN cavity silicon-on-insulator platform

    Science.gov (United States)

    Wang, Nan; Xu, Jinghui; Zhang, Xiaolin; Wu, Guoqiang; Zhu, Yao; Li, Wei; Gu, Yuandong

    2016-07-01

    In this paper, we report an experimentally verified numerical model developed for precisely predicting and controlling the initial bending of a multi-layer-stack composite cantilever structure which is caused by the residual stress of the individual constituting layers, as well as the cantilever’s thermal coefficient of frequency (TCF). The developed model is exemplified using a flexural-mode cantilever resonator according to the process flow of the aluminium nitride (AlN) cavity silicon-on-insulator (SOI) platform. The same AlN cavity SOI platform is also utilized to fabricate the exemplified cantilever, which is then used to experimentally verify the accuracy and consistency of the numerical model. The experimental results show a difference of less than 3.5% is observed in terms of the deflection at the tip of the cantilever as compared with the numerical model, demonstrating the accuracy of the developed numerical model and the feasibility to optimize the cantilever’s initial deflection and TCF simultaneously, achieving minimum values for both parameters at the same time.

  19. Broadband tuning of optomechanical cavities

    Science.gov (United States)

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2011-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  20. Broadband Tuning of Optomechanical Cavities

    OpenAIRE

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2010-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from ...

  1. Broadband Tuning of Optomechanical Cavities

    CERN Document Server

    Wiederhecker, Gustavo S; Lee, Sunwoo; Lipson, Michal

    2010-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  2. Nanobeam cavities for Reconfigurable Photonics

    Science.gov (United States)

    Deotare, Parag B.

    We investigate the design, fabrication, and experimental characterization of high quality factor photonic crystal nanobeam cavities, with theoretical quality factors of 1.4 x 107 in silicon, operating at ˜ 1550 nm. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a quality factor of nearly 7.5 x 105. We show on-chip integration of the cavities using waveguides and an inverse taper geometry based mode size converters, and also demonstrate tuning of the optical resonance using thermo-optic effect. We also study coupled cavities and show that the single nanobeam cavity modes are coupled into even and odd superposition modes. Using electrostatic force and taking advantage of the highly dispersive nature of the even mode to the nanobeam separation, we demonstrate dynamically reconfigurable optical filters tunable continuously and reversibly over a 9.5 nm wavelength range. The electrostatic force, obtained by applying bias voltages directly to the nanobeams, is used to control the spacing between the nanobeams, which in turn results in tuning of the cavity resonance. The observed tuning trends were confirmed through simulations that modeled the electrostatic actuation as well as the optical resonances in our reconfigurable geometries. Finally we demonstrate reconfiguration of coupled cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over wide wavelength range are used to actuate the structures and in that way control the resonance of a localized cavity mode. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method that we developed, we determined that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cut-off, we show high speed operation dominated by

  3. Input cavity for high-order asymmetric-mode gyroklystron

    Science.gov (United States)

    Danilov, Yu. Yu.

    2012-06-01

    A new input cavity design for a high-order asymmetric-mode gyroklystron is proposed. Methods of the selective excitation of a resonant mode with a rotating field structure and the prevention of cavity self-excitation at harmonics of the gyrofrequency are proposed. Results of experimental investigation of the H711 mode cavity for a multimegawatt pulsed gyroklystron are presented.

  4. Introductory lecture on waveguides and cavities

    International Nuclear Information System (INIS)

    This lecture has two parts: waveguides and cavities. Basic topics are discussed which can serve as bases for the following lectures. Many of the results obtained in the first part concerning waveguides are applied in the second part in the discussion on cavity properties, since a cavity can be considered as a part of a waveguide, a cavity resonant mode being a superposition of two counter-travelling waves in the waveguide. In deriving most of the mathematical formulas, complex number representation - that is, phasor forms - are used. For the final results, however, real number representations are also provided as much as possible as an aid to a more intuitive understanding. (author)

  5. Mechanical Properties of Ingot Nb Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  6. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra;

    2009-01-01

    demonstrate a PhC cavity with a quality factor of Q15 000 that exhibits a temperature-independent resonance. Temperature-stable cavities constitute a major building block in the development of a large suite of applications from high-sensitivity sensor systems for chemical and biomedical applications to......We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally...

  7. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  8. Optical single photons on-demand teleported from microwave cavities

    Science.gov (United States)

    Barzanjeh, Sh; Vitali, D.; Tombesi, P.

    2013-03-01

    We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.

  9. Large-mode enhancement cavities.

    Science.gov (United States)

    Carstens, Henning; Holzberger, Simon; Kaster, Jan; Weitenberg, Johannes; Pervak, Volodymyr; Apolonski, Alexander; Fill, Ernst; Krausz, Ferenc; Pupeza, Ioachim

    2013-05-01

    In passive enhancement cavities the achievable power level is limited by mirror damage. Here, we address the design of robust optical resonators with large spot sizes on all mirrors, a measure that promises to mitigate this limitation by decreasing both the intensity and the thermal gradient on the mirror surfaces. We introduce a misalignment sensitivity metric to evaluate the robustness of resonator designs. We identify the standard bow-tie resonator operated close to the inner stability edge as the most robust large-mode cavity and implement this cavity with two spherical mirrors with 600 mm radius of curvature, two plane mirrors and a round trip length of 1.2 m, demonstrating a stable power enhancement of near-infrared laser light by a factor of 2000. Beam radii of 5.7 mm × 2.6 mm (sagittal × tangential 1/e(2) intensity radius) on all mirrors are obtained. We propose a simple all-reflective ellipticity compensation scheme. This will enable a significant increase of the attainable power and intensity levels in enhancement cavities. PMID:23670017

  10. Nanobeam Cavities for Reconfigurable Photonics

    OpenAIRE

    Deotare, Parag

    2012-01-01

    We investigate the design, fabrication, and experimental characterization of high quality factor photonic crystal nanobeam cavities, with theoretical quality factors of \\(1.4 × 10^7\\) in silicon, operating at ~1550 nm. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a quality factor of nearly \\(7.5 × 10^5\\). We show on-chip integration of the cavities using waveguides and an inverse taper geometry based mode size converters, and also...

  11. Synchronization in an optomechanical cavity.

    Science.gov (United States)

    Shlomi, Keren; Yuvaraj, D; Baskin, Ilya; Suchoi, Oren; Winik, Roni; Buks, Eyal

    2015-03-01

    We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and the results are compared with the theoretical prediction. PMID:25871175

  12. The emission properties of an atom inside a cavity when manipulating the atoms outside the cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; YE Liu; XIONG Kuang-wei; ZHANG Jin

    2003-01-01

    Considering three two-level atoms initially in the GHZ state, then one atom of them is put into an initially empty cavity and made resonant interaction. It is shown that the emission properties of the atom inside the cavity can be affected only when both of the atoms outside the cavity have been manipulated. This conclusion can also be generalized to n two-level atoms.

  13. Tunable 2D Photonic Crystal Cavities for Cavity Electro-Optomechanics

    OpenAIRE

    Winger, Martin; Alegre, Thiago P. Mayer; Safavi-Naeini, Amir H.; Painter, Oskar

    2011-01-01

    We present and demonstrate a novel electro-opto-mechanical structure based on a slotted waveguide photonic-crystal cavity, in which electrostatics and optics couple simultaneously to the same "phonon" resonance.

  14. Resonant MEMS tunable VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta;

    2013-01-01

    We demonstrate how resonant excitation of a microelectro-mechanical system can be used to increase the tuning range of a vertical-cavity surface-emitting laser two-fold by enabling both blue- and red-shifting of the wavelength. In this way a short-cavity design enabling wide tuning range can be r...

  15. Deterministic cavity quantum electrodynamics with trapped ions

    International Nuclear Information System (INIS)

    We have employed radio-frequency trapping to localize a single 40Ca+-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion's wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely deterministic coupling of ion and field was realized. The precise three-dimensional location of the ion in the cavity was measured by observing the fluorescent light emitted upon excitation in the cavity field. The single-ion system is ideally suited to implement cavity quantum electrodynamics under cw conditions. To this end we operate the cavity on the D3/2-P1/2 transition of 40Ca+ (λ 866 nm). Applications include the controlled generation of single-photon pulses with high efficiency and two-ion quantum gates

  16. Atom-atom entanglement dynamics enhancement via classically driven atoms coupled to a non-resonance single mode cavity field filled with nonlinear Kerr media

    Science.gov (United States)

    Ateto, M. S.

    2015-08-01

    Entanglement dynamics of two identical non-interacting atoms (qubits) coupled individually with simultaneous classical and quantum fields are studied. The cavity field is filled with a nonlinear Kerr medium and initially prepared in a coherent state. The atoms are initially set up as a Bell-like pure state (BS). We present an approach for diagonalization of time-dependent nonlinear Hamiltonian of the system exactly. Connection between the change in the degree of entanglement and tomography of field state in phase space are also illustrated and interpreted. We demonstrate the possibility of atom-atom (qubit-qubit) entanglement optimization by suitably choosing initial interaction settings. Overall, we show that both classical driving amplitude and detuning as well as Kerr media and initial atomic states acts as the control parameters for the qubit-qubit entanglement. By adjusting of these parameters, accurately, entanglement can be enhanced noticeably and high degree of steady periodical entanglement can be generated. Moreover, starting with initial atomic BSs in presence of classical driving suppresses coherences randomness and considerably accompanied with (for specific values of detuning) slight decrease in their amplitudes. Furthermore, the addition of cross Kerr term suppresses degree of entanglement noticeably, where entanglement creation and enhancement could just be possible if cross Kerr effect is moved out from interaction. Our present approach promises the great advantage of being suitable for large quantum systems of various kinds of nonlinearities.

  17. Observation of dressed intra-cavity dark states

    OpenAIRE

    Wang, Yanhua; Zhang, Jiepeng; Zhu, Yifu

    2011-01-01

    Cavity electromagnetically induced transparency in a coherently prepared cavity-atom system is manifested as a narrow transmission peak of a weak probe laser coupled into the cavity mode. We show that with a resonant pump laser coupling the cavity-confined four-level atoms from free space, the narrow transmission peak of the cavity EIT is split into two peaks. The two peaks represent the dressed intra-cavity dark states and have a frequency separation approximately equal to the Rabi frequency...

  18. Efficient generation of Bell-cat states in remote cavities

    Institute of Scientific and Technical Information of China (English)

    LI Xing; ZHANG Ying-Jie; XIA Yun-Jie

    2008-01-01

    In the context of cavity quantum electrodynamics (QED), a potential scheme is proposed to generate entangled coherentstates. The scheme includes twice interactions of two-level atoms with cavities. In the first interaction, two atoms are sentinto a microwave cavity with the large detuning respectively. And then the second interaction is that the two atoms enteranother microwave cavity and are driven by a resonant classical field meantime. When we choose the proper interactiontime and make measurement on the two atoms, the two microwave cavity mode fields are determinatively entangled. Inaddition, it is easy to generalize the scheme to multi-cavity and multi-atom.

  19. Superconducting cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland); Simrock, S.; Brand, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chase, B.; Carcagno, R.; Cancelo, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Koeth, T.W. [Rutgers - the State Univ. of New Jersey, NJ (United States)

    2006-07-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  20. Superconducting cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  1. A scheme for approximate conditional teleportation of entangled two-mode cavity state without Bell state measurement

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhi-Rong

    2008-01-01

    An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed.The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities.The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.

  2. A scheme for approximate conditional teleportation of entangled two-mode cavity state without Bell state measurement

    Science.gov (United States)

    Zhong, Zhi-Rong

    2008-05-01

    An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.

  3. Cavity beam position monitors

    International Nuclear Information System (INIS)

    Beam-based alignment and feedback systems are essential for the operation of future linear colliders and free electron lasers. A certain number of beam position monitors with a resolution in the submicron range are needed at selected locations. Most beam position monitors detect the electric or the magnetic field excited by a beam of charged particles at different locations around the beam pipe. In resonant monitors, however, the excitation of special field configurations by an off-center beam is detected. These structures offer a large signal per micron displacement. This paper is an attempt to summarize the fundamental characteristics of resonant monitors, their advantages and shortcomings. Emphasis will be on the design of cylindrical cavities, in particular on the estimation of expected signals, of resolution limits and the resulting beam distortion. This includes also a short introduction into numerical methods. Fabrication, tuning, and other practical problems will be reviewed briefly. Finally, some resonant devices used for beam position diagnostics will be discussed and listed

  4. A micropillar for cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Aurélien; Neuhaus, Leonhard; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine [Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Paris (France); Van Brackel, Emmanuel [Département de Physique, ENS, Paris (France); Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier [Département Mesures Physiques, ONERA, Châtillon (France); Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele [Laboratoire des Matériaux Avancés, IN2P3-CNRS, Lyon (France)

    2014-12-04

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  5. Multi-color Cavity Metrology

    CERN Document Server

    Izumi, Kiwamu; Barr, Bryan; Betzwieser, Joseph; Brooks, Aidan; Dahl, Katrin; Doravari, Suresh; Driggers, Jennifer C; Korth, W Zach; Miao, Haixing; Rollins, Jameson; Vass, Stephen; Yeaton-Massey, David; Adhikari, Rana

    2012-01-01

    Long baseline laser interferometers used for gravitational wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by four orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational wav...

  6. CRAB Cavity in CERN SPS

    OpenAIRE

    Kim, H. J.; Sen, T.

    2012-01-01

    Beam collisions with a crossing angle at the interaction point have been applied in high intensity colliders to reduce the effects of parasitic collisions which induce emittance growth and beam lifetime deterioration. The crossing angle causes the geometrical reduction of the luminosity. Crab cavity can be one of the most promising ways to compensate the crossing angle and to realize effective head-on collisions. Moreover, the crab crossing mitigates the synchro-betatron resonances due to the...

  7. Cavity Mode Frequencies and Large Optomechanical Coupling in Two-Membrane Cavity Optomechanics

    CERN Document Server

    Li, J; Malossi, N; Vitali, D

    2015-01-01

    We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes and the corresponding optomechanical coupling. Due to optical interference, extremely large optomechanical coupling of the membrane relative motion is achieved when the two membranes are placed very close to a resonance of the inner cavity formed by the two membranes, and in the limit of highly reflective membranes. The upper bound of the coupling strength is given by the optomechanical coupling associated with the much shorter inner cavity, consistently with the analysis of A. Xuereb et al., Phys. Rev. Lett. 109, 223601 (2012).

  8. Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity

    CERN Document Server

    Gretarsson, Andri M; Frolov, Valery; O'Reilly, Brian; Fritschel, Peter K

    2007-01-01

    We analyze the electromagnetic fields in a Pound-Drever-Hall locked, marginally unstable, Fabry-Perot cavity as a function of small changes in the cavity length during resonance. More specifically, we compare the results of a detailed numerical model with the behavior of the recycling cavity of the Laser Interferometer Gravitational-wave Observatory (LIGO) detector that is located in Livingston, Louisiana. In the interferometer's normal mode of operation, the recycling cavity is stabilized by inducing a thermal lens in the cavity mirrors with an external CO2 laser. During the study described here, this thermal compensation system was not operating, causing the cavity to be marginally optically unstable and cavity modes to become degenerate. In contrast to stable optical cavities, the modal content of the resonating beam in the uncompensated recycling cavity is significantly altered by very small cavity length changes. This modifies the error signals used to control the cavity length in such a way that the zer...

  9. A Scanning Cavity Microscope

    CERN Document Server

    Mader, Matthias; Hänsch, Theodor W; Hunger, David

    2014-01-01

    Imaging of the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1700-fold signal enhancement compared to diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross section of gold nanoparticles with a sensitivity below 1 nm2, we show a method to improve spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for opt...

  10. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  11. Photonic crystal cavities with metallic Schottky contacts

    International Nuclear Information System (INIS)

    We report about the fabrication and analysis of high Q photonic crystal cavities with metallic Schottky-contacts. The structures are based on GaAs n-i membranes with an InGaAs quantum well in the i-region and nanostructured low ohmic metal top-gates. They are designed for photocurrent readout within the cavity and fast electric manipulations. The cavity structures are characterized by photoluminescence and photocurrent spectroscopy under resonant excitation. We find strong cavity resonances in the photocurrent spectra and surprisingly high Q-factors up to 6500. Temperature dependent photocurrent measurements in the region between 4.5 K and 310 K show an exponential enhancement of the photocurrent signal and an external quantum efficiency up to 0.26

  12. Composite Resonator Surface Emitting Lasers

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-05-01

    The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

  13. Comments on Crab Cavity HOM Power

    CERN Document Server

    Calaga, Rama; CERN. Geneva. ATS Department

    2013-01-01

    Due to large beam current in the LHC and the luminosity upgrade (HL-LHC) which will further double the current, higher order mode (HOM) power of the superconducting crab cavities can easily reach a few kilowatts in the worst case scenario of resonant excitation. This report aims at estimating the HOM power to be extracted for a generalized HOM of crab cavity with realistic filling schemes in the LHC.

  14. Dynamically Reconfigurable Photonic Crystal Nanobeam Cavities

    OpenAIRE

    Frank, Ian W.; Deotare, Parag B.; McCutcheon, Murray W.; Loncar, Marko

    2009-01-01

    Wavelength-scale, high Q-factor photonic crystal cavities have emerged as a platform of choice for on-chip manipulation of optical signals, with applications ranging from low-power optical signal processing and cavity quantum electrodynamics, to biochemical sensing. Many of these applications, however, are limited by the fabrication tolerances and the inability to precisely control the resonant wavelength of fabricated structures. Various techniques for post-fabrication wavelength trimming an...

  15. Beam cavity interaction computer code for linacs

    International Nuclear Information System (INIS)

    A computer code BCI was used to calculate the energy loss of beam bunches in two types of cavities being studied in ORNL. The merit of the proposed on-axis coupled structure for CHEER is discussed in terms of beam energy loss. A calculation for a simple structure consisting of two accelerating cells and a coupling cell is performed. The amplitude modulation of the wake field is interpreted as the excitation of the zero and π coupled-resonator modes and coupling coefficients are derived. Beam loading of a cw linear accelerator is studied by calculating the bunch energy loss and cavity energy when a cavity is excited resonantly with a series of beam bunches. Calculations of non-resonant excitation are also presented

  16. Generation of four-photon W state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhi-Rong

    2008-01-01

    This paper proposes an alternative scheme for generating four-photon W state via cavity QED.The scheme bases on the resonant interaction of a A-type three level atom with two bimodal cavities.The detection of atom collapses the cavity to the desired state.Comparing with previous schemes,the advantage of this scheme is that the interaction time can be greatly shortened since it uses the resonant interaction between atom and cavities.Moreover,the proposed scheme is more experimentally feasible than the previous ones.

  17. Manipulating nanoscale atom-atom interactions with cavity QED

    CERN Document Server

    Pal, Arpita; Deb, Bimalendu

    2016-01-01

    We theoretically explore manipulation of interactions between excited and ground state atoms at nanoscale separations by cavity quantum electrodynamics (CQED). We develop an adiabatic molecular dressed state formalism and show that it is possible to generate Fano-Feshbach resonances between ground and long-lived excited-state atoms inside a cavity. The resonances are shown to arise due to non-adiabatic coupling near a pseudo-crossing between the dressed state potentials. We illustrate our results with a model study using fermionic $^{171}$Yb atoms in a two-modal cavity. Our study is important for manipulation of interatomic interactions at low energy by cavity field.

  18. Cavity cooling below the recoil limit.

    Science.gov (United States)

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-01

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling. PMID:22767925

  19. Optomechanical photon shuttling between photonic cavities

    CERN Document Server

    Li, Huan

    2014-01-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave-mixing between photons and phonons and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong nonlocal effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a novel multi-cavity optomechanical device: a "photon see-saw", in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of the see-saw, are modulated anti-symmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation which strongly modulates the inter-cavity coupling and shuttles photons to the other...

  20. Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation

    Science.gov (United States)

    Suchoi, Oren; Ella, Lior; Shtempluk, Oleg; Buks, Eyal

    2014-09-01

    We experimentally study an optomechanical cavity consisting of an oscillating mechanical resonator embedded in a superconducting microwave transmission line cavity. Tunable optomechanical coupling between the mechanical resonator and the microwave cavity is introduced by positioning a niobium-coated single-mode optical fiber above the mechanical resonator. The capacitance between the mechanical resonator and the coated fiber gives rise to optomechanical coupling, which can be controlled by varying the fiber-resonator distance. We study radiation-pressure-induced self-excited oscillation as a function of microwave driving parameters (frequency and power). Intermittency between limit-cycle and steady-state behaviors is observed with blue-detuned driving frequency. The experimental results are accounted for by a model that takes into account the Duffing-like nonlinearity of the microwave cavity. A stability analysis reveals a subcritical Hopf bifurcation near the region where intermittency is observed.

  1. Cavity-Controlled Chemistry in Molecular Ensembles

    Science.gov (United States)

    Herrera, Felipe; Spano, Frank C.

    2016-06-01

    The demonstration of strong and ultrastrong coupling regimes of cavity QED with polyatomic molecules has opened new routes to control chemical dynamics at the nanoscale. We show that strong resonant coupling of a cavity field with an electronic transition can effectively decouple collective electronic and nuclear degrees of freedom in a disordered molecular ensemble, even for molecules with high-frequency quantum vibrational modes having strong electron-vibration interactions. This type of polaron decoupling can be used to control chemical reactions. We show that the rate of electron transfer reactions in a cavity can be orders of magnitude larger than in free space for a wide class of organic molecular species.

  2. RF cavity evaluation with the code SUPERFISH

    International Nuclear Information System (INIS)

    The computer code SUPERFISH calculates axisymmetric rf fields and is most applicable to re-entrant cavities of an Alvarez linac. Some sample results are shown for the first Alvarez's in NUMATRON project. On the other hand the code can also be effectivily applied to TE modes excited in an RFQ linac when the cavity is approximately considered as positioning at an infinite distance from the symmetry axis. The evaluation was made for several RFQ cavities, models I, II and a test linac named LITL, and useful results for the resonator design were obtained. (author)

  3. Cavity-controlled chemistry in molecular ensembles

    CERN Document Server

    Herrera, Felipe

    2015-01-01

    The demonstration of strong and ultrastrong coupling regimes of cavity QED with polyatomic molecules has opened new routes to control chemical dynamics at the nanoscale. We show that strong resonant coupling of a cavity field with an electronic transition can effectively decouple collective electronic and nuclear degrees of freedom in a disordered molecular ensemble, even for molecules with high-frequency quantum vibrational modes having strong electron-vibration interactions. This type of polaron decoupling can be used to control chemical reactions. We show that the rate of electron transfer reactions in a cavity can be orders of magnitude larger than in free space, for a wide class of organic molecular species.

  4. LHC Crab Cavity Coupler Test Boxes

    CERN Document Server

    Mitchell, James; Burt, Graeme; Calaga, Rama; Macpherson, Alick; Montesinos, Eric; Silva, Subashini; Tutte, Adam; Xiao, Binping

    2016-01-01

    The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.

  5. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity

    OpenAIRE

    Midolo, L.; Pagliano, F.; Hoang, T.B.; Xia, T; van Otten, F. W. M.; Li, L. H.; Linfield, E. H.; Lermer, M.; Höfling, S.; Fiore, A.

    2012-01-01

    We demonstrate the control of the spontaneous emission rate of single InAs quantum dots embedded in a double-membrane photonic crystal cavity by the electromechanical tuning of the cavity resonance. Controlling the separation between the two membranes with an electrostatic field we obtain the real-time spectral alignment of the cavity mode to the excitonic line and we observe an enhancement of the spontaneous emission rate at resonance. The cavity has been tuned over 13 nm without shifting th...

  6. Photon collection from a trapped ion--cavity system

    OpenAIRE

    Sterk, J. D.; Luo, L.; Manning, T. A.; P. Maunz; Monroe, C.

    2011-01-01

    We present the design and implementation of a trapped ion cavity QED system. A single ytterbium ion is confined by a micron-scale ion trap inside a 2 mm optical cavity. The ion is coherently pumped by near resonant laser light while the cavity output is monitored as a function of pump intensity and cavity detuning. We observe a Purcell enhancement of scattered light into the solid angle subtended by the optical cavity, as well as a three-peak structure arising from strongly driving the atom. ...

  7. Crab Cavity Development

    CERN Document Server

    Calaga, R; Burt, G; Ratti, A

    2015-01-01

    The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.

  8. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  9. Optomechanical damping of a nanomembrane inside an optical ring cavity

    CERN Document Server

    Yilmaz, Arzu; Wolf, Philip; Schmidt, Dag; Eisele, Max; Zimmermann, Claus; Slama, Sebastian

    2016-01-01

    We experimentally and theoretically investigate mechanical nanooscillators coupled to the light in an optical ring resonator made of dielectric mirrors. We identify an optomechanical damping mechanism that is fundamentally different to the well known cooling in standing wave cavities. While, in a standing wave cavity the mechanical oscillation shifts the resonance frequency of the cavity in a ring resonator the frequency does not change. Instead the position of the nodes is shifted with the mechanical excursion. We derive the damping rates and test the results experimentally with a silicon-nitride nanomembrane. It turns out that scattering from small imperfections of the dielectric mirror coatings has to be taken into account to explain the value of the measured damping rate. We extend our theoretical model and regard a second reflector in the cavity that captures the effects of mirror back scattering. This model can be used to also describe the situation of two membranes that both interact with the cavity fi...

  10. Photonic Feshbach resonance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.

  11. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors

    Science.gov (United States)

    Ooi, K. J. A.; Bai, P.; Gu, M. X.; Ang, L. K.

    2012-07-01

    A plasmonic coupled-cavity system, which consists of a quarter-wave coupler cavity, a resonant Fabry-Pérot detector nanocavity, and an off-resonant reflector cavity, is used to enhance the localization of surface plasmons in a plasmonic detector. The coupler cavity is designed based on transmission line theory and wavelength scaling rules in the optical regime, while the reflector cavity is derived from off-resonant resonator structures to attenuate transmission of plasmonic waves. We observed strong coupling of the cavities in simulation results, with an 86% improvement of surface plasmon localization achieved. The plasmonic coupled-cavity system may find useful applications in areas of nanoscale photodetectors, sensors, and an assortment of plasmonic-circuit devices.

  12. Superconducting radio frequency cavities: design, development and results

    International Nuclear Information System (INIS)

    In recent years, the development of superconducting niobium cavities has evoked a lot of interest among the accelerator physics community of India. Many laboratories are planning to develop superconducting niobium cavities for new accelerators and applications. Inter-University Accelerator Centre (IUAC) has been engaged in the indigenous development of niobium resonators for over a decade. During this period, several quarter wave resonators have been successfully built, tested and installed in the superconducting linac at IUAC. A new niobium low beta resonator for the High Current Injector (HCI) project has been designed, prototyped and tested. In addition to the in-house projects, IUAC is nearing completion of two niobium single spoke resonators (SSR1) for Fermi Lab, USA. Under the Indian Institutions and Fermi Lab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology, Indore and Inter-University Accelerator Centre have jointly developed TESLA-type 1.3 GHz single cell cavities which have achieved very high accelerating gradients. Buoyed by the success of this work, a 5-cell 1.3 GHz cavity with simple end tubes has been successfully built. This cavity is presently at Fermi Lab for 2 K tests. Recently, a 650 MHz, β=0.9 single cell cavity has also been successfully completed and is ready for cold tests. There are plans to develop a 650 MHz, β=0.6 single cell cavity in collaboration with VECC, Kolkata. This paper presents the status of the niobium cavities developed at Inter-University Accelerator Centre. (author)

  13. Dispersive wave-breaking in coherently driven passive cavities.

    Science.gov (United States)

    Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano

    2014-04-15

    We show that the intracavity field evolving in an externally driven passive Kerr resonator subject to weak normal dispersion undergoes wave-breaking, thus forming dispersive shock waves. At variance with the cavity-less propagation, such dispersive wave-breaking turns out to be strongly favored by cavity bistability and coexisting modulational instability. PMID:24979022

  14. Two simple schemes for implementing Toffoli gate via atom-cavity field interaction in cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Shao Xiao-Qiang; Chen Li; Zhang Shou

    2009-01-01

    This paper proposes two schemes for implementing three-qubit Toffoli gate with an atom (as target qubit) sent through a two-mode cavity (as control qubits). The first scheme is based on the large-detuning atom-cavity field interaction and the second scheme is based on the resonant atom-field interaction. Both the situations with and without cavity decay and atomic spontaneous emission are considered. The advantages and the experimental feasibility of these two schemes are discussed.

  15. Plasmonic coaxial waveguide-cavity devices.

    Science.gov (United States)

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs. PMID:26367907

  16. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t-3/2) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  17. TM01 mode accelerating cavity optimization

    International Nuclear Information System (INIS)

    The cost of an accelerator depends greatly upon the effective use of rf power for particle acceleration. Before completing an accelerator design, an optimization of the accelerating cells relative to the effective shunt impedance should be made to measure the structure's efficiency in providing a high and effective acceleration of particles for a given rf power. Optimization of the accelerating cell resonant at f/sub r/ = 1350 MHz (TM01 mode) relative to the maximum effective shunt impedance ZT2 was performed at the Los Alamos Scientific Laboratory using the computer program SUPERFISH. The study was parametric; one parameter was changed while the others were held constant. Frequency adjustments were made by changing the cavity radius. Results presented in this report can be used to design similar cavities at different resonant frequencies or to design a more complicated cavity (TM02 mode) for the disk and washer structure

  18. Microwave Reentrant Cavities for Quantum Devices

    Science.gov (United States)

    Carvalho, Natalia C.; Bourhill, Jeremy; Creedon, Daniel; Goryachev, Maxim; Galliou, Serge; Tobar, Michael

    A microwave reentrant cavity is a device able to provide a very sensitive high-Q microwave mode. Its design can be highly advantageous for electromechanical devices and quantum measurements. In this sense, a tuneable device based on a narrow-gap superconducting reentrant cavity is under development. The resonant frequency is able to be fine-tuned over a range larger than 500 MHz at 10 mK with an electrical Q-factor of 105. Such a cavity could possibly accommodate a transmon qubit to control and manipulate its quantum state. We are also working on the investigation of bulk acoustic wave (BAW) resonators in microwave reentrant cavities. BAW resonators offer a promising way to process quantum information through the coupling between microwaves and acoustic phonons. Thus, we are developing a device able to excite phonons through non-linearities and the piezoelectricity of the plano-convex quartz crystal. We will detail our experiments that work towards cooling gram scale phonon resonances to the quantum ground state. Funded by ARC Grant No. CE110001013 (Australia) and National Counsel of Technological and Scientific Development (Brazil).

  19. Transferring of a Two-Mode Entangled State Between Two Cavities via Cavity QED

    Institute of Scientific and Technical Information of China (English)

    WU Tao; NI Zhi-Xiang; YE Liu

    2007-01-01

    We propose a scheme for transferring of a two-mode entanglement of zero- or one-photon entangled states between two cavities via atom-cavity field resonant interaction.In our proposal,in order to transfer the entangled state,we only need two identical two-level atoms and a two-mode cavity for receiving the teleported state.This scheme does not require Bell-state measurement and performing any transformations to reconstruct the initial state.And the transfer can occur with 100% success probability in a simple manner.And a network for transferring of a two-mode entangled state between cavities is suggested.This scheme can also be extended to transfer N-mode entangled state of cavity.

  20. Progressive and resonant wave helices application to electron paramagnetic resonance

    International Nuclear Information System (INIS)

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author)

  1. Ion-cavity system for quantum networks

    International Nuclear Information System (INIS)

    Full text: A single atom interacting with a single mode of a cavity allows us to probe the quantum interaction between light and matter. In the context of quantum networks, such a system can provide an interface between stationary and flying qubits, making it possible for single photons to transport quantum information between the network nodes. We study a single 40Ca+ ion trapped inside a high-finesse optical resonator. First, we demonstrate and characterize a single-photon source, in which a vacuum-stimulated Raman process transfers atomic population between two Zeeman states of the ion, creating a single photon in the cavity. We evaluate the photon statistics by measuring the second-order correlation function. Moreover, we obtain the photon temporal profile and investigate the dynamics of the process. Secondly, we perform Raman spectroscopy using the cavity. Residual motion of the ion introduces motional sidebands in the Raman spectrum and thus offers prospects for cavity-assisted cooling. (author)

  2. Superconducting crab cavity

    International Nuclear Information System (INIS)

    Complete overlapping of the electron and positron bunches at colliding point can be attained by using the strong time-depending electromagnetic RF field in the superconducting crab cavity. Commissioning of the crab cavities started in February 2007 at KEKB. Effective head-on collision of electron and positron has been achieved successfully. After introduction of crab crossing and crab cavity, the structure and the fabrication of the KEKB superconducting crab cavity are discussed. (author)

  3. RF Cavity Design

    CERN Document Server

    Jensen, E

    2014-01-01

    After a short overview of a general approach to cavity design, we sketch the derivation of waveguide modes from plane waves and of cavity fields from waveguide modes. The characteristic parameters describing cavities and their performance are defined and explained. An equivalent circuit is introduced and extended to explain beam loading and higher order modes. Finally travelling- and standing-wave multi-gap cavities are introduced using the Brillouin diagram.

  4. Low threshold, dual-cavity continuous-wave fiber optical parametric oscillator

    OpenAIRE

    Yang, S.; Xu, X.; Wong, KKY

    2009-01-01

    A dual-cavity, doubly resonant fiber optical parametric oscillator (FOPO) is proposed. It can reduce the threshold pump power at a ratio of 36% compared with the traditional singly resonant FOPO. © 2009 IEEE.

  5. Microwave Resonators Containing Diamond Disks

    Science.gov (United States)

    Dick, G. John; Maleki, Lutfollah; Wang, Rabi T.

    1996-01-01

    Synthetic diamond dielectric bodies proposed for use in cylindrical resonators helping to stabilize frequencies of some microwave oscillators. Acting in conjunction with metal resonator cavities in which mounted, such dielectric bodies support "whispering-gallery" waveguide modes characterized by desired frequencies of resonance and by electro-magnetic-field configurations limiting dissipation of power on metal surfaces outside dielectric bodies. Performances at room temperature might exceed those of liquid-nitrogen-cooled sapphire-based resonators.

  6. Cavity parameters identification for TESLA control system development

    International Nuclear Information System (INIS)

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  7. Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke; Löffler, A.; Reitzenstein, S.; Forchel, A.; Lodahl, Peter

    2011-01-01

    We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity, and under resonant conditions we observe non-Markovian dynamics leading to nonexponential decays in time.......We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity, and under resonant conditions we observe non-Markovian dynamics leading to nonexponential decays in time....

  8. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  9. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    Science.gov (United States)

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  10. ANALYSIS OF THE SLOT HEATING OF THE COUPLED CAVITY LINAC CAVITY

    International Nuclear Information System (INIS)

    CCL cavities are figures of revolution about the beam axis. An automated tuning program sets up the geometry for a symmetric accelerating cavity and runs SUPERFISH [1] repetitively, varying the geometry to tune each cavity to the desired frequency for the electromagnetic fields. SUPERFISH [1] solves Maxwell's equations in 2-D. A large portion of the RF power (60-80%) applied to accelerate protons is a waste heat deposited on the inside of the copper cavity. This waste heat is removed most efficiently with water circulating through cooling passages. The waste heat needs to be removed in order to minimize thermal deformations and with it control the resonance of the cavities. A slot between the main cavity and coupled cavity receives additional heating that is not captured in the 2-D analysis. This heating causes deformation of the region and with it frequency shift. This paper covers the estimation of the slot heating and three-dimensional thermal and structural analysis of the CCL cavity

  11. Cavity characterization for general use in linear electron accelerators

    International Nuclear Information System (INIS)

    The main objective of this work is to is to develop measurement techniques for the characterization of microwave cavities used in linear electron accelerators. Methods are developed for the measurement of parameters that are essential to the design of an accelerator structure using conventional techniques of resonant cavities at low power. Disk-loaded cavities were designed and built, similar to those in most existing linear electron accelerators. As a result, the methods developed and the estimated accuracy were compared with those from other investigators. The results of this work are relevant for the design of cavities with the objective of developing linear electron accelerators. (author)

  12. Cavity design for high-frequency axion dark matter detectors

    CERN Document Server

    Stern, I; Hoskins, J; Sikivie, P; Sullivan, N S; Tanner, D B; Carosi, G; van Bibber, K

    2016-01-01

    In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 $\\mu$eV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  13. Cavity dimensions calculation of a medical linear electron accelerator

    International Nuclear Information System (INIS)

    The main goal of this work is designing the cavity of an accelerator and performing its calculations. By choosing π/2 oscillation mode and using Super fish code, cavity dimensions for the desired parameters were calculated. The most important dimension for determining the resonance frequency is the radius of cylindrical cavity. The required precision for the cavity construction has been obtained by calculating the frequency variations versus the dimensions variation. Also, with the resulted electric field from Super fish code, its Fourier expansion, and considering the unidirectional components of the traveling waves, the major effect of one component in accelerating and its proper velocity have been demonstrated.

  14. The role of mode match in fiber cavities

    Energy Technology Data Exchange (ETDEWEB)

    Bick, A.; Staarmann, C.; Christoph, P. [ZOQ (Zentrum für Optische Quantentechnologien) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Hellmig, O.; Heinze, J. [ILP (Institut für Laserphysik) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Sengstock, K.; Becker, C., E-mail: cbecker@physnet.uni-hamburg.de [ZOQ (Zentrum für Optische Quantentechnologien) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); ILP (Institut für Laserphysik) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-01-15

    We study and realize asymmetric fiber-based cavities with optimized mode match to achieve high reflectivity on resonance. This is especially important for mutually coupling two physical systems via light fields, e.g., in quantum hybrid systems. Our detailed theoretical and experimental analysis reveals that on resonance, the interference effect between the directly reflected non-modematched light and the light leaking back out of the cavity can lead to large unexpected losses due to the mode filtering of the incoupling fiber. Strong restrictions for the cavity design result out of this effect and we show that planar-concave cavities are clearly best suited. We validate our analytical model using numerical calculations and demonstrate an experimental realization of an asymmetric fiber Fabry-Pérot cavity with optimized parameters.

  15. Output cavity of Ka-band TE01 mode gyroklystron

    International Nuclear Information System (INIS)

    The output cavity with abrupt changes in radius for gyroklystron is studied using the mode-matching technique to build scattering matrix. A FORTRAN code is developed to calculate the scattering matrix. the effects of the cavity's length and radius, the coupling aperture's radius and thickness on the resonance characteristics of output cavity for Ka-band TE01 gyroklystron are analyzed. At the same time, the high frequency field distribution in the cavity is presented. the simulation result of output cavity obtained by the code shows good agreement with HFSS code simulation. Comparing the simulation result with the cold-test experimental result, the difference of quality factor is only 1.65% and the deviation of resonance frequency is 10 MHz. (authors)

  16. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  17. Strong-Driving-Assisted Probabilistic State Preparation in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Biao

    2006-01-01

    An alternative scheme is proposed for preparing the superpositions of coherent states with controllable weighting factors along a straight line for a cavity field. The scheme is based on the interaction of a single-mode cavity field with a resonant two-level atom driven by a strong classical field. It is in contrast to the previous methods used in cavity QED of injecting a coherent state into a cavity via a microwave source. In the scheme, the interaction between the cavity mode and atoms is fully resonant, thus the required interaction time is greatly shortened. Moreover, the present scheme requires smaller numbers of operations. In view of decoherence, a reduction of interaction time and numbers of operations for the state preparation is very important for experimental implementation of quantum state engineering.

  18. Cavity Optomechanics at Millikelvin Temperatures

    Science.gov (United States)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  19. Observation of Transparency of Erbium-doped Silicon nitride in photonic crystal nanobeam cavities

    CERN Document Server

    Gong, Yiyang; Yerci, Selcuk; Li, Rui; Stevens, Martin J; Baek, Burm; Nam, Sae Woo; Negro, Luca Dal; Vuckovic, Jelena

    2010-01-01

    One-dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 um is studied at cryogenic and room temperatures at different optical pump powers. The resonators demonstrate Purcell enhanced absorption and emission rates, also confirmed by time-resolved measurements. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and the onset of stimulated emission in the material at both 5.5 K and room temperature. We estimate from the cavity linewidths that Er has been pumped to transparency at the cavity resonance wavelength.

  20. Nanofiber-segment ring resonator

    CERN Document Server

    Jones, D E; Franson, J D; Pittman, T B

    2016-01-01

    We describe a fiber ring resonator comprised of a relatively long loop of standard single-mode fiber with a short nanofiber segment. The evanescent mode of the nanofiber segment allows the cavity-enhanced field to interact with atoms in close proximity to the nanofiber surface. We report on an experiment using a warm atomic vapor and low-finesse cavity, and briefly discuss the potential for reaching the strong coupling regime of cavity QED by using trapped atoms and a high-finesse cavity of this kind.

  1. Niobium sputter deposition on quarter wave resonators

    CERN Document Server

    Viswanadham, C; Jayaprakash, D; Mishra, R L

    2003-01-01

    Niobium sputter deposition on quarter wave copper R.F resonators, have been taken up in our laboratory, An ultra high vacuum system was made for this purpose. Niobium exhibits superconducting properties at liquid Helium temperature. A uniform coating of about 1.5 mu m of niobium on the internal surfaces of the copper resonant cavities is desired. Power dissipation in the resonators can be greatly reduced by making the internal surfaces of the R.F cavity super conducting. (author)

  2. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  3. Cavity-induced quantum cooperative phenomena

    Science.gov (United States)

    Plastina, F.; Falcone, G.; Francica, F.; Liberti, G.; Piperno, F.; Maniscalco, S.

    2010-09-01

    Two kinds of cooperative effects are discussed for two-level atoms (qubits) interacting with an electromagnetic resonator, both of them concerning Dicke super-radiance. The first is a static, critical phenomenon: the so-called super-radiant phase transition, occurring when a large number of qubits are coupled to a single cavity mode giving rise to a quantum phase transition for a critical value of the interaction strength. The second is a dynamic phenomenon, producing (among other effects) the generation and/or preservation of entanglement between qubits even in the presence of cavity losses.

  4. Cavity-induced quantum cooperative phenomena

    International Nuclear Information System (INIS)

    Two kinds of cooperative effects are discussed for two-level atoms (qubits) interacting with an electromagnetic resonator, both of them concerning Dicke super-radiance. The first is a static, critical phenomenon: the so-called super-radiant phase transition, occurring when a large number of qubits are coupled to a single cavity mode giving rise to a quantum phase transition for a critical value of the interaction strength. The second is a dynamic phenomenon, producing (among other effects) the generation and/or preservation of entanglement between qubits even in the presence of cavity losses.

  5. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  6. Accelerating RF cavity of the Booster

    CERN Multimedia

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  7. Cylindrical dielectric resonator for Josephson plasma resonance measurement

    International Nuclear Information System (INIS)

    The design of a cylindrical dielectric cavity operated in various TMnmp modes, suitable for Josephson plasma resonance measurements of small superconducting high-Tc single crystals, is described. Its resonant frequencies are calculated analytically using the perturbation theory and compared with experimental results. An outline of the measurement procedure is provided. Experimental results measured at several frequencies are presented

  8. Open Microwave Cavity for use in a Purcell Enhancement Cooling Scheme

    CERN Document Server

    Evetts, N; Bizzotto, D; Longuevergne, D; Hardy, W N

    2016-01-01

    A microwave cavity is described which can be used to cool lepton plasmas for potential use in synthesis of antihydrogen. The cooling scheme is an incarnation of the Purcell Effect: when plasmas are coupled to a microwave cavity, the plasma cooling rate is resonantly enhanced through increased spontaneous emission of cyclotron radiation. The cavity forms a three electrode section of a Penning-Malmberg trap and has a bulged cylindrical geometry with open ends aligned with the magnetic trapping axis. This allows plasmas to be injected and removed from the cavity without the need for moving parts while maintaining high quality factors for resonant modes. The cavity includes unique surface preparations for adjusting the cavity quality factor and achieving anti-static shielding using thin layers of nichrome and colloidal graphite respectively. Geometric design considerations for a cavity with strong cooling power and low equilibrium plasma temperatures are discussed. Cavities of this weak-bulge design will be appli...

  9. Beam induced RF cavity transient voltage

    International Nuclear Information System (INIS)

    We calculate the transient voltage induced in a radio frequency (RF) cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ωr of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω0. The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(jhω0t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting RF cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kind of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  10. Electromagnetic SCRF Cavity Tuner

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.; Borissov, E.; Foster, G.W.; Makulski, A.; Pischalnikov, Y.; Khabiboulline, T.; /Fermilab

    2009-05-01

    A novel prototype of SCRF cavity tuner is being designed and tested at Fermilab. This is a superconducting C-type iron dominated magnet having a 10 mm gap, axial symmetry, and a 1 Tesla field. Inside the gap is mounted a superconducting coil capable of moving {+-} 1 mm and producing a longitudinal force up to {+-} 1.5 kN. The static force applied to the RF cavity flanges provides a long-term cavity geometry tuning to a nominal frequency. The same coil powered by fast AC current pulse delivers mechanical perturbation for fast cavity tuning. This fast mechanical perturbation could be used to compensate a dynamic RF cavity detuning caused by cavity Lorentz forces and microphonics. A special configuration of magnet system was designed and tested.

  11. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus

    OpenAIRE

    Xiaodong Jing; Yang Meng; Xiaofeng Sun

    2015-01-01

    Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achie...

  12. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  13. Reactive RF Tuning For Compensation of a Detuned Accelerating Cavity

    International Nuclear Information System (INIS)

    The resonant frequency of an accelerating RF cavity is detuned from the desired frequency by certain physical disturbances, such as thermal and other mechanical wall distortions. Cavity wall distortions due to microphonics (acoustic vibrations) and the Lorentz force (radiation pressure) can be serious problems in pulsed RF operation of superconducting (SRF) cavities with thin cavity walls and a high quality factor. The resulting detuning results a change of input reactance. The offset reactance at the cavity input may be tuned out properly with a reactive element in the input transmission line, so that the generator RF power can be delivered efficiently to the cavity. A fast response electrical tuner may be built for compensating high frequency detuning without any mechanical coupling

  14. The first operation of 56 MHz SRF cavity in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); DeSanto, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Goldberg, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A 56 MHz superconducting RF cavity has been designed, fabricated and installed in the Relativistic Heavy Ion Collider (RHIC). The cavity operates at 4.4 K with a “quiet helium source” to isolate the cavity from environmental acoustic noise. The cavity is a beam driven quarter wave resonator. It is detuned and damped during injection and acceleration cycles and is brought to operation only at store energy. For a first test operation, the cavity voltage was stabilized at 300 kV with full beam current. Within both Au + Au and asymmetrical Au + He3 collisions, luminosity improvement was detected from direct measurement, and the hourglass effect was reduced. One higher order mode (HOM) coupler was installed on the cavity. We report in this paper on our measurement of a broadband HOM spectrum excited by the Au beam.

  15. Optically measuring interior cavities

    Science.gov (United States)

    Stone, Gary Franklin

    2009-11-03

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  16. Substrate Integrated Waveguide Fed Cavity Backed Slot Antenna for Circularly Polarized Application

    OpenAIRE

    Xiao Hong Zhang; Guo Qing Luo; Lin Xi Dong

    2013-01-01

    A novel planar low-profile cavity-backed slot antenna for circularly polarized applications is presented in this paper. The low-profile substrate integrated waveguide (SIW) cavity is constructed on a single PCB substrate with two metal layers on the top and the bottom surfaces and metallized via array through the substrate. The SIW cavity is fed by a SIW transmission line. The two orthogonal degenerate cavities resonance TM110 mode are successfully stimulated and separated. The circularly pol...

  17. Scheme to Implement Scheme 1 → M Economical Phase-Covariant Telecloning via Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIU Qi; ZHANG Wen-Hai; YE Liu

    2008-01-01

    We propose an experimentally feasible scheme to implement the economical 1 → M(M = 2k + 1) phase-covariant telecloning without ancilla based on cavity QED. The scheme requires cavity-assisted collision processes between atoms, which cross through the off-resonant cavity field in the vacuum states. During the telecloning process, the cavity is only virtually excited and it thus greatly prolongs the efficient decoherent time. Therefore, our scheme may be realized in experiment in future.

  18. Modes and Carrier Density in Dispersive and Nonlinear Gain Planar Photonic Crystal Cavity

    Directory of Open Access Journals (Sweden)

    Renlong Zhou

    2014-01-01

    Full Text Available The cavity mode and carrier density in dispersive and nonlinear gain planar photonic crystal cavities are studied with the three-dimensional finite-difference time-domain method. Planar photonic crystal cavity can enhance light mater interaction, which can be used to design a photonic crystal cavity laser. With the effect of both total internal reflection and photonic band gap confinement, the frequency responses of the planar photonic crystal cavity can be obtained by simulation. The effect of carrier diffusion is calculated through the laser rate equations. The electric field intensity distribution, temporal behavior of electric field energy, and carrier density characteristics are analyzed from the resonance cavity mode.

  19. Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field

    CERN Document Server

    Jang, Jae K; Murdoch, Stuart G; Coen, Stephane

    2015-01-01

    Temporal cavity solitons (CSs) are persisting pulses of light that can manifest themselves in continuously driven passive resonators, such as macroscopic fiber ring cavities and monolithic microresonators. Experiments so far have demonstrated two techniques for their excitation, yet both possess drawbacks in the form of system complexity or lack of control over soliton positioning. Here we experimentally demonstrate a new CS writing scheme that alleviates these deficiencies. Specifically, we show that temporal CSs can be excited at arbitrary positions through direct phase modulation of the cavity driving field, and that this technique also allows existing CSs to be selectively erased. Our results constitute the first experimental demonstration of temporal cavity soliton excitation via direct phase modulation, as well as their selective erasure (by any means). These advances reduce the complexity of CS excitation and could lead to controlled pulse generation in monolithic microresonators.

  20. 头部空腔对固体火箭发动机压强振荡抑制作用的数值研究%Numerical analysis on effect of head cavity on resonance damping characteristics in solid rocket motors

    Institute of Scientific and Technical Information of China (English)

    张峤; 李军伟; 苏万兴; 张雁; 王宁飞

    2012-01-01

    为了揭示头部空腔对固体火箭发动机压强振荡的抑制原理,以VKI实验发动机为基础,使用大涡模拟方法,对障碍物旋涡脱落诱发的振荡流场开展了数值研究,获得了压强振荡的频率和幅值,并和实验数据进行了对比.通过在发动机头部加入空腔,发现压强振幅明显减弱,证实了瑞利准则用于指导头部装药抑振设计的有效性.研究结果表明,空腔体积、位置、形状对振幅的影响很大,改变装药结构本质上是质量抽取与注入之间的相互抗争过程.装药头端复杂流场对抑振基本无效,在声压波节处改变药型对抑振基本无效,在声压波腹处加入的质量通量越大,振幅增加越显著,空腔越靠近声压波腹,空腔对声能的阻尼效应越强.%In order to reveal the effect of head-end cavity on resonance damping characteristics in solid rocket motors,large-eddy simulations were carried out to study the oscillation flowfield induced by obstacle vortex shedding on the foundation of VKI experimental motor. Pressure oscillation frequencies and amplitudes were obtained,and compared with the experimental data. It is investigated that oscillation amplitudes reduce remarkably after adding a cavity at the head-end. It is proved that Rayleigh criterion is effective for design of resonance damping. The results indicate that cavity volume,location and configuration have great effect on the oscillation amplitude. The substance of altering grain configuration is a comprehensive process of adding and extracting mass. The damping effect is not caused by the complicated flowfield at the head-end. Also,it is neglected if altering grain configuration at the pressure node. It is concluded that large mass flux added at pressure antinode could result in significant amplitude; meanwhile, the damping effect of cavity is stronger if the cavity is nearer to pressure antinode.

  1. Super-Resonant Intracavity Coherent Absorption

    OpenAIRE

    P. Malara; Campanella, C. E.; Giorgini, A.; Avino, S.; Natale, P.; Gagliardi, G.

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption. We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot-ring cavity structure. At the FP resonant wavelengths, the described phenom...

  2. Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics

    OpenAIRE

    Han, Xu; Zou, Chang-Ling; Tang, Hong X.

    2016-01-01

    High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceed...

  3. Triple optomechanical induced transparency in a two-cavity system

    Science.gov (United States)

    Shi-Chao, Wu; Li-Guo, Qin; Jun, Jing; Guo-Hong, Yang; Zhong-Yang, Wang

    2016-05-01

    We theoretically investigate the optomechanical induced transparency (OMIT) phenomenon in a two-cavity system which is composed of two optomechanical cavities. Both of the cavities consist of a fixed mirror and a high-Q mechanical resonator, and they couple to each other via a common waveguide. We show that in the presence of a strong pump field applied to one cavity and a weak probe field applied to the other, a triple-OMIT can be observed in the output field at the probe frequency. The two mechanical resonators in the two cavities are identical, but they lead to different quantum interference pathways. The transparency windows are induced by the coupling of the two cavities and the optical pressure radiated to the mechanical resonators, which can be controlled via the power of the pump field and the coupling strength of the two cavities. Project supported by the Strategic Priority Research Program, China (Grant No. XDB01010200), the Hundred Talents Program of the Chinese Academy of Sciences (Grant No. Y321311401), and the National Natural Sciences Foundation of China (Grant Nos. 11347147 and 1547035).

  4. Dynamically Reconfigurable Photonic Crystal Nanobeam Cavities

    CERN Document Server

    Frank, Ian W; McCutcheon, Murray W; Loncar, Marko

    2009-01-01

    Wavelength-scale, high Q-factor photonic crystal cavities have emerged as a platform of choice for on-chip manipulation of optical signals, with applications ranging from low-power optical signal processing and cavity quantum electrodynamics, to biochemical sensing. Many of these applications, however, are limited by the fabrication tolerances and the inability to precisely control the resonant wavelength of fabricated structures. Various techniques for post-fabrication wavelength trimming and dynamical wavelength control -- using, for example, thermal effects, free carrier injection, low temperature gas condensation, and immersion in fluids -- have been explored. However, these methods are often limited by small tuning ranges, high power consumption, or the inability to tune continuously or reversibly. In this letter, by combining nano-electro-mechanical systems (NEMS) and nanophotonics, we demonstrate reconfigurable photonic crystal nanobeam cavities that can be continuously and dynamically tuned using elec...

  5. Coaxial cavity vircator with enhanced efficiency

    Science.gov (United States)

    Liu, G. Z.; Shao, H.; Yang, Z. F.; Song, Z. M.; Chen, C. H.; Sun, J.; Zhang, Y. P.

    2008-04-01

    A vircator with a coaxial cavity has the potential to increase the beam-microwave conversion efficiency. According to the E-field distribution pattern of the modes in the anode cavity of a coaxial vircator, the resonant frequency band of the injected electron beam and the lowest two operating modes are derived. The main frequency of the virtual cathode is also deduced. The optimal operating frequency and high-efficiency designing method of a coaxial cavity vircator is discussed. An experimental setup is designed and built to test the high-power microwave (HPM) generation mechanism described by theoretical analysis as well as increase the power efficiency. HPM frequency obtained in the experiment is in good agreement with the analysis. The power and energy efficiencies obtained in the experiment are, respectively, 8.7% and 6.8% with 50 ns pulse width. Frequency and phase stable HPM radiation is observed as well as pulse shortening is evidently depressed.

  6. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  7. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  8. Superconducting RF cavities

    CERN Document Server

    Bernard, Philippe

    1999-01-01

    It was 20 years ago when the research and development programme for LEP superconducting cavities was initiated. It lasted about 10 years. Today, my aim is not to tell you in great detail about the many innovations made thanks to our research, but I would like to point out some milestones in the development of superconducting cavities where Emilio's influence was particularly important.

  9. Ferrite loaded rf cavity

    International Nuclear Information System (INIS)

    The mechanism of a ferrite-loaded rf cavity is explained from the point of view of its operation. Then, an analysis of the automatic cavity-tuning system is presented using the transfer function; and a systematic analysis of a beam-feedback system using transfer functions is also presented. (author)

  10. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  11. Demonstration of superconducting micromachined cavities

    International Nuclear Information System (INIS)

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing

  12. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  13. Demonstration of superconducting micromachined cavities

    Science.gov (United States)

    Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-01

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  14. A coupled microwave-cavity system in the Rydberg-atom cavity detector for dark matter axions

    CERN Document Server

    Tada, M; Shibata, M; Kominato, K; Ogawa, I; Funahashi, H; Yamamoto, K; Matsuki, S

    2001-01-01

    A coupled microwave-cavity system of cylindrical TM$_{010}$ single-mode has been developed to search for dark matter axions around 10 $\\mu {\\rm eV}$(2.4 GHz) with the Rydberg-atom cavity detector at 10 mK range temperature. One component of the coupled cavity (conversion cavity) made of oxygen-free high-conductivity copper is used to convert an axion into a single photon with the Primakoff process in the strong magnetic field, while the other component (detection cavity) made of Nb is utilized to detect the converted photons with Rydberg atoms passed through it without magnetic field. Top of the detection cavity is attached to the bottom flange of the mixing chamber of a dilution refrigerator, thus the whole cavity is cooled down to 10 mK range to reduce the background thermal blackbody-photons in the cavity. The cavity resonant frequency is tunable over $\\sim$ 15% by moving dielectric rods inserted independently into each part of the cavities along the cylindrical axis. In order to reduce the heat load from ...

  15. Passivated niobium cavities

    Science.gov (United States)

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  16. A water-filled radio frequency accelerating cavity

    International Nuclear Information System (INIS)

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to study water-filled resonant cavities as a high-energy density source to drive high-current accelerator configurations. Basic considerations lead to the expectation that a dielectric-filled cavity should be able to store up to e/eo as much energy as a vacuum one with the same dimensions and thus be capable of accelerating a proportionately larger amount of charge before cavity depletion occurs. During this project, we confirmed that water-filled cavities with e/eo = 60-80 did indeed behave with the expected characteristics, in terms of resonant TM modes and cavity Q. We accomplished this result with numerical cavity eigenvalue codes; fully electromagnetic, two-dimensional, particle-in-cell codes; and, most significantly, with scaled experiments performed in water-filled aluminum cavities. The low-power experiments showed excellent agreement with the numerical results. Simulations of the high-field, high-current mode of operation indicated that charged-particle loss on the dielectric windows, which separate the cavity from the beamline, must be carefully controlled to avoid significant distortion of the axial fields

  17. Modal analysis of Bragg onion resonators

    OpenAIRE

    Xu, Yong; Liang, Wei; Yariv, Amnon; Fleming, James G.; Lin, Shawn-Yu

    2004-01-01

    From analysis of the high Q modes in a Bragg onion resonator with an omnidirectional reflector cladding, we establish a close analogy between such a resonator and a spherical hollow cavity in perfect metal. We demonstrate that onion resonators are ideal for applications that require a large spontaneous-emission factor ß, such as thresholdless lasers and single-photon devices.

  18. Fabrication of Glass Micro-Cavities for Cavity QED Experiments

    CERN Document Server

    Roy, Arpan

    2011-01-01

    We report a process for fabricating high quality, defect-free spherical mirror templates suitable for developing high finesse optical Fabry-Perot resonators. The process utilizes the controlled reflow of borosilicate glass and differential pressure to produce mirrors with 0.3 nanometer surface roughness. The dimensions of the mirrors are in the 0.5-5mm range making them suitable candidates for integration with on-chip neutral atom and ion experiments where enhanced interaction between atoms and photons are required. Moreover the mirror curvature, dimension and placement is readily controlled and the process can easily provide an array of such mirrors. We show that cavities constructed with these mirror templates are well suited to quantum information applications such as single photon sources and atom-photon entanglement.

  19. Superconducting Cavities for the APT Accelerator

    Science.gov (United States)

    Krawczyk, Frank L.; Gentzlinger, Robert C.; Montoya, Debbie I.; Rusnak, Brian; Shapiro, Alan H.

    1997-05-01

    One type of design for an Accelerator Production of Tritium (APT) facility being investigated at LANL consists mainly of a linear accelerator using superconducting rf cavities for the acceleration of a high current cw proton beam. For electron accelerators with particles moving at almost the speed of light (β=1.0), resonators with a rounded shape, consisting of elliptical, circular and straight sections, are well established. They are referred to as ``elliptical'' cavities. For the APT-design, this shape has been adapted for much slower proton beams from a β of less than 0.64 to slightly above 0.82. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf properties as well as for beam dynamics requirements. Single cell test cavities are under construction and will be tested in our structures laboratory. Their performance in terms of obtainable gradients, Q and multipacting behavior, as well as a comparison of the major rf parameters with the results of the cavity simulations, will be reported.

  20. Improving nanocavity switching using Fano resonances in photonic crystal structures

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy;

    2013-01-01

    We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances....

  1. Field quantization for open optical cavities

    CERN Document Server

    Viviescas, C

    2003-01-01

    We study the quantum properties of the electromagnetic field in optical cavities coupled to an arbitrary number of escape channels. We consider both inhomogeneous dielectric resonators with a scalar dielectric constant $\\epsilon({\\bf r})$ and cavities defined by mirrors of arbitrary shape. Using the Feshbach projector technique we quantize the field in terms of a set of resonator and bath modes. We rigorously show that the field Hamiltonian reduces to the system--and--bath Hamiltonian of quantum optics. The field dynamics is investigated using the input--output theory of Gardiner and Collet. In the case of strong coupling to the external radiation field we find spectrally overlapping resonator modes. The mode dynamics is coupled due to the damping and noise inflicted by the external field. For wave chaotic resonators the mode dynamics is determined by a non--Hermitean random matrix. Upon including an amplifying medium, our dynamics of open-resonator modes may serve as a starting point for a quantum theory of ...

  2. Cavity QED Detection of Interfering Matter Waves

    OpenAIRE

    Bourdel, T; Donner, T.; Ritter, S; Öttl, A.; Köhl, M.; Esslinger, T.

    2005-01-01

    We observe the build-up of a matter wave interference pattern from single atom detection events in a double-slit experiment. The interference arises from two overlapping atom laser beams extracted from a Rubidium Bose-Einstein condensate. Our detector is a high-finesse optical cavity which realizes the quantum measurement of the presence of an atom and thereby projects delocalized atoms into a state with zero or one atom in the resonator. The experiment reveals simultaneously the granular and...

  3. Electromagnetic design of DTL cavity for LEHIPA

    International Nuclear Information System (INIS)

    This paper describes the electromagnetic design of the DTL. The 20 design of OTL cavities has been done using SUPERFISH in order to tune them to the operating frequency of 352.21 MHz with maximum shunt impedance. In order to incorporate the features that break the 20 symmetry, the 3D electromagnetic field simulations have been done using CST Microwave Studio code. The tuner and vacuum port have been modeled and their effect on the resonant frequency has been studied. (author)

  4. High Finesse Fiber Fabry-Perot Cavities: Stabilization and Mode Matching Analysis

    CERN Document Server

    Gallego, Jose; Alavi, Seyed Khalil; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter; Ratschbacher, Lothar

    2015-01-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background ph...

  5. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  6. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  7. Long Wave Infrared Cavity Enhanced Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Bonebrake, Christopher A.; Aker, Pam M.; Wojcik, Michael D.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2004-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting weapons proliferation. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their production and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development. During FY02, PNNL investigated three LWIR CES implementations beginning with the easiest to implement, direct cavity-enhanced detection (simple CES), including a technique of intermediate difficulty, cavity-dithered phase-sensitive detection (FM recovery CES) through to the most complex technique, that of resonant sideband cavity-enhanced detection also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, or NICE-OHMS.

  8. Mechanically Amplified Piezoelectric Tunable 3D Microwave Superconducting Cavity

    CERN Document Server

    Carvalho, N C; Tobar, M E

    2016-01-01

    In the context of hybrid quantum systems, there is a demand for superconducting tunable devices able to operate in the single-photon regime. In this work, we developed a 3D microwave reentrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which can set the cavity resonance with a large dynamic range of order 1 GHz at 10 mK. At elevated microwave power, nonlinear thermal e effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the reentrant cavity.

  9. Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities

    CERN Document Server

    Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

    2015-01-01

    Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

  10. Beam loading in magnicon deflection cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hafizi, B. [ICARUS Research, Inc., Bethesda, MD (United States); Gold, S.H. [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.

    1997-02-01

    The radio frequency (RF) source for the next linear collider (NLC) is required to generate a power of 1/2--1 GW per tube in a 200-ns pulse, or 100--200 J of energy in a pulse of up to a few {micro}s in duration, at a frequency of 10--20 GHz. A variety of RF sources are under investigation at the present time aimed at fulfilling the needs of the NLC. These include the X-band klystron, Gyroklystron, traveling-wave tube, harmonic convertor, chopper-driven traveling-wave tube, and magnicon. Here, analysis of the beam-deflection cavity interaction in a magnicon is presented and compared with experiment. For a driven cavity a dispersion relation is obtained wherein the interaction modifies the cold-cavity factor and the resonance frequency. In terms of a lumped-parameter equivalent circuit the interaction corresponds to a complex-values beam admittance Y{sub b} in parallel with the cavity admittance. The response of the gain cavities is modified by the same admittance. In a magnicon, Y{sub b} is a sensitive function of the solenoidal focusing magnetic field B{sub 0}, thus providing a convenient means of adjusting the cavity properties in experiments. When the relativistic gyrofrequency is twice the drive frequency, ImY{sub b} = 0 and the beam does not load the cavity. Analytical expressions of the variation of the detuning, instantaneous bandwidth (i.e., loaded quality factor) and gain with B{sub 0} are derived. Simulation results are presented to verify the linear analysis with ideal beams and to illustrate the modifications due to finite beam emittance. Results of the magnicon experiment at the Naval Research Laboratory are examined in the light of the analysis.

  11. Silicon Integrated Cavity Optomechanical Transducer

    Science.gov (United States)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  12. Hydroforming of elliptical cavities

    Science.gov (United States)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  13. SPS RF cavity

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. A power of up to 790 kW can be supplied to each giving a total accelerating voltage of about 8 MV. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities.

  14. Characterization of a gyrotron cavity at 10 GHz

    International Nuclear Information System (INIS)

    Experiments have been conducted to characterize a gyrotron cavity designed to operate in the Te 021 mode at 10 GHz. Small holes were introduced into the cavity to couple in and detect the probing power. Evaluation of the loaded Q factor is based on bandwidth measurements whereas standing-wave electric field profile is determined by using perturbation techniques. Good agreement between measured and predicted values of resonant frequencies and Q factors for several fundamental TE modes is found. (author)

  15. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  16. Low-dissipation cavity optomechanics in single-crystal diamond

    CERN Document Server

    Mitchell, Matthew; Lake, David P; Barclay, Paul E

    2015-01-01

    Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, creating devices from high quality bulk diamond chips is challenging. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to $2\\,\\text{GHz}$ frequency ($f_\\text{m}$) mechanical resonances is observed. In room temperature ambient conditions, the resonances have a record combination of low dissipation ($Q_\\text{m} > 9000$) and high frequency, with $Q_\\text{m}\\cdot f_\\text{m} \\sim 1.9\\times10^{13}$ sufficient for room temperature single phonon coherence. The system is nearly sideband resolved, and radiation pressure is used to excite $\\sim 31\\,\\text{pm}$ amplitude mechanical self-oscillations that can drive diamond color centre electron spin transitions.

  17. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity

    CERN Document Server

    Midolo, L; Hoang, T B; Xia, T; van Otten, F W M; Li, L H; Linfield, E; Lermer, M; Höfling, S; Fiore, A

    2012-01-01

    We demonstrate the control of the spontaneous emission rate of single InAs quantum dots embedded in a double-membrane photonic crystal cavity by the electromechanical tuning of the cavity resonance. Controlling the separation between the two membranes with an electrostatic field we obtain the real-time spectral alignment of the cavity mode to the excitonic line and we observe an enhancement of the spontaneous emission rate at resonance. The cavity has been tuned over 13 nm without shifting the exciton energies. A spontaneous emission enhancement of 4.5 has been achieved with a coupling efficiency of the dot to the mode 92%.

  18. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  19. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  20. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  1. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  2. Apparatus and method for plasma processing of SRF cavities

    CERN Document Server

    Upadhyay, J; Peshl, J; Bašović, M; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vuškovića, L

    2015-01-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segment...

  3. Novel High Cooperativity Photon-Magnon Cavity QED

    Science.gov (United States)

    Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel

    Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.

  4. A new microphonics measurement method for superconducting RF cavities

    International Nuclear Information System (INIS)

    Mechanical vibrations of the superconducting cavity, also known as microphonics, cause shifts in the resonant frequency of the cavity. In addition to requiring additional RF power, these frequency shifts can contribute to errors in the closed loop phase and amplitude regulation. In order to better understand these effects, a new microphonics measurement method was developed, and the method was successfully used to measure microphonics on the half-wave superconducting cavity when it was operated in a production style cryostat. The test cryostat held a single β=0.1 half-wave cavity which was operated at 162.5 MHz Yue et al. (2013) and Wang et al. (2013) [1,2]. It is the first time that the National Instruments PXIe-5641R intermediate frequency transceiver has been used for microphonics measurements in superconducting cavities. The new microphonics measurement method and results will be shown and analyzed in this paper

  5. Benchmarking Microwave Cavity Dark Matter Searches using a Radioactive Source

    CERN Multimedia

    Caspers, F

    2014-01-01

    A radioactive source is proposed as a calibration device to verify the sensitivity of a microwave dark matter search experiment. The interaction of e.g., electrons travelling in an arbitrary direction and velocity through an electromagnetically “empty” microwave cavity can be calculated numerically. We give an estimation of the energy deposited by a charged particle into a particular mode. Numerical examples are given for beta emitters and two particular cases: interaction with a field free cavity and interaction with a cavity which already contains an electromagnetic field. Each particle delivers a certain amount of energy related to the modal R/Q value of the cavity. The transferred energy is a function of the particles trajectory and its velocity. It results in a resonant response of the cavity, which can be observed using a sensitive microwave receiver, provided that the deposited energy is significantly above the single photon threshold.

  6. Melatonin and Oral Cavity

    OpenAIRE

    Murat İnanç Cengiz; Seda Cengiz; Hom-Lay Wang

    2012-01-01

    While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferatio...

  7. Oral cavity and leprosy

    OpenAIRE

    Shambulingappa Pallagatti; Soheyl Sheikh; Anupreet Kaur; Amit Aggarwal; Ravinder Singh2

    2012-01-01

    Although leprosy involves the oral cavity in up to 60% of the patients, examination of the oral cavity in leprosy clinics or oral health science clinics is often neglected. Oral involvement in leprosy can broadly be divided into non-specific and specific lesions. In this review, we discuss various oral manifestations in leprosy patients so as to increase the awareness about this aspect among dermatologists and dental surgeons.

  8. Hydroforming of Elliptical Cavities

    OpenAIRE

    W. Singer; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-01-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area ...

  9. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  10. Vertical-cavity in-plane heterostructures: Physics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk [Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-11-02

    We show that in-plane (lateral) heterostructures realized in vertical cavities with high contrast grating reflectors can be used to significantly modify the anisotropic dispersion curvature, also interpreted as the photon effective mass. This design freedom enables exotic configurations of heterostructures and many interesting applications. The effects of the anisotropic photon effective mass on the mode confinement, mode spacing, and transverse modes are investigated. As a possible application, the method of boosting the speed of diode lasers by engineering the photon-photon resonance is discussed. Based on this platform, we propose a system of two laterally coupled cavities, which shows the breaking of parity-time symmetry in vertical cavity structures.

  11. Infrared perfect absorber based on nanowire metamaterial cavities

    CERN Document Server

    He, Yingran; Jiao, Xiangyang; He, Sailing; Gao, Jie; Yang, Xiaodong

    2012-01-01

    An infrared perfect absorber based on gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Simulation results show that the designed metamaterial absorber is polarization-insensitive and nearly omnidirectional for the incident angle.

  12. Controlling spin relaxation with a cavity

    Science.gov (United States)

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Zhou, X.; Stern, M.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Vion, D.; Esteve, D.; Morton, J. J. L.; Bertet, P.

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

  13. Observation of Cavity QED in thick dielectric films

    Science.gov (United States)

    Sarabi, Bahman; Ramanayaka, A. N.; Gladchenko, S.; Stoutimore, M. J. A.; Khalil, M. S.; Osborn, K. D.

    2013-03-01

    Cavity QED in amorphous dielectrics is investigated by measuring five linear superconducting resonators with thick dielectric films and capacitor volumes ranging from 80 μm3 to 5000 μm3. In the smallest volume dielectrics we observe additional resonances which may be explained by CQED, despite the dielectric volume which is many orders of magnitude larger than Josephson junction barrier volumes. In addition to the volume dependence of the CQED resonances, we will report on the stability of the resonances in time and the phase noise. This research allows new fundamental studies on TLS phenomena in meso-volume amorphous dielectrics.

  14. A broadband and tunable MMW-THz quasi-optical cavity

    International Nuclear Information System (INIS)

    Based on the Fabry-Perot cavity, a broadband and tunable cavity is presented and investigated theoretically and experimentally. The results show that the cavity can work in the millimetre wave (MMW)-THz frequency regime. The experimental Q value is up to about 6000 at 37.5 GHz and higher than 800 at 2.54 THz. The resonant frequency of the cavity can be tuned by adjusting the distance between two mirrors, and it is capable of working at a high power. So this quasi-optical cavity may have very good potential applications in MMW-THz science and technology.

  15. A broadband and tunable MMW-THz quasi-optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shenggang; Zhang Yaxin; Yin Yong, E-mail: zhangyaxin@uestc.edu.cn [Terahertz Research Centre, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-09-21

    Based on the Fabry-Perot cavity, a broadband and tunable cavity is presented and investigated theoretically and experimentally. The results show that the cavity can work in the millimetre wave (MMW)-THz frequency regime. The experimental Q value is up to about 6000 at 37.5 GHz and higher than 800 at 2.54 THz. The resonant frequency of the cavity can be tuned by adjusting the distance between two mirrors, and it is capable of working at a high power. So this quasi-optical cavity may have very good potential applications in MMW-THz science and technology.

  16. Engineering three-dimensional maximally entangled states for two modes in a bimodal cavity

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao; Su Wan-Jun

    2007-01-01

    An alternative scheme is proposed for engineering three-dimensional maximally entangled states for two modes of a superconducting microwave cavity. In this scheme, an appropriately prepared four-level atom is sent through a bimodal cavity. During its passing through the cavity, the atom is coupled resonantly with two cavity modes simultaneously and addressed by a classical microwave pulse tuned to the required transition. Then the atomic states are detected to collapse two modes onto a three-dimensional maximally entangled state. The scheme is different from the previous one in which two nonlocal cavities are used. A comparison between them is also made.

  17. Cavity-enhanced ultrafast two-dimensional spectroscopy using higher-order modes

    CERN Document Server

    Allison, Thomas K

    2016-01-01

    We describe methods using frequency combs and optical resonators for recording two-dimensional (2D) ultrafast spectroscopy signals with high sensitivity. By coupling multiple frequency combs to higher-order modes of one or more optical cavities, background-free, cavity-enhanced 2D spectroscopy signals are naturally generated via phase cycling. As in cavity-enhanced ultrafast transient absorption spectroscopy (CE-TAS), the signal to noise is enhanced by a factor proportional to the cavity finesse squared, so even using cavities of modest finesse, a very high sensitivity is expected, enabling ultrafast 2D spectroscopy experiments in dilute molecular beams.

  18. Doppler-induced dynamics of fields in Fabry–Perot cavities with suspended mirrors

    OpenAIRE

    Rakhmanov, Malik

    2001-01-01

    The Doppler effect in Fabry-Perot cavities with suspended mirrors is analyzed. The Doppler shift, which is intrinsically small, accumulates in the cavity and becomes comparable with or greater than the linewidth of the cavity if the cavity s finesse is high or its length is large. As a result, damped oscillations of the cavity field occur when one of the mirrors passes a resonance position. A formula for this transient is derived. It is shown that the frequency of the oscillations is equal to...

  19. Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field.

    Science.gov (United States)

    Jang, Jae K; Erkintalo, Miro; Murdoch, Stuart G; Coen, Stéphane

    2015-10-15

    Temporal cavity solitons (CSs) are persisting pulses of light that can manifest themselves in continuously driven passive resonators, such as macroscopic fiber ring cavities and monolithic microresonators. Experiments so far have demonstrated two techniques for their excitation, yet both possess drawbacks in the form of system complexity or lack of control over soliton positioning. Here we experimentally demonstrate a new CS writing scheme that alleviates these deficiencies. Specifically, we show that temporal CSs can be excited at arbitrary positions through direct phase modulation of the cavity driving field, and that this technique also allows existing CSs to be selectively erased. Our results constitute the first experimental demonstration of temporal CS excitation via direct phase modulation, as well as their selective erasure (by any means). These advances reduce the complexity of CS excitation and could lead to controlled pulse generation in monolithic microresonators. PMID:26469612

  20. Flow-acoustic Characterisation of a Cavity-based Combustor Configuration

    Directory of Open Access Journals (Sweden)

    Krishna Kant Agarwal

    2011-10-01

    Full Text Available This study concerns the flow-acoustic characterisation of a cavity-based combustor configuration. A well-validated numerical tool has been used to simulate the unsteady, two-dimensional reacting flow. Initially, a conventional flow over a cavity with dimensions and conditions corresponding to a compact cavity combustor was studied. Cavity mass injections in the form of fuel and air injections required for trapped vortex formation were then employed and the resonance features of this configuration were studied. The results indicate that the cavity depth mode resonance mechanism is dominant at the conditions studied in this work and that the oscillation frequencies do not change with cavity air injection. This observation is important since it implies that the only important variable which can alter resonant frequencies is the cavity depth. With combustion, the pressure oscillation amplitude was observed to increases significantly due to periodic entrainment of the cavity air jet and fluctuation of fuel-air mixture composition to produce highly fluctuating heat-release rates. The underlying mechanisms of the unsteady flow in the cavity combustor identified in this study indicate the strong dependence of the acoustics on the cavity injection strategies.Defence Science Journal, 2011, 61(6, pp.523-528, DOI:http://dx.doi.org/10.14429/dsj.61.870

  1. Resonant torus-assisted tunneling.

    Science.gov (United States)

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Kim, Chil-Min

    2016-01-01

    We report a new type of dynamical tunneling, which is mediated by a resonant torus, i.e., a nonisolated periodic orbit. To elucidate the phenomenon, we take an open elliptic cavity and show that a pair of resonances localized on two classically disconnected tori tunnel through a resonant torus when they interact with each other. This so-called resonant torus-assisted tunneling is verified by using Husimi functions, corresponding actions, Husimi function distributions, and the standard deviations of the actions. PMID:26871067

  2. Three-dimensional self-consistent simulations of multipacting in superconducting radio frequency cavities. Final Report

    International Nuclear Information System (INIS)

    Superconducting radio frequency (SRF) cavities are a popular choice among researchers designing new accelerators because of the reduced power losses due to surface resistance. However, SRF cavities still have unresolved problems, including the loss of power to stray electrons. Sources of these electrons are field emission from the walls and ionization of background gas, but the predominant source is secondary emission yield (SEY) from electron impact. When the electron motion is in resonance with the cavity fields the electrons strike the cavity surface repeatedly creating a resonant build up of electrons referred to as multipacting. Cavity shaping has successfully reduced multipacting for cavities used in very high energy accelerators. However, multipacting is still a concern for the cavity power couplers, where shaping is not possible, and for cavities used to accelerate particles at moderate velocities. This Phase II project built upon existing models in the VORPAL simulation framework to allow for simulations of multipacting behavior in SRF cavities and their associated structures. The technical work involved allowed existing models of secondary electron generation to work with the complex boundary conditions needed to model the cavity structures. The types of data produced by VORPAL were also expanded to include data common used by cavity designers to evaluate cavity performance. Post-processing tools were also modified to provide information directly related to the conditions that produce multipacting. These new methods were demonstrated by running simulations of a cavity design being developed by researchers at Jefferson National Laboratory to attempt to identify the multipacting that would be an issue for the cavity design being considered. These simulations demonstrate that VORPAL now has the capabilities to assist researchers working with SRF cavities to understand and identify possible multipacting issues with their cavity designs.

  3. Superconducting cavities for the APT accelerator

    International Nuclear Information System (INIS)

    The design of an Accelerator Production of Tritium (APT) facility being investigated at Los Alamos includes a linear accelerator using superconducting rf-cavities for the acceleration of a high-current cw proton beam. For electron accelerators with particles moving at the speed of light (β ∼ 1.0), resonators with a rounded shape, consisting of ellipsoidal and cylindrical sections, are well established. They are referred to as elliptical cavities. For the APT-design, this shape has been adapted for much slower proton beams with β ranging from 0.60 to 0.94. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf and mechanical properties as well as for beam dynamics requirements. The TRAK-RF simulation code is used to investigate potential multipacting in these structures. All the simulations will be put to a final test in experiments performed on single cell cavities that have started in the structures laboratory

  4. Mode identification and cavity stretching for the prototype storage ring cavity

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) storage ring uses single cell cavities. As described in the paper ''Coupled Bunch Instabilities in the APS Ring'' by L. Emery, several of the higher order modes (HOM) in these cavities cause instability thresholds below the desired operating level. In order to clearly identify these modes, an experimental method of measuring the fields is necessary. A well- known technique is measurement with probes or loops extending in from the walls, but this cannot be used in the interior. A different approach is the use of small perturbations which cause a frequency shift that is related in a known way to the local field. This perturbation can be calculated for objects of needle-shaped, spherical, and disk-shaped form. With proper use this method can give very accurate measurements of the direction and magnitude of the electric and magnetic fields. This report gives examples of a method of measuring electric field strengths in a resonant cavity. It is shown that insertion of a metallic bead (needle), whose dimensions are small compared to the wavelength, perturbs the frequency of a resonant electromagnetic cavity by an amount that depends upon the local electric field at the position of the perturbing object

  5. Optical modulator based on coupled photonic crystal cavities

    Science.gov (United States)

    Serafimovich, Pavel G.; Kazanskiy, Nikolay L.

    2016-07-01

    We propose and numerically investigate an optical signal modulator based on two-photonic crystal nanobeam cavities coupled through a waveguide. The suggested modulator shifts the resonant frequency over a scalable range. We design a compact optical modulator based on photonic crystal nanobeams cavities that exhibits high stability to manufacturing. Photonic crystal waveguide tuning in the low-intensity region of the resonant mode is demonstrated. The advantages of the suggested approach over the single-resonator optical modulator approaches include the possibilities to shift the modulator frequency over a scalable range that depends on switching energy level and to effectively electrically tune the device in the low-intensity region of the resonant mode.

  6. A Detection Scheme for Cavity-based Dark Matter Searches

    CERN Document Server

    Bukhari, M H S

    2016-01-01

    We present here proposal of a scheme and some useful ideas for resonant cavity-based detection of cold dark matter axions with hope to improve the existing endeavors. The scheme is based upon our idea of a detector, which incorporates an integrated tunnel diode and a GaAs HEMT or HFET, High Electron Mobility Transistor or Heterogenous FET, for resonance detection and amplification from a resonant cavity (in a strong transverse magnetic field from a cylindrical array of halbach magnets). The idea of a TD-oscillator-amplifier combination could possibly serve as a more sensitive and viable resonance detection regime while maintaining an excellent performance with low noise temperature, whereas the halbach magnets array may offer a compact and permanent solution replacing the conventional electromagnets scheme. We believe that all these factors could possibly increase the sensitivity and accuracy of axion detection searches and reduce complications (and associated costs) in the experiments, in addition to help re...

  7. Resonant freak microwaves

    International Nuclear Information System (INIS)

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  8. Metasurface external cavity laser

    Science.gov (United States)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Chen, Qi-Sheng; Itoh, Tatsuo; Williams, Benjamin S.

    2015-11-01

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  9. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  10. Avoiding radiation pressure in an optical cavity interacting with ultra-cold atoms

    CERN Document Server

    Bux, Simone; Slama, Sebastian; Zimmermann, Claus; Courteille, Philippe W

    2007-01-01

    The combination of ultra-cold atomic clouds stored in the light field of optical cavities provides a powerful model system for the development of new types of laser cooling and for studying cooperative phenomena. These experiments critically depend on the precise tuning of an incident pump laser with respect to a cavity resonance. Here, we present a simple and reliable experimental tuning scheme based on a two-mode laser spectrometer. The scheme uses a first laser for probing higher-order transversal modes of the cavity having an intensity minimum near the cavity's optical axis, where the atoms are confined. In this way the cavity resonance is observed without exposing the atoms to unwanted radiation pressure. A second laser, which is phase-locked to the first one and tuned close to a fundamental cavity mode drives the coherent atom-field dynamics.

  11. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  12. Multipacting phenomenon at high electric fields of superconducting cavities

    Institute of Scientific and Technical Information of China (English)

    Zhu Feng; D.Proch; Hao Jian-Kui

    2005-01-01

    Recently multipacting(MP) recalculation of the TeV Energy Superconductiong Linear Accelerator (TESLA)resonator was performed. In addition to the normal MP which occurs at a peak electric field of around 40MV/m for the TESLA cavity, another type of multipacting with resonant electron trajectory that is far from the equator is also seen.It occurs at a gradient around 60MV/m to 70MV/m. This result seems to explain some experimental observations.

  13. Resonances and resonance widths

    International Nuclear Information System (INIS)

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances

  14. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  15. Dewar Testing of Coaxial Resonators at MSU

    Energy Technology Data Exchange (ETDEWEB)

    Popielarski, J; Facco, A; Hodek, M; Marti, F; Norton, D; Velianoff, G J; Wlodarczak, J; Burrill, A

    2012-07-01

    Michigan State University is currently testing prototype and production cavities for two accelerator projects. 80.5 MHz {beta} = 0.085 quarter wave resonators (QWR) are being produced as part of a cryomodule for ReA3. 322 MHz {beta} = 0.53 half wave resonators (HWR) are being prototyped for a driver linac for the Facility for Rare Isotope Beams. This paper will discuss test results and how different cavity preparations effect cavity performs. Also various diagnostics methods have been developed, such as second sound quench location determination, and temperature mapping to determine hot spots from defects and multipacting location.

  16. Transverse beam cavity interaction. Pt. 2

    International Nuclear Information System (INIS)

    Intense bunches of charged particles in accelerators excite transverse higher modes in accelerating cavities. These higher modes lead to an interaction between widely separated bunches. Such multi bunch or multi turn instabilities due to long range forces can be described by the cavity mode frequencies and field patterns. For structures of cylindrical symmetry a computer code named URMEL is described which calculates resonant modes of any azimuthal mode number m=0,1,2.. (monopole, dipole, quadrupole, etc.). The eigenfrequencies are found as linear eigenvalues of a large matrix and simple mathematical procedures guarantee that no modes are missed. The combined use of URMEL in frequency domain and of the complementary code TBCI in time domain enables a complete analysis of long range -low frequency- forces (narrow band impedances) and short range -high frequency- forces (broad band impedances). (orig.)

  17. Unifying Brillouin scattering and cavity optomechanics

    CERN Document Server

    Van Laer, Raphaël; Baets, Roel; Van Thourhout, Dries

    2015-01-01

    So far, Brillouin scattering and cavity optomechanics were mostly disconnected branches of research. Both deal with photon-phonon coupling, but a number of differences impeded their unambiguous fusion. Here, we reveal a close connection between two parameters of central importance in these fields: the Brillouin gain coefficient $\\tilde{\\mathcal{G}}$ and the zero-point optomechanical coupling rate $g_{0}$. In addition, we derive the dynamical cavity equations from the coupled-mode description of a Brillouin waveguide. This explicit transition shows the unity of optomechanical phenomena, such as stimulated Brillouin scattering and electromagnetically induced transparency, regardless of whether they occur in waveguides or in resonators. Therefore, the fields can no longer be disentangled. We propose an experimental manifestation of the link in silicon photonic nanowires.

  18. Electro Polishing of Niobium Cavities at DESY

    CERN Document Server

    Matheisen, A; Morales, H; Petersen, B; Schmoekel, M; Steinhau-Kühl, N

    2004-01-01

    At DESY a facility for electro polishing (EP) of the super conducting (s.c.) TESLA/TTF cavities have been built and is operational since summer 2003. The EP infrastructure is capable to handle single-cell structures and the standard TESLA/ TTF nine-cell cavities. Several electro polishing processes have been made since and acceleration voltage up to 40 MV/m have been reached in nine cell structures. We report on measurements and experiences gained since 2003 as well as on handling procedures developed for the preparation of electro polished resonators. Specific data like heat production, variation of current density and bath aging will be presented. Another important point for reproducible results is the quality control of the electro polishing process. First quality control steps to be implanted in the EP procedure for large-scale production will be described.

  19. Prototype rf cavity for the HISTRAP accelerator

    International Nuclear Information System (INIS)

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C

  20. Cavity techniques for holographic data storage recording.

    Science.gov (United States)

    Miller, Bo E; Takashima, Yuzuru

    2016-03-21

    Conventionally, reading and writing of data holograms utilizes a fraction of the light power because of a trade off in write and read efficiencies. This system constraint can be mitigated by applying a resonator cavity. Cavities enable more efficient use of the available light leading to enhanced read and write data rates with no additional energy cost. This enhancement is inversely related to diffraction efficiency, so these techniques work well for large capacity holographic data storage having low diffraction efficiency. The enhancement in write data transfer rate is evaluated by writing plane wave holograms and image bearing holograms in Fe:LiNbO3 with a 532 nm wavelength laser. We confirmed 1.2 times enhancement in write data rate, out of a 1.4 theoretical maximum for materials absorption of 16%. PMID:27136822

  1. HOM Couplers for CERN SPL Cavities

    CERN Document Server

    Papke, Kai; Van Rienen, U

    2013-01-01

    Higher-Order-Modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the SPL, which is studied at CERN as the driver for future neutrino facilities. In order to limit beam-induced HOM effects, CERN considers the use of HOM couplers on the cut-off tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to modes of a specific frequency range. In this paper the design process is presented and a comparison is made between various design options for the medium and high-beta SPL cavities, both operating at 704.4 MHz. The RF characteristics and thermal behaviour of the various designs are discussed.

  2. Entanglement swapping without joint measurement via a Λ-type atom interacting with bimodal cavity field

    Institute of Scientific and Technical Information of China (English)

    Lin Xiu; Li Hong-Cai; Yang Rong-Can; Huang Zhi-Ping

    2007-01-01

    This paper proposes a scheme for realizing entanglement swapping in cavity QED. The scheme is based on the resonant interaction of a two-mode cavity field with a A-type three-level atom. In contrast with the previously proposed schemes, the present scheme is ascendant, since the fidelity is 1.0 and the joint measurement isn't needed. And the scheme is experimentally feasible based on the current cavity QED technique.

  3. Cavity dumping of an injection-locked free-electron laser

    OpenAIRE

    Takahashi, Susumu; Ramian, Gerald; Sherwin, Mark S.

    2009-01-01

    This letter reports cavity dumping of an electrostatic-accelerator-driven free-electron laser (FEL) while it is injection-locked to a frequency-stabilized 240 GHz solid-state source. Cavity dumping enhances the FEL output power by a factor of $\\sim$8, and abruptly cuts off the end of the FEL pulse. The cavity-dumped, injection-locked FEL output is used in a 240 GHz pulsed electron spin resonance (ESR) experiment.

  4. Dilation of the olfactory bulb cavity concurrent with hydrocephalus in four small breed dogs

    OpenAIRE

    Kim, Jung-Hyun; Jeon, Hyo-Won; Woo, Eung-Je; Park, Hee-Myung

    2009-01-01

    Four small breed dogs were admitted with seizures. Magnetic resonance imaging (MRI) of the brain revealed dilation of the olfactory bulb cavity as well as enlargement of the lateral ventricles. These findings demonstrate that dilation of the olfactory bulb cavity can occur concurrent with hydrocephalus. This is the first description of the clinical and MRI features of dilation of the olfactory bulb cavity concurrent with hydrocephalus in dogs.

  5. Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a Quantum Cascade Laser.

    OpenAIRE

    Maisons, G.; Gorrotxategi Carbajo, P.; Carras, M.; Romanini, D.

    2010-01-01

    Optical{feedback cavity{enhanced absorption spectroscopy is demonstrated in the mid{IR using a quantum cascade laser (emitting at 4.46 ¹m). The laser linewidth reduction and frequency locking by selective optical feedback from the resonant cavity ¯eld turns out to be particularly important in this spectral range: It allows strong cavity transmission which compensates for low light sensitivity, especially when using room temperature detectors. We obtain a noise equivalent absorption coe±cient ...

  6. A continuously tunable modulation scheme for precision control of optical cavities with variable detuning

    CERN Document Server

    Yam, William; Ackley, Sarah; Evans, Matthew; Mavalvala, Nergis

    2015-01-01

    We present a scheme for locking optical cavities with arbitrary detuning many line widths from resonance using an electro-optic modulator that can provide arbitrary ratios of amplitude to phase modulation. We demonstrate our scheme on a Fabry-Perot cavity, and show that a well-behaved linear error signal can be obtained by demodulating the reflected light from a cavity that is detuned by several line widths.

  7. Finite-element simulation of cavity modes in a micro-fluidic dye ring laser

    CERN Document Server

    Gersborg-Hansen, M; Mortensen, N A; 10.1088/1464-4258/8/1/003

    2006-01-01

    We consider a recently reported micro-fluidic dye ring laser and study the full wave nature of TE modes in the cavity by means of finite-element simulations. The resonance wave-patterns of the cavity modes support a ray-tracing view and we are also able to explain the spectrum in terms of standing waves with a mode spacing dk = 2pi/L_eff where L_eff is the effective optical path length in the cavity.

  8. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    International Nuclear Information System (INIS)

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  9. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    Energy Technology Data Exchange (ETDEWEB)

    Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Alberty, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Artoos, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Calaga, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Capatina, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Capelli, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Carra, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Leuxe, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Kuder, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zanoni, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Li, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ratti, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  10. Design and Prototyping of HL-LHC Double Quarter Wave Crab Cavities for SPS Test

    CERN Document Server

    Verdú-Andrés, S; Wu, Q; Xiao, B P; Belomestnykh, S; Ben-Zv, I; Alberty, L; Artoos, Kurt; Calaga, Rama; Capatina, Ofelia; Capelli, Teddy; Carra, Federico; Leuxe, Raphael; Kuder, Norbert; Zanoni, Carlo; Li, Z; Ratti, A

    2015-01-01

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  11. Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing

    Directory of Open Access Journals (Sweden)

    Mark G. Scullion

    2014-11-01

    Full Text Available We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide can be excited and their resonance wavelength determined from camera images without the need for a spectrometer. The cavity array platform combines sensing as a function of location with sensing as a function of time.

  12. Single quantum dot controls a plasmonic cavity's scattering and anisotropy.

    Science.gov (United States)

    Hartsfield, Thomas; Chang, Wei-Shun; Yang, Seung-Cheol; Ma, Tzuhsuan; Shi, Jinwei; Sun, Liuyang; Shvets, Gennady; Link, Stephan; Li, Xiaoqin

    2015-10-01

    Plasmonic cavities represent a promising platform for controlling light-matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light's coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED) effects and using them in quantum information applications. The lack of experimental progress in this area is in part due to the difficulty of precisely placing a QD within nanometers of the plasmonic cavity. Here, we study the simplest plasmonic cavity in the form of a spherical metallic nanoparticle (MNP). By controllably positioning a semiconductor QD in the close proximity of the MNP cavity via atomic force microscope (AFM) manipulation, the scattering spectrum of the MNP is dramatically modified due to Fano interference between the classical plasmonic resonance of the MNP and the quantized exciton resonance in the QD. Moreover, our experiment demonstrates that a single two-level system can render a spherical MNP strongly anisotropic. These findings represent an important step toward realizing quantum plasmonic devices. PMID:26372957

  13. Work on Nb3Sn cavities at Wuppertal

    International Nuclear Information System (INIS)

    Because of its high critical temperature of 18.2 K and its corresponding high thermodynamical critical field of 535 mT the A15 compound Nb3Sn is a promising material for superconducting accelerator cavities. Nb3Sn cavities should allow higher accelerating fields than niobium resonators and the Joule losses should be reduced by more than two decades compared to the ones in niobium at a given temperature. Nb3Sn accelerating structures in the frequency range below 6 GHz should therefore be applicable with high efficiency already at 4.2 K. The brittleness of Nb3Sn which complicates its application to superconducting magnets is of no disadvantage on the surface of mechanically stable microwave resonators. In Wuppertal investigations of Nb3Sn cavities started at 8 GHz around 1974. In 1979 the first experimental acceleration of 80 KeV electrons was performed in a three cell Nb3Sn coated 8 GHz structure. In the last years, initiated by work on superconducting accelerator projects in Darmstadt and DESY, further investigations on Nb3Sn cavities at 3 GHz and 1 GHz were carried out. The work on Nb3Sn was also extended to 22 GHz in order to study frequency dependent mechanisms and to apply K-band pill box cavities to a single atom maser. This report summarizes the results of experiments with Nb3Sn cavities performed at Wuppertal during the time after the last workshop in CERN. 31 references, 24 figures

  14. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8302397: View from the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138. Giacomo Primadei stands on the left.

  15. Laser cavity modelling

    OpenAIRE

    Damakoa, I.; Audounet, J.; Bouyssou, G.; Vassilieff, G.

    1993-01-01

    Two approachs of modelling nonhomogeneous cavity laser are presented. They are based on the beam propagation method which allows the use of fast Fourier transform (FFT). The resulting procedures provide selfconsistent solutions to the Maxwell and diffusion equations. Results are given to illustrate the two methods.


  16. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  17. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased choic

  18. What's a Cavity?

    Science.gov (United States)

    ... and deeper over time. Cavities are also called dental caries (say: KARE-eez), and if you have a ... made up mostly of the germs that cause tooth decay. The bacteria in your mouth make acids and when plaque clings to your teeth, the acids can eat away at the outermost ...

  19. Niobium superconducting cavity

    CERN Multimedia

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  20. Production of Three-Dimensional Maximal Entanglement for Two Cavity Modes

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    @@ A scheme is proposed for generating maximally entangled states for two cavity modes, with each containing no more than two photons. In the scheme a single atom is sent through two resonant single-mode cavities. Based on the presently available techniques, our scheme might be experimentally realizable.

  1. Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity

    OpenAIRE

    Franco, R. Lo; Compagno, G; Messina, A.; Napoli, A.

    2007-01-01

    We introduce the $N$-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-$Q$ cavity. We finally discuss the implementation of the proposed schemes.

  2. Middle ear cavity morphology is consistent with an aquatic origin for testudines.

    Directory of Open Access Journals (Sweden)

    Katie L Willis

    Full Text Available The position of testudines in vertebrate phylogeny is being re-evaluated. At present, testudine morphological and molecular data conflict when reconstructing phylogenetic relationships. Complicating matters, the ecological niche of stem testudines is ambiguous. To understand how turtles have evolved to hear in different environments, we examined middle ear morphology and scaling in most extant families, as well as some extinct species, using 3-dimensional reconstructions from micro magnetic resonance (MR and submillimeter computed tomography (CT scans. All families of testudines exhibited a similar shape of the bony structure of the middle ear cavity, with the tympanic disk located on the rostrolateral edge of the cavity. Sea Turtles have additional soft tissue that fills the middle ear cavity to varying degrees. When the middle ear cavity is modeled as an air-filled sphere of the same volume resonating in an underwater sound field, the calculated resonances for the volumes of the middle ear cavities largely fell within testudine hearing ranges. Although there were some differences in morphology, there were no statistically significant differences in the scaling of the volume of the bony middle ear cavity with head size among groups when categorized by phylogeny and ecology. Because the cavity is predicted to resonate underwater within the testudine hearing range, the data support the hypothesis of an aquatic origin for testudines, and function of the middle ear cavity in underwater sound detection.

  3. Magneto-induced Fano-like cavity interference in three-dimensional metamaterials

    Science.gov (United States)

    Pan, Xun-Yong; Wang, Gaofeng

    2016-08-01

    Fano-like cavity interference due to magneto-inductive coupling in metamaterial structure is demonstrated via a double Fabry–Perot cavity (DFPC) that consists of stacked multi-layered resonators. The induced magnetic field based destructive interference is observed in the transmission response of the DFPC system, which exhibits the Fano line shaped resonance. The retrieved real and imaginary parts of effective permeability and permittivity indicate strong magneto-induced dispersion with a group delay leading to the slow light effect. This finding provides an interesting mechanism to excite Fano resonances in metamaterial systems via magnetic interaction between resonators, which may enable new devices for slow light and sensing applications.

  4. Novel automatic phase lock determination for superconducting cavity tests at vertical test stand at RRCAT

    International Nuclear Information System (INIS)

    RRCAT has developed a Vertical Test Stand (VTS) which is used to test the Nb superconducting cavities under cryogenic conditions. In the VTS, RF cavity is characterized for its quality factor variation vs the accelerating gradient. The RF system is an essential part of the VTS which is required to provide stable RF power to the cavity in terms of amplitude, frequency and phase. RF system of VTS consists of several modules including the LLRF system. The LLRF system consists of the 'Frequency Control Module' which controls the input frequency to the SCRF cavity. Due to high quality factor, bandwidth of the cavity is less than 1 Hz. Even slight mechanical vibrations (microphonics) causes change in cavity resonance frequency resulting in total reflection of incident power. A PLL based frequency tracking module has been used to track the resonant frequency of RF cavity. This module changes RF source frequency according to change in Cavity resonance frequency. A novel method using a LabView based computer program has been developed which changes the phase of input RF signal using IQ modulator and monitors the transmitted power, incident and reflected power. The program plots the graph between phase and ratio of transmitted power to incident/reflected power and gives optimum locking phase for operation which has resulted in significant saving in the overall process time for the tests of the cavities in VTS. (author)

  5. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble

    DEFF Research Database (Denmark)

    Guerlin, Christine; Brion, Etienne; Esslinger, Tilman;

    2010-01-01

    effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states and that the atomic nonlinearity gives rise to highly nontrivial photon emission from the cavity. Finally, we suggest......The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly...... couples the single-atom ground state |g> to a Rydberg state |e>via a nonresonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the...

  6. Implosion of the small cavity and large cavity cannonball targets

    International Nuclear Information System (INIS)

    Recent results of cannonball target implosion research are briefly reviewed with theoretical predictions for GEKKO XII experiments. The cannonball targets are classified into two types according to the cavity size ; small cavity and large cavity. The compression mechanisms of the two types are discussed. (author)

  7. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the...

  8. Properties of the cylindrical rf cavity evaluation code SUPERFISH

    International Nuclear Information System (INIS)

    A new rf cavity code has been developed that allows evaluation of resonant frequencies and field distributions of the fundamental and higher order modes for practically all conceivable cylindrical geometries. A short description of the procedure to determine these quantities is followed by a discussion of the accuracy of the code, its capabilities, and some applications. (author)

  9. Superconducting cavities for a B-factory---Interim progress report

    International Nuclear Information System (INIS)

    Superconducting resonant cavities can economically provide the voltages needed to achieve the short bunches and high luminosity required for the e-e+ colliders proposed to produce B mesons. In this article a report is given of the progress in the development of a superconducting RF system for a B-factory

  10. Multistability of cavity exciton-polaritons affected by the thermally generated exciton reservoir

    OpenAIRE

    Vishnevsky, D. V.; Solnyshkov, D. D.; Gippius, N. A.; Malpuech, G.

    2011-01-01

    Until now, the generation of an excitonic reservoir in a cavity polariton system under quasi-resonant pumping has always been neglected. We show that in microcavities having a small Rabi splitting (typically GaAs cavities with a single quantum well), this reservoir can be efficiently populated by polariton-phonon scattering. We consider the influence of the exciton reservoir on the energy shifts of the resonantly pumped polariton modes. We show that the presence of this reservoir effectively ...

  11. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2014-01-01

    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  12. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  13. Stand-Off Biodetection with Free-Space Coupled Asymmetric Microsphere Cavities

    OpenAIRE

    Zachary Ballard; Martin D. Baaske; Frank Vollmer

    2015-01-01

    Asymmetric microsphere resonant cavities (ARCs) allow for free-space coupling to high quality (Q) whispering gallery modes (WGMs) while exhibiting highly directional light emission, enabling WGM resonance measurements in the far-field. These remarkable characteristics make “stand-off” biodetection in which no coupling device is required in near-field contact with the resonator possible. Here we show asymmetric microsphere resonators fabricated from optical fibers which support dynamical tunne...

  14. Seamless/bonded niobium cavities

    Science.gov (United States)

    Singer, W.

    2006-07-01

    Technological aspects and performance of seamless cavities produced by hydroforming are presented. Problems related to the fabrication of seamless cavities from bulk niobium are mainly solved thanks to the progress of the last years. The highest achieved accelerating gradients are comparable for both seamless and welded versions (ca. 40 MV/m) Nevertheless further development of seamless cavities is desirable in order to avoid the careful preparation of parts for welding and get reliable statistic. Fabrication of NbCu clad cavities from bimetallic tubes is an interesting option that gives new opportunity to the seamless technique. On the one hand it allows reducing the niobium costs contribution; on the other hand it increases the thermal stability of the cavity. The highest accelerating gradient achieved on seamless NbCu clad single cell cavities (ca. 40 MV/m) is comparable to the one reached on bulk Nb cavities. Fabrication of multi-cell NbCu cavities by hydroforming was recently proven.

  15. Transverse Field Perturbation For PIP-II SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Berrutti, Paolo [Fermilab; Khabiboulline, Timergali N. [Fermilab; Lebedev, Valeri [Fermilab; Yakovlev, Vyacheslav P. [Fermilab

    2015-06-01

    Proton Improvement Plan II (PIP-II) consists in a plan for upgrading the Fermilab proton accelerator complex to a beam power capability of at least 1 MW delivered to the neutrino production target. A room temperature section accelerates H⁻ ions to 2.1 MeV and creates the desired bunch structure for injection into the superconducting (SC) linac. Five cavity types, operating at three different frequencies 162.5, 325 and 650 MHz, provide acceleration to 800 MeV. This paper presents the studies on transverse field perturbation on particle dynamic for all the superconducting cavities in the linac. The effects studied include quadrupole defocusing for coaxial resonators, and dipole kick due to couplers for elliptical cavities. A multipole expansion has been performed for each of the cavity designs including effects up to octupole.

  16. The Test of LLRF control system on superconducting cavity

    CERN Document Server

    Zhu, Zhenglong; Wen, Lianghua; Chang, Wei; Zhang, Ruifeng; Gao, Zheng; Chen, Qi

    2014-01-01

    The first generation Low-Level radio frequency(LLRF) control system independently developed by IMPCAS, the operating frequency is 162.5MHz for China ADS, which consists of superconducting cavity amplitude stability control, phase stability control and the cavity resonance frequency control. The LLRF control system is based on four samples IQ quadrature demodulation technique consisting an all-digital closed-loop feedback control. This paper completed the first generation of ADS LLRF control system in the low-temperature superconducting cavities LLRF stability and performance online tests. Through testing, to verify the performance of LLRF control system, to analysis on emerging issues, and in accordance with the experimental data, to summarize LLRF control system performance to accumulate experience for the future control of superconducting cavities.

  17. Bunching of temporal cavity solitons via forward Brillouin scattering

    CERN Document Server

    Erkintalo, Miro; Jang, Jae K; Coen, Stéphane; Murdoch, Stuart G

    2015-01-01

    We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.

  18. Influence of selective atomic measurement on the entanglement properties of a two-atom outside cavity

    Institute of Scientific and Technical Information of China (English)

    Lu Dao-Ming

    2011-01-01

    Considering three two-level atoms initially in the W or Greenberger-Horne-Zeilinger (GHZ) state, one of the three atoms is put into an initially coherent light cavity and made to resonantly interact with the cavity. The two-atom entanglement evolution outside the cavity is investigated. The influences of state-selective measurement of the atom inside the cavity and strength of the light field on the two-atom entanglement evolution outside the cavity are discussed. The results obtained from the numerical method show that the two-atom entanglement outside the cavity is strengthened through state-selective measurement of the atom inside the cavity. In addition, the strength of the light field also influences the two-atom entanglement properties.

  19. Micro-cavity lasers with large device size for directional emission

    Science.gov (United States)

    Yan, Chang-ling; Li, Peng; Shi, Jian-wei; Feng, Yuan; Hao, Yong-qin; Zhu, Dongda

    2014-10-01

    Optical micro-cavity structures, which can confine light in a small mode volume with high quality factors, have become an important platform not only for optoelectronic applications with densely integrated optical components, but also for fundamental studies such as cavity quantum electrodynamics and nonlinear optical processes. Micro-cavity lasers with directional emission feature are becoming a promising resonator for the compact laser application. In this paper, we presented the limason-shaped cavity laser with large device size, and fabricated this type of micro-cavity laser with quantum cascade laser material. The micro-cavity laser with large device size was fabricated by using InP based InGaAs/InAlAs quantum cascade lasers material at about 10um emitting wavelength, and the micro-cavity lasers with the large device size were manufactured and characterized with light output power, threshold current, and the far-field pattern.

  20. Multiphysics Analysis of Frequency Detuning in Superconducting RF Cavities for Proton Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Awida, M. H. [Fermilab; Gonin, I. [Fermilab; Passarelli, D. [Fermilab; Sukanov, A. [Fermilab; Khabiboulline, T. [Fermilab; Yakovlev, V. [Fermilab

    2016-01-22

    Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics and Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.