WorldWideScience

Sample records for cavity quantum electrodynamics

  1. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  2. Quantum quincunx in cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Sanders, Barry C.; Bartlett, Stephen D.; Tregenna, Ben; Knight, Peter L.

    2003-01-01

    We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence

  3. Fundamental tests in Cavity Quantum Electrodynamics

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    At the dawn of quantum physics, Einstein and Bohr had the dream to confine a photon in a box and to use this contraption in order to illustrate the strange laws of the quantum world. Cavity Quantum Electrodynamics has now made this dream real, allowing us to actually achieve in the laboratory variants of the thought experiments of the founding fathers of quantum theory. In our work at Ecole Normale Supérieure, we use a beam of Rydberg atoms to manipulate and probe non-destructively microwave photons trapped in a very high Q superconducting cavity. We realize ideal quantum non-demolition (QND) measurements of photon numbers, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process. These experiments ope...

  4. Structure an dynamics in cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Kimble, H.J.

    1994-01-01

    Much of the theoretical background related to the radiative processes for atoms in the presence of boundaries comes from two often disjoint areas, namely cavity quantum electrodynamics and optical bistability with two-state atoms. While the former of these areas has been associated to a large degree with studies in a perturbative domain of altered associated to a large degree with studies in a perturbative domain of altered emission processes in the presence of boundaries other than those of free space, the latter is often viewed from the perspective of hysteresis cycles and device applications. With the exception of the laser, however, perhaps the most extensive investigations of quantum statistical processes in quantum optics are to be found in the literature on bistability with two-state atoms and on cavity QED. Unfortunately, the degree of overlap of these two areas has not always been fully appreciated. This circumstance is perhaps due in part to the fact that the investigation of dynamical processes in cavity QED has had as its cornerstone the Jaynes-Cummings problem, with extensions to include, for example, small amounts of dissipation. On the other hand, a principle aspect of the bistability literature has been the study of quantum fluctuations in open systems for which dissipation plays a central role, but for which the coherent quantum dynamics of the Haynes-Cummings model are to a large measure lost due to the usual assumption of large system size and weak coupling (as in the standard theory of the laser). 132 refs., 26 figs., 1 tab

  5. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  6. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...

  7. Cavity quantum electrodynamics in application to plasmonics and metamaterials

    Directory of Open Access Journals (Sweden)

    Pavel Ginzburg

    2016-11-01

    Full Text Available Frontier quantum engineering tasks require reliable control over light-matter interaction dynamics, which could be obtained by introducing electromagnetic structuring. Initiated by the Purcell's discovery of spontaneous emission acceleration in a cavity, the concept of electromagnetic modes' design have gained a considerable amount of attention due to development of photonic crystals, micro-resonators, plasmonic nanostructures and metamaterials. Those approaches, however, offer qualitatively different strategies for tailoring light-matter interactions and are based on either high quality factor modes shaping, near field control, or both. Remarkably, rigorous quantum mechanical description might address those processes in a different fashion. While traditional cavity quantum electrodynamics tools are commonly based on mode decomposition approach, few challenges rise once dispersive and lossy nanostructures, such as noble metals (plasmonic antennas or metamaterials, are involved. The primary objective of this review is to introduce key methods and techniques while aiming to obtain comprehensive quantum mechanical description of spontaneous, stimulated and higher order emission and interaction processes, tailored by nanostructured material environment. The main challenge and the complexity here are set by the level of rigorousity, up to which materials should be treated. While relatively big nanostructured features (10nm and larger could be addressed by applying fluctuation–dissipation theorem and corresponding Green functions' analysis, smaller objects will require individual approach. Effects of material granularity, spatial dispersion, tunneling over small gaps, material memory and others will be reviewed. Quantum phenomena, inspired and tailored by nanostructured environment, plays a key role in development of quantum information devices and related technologies. Rigorous analysis is required for both examination of experimental observations

  8. Macroscopic quantum electrodynamics of high-Q cavities

    International Nuclear Information System (INIS)

    Khanbekyan, Mikayel

    2009-01-01

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the possible

  9. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  10. Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger

    2013-01-01

    We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from...... longitudinal acoustic phonons, and the analysis explains the difference between nonresonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot in the nanocavity. This quantity determines...

  11. Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics

    Science.gov (United States)

    Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang

    2018-05-01

    Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.

  12. Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Alidoosty Shahraki, Moslem; Khorasani, Sina; Aram, Mohammad Hasan [Sharif University of Technology, School of Electrical Engineering, Tehran (Iran, Islamic Republic of)

    2014-05-15

    The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole-dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured. (orig.)

  13. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Akhiezer, A.I.

    1983-01-01

    Basic ideas of quantum electrodynamics history of its origination and its importance are outlined. It is shown low the notion of the field for each kind of particles and the notion of vacuum for such field had originated and been affirmed how a new language of the Feynman diagrams had appeared without which it is quite impossible to described complex processes of particle scattering and mutual transformation. The main problem of the quantum electrodynamics is to find a scattering matrix, which solution comes to the determination of the Green electrodynamic functions. A review is given of papers on clarifying the asymptotic behaviour of the Green electrodynamic functions in the range of high pulses, on studying the Compton effect, bremsstrahlung irradiation Raman light scattering elastic scattering during channeling of charged particles in a crystal

  14. Cavity quantum electrodynamics of a quantum dot in a micropillar cavity: comparison between experiment and theory

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Reitzenstein, S.

    2010-01-01

    The coupling between a quantum dot (QD) and a micropillar cavity is experimentally investigated by performing time-resolved, correlation, and two-photon interference measurements. The Jaynes-Cummings model including dissipative Lindblad terms and dephasing is analyzed, and all the parameters...

  15. Quantum electrodynamics

    CERN Document Server

    Greiner, Walter

    2009-01-01

    This textbook on Quantum Electrodynamics is a thorough introductory text providing all necessary mathematical tools together with many examples and worked problems. In their presentation of the subject the authors adopt a heuristic approach based on the propagator formalism. The latter is introduced in the first two chapters in both its nonrelativistic and relativistic versions. Subsequently, a large number of scattering and radiation processes involving electrons, positrons, and photons are introduced and their theoretical treatment is presented in great detail. Higher order processes and renormalization are also included. The book concludes with a discussion of two-particle states and the interaction of spinless bosons. This completely revised and corrected new edition provides several additions to enable deeper insight in formalism and application of quantum electrodynamics.

  16. Epitaxial lift-off for solid-state cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Greuter, Lukas; Najer, Daniel; Kuhlmann, Andreas V.; Starosielec, Sebastian; Warburton, Richard J.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.

    2015-01-01

    We demonstrate an approach to incorporate self-assembled quantum dots into a Fabry-Pérot-like microcavity. Thereby, a 3λ/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor-mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggest that we are close to the strong coupling regime

  17. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble

    DEFF Research Database (Denmark)

    Guerlin, Christine; Brion, Etienne; Esslinger, Tilman

    2010-01-01

    The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly cou...

  18. Analysis of adiabatic transfer in cavity quantum electrodynamics

    Indian Academy of Sciences (India)

    adiabatic transfer process through the 'dark state' by a slow variation of the control laser intensity. ... control field of Rabi frequency C(t) transfers one photon in the cavity mode to a long- .... It gives an approximate statistical description of the.

  19. Cavity quantum electrodynamics in the Anderson-localized regime

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%.......We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....

  20. Quantum electrodynamics

    CERN Document Server

    1990-01-01

    Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor

  1. Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao

    2007-01-01

    An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.

  2. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa

    2002-01-01

    This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing

  3. Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Lodahl, Peter

    2013-01-01

    -resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multi...

  4. Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson‐localized Random Cavities

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2011-01-01

    of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum......We demonstrate that the spontaneous emission decay rate of semiconductor quantum dots can be strongly modified by the coupling to disorder-induced Anderson-localized photonic modes. We experimentally measure, by means of time-resolved photoluminescence spectroscopy, the enhancement...

  5. Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities

    DEFF Research Database (Denmark)

    Reitzenstein, S.; Schneider, C.; Albert, F.

    2011-01-01

    Semiconductor quantum dots (QDs) are fascinating nanoscopic structures for photonics and future quantum information technology. However, the random position of self-organized QDs inhibits a deterministic coupling in devices relying on cavity quantum electrodynamics (cQED) effects which complicates......, e.g., the large scale fabrication of quantum light sources. As a result, large efforts focus on the growth and the device integration of site-controlled QDs. We present the growth of low density arrays of site-controlled In(Ga)As QDs where shallow etched nanoholes act as nucleation sites...... linewidth, the oscillator strength and the quantum efficiency. A stacked growth of strain coupled SCQDs forming on wet chemically etched nanoholes provide the smallest linewidth with an average value of 210 μeV. Using time resolved photoluminescence studies on samples with a varying thickness of the capping...

  6. Correlation of Dirac potentials and atomic inversion in cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Trisetyarso, Agung

    2010-01-01

    Controlling the time evolution of the population of two states in cavity quantum electrodynamics is necessary by tuning the modified Rabi frequency in which the extra classical effect of electromagnetic field is taken into account. The theoretical explanation underlying the perturbation of potential on spatial regime of bloch sphere is by the use of Bagrov-Baldiotti-Gitman-Shamshutdinova-Darboux transformations [Bagrov et al., 'Darboux transformation for two-level system', Ann. Phys. 14, 390 (2005)] on the electromagnetic field potential in one-dimensional stationary Dirac model in which the Pauli matrices are the central parameters for controlling the collapse and revival of the Rabi oscillations. It is shown that by choosing σ 1 in the transformation generates the parabolic potential causing the total collapse of oscillations, while (σ 2 ,σ 3 ) yield the harmonic oscillator potentials ensuring the coherence of qubits.

  7. Considerable improvement of entanglement swapping by considering multiphoton transitions via cavity quantum electrodynamics method

    Science.gov (United States)

    Pakniat, R.; Soltani, M.; Tavassoly, M. K.

    2018-03-01

    Recently we studied the effect of photon addition in the initial coherent field on the entanglement swapping which causes some improvements in the process [Soltani et al., Int. J. Mod. Phys. B 31, 1750198 (2017)]. In this paper, we investigate the influence of multiphoton transitions in the atom-field interaction based on the cavity quantum electrodynamics on the entanglement swapping and show its considerable constructive effect on this process. The presented model consists of two two-level atoms namely A1 and A2 and two distinct cavity fields F1 and F2. Initially, the atoms are prepared in a maximally entangled state and the fields in the cavities are prepared in hybrid entangled state of number and coherent states, separately. Making the atom A2 to interact with the field F1 (via the generalized Jaynes-Cummings model which allows m-photon transitions between atomic levels in the emission and absorption processes) followed by their detection allows us to arrive at the entanglement swapping from the two atoms A1, A2 and the two fields F1, F2 to the atom-field A1-F2 system. Then, we pay our attention to the time evolution of success probability of detecting processes and fidelity. Also, to determine the amount of entanglement of the generated entangled state in the swapping process, the linear entropy is evaluated and the effect of parameter m concerning the multiphoton transitions on these quantities is investigated, numerically. It is observed that, by increasing the number of photons in the transition process, one may obtain considerable improvement in the relevant quantities of the entanglement swapping. In detail, the satisfactorily acceptable values 1 and 0.5 corresponding to success probability and fidelity are obtained for most of the times during observing of the above-mentioned procedure. We concluded that the presented formalism in this paper is much more advantageous than our presentation model in our earlier work mentioned above.

  8. Impact of quantum electrodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-12-01

    A review is given of recent developments in quantum electrodynamics, particularly those involving tests of muon dynamics as well as quantum electrodynamics tests. A new limit on possible muon composite structure is also given. The impact of quantum electrodynamics and its generalizations, the gauge theories, to other areas of physics, including the weak and strong interactions and the atomic spectrum of new particles. The consequences of scale invariance in hadron, atomic, and nuclear physics are reviewed. 119 references

  9. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Cimmarusti, A D; Yan, Z; Patterson, B D; Corcos, L P; Orozco, L A; Deffner, S

    2015-06-12

    We measure the quantum speed of the state evolution of the field in a weakly driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment-assisted speed-up is realized: the quantum speed of the state repopulation in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).

  10. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; Corcos, L. P.; Orozco, L. A.; Deffner, S.

    2015-01-01

    We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms)

  11. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations

    International Nuclear Information System (INIS)

    Xiao, Y-F; Gao, J; McMillan, J F; Yang, X; Wong, C W; Zou, X-B; Chen, Y-L; Han, Z-F; Guo, G-C

    2008-01-01

    In this paper, a scalable photonic crystal cavity array, in which single embedded quantum dots (QDs) are coherently interacting, is studied theoretically. Firstly, we examine the spectral character and optical delay brought about by the coupled cavities interacting with single QDs, in an optical analogue to electromagnetically induced transparency. Secondly, we then examine the usability of this coupled QD-cavity system for quantum phase gate operation and our numerical examples suggest that a two-qubit system with fidelity above 0.99 and photon loss below 0.04 is possible.

  12. Molecular quantum electrodynamics

    CERN Document Server

    Craig, D P

    1998-01-01

    This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat

  13. Bloch-wave engineering of quantum dot-micropillars for cavity quantum electrodynamics experiments

    DEFF Research Database (Denmark)

    Lermer, Matthias; Gregersen, Niels; Dunzer, Florian

    2012-01-01

    scattering loss leads to record-high visibility of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13,600 and a Rabi splitting of 85 \\mueV with an estimated visibility v of 0.38 are observed for a small mode volume MP with a diameter dc of 850 nm....

  14. No drama quantum electrodynamics?

    International Nuclear Information System (INIS)

    Akhmeteli, Andrey

    2013-01-01

    This article builds on recent work (Akhmeteli in Int. J. Quantum Inf. 9(Supp01):17, 2011; J. Math. Phys. 52:082303, 2011), providing a theory that is based on spinor electrodynamics, is described by a system of partial differential equations in 3+1 dimensions, but reproduces unitary evolution of a quantum field theory in the Fock space. To this end, after introduction of a complex four-potential of electromagnetic field, which generates the same electromagnetic fields as the initial real four-potential, the spinor field is algebraically eliminated from the equations of spinor electrodynamics. It is proven that the resulting equations for electromagnetic field describe independent evolution of the latter and can be embedded into a quantum field theory using a generalized Carleman linearization procedure. The theory provides a simple and at least reasonably realistic model, valuable for interpretation of quantum theory. The issues related to the Bell theorem are discussed. (orig.)

  15. Quantum mechanics and electrodynamics

    CERN Document Server

    Zamastil, Jaroslav

    2017-01-01

    This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book’s commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.

  16. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  17. Experimental status of quantum electrodynamics

    International Nuclear Information System (INIS)

    Drell, S.D.

    1978-10-01

    This review of the experimental status of quantum electrodynamics covers the fine structure constant, the muon g-2 value, the Lamb shift in hydrogen, the finite proton radius, progress in muonium, and positronium. 37 references

  18. Reassessment of Bohm's quantum electrodynamics

    International Nuclear Information System (INIS)

    Baumann, K.

    1986-01-01

    Bohm's interpretation of quantum theory is reexamined, with emphasis on quantum electrodynamics. Subjects of the discussion are the observability of 'hidden' variables, the applicability of Bohm's theory to spinor QED, the violation of Lorentz invariance, and variants of Bohm's theory. A formulation of causal quantum field theory in terms of distributions is also presented. (Author)

  19. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  20. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...... is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β...

  1. Quantum Hall effect in quantum electrodynamics

    International Nuclear Information System (INIS)

    Penin, Alexander A.

    2009-01-01

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted

  2. Scalar formalism for quantum electrodynamics

    International Nuclear Information System (INIS)

    Hostler, L.C.

    1985-01-01

    A set of Feynman rules, similar to the rules of scalar electrodynamics, is derived for a full quantum electrodynamics based on the relativistic Klein--Gordon--type wave equation ]Pi/sub μ/Pi/sub μ/+m 2 +ie sigma x (E +iB)]phi = 0, Pi/sub μ/ equivalent-i partial/sub μ/-eA/sub μ/, for spin- 1/2 particles [J. Math. Phys. 23, 1179 (1982); J. Math. Phys. 24, 2366 (1983)]. In this equation, phi is a 2 x 1 Pauli spinor and sigma/sub a/, a = 1,2,3, are the usual 2 x 2 Pauli spin matrices. The irreducible self-energy parts are compared to those of conventional quantum electrodynamics

  3. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  4. Spectral ansatz in quantum electrodynamics

    International Nuclear Information System (INIS)

    Atkinson, D.; Slim, H.A.

    1979-01-01

    An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented

  5. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  6. Quantum electrodynamics with compensating current

    Energy Technology Data Exchange (ETDEWEB)

    Bechler, A [Warsaw Univ. (Poland). Instytut Fizyki Teoretycznej

    1974-01-01

    A formulation of quantum electrodynamics is proposed in which all the propagators and field operators are gauge invariant. It is based on an old idea of Heisenberg and Euler which consists in the introduction of the linear integrals of potentials as arguments of the exponential functions. This method is generalized by an introduction of the so-called ''compensating currents'', which ensure local, i.e. in every point of space-time, charge conservation. The linear integral method is a particular case of that proposed in this paper. As the starting point we use quantum electrodynamics with a non-zero, small photon mass (Proca theory). It is shown that, due to the presence of the compensating current, the theory is fully renormalizable in Hilbert space with positive definite scalar product. The problem of the definition of the current operator is also briefly discussed.

  7. Compton Operator in Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Garcia, Hector Luna; Garcia, Luz Maria

    2015-01-01

    In the frame in the quantum electrodynamics exist four basic operators; the electron self-energy, vacuum polarization, vertex correction, and the Compton operator. The first three operators are very important by its relation with renormalized and Ward identity. However, the Compton operator has equal importance, but without divergence, and little attention has been given it. We have calculated the Compton operator and obtained the closed expression for it in the frame of dimensionally continuous integration and hypergeometric functions

  8. Quantum electrodynamics and light rays

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1978-11-01

    Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references

  9. Parametric resonance in quantum electrodynamics vacuum birefringence

    Science.gov (United States)

    Arza, Ariel; Elias, Ricardo Gabriel

    2018-05-01

    Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.

  10. Quantum electrodynamics with unstable vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (P.N. Lebedev Physical Inst., USSR Academy of Sciences, Moscow (USSR)); Gitman, D.M. (Moscow Inst. of Radio Engineering Electronics and Automation (USSR)); Shvartsman, Sh.M. (Tomsk State Pedagogical Inst. (USSR))

    1991-01-01

    Intense external fields destabilize vacuum inducing the creation of particle pairs. In this book the formalism of quantum electrodynamics (QED), using a special perturbation theory with matrix propagators, is systematically analyzed for such systems. The developed approach is, however, general for any quantum field with unstable vacuum. The authors propose solutions for real pair-creating fields. They discuss the general form for the causal function and many other Green's functions, as well as methods for finding them. Analogies to the optical theorem and rules for computing total probabilities are given, as are solutions for non-Abelian theories. (orig.).

  11. Physical interpretation of Monte Carlo wave-function and stochastic Schroedinger equation methods for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Kist, Tarso B.L.; Orszag, M.; Davidovich, L.

    1997-01-01

    The dynamics of open system is frequently modeled in terms of a small system S coupled to a reservoir R, the last having an infinitely larger number of degree of freedom than S. Usually the dynamics of the S variables may be of interest, which can be studied using either Langevin equations, or master equations, or yet the path integral formulation. Useful alternatives for the master equation method are the Monte Carlo Wave-function method (MCWF), and Stochastic Schroedinger Equations (SSE's). The methods MCWF and SSE's recently experienced a fast development both in their theoretical background and applications to the study of the dissipative quantum systems dynamics in quantum optics. Even though these alternatives can be shown to be formally equivalent to the master equation approach, they are often regarded as mathematical tricks, with no relation to a concrete physical evolution of the system. The advantage of using them is that one has to deal with state vectors, instead of density matrices, thus reducing the total amount of matrix elements to be calculated. In this work, we consider the possibility of giving a physical interpretation to these methods, in terms of continuous measurements made on the evolving system. We show that physical realizations of the two methods are indeed possible, for a mode of the electromagnetic field in a cavity interacting with a continuum of modes corresponding to the field outside the cavity. Two schemes are proposed, consisting of a mode of the electromagnetic field interacting with a beam of Rydberg two-level atoms. In these schemes, the field mode plays the role of a small system and the atomic beam plays the role of a reservoir (infinitely larger number of degrees of freedom at finite temperature, the interaction between them being given by the Jaynes-Cummings model

  12. The mechanism of producing energy-polarization entangled photon pairs in the cavity-quantum electrodynamics scheme

    International Nuclear Information System (INIS)

    Shu Chang-Gan; Xin Xia; Liu Yu-Min; Yu Zhong-Yuan; Yao Wen-Jie; Wang Dong-Lin; Cao Gui

    2012-01-01

    We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in the strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of the system is analysed by employing the Born—Markov master equation, through which the spectra for the system are computed as a function of various parameters. By means of this analysis the photon-reabsorption process in the strong-coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Electrodynamics of quantum spin liquids

    Science.gov (United States)

    Dressel, Martin; Pustogow, Andrej

    2018-05-01

    Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.

  14. Minimal theory of quantum electrodynamics

    International Nuclear Information System (INIS)

    Berrondo, M.; Jauregui, R.

    1986-01-01

    Within the general framework of the Lehmann-Symanzik-Zimmermann axiomatic field theory, we obtain a simple and coherent formulation of quantum electrodynamics. The definitions of the current densities fulfill the one-particle stability condition, and the commutation relations for the interacting fields are obtained rather than being postulated a priori, thus avoiding the inconsistencies which appear in the canonical formalism. This is possible due to the fact that we use the integral form of the equations of motion in order to compute the propagators and the S matrix. The resulting spectral representations automatically fulfill the correct boundary conditions thus fixing the ubiquitous quasilocal operators in a unique fashion

  15. Experimental status of quantum electrodynamics

    International Nuclear Information System (INIS)

    Drell, S.D.

    1980-01-01

    The speech of Drell S. on the symposium dedicated to 60th anniversary of Schwinger J. is presented. The fundamental status of the hero of the day in quantum field theory, which turned into quantum electrodynamics, are stated. The theory has been perfectly experimentally confirmed and now is the main model permitting to explain weak and strong interactions. The attention is paid on the difference between theoretical and experimental values of the electron anomalous magnetic moment (asub(e)) obtained in the sixth order of perturbation theory. It is necessary to carry out calculations in the octic order of the perturbation theory in order to obtain more precise value of asub(e). The theory and the experimental difference is demonstrated on the example of estimation of fine and hyperfine structure of hydrogen, muonium, and positronium

  16. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  17. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Li Pengbo; Li Fuli

    2011-01-01

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  18. Potentialities of Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-10-01

    Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.

  19. Triumphs and failures of quantum electrodynamics

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.

    1996-01-01

    Quantum electrodynamics, after more than sixty years since its discovery, still presents challenges and offers rewards to inquiring minds. This presentation describes some theoretical intricacies of this beautiful theory. (author)

  20. REDUCE in elementary particle physics. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the second part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains examples of calculations in quantum electrodynamics. 5 refs

  1. Mathematical aspects of field quantization. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1983-01-01

    Fundamental mathematical aspects of quantum field theory are discussed. A brief review of various approaches to mathematical problems of quantum electrodynamics is given, preceded by a more extensive account of the development of ideas on the mathematical nature of quantum fields in general, providing an appropriate historical context. (author)

  2. Thermodynamic potential in quantum electrodynamics

    International Nuclear Information System (INIS)

    Morley, P.D.

    1978-01-01

    The thermodynamic potential, Ω, in quantum electrodynamics (QED) is derived using the path-integral formalism. Renormalization of Ω is shown by proving the following theorem: Ω/sub B/(e/sub B/,m/sub B/,T,μ) - Ω/sub B/(e/sub B/,m/sub B/,T = 0,μ = 0) = Ω/sub R/(e/sub R/,m/sub R/,T,μ,S), where B and R refer to bare and renormalized quantities, respectively, and S is the Euclidean subtraction momentum squared. This theorem is proved explicitly to e/sub R/ 4 order and could be analogously extended to any higher order. Renormalization-group equations are derived for Ω/sub R/, and it is shown that perturbation theory in a medium is governed by effective coupling constants which are functions of the density. The behavior of the theory at high densities is governed by the Euclidean ultraviolet behavior of the theory in the vacuum

  3. Quantum classical correspondence in nonrelativistic electrodynamics

    International Nuclear Information System (INIS)

    Ritchie, B.; Weatherford, C.A.

    1999-01-01

    A form of classical electrodynamic field exists which gives exact agreement with the operator field of quantum electrodynamics (QED) for the Lamb shift of a harmonically bound point electron. Here it is pointed out that this form of classical theory, with its physically acceptable interpretation, is the result of an unconventional resolution of a mathematically ambiguous term in classical field theory. Finally, a quantum classical correspondence principle is shown to exist in the sense that the classical field and expectation value of the QED operator field are identical, if retardation is neglected in the latter

  4. Dyson-Schwinger equations in quantum electrodynamics

    International Nuclear Information System (INIS)

    Slim, H.A.

    1981-01-01

    A quantum field theory is completely determined by the knowledge of its Green functions and this thesis is concerned with the Salam and Delbourgo approximation method for the determination of the Green functions. In chapter 2 a Lorentz covariant, canonical formulation for quantum electrodynamics is described. In chapter 3 the definition of the Green functions in quantum electrodynamics is given with a derivation of the Dyson-Schwinger equations. The Ward-Takahashi identities, which are a consequence of current conservation, are derived and finally renormalization is briefly mentioned and the equations for the renormalized quantities are given. The gauge transformations, changing the gauge-parameter, a, discussed in Chapter 2 for the field operators, also have implications for the Green functions, and these are worked out in Chapter 4 for the electron propagator, which is not gauge-invariant. Before developing the main approximation, a simple, non-relativistic model is studied in Chapter 5. It has the feature of being exactly solvable in a way which closely resembles the approximation method of Chapter 6 for relativistic quantum electrodynamics. There the Dyson-Schwinger equations for the electron and photon propagator are studied. In chapter 7, the Johnson-Baker-Willey program of finite quantum electrodynamics is considered, in connection with the Ansatz of Salam and Delbourgo, and the question of a possible fixed point of the coupling constant is considered. In the last chapter, some remarks are made about how the results of the approximation scheme can be improved. (Auth.)

  5. Massless quantum electrodynamics: a variational study

    International Nuclear Information System (INIS)

    Piquini, P.C.

    1990-01-01

    The variational method was used to study the probable existence of a compound vacuum in quantum electrodynamics. An Ansatz containing a condensate of electron-positron pairs was investigated and an optimization equation for the condensate wave function found. (L.C.J.A.)

  6. Quantum-electrodynamics corrections in pionic hydrogen

    NARCIS (Netherlands)

    Schlesser, S.; Le Bigot, E. -O.; Indelicato, P.; Pachucki, K.

    2011-01-01

    We investigate all pure quantum-electrodynamics corrections to the np --> 1s, n = 2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order alpha 5. These values are needed to extract an accurate strong interaction

  7. Minimal resonator loss for circuit quantum electrodynamics

    NARCIS (Netherlands)

    Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.

    2010-01-01

    We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the

  8. Lamb Shift in Nonrelativistic Quantum Electrodynamics.

    Science.gov (United States)

    Grotch, Howard

    1981-01-01

    The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)

  9. Atomic physics tests of quantum electrodynamics

    International Nuclear Information System (INIS)

    Mohr, P.J.

    1976-08-01

    The tests of quantum electrodynamics derived from bound systems and the free electron and muon magnetic moments are reviewed. The emphasis is on the areas in which recent developments in theory or experiment have taken place. Also determinations of the fine structure constant from the Josephson effect and the fine structure of helium are discussed

  10. Bogolyubov axiomatic method in quantum electrodynamics

    International Nuclear Information System (INIS)

    Bazhanov, V.V.; Pron'ko, G.P.; Solov'ev, L.D.

    1979-01-01

    A number of problems of quantum electrodynamics are reviewed which permit an exact solution for both strong and electromagnetic interactions. The solutions have been obtained in the framework of the S-matrix method based on the Bogolyubov axiomatic approach supplemented with some axioms which make it possible to extended the field of application of the Bogolyubov approach for quantum electrodynamics. Infrared ''renormalization'' of axioms and fundamental equations of the S-matrix electrodynamics is discussed. Low-energy theorems for matrix elements of radiative operators have been obtained as solutions of fundamental equations. The low-energy theorems are used for describing the electrodynamic phenomena of soft photons. The bremsstrahlung amplitude is found. A generalized threshold theorem is formulated for the Compton scattering amplitude. The results of examining the infrared asymptotics of the charged particle Green functions, the small-angle scattering of charged particles and electromagnetic effects on heavy narrow resonance production are presented. The problems discussed show that the consequences of general principles of the relativistic quantum theory supplemented with requirements on gauge invariance are essentially nontrivial

  11. Foundations of classical and quantum electrodynamics

    CERN Document Server

    Toptygin, Igor N

    2014-01-01

    This advanced textbook covers many fundamental, traditional and new branches of electrodynamics, as well as the related fields of special relativity, quantum mechanics and quantum electrodynamics. The book introduces the material at different levels, oriented towards 3rd–4th year bachelor, master, and PhD students. This is so as to describe the whole complexity of physical phenomena. The required mathematical background is collated in Chapter 1, while the necessary physical background is included in the main text of the corresponding chapters and also given in appendices. It contains approximately 800 examples and problems, many of which are described in detail. Some of these problems are designed for students to work on their own with only the answers and descriptions of results, and may be solved selectively. Equally suitable as a reference for researchers specialized in science and engineering.

  12. Recent advances in bound state quantum electrodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1977-06-01

    Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented

  13. Ward-Takahashi identities in quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, K; Sasaki, R [Tokyo Univ. (Japan). Dept. of Physics

    1975-03-01

    The Ward-Takahashi identities are derived for connected Green's functions in quantum electrodynamics without recourse to equal-time commutation relations, field equations and the Feynman-Dyson perturbation expansions. The argument is based on the dispersion formulation of field theories and only finite expressions are used throughout this derivation. These identities are shown to be consequences of the subtraction conditions imposed upon the 2-, 3- and 4-point Green's functions.

  14. Some basic problems of quantum electrodynamics

    International Nuclear Information System (INIS)

    Steinmann, O.

    1981-01-01

    QED (= quantum electrodynamics) is often said to be one of the most successful theories, if not 'the' most successful one, that we possess in physics. That it is a theory is, however, not yet established beyond possible doubt. In this talk I report on the present state of this problem. The question is whether the computational rules of QED, which stand up so well to all practical tests, can be founded logically in a consistent, exactly formulizable, theory. (orig./HSI)

  15. Self-energy quantum electrodynamics: Multipole radiation

    International Nuclear Information System (INIS)

    Salamin, Y.I.

    1993-01-01

    Within the context of Barut's self-field approach to quantum electrodynamics, it is shown that the exact relativistic expression for the Einstein A-coefficient of atomic spontaneous emission reduces, in the long wavelength approximation, to a form containing electric- and magnetic-like multipole contributions related to the transition charge and current distributions of the relativistic electron. A number of interesting features of the expressions involved are discussed, and their generalization to interacting composite systems is also pointed out. 10 refs

  16. Quantum electrodynamics in strong external fields

    International Nuclear Information System (INIS)

    Mueller, B.; Rafelski, J.; Kirsch, J.

    1981-05-01

    We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)

  17. Investigation on regulators in quantum electrodynamics

    CERN Document Server

    Stora, Raymond Félix

    We present in this work three models which are able to suppress the divergences of approximate versions of Quantum Electrodynamics.It is indeed argued that, in view of the smallness of the fine structure constant, not only the first terms of a perturbation expansion, or of an expansion according to the number of particles involved in intermediate states, gives a fair approximattonbut furthermore, that it is in these terms that a breakdown of electrodynamics should be sought. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. The first model assumes the existence of a photon cut off, whose observable consequences are clearly stated, and of a fermion out off which, although unable to give a satisfactory ...

  18. Quantum electrodynamics of particles with arbitrary spin

    International Nuclear Information System (INIS)

    Green, H.S.

    1978-01-01

    A generalization of quantum electrodynamics is developed for particles of higher spin, with careful attention to the requirements of consistency, causality, unitarity and renormalizability. It is shown that field equations studied previously by the author are expressible in arbitrarily many different forms, which are equivalent in the absence of electromagnetic interactions, but not when electromagnetic coupling is introduced in a gauge-invariant way. A form is chosen which satisfies the requirements of casuality. It is shown how to define a particle density, which is positive-definite in the subspace spanned by solutions of the field equation, and satisifies a Lorentz-invariant conservation law. The quantization and renormalization of the resulting electrodynamics is studied, and is found to require only minor modifications of the existing theory for particles of spin 1/2

  19. Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics

    Directory of Open Access Journals (Sweden)

    Shebeko Alexander

    2016-01-01

    Full Text Available The notion of clothing in quantum field theory (QFT, put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED and quantum chromodynamics (QCD. Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR. In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3 when drawing parallels between QCD and QED.

  20. Maxwell electrodynamics subjected to quantum vacuum fluctuations

    International Nuclear Information System (INIS)

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of “white noise” fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the “ground state” energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.

  1. Quantum electrodynamics in curved space-time

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Gitman, D.M.; Fradkin, E.S.

    1981-01-01

    The lagrangian of quantum electrodynamics in curved space-time is constructed and the interaction picture taking into account the external gravitational field exactly is introduced. The transform from the Heisenberg picture to the interaction picture is carried out in a manifestly covariant way. The properties of free spinor and electromagnetic quantum fields are discussed and conditions under which initial and final creation and annihilation operators are connected by unitarity transformation are indicated. The derivation of Feynman's rules for quantum processes are calculated on the base of generalized normal product of operators. The way of reduction formula derivations is indicated and the suitable Green's functions are introduced. A generating functional for this Green's function is defined and the system of functional equations for them is obtained. The representation of different generating funcationals by means of functional integrals is introduced. Some consequences of S-matrix unitary condition are considered which leads to the generalization of the optic theorem

  2. A Process Algebra Approach to Quantum Electrodynamics

    Science.gov (United States)

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  3. Quantum Electrodynamical Shifts in Multivalent Heavy Ions.

    Science.gov (United States)

    Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A

    2016-12-16

    The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.

  4. Quantum electrodynamics with arbitrary charge on a noncommutative space

    International Nuclear Information System (INIS)

    Zhou Wanping; Long Zhengwen; Cai Shaohong

    2009-01-01

    Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)

  5. Implementing phase-covariant cloning in circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Meng-Zheng [School of Physics and Material Science, Anhui University, Hefei 230039 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230039 (China)

    2016-10-15

    An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.

  6. Radiation damping and decoherence in quantum electrodynamics

    International Nuclear Information System (INIS)

    Breuer, H.P.

    2000-01-01

    The processes of radiation damping and decoherence in quantum electrodynamics are studied from an open system's point of view. Employing functional techniques of field theory, the degrees of freedom of the radiation field are eliminated to obtain the influence phase functional which describes the reduced dynamics of the matter variables. The general theory is applied to the dynamics of a single electron in the radiation field. From a study of the wave packet dynamics a quantitative measure for the degree of decoherence, the decoherence function, is deduced. The latter is shown to describe the emergence of decoherence through the emission of bremsstrahlung caused by the relative motion of interfering wave packets. It is argued that this mechanism is the most fundamental process in quantum electrodynamics leading to the destruction of coherence, since it dominates for short times and because it is at work even in the electromagnetic field vacuum at zero temperature. It turns out that decoherence trough bremsstrahlung is very small for single electrons but extremely large for superpositions of many-particle states. (orig.)

  7. Pole-factorization theorem in quantum electrodynamics

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1996-01-01

    In quantum electrodynamics a classical part of the S-matrix is normally factored out in order to obtain a quantum remainder that can be treated perturbatively without the occurrence of infrared divergences. However, this separation, as usually performed, introduces spurious large-distance effects that produce an apparent breakdown of the important correspondence between stable particles and poles of the S-matrix, and, consequently, lead to apparent violations of the correspondence principle and to incorrect results for computations in the mesoscopic domain lying between the atomic and classical regimes. An improved computational technique is described that allows valid results to be obtained in this domain, and that leads, for the quantum remainder, in the cases studied, to a physical-region singularity structure that, as regards the most singular parts, is the same as the normal physical-region analytic structure in theories in which all particles have non-zero mass. The key innovations here are to define the classical part in coordinate space, rather than in momentum space, and to define there a separation of the photon-electron coupling into its classical and quantum parts that has the following properties: (1) The contributions from the terms containing only classical couplings can be summed to all orders to give a unitary operator that generates the coherent state that corresponds to the appropriate classical process, and (2) The quantum remainder can be rigorously shown to exhibit, as regards its most singular parts, the normal analytic structure. 22 refs

  8. δ expansion applied to quantum electrodynamics

    International Nuclear Information System (INIS)

    Bender, C.M.; Boettcher, S.; Milton, K.A.

    1992-01-01

    A recently proposed technique known as the δ expansion provides a nonperturbative treatment of a quantum field theory. The δ-expansion approach can be applied to electrodynamics in such a way that local gauge invariance is preserved. In this paper it is shown that for electrodynamic processes involving only external photon lines and no external electron lines the δ expansion is equivalent to a fermion loop expansion. That is, the coefficient of δ n in the δ expansion is precisely the sum of all n-electron-loop Feynman diagrams in a conventional weak-coupling approximation. This equivalence does not extend to processes having external electron lines. When external electron lines are present, the δ expansion is truly nonperturbative and does not have a simple interpretation as a resummation of conventional Feynman diagrams. To illustrate the nonperturbative character of the δ expansion we perform a speculative calculation of the fermion condensate in the massive Schwinger model in the limit of large coupling constant

  9. Quantum Private Comparison via Cavity QED

    International Nuclear Information System (INIS)

    Ye Tian-Yu

    2017-01-01

    The first quantum private comparison (QPC) protocol via cavity quantum electrodynamics (QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party (TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack. Particularly, it can prevent TP from knowing two users’ secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%. (paper)

  10. Higher order corrections in quantum electrodynamics

    International Nuclear Information System (INIS)

    Rafael, E.

    1977-01-01

    Theoretical contributions to high-order corrections in purely leptonic systems, such as electrons and muons, muonium (μ + e - ) and positronium (e + e - ), are reviewed to establish the validity of quantum electrodynamics (QED). Two types of QED contributions to the anomalous magnetic moments are considered, from diagrams with one fermion type lines and those witn two fermion type lines. The contributions up to eighth order are compared to the data available with a different accuracy. Good agreement is stated within the experimental errors. The experimental accuracy of the muonium hyperfine structure and of the radiative corrections to the decay of positronium are compared to the one attainable in theoretical calculations. The need for a higher precision in both experimental data and theoretical calculations is stated

  11. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  12. Does quantum electrodynamics have an arrow of time?

    NARCIS (Netherlands)

    Atkinson, David

    Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial

  13. Mixed fermion-photon condensate in strongly coupled quantum electrodynamics

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Kushnir, V.A.

    1989-01-01

    The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs

  14. Quantum electrodynamic effects for light and heavy nuclei

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    The autoionization of positrons and the problem of vacuum polarization are discussed within the framework of quantum field theory. Various possible heavy ion experiments to check on the nonlinearity of electrodynamics are described. (8 figures) (U.S.)

  15. Dimensional renormalization and comparison of renormalization schemes in quantum electrodynamics

    International Nuclear Information System (INIS)

    Coquereaux, R.

    1979-02-01

    The method of dimensional renormalization as applied to quantum electrodynamics is discussed. A general method is given which allows one to compare the various quantities like coupling constants and masses that appear in different renormalization schemes

  16. Three-dimensional quantum electrodynamics as an effective interaction

    International Nuclear Information System (INIS)

    Abdalla, E.; Carvalho Filho, F.M. de

    1995-10-01

    We obtain a Quantum Electrodynamics in 2 + 1 dimensions by applying a Kaluza-Klein type method of dimensional reduction to Quantum Electrodynamics in 3 + 1 dimensions rendering the model more realistic to application in solid-state systems, invariant under translations in one direction. We show that the model obtained leads to an effective action exhibiting an interesting phase structure and that the generated Chern-Simons term survives only in the broken phase. (author). 20 refs

  17. A Way to Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2012-04-01

    Full Text Available In conventional theoretical physics and its Standard Model the guiding principle is that the equations are symmetrical. This limitation leads to a number of difficulties, because it does not permit masses for leptons and quarks, the electron tends to “explode” un- der the action of its self-charge, a corresponding photon model has no spin, and such a model cannot account for the “needle radiation” proposed by Einstein and observed in the photoelectric e ff ect and in two-slit experiments. This paper summarizes a revised Lorentz and gauge invariant quantum electrodynamic theory based on a nonzero electric field divergence in the vacuum and characterized by linear intrinsic broken symmetry. It thus provides an alternative to the Higgs concept of nonlinear spontaneous broken sym- metry, for solving the difficulties of the Standard Model. New results are obtained, such as nonzero and finite lepton rest masses, a point-charge-like behavior of the electron due to a revised renormalization procedure, a magnetic volume force which counteracts the electrostatic eigen-force of the electron, a nonzero spin of the photon and of light beams, needle radiation, and an improved understanding of the photoelectric effect, two-slit ex- periments, electron-positron pair formation, and cork-screw-shaped light beams.

  18. Quantum electrodynamics with the spear magnetic detector

    International Nuclear Information System (INIS)

    Zipse, J.E.

    1975-09-01

    One makes a study of quantum electrodynamic processes which are present at the SPEAR colliding beam magnetic detector. We begin by describing the experiment performed by the SLAC-LBL collaboration and the results concerning the strong interaction. Then the interactions e + e - → e + e - and e + e - → μ + μ - are considered along with their third-order radiative corrections. These events, previously used to determine new limits for cutoff parameters in QED breakdown models, are further studied to show that the full distribution in coplanarity angle fits the theoretical prediction well. The major focus is on the fourth order two-photon process, e + e - → e + e - A + A - , which only recently has been realized to be significant in such experiments. Cross sections are derived and calculated exactly for this process and the results compared to a Weizacker-Williams equivalent photon calculation. The two-photon data are then isolated and fit to the calculation. A special experiment was done where the small-angle scattered electron or positron is ''tagged'' along with particles in the main detector. Cross sections and coplanarity distributions are measured and compared to calculation. Through these studies, one feels confident that one understand the nature of the two-photon process in the detector. One further explores the hadronic physics of the two-photon process, e + e - → e + e - hadrons, measuring pion cross sections, searching for resonances, and discussing future experiments

  19. Quantum electrodynamics with 1D arti cial atoms

    DEFF Research Database (Denmark)

    Javadi, Alisa

    A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... as expected from the theory. The value of g(2)(0) is around 1.08. The results con_rm the observation of an on-chip giant optical nonlinearity and the 1D atom behavior. Another direction in this thesis has been to investigate the e_ect of Anderson localization on the electrodynamics of QDs in PCWs. A large...

  20. Causal approach to (2+1)-dimensional Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Scharf, G.; Wreszinski, W.F.; Pimentel, B.M.; Tomazelli, J.L.

    1993-05-01

    It is shown that the causal approach to (2+1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (author). 12 refs

  1. Relativization of phases in quantum electrodynamics

    International Nuclear Information System (INIS)

    Lesche, B.

    1981-01-01

    The idea of relativism is applied to gauge theories in order to eliminate nonphysical degrees of freedom. Spinor electrodynamics is taken as an example to show how this program might be put into practice. (author)

  2. Resonator quantum electrodynamics on a microtrap chip

    International Nuclear Information System (INIS)

    Steinmetz, Tilo

    2008-01-01

    In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to ∼37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g 0 =2π.300 MHz respectively C 0 =210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [de

  3. Nonrelativistic quantum electrodynamic approach to photoemission theory

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Arai, Hiroko

    2005-01-01

    A new nonrelativistic many-body theory to analyze X-ray photoelectron spectroscopy (XPS) spectra has been developed on the basis of quantum electrodynamic (QED) Keldysh Green's function approach. To obtain XPS current density we calculate electron Green's function g which partly includes electron-photon interactions. We first separate longitudinal and transverse parts of these Green's functions in the Coulomb gauge. The transverse electron selfenergy describes the electron-photon interaction, whereas the longitudinal electron selfenergy describes the electron-electron interaction. We derive the QED Hedin's equation from which we obtain systematic skeleton expansion in the power series of the screened Coulomb interaction W and the photon Green's function D kl . We show the present theory provides a sound theoretical tool to study complicated many-body processes such as the electron propagation damping, intrinsic, extrinsic losses and their interference, and furthermore, resonant photoemission processes. We have also found the importance of the mixed photon Green's functions D 0k and D k0 which have been supposed to be unimportant for the XPS analyses. They, however, directly describe the radiation field screening. In this work, photon field screening effects are discussed in one-step theory, where the electron-photon interaction operator Δ is proved to be replaced by ε -1 Δ beyond linear approximation. Beyond free photon Green's function approximation, photon scatterings from the electron density are incorporated within the present QED theory. These photon field effects can directly describe the microscopic photon field spatial variation specific to near the surface region and nanoparticle systems

  4. Quantum Logic Network for Cloning a State Near a Given One Based on Cavity QED

    International Nuclear Information System (INIS)

    Da-Wei, Zhang; Xiao-Qiang, Shao; Ai-Dong, Zhu

    2008-01-01

    A quantum logic network is constructed to simulate a cloning machine which copies states near a given one. Meanwhile, a scheme for implementing this cloning network based on the technique of cavity quantum electrodynamics (QED) is presented. It is easy to implement this network of cloning machine in the framework of cavity QED and feasible in the experiment. (general)

  5. On foundational and geometric critical aspects of quantum electrodynamics

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1994-01-01

    The foundational difficulties encountered by the conventional formulation of quantum electrodynamics, and the criticism by Dirac Schwinger, Rohrlich, and others, aimed at some of the physical and mathematical premises underlying that formulation, are reviewed and discussed. The basic failings of the conventional methods of quantization of the electromagnetic field are pointed out, especially with regard to the issue of local (anti) commutativity of quantum fields as an embodiment of relativistic microcausality. A brief description is given of a recently advanced new type of approach to quantum electrodynamics, and to quantum field theory in general, which is epistemically based on intrinsically quantum ideas about the physical nature of spacetime, and is mathematically based on a fiber theoretical formulation of quantum geometries, aimed in part at removing the aforementioned difficulties and inconsistencies. It is shown that these ideas can be traced to a conceptualization of spacetime outlined by Einstein in the last edition of his well-known semipopular exposition of relativity theory. 57 refs

  6. Cavity QED experiments, entanglement and quantum measurement

    International Nuclear Information System (INIS)

    Brune, M.

    2001-01-01

    This course is devoted to the physics of entanglement in microwave CQED (cavity quantum electrodynamics) experiments. The heart of this system is a microwave photon trap, made of superconducting mirrors, which stores a few-photon field in a small volume of space for times as long as milliseconds. This field interacts with circular Rydberg atoms injected one by one into the cavity. Section 2 is devoted to the description of the strong coupling regime in Rydberg atom CQED. The tools of the experiment are briefly presented at the beginning of this section as well as the main characteristics of the strong coupling regime. We then show in section 3 how to use the strong interaction with a single photon to perform a non-destructive detection of a single photon with a single atom as a meter. In section 4, we show that the achieved QND (quantum non-demolition) measurement process corresponds to the operation of a quantum phase gate. It allows, in principle, to prepare arbitrary atom + field entangled states. Various methods will be presented for preparing entangled states such as a two atom EPR (Einstein Podolsky Rosen) pair as well as a GHZ triplet. Entanglement involving more and more complex systems will then be investigated in section 5 where the preparation of a ''Schroedinger cat state'' of the cavity field is presented. We especially address in this last section the problem of entanglement between the system and the meter which occurs during any quantum measurement process

  7. On the Emergence of the Coulomb Forces in Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Jan Naudts

    2017-01-01

    Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.

  8. Optical-lattice Hamiltonians for relativistic quantum electrodynamics

    International Nuclear Information System (INIS)

    Kapit, Eliot; Mueller, Erich

    2011-01-01

    We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.

  9. Time-dependent Kohn-Sham approach to quantum electrodynamics

    International Nuclear Information System (INIS)

    Ruggenthaler, M.; Mackenroth, F.; Bauer, D.

    2011-01-01

    We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.

  10. Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering

    NARCIS (Netherlands)

    Haeringen, W. van

    The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between

  11. Free-space quantum electrodynamics with a single Rydberg superatom

    DEFF Research Database (Denmark)

    Paris-Mandoki, Asaf; Braun, Christoph; Kumlin, Jan

    2017-01-01

    The interaction of a single photon with an individual two-level system is the textbook example of quantum electrodynamics. Achieving strong coupling in this system has so far required confinement of the light field inside resonators or waveguides. Here, we demonstrate strong coherent coupling...

  12. Dimensional regularization and infrared divergences in quantum electrodynamics

    International Nuclear Information System (INIS)

    Marculescu, S.

    1979-01-01

    Dimensional continuation was devised as a powerful regularization method for ultraviolet divergences in quantum field theories. Recently it was clear, at least for quantum electrodynamics, that such a method could be employed for factorizing out infrared divergences from the on-shell S-matrix elements. This provides a renormalization scheme on the electron mass-shell without using a gauge violating ''photon mass''. (author)

  13. Charge-field formulation of quantum electrodynamics (QEMED)

    International Nuclear Information System (INIS)

    Leiter, D.

    1980-01-01

    By expressing classical electron theory in terms of 'charge-field' functional structures, it is shown that a finite formulation of the classical electrodynamics of point charges emerges in a simple and elegant fashion. This is used to construct a 'charge-field' quantum electrodynamic theory. It is found that interacting photon states are generated as a secondary manifestation of electron-positron quantization, and do not require the usual 'free' canonical quantization scheme. The possibility is discussed that this approach may lead to a better formulation of quantum electrodynamics in the Heisenberg picture and suggests a crucial experimental test to distinguish this new 'charge-field' quantum electrodynamics 'QEMED' from the standard QED formulation. Specifically QEMED predicts that the 'Einstein principle of separability' should be found to be valid for correlated photon polarization measurements, in which the polarizers are changed more rapidly than a characteristic photon travel time. Such an experiment (Aspect 1976) can distinguish between QEMED and QED in a complete and clear-cut fashion. (U.K.)

  14. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2013-01-01

    We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods...

  15. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Elisabeth Christiane Maria

    2013-05-29

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work

  16. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    International Nuclear Information System (INIS)

    Hoffmann, Elisabeth Christiane Maria

    2013-01-01

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work presents the theoretical background, the fabrication techniques and

  17. Massive lepton pair production in massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Raychaudhuri, P.

    1976-01-01

    The pp → l + +l - +x inclusive interaction has been studied at high energies in terms of the massive quantum electrodynamics. The differential cross-section (dsigma/dQ 2 ) is derived and proves to be proportional to Q -4 , where Q-mass of the lepton pair. Basic features of the cross-section are demonstrated to be consistent with the Drell-Yan model

  18. Logarithmic of mass singularities theorem in non massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Mares G, R.; Luna, H.

    1997-01-01

    We give an explicit example of the use of dimensional regularization to calculate in a unified approach, all the ultraviolet, infrared and mass singularities, by considering the LMS (logarithms of mass singularities) theorem in the frame of massless QED (Quantum electrodynamics). In the calculation of the divergent part of the cross section, all singularities are found to cancel provided soft and hard photon emission are both taken into account. (Author)

  19. Quantum electrodynamics and light rays. [Two-point correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.

    1978-11-01

    Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references.

  20. Fixed point structure of quenched, planar quantum electrodynamics

    International Nuclear Information System (INIS)

    Love, S.T.

    1986-07-01

    Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo-Nambu-Boldstone boson of spontaneously broken scale invariance. The relation between scale and chiral symmetry breaking is studied analytically in quenched, planar quantum electrodynamics in four dimensions. The model possesses a novel nonperturbative ultraviolet fixed point governing its strong coupling phase which requires the mixing of four fermion operators. 12 refs

  1. Progress in quantum electrodynamics theory of highly charged ions

    OpenAIRE

    Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.

    2013-01-01

    Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...

  2. On the renormalization group equations of quantum electrodynamics

    International Nuclear Information System (INIS)

    Hirayama, Minoru

    1980-01-01

    The renormalization group equations of quantum electrodynamics are discussed. The solution of the Gell-Mann-Low equation is presented in a convenient form. The interrelation between the Nishijima-Tomozawa equation and the Gell-Mann-Low equation is clarified. The reciprocal effective charge, so to speak, turns out to play an important role to discuss renormalization group equations. Arguments are given that the reciprocal effective charge vanishes as the renormalization momentum tends to infinity. (author)

  3. Problems of quantum electrodynamics with external field creating pairs

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.

    1979-11-01

    This paper is a preliminary version of a review of the results obtained by the authors and their collaborators which mainly concern problems of quantum electrodynamics with the pair-creating external field. In this paper the Furry picture is constructed for quantum electrodynamics with the pair-creating external field. It is shown, that various Green functions in the external field arise in the theory in a natural way. Special features of usage of the unitarity conditions for calculating the total probabilities of transitions are discussed. Perturbation theory for determining the mean electromagnetic field is constructed. Effective Lagrangians for pair-creating fields are built. One of the possible ways to introduce external field in quantum electrodynamics is considered. All the Green functions arising in the theory suggested are calculated for a constant field and a plane wave field. For the case of the electric field the total probability of creation of pairs from the vacuum accompanied by the photon irradiation and the total probability of transition from a single-electron state accompanied by the photon irradiation and creation of pairs are obtained by using the formulated rules for calculating the total probabilities of transitions. (author)

  4. Tunable single quantum dot nanocavities for cavity QED experiments

    International Nuclear Information System (INIS)

    Kaniber, M; Laucht, A; Neumann, A; Bichler, M; Amann, M-C; Finley, J J

    2008-01-01

    We present cavity quantum electrodynamics experiments performed on single quantum dots embedded in two-dimensional photonic crystal nanocavities. We begin by describing the structural and optical properties of the quantum dot sample and the photonic crystal nanocavities and compare the experimental results with three-dimensional calculations of the photonic properties. The influence of the tailored photonic environment on the quantum dot spontaneous emission dynamics is studied using spectrally and spatially dependent time-resolved spectroscopy. In ensemble and single dot measurements we show that the photonic crystals strongly enhance the photon extraction efficiency and, therefore, are a promising concept for realizing efficient single-photon sources. Furthermore, we demonstrate single-photon emission from an individual quantum dot that is spectrally detuned from the cavity mode. The need for controlling the spectral dot-cavity detuning is discussed on the basis of shifting either the quantum dot emission via temperature tuning or the cavity mode emission via a thin film deposition technique. Finally, we discuss the recently discovered non-resonant coupling mechanism between quantum dot emission and cavity mode for large detunings which drastically lowers the purity of single-photon emission from dots that are spectrally coupled to nanocavity modes.

  5. Multi-qubit circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Viehmann, Oliver

    2013-01-01

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  6. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  7. Implementing quantum information splitting using a five-partite cluster state in cavity QED

    International Nuclear Information System (INIS)

    Ye Liu; Song Qingmin; Li Aixia

    2010-01-01

    We propose an explicit scheme for splitting up quantum information into parts using five-atom cluster states in cavity quantum electrodynamics (QED). It is found that the quantum information splitting of an arbitrary two-atomic state can be realized by using the five-atom cluster state. During the process, the cavity fields are excited only virtually. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized using a range of current cavity QED techniques. The schemes considered here are also secure against certain eavesdropping attacks.

  8. Methods for accurate calculations in high-energy quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, K. E. [Institute of Theoretical Physics, Uppsala (Sweden)

    1963-01-15

    In this paper ''quantum electrodynamics'' (QED) will be used in the sense of a closed theory of point-like photons and electrons. Muons could then easily be included. We make the usual assumption that the perturbation expansion of renormalized QED gives at least an asymptotic expression of the exact theory, i.e. that the sum over a few terms in the beginning of the perturbation series is a good approximation of the exact theory. We expect QED in this sense to break down at small distances, i. e. at large momentum transfers, because of structure effects resulting from other kinds of interaction, primarily the interactions of the electromagnetic field with the current of strongly interacting particles. This will first show up as vacuum polarization through mesons. On the other hand we have no reason to believe that the fundamental theory of electrodynamics, i.e. the theory of a massless vector field interacting with a.conserved current, will break down.

  9. Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I.

    2017-05-01

    Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.

  10. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED, the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  11. Modified Maxwell equations in quantum electrodynamics

    CERN Document Server

    Harmuth, Henning F; Meffert, Beate

    2001-01-01

    Divergencies in quantum field theory referred to as "infinite zero-point energy" have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy. In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations. T

  12. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    Science.gov (United States)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  13. On conformal invariance in gauge theories. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1983-01-01

    In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite

  14. On a gauge invariant subtraction scheme for massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Abdalla, E.; Gomes, M.; Koeberle, R.

    A momentum-space subtraction scheme for massive quantum electrodynamics is proposed which respects gauge invariance, in contrast to ordinary normal product techniques. As a consequence the dependence of Green functions on the ghost mass becomes very simple and formally gauge invariant normal products of degree up to four, when subtracted according to the proposed scheme, are automatically gauge invariant. As an aplication we discuss the proof of the Adler-Bardeen theorem. Zero mass limits can be taken for Green function after the integration over intermediate states has been carried out [pt

  15. Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics

    International Nuclear Information System (INIS)

    Heckathorn, D.

    1979-01-01

    Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)

  16. Lamb shift in quantum electrodynamics (semiclassical theory)

    International Nuclear Information System (INIS)

    Blaive, B.; Boudet, R.

    1989-01-01

    This paper aims to bring some arguments to the proof of the Barut and Van Huele formula, which gives the Lamb shift in the semi-classical theory model: by shortening the calculation owing to the use of a decomposition of the self-potential of the electron; by eliminating the appeal to a divergent series; by bringing justifications and clarifications on some important points of the proof. The effective calculation of the coefficients of the formula is achieved for some of them, and the general analytical form of these coefficients is explicited. It is also proved that the B. and V.H. formula must give results at least as close to the experiment as those of the Bethe formula, which is obtained in Quantum Theory of Fields. Finally one shows that the B. and V.H. formula provides a justification de facto for the cut-off which is used for associating finite numbers to the divergent integrals of the Bethe formula [fr

  17. Structure of the vertex function in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    1975-01-01

    We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap

  18. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J.W.

    2006-12-15

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  19. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    International Nuclear Information System (INIS)

    Zahn, J.W.

    2006-12-01

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ 3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  20. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    Science.gov (United States)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  1. Towards measuring quantum electrodynamic torque with a levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang

    2017-04-01

    According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.

  2. Infra-red finiteness in quantum electro-dynamics

    International Nuclear Information System (INIS)

    Kawai, Takahiro

    1984-01-01

    The authors report some mathematical aspects of a recent solution of the infra-red catastrophe in quantum electro-dynamics. A principal result is that the coordinate space Feynman function can be separated into two factors the first of which is a unitary operator in photon space representing the classical electro-magnetic contribution to the amplitude, and the second of which is a residual factor representing the quantum fluctuation about the classical contribution. The main objectives were to verify: (i) the residual factor is free of infra-red divergences, and (ii) the dominant part of the singularity of the residual factor on the positive-α Landau surface has the same analytic form as it would have if the photons were massive. (Auth.)

  3. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    OpenAIRE

    Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.

    2015-01-01

    Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...

  4. Multi-qubit parity measurement in circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    DiVincenzo, David P; Solgun, Firat

    2013-01-01

    We present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single-photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure. (paper)

  5. Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system

    NARCIS (Netherlands)

    Johne, R.; Schutjens, H.A.W.; Fattahpoor, S.; Jin, C.; Fiore, A.

    2015-01-01

    We propose a scheme for the ultrafast control of the emitter-field coupling rate in cavity quantum electrodynamics. This is achieved by the control of the vacuum field seen by the emitter through a modulation of the optical modes in a coupled-cavity structure. The scheme allows the on-off switching

  6. Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory

    International Nuclear Information System (INIS)

    Ito, K.R.

    1976-01-01

    We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)

  7. Multipartite quantum correlations among atoms in QED cavities

    Science.gov (United States)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  8. The new topological sectors associated with quantum electrodynamics

    International Nuclear Information System (INIS)

    Marino, E.C.

    1994-01-01

    A formulation of Quantum Electrodynamics in terms of an antisymmetric-tensor gauge field is presented. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator can be interpreted as coherent states of photons. The new states do interact with the charged states of QCD in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary for the experimental observation of them. The order of magnitude of the intensity threshold is presented. (author). 2 refs

  9. Axiomatic field theory and quantum electrodynamics: the massive case

    International Nuclear Information System (INIS)

    Steinmann, O.

    1975-01-01

    Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(μν) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(μ); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(μν) with the current Jsub(μ). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(μ) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely

  10. Higgs-Like Particle due to Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-07-01

    Full Text Available A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass can be deduced from an earlier elaborated revised quantum electrodynamical theory which is based on linear symmetry breaking through a nonzero electric field divergence in the vacuum state. This special particle is obtained from a composite longitudinal solution based on a zero magnetic field strength and on a nonzero divergence but a vanishing curl of the electric field strength. The present theory further differs from that of the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles obtain their masses through an interaction with the Higgs field. An experimental proof of the basic features of a Higgs-like particle thus supports the present theory, but does not for certain confirm the process which would generate massive particles through a Higgs field

  11. Fundamental length, bubble electrons and non-local quantum electrodynamics

    International Nuclear Information System (INIS)

    Hsu, J.P.; Mac, E.

    1977-06-01

    Based on the concept of a bubble electron and the approach of Pais and Uhlenbeck, one constructs a finite quantum electrodynamics which is relativistically invariant, macro-causal and unitary. In this model, fields and their interaction are local, but the action function of free fields is nonlocal. The propagators are modified so that a fundamental length L is naturally introduced to physics. The modified static potential is given by V(r) = e/r for r greater than L and V(r) = 0 for r less than L, which is produced by the bubble source r -1 ddelta(r-L)/dr rather than a point source. It is found that L less than 4 x 10 -15 cm. Experimental consequences and modifications of strict causality at short distances, vertical bars 2 vertical bar approximately L 2 , are discussed

  12. Applications of the infinite momentum method to quantum electrodynamics and bound state problem

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1973-01-01

    It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics

  13. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    International Nuclear Information System (INIS)

    Qian Yi; Xu Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined. (general)

  14. Use of the classical approximation in quantum electrodynamics

    International Nuclear Information System (INIS)

    Brezin, Edouard

    1970-01-01

    Approximations commonly used in the study of the classical limit of quantum mechanics are applied, with justification, to quantum electrodynamics. First, the infrared divergence in the scattering of two charged particles is examined with the help of a remarkable series of Feynman diagrams, which in particular preserves gauge invariance and a correct static limit. Looking for the poles in energy of the scattering amplitude, a formula for the binding energies of two charged particles, which generalizes the Balmer formula and takes into account the correct relativistic kinematics, has been derived. A second type of applications concerns phenomena due to the interaction of the electromagnetic field with the vacuum current and charge fluctuations. For instance, when the intensities become very high, the theory predicts the creation of electron-positron pairs by the field. The creation rate is known in the limit of static fields, and the aim of these calculations was to demonstrate the role of frequency in the domain starting from the lowest frequencies up to X-rays. The pair production rate was found to be entirely negligible, even for the most intense laser beams. An increase in frequency, even up to several tens of keV, did not have any effect on the pair production. (author) [fr

  15. Scale covariant physics: a 'quantum deformation' of classical electrodynamics

    International Nuclear Information System (INIS)

    Knoll, Yehonatan; Yavneh, Irad

    2010-01-01

    We present a deformation of classical electrodynamics, continuously depending on a 'quantum parameter', featuring manifest gauge, Poincare and scale covariance. The theory, dubbed extended charge dynamics (ECD), associates a certain length scale with each charge which, due to scale covariance, is an attribute of a solution, not a parameter of the theory. When the EM field experienced by an ECD charge is slowly varying over that length scale, the dynamics of the charge reduces to classical dynamics, its emitted radiation reduces to the familiar Lienard-Wiechert potential and the above length scale is identified as the charge's Compton length. It is conjectured that quantum mechanics describes statistical aspects of ensembles of ECD solutions, much like classical thermodynamics describes statistical aspects of ensembles of classical solutions. A unique 'remote sensing' feature of ECD, supporting that conjecture, is presented, along with an explanation for the illusion of a photon within a classical treatment of the EM field. Finally, a novel conservation law associated with the scale covariance of ECD is derived, indicating that the scale of a solution may 'drift' with time at a constant rate, much like translation covariance implies a uniform drift of the (average) position.

  16. Quantum networks based on cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2014-07-01

    Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.

  17. Quantum gravitational contributions to the beta function of quantum electrodynamics

    International Nuclear Information System (INIS)

    Felipe, Jean Carlos Coelho; Brito, Luis Cleber Tavares de; Nemes, Maria Carolina; Sampaio, Marcos

    2011-01-01

    Full text: Because of the negative mass dimension of the coupling constant perturbative Einstein quantum gravity (EQG) is nonrenormalizable. However, one can still make sense of EQG if it's interpreted as an effective field theory within a low energy expansion of a more fundamental theory. In an effective field theory all interactions compatible with its essential symmetry content are in principle allowed into the Lagrangian and thus it establishes a systematic framework to calculate quantum gravitational effects. This approach has been used to study the asymptotic behavior at high energies of quantum field theories that incorporate the gravitational field. Some studies analyze the asymptotic freedom for the coupling constants of some theories including gravitation near the Planck scale. For example, Robinson and Wilczek suggest that the gravitational field improve the asymptotic freedom of pure Yang-Mills near the Planck scale. Already , a similar calculation in the Maxwell-Einstein theory suggest that such conclusion is gauge dependence. This result was obtained by Pietrykowski. D. Toms say what the effective action is calculated in a gauge-condition independent version of the background field method using dimensional regularization it's argued that the gravitational field plays no role in the beta function of the Yang-Mills coupling. Another calculation done by Ebert, Plefka and Rodigast using conventional diagrammatic methods confirms the result obtained by Toms. In a recent publication, again published by Toms in 2010, claimed that quadratic divergent contributions were responsible to improve asymptotic freedom of fine structure constant by quantum gravity effects by using proper time cutoff regularization and effective action methods. However, the physical reality of the result in Tom's was questioned in recent work. This purpose of this work is to shed light on the origin of such controversies using only a diagrammatic analysis. As an effective model EQG is

  18. The quantum Hall's effect: A quantum electrodynamic phenomenon

    International Nuclear Information System (INIS)

    Arbab, A. I.

    2012-01-01

    We have applied Maxwell's equations to study the physics of quantum Hall's effect. The electromagnetic properties of this system are obtained. The Hall's voltage, V H = 2πħ 2 n s /em, where n s is the electron number density, for a 2-dimensional system, and h = 2πħ is the Planck's constant, is found to coincide with the voltage drop across the quantum capacitor. Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance. Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached. At a fundamental level, the Hall's effect is found to be equivalent to a resonant LCR circuit with L H = 2π m/e 2 n s and C H = me 2 /2πħ 2 n s satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time, τ s . The Hall's resistance is found to be R H = √L H /C H . The Hall's resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimensional gas. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Nonlinear quantum electrodynamic and electroweak processes in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian

    2015-06-24

    Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.

  20. Quantum iSWAP gate in optical cavities with a cyclic three-level system

    Science.gov (United States)

    Yan, Guo-an; Qiao, Hao-xue; Lu, Hua

    2018-04-01

    In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level Δ -type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.

  1. Run-away electrons in relativistic spin (1) /(2) quantum electrodynamics

    International Nuclear Information System (INIS)

    Low, F.E.

    1998-01-01

    The existence of run-away solutions in classical and non-relativistic quantum electrodynamics is reviewed. It is shown that the less singular high energy behavior of relativistic spin (1) /(2) quantum electrodynamics precludes an analogous behavior in that theory. However, a Landau-like anomalous pole in the photon propagation function or in the electron-massive photon forward scattering amplitude would generate a new run-away, characterized by an energy scale ω∼m e thinspexp(1/α). This contrasts with the energy scale ω∼m e /α associated with the classical and non-relativistic quantum run-aways. copyright 1998 Academic Press, Inc

  2. Generating functional of the mean field in quantum electrodynamics with non-stable vacuum

    International Nuclear Information System (INIS)

    Gitman, D.M.; Kuchin, V.A.

    1981-01-01

    Generating functional for calculating a mean field, in the case of unstable vacuum, in quantum field theory has been suggested. Continual representation for the generating functional of the mean field has been found in the case of quantum electrodynamics with an external field. Generating electron-positron pairs from vacuum [ru

  3. Quantum-electrodynamic influences on the lifetime of metastable states

    International Nuclear Information System (INIS)

    Brenner, G.

    2007-01-01

    High-precision lifetime measurements of the metastable 1s 2 2s 2 2p 2 P 0 3/2 level in boronlike Ar XIV and the 3s 2 2p 2 P 0 3/2 level in aluminumlike Fe XIV were performed at the Heidelberg electron beam ion trap (HD-EBIT). The lifetimes were inferred by monitoring their optical decay curves resulting from the magnetic dipole (M1) transition 1s 2 2s 2 2p 2 P 0 3/2 - 2 P 0 1/2 and 3s 2 3p 2 P 0 3/2 - 2 P 0 1/2 to the ground state configuration with transition wavelengths of 441.256 nm and 530.29 nm, respectively. Possible systematic error sources were investigated by studying the dependence of the decay times of the curves on various trapping conditions with high statistical significance. A new trapping scheme for lifetime measurements at an EBIT has been applied and allowed to reach an unprecedented precision in the realm of lifetime determinations on highly charged ions. The results of 9.573(4)( +12 -5 ) ms (stat)(syst) for Ar XIV and 16.726(10)(+17) ms (stat)(syst) for Fe XIV with a relative accuracy of 0.14% and 0.13%, respectively, make these measurements for the first time sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM). The results, improving the accuracy of previous measurements by factors of 10 and 6, respectively, show a clear discrepancy of about 3σ and 4σ to the trend of existing theoretical models, which in almost all cases predict a shorter lifetime, when adjusted for the EAMM. The obvious disagreement between experimental results and the predictions points at the incompleteness of the theoretical models used. (orig.)

  4. Higher order energy transfer. Quantum electrodynamical calculations and graphical representation

    International Nuclear Information System (INIS)

    Jenkins, R.D.

    2000-01-01

    In Chapter 1, a novel method of calculating quantum electrodynamic amplitudes is formulated using combinatorial theory. This technique is used throughout instead of conventional time-ordered methods. A variety of hyperspaces are discussed to highlight isomorphism between a number of A generalisation of Pascal's triangle is shown to be beneficial in determining the form of hyperspace graphs. Chapter 2 describes laser assisted resonance energy transfer (LARET), a higher order perturbative contribution to the well-known process resonance energy transfer, accommodating an off resonance auxiliary laser field to stimulate the migration. Interest focuses on energy exchanges between two uncorrelated molecular species, as in a system where molecules are randomly oriented. Both phase-weighted and standard isotropic averaging are required for the calculations. Results are discussed in terms of a laser intensity-dependent mechanism. Identifying the applied field regime where LARET should prove experimentally significant, transfer rate increases of up to 30% are predicted. General results for three-center energy transfer are elucidated in chapter 3. Cooperative and accretive mechanistic pathways are identified with theory formulated to elicit their role in a variety of energy transfer phenomena and their relative dominance. In multichromophoric the interplay of such factors is analysed with regard to molecular architectures. The alignments and magnitudes of donor and acceptor transition moments and polarisabilities prove to have profound effects on achievable pooling efficiency for linear configurations. Also optimum configurations are offered. In ionic lattices, although both mechanisms play significant roles in pooling and cutting processes, only the accretive is responsible for sensitisation. The local, microscopic level results are used to gauge the lattice response, encompassing concentration and structural effects. (author)

  5. Phenomenology of the vacuum in quantum electrodynamics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Doebrich, Babette

    2011-09-30

    Determining forces that arise by the restriction of the fluctuation modes of the vacuum by the insertion of boundaries or the observation of altered light propagation in external fields is a versatile means to investigate the vacuum structure of quantum electrodynamics. For these quantum vacuum probes, the vacuum can be understood and effectively modeled as a medium. Investigating the properties of this medium cannot only test and broaden our understanding of known interactions but can also be a valuable tool in the search for particles at low energy scales which arise in extensions of the standard model. In this thesis, we first study the geometry dependence of fluctuation modes in the Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. To this end we employ a technique which is fully nonperturbative in the height profile. We parameterize the differences to the distance dependencies in the planar limit in terms of an anomalous dimension quantifying the power-law deviation from the planar case. In numerical studies of experimentally relevant corrugations, we identify a universal regime of the anomalous dimension at larger distances. We argue that this universality arises as the relevant fluctuations average over corrugation structures smaller than the atom-wall distance. Turning to modified light propagation as a probe of the quantum vacuum, we show that a combination of strong, pulsed magnets and gravitational-wave interferometers can not only facilitate the detection of strong-field QED phenomena, but also significantly enlarges the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed magnets as a suitable strong-field source to induce quantum nonlinearities, since their pulse frequency can be perfectly matched with the domain of highest sensitivity of modern gravitational-wave interferometers. Pushing current laboratory field-strengths to their limits, we suggest a

  6. Phenomenology of the vacuum in quantum electrodynamics and beyond

    International Nuclear Information System (INIS)

    Doebrich, Babette

    2011-01-01

    Determining forces that arise by the restriction of the fluctuation modes of the vacuum by the insertion of boundaries or the observation of altered light propagation in external fields is a versatile means to investigate the vacuum structure of quantum electrodynamics. For these quantum vacuum probes, the vacuum can be understood and effectively modeled as a medium. Investigating the properties of this medium cannot only test and broaden our understanding of known interactions but can also be a valuable tool in the search for particles at low energy scales which arise in extensions of the standard model. In this thesis, we first study the geometry dependence of fluctuation modes in the Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. To this end we employ a technique which is fully nonperturbative in the height profile. We parameterize the differences to the distance dependencies in the planar limit in terms of an anomalous dimension quantifying the power-law deviation from the planar case. In numerical studies of experimentally relevant corrugations, we identify a universal regime of the anomalous dimension at larger distances. We argue that this universality arises as the relevant fluctuations average over corrugation structures smaller than the atom-wall distance. Turning to modified light propagation as a probe of the quantum vacuum, we show that a combination of strong, pulsed magnets and gravitational-wave interferometers can not only facilitate the detection of strong-field QED phenomena, but also significantly enlarges the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed magnets as a suitable strong-field source to induce quantum nonlinearities, since their pulse frequency can be perfectly matched with the domain of highest sensitivity of modern gravitational-wave interferometers. Pushing current laboratory field-strengths to their limits, we suggest a

  7. Atoms and cavities: Explorations of quantum entanglement

    International Nuclear Information System (INIS)

    Raimond, J. M.; Hagley, E.; Maitre, X.; Nogues, G.; Wunderlich, C.; Brune, M.; Haroche, S.

    1999-01-01

    The interaction of circular Rydberg atoms with a high-quality microwave cavity makes it possible to realize complex quantum state manipulations. The state of an atom can be 'copied' onto the cavity. Reversing this operation at a later time with a second atom, we realize an elementary 'quantum memory' holding an atomic quantum coherence for a while in a cavity mode. We have also generated two-atom entangled states of the Einstein-Podolsky-Rosen type. At variance with previous experiments, this one implies massive particles in a completely controlled process. These entanglement manipulations can be generalized to more complex or to mesoscopic systems and open the way to new tests of fundamental aspects of the quantum world

  8. A derivation of the classical limit of quantum mechanics and quantum electrodynamics

    International Nuclear Information System (INIS)

    Ajanapon, P.

    1985-01-01

    Instead of regarding the classical limit as the h → 0, an alternative view based on the physical interpretation of the elements of the density matrix is proposed. According to this alternative view, taking the classical limit corresponds to taking the diagonal elements and ignoring the off-diagonal elements of the density matrix. As illustrations of this alternative approach, the classical limits of quantum mechanics and quantum electrodynamics are derived. The derivation is carried out in two stages. First, the statistical classical limit is derived. Then with an appropriate initial condition, the deterministic classical limit is obtained. In the case of quantum mechanics, it is found that the classical limit of Schroedinger's wave mechanics is at best statistical, i.e., Schroedinger's wave mechanics does not reduce to deterministic (Hamilton's or Newton's) classical mechanics. In order to obtain the latter, it is necessary to start out initially with a mixture at the level of statistical quantum mechanics. The derivation hinges on the use of the Feynman path integral rigorously defined with the aid of nonstandard analysis. Nonstandard analysis is also applied to extend the method to the case of quantum electrodynamics. The fundamental decoupling problem arising form the use of Grassmann variables is circumvented by the use of c-number electron fields, but antisymmetrically tagged. The basic classical (deterministic) field equations are obtained in the classical limit with appropriate initial conditions. The result raises the question as to what the corresponding classical field equations obtained in the classical limit from the renormalized Lagrangian containing infinite counterterms really mean

  9. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities

    International Nuclear Information System (INIS)

    Zhang Ke; Li Zhiyuan

    2010-01-01

    In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.

  10. On the New Symmetries in Electrodynamics and Quantum Theory

    OpenAIRE

    Kotel'nikov, G. A.

    2004-01-01

    The generalized definition of symmetry is formulated. Application of this definition for symmetric analysis of theoretical physics equations is considered. The version of electrodynamics is constructed permitting the faster-than-light motions of particles with real masses. Some elements of physical interpretation of the proposed theory are presented.

  11. Yang--Mills gauge theories and Baker--Johnson quantum electrodynamics

    International Nuclear Information System (INIS)

    Lemmon, J.; Mahanthappa, K.T.

    1976-01-01

    We show that the physical mass of a fermion in a symmetric asymptotically free non-Abelian vector gauge theory is dynamical in origin. We comment on the close analogy that exists between such a theory and the Baker--Johnson finite quantum electrodynamics. Comments are also made when there is spontaneous symmetry breaking

  12. The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics

    DEFF Research Database (Denmark)

    Sok, Jérémy Vithya

    2016-01-01

    The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence...

  13. Quasi-potential approach to the problem of bound states in quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rizov, V A; Todorov, I T [Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1975-07-01

    The paper reviews two types of quasipotential equations. An equation with a non-local potential is derived from the equations of motion of quantum electrodynamics. It is also related to a Bethe-Salpeter type of equation for the retarded Green function. Most of the paper is devoted to a systematic study of a local version of the Logunov-Tavkhelidze quasipotential approach.

  14. Infrared phenomena in quantum electrodynamics : I. The physical one-electron states in the infrared region

    NARCIS (Netherlands)

    Haeringen, W. van

    In view of remaining obscurities and difficulties in existing treatments of the infrared divergences in quantum electrodynamics this problem has been considered anew. The approximate model introduced in 1937 by Bloch and Nordsieck is rediscussed. It is explicitly shown to be a good substitute for

  15. New anomaly: nonvanishing interaction of longitudinal real photons in massless quantum electrodynamics

    International Nuclear Information System (INIS)

    Gorskij, A.S.; Ioffe, B.L.; Khodzhamiryan, A.Yu.

    1989-01-01

    It is shown that in massless electrodynamics (when the electron mass is strictly zero) the cross section of longitudinal photon interaction on mass shell is nonvanishing. The reasons of appearance of this effects and its possible consequences as well as analogous effects in other quantum field theories (especially non-Abelian gauge theories) are discussed. 7 refs.; 2 figs

  16. The classical electromagnetic theory which corresponds to the two dimensions quantum electrodynamics with massless fermions

    International Nuclear Information System (INIS)

    Galvao, C.A.P.; Mignaco, J.A.

    1994-01-01

    The classical electromagnetic theory is analysed which corresponds to the two-dimensional quantum electrodynamics with massless spinor fields (Schwinger model). The chiral anomaly is introduced as a currents property, which in the two-dimensional spinor fields are duality related. It is also shown that the resulting classical theory is consistent. (author). 5 refs

  17. Processes of arbitrary order in quantum electrodynamics with a pair-creating external field

    International Nuclear Information System (INIS)

    Gitman, D.M.

    1977-01-01

    Dyson's perturbation theory analogue for quantum electrodynamical processes with arbitrary initial and final states in an external field creating pairs is discussed. The interaction with the field is taken into account exactly. The possibility of using Feynman diagrams, together with modified correspondence rules, for the representation of the above mentioned processes is demonstrated. (author)

  18. Mode expansions in the quantum electrodynamics of photonic media with disorder

    DEFF Research Database (Denmark)

    Wubs, Martijn; Mortensen, N. Asger

    2012-01-01

    We address two issues in the quantum electrodynamical description of photonic media with some disorder, neglecting material dispersion. When choosing a gauge in which the static potential vanishes, the normal modes of the medium with disorder satisfy another transversality condition than the modes......, we find the gauge transformation that makes the static potential zero, thereby generalizing work by Glauber and Lewenstein [Phys. Rev. A 43, 467 (1991)]. Our results are relevant for the quantum optics of disordered photonic crystals....

  19. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    NARCIS (Netherlands)

    Vos, Willem L.; Woldering, L.A.; Ghulinyan, M.; Pavesi, L.

    2015-01-01

    This paper is Chapter 8 of the book "Light Localisation and Lasing: Random and Pseudorandom Photonic Structures", edited by Mher Ghulinyan and Lorenzo Pavesi (Cambridge University Press, Cambridge, 2015). It provides an overview of much recent work on 3D photonic crystals with a complete photonic

  20. Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R. [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Odintsov, S.D. [Consejo Superior de Investigaciones Científicas, ICE/CSIC-IEEC, Campus UAB, Facultat de Ciències, Torre C5-Parell-2a pl, E-08193 Bellaterra, Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Tomsk State Pedagogical University, 634050 Tomsk (Russian Federation); Tomsk State University of Control Systems and Radioelectronics (TUSUR) 634050 Tomsk (Russian Federation); Sebastiani, L., E-mail: lorenzo.sebastiani@unitn.it [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2016-06-15

    We study inflation for a quantum scalar electrodynamics model in curved space–time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.

  1. Classical and quantum electrodynamics and the B(3) field

    CERN Document Server

    Evans, Myron W

    2001-01-01

    It is well known that classical electrodynamics is riddled with internal inconsistencies springing from the fact that it is a linear, Abelian theory in which the potentials are unphysical. This volume offers a self-consistent hypothesis which removes some of these problems, as well as builds a framework on which linear and nonlinear optics are treated as a non-Abelian gauge field theory based on the emergence of the fundamental magnetizing field of radiation, the B(3) field. Contents: Interaction of Electromagnetic Radiation with One Fermion; The Field Equations of Classical O (3) b Electrodyn

  2. Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    D. Ballester

    2012-05-01

    Full Text Available We propose a method to get experimental access to the physics of the ultrastrong- and deep-strong-coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED technology, and can be easily extended to general cavity-QED setups. We provide examples of ultrastrong- and deep-strong-coupling quantum effects that would be otherwise inaccessible.

  3. Superadiabatic holonomic quantum computation in cavity QED

    Science.gov (United States)

    Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding

    2017-06-01

    Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.

  4. Mathematica® for Theoretical Physics Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    CERN Document Server

    Baumann, Gerd

    2005-01-01

    Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...

  5. Tunable coupling and ultrastrong interaction in circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Baust, Alexander Theodor

    2015-01-01

    For future quantum information and quantum simulation architectures with superconducting circuits, a profound understanding of the coupling mechanisms between the individual building blocks is essential. In our work, we investigate galvanically coupled qubit-resonator systems, demonstrate the phenomenon of ultrastrong coupling and realize qubit mediated tunable and switchable coupling between two frequency-degenerate coplanar microwave resonators.

  6. Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field. [Perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik

    1975-01-01

    Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.

  7. Bound states in the two-dimension massive quantum electrodynamics (Qed2)

    International Nuclear Information System (INIS)

    Alves, V.S.; Gomes, M.

    1994-01-01

    This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated

  8. Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Sanchez Madrigal, S; Raya, A; Hofmann, C P

    2011-01-01

    We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.

  9. Quantum electrodynamics within the framework of a new 4-dimensional symmetry

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1977-06-01

    Quantum electrodynamics is discussed within the framework of a new 4-dimensional symmetry in which the concept of time, the propagation of light and the transformation property of many physical quantities are drastically different from those in special relativity. However, they are consistent with experiments. The new framework allows for natural developments of additional concepts. A possible and crucial experimental test of the new 4-dimensional symmetry is discussed

  10. Dynamically controlling the emission of single excitons in photonic crystal cavities

    NARCIS (Netherlands)

    Pagliano, F.; Cho, Y.; Xia, T.; Otten, van F.W.M.; Johne, R.; Fiore, A.

    2014-01-01

    Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both singlephoton emission and the strong

  11. Quantum measurements of atoms using cavity QED

    International Nuclear Information System (INIS)

    Dada, Adetunmise C.; Andersson, Erika; Jones, Martin L.; Kendon, Vivien M.; Everitt, Mark S.

    2011-01-01

    Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

  12. Ultraviolet asymptotic behavior of the photon propagator in dimensionally regularized quantum electrodynamics

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1991-01-01

    Study of the ultraviolet behavior of asymptotically nonfree theories is one of the most important problems of quantum field theory. Unfortunately, not too much is known about the ultraviolet properties in asymptotically nonfree theories; the main obstacle is the growth of the effective coupling constant in the ultraviolet region, which renders perturbation theory inapplicable. It is shown that in quantum electrodynamics in n = 4 + 2 var-epsilon space-time (var-epsilon > 0) the photon propagator has the ultraviolet asymptotic behavior D(k 2 ) ∼ (k 2 ) -1-var-epsilon . In the case var-epsilon R ≤ -3π var-epsilon + O(var-epsilon 2 )

  13. Instantaneous action-at-a-distance formulation of quantum electrodynamics

    International Nuclear Information System (INIS)

    Vora-Singha, P.

    1977-01-01

    Classical conserved quantities, namely energy, linear momentum, angular momentum and the center of mass constant, which are computed from Kerner's symmetric joint Lagrangian, are interpreted quantum mechanically in Heisenberg representation. The energy, when expanded and truncated after the 1/c 2 term, has interaction terms with the sign opposite to the interaction term in the Darwin Hamiltonian. When interpreted quantum mechanically, the energy (up to the 1/c 2 term) and the Darwin Hamiltonian are called the Modified-Breit ad Breit operators, respectively. The total energy, when interpreted quantum mechanically, is called the energy operator. The three operators, namely, the Breit, Modified-Breit, and energy operators are applied to plane wave scattering, He2P fine structure splitting and positronium. In He2P fine structure splitting, when the calculation is compared to available experimental results, the Modified-Breit and the energy operators seem to give wrong predictions

  14. Random electrodynamics : a classical foundation for key quantum concepts

    International Nuclear Information System (INIS)

    Sachidanandam, S.

    1981-01-01

    The model of random electrodynamics, in which electromagnetic particles are subjected, in a classical manner, to the forces of radiation damping and the fluctuating zero-point fields provides the framework in which the following results are obtained: (1) The precession dynamics of a long-lived, non-relativistic particle with a magnetic moment proportional to its spin, leads to a self-consistent determination of the spin value as one-half. (2) The internal dynamic underlying the intrinsic magnetic moment of a Dirac particle yields a classically visualizable picture of the spin-magnetic moment. (3) The Bose correlation among indistinguishable, non-interacting, spin-zero Particles arises from the coupling through the common- zero point fields and the radiation reaction fields when the particles are close together in both the r vector and the energy spaces. (4) The (exclusion principle-induced) correlation among identical, non-interacting magnetic particles with spin 1/2 is brought about by the coupling, (through the common fields of radiation reaction and the vacuum fluctuations), of the spins as well as the translational motions when the particles are close together in r vector and the energy spaces. (5) A dilute gas of free electrons has a Maxwellian distribution of velocities and the correct value of the djamagnetic moment in the presence of a magnetic field. Considerations on the centre of mass motion of a composite neutral particle lead to a simple resolution of the foundational paradoxes of statistical mechanics. (6) An approximate treatment of the hydrogen atom leads to a description of the evolution to the ground state at absolute zero and an estimation of the mass frequency and the line-width of the radiation emitted when an excited atom decays. (author)

  15. Quantum state engineering and reconstruction in cavity QED. An analytical approach

    International Nuclear Information System (INIS)

    Lougovski, P.

    2004-01-01

    The models of a strongly-driven micromaser and a one-atom laser are developed. Their analytical solutions are obtained by means of phase space techniques. It is shown how to exploit the model of a one-atom laser for simultaneous generation and monitoring of the decoherence of the atom-field ''Schroedinger cat'' states. The similar machinery applied to the problem of the generation of the maximally-entangled states of two atoms placed inside an optical cavity permits its analytical solution. The steady-state solution of the problem exhibits a structure in which the two-atom maximally-entangled state correlates with the vacuum state of the cavity. As a consequence, it is demonstrated that the atomic maximally-entangled state, depending on a coupling regime, can be produced via a single or a sequence of no-photon measurements. The question of the implementation of a quantum memory device using a dispersive interaction between the collective internal ground state of an atomic ensemble and two orthogonal modes of a cavity is addressed. The problem of quantum state reconstruction in the context of cavity quantum electrodynamics is considered. The optimal operational definition of the Wigner function of a cavity field is worked out. It is based on the Fresnel transform of the atomic inversion of a probe atom. The general integral transformation for the Wigner function reconstruction of a particle in an arbitrary symmetric potential is derived

  16. Quantum electrodynamical torques in the presence of Brownian motion

    NARCIS (Netherlands)

    Munday, J. N.; Iannuzzi, D.; Capasso, F.

    2006-01-01

    Quantum fluctuations of the electromagnetic field give rise to a zero-point energy that persists even in the absence of electromagnetic sources. One striking consequence of the zero-point energy is manifested in the Casimir force, which causes two electrically neutral metallic plates to attract in

  17. Quantum electrodynamics in the light-front Weyl gauge

    International Nuclear Information System (INIS)

    Przeszowski, J.; Naus, H.W.; Kalloniatis, A.C.

    1996-01-01

    We examine (3+1)-dimensional QED quantized in the open-quote open-quote front form close-quote close-quote with finite open-quote open-quote volume close-quote close-quote regularization, namely, in discretized light-cone quantization. Instead of the light-cone or Coulomb gauges, we impose the light-front Weyl gauge A - =0. The Dirac method is used to arrive at the quantum commutation relations for the independent variables. We apply open-quote open-quote quantum-mechanical gauge fixing close-quote close-quote to implement Gauss close-quote law, and derive the physical Hamiltonian in terms of unconstrained variables. As in the instant form, this Hamiltonian is invariant under global residual gauge transformations, namely, displacements. On the light cone the symmetry manifests itself quite differently. copyright 1996 The American Physical Society

  18. Electrodynamically trapped Yb+ ions for quantum information processing

    International Nuclear Information System (INIS)

    Balzer, Chr.; Braun, A.; Hannemann, T.; Wunderlich, Chr.; Paape, Chr.; Ettler, M.; Neuhauser, W.

    2006-01-01

    Highly efficient, nearly deterministic, and isotope selective generation of Yb + ions by one- and two-color photoionization is demonstrated. State preparation and state selective detection of hyperfine states in 171 Yb + is investigated in order to optimize the purity of the prepared state and to time-optimize the detection process. Linear laser-cooled Yb + ion crystals confined in a Paul trap are demonstrated. Advantageous features of different previous ion trap experiments are combined, while at the same time the number of possible error sources is reduced by using a comparatively simple experimental apparatus. This opens a new path toward quantum state manipulation of individual trapped ions, and in particular, to scalable quantum computing

  19. 1+1-dimensional quantum electrodynamics as an illustration of the hypothetical structure of quark field theory

    International Nuclear Information System (INIS)

    Becher, P.; Joos, H.

    1977-07-01

    It is the aim of the main part of these lectures to show how most of the expected dynamical properties of quantum chromodynamics are realised in 1+1 dimensional quantum electrodynamics. Asymptotic freedom, the infrared limit, quark confinement and bag approximation are discussed in detail. (BJ) [de

  20. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  1. Phenomenological quantum electrodynamics when epsilonμ=l: Theory and some applications including the Casimir effect

    International Nuclear Information System (INIS)

    Brevik, I.

    1983-01-01

    The canonical quantum theory for an electromagnetic field within an isotropic nondispersive medium, whose permittivity, epsilon, and permeability μ satisfy the condition epsilonμ=1, is developed. This condition is found to simplify the electromagnetic formalism considerably and is of interest not only to quantum electrodynamics (QED) but also to quantum chromodynamics (QDC) in view of the formal analogy existing between these two theories to the zero-order in the gauge coupling constant. After giving a survey of the general formalism, this paper discusses appropriate modifications of known experiments in optics: the Ashkin-Dziedzic pressure experiment (1973), the Barlow experiment (1912), and the levitation experiment of Ashkin (1970) and others. Finally, a calculation is given of Casimir (i.e., zero-point) surface force acting on one of two spherical interfaces separating three media from each other, under certain simplifying conditions

  2. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Science.gov (United States)

    Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard

    2018-02-01

    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  3. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Directory of Open Access Journals (Sweden)

    Stephan Welte

    2018-02-01

    Full Text Available Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2  μs. We show an entangling operation between the two atoms by generating a Bell state with 76(2% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  4. The Lehmann--Symanzik--Zimmermann formalism for manifestly covariant quantum electrodynamics. [Gauge parameter

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, N [Kyoto Univ. (Japan). Research Inst. for Mathematical Sciences

    1974-12-01

    The Lehmann--Symanzik--Zimmermann formalism is presented for manifestly covariant quantum electrodynamics involving a gauge parameter ..cap alpha... Contrary to Kaellen's assertion, it is shown that one can consistently formulate the asymptotic condition for the electromagnetic field and construct the Fock space of asymptotic states. Except for the case of Feynman gauge (..cap alpha..=1), the formalism is somewhat complicated because of the presence of dipole ghosts, but emphasis is laid on the very existence of a consistent formalism. The completeness relation for the asymptotic states is presented so that the generalized unitarity relation can be written down. Indefinite-metric theory of a massive vector field is briefly discussed.

  5. Proper energy of an electron in a topologically massive (2 + 1) quantum electrodynamics system at finite temperature and density

    International Nuclear Information System (INIS)

    Zhukovskii, K.V.; Eminov, P.A.

    1995-01-01

    The one-loop approximation is used to calculate the effects of finite temperature and nonzero chemical potential on the electron energy shift in a (2 + 1)-quantum electrodynamic system containing a Churn-Simon term. The induced electron mass is derived with a massless (2 + 1)-quantum electrodynamic system together with the exchange correction to the thermodynamic potential for a completely degenerate electron gas. It is shown that in the last case, incorporating the Churn-Simon term leads to loss of the gap in the direction law

  6. Stopping single photons in one-dimensional circuit quantum electrodynamics systems

    International Nuclear Information System (INIS)

    Shen, J.-T.; Povinelli, M. L.; Sandhu, Sunil; Fan Shanhui

    2007-01-01

    We propose a mechanism to stop and time reverse single photons in one-dimensional circuit quantum electrodynamics systems. As a concrete example, we exploit the large tunability of the superconducting charge quantum bit (charge qubit) to predict one-photon transport properties in multiple-qubit systems with dynamically controlled transition frequencies. In particular, two qubits coupled to a waveguide give rise to a single-photon transmission line shape that is analogous to electromagnetically induced transparency in atomic systems. Furthermore, by cascading double-qubit structures to form an array and dynamically controlling the qubit transition frequencies, a single photon can be stopped, stored, and time reversed. With a properly designed array, two photons can be stopped and stored in the system at the same time. Moreover, the unit cell of the array can be designed to be of deep subwavelength scale, miniaturizing the circuit

  7. Electrodynamic characterisitcs measurements of higher order modes in S-band cavity

    Science.gov (United States)

    Donetsky, R.; Lalayan, M.; Sobenin, N. P.; Orlov, A.; Bulygin, A.

    2017-12-01

    The 800 MHz superconducting cavities with grooved beam pipes were suggested as one of the harmonic cavities design options for High Luminosity LHC project. Cavity simulations were carried out and scaled aluminium prototype having operational mode frequency of 2400 MHz was manufactured for testing the results of simulations. The experimental measurements of transverse shunt impedance with error estimation for higher order modes TM 110 and TE 111 for S-band elliptical cavity were done. The experiments using dielectric and metallic spherical beads and with ring probe were carried out. The Q-factor measurements for two-cell structure and array of two cells were carried out.

  8. Quantum state detection and state preparation based on cavity-enhanced nonlinear interaction of atoms with single photon

    Science.gov (United States)

    Hosseini, Mahdi

    Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.

  9. Quantum electrodynamics

    CERN Document Server

    Berestetskii, Vladimir B; Pitaevskii, L P

    1982-01-01

    Several significant additions have been made to the second edition, including the operator method of calculating the bremsstrahlung cross-section, the calcualtion of the probabilities of photon-induced pair production and photon decay in a magneticfield, the asymptotic form of the scattering amplitudes at high energies, inelastic scattering of electrons by hadrons, and the transformation of electron-positron pairs into hadrons.

  10. Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction

    Energy Technology Data Exchange (ETDEWEB)

    Du, Fang-Fang; Li, Tao; Long, Gui-Lu, E-mail: gllong@tsinghua.edu.cn

    2016-12-15

    Hyperentanglement, defined as the entanglement in multiple degrees of freedom (DOFs) of a photonic quantum system, has attracted much attention recently as it can improve the channel capacity of quantum communication largely. Here we present a refined hyperentanglement purification protocol (hyper-EPP) for two-photon systems in mixed hyperentangled states in both the spatial-mode and polarization DOFs, assisted by cavity quantum electrodynamics. By means of the spatial (polarization) quantum state transfer process, the quantum states that are discarded in the previous hyper-EPPs can be preserved. That is, the spatial (polarization) state of a four-photon system with high fidelity can be transformed into another four-photon system with low fidelity, not disturbing its polarization (spatial) state, which makes this hyper-EPP take the advantage of possessing a higher efficiency.

  11. Bookshelf (Early Quantum Electrodynamics - A Source Book, by Arthur I. Miller)

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Many people these days would say that quantum electrodynamics, the quantum picture of electromagnetic radiation, dates from 1947-8 with the work of Sin-itoro Tomonaga, Julian Schwinger and Richard Feynman. However this was the modern reformulation of a theory whose genesis was Paul Dirac's 1927 work on the quantization of radiation and was subsequently, and painfully, pieced together in the 1930s. Until the Second World War, the science of quantum electrodynamics advanced steadily, driven for the most part by the intellects which had produced modern quantum mechanics - notably Dirac, Heisenberg and Pauli. After Dirac's 1928 relativistic theory of the electron, Heisenberg and Pauli went on to cast an initial quantum formalism for the interaction between radiation and electrons. During this time many intellectual hurdles had to be crossed - the negative energy states predicted by Dirac's equation and their final identification as antimatter electrons (positrons), the whole problem of explaining quantum force mechanisms as particle exchanges, Fermi's explanation of beta decay, and Yukawa's explanation of the nuclear force. Heisenberg's invention of the S-matrix and his ideas on the transmission of nuclear forces through exchange mechanisms revolutionized both our picture of the quantum world. These problems were not easy - several times during the 1920s even these intellects almost despaired. A shadow across the subject was the continual problem of troublesome infinities in mass terms and elsewhere. It was not until the ordered renormalization recipes of the immediate post-war period that these infinities were finally hidden from sight. Science historian Arthur Miller traces these developments in the first half of the book, and signals how these early developments were eventually to dovetail with the exciting new developments of the late 1940s. Supplementing the survey are eleven fascinating landmark papers by Heisenberg, Dirac, Weisskopf

  12. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...

  13. Measurement of electrodynamics characteristics of higher order modes for harmonic cavity at 2400 MHz

    Science.gov (United States)

    Shashkov, Ya V.; Sobenin, N. P.; Gusarova, M. A.; Lalayan, M. V.; Bazyl, D. S.; Donetskiy, R. V.; Orlov, A. I.; Zobov, M. M.; Zavadtsev, A. A.

    2016-09-01

    In the frameworks of the High Luminosity Large Hadron Collider (HL-LHC) upgrade program an application of additional superconducting harmonic cavities operating at 800 MHz is currently under discussion. As a possible candidate, an assembly of two cavities with grooved beam pipes connected by a drift tube and housed in a common cryomodule, was proposed. In this article we discuss measurements of loaded Q-factors of higher order modes (HOM) performed on a scaled aluminium single cell cavity prototype with the fundamental frequency of 2400 MHz and on an array of two such cavities connected by a narrow beam pipe. The measurements were performed for the system with and without the matching load in the drift tube..

  14. Theory of the multiphoton cascade transitions with two photon links: comparison of quantum electrodynamical and quantum mechanical approaches

    International Nuclear Information System (INIS)

    Zalialiutdinov, T; Baukina, Yu; Solovyev, D; Labzowsky, L

    2014-01-01

    The theory of multiphoton cascade transitions with two-photon links is considered within two different approaches: quantum electrodynamical (QED) and phenomenological quantum mechanical (QM). A problem of regularization of the cascade contributions is investigated in detail. It is argued that the correct regularization should include both initial and intermediate level widths in the singular energy denominators. This result follows both from the QED and from the QM approach. Particular transitions nl → 1s + 2γ with nl = 3s, 4s, 3d, 4d and nl → 1s + 3γ with nl = 3p, 4p are considered as examples. The importance of the proper cascade regularization is also demonstrated. (paper)

  15. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  16. Deterministically entangling multiple remote quantum memories inside an optical cavity

    Science.gov (United States)

    Yan, Zhihui; Liu, Yanhong; Yan, Jieli; Jia, Xiaojun

    2018-01-01

    Quantum memory for the nonclassical state of light and entanglement among multiple remote quantum nodes hold promise for a large-scale quantum network, however, continuous-variable (CV) memory efficiency and entangled degree are limited due to imperfect implementation. Here we propose a scheme to deterministically entangle multiple distant atomic ensembles based on CV cavity-enhanced quantum memory. The memory efficiency can be improved with the help of cavity-enhanced electromagnetically induced transparency dynamics. A high degree of entanglement among multiple atomic ensembles can be obtained by mapping the quantum state from multiple entangled optical modes into a collection of atomic spin waves inside optical cavities. Besides being of interest in terms of unconditional entanglement among multiple macroscopic objects, our scheme paves the way towards the practical application of quantum networks.

  17. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    Science.gov (United States)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  18. The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics

    Science.gov (United States)

    Sok, Jérémy

    2016-02-01

    The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence of the para-positronium, the bound state of an electron and a positron with antiparallel spins, in the BDF model represented by a critical point of the energy functional in the absence of an external field. We also prove the existence of the dipositronium, a molecule made of two electrons and two positrons that also appears as a critical point. More generally, for any half integer j ∈ 1/2 + Z + , we prove the existence of a critical point of the energy functional made of 2j + 1 electrons and 2j + 1 positrons.

  19. Axiomatic field theory and quantum electrodynamics: the massive case. [Gauge invariance, Maxwell equations, high momentum behavior

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik

    1975-01-01

    Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.

  20. A comprehensive coordinate space renormalization of quantum electrodynamics to two-loop order

    International Nuclear Information System (INIS)

    Haagensen, P.E.; Latorre, J.I.

    1993-01-01

    We develop a coordinate space renormalization of massless quantum electrodynamics using the powerful method of differential renormalization. Bare one-loop amplitudes are finite at non-coincident external points, but do not accept a Fourier transform into momentum space. The method provides a systematic procedure to obtain one-loop renormalized amplitudes with finite Fourier transforms in strictly four dimensions without the appearance of integrals or the use of a regulator. Higher loops are solved similarly by renormalizing from the inner singularities outwards to the global one. We compute all one- and two-loop 1PI diagrams, run renormalization group equations on them. and check Ward identities. The method furthermore allows us to discern a particular pattern of renormalization under which certain amplitudes are seen not to contain higher-loop leading logarithms. We finally present the computation of the chiral triangle showing that differential renormalization emerges as a natural scheme to tackle γ 5 problems

  1. Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation

    International Nuclear Information System (INIS)

    Hofmann, Christoph P.; Raya, Alfredo; Madrigal, Saul Sanchez

    2010-01-01

    We study the analytical structure of the fermion propagator in planar quantum electrodynamics coupled to a Chern-Simons term within a four-component spinor formalism. The dynamical generation of parity-preserving and parity-violating fermion mass terms is considered, through the solution of the corresponding Schwinger-Dyson equation for the fermion propagator at leading order of the 1/N approximation in Landau gauge. The theory undergoes a first-order phase transition toward chiral symmetry restoration when the Chern-Simons coefficient θ reaches a critical value which depends upon the number of fermion families considered. Parity-violating masses, however, are generated for arbitrarily large values of the said coefficient. On the confinement scenario, complete charge screening - characteristic of the 1/N approximation - is observed in the entire (N,θ)-plane through the local and global properties of the vector part of the fermion propagator.

  2. Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics

    International Nuclear Information System (INIS)

    Ni Guang-Jiong; Xu Jian-Jun; Lou Sen-Yue

    2011-01-01

    Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S—2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state—-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity. (general)

  3. Two-dimensional massless quantum electrodynamics in the Landau-gauge formalism and the Higgs mechanism

    International Nuclear Information System (INIS)

    Ito, K.R.

    1975-01-01

    The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world. (author)

  4. Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms

    International Nuclear Information System (INIS)

    Thierfelder, C.; Schwerdtfeger, P.

    2010-01-01

    We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12, 13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z=120. The results for the s-block elements are in very good agreement with earlier studies by Labzowsky et al. [Phys. Rev. A 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions become as important as the Breit interaction for ionization potentials out of the valence s shell.

  5. The eigenfunction method and the mass operator in intense-field quantum electrodynamics

    International Nuclear Information System (INIS)

    Ritus, V.I.

    1987-01-01

    A method is given for calculating radiation effects in constant intense-field quantum electrodynamics; this method is based on the use of the eigenfunctions of the mass operator and diagonalization of the latter. A compact expression is found for the eigenvalue of the mass operator of the electron in a random constant field together with the corresponding elastic scattering amplitude. The anomalous electric moment that arises in the field with a pseudoscalar EH not equal to O is found and investigated in detail together with the anomalous magnetic moment in the electrical field that approaches the double Schwinger value with an increase in the field together with the mass shift and the rate of decay of the ground state of the electron in the electrical field

  6. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  7. Oscillating dipole with fractional quantum source in Aharonov-Bohm electrodynamics

    Directory of Open Access Journals (Sweden)

    Giovanni Modanese

    Full Text Available We show, in the case of a special dipolar source, that electromagnetic fields in fractional quantum mechanics have an unexpected space dependence: propagating fields may have non-transverse components, and the distinction between near-field zone and wave zone is blurred. We employ an extension of Maxwell theory, Aharonov-Bohm electrodynamics, which is compatible with currents jν conserved globally but not locally; we have derived in another work the field equation ∂μFμν=jν+iν, where iν is a non-local function of jν, called “secondary current”. Y. Wei has recently proved that the probability current in fractional quantum mechanics is in general not locally conserved. We compute this current for a Gaussian wave packet with fractional parameter a=3/2 and find that in a suitable limit it can be approximated by our simplified dipolar source. Currents which are not locally conserved may be present also in other quantum systems whose wave functions satisfy non-local equations. The combined electromagnetic effects of such sources and their secondary currents are very interesting both theoretically and for potential applications. Keywords: Generalized Maxwell theory, Fractional Schrödinger equation, Local current conservation

  8. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  9. Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model

    International Nuclear Information System (INIS)

    Chen Changyong; Zhang Xiaolong; Deng Zhijiao; Gao Kelin; Feng Mang

    2006-01-01

    We introduce a general displacement operator to investigate the unconventional geometric quantum computation with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms, based on a previous scheme [S.-B. Zheng, Phys. Rev. A 70, 052320 (2004)] for the large-detuning interaction of the atoms with the cavity mode. The analytical results we present will be helpful for experimental realization of geometric quantum computation in real cavities

  10. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  11. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    Science.gov (United States)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  12. Quantum interference effects in a cavity QED system

    International Nuclear Information System (INIS)

    Akram, Uzma; Ficek, Z

    2003-01-01

    We consider the effect of quantum interference on population distribution and photon statistics of a cavity field interacting with dressed states of a strongly driven three-level atom. We analyse three coupling configurations of the cavity field to the driven atom, with the cavity frequency tuned to the outer Rabi sideband, the inner Rabi sideband and the central frequency of the 'singly dressed' three-level atom. The quantum doubly dressed states for each configuration are identified and the population distribution and photon statistics are interpreted in terms of transitions among these dressed states and their populations. We find that the population distribution depends strongly on quantum interference and the cavity damping. For the cavity field tuned to the outer or inner Rabi sidebands the cavity damping induces transitions between the dressed states which are forbidden for the ordinary spontaneous emission. Moreover, we find that in the case of the cavity field coupled to the inner Rabi sideband the population distribution is almost Poissonian with a large average number of photons that can be controlled by quantum interference. This system can be considered as a one-atom dressed-state laser with controlled intensity

  13. Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane

    Energy Technology Data Exchange (ETDEWEB)

    Bart, G.R.; Fenster, S.

    1976-06-01

    The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance.

  14. Quantum electrodynamic theory of recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Shabaev, V.M.

    1994-01-01

    The consequent quantum electrodynamic theory of the process of the recombination of an electron with a multicharged ion is considered. The reduction technique for the calculation of this process by perturbation theory is formulated. The process of the recombination of an electron with a very highly charged one-electron ion for the case of resonance with the doubly excited (2s,2s) 0 , (2p 1/2 ,2p 1/2 ) 0 , (2s,2p 1/2 ) 0,1 states is studied. The formulas for the cross section of the process are derived for two possible versions of the experiment. The interference between the radiative-recombination process and the dielectronic-recombination (DR) process, and the interference between the DR amplitudes for the levels with the identical quantum numbers [(2s,2s) 0 , (2p 1/2 ) 0 ] are taken into account. The deviation of the shape of the resonances from the Lorentz one, due to the interference terms, is discussed

  15. Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane

    International Nuclear Information System (INIS)

    Bart, G.R.; Fenster, S.

    1976-06-01

    The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance

  16. Beating quantum limits in an optomechanical sensor by cavity detuning

    International Nuclear Information System (INIS)

    Arcizet, O.; Briant, T.; Heidmann, A.; Pinard, M.

    2006-01-01

    We study the quantum limits in an optomechanical sensor based on a detuned high-finesse cavity with a movable mirror. We show that the radiation pressure exerted on the mirror by the light in the detuned cavity induces a modification of the mirror dynamics and makes the mirror motion sensitive to the signal. This leads to an amplification of the signal by the mirror dynamics, and to an improvement of the sensor sensitivity beyond the standard quantum limit, up to an ultimate quantum limit only related to the mechanical dissipation of the mirror. This improvement is somewhat similar to the one predicted in detuned signal-recycled gravitational-wave interferometers, and makes a high-finesse cavity a model system to test these quantum effects

  17. Heralded entangling quantum gate via cavity-assisted photon scattering

    Science.gov (United States)

    Borges, Halyne S.; Rossatto, Daniel Z.; Luiz, Fabrício S.; Villas-Boas, Celso J.

    2018-01-01

    We theoretically investigate the generation of heralded entanglement between two identical atoms via cavity-assisted photon scattering in two different configurations, namely, either both atoms confined in the same cavity or trapped into locally separated ones. Our protocols are given by a very simple and elegant single-step process, the key mechanism of which is a controlled-phase-flip gate implemented by impinging a single photon on single-sided cavities. In particular, when the atoms are localized in remote cavities, we introduce a single-step parallel quantum circuit instead of the serial process extensively adopted in the literature. We also show that such parallel circuit can be straightforwardly applied to entangle two macroscopic clouds of atoms. Both protocols proposed here predict a high entanglement degree with a success probability close to unity for state-of-the-art parameters. Among other applications, our proposal and its extension to multiple atom-cavity systems step toward a suitable route for quantum networking, in particular for quantum state transfer, quantum teleportation, and nonlocal quantum memory.

  18. Electromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested Polariton States

    Science.gov (United States)

    Long, Junling; Ku, H. S.; Wu, Xian; Gu, Xiu; Lake, Russell E.; Bal, Mustafa; Liu, Yu-xi; Pappas, David P.

    2018-02-01

    Quantum networks will enable extraordinary capabilities for communicating and processing quantum information. These networks require a reliable means of storage, retrieval, and manipulation of quantum states at the network nodes. A node receives one or more coherent inputs and sends a conditional output to the next cascaded node in the network through a quantum channel. Here, we demonstrate this basic functionality by using the quantum interference mechanism of electromagnetically induced transparency in a transmon qubit coupled to a superconducting resonator. First, we apply a microwave bias, i.e., drive, to the qubit-cavity system to prepare a Λ -type three-level system of polariton states. Second, we input two interchangeable microwave signals, i.e., a probe tone and a control tone, and observe that transmission of the probe tone is conditional upon the presence of the control tone that switches the state of the device with up to 99.73% transmission extinction. Importantly, our electromagnetically induced transparency scheme uses all dipole allowed transitions. We infer high dark state preparation fidelities of >99.39 % and negative group velocities of up to -0.52 ±0.09 km /s based on our data.

  19. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  20. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  1. Correlation, Breit and quantum electrodynamics effects on energy level and transition properties of W54+ ion

    International Nuclear Information System (INIS)

    Ding, X.; Sun, R.; Dong, C.; Koike, F.; Kato, D.; Murakami, I.; Sakaue, H.A.

    2017-01-01

    The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The study of W 54+ ion provide necessary reference data for the fusion plasma physics as tungsten was chosen to be used as the armour material of the divertor of the ITER project. The ground states [Ne]3s 2 3p 6 3d 2 and first excited states [Ne]3s 2 3p 5 3d 3 of W 54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W 54+ ion. (authors)

  2. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Ilya D. Feranchuk

    2007-12-01

    Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  3. Eigenfunction method and mass operator in the quantum electrodynamics of a constant field

    International Nuclear Information System (INIS)

    Ritus, V.I.

    1978-01-01

    A method is presented for the calculation of radiative effects in the quantum electrodynamics of an intense constant field. It is based on the application of the mass operator eigenfunctions and on diagonalization of the operator. A compact expression for the proper value of the electron mass operator in an arbitrary constant field and the corresponding elastic scattering amplitude are found. The imaginary part of the amplitude determines the decay rate of various states of the electron in the field; the real part contains the mass shift and the anomalous magnetic and electric moments as functions of the field and electron momentum. THe anomalous electric moment which arises in a field with a pseudoscalar EH not equal to 0 and the anomalous magnetic moment in an electric field which tends to the double Schwinger value with increase of the field strength are found and investigated in detail as are the mass shift and decay rate of the ground state of an electron in an electric field. In a weak field the mass shift contains the linear with respect to the field modulus classical term which characterizes the effect of acceleration on the structure of electron

  4. Magnetic monopole plasma phase in (2+1)d compact quantum electrodynamics with fermionic matter

    International Nuclear Information System (INIS)

    Armour, Wesley; Hands, Simon; Lucini, Biagio; Kogut, John B.; Strouthos, Costas; Vranas, Pavlos

    2011-01-01

    We present the first evidence from lattice simulations that the magnetic monopoles in three-dimensional compact quantum electrodynamics (cQED 3 ) with N f =2 and N f =4 four-component fermion flavors are in a plasma phase. The evidence is based mainly on the divergence of the monopole susceptibility (polarizability) with the lattice size at weak gauge couplings. A weak four-Fermi term added to the cQED 3 action enabled simulations with massless fermions. The exact chiral symmetry of the interaction terms forbids symmetry breaking lattice discretization counterterms to appear in the theory's effective action. It is also shown that the scenario of a monopole plasma does not depend on the strength of the four-Fermi coupling. Other observables such as the densities of isolated dipoles and monopoles and the so-called specific heat show that a crossover from a dense monopole plasma to a dilute monopole gas occurs at strong couplings. The implications of our results on the stability of U(1) spin liquids in two spatial dimensions are also discussed.

  5. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions

    International Nuclear Information System (INIS)

    Martino, Trassinelli

    2005-12-01

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π - ) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV

  6. Permanent dipole moments and damping in nonlinear optics. A quantum electrodynamic description

    International Nuclear Information System (INIS)

    Davila-Smith, L.C.

    1999-01-01

    Based on the well-known transformation of the electric-dipole interaction, different nonlinear optical processes are analysed. The transformation provides a convenient means for ascertaining the effects of permanent dipoles on the optical behaviour of systems with a response dominated by two energy levels. By establishing the general validity of the procedure for parametric and non-parametric processes, it is shown how the detailed structure of the optical nonlinearity can be ascertained, based on a novel interpretation of the relevant quantum electrodynamical Feynman diagrams. This transformation is used to analysed a novel five-wave mixing process, which is also developed in this thesis. This process is of considerable interest for its involvement in the generation of even harmonics in isotropic media. Also, the flexibility in the beam geometry affords considerable scope for the study of the polarisation and angular dependence. Finally, a general study of the effects of resonance in matter-radiation interactions is given, justifying the phenomenological incorporation of the damping addenda. The two alternative convention used when the damping is introduced are discussed, showing that both conventions lead to different physical results. Based on these studies the resonance effects are considered in relation to different multiphoton processes. (author)

  7. Quantum electrodynamics at strong electric fields. The ground state Lamb shift in hydrogenlike uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A.; Stoehlker, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Banas, D. [Pedagogical Univ., Kielce (PL). Inst. of Phys.] [and others

    2005-05-01

    X-ray spectra following radiative recombination of free electrons with bare uranium ions (U{sup 92+}) were measured at the electron cooler of the ESR storage ring. The most intense lines observed in the spectra can be attributed to the characteristic Lyman ground-state transitions and to the recombination of free electrons into the K-shell of the ions. Our experiment was carried out by utilizing the deceleration technique which leads to a considerable reduction of the uncertainties associated with Doppler corrections. This, in combination with the 0 observation geometry, allowed us to determine the ground-state Lamb shift in hydrogen-like uranium (U{sup 91+}) from the observed X-ray lines with an accuracy of 1%. The present result is about 3 times more precise than the most accurate value available up to now and provides the most stringent test of bound-state quantum electrodynamics for one-electron systems in the strong-field regime. (orig.)

  8. Quantum and classical nonlinear dynamics in a microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Meaney, Charles H.; Milburn, Gerard J. [The University of Queensland, Department of Physics, St Lucia, QLD (Australia); Nha, Hyunchul [Texas A and M University at Qatar, Department of Physics, PO Box 23874, Doha (Qatar); Duty, Timothy [The University of New South Wales, Department of Physics, Kensington, NSW (Australia)

    2014-12-01

    We consider a quarter wave coplanar microwave cavity terminated to ground via a superconducting quantum interference device. By modulating the flux through the loop, the cavity frequency is modulated. The flux is varied at twice the cavity frequency implementing a parametric driving of the cavity field. The cavity field also exhibits a large effective nonlinear susceptibility modelled as an effective Kerr nonlinearity, and is also driven by a detuned linear drive. We show that the semi-classical model corresponding to this system exhibits a fixed point bifurcation at a particular threshold of parametric pumping power. We show the quantum signature of this bifurcation in the dissipative quantum system. We further linearise about the below threshold classical steady state and consider it to act as a bifurcation amplifier, calculating gain and noise spectra for the corresponding small signal regime. Furthermore, we use a phase space technique to analytically solve for the exact quantum steady state. We use this solution to calculate the exact small signal gain of the amplifier. (orig.)

  9. Quantum phases of spinful Fermi gases in optical cavities

    Science.gov (United States)

    Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.

    2018-04-01

    We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g analysis.

  10. Quantum Zeno Effect in the Strong Measurement Regime of Circuit Quantum Electrodynamics

    Science.gov (United States)

    2016-05-17

    exponential (linear in time at short times), whereas in the absence ofmeasurement the qubit would exhibit sinusoidal state evolution ( quadratic in time...decouple the dynamical equations of 2 New J. Phys. 18 (2016) 053031 DHSlichter et al the qubit and cavity and obtain a qubit-only reducedmaster equation ...Solving thismaster equation yields a qubit transition rate from the ground state to excited state in the presence of continuous circuitQEDmeasurement [19

  11. Quantum field theory II: quantum electrodynamics. A bridge between mathematicians and physicists

    International Nuclear Information System (INIS)

    Zeidler, Eberhard

    2009-01-01

    This is the second volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. This book seeks to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to discover interesting interrelationships between quite diverse mathematical topics. For students of physics fairly advanced mathematics, beyond that included in the usual curriculum in physics, is presented. The present volume concerns a detailed study of the mathematical and physical aspects of the quantum theory of light. (orig.)

  12. Quantum field theory II: quantum electrodynamics. A bridge between mathematicians and physicists

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, Eberhard [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany)

    2009-07-01

    This is the second volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. This book seeks to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to discover interesting interrelationships between quite diverse mathematical topics. For students of physics fairly advanced mathematics, beyond that included in the usual curriculum in physics, is presented. The present volume concerns a detailed study of the mathematical and physical aspects of the quantum theory of light. (orig.)

  13. Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED

    International Nuclear Information System (INIS)

    Zou Xubo; Pahlke, K.; Mathis, W.

    2003-01-01

    We propose a scheme to implement the 1→2 universal quantum cloning machine of Buzek and Hillery [Phys. Rev. A 54, 1844 (1996)] in the context of cavity QED. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited to face the decoherence problem. That's why the requirements on the cavity quality factor can be loosened

  14. Quantum Logic with Cavity Photons From Single Atoms.

    Science.gov (United States)

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-08

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  15. Observable effects and parametrized scaling limits of a model in nonrelativistic quantum electrodynamics

    International Nuclear Information System (INIS)

    Hiroshima, Fumio

    2002-01-01

    Scaling limits of the Hamiltonian H of a system of N charged particles coupled to a quantized radiation field are considered. Ultraviolet cutoffs, λ 1 ,...,λ N , are imposed on the radiation field and the Coulomb gauge is taken. It is the so-called Pauli-Fierz model in nonrelativistic quantum electrodynamics. We mainly consider two cases: (i) all the ultraviolet cutoffs are identical, λ 1 =···=λ N , (ii) supports of ultraviolet cutoffs have no intersection, supp λ i intersection supp λ j = null-set , i≠j. The Hamiltonian acts on L 2 (R dN )(multiply-in-circle sign)F, where F is a symmetric Fock space, and has the form H=H el (multiply-in-circle sign)1+B+1(multiply-in-circle sign)H quad . Here H el denotes a particle Hamiltonian, H quad a quadratic field operator, and B an interaction term. The scaling is introduced as H(κ)=H el (multiply-in-circle sign)1+κ l B+κ 2 1(multiply-in-circle sign)H quad , where κ is a scaling parameter and l≤2 a parameter of the scaling. Performing a mass renormalization we consider the scaling limit of H(κ) as κ→∞ in the strong resolvent sense. Then effective Hamiltonians H eff in L 2 (R dN ) infected with reaction of effect of the radiation field is derived. In particular (1) effective Hamiltonians with an effective potential for l=2, and (2) effective Hamiltonians with an observed mass for l=1, are obtained

  16. Exciton-polariton dynamics in quantum dot-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica

    2012-07-01

    Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum

  17. Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    International Nuclear Information System (INIS)

    Heusler, Stefan

    2006-01-01

    The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages-these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would

  18. Propagator of stochastic electrodynamics

    International Nuclear Information System (INIS)

    Cavalleri, G.

    1981-01-01

    The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics

  19. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  20. Precision spectroscopy on hydrogen and deuterium. Test of the bound-state quantum electrodynamics

    International Nuclear Information System (INIS)

    Fendel, P.

    2005-06-01

    An optical measurement of the hyperfine splitting of the 2s state in deuterium performed for the first time and the description of the arrangement for the measurement of the 1s-3s frequency in hydrogen by excitation with a frequency combexpect the reader of this thesis. Both experiments have the goal to test the bound-state quantum electrodynamics (QED) with high precision. The measurement of the hyperfine splitting serves thereby for the improvement of the accuracy of the so called D 21 =8E HFS (2s)-E HFS (1s) difference. Because D 21 is far-reachingly independent on the nuclear structure in spite of not accurately known proton charge radii QED can be tested on a level of 10 -7 . In the framework of the thesis present here the error of this quantity was reduced by a factor of three. The result for the 2s hyperfine splitting is: f D HFS =40924454(7) Hz. By a new kind of the data acquisition furthermore many systematic errors, especially the nonlinear drift of the reference resonator, could be reduced in comparison to a similar measurement on hydrogen. The second part of the thesis describes the efforts which were and will be taken in order to test QED by means of their perdiction of the 1s Lamb shift. For this the frequency of the 1s-3s transition in hydrogen shall be measured absolutely for the first time. A further novum is that for this a frequency-quadrupled mode-coupled laser shall be come into operation. Especially the construction and the stabilization of a ps laser, the construction of two frequency-doubling stages, the arrangement for the measurement of the absolute frequency of the spectroscopy laser, the alteration of the existing 1s-2s vacuum system, and the development of the measurement software is described. Additionally in this thesis the theory of the two-photon frequency-comb spectroscopy is further developed. Concrete expressions for the expected line shape and the influence of the chirp on the excitation rate are presented

  1. Unconventional geometric quantum computation in a two-mode cavity

    International Nuclear Information System (INIS)

    Wu Chunfeng; Wang Zisheng; Feng Xunli; Lai, C. H.; Oh, C. H.; Goan, H.-S.; Kwek, L. C.

    2007-01-01

    We propose a scheme for implementing unconventional geometric quantum computation by using the interaction of two atoms with a two-mode cavity field. The evolution of the system results in a nontrivial two-qubit phase gate. The operation of the proposed gate involves only metastable states of the atom and hence is not affected by spontaneous emission. The effect of cavity decay on the gate is investigated. It is shown that the evolution time of the gate in the two-mode case is less than that in the single-mode case proposed by Feng et al. [Phys. Rev. A 75, 052312 (2007)]. Thus the gate can be more decay tolerant than the previous one. The scheme can also be generalized to a system consisting of two atoms interacting with an N-mode cavity field

  2. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  3. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  4. Deterministic quantum state transfer between remote qubits in cavities

    Science.gov (United States)

    Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.

    2017-12-01

    Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.

  5. Measurement of the cross-section of electron-positron scattering at high energy and quantum electrodynamics testing

    International Nuclear Information System (INIS)

    Lalanne, D.

    1970-01-01

    The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10 -14 cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e + e - → e + e - γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10 -31 cm 2 . The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV

  6. Numerical and Experimental Study of the Q Factor of High-Q Micropillar Cavities

    DEFF Research Database (Denmark)

    Gregersen, Niels; Reitzenstein, S.; Kistner, C.

    2010-01-01

    Micropillar cavities are potential candidates for high-efficiency single-photon sources and are testbeds for cavity quantum electrodynamics experiments. In both applications a high quality (Q) factor is desired. It was recently shown that the Q of high-Q semiconductor micropillar cavities exhibit...

  7. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  8. Quantum phase-space analysis of the pendular cavity

    International Nuclear Information System (INIS)

    Olsen, M.K.; Melo, A.B.; Dechoum, K.; Khoury, A.Z.

    2004-01-01

    We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation, showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of small displacements of the mirror due to radiation pressure, for the production of states with entanglement between the mirror and the field, and even for superposition states of the mirror. However, when we treat the oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and exhibits uncertainties in position and momentum which are typically larger than the mean values. This means that previous linearized fluctuation analyses which have been used to predict these highly quantum states are of limited use. We find that the achievable accuracy in measurement is far worse than the standard quantum limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK

  9. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  10. Resonator quantum electrodynamics on a microtrap chip; Resonator-Quantenelektrodynamik auf einem Mikrofallenchip

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Tilo

    2008-04-29

    In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to {approx}37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g{sub 0}=2{pi}.300 MHz respectively C{sub 0}=210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [German] In der vorliegenden Dissertation werden Experimente zur Resonator-Quantenelektrodynamik auf einem Mikrofallenchip beschrieben. Dabei konnte u. a. erstmals einzelne, in einer Chipfalle gefangene Atome detektiert werden. Hier fuer wurde im Rahmen dieser Arbeit ein neuartiger optischer Mikroresonator entwickelt, der sich dank seiner Miniaturisierung mit der in unserer Arbeitsgruppe

  11. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2010-09-10

    A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.

  12. High-Q AlAs/GaAs adiabatic micropillar cavities with submicron diameters for cQED experiments

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Dunzer, F.

    Quantum dot (QD) micropillar cavities represent an interesting class of microresonator systems aiming at the observation and application of cavity quantum electrodynamics (cQED) on a semiconductor platform. They combine valuable properties i.e. a highly directional and approximately Gaussian shaped...

  13. Hamiltonian formalism at light front for two-dimensional quantum electrodynamics equivalent to lorentz-covariant approach

    CERN Document Server

    Paston, S A; Prokhvatilov, E V

    2002-01-01

    The Hamiltonian, reproducing the results of the two-dimensional quantum electrodynamics in the Lorentz coordinates, is constructed on the light front. The procedure of bosonization and analysis of the boson perturbation theory in all the orders by the fermions mass are applied for this purpose. Besides the common terms, originating by the naive quantization on the light front, the obtained Hamiltonian contains an additional counterterm. It is proportional to the linear combination of the fermion zero modes (multiplied by a certain factor compensating the charge and fermion number). The coefficient before this counterterm has no ultraviolet divergence, depends on the value of the fermion condensate in the theta-vacuum and by the small fermion mass is linear by it

  14. Two-dimensional massless quantum electrodynamics in the Landau-gauge formalism and the Higgs mechanism. [Schwinger model

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K R [Kyoto Univ. (Japan). Research Inst. for Mathematical Sciences

    1975-03-01

    The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world.

  15. Quantum electrodynamics of the internal source x-ray holographies: Bremsstrahlung, fluorescence, and multiple-energy x-ray holography

    International Nuclear Information System (INIS)

    Miller, G.A.; Sorensen, L.B.

    1997-01-01

    Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society

  16. Quantum coherence and entanglement control for atom-cavity systems

    Science.gov (United States)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  17. Fundamentals of quantum optics 3. Proceedings

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1993-01-01

    The present Seminar offered the opportunity to discuss at leisure problems of mutual interest to theoreticians and experimentalists who are working on various aspects of the field of quantum optics. The intention was to bring together people who are doing research on atomic interferometry, physics of cooled and trapped particles, cavity quantum electrodynamics, quantum statistics of light and other fundamentals. (orig.)

  18. Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED

    International Nuclear Information System (INIS)

    Li Hong-Yi; Wu Chun-Wang; Chen Yu-Bo; Lin Yuan-Gen; Chen Ping-Xing; Li Cheng-Zu

    2013-01-01

    We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity—SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology

  19. Quantum correlations of light and matter through environmental transitions

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Nazir, Ahsan

    2016-01-01

    -state and atomic systems. Here we predict a striking and important example of such an effect. We show that in solid-state cavity quantum electrodynamics, interactions with the host vibrational environment can generate quantum cavity-emitter correlations in regimes that are semiclassical for atomic systems...

  20. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.

    We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...

  1. Reducing dephasing in coupled quantum dot-cavity systems by engineering the carrier wavefunctions

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2012-01-01

    We demonstrate theoretically how photon-assisted dephasing by the electron-phonon interaction in a coupled cavity-quantum dot system can be significantly reduced for specific QD-cavity detunings. Our starting point is a recently published theory,1 which considers longitudinal acoustic phonons......, described by a non-Markovian model, interacting with a coupled quantum dot-cavity system. The reduction of phonon-induced dephasing is obtained by placing the cavity-quantum dot system inside an infinite slab, assuming spherical electronic wavefunctions. Based on our calculations, we expect this to have...

  2. Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids

    Science.gov (United States)

    Teber, S.; Kotikov, A. V.

    2018-04-01

    The field theoretic renormalization study of reduced quantum electrodynamics (QED) is performed up to two loops. In the condensed matter context, reduced QED constitutes a very natural effective relativistic field theory describing (planar) Dirac liquids, e.g., graphene and graphenelike materials, the surface states of some topological insulators, and possibly half-filled fractional quantum Hall systems. From the field theory point of view, the model involves an effective (reduced) gauge field propagating with a fractional power of the d'Alembertian in marked contrast with usual QEDs. The use of the Bogoliubov-Parasiuk-Hepp-Zimmermann prescription allows for a simple and clear understanding of the structure of the model. In particular, in relation with the ultrarelativistic limit of graphene, we straightforwardly recover the results for both the interaction correction to the optical conductivity C*=(92 -9 π2)/(18 π ) and the anomalous dimension of the fermion field γψ(α ¯ ,ξ )=2 α ¯ (1 -3 ξ )/3 -16 (ζ2NF+4 /27 ) α¯ 2+O (α¯ 3) , where α ¯=e2/(4 π )2 and ξ is the gauge-fixing parameter.

  3. Problem of summing up ladder diagrams in quantum electrodynamics. [Cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, S A; Livashvili, A I [Azerbajdzhanskij Gosudarstvennyj Univ., Baku (USSR)

    1975-03-01

    A class of ladder diagrams in an asymptotic mode is considered, and a series of the perturbation theory for the given class of diagrams reduces to an integral equation obtained without approximations whatsoever. As applications of the method proposed, two electrodynamic processes are considered: the two-photon annihilation of an e/sup +/e/sup -/-pair and scattering of electons in Coulomb field. Matrix elements are provided. To derive the equations, Dirac equations and commutation relations are used. A conclusion is drawn that for the process, the log-log asymptotics and polar approximation lead to the fact that as the energy grows the cross-section of the process drops and the solution obtained indicates that such a drop occurs up to an energy of 10/sup 5/ GeV. For the second process, the region of large pulses transmitted by an electron to the external field does not lead to an increase in amplitude and cross-section.

  4. Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism

    Science.gov (United States)

    Chernodub, M. N.; Zubkov, M. A.

    2017-09-01

    The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .

  5. Point Coulomb solutions of the Dirac equation: analytical results required for the evaluation of the bound electron propagator in quantum electrodynamics

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1977-12-01

    The bound electron propagator in quantum electrodynamics is reviewed and the Brown and Schaefer angular momentum representation of the propagator discussed. Regular and irregular solutions of the radial Dirac equations for both /E/ 2 and /E/ >or= mc 2 are required for the computation of the propagator. Analytical expressions for these solutions, and their corresponding Wronskians, are obtained for a point Coulomb potential. Some computational aspects are discussed in an appendix

  6. Compact dielectric cavities based on frozen bound states in the continuum

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    Dielectric microcavities are used widely today for confining the light to its wavelength scale, which is important for fundamental physics studies of light-matter interactions such as cavity quantum electrodynamics (QED) and cavity polaritons, as well as various applications including ultrafast...

  7. Quantum noise spectra for periodically driven cavity optomechanics

    Science.gov (United States)

    Aranas, E. B.; Akram, M. Javed; Malz, Daniel; Monteiro, T. S.

    2017-12-01

    A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016), 10.1103/PhysRevA.94.023803], and (iii) iterative analysis [New J. Phys. 18, 113021 (2016), 10.1088/1367-2630/18/11/113021]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.

  8. Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.

    Science.gov (United States)

    Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo

    2013-11-15

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  9. The propagator of stochastic electrodynamics

    Science.gov (United States)

    Cavalleri, G.

    1981-01-01

    The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.

  10. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  11. Quantum electrodynamics based on self-energy, without second quantization: The Lamb shift and long-range Casimir-Polder van der Waals forces near boundaries

    International Nuclear Information System (INIS)

    Barut, A.O.; Dowling, J.P.

    1986-12-01

    Using a previously formulated theory of quantum electrodynamics based on self-energy, we give a general method for computing the Lamb shift and related Casimir-Polder energies for a quantum system in the vicinity of perfectly conducting boundaries. Our results are exact and easily extendable to a full covariant relativistic form. As a particular example we apply the method to an atom near an infinite conducting plane, and we recover the standard QED results (which are known only in the dipole approximation) in a simple and straightforward manner. This is accomplished in the context of the new theory which is not second quantized and contains no vacuum fluctuations. (author)

  12. Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states

    International Nuclear Information System (INIS)

    Power, E.A.; Thirunamachandran, T.

    1993-01-01

    Spatial correlations between electromagnetic fields arising from neutral sources with electric-dipole transition moments are calculated using nonrelativistic quantum electrodynamics in the multipolar formalism. Expressions for electric-electric, magnetic-magnetic, and electric-magnetic correlation functions at two points r and r' are given for a source molecule in either a ground or an excited state. In contrast to the electric-electric and magnetic-magnetic cases there are no electric-magnetic correlations for a ground-state molecule. For an excited molecule the downward transitions contribute additional terms which have modulating factors depending on (r-r')/λ. From these correlation functions electric and magnetic energy densities are found by setting r=r'. These energy densities are then used in a response formalism to calculate intermolecular energy shifts. In the case of two ground-state molecules this leads to the Casimir-Polder potential. However, for a pair of molecules, one or both excited, there are additional terms arising from downward transitions. An important feature of these energies is that they exhibit an R -2 dependence for large intermolecular separations R. This dependence is interpreted in terms of the Poynting vector, which itself can be obtained by setting r=r' in the electric-magnetic correlation function

  13. Quantum gravity. On the entity of gravitation generating interacting fields and the elementary fields of quantum electrodynamics

    International Nuclear Information System (INIS)

    Bencivinni, Daniele

    2011-01-01

    The chapters about the propagation of the electromagnetic field, its properties in view of the propagation in space, the accompanying momentum, its kinetic energy and its mass-equivalent distribution of the total energy coupled to the relativistic mass represent today known and scientifically for a long time acknowledged as well as proved description of each phenomena. They are successively in a mathematically simple way formally listed and explained. The fundamental results of quantum mechanics, the quantum-mechanical momentum, Planck's action quantum etc. are also presented in a simplified way. Also the essential forms of special relativity theory concerning the propagation of energy and momentum are presented. In a last setpit is checked, whether a possible common entity between the listed scientific experiences can be established. Possible explanation approaches on the described connections and the subsequent results are presented. If the gravitational waves are interpreted as quantized electromagnetic quantum waves, as matter waves, which can be assigned to a mass in the sense of Louis de Broglie and are for instance detectable as electron waves, by means of the relativistic quantum-mechanical spatial radiation gravitation could be described. So the ''quantum-mechanical wave'' could be responsible for the generation of mass via the interaction of elementary quantum fields. The propagation of one of these as mass appearing interaction of bound quantum fields can carry a conventional momentum because of its kinetic energy. The interaction in the Bose-Einstein condensate shows that the cooled rest mass exhibits the picture of a standing wave, the wave front of which propagates into the space. Because of the massive superposition of interference pattern warns the gravitational respectively matter wave can no more be isolated. A spatial radiation is however possible. Matter can generate a radiation in front of the inertial mass (quantum waves). If it succeeds to

  14. Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.

    2010-09-02

    A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.

  15. 3. International Conference on Quantum Electrodynamics and Statistical Physics. Book of abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The conference deals with the up-to-data problems of quantum field theory and elementary particle theory, QED processes at high energy, cosmology, theory of irreversible processes, nonlinear dynamics and chaos, phase transition and diffusion processes in condensed matter and gases.

  16. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-06

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  17. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-01

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  18. Nonequilibrium quantum solvation with a time-dependent Onsager cavity

    Science.gov (United States)

    Kirchberg, H.; Nalbach, P.; Thorwart, M.

    2018-04-01

    We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere and (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing linewidth of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. By contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the linewidth of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.

  19. Two ions coupled to an optical cavity : from an enhanced quantum computer interface towards distributed quantum computing

    International Nuclear Information System (INIS)

    Casabone, B.

    2015-01-01

    Distributed quantum computing, an approach to scale up the computational power of quantum computers, requires entanglement between nodes of a quantum network. In our research group, two building blocks of schemes to entangle two ion-based quantum computers using cavity-based quantum interfaces have recently been demonstrated: ion-photon entanglement and ion-photon state mapping. In this thesis work, we extend the first building block in order to entangle two ions located in the same optical cavity. The entanglement generated by this protocol is efficient and heralded, and as it does not rely on the fact that ions interact with the same cavity, our results are a stepping stone towards the efficient generation of entanglement of remote ion-based quantum computers. In the second part of this thesis, we discuss how collective effects can be used to improve the performance of a cavity-based quantum interface. We show that by using two ions in the so-called superradiant state, the coupling strength between the two ions and the optical cavity is effectively increased compared to the single-ion case. As a complementary result, the creation of a state of two ions that exhibits a reduced coupling strength to the optical cavity, i.e., a subradiant state, is shown. Finally, we demonstrate a direct application of the increased coupling strength that the superradiant state exhibits by showing an enhanced version of the ion-photon state mapping process. By using the current setup and a second one that is being assembled, we intend to build a quantum network. The heralded ion-ion entanglement protocol presented in this thesis work will be used to entangle ions located in both setups, an experiment that requires photons generated in both apparatuses to be indistinguishable. Collective effects then can be used to modify the waveform of photons exiting the cavity in order to effect the desired photon indistinguishability. (author) [de

  20. Scheme for quantum state manipulation in coupled cavities

    Science.gov (United States)

    Lin, Jin-Zhong

    By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.

  1. Controlled teleportation of a multipartite quantum state via driven QED cavity

    International Nuclear Information System (INIS)

    Cao Haijing; Song Heshan

    2007-01-01

    We propose a scheme for teleporting a multipartite quantum state via driven QED cavity technologies. The combined state of Bell states is employed as a quantum channel. By adopting QED cavity technologies, our scheme does not involve the Bell-state measurements and can be perfectly realized by communicators' single particle measurements, possible C-not transformation and classical communication. The probability of successful teleportation can reach 1.0. The theoretical scheme is experimentally feasible via current technologies

  2. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  3. Concerning the modelling of systems in terms of Quantum Electrodynamics: the special case of 'Cold Fusion'

    International Nuclear Information System (INIS)

    Abyaneh, Morteza; Fleischmann, Martin; Del Giudice, Emilio; Vitiello, Giuseppe

    2006-01-01

    A question we are asked repeatedly is: 'what are the causes of the opposition to your belief in the reality of 'Cold Fusion?'. This question is normally asked in the context of the statement that Quantum Mechanics shows that this phenomenon is impossible (a view that we share). Our answer is always based on the statement 'but what about the modelling of such systems in terms of QED?' which is always met by the insistence that Quantum Mechanics shows that Cold Fusion is impossible. We conclude that scientists do not understand QED or, if they have some understanding of this subject, then this must be subject to some major misconceptions. This pointless dialogue (perhaps more correctly described as two monologues conducted in parallel) and the insistence on the primacy of Quantum Mechanics in the modelling of systems in the Natural Sciences is unfortunate because it obscures the outcome of the investigations in the more normal fields of the Natural Sciences (more normal than Cold Fusion). A brief outline of the work which has led to the formulation of the concept of coherence will therefore be given under the aegis of the revolutions in our understanding of the Natural Sciences which has taken place since the latter part of the 19. Century. The main illustration of the way we can demonstrate the applicability of these concepts will be based on the study of nucleation and phase growth. The development of micro-electrode substrates allows us to study the statistics of the formation of the first nucleus; it will be shown that these statistics are strictly in line with concepts developed from QED coherence. We conclude that QED coherence is not just a concept to be confined to sub-atomic physics, cosmology etc. but that it pervades the modelling of the whole of the Natural Sciences including that of 'Cold Fusion'. Some of the major steps which have taken place in the development of this subject area will be illustrated

  4. Atoms, cavities and ''Schroedinger's cats''. The monsters and wonders of quantum mechanics

    International Nuclear Information System (INIS)

    Raimond, J.M.

    1997-01-01

    The decoherence effect appears at the border between quantum world and macroscopic reality when the superposition of quantum states collapses into one particular state. This article deals with an experiment made to study for the first time the decoherence phenomenon. Circular Rydberg atoms of rubidium and superconducting cavity are the tools used to seize the very moment when the quantum superposition vanishes. This experimental proof of decoherence allows to perceive the limitations of the applications of quantum physics to fields such as quantum computing. This kind of experiment could be used to test other properties of quantum systems. (A.C.)

  5. Influence of disorder on electromagnetically induced transparency in chiral waveguide quantum electrodynamics

    Science.gov (United States)

    Mirza, Imran M.; Schotland, John C.

    2018-05-01

    We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.

  6. Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects the q...

  7. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance...

  8. BRST Quantisation of Histories Electrodynamics

    OpenAIRE

    Noltingk, D.

    2001-01-01

    This paper is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the the history fields have \\emph{five} components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this paper we quantise the classical theory developed previously by two methods. Firstly we quantise the reduced classical history space, to obtain a reduced quantum history theory. Secondly we qu...

  9. Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    M. Pechal

    2014-10-01

    Full Text Available Large-scale quantum information processors or quantum communication networks will require reliable exchange of information between spatially separated nodes. The links connecting these nodes can be established using traveling photons that need to be absorbed at the receiving node with high efficiency. This is achievable by shaping the temporal profile of the photons and absorbing them at the receiver by time reversing the emission process. Here, we demonstrate a scheme for creating shaped microwave photons using a superconducting transmon-type three-level system coupled to a transmission line resonator. In a second-order process induced by a modulated microwave drive, we controllably transfer a single excitation from the third level of the transmon to the resonator and shape the emitted photon. We reconstruct the density matrices of the created single-photon states and show that the photons are antibunched. We also create multipeaked photons with a controlled amplitude and phase. In contrast to similar existing schemes, the one we present here is based solely on microwave drives, enabling operation with fixed frequency transmons.

  10. Local effects of the quantum vacuum in Lorentz-violating electrodynamics

    Science.gov (United States)

    Martín-Ruiz, A.; Escobar, C. A.

    2017-02-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.

  11. A study of high field quantum electrodynamics in the collision of high energy electrons with a terawatt laser

    International Nuclear Information System (INIS)

    Horton-Smith, G.A.

    1998-07-01

    An experiment is described which studied quantum electrodynamic interactions under conditions of extremely high fields, along with a review of the relevant theory. The high fields were created by an intense, tightly-focused pulse of laser light at green or infrared wavelengths, into which was sent an ultra-relativistic electron beam of 46.6-GeV energy. The relevant theory is that of an electron in an electromagnetic wave so intense that the electron's mass is effectively shifted by the transverse momentum imparted to it by the wave, and the electron encounters field strengths comparable to the Schwinger critical field strength of 511 kV per Compton wavelength. An electron in the intense wave may radiate a photon and balance 4-momentum by absorbing multiple photons from the laser, which can lead to real photons with energies above the kinematic limit for conventional Compton scattering. All particles have significant probability of scattering multiple times while in the focus of the laser, including the photons radiated by the electrons, which may convert into electron-positron pairs, again with absorption of multiple photons from the laser. This experiment was able to measure the rates and spectra of positrons, electrons, and photons emerging from the interaction region. Results from both experiment and theoretical simulations are presented and compared. The results from the electron and positron measurements are compatible with the accepted theory, within experimental uncertainties due mainly to the laser intensity measurement. The photon spectrum shows the correct shape, but the ratio of rates in the linear and two-absorbed-photon portions of the spectrum does not vary as expected with the laser intensity, suggesting a disagreement with the accepted theory, with a significance of roughly two standard deviations. A follow-up experiment would be in order

  12. A study of high field quantum electrodynamics in the collision of high energy electrons with a terawatt laser

    Energy Technology Data Exchange (ETDEWEB)

    Horton-Smith, G.A.

    1998-07-01

    An experiment is described which studied quantum electrodynamic interactions under conditions of extremely high fields, along with a review of the relevant theory. The high fields were created by an intense, tightly-focused pulse of laser light at green or infrared wavelengths, into which was sent an ultra-relativistic electron beam of 46.6-GeV energy. The relevant theory is that of an electron in an electromagnetic wave so intense that the electron's mass is effectively shifted by the transverse momentum imparted to it by the wave, and the electron encounters field strengths comparable to the Schwinger critical field strength of 511 kV per Compton wavelength. An electron in the intense wave may radiate a photon and balance 4-momentum by absorbing multiple photons from the laser, which can lead to real photons with energies above the kinematic limit for conventional Compton scattering. All particles have significant probability of scattering multiple times while in the focus of the laser, including the photons radiated by the electrons, which may convert into electron-positron pairs, again with absorption of multiple photons from the laser. This experiment was able to measure the rates and spectra of positrons, electrons, and photons emerging from the interaction region. Results from both experiment and theoretical simulations are presented and compared. The results from the electron and positron measurements are compatible with the accepted theory, within experimental uncertainties due mainly to the laser intensity measurement. The photon spectrum shows the correct shape, but the ratio of rates in the linear and two-absorbed-photon portions of the spectrum does not vary as expected with the laser intensity, suggesting a disagreement with the accepted theory, with a significance of roughly two standard deviations. A follow-up experiment would be in order.

  13. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    Science.gov (United States)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  14. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    International Nuclear Information System (INIS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The calssical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnetic ZPE

  15. Use of the classical approximation in quantum electrodynamics; Applications de l'approximation classique en electrodynamique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Brezin, Edouard

    1970-06-22

    Approximations commonly used in the study of the classical limit of quantum mechanics are applied, with justification, to quantum electrodynamics. First, the infrared divergence in the scattering of two charged particles is examined with the help of a remarkable series of Feynman diagrams, which in particular preserves gauge invariance and a correct static limit. Looking for the poles in energy of the scattering amplitude, a formula for the binding energies of two charged particles, which generalizes the Balmer formula and takes into account the correct relativistic kinematics, has been derived. A second type of applications concerns phenomena due to the interaction of the electromagnetic field with the vacuum current and charge fluctuations. For instance, when the intensities become very high, the theory predicts the creation of electron-positron pairs by the field. The creation rate is known in the limit of static fields, and the aim of these calculations was to demonstrate the role of frequency in the domain starting from the lowest frequencies up to X-rays. The pair production rate was found to be entirely negligible, even for the most intense laser beams. An increase in frequency, even up to several tens of keV, did not have any effect on the pair production. (author) [French] Des approximations habituellement reservees a l'etude de la limite classique de la mecanique quantique sont ici appliquees, apres justification, a l'electrodynamique quantique. En premier, l'etude de la divergence infrarouge dans la diffusion de deux particules chargees est conduite a l'aide d'une serie de diagrammes de Feynman possedant des proprietes remarquables, en particulier l'invariance de jauge et une limite statique correcte. De la est obtenue, en recherchant les poles dans la variable d'energie de l'amplitude de diffusion, une expression des energies de liaison de deux particules chargees tenant compte exactement de la cinematique relativiste et generalisant la formule de

  16. Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities

    Science.gov (United States)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-01

    We propose quantum information processing schemes to generate and swap entangled states based on the interactions between flying photons and quantum dots (QDs) confined within optical cavities for quantum communication. To produce and distribute entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between the photonic qubits of flying photons of consumers (Alice and Bob) and electron-spin qubits of a provider (trust center, or TC), the TC employs the interactions of the QD-cavity system, which is composed of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, the TC constructs an entanglement channel (Bell state and 4-qubit GHZ state) to link one consumer with another through entanglement swapping, which can be realized to exploit a probe photon with interactions of the QD-cavity systems and single-qubit measurements without Bell state measurement, for quantum communication between consumers. Consequently, the TC, which has quantum nodes (QD-cavity systems), can accomplish constructing the entanglement channel (authenticated channel) between two separated consumers from the distributions of entangled states and entanglement swapping. Furthermore, our schemes using QD-cavity systems, which are feasible with a certain probability of success and high fidelity, can be experimentally implemented with technology currently in use.

  17. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    Science.gov (United States)

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.

    2018-03-01

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.

  18. Atmospheric electrodynamics

    International Nuclear Information System (INIS)

    Volland, H.

    1984-01-01

    The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work

  19. Tests of QED [Quantum Electrodynamics] to fourth order in alpha in electron-positron collisions at 29 GeV

    International Nuclear Information System (INIS)

    Hawkins, C.A.

    1989-02-01

    Tests of Quantum Electrodynamics to order /alpha//sup 4/ in e/sup +/e/sup /minus// collisions using the ASP detector at PEP (/radical/s = 29 GeV) are presented. Measurements are made of e/sup +/e/sup /minus// /yields/ /gamma//gamma//gamma//gamma/, e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus///gamma//gamma/ and e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus//e/sup +/e/sup /minus// where all four final state particles are separated from the beam line and each other. These are the most precise and highest statistics measurements yet reported for these processes. The ratios of measured to predicted cross sections are /gamma//gamma//gamma//gamma/: 0.97 /plus minus/ 0.04 /plus minus/ 0.14 e/sup /+/e/sup /minus///gamma/gamma/: 0.94 /plus minus/ 0.03 /plus minus/ 0.03 e/sup +/e/sup /minus//e/sup +/e/sup /minus//: 1.01 /plus minus/ 0.02 /plus minus/ 0.04 where the first uncertainty is the systematic uncertainty, and the second is the statistical uncertainty. All measurements show good agreement with theoretical predictions. A Monte Carlo method for simulating multi-pole processes is also presented, along with applications to the e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus///gamma//gamma/ and e/sup +/e/sup /minus// /yields/ /gamma//gamma//gamma//gamma/ processes. The first measurements of five-body /alpha//sup 5/ events (/sup 5//gamma/, e/sup +/e/sup /minus///gamma//gamma//gamma/ and e/sup +/e/sup /minus//e/sup +/ e/sup /minus///gamma/) and one candidate six-body /alpha//sup 6/event (e/sup +/e/sup /minus//4/gamma/) are reported. Both the /alpha//sup 5/ and /alpha//sup 6/ measurements agree with estimates of their cross sections. 20 refs., 34 figs., 14 tabs

  20. Quantum-electrodynamic influences on the lifetime of metastable states; Quantenelektrodynamische Einfluesse auf die Lebensdauer metastabiler Zustaende

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, G.

    2007-07-17

    High-precision lifetime measurements of the metastable 1s{sup 2}2s{sup 2}2p{sup 2}P{sup 0}{sub 3/2} level in boronlike Ar XIV and the 3s{sup 2}2p {sup 2}P{sup 0}{sub 3/2} level in aluminumlike Fe XIV were performed at the Heidelberg electron beam ion trap (HD-EBIT). The lifetimes were inferred by monitoring their optical decay curves resulting from the magnetic dipole (M1) transition 1s{sup 2}2s{sup 2}2p{sup 2}P{sup 0}{sub 3/2}-{sup 2}P{sup 0}{sub 1/2} and 3s{sup 2}3p {sup 2}P{sup 0}{sub 3/2}-{sup 2}P{sup 0}{sub 1/2} to the ground state configuration with transition wavelengths of 441.256 nm and 530.29 nm, respectively. Possible systematic error sources were investigated by studying the dependence of the decay times of the curves on various trapping conditions with high statistical significance. A new trapping scheme for lifetime measurements at an EBIT has been applied and allowed to reach an unprecedented precision in the realm of lifetime determinations on highly charged ions. The results of 9.573(4)({sup +12}{sub -5}) ms (stat)(syst) for Ar XIV and 16.726(10)(+17) ms (stat)(syst) for Fe XIV with a relative accuracy of 0.14% and 0.13%, respectively, make these measurements for the first time sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM). The results, improving the accuracy of previous measurements by factors of 10 and 6, respectively, show a clear discrepancy of about 3{sigma} and 4{sigma} to the trend of existing theoretical models, which in almost all cases predict a shorter lifetime, when adjusted for the EAMM. The obvious disagreement between experimental results and the predictions points at the incompleteness of the theoretical models used. (orig.)

  1. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    Science.gov (United States)

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound

  2. Quantum correlations of coupled superconducting two-qubit system in various cavity environments

    International Nuclear Information System (INIS)

    Yu, Yanxia; Fu, Guolan; Guo, L.P.; Pan, Hui; Wang, Z.S.

    2013-01-01

    Highlights: •We investigate dynamic evolutions of quantum and classical correlations for coupled superconducting system with various cavity environments. •We show that the quantum discord continues to reflect quantum information. •A transition of quantum discord is founded between classical loss and quantum increasing of correlations for a purely dephasing mode. •We show that the environment-dependent models can delay the loss of quantum discord. •We find that the results depend strongly on the initial angle. -- Abstract: Dynamic evolutions of quantum discord, concurrence, and classical correlation are investigated in coupled superconducting system with various cavity environments, focusing on the two-qubit system at an initially entangling X-state and Y-state. We find that for a smaller photon number, the quantum discord, concurrence and classical correlation show damped oscillations for all different decay modes. Differently from the sudden death or the dark and bright periods emerging in evolving processing of the concurrence and classical correlation, however, the quantum discord decreases gradually to zero. The results reveal that the quantum entanglement and classical correlation are lost, but the quantum discord continues to reflect quantum information in the same evolving period. For a larger photon number, the oscillations disappear. It is surprised that there exists a transition of quantum discord between classical loss and quantum increasing of correlations for a purely dephasing mode. For a larger photon number in the Y-state, the transition disappears. Moreover, we show that the environment-dependent models can delay the loss of quantum discord. The results depend strongly on the initial angle, which provide a clue to control the quantum gate of superconducting circuit

  3. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.

    2011-07-01

    Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced

  4. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    Science.gov (United States)

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology. PMID:27067992

  5. Entanglement and bistability in coupled quantum dots inside a driven cavity

    International Nuclear Information System (INIS)

    Mitra, Arnab; Vyas, Reeta

    2010-01-01

    Generation and dissipation of entanglement between two coupled quantum dots (QDs) in a cavity driven by a coherent field is studied. We find that it is possible to generate and sustain a large amount of entanglement between the quantum dots in the steady state, even in the presence of strong decay in both the cavity and the dots. We investigate the effect of different parameters (decay rates, coupling strengths, and detunings) on entanglement. We find that the cavity field shows bistability and study the effect of relevant parameters on the existence of this bistable behavior. We also study the correlation between the cavity field and the entanglement between the dots. The experimental viability of the proposed scheme is discussed.

  6. Cavity quantum chromodynamics in the presence of a classical background field

    International Nuclear Information System (INIS)

    Gavin, E.J.O.; Viollier, R.D.

    1988-01-01

    The QCD (quantum chromodynamics) Lagrange density is constructed in which the gluon field has a classical part, using the background field gauge. The conserved currents deriving from the symmetries of this theory are given and used to define boundary conditions on the field operators on the surface of a spherical, static cavity. The field operators are expanded in terms of a complete set of cavity modes that satisfy the boundary conditions and the field equations in the Dirac picture. 13 refs

  7. Modern electrodynamics

    CERN Document Server

    Zangwill, Andrew

    2013-01-01

    An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks. Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject. In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is availa...

  8. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    argue that there is ample room for improving the oscillator strength with prospects for approaching the ultra-strong-coupling regime of cavity quantum electrodynamics with optical photons. These outstanding gures of merit render interface-uctuation quantum dots excellent candidates for use in cavity...... quantum electrodynamics and quantum-information science. We investigate exciton localization in droplet-epitaxy quantum dots by conducting spectral and time-resolved measurements. We nd small excitons despite the large physical size of dropletepitaxy quantum dots, which is attributed to material inter......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  9. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  10. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  11. Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED

    International Nuclear Information System (INIS)

    Wu Xi; Chen Zhi-Hua; Chen Yue-Hua; Ye Ming-Yong; Lin Xiu-Min; Zhang Yong

    2011-01-01

    Schemes are presented for realizing quantum controlled phase gate and preparing an N-qubit W-like state, which are based on the large-detuned interaction among three-state atoms, dual-mode cavity and a classical pulse. In particular, a class of W states that can be used for perfect teleportation and superdense coding is generated by only one step. Compared with the previous schemes, cavity decay is largely suppressed because the cavity is only virtually excited and always in the vacuum state and the atomic spontaneous emission is strongly restrained due to a large atom—field detuning. (general)

  12. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)

    2017-05-10

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.

  13. Voltage-Controlled Quantum Dynamics and Generation Entanglement between Two Separated Quantum-Dot Molecules Embedded in Photonic Crystal Cavities

    International Nuclear Information System (INIS)

    Cheng Mu-Tian; Song Yan-Yan; Ma Xiao-San; Wang Xia

    2014-01-01

    Voltage-controlled quantum dynamics of two quantum-dot molecules (QDMs) embedded in two separated photonic crystal cavities are theoretically investigated. We show numerically that generation of entangled states and population transfer between the two QDMs can be realized with the same coupling parameters. The effects of parameters deviation and dissipations on generation entangled states and populations transfer are also discussed. The results may be used for realization of new-type of solid state quantum devices and integrated electro-optical devices

  14. Cavity-assisted quantum computing in a silicon nanostructure

    International Nuclear Information System (INIS)

    Tang Bao; Qin Hao; Zhang Rong; Xue Peng; Liu Jin-Ming

    2014-01-01

    We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By choosing a certain evolution time, we propose the realization of a set of universal single- and two-qubit logical gates. Due to its intrinsic stability and scalability, the silicon dangling-bond charge qubit can be regarded as one of the most promising candidates for quantum computation. Compared to the previous schemes on quantum computing with silicon bulk systems, our scheme shows such advantages as a long coherent time and direct control and readout. (general)

  15. Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hensen, Matthias [Institut; Heilpern, Tal [Center; Gray, Stephen K. [Center; Pfeiffer, Walter [Fakultät

    2017-10-12

    Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.

  16. Observation of single quantum dots in GaAs/AlAs micropillar cavities

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Philipp; Karl, Matthias; Hu, Dongzhi; Schaadt, Daniel M.; Kalt, Heinz; Hetterich, Michael [Institut fuer Angewandte Physik, Universitaet Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), Karlsruhe (Germany)

    2009-07-01

    In our contribution we present the fabrication steps of micropillar cavities and their optical properties. The layer structure consisting of a GaAs-based lambda-cavity sandwiched between two GaAs/AlAs distributed Bragg reflectors is grown by molecular-beam epitaxy. In(Ga)As quantum dots, emitting at around 950 nm, are embedded as optically active medium in the middle of the cavity. The pillars are milled out of this structure with a focused ion-beam. A confocal micro-photoluminescence set-up allows to measure optical cavity modes as well as single quantum dots in the pillars when using low excitation intensity. This enables us to observe a (thermal) shift of the single quantum dot peaks relative to the cavity mode. In addition, we increased the numerical aperture of the set-up (originally 0.4) with a solid immersion lens up to 0.8. Thus we are able to detect the fundamental mode of pillars with very small diameters. Furthermore, the collection efficiency increases substantially.

  17. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    , including a case capable of dynamically controlling the photon’s effective mass to a large extent while keeping the resonance frequency same. We believe that full-control and dynamical-tuning of the photon’s effective mass may enable new possibilities for cavity quantum electrodynamics studies...

  18. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-07-01

    Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.

  19. Frequency-tunable SRF cavities for microwave opto-mechanics

    Science.gov (United States)

    Castelli, Alessandro; Martinez, Luis; Pate, Jacob; Thompson, Johnathon; Chiao, Raymond; Sharping, Jay

    Three dimensional SRF (Superconducting Radio Frequency) cavities are known for achieving high quality factors (Q =109 or higher) but suffer from limited frequency tunability once fabricated and cooled to superconducting temperatures. Our end-wall design allows for numerous applications of cavity tuning at temperatures as low as 40 millikelvin. Using a bimorphic piezoelectric transducer, we demonstrate approximately 15 MHz of resonance tunability for the TE011 mode at cryogenic temperatures in a cylindrical reactor grade niobium (Nb) cavity (10% of the range at room temperature). This range doubles when using tunable end-walls on both cavity ends. We report on techniques for improving the Q of multi-component cavities including the use of concave end-walls to reduce fields near the cylinder ends and indium O-rings to reduce resistive losses at the gaps. Three-dimensional SRF cavities of this type have potential applications to quantum information science, precision displacement metrology, and quantum electro-dynamics.

  20. State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu

    International Nuclear Information System (INIS)

    Bouchendira, Rym; Clade, Pierre; Nez, Francois; Biraben, Francois; Guellati-Khelifa, Saida

    2013-01-01

    The fine structure constant α has a particular status in physics. Its precise determination is required to test the quantum electrodynamics (QED) theory. The constant α is also a keystone for the determination of other fundamental physical constants, especially the ones involved in the framework of the future International System of units. This paper presents Paris experiment, where the fine structure constant is determined by measuring the recoil velocity of a rubidium atom when it absorbs a photon. The impact of the recent improvement of QED calculations of the electron moment anomaly and the recent measurement of the cesium atom recoil at Berkeley will be discussed. The opportunity to provide a precise value of the ratio h/m u between the Planck constant and the atomic mass constant will be investigated. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Quantum Cavity Optomechanics with Phononic Bandgap Shielded Silicon Nitride Membranes

    DEFF Research Database (Denmark)

    Nielsen, William Hvidtfelt Padkær

    two highly reflective mirrors, all of which are embedded in a helium flowcryostat. In order to reach truly quantum territory, severe shielding of the membranefrom the environment is required, as well as meticulous concern for auxiliarysources of noise, both from the laser and mirrors used.The purpose...... of this thesis is to document the development of the experimentfrom its initial stages to its final quantum enabled incarnation, as well as to providethe necessary theoretical machinery to interpret the experimental results. A strongemphasis is placed on the unique challenges posed by our unique monolithic...

  2. Electron–Cyclotron Laser Using Free-Electron Two-Quantum Stark Radiation in a Strong Uniform Axial Magnetic Field and an Alternating Axial Electric Field in a Voltage-Supplied Pill-Box Cavity

    International Nuclear Information System (INIS)

    Kim, S. H.

    2016-01-01

    We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength λ_w generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two-quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when λ_w ≪ c/(ω_c/γ), where ω_c/γ is the relativistic electron–cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length 10 m with estimated power 0.1 GW/(kA) in the 10"−"4 cm wavelength range. (paper)

  3. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.

  4. Cavity-photon contribution to the effective interaction of electrons in parallel quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Vidar [Science Institute, University of Iceland, Reykjavik (Iceland); Sitek, Anna [Science Institute, University of Iceland, Reykjavik (Iceland); Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology (Poland); Abdullah, Nzar Rauf [Science Institute, University of Iceland, Reykjavik (Iceland); Physics Department, Faculty of Science and Science Education, School of Science, University of Sulaimani, Kurdistan Region (Iraq); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, Miaoli (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University (Iceland)

    2016-05-15

    A single cavity photon mode is expected to modify the Coulomb interaction of an electron system in the cavity. Here we investigate this phenomena in a parallel double quantum dot system. We explore properties of the closed system and the system after it has been opened up for electron transport. We show how results for both cases support the idea that the effective electron-electron interaction becomes more repulsive in the presence of a cavity photon field. This can be understood in terms of the cavity photons dressing the polarization terms in the effective mutual electron interaction leading to nontrivial delocalization or polarization of the charge in the double parallel dot potential. In addition, we find that the effective repulsion of the electrons can be reduced by quadrupolar collective oscillations excited by an external classical dipole electric field. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Cavity-photon contribution to the effective interaction of electrons in parallel quantum dots

    Science.gov (United States)

    Gudmundsson, Vidar; Sitek, Anna; Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei

    2016-05-01

    A single cavity photon mode is expected to modify the Coulomb interaction of an electron system in the cavity. Here we investigate this phenomena in a parallel double quantum dot system. We explore properties of the closed system and the system after it has been opened up for electron transport. We show how results for both cases support the idea that the effective electron-electron interaction becomes more repulsive in the presence of a cavity photon field. This can be understood in terms of the cavity photons dressing the polarization terms in the effective mutual electron interaction leading to nontrivial delocalization or polarization of the charge in the double parallel dot potential. In addition, we find that the effective repulsion of the electrons can be reduced by quadrupolar collective oscillations excited by an external classical dipole electric field.

  6. Quantum quincunx for walk on circles in phase space with indirect coin flip

    International Nuclear Information System (INIS)

    Xue Peng; Sanders, Barry C

    2008-01-01

    The quincunx, or Galton board, has a long history as a tool for demonstrating and investigating random walk processes, but a quantum quincunx (QQ) for demonstrating a coined quantum walk (QW) is yet to be realized experimentally. We propose a variant of the QQ in cavity quantum electrodynamics, designed to eliminate the onerous requirement of directly flipping the coin. Instead, we propose driving the cavity in such a way that cavity field displacements are minimized and the coin is effectively flipped via this indirect process. An effect of this indirect flipping is that the walker's location is no longer confined to a single circle in the planar phase space, but we show that the phase distribution nonetheless shows quadratic enhancement of phase diffusion for the quantum versus classical walk despite this small complication. Thus our scheme leads to coined QW behaviour in cavity quantum electrodynamics without the need to flip the coin directly

  7. Ideal quantum gas in an expanding cavity: nature of nonadiabatic force.

    Science.gov (United States)

    Nakamura, K; Avazbaev, S K; Sobirov, Z A; Matrasulov, D U; Monnai, T

    2011-04-01

    We consider a quantum gas of noninteracting particles confined in the expanding cavity and investigate the nature of the nonadiabatic force which is generated from the gas and acts on the cavity wall. First, with use of the time-dependent canonical transformation, which transforms the expanding cavity to the nonexpanding one, we can define the force operator. Second, applying the perturbative theory, which works when the cavity wall begins to move at time origin, we find that the nonadiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of the force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with the use of transitionless quantum states is also explained. The study is done for both cases of the hard- and soft-wall confinement with the time-dependent confining length. ©2011 American Physical Society

  8. Speed Geometric Quantum Logical Gate Based on Double-Hamiltonian Evolution under Large-Detuning Cavity QED Model

    International Nuclear Information System (INIS)

    Chen Changyong; Liu Zongliang; Kang Shuai; Li Shaohua

    2010-01-01

    We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms for the large-detuning interaction of the atoms with the cavity mode. The main advantage of our scheme is of eliminating the photon flutuation in the cavity mode during the gating. The corresponding analytical results will be helpful for experimental realization of speed geometric quantum logical gate in real cavities. (general)

  9. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  10. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    International Nuclear Information System (INIS)

    Yi-Min, Wang; Yan-Li, Zhou; Lin-Mei, Liang; Cheng-Zu, Li

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity. Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation. The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer. The collective decoherence can be successfully avoided in our well-designed system. Moreover, GHZ state for logical qubits can also be easily produced in this system

  11. A mode-locked external-cavity quantum-dot laser with a variable repetition rate

    International Nuclear Information System (INIS)

    Wu Jian; Jin Peng; Li Xin-Kun; Wei Heng; Wu Yan-Hua; Wang Fei-Fei; Chen Hong-Mei; Wu Ju; Wang Zhan-Guo

    2013-01-01

    A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest −3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    Science.gov (United States)

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng

    2016-05-01

    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  13. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  14. Observation of the exceptional point in cavity magnon-polaritons.

    Science.gov (United States)

    Zhang, Dengke; Luo, Xiao-Qing; Wang, Yi-Pu; Li, Tie-Fu; You, J Q

    2017-11-08

    Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsically nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.

  15. Quantum entanglement and teleportation in pulsed cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Sebastian G. [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Institute for Theoretical Physics, Institute for Gravitational Physics, Leibniz University Hannover, Callinstrasse 38, 30167 Hannover (Germany); Wieczorek, Witlef; Aspelmeyer, Markus [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Hammerer, Klemens [Institute for Theoretical Physics, Institute for Gravitational Physics, Leibniz University Hannover, Callinstrasse 38, 30167 Hannover (Germany)

    2011-11-15

    Entangling a mechanical oscillator with an optical mode is an enticing and yet a very challenging goal in cavity optomechanics. Here we consider a pulsed scheme to create Einstein-Podolsky-Rosen-type entanglement between a traveling-wave light pulse and a mechanical oscillator. The entanglement can be verified unambiguously by a pump-probe sequence of pulses. In contrast to schemes that work in a steady-state regime under a continuous-wave drive, this protocol is not subject to stability requirements that normally limit the strength of achievable entanglement. We investigate the protocol's performance under realistic conditions, including mechanical decoherence, in full detail. We discuss the relevance of a high mechanical Qf product for entanglement creation and provide a quantitative statement on which magnitude of the Qf product is necessary for a successful realization of the scheme. We determine the optimal parameter regime for its operation and show it to work in current state-of-the-art systems.

  16. Spontaneous dressed-state polarization in the strong driving regime of cavity QED.

    Science.gov (United States)

    Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo

    2009-10-23

    We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.

  17. Teleportation of a two-atom entangled state using a single EPR pair in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Li Ke; Zhang Shou

    2006-01-01

    We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.

  18. Quantum Fisher information for a qubit system placed inside a dissipative cavity

    International Nuclear Information System (INIS)

    Berrada, K.; Abdel-Khalek, S.; Obada, A.-S.F.

    2012-01-01

    We study the time evolution of the quantum Fisher information of a system whose the dynamics is described by the phase-damped model. We discuss the correlation between the Fisher information and entanglement dynamics of a qubit and single-mode quantized field in a coherent state inside phase-damped cavity. Analytic results under certain parametric conditions are obtained, by means of which we analyze the influence of dissipation on the negativity and quantum Fisher information for different values of the estimator parameter. An interesting monotonic relation between the Fisher information and nonlocal correlation behavior is observed during the time evolution. -- Highlights: ► Relation between the Fisher information and nonlocal correlation dynamics. ► Definition of quantum Fisher information for the atomic density operator. ► Investigation of Fisher information and negativity for the phase-damped model. ► Analytic solution of the master equation for the atom-field system in cavity field. ► Quantum Fisher information may be helpful in quantum information tasks.

  19. Investigations of a voltage-biased microwave cavity for quantum measurements of nanomechanical resonators

    Science.gov (United States)

    Rouxinol, Francisco; Hao, Hugo; Lahaye, Matt

    2015-03-01

    Quantum electromechanical systems incorporating superconducting qubits have received extensive interest in recent years due to their promising prospects for studying fundamental topics of quantum mechanics such as quantum measurement, entanglement and decoherence in new macroscopic limits, also for their potential as elements in technological applications in quantum information network and weak force detector, to name a few. In this presentation we will discuss ours efforts toward to devise an electromechanical circuit to strongly couple a nanomechanical resonator to a superconductor qubit, where a high voltage dc-bias is required, to study quantum behavior of a mechanical resonator. Preliminary results of our latest generation of devices integrating a superconductor qubit into a high-Q voltage biased microwave cavities are presented. Developments in the circuit design to couple a mechanical resonator to a qubit in the high-Q voltage bias CPW cavity is discussed as well prospects of achieving single-phonon measurement resolution. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  20. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  1. Encoding quantum information in a stabilized manifold of a superconducting cavity

    Science.gov (United States)

    Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.

  2. Electroluminescence Caused by the Transport of Interacting Electrons through Parallel Quantum Dots in a Photon Cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdulla, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-02-01

    We show that a Rabi-splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para- or the dia-magnetic electron-photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one- and two-electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high-order electron-photon processes are necessary to adequately construct the cavity-photon dressed electron states needed to describe both types of electroluminescence.

  3. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    Science.gov (United States)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  4. Explanation of the quantum phenomenon of off-resonant cavity-mode emission

    Science.gov (United States)

    Echeverri-Arteaga, Santiago; Vinck-Posada, Herbert; Gómez, Edgar A.

    2018-04-01

    We theoretically investigate the unexpected occurrence of an extra emission peak that has been experimentally observed in off-resonant studies of cavity QED systems. Our results within the Markovian master equation approach successfully explain why the central peak arises, and how it reveals that the system is suffering a dynamical phase transition induced by the phonon-mediated coupling. Our findings are in qualitative agreement with previous reported experimental results, and the fundamental physics behind this quantum phenomenon is understood.

  5. Optical bistability in a single-sided cavity coupled to a quantum channel

    Science.gov (United States)

    Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.

    2018-06-01

    In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.

  6. Elements of quantum optics

    CERN Document Server

    Meystre, Pierre

    2007-01-01

    Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...

  7. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  8. Regularized linearization for quantum nonlinear optical cavities: application to degenerate optical parametric oscillators.

    Science.gov (United States)

    Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao

    2014-10-06

    Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.

  9. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  10. Auger Processes Mediating the Nonresonant Optical Emission from a Semiconductor Quantum Dot Embedded Inside an Optical Cavity

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Nielsen, Per Kær; Lund, Anders Mølbjerg

    2013-01-01

    perform microscopic calculations of the effect treating the wetting layer as a non-Markovian reservoir interacting with the coupled quantum dot-cavity system through Coulomb interactions. Experimentally, cavity feeding has been observed in the asymmetric detuning range of -10 to +45 meV. We show...

  11. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    Science.gov (United States)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  12. High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Dunzer, Florian

    As/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10....... It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light...... coupling in micropillars relied on quantum dots with high oscillator strengths f > 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µe...

  13. Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime

    International Nuclear Information System (INIS)

    Li Chun-Yan; Li Yan-Song

    2011-01-01

    We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed. (general)

  14. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  15. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  16. The effects of correlation, relativity, quantum electrodynamics, nuclear size and parity non-conservation in alkali atoms and alkali-like ions

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1995-01-01

    The present review briefly presents the growing experimental as well as theoretical interests in recent years in the effects of (1) correlation, (2) relativity, (3) quantum electrodynamic (QED), (4) finite nuclear size (FNS) and (5) parity non-conservation (PNC) on the high precision electronic structure of alkali atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Some experiments separate these effects and some do not. Several sophisticated theoretical techniques have been developed for corrections of these effects which play an extremely important role in order to obtain results of high accuracy to well below 1% level and to understand experimental observations of high precision. Correlation, relativity and finite nuclear size effects have been treated on an equal footing in some theoretical methods but QED and PNC have been calculated separately. At present, there is no theory which accounts all five effects in a coherent and unified manner. Future challenges and directions, in reliable structure calculations in atoms and ions, have been discussed and suggested. (author). 83 refs, 3 figs, 9 tabs

  17. Many-body effects in transport through a quantum-dot cavity system

    Science.gov (United States)

    Dinu, I. V.; Moldoveanu, V.; Gartner, P.

    2018-05-01

    We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations (e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter interaction. The former is essential in the description of the transport, while for the latter we identify situations in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs plays an important role in the argument. The master equation is numerically solved for the s -shell many-body configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most efficient optical processes take place in a three-level Λ system. The alternative exciton-ground-state route is inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the cavity loss rate, which turns out to be nonmonotonic.

  18. X-ray quantum optics with Moessbauer nuclei in thin-film cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heeg, Kilian Peter

    2014-12-09

    In this thesis thin-film cavities with embedded Moessbauer nuclei probed by near-resonant X-ray light are studied from a quantum optical perspective. A theoretical framework is developed and compact expressions for the observables are derived for the linear excitation regime, which is encountered in current experiments. Even advanced cavity layouts can be modeled in excellent agreement with the results of previous experiments and semi-classical approaches. In the absence of magnetic hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano profiles. An experimental implementation of this line shape control allows to extract spectroscopic signatures with high precision and to reconstruct the phase of the nuclear transition in good agreement with the theoretical predictions. The alignment of medium magnetization and polarization control of the X-rays enable to engineer advanced quantum optical level schemes, in which vacuum induced coherence effects are predicted and successfully demonstrated in an experiment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved in the cavity. A scheme for its observation is proposed and then employed to experimentally confirm sub-luminal X-ray propagation. Finally, non-linear effects, which could become accessible with future light sources, are explored and a non-linear line shape control mechanism is discussed.

  19. Two-dimensional quantum-corrected black hole in a finite size cavity

    International Nuclear Information System (INIS)

    Zaslavskii, O.B.

    2004-01-01

    We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature T H , with the contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., Callan-Giddings-Harvey-Strominger), where it enables us to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability

  20. Engineering Topological Many-Body Materials in Microwave Cavity Arrays

    Directory of Open Access Journals (Sweden)

    Brandon M. Anderson

    2016-12-01

    Full Text Available We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry-breaking (nonreciprocal flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the α=1/4 Hofstadter model. To induce photon-photon interactions, the cavities are coupled to superconducting qubits; we find these interactions are sufficient to stabilize a ν=1/2 bosonic Laughlin puddle. Exact diagonalization studies demonstrate that this architecture is robust to experimentally achievable levels of disorder. These advances provide an exciting opportunity to employ the quantum circuit toolkit for the exploration of strongly interacting topological materials.

  1. Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback

    Directory of Open Access Journals (Sweden)

    Arkadiy Lyakh

    2016-04-01

    Full Text Available The recent demonstration of external cavity quantum cascade lasers with optical feedback, controlled by an acousto-optic modulator, paves the way to ruggedized infrared laser systems with the capability of tuning the emission wavelength on a microsecond scale. Such systems are of great importance for various critical applications requiring ultra-rapid wavelength tuning, including combustion and explosion diagnostics and standoff detection. In this paper, recent research results on these devices are summarized and the advantages of the new configuration are analyzed in the context of practical applications.

  2. Entangled-photon generation from a quantum dot in cavity QED

    International Nuclear Information System (INIS)

    Ajiki, Hiroshi; Ishihara, Hajime

    2009-01-01

    We theoretically study polarization-entangled photon generation from a single quantum dot in a microcavity. Entangled-photon pairs with singlet or triplet Bell states are generated in the resonant-hyperparametric scattering via dressed states in the cavity QED. Although co-polarized non-entangled photons are also generated, the generation is dramatically suppressed in the strong-coupling limit owing to the photon blockade effect. Finite binding energy of biexciton is also important for the generation of photon pairs with high degree of entanglement. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Muschik, Christine A.; Giedke, Geza

    2010-01-01

    We propose and analyze a multifunctional setup consisting of high-finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does no...... is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows for quantum nondemolition number resolved photodetection in the optical domain....

  4. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    International Nuclear Information System (INIS)

    Biebersdorf, A; Lingk, C; De Giorgi, M; Feldmann, J; Sacher, J; Arzberger, M; Ulbrich, C; Boehm, G; Amann, M-C; Abstreiter, G

    2003-01-01

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments

  5. Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement

    International Nuclear Information System (INIS)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2010-01-01

    A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.

  6. Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement

    Science.gov (United States)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2010-04-01

    A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.

  7. Quantum logic gates using Stark-shifted Raman transitions in a cavity

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2004-01-01

    We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the controlled-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement

  8. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-01-01

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  9. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  10. Active mode locking of quantum cascade lasers in an external ring cavity.

    Science.gov (United States)

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  11. Fundamental properties of devices for quantum information technology

    DEFF Research Database (Denmark)

    Nielsen, Per Kær

    This thesis reports a theoretical investigation of the influence of the electronphonon interaction on semiconductor cavity quantum electrodynamical systems, specifically a quantum dot coupled to an optical microcavity. We develop a theoretical description of the decay dynamics of the quantum dot...... interacting with the cavity and the phonons. It is shown that the presence of the phonon interaction, fundamentally changes the spontaneous emission decay behavior of the quantum dot. Especially in the regime where the quantum dotcavity spectral detuning is significantly larger than any linewidth...... of the system, the effect of the phonon interaction is very pronounced. A simple approximate analytical expression for the quantum dot decay rate is derived, which predicts a strong asymmetry with respect to the quantum dot-cavity detuning at low temperatures, and allows for a clear interpretation...

  12. Mode Engineering of Single Photons from Cavity Spontaneous Parametric Down-Conversion Source and Quantum Dots

    Science.gov (United States)

    Paudel, Uttam

    Over the past decade, much effort has been made in identifying and characterizing systems that can form a building block of quantum networks, among which semiconductor quantum dots (QD) and spontaneous parametric down-conversion (SPDC) source are two of the most promising candidates. The work presented in this thesis will be centered on investigating and engineering the mentioned systems for generating customizable single photons. A type-II SPDC source can generate a highly flexible pair of entangled photons that can be used to interface disparate quantum systems. In this thesis, we have successfully implemented a cavity-SPDC source that emits polarization correlated photons at 942 nm with a lifetime of 950-1050ps that mode matches closely with InAs/GaAs QD photons. The source emits 80 photon pairs per second per mW pump power within the 150MHz bandwidth. Though the detection of idler photons, the source is capable of emitting heralded photons with g2?0.5 for up to 40 mW pump power. For a low pump power of 5 mW, the heralded g2 is 0.06, indicating that the system is an excellent heralded single photon source. By directly exciting a single QD with cavity-SPDC photons, we have demonstrated a heralded-absorption of SPDC photons by QD, resulting in the coupling of the two systems. Due to the large pump bandwidth, the emitted source is highly multimode in nature, requiring us to post-filter the downconverted field, resulting in a lower photon pair emission rate. We propose placing an intra-cavity etalon to suppress the multi-mode emissions and increase the photon count rate. Understanding and experimentally implementing two-photon interference (HOM) measurements will be crucial for building a scalable quantum network. A detailed theoretical description of HOM measurements is given and is experimentally demonstrated using photons emitted by QD. Through HOM measurements we demonstrated that the QD sample in the study is capable of emitting indistinguishable photons, with

  13. The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiufeng, E-mail: xfcao@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Ai, Qing; Sun, Chang-Pu [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2012-01-09

    We propose a strategy to demonstrate the transition from the quantum Zeno effect (QZE) to the anti-Zeno effect (AZE) using a superconducting qubit coupled to a transmission line cavity, by varying the central frequency of the cavity mode. Our results are obtained without the rotating wave approximation (RWA), and the initial state (a dressed state) is easy to prepare. Moreover, we find that in the presence of both qubit's intrinsic bath and the cavity bath, the emergence of the QZE and the AZE behaviors relies not only on the match between the qubit energy-level-spacing and the central frequency of the cavity mode, but also on the coupling strength between the qubit and the cavity mode. -- Highlights: ► We propose how to demonstrate the transition from Zeno effect to anti-Zeno effect. ► Our results are beyond the RWA, and the initial state is easy to prepare. ► The case of both qubit's intrinsic bath and cavity bath coexist is also studied.

  14. High beta lasing in micropillar cavities with adiabatic layer design

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Lorke, M.

    2013-01-01

    We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...... of the threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....

  15. Electrodynamic metanuclei

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2008-01-01

    A relativistic system of electrically charged fermions and oppositely charged massive scalars with no self-interactions, is argued to have a long-lived collective state with a net charge. The charge is residing near the surface of the spherically-symmetric state, while the interior consists of the condensed scalars, that are neutralized by the fermions. The metastability is achieved by competition of the negative pressure of the scalar condensate, against the positive pressure, mainly due to the fermions. We consider such metanuclei made of helium-4 nuclei and electrons, below nuclear but above atomic densities. Typical metanuclei represent charged balls of the atomic size, colossal mass, electric charge and excess energy. Unlike an ordinary nucleus, the charge of a metanucleus scales proportionately to its radius. The quantum mechanical decay through tunneling, and vacuum instability via pair-creation, are both suppressed for large values of the electric charge. Similar states could also be composed of other charged (pseudo)scalars, such as the pions, scalar supersymmetric partners, or in general, spin-0 states of new physics

  16. Scanning near-field optical microscopy of quantum dots in photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, Matthias; Fiore, Andrea [COBRA Research Institute, Technical University Eindhoven, Den Dolech 2, 5600 MB Eindhoven (Netherlands); Prancardi, Marco; Gerardino, Annamaria [Institute of Photonics and Nanotechnology, CNR, via del Cineto Romano 42, 00156 Roma (Italy); Alloing, Blandine; Li Lianhe, E-mail: m.s.skacel@tue.n [Institute of Photonics and Quantum Electronics, EPFL, CH-1015 Lausanne (Switzerland)

    2010-09-01

    Nanophotonic devices are of major interest for research and future quantum communication applications. Due to their nanometer feature size the resolution limit of far-field microscopy poses a limitation on the characterization of their optical properties. A method to overcome the resolution limit is the Scanning Near-Field Optical Microscope (SNOM). By approaching a fiber tip into the close vicinity of the sample the optical emission in the near-field regime is collected. This way of collecting the light is not affected by the diffraction limit. We employ a low temperature SNOM to investigate the photoluminescence of InAs QDs emitting at 1300nm wavelength embedded in photonic crystal cavities. At each location of an image scan the tip is stopped and a spectrum is acquired. We then plot maps of the photoluminescence for each wavelength. With this instrument it is now possible to directly observe the coupling of QDs to photonic crystal cavities both spectrally and spatially. We show first results of photoluminescence mapping of InAs QDs in photonic crystal cavities.

  17. Probing a quantum field in a photon box

    International Nuclear Information System (INIS)

    Raimond, J M; Meunier, T; Bertet, P; Gleyzes, S; Maioli, P; Auffeves, A; Nogues, G; Brune, M; Haroche, S

    2005-01-01

    Einstein often performed thought experiments with 'photon boxes', storing fields for unlimited times. This is yet but a dream. We can nevertheless store quantum microwave fields in superconducting cavities for billions of periods. Using circular Rydberg atoms, it is possible to probe in a very detailed way the quantum state of these trapped fields. Cavity quantum electrodynamics tools can be used for a direct determination of the Husimi Q and Wigner quasi-probability distributions. They provide a very direct insight into the classical or non-classical nature of the field

  18. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons

    Science.gov (United States)

    Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.

    2016-12-01

    In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.

  19. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    International Nuclear Information System (INIS)

    Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D

    2016-01-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)

  20. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    Science.gov (United States)

    Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.

    2016-07-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.

  1. Several one-loop calculations in a formulation of massive quantum electrodynamics possessing only vacuum-polarization divergences

    International Nuclear Information System (INIS)

    Phillips, S.

    1985-01-01

    An alternative formulation of path-integral quantization for gauge theories is proposed in which the gauge-fixing condition, normally imposed on just the gauge field itself, is imposed on the gauge-transformed gauge field, a continuous sum now being included over all configurations of the transformation field, Λ(x) that satisfy the gauge condition. It is shown, by explicit calculation, that when bilinear counterterms in the Lagrangian field density are included so as to render the two-point gauge- and fermion-field Green's functions finite, the fermion-fermion-gauge-field Green's function is divergence free. Unlike the more conventional approaches, there is no divergent vertex counterterm needed. Furthermore, the form of the fermion counterterm is a simple mass insertion only. There is no need for a divergent fermion wave-function renormalization. The cancellation of the divergences that are normally present is accomplished by the effect of, heretofor uncommon in perturbative quantum-field theory, infrared-divergent integrals. It is argued heuristically how these may be regulated by the same parameter, Λ, that is used for ultraviolet-divergent integrals, where now the cutoff is towards the lower limit of integration

  2. Superconducting resonators as beam splitters for linear-optics quantum computation.

    Science.gov (United States)

    Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P

    2010-06-11

    We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

  3. Utilizing photon number parity measurements to demonstrate quantum computation with cat-states in a cavity

    Science.gov (United States)

    Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.

  4. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    2010-01-01

    treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced...

  5. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  6. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...

  7. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light-matter interaction

    International Nuclear Information System (INIS)

    Mekhov, Igor B; Ritsch, Helmut

    2012-01-01

    Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)

  8. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  9. Introduction to Electrodynamics

    Science.gov (United States)

    Griffiths, David J.

    2017-06-01

    1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.

  10. New progress of fundamental aspects in quantum mechanics

    International Nuclear Information System (INIS)

    Sun Changpu

    2001-01-01

    The review recalls the conceptual origins of various interpretations of quantum mechanics. With the focus on quantum measurement problems, new developments of fundamental quantum theory are described in association with recent experiments such as the decoherence process in cavity quantum electrodynamics 'which-way' detection using the Bragg scattering of cold atoms, and quantum interference using the small quantum system of molecular C 60 . The fundamental problems include the quantum coherence of a macroscopic object, the von Neumann chain in quantum measurement, the Schroedinger cat paradox, et al. Many land math experiments have been accomplished with possible important applications in quantum information. The most recent research on the new quantum theory by G.'t Hooft is reviewed, as well as future prospects of quantum mechanics

  11. Broadband external cavity quantum cascade laser based sensor for gasoline detection

    Science.gov (United States)

    Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong

    2018-02-01

    A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.

  12. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco; Alsaif, Bidoor; Gatti, Davide; Fermann, Martin; Laporta, Paolo; Farooq, Aamir; Marangoni, Marco

    2017-01-01

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\mu

  13. Mode locking of an external cavity asymmetric quantum-well GaAs/AlGaAs semiconductor laser

    International Nuclear Information System (INIS)

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T; Tanaka, K A

    2006-01-01

    A theoretical model of the optical gain in asymmetric GaAs/AlGaAs quantum-well lasers is developed. It is demonstrated that the emission spectrum of asymmetric GaAs/AlGaAs quantum-well lasers is much broader than that of standard quantum-well lasers. The experimental samples of such lasers and superluminescent diodes with the emission bandwidth exceeding 50 nm are fabricated. Wavelength tunable ultrashort pulses with duration of 1-2 ps at repetition rates of 0.4-1 GHz are obtained by active mode locking of an external cavity laser. (lasers)

  14. Measurement of the cross-section of electron-positron scattering at high energy and quantum electrodynamics testing; Mesure de la section efficace de diffusion electron-positron a haute energie et validite de l'electrodynamique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Lalanne, D.

    1970-07-17

    The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10{sup -14} cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e{sup +}e{sup -} → e{sup +}e{sup -}γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10{sup -31} cm{sup 2}. The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV.

  15. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime

    International Nuclear Information System (INIS)

    Rimberg, A J; Blencowe, M P; Armour, A D; Nation, P D

    2014-01-01

    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field. (paper)

  16. Concepts of electrodynamics

    CERN Document Server

    Kumar, Vinay

    2016-01-01

    The present book entitled Concepts of Electrodynamics meets the demand of students of all engineering, graduate, honours and postgraduate courses in a single volume. This book covers all the topics on electrodynamics as per the new syllabus prescribed by UGC and AICTE and we do hope that this book will revive interest in the study of various topics on electrodynamics which will carries the reader to a high level of understanding. The text is enriched with a large number of solved examples apart from appropriate illustrations and examples in each chapter.

  17. Plasmonic reflectors and high-Q nano-cavities based on coupled metal-insulator-metal waveguides

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2012-03-01

    Full Text Available Based on the contra-directional coupling, a composite structure consisting of two coupled metal-insulator-metal (MIM waveguides is proposed to act as an attractive plasmonic reflector. By introducing a defect into one of the MIM waveguides, we show that such a composite structure can be operated as a plasmonic nanocavity with a high quality factor. Both symmetric and anti-symmetric cavity modes are supported in the plasmonic cavity, and their resonance frequencies can be tuned by controlling the defect width. The present structures could have a significant impact for potential applications such as surface plasmon mirrors, filters and solid-state cavity quantum electrodynamics.

  18. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

    Science.gov (United States)

    Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco

    2016-12-01

    We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

  19. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  20. Foundations of electrodynamics

    CERN Document Server

    Moon, Parry

    2013-01-01

    Advanced undergraduate text presupposes some knowledge of electricity and magnetism, making substantial use of vector analysis. A serious development of electrodynamics on a postulational basis that clearly defines each concept. 1960 edition.

  1. Vacuum-induced Stark shifts for quantum logic using a collective system in a high-quality dispersive cavity

    International Nuclear Information System (INIS)

    Gabris, A.; Agarwal, G.S.

    2005-01-01

    A collective system of atoms in a high-quality cavity can be described by a nonlinear interaction which arises due to the Lamb shift of the energy levels due to the cavity vacuum [Agarwal et al., Phys. Rev. A 56, 2249 (1997)]. We show how this collective interaction can be used to perform quantum logic. In particular we produce schemes to realize controlled-NOT gates not only for two-qubit but also for three-qubit systems. We also discuss realizations of Toffoli gates. Our effective Hamiltonian is also realized in other systems such as trapped ions or magnetic molecules

  2. Quantum-Noise-Limited Sensitivity-Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing an intracavity dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noiselimited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantumnoise- limited measurement precision, by temperature tuning a low-pressure vapor of noninteracting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  3. Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1975-01-01

    The theory of classical electrodynamics with classical electromagnetic zero-point radiation is outlined here under the title random electrodynamics. The work represents a reanalysis of the bounds of validity of classical electron theory which should sharpen the understanding of the connections and distinctions between classical and quantum theories. The new theory of random electrodynamics is a classical electron theory involving Newton's equations for particle motion due to the Lorentz force, and Maxwell's equations for the electromagnetic fields with point particles as sources. However, the theory departs from the classical electron theory of Lorentz in that it adopts a new boundary condition on Maxwell's equations. It is assumed that the homogeneous boundary condition involves random classical electromagnetic radiation with a Lorentz-invariant spectrum, classical electromagnetic zero-point radiation. The implications of random electrodynamics for atomic structure, atomic spectra, and particle-interference effects are discussed on an order-of-magnitude or heuristic level. Some detailed mathematical connections and some merely heuristic connections are noted between random electrodynamics and quantum theory. (U.S.)

  4. Time-dependent current into and through multilevel parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-05-01

    We analyze theoretically the charging current into, and the transport current through, a nanoscale two-dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon cavity. A plunger gate is used to place specific many-body states of the interacting system in the bias window defined by the external leads. We show how the transport phenomena active in the many-level complex central system strongly depend on the gate voltage. We identify a resonant transport through the central system as the two spin components of the one-electron ground state are in the bias window. This resonant transport through the lowest energy electron states seems to a large extent independent of the detuned photon field when judged from the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active internal transitions bringing the system into the steady state. The number of initially present photons determines when the system reaches the real steady state. With two-electron states in the bias window we observe a more complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system. The presence of the radiative channels makes this phenomena dependent on the number of photons initially in the cavity.

  5. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  6. Circuit quantum acoustodynamics with surface acoustic waves.

    Science.gov (United States)

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  7. Quantum-Noise-Limited Sensitivity Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing a dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noise-limited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantum-noise-limited measurement precision, by temperature tuning a low-pressure vapor of non-interacting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  8. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  9. Quantum gas in the fast forward scheme of adiabatically expanding cavities: Force and equation of state

    Science.gov (United States)

    Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro

    2018-04-01

    With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.

  10. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  11. Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots

    Science.gov (United States)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo

    We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.

  12. Elements of quantum information

    International Nuclear Information System (INIS)

    Schleich, W.P.

    2007-01-01

    Elements of Quantum Information introduces the reader to the fascinating field of quantum information processing, which lives on the interface between computer science, physics, mathematics, and engineering. This interdisciplinary branch of science thrives on the use of quantum mechanics as a resource for high potential modern applications. With its wide coverage of experiments, applications, and specialized topics - all written by renowned experts - Elements of Quantum Information provides and indispensable, up-to-date account of the state of the art of this rapidly advancing field and takes the reader straight up to the frontiers of current research. The articles have first appeared as a special issue of the journal 'Fortschritte der Physik / Progress of Physics'. Since then, they have been carefully updated. The book will be an inspiring source of information and insight for anyone researching and specializing in experiments and theory of quantum information. Topics addressed in Elements of Quantum Information include - Cavity Quantum Electrodynamics - Segmented Paul Traps - Cold Atoms and Bose-Einstein Condensates in Microtraps, Optical Lattices, and on Atom Chips - Rydberg Gases - Factorization of Numbers with Physical Systems - Entanglement of Continuous Variables - NMR and Solid State Quantum Computation - Quantum Algorithms and Quantum Machines - Complexity Theory - Quantum Crytography. (orig.)

  13. Axiomatic electrodynamics and microscopic mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1981-04-01

    A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)

  14. Radiative corrections in bumblebee electrodynamics

    Directory of Open Access Journals (Sweden)

    R.V. Maluf

    2015-10-01

    Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.

  15. Design, fabrication, and optimization of quantum cascade laser cavities and spectroscopy of the intersubband gain

    Science.gov (United States)

    Dirisu, Afusat Olayinka

    Quantum Cascade (QC) lasers are intersubband light sources operating in the wavelength range of ˜ 3 to 300 mum and are used in applications such as sensing (environmental, biological, and hazardous chemical), infrared countermeasures, and free-space infrared communications. The mid-infrared range (i.e. lambda ˜ 3-30 mum) is of particular importance in sensing because of the strong interaction of laser radiation with various chemical species, while in free space communications the atmospheric windows of 3-5 mum and 8-12 mum are highly desirable for low loss transmission. Some of the requirements of these applications include, (1) high output power for improved sensitivity; (2) high operating temperatures for compact and cost-effective systems; (3) wide tunability; (4) single mode operation for high selectivity. In the past, available mid-infrared sources, such as the lead-salt and solid-state lasers, were bulky, expensive, or emit low output power. In recent years, QC lasers have been explored as cost-effective and compact sources because of their potential to satisfy and exceed all the above requirements. Also, the ultrafast carrier lifetimes of intersubband transitions in QC lasers are promising for high bandwidth free-space infrared communication. This thesis was focused on the improvement of QC lasers through the design and optimization of the laser cavity and characterization of the laser gain medium. The optimization of the laser cavity included, (1) the design and fabrication of high reflection Bragg gratings and subwavelength antireflection gratings, by focused ion beam milling, to achieve tunable, single mode and high power QC lasers, and (2) modeling of slab-coupled optical waveguide QC lasers for high brightness output beams. The characterization of the QC laser gain medium was carried out using the single-pass transmission experiment, a sensitive measurement technique, for probing the intersubband transitions and the electron distribution of QC lasers

  16. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    Science.gov (United States)

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  17. Electrodynamic thermogravimetric analyzer

    International Nuclear Information System (INIS)

    Spjut, R.E.; Bar-Ziv, E.; Sarofim, A.F.; Longwell, J.P.

    1986-01-01

    The design and operation of a new device for studying single-aerosol-particle kinetics at elevated temperatures, the electrodynamic thermogravimetric analyzer (EDTGA), was examined theoretically and experimentally. The completed device consists of an electrodynamic balance modified to permit particle heating by a CO 2 laser, temperature measurement by a three-color infrared-pyrometry system, and continuous weighing by a position-control system. In this paper, the position-control, particle-weight-measurement, heating, and temperature-measurement systems are described and their limitations examined

  18. Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings

    International Nuclear Information System (INIS)

    Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M; MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A; Sarkar, D

    2010-01-01

    Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g (2) (0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.

  19. Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector

    Directory of Open Access Journals (Sweden)

    W. W. Wang

    2015-01-01

    Full Text Available We simulated and analyzed a resonant-cavity-enhancedd InGaAs/GaAs quantum dot n-i-n photodiode using Crosslight Apsys package. The resonant cavity has a distributed Bragg reflector (DBR at one side. Comparing with the conventional photodetectors, the resonant-cavity-enhanced photodiode (RCE-PD showed higher detection efficiency, faster response speed, and better wavelength selectivity and spatial orientation selectivity. Our simulation results also showed that when an AlAs layer is inserted into the device structure as a blocking layer, ultralow dark current can be achieved, with dark current densities 0.0034 A/cm at 0 V and 0.026 A/cm at a reverse bias of 2 V. We discussed the mechanism producing the photocurrent at various reverse bias. A high quantum efficiency of 87.9% was achieved at resonant wavelength of 1030 nm with a FWHM of about 3 nm. We also simulated InAs QD RCE-PD to compare with InGaAs QD. At last, the photocapacitance characteristic of the model has been discussed under different frequencies.

  20. Limits of electrodynamics: paraphotons

    International Nuclear Information System (INIS)

    Okun, L.B.

    1982-01-01

    The paper discusses the accuracy with which electromagnetic interaction is studied at large distances. Possible deviations from standard electrodynamics are investigated. The consideration is carried out the framework of a model which contains two (para) photons, the mass of one of them being non-negligible

  1. Problems of hadron electrodynamics

    International Nuclear Information System (INIS)

    Rekalo, M.P.

    1989-01-01

    Certain directions of hadron electrodynamics referring to testing symmetry properties relatively to C-, P- and T-transformations; determination of fundamental electromagnetic characteristics of hadrons as well as to clarifying the dynamics of electromagnetic processes in which hadrons participate are analyzed briefly. 52 refs

  2. Causality in Classical Electrodynamics

    Science.gov (United States)

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  3. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  4. Gauge equivalence of the electrodynamics of charged bosons

    International Nuclear Information System (INIS)

    Sohn, R.; Haller, K.

    1977-01-01

    The quantum electrodynamics of charged scalar and vector bosons is formulated in the Lorentz gauge, and the effect of the charged particle--photon interaction on the subsidiary condition is explicitly taken into account. The results are extensions of earlier work on spinor quantum electrodynamics, but the presence of seagull vertices and anomalous current commutators in the case of the charged bosons make the extensions nontrivial. An operator gauge transformation that encompasses equations of motion as well as the commutator algebra of the field operators is developed; it is used to transform the theory from the Lorentz gauge to the Coulomb gauge

  5. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  6. Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity

    Science.gov (United States)

    2012-12-01

    Cavities in Monocrystalline Diamond. Physical Review Letters 109, 033604 (2012). 14. Kroutvar, M. et al. Optically programmable electron spin...temperatures, varying the detuning of X− from the cavity. The dashed blue lines in panel a are fits to the reflectivity. The spectra are vertically

  7. 3D microwave cavity with magnetic flux control and enhanced quality factor

    Energy Technology Data Exchange (ETDEWEB)

    Reshitnyk, Yarema [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); Jerger, Markus [The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia); Fedorov, Arkady [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia)

    2016-12-15

    Three-dimensional (3D) microwave cavities have been extensively used for coupling and interacting with superconducting quantum bits (qubits), providing a versatile platform for quantum control experiments and for realizing hybrid quantum systems. While having high quality factors (>10{sup 6}) superconducting cavities do not permit magnetic field control of qubits. In contrast, cavities made of normal metals are transparent to magnetic fields, but experience lower quality factors (∝10{sup 4}). We have created a hybrid cavity which is primarily composed of aluminium but also contains a small copper insert reaching the internal quality factor of ≅10{sup 5}, an order of magnitude improvement over all previously tested normal metal cavities. In order to demonstrate precise magnetic control, we performed spectroscopy of three superconducting qubits, where individual control of each qubit's frequency was exerted with small external wire coils. An improvement in quality factor and magnetic field control makes this 3D hybrid cavity an attractive new element for circuit quantum electrodynamics experiments. (orig.)

  8. Maxwell equations in conformal invariant electrodynamics

    International Nuclear Information System (INIS)

    Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.

    1983-01-01

    We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)

  9. Single atoms on demand for cavity QED experiments

    International Nuclear Information System (INIS)

    Dotsenko, I.

    2007-01-01

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the cavity

  10. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the

  11. Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure.

    Science.gov (United States)

    Sydoryk, Ihor; Lim, Alan; Jäger, Wolfgang; Tulip, John; Parsons, Matthew T

    2010-02-20

    We demonstrate the application of a commercially available widely tunable continuous-wave external cavity quantum cascade laser as a spectroscopic source for the simultaneous detection of multiple gases. We measured broad absorption features of benzene and toluene between 1012 and 1063 cm(-1) (9.88 and 9.41 microm) at atmospheric pressure using an astigmatic Herriott multipass cell. Our results show experimental detection limits of 0.26 and 0.41 ppm for benzene and toluene, respectively, with a 100 m path length for these two gases.

  12. Generation and spectroscopic signatures of a fractional quantum Hall liquid of photons in an incoherently pumped optical cavity

    Science.gov (United States)

    Umucalılar, R. O.; Carusotto, I.

    2017-11-01

    We investigate theoretically a driven dissipative model of strongly interacting photons in a nonlinear optical cavity in the presence of a synthetic magnetic field. We show the possibility of using a frequency-dependent incoherent pump to create a strongly correlated ν =1 /2 bosonic Laughlin state of light: Due to the incompressibility of the Laughlin state, fluctuations in the total particle number and excitation of edge modes can be tamed by imposing a suitable external potential profile for photons. We further propose angular-momentum-selective spectroscopy of the emitted light as a tool to obtain unambiguous signatures of the microscopic physics of the quantum Hall liquid of light.

  13. Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes

    Science.gov (United States)

    Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.

    Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  14. Theoretical physics 3 electrodynamics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...

  15. Electrodynamics an intensive course

    CERN Document Server

    Chaichian, Masud; Radu, Daniel; Tureanu, Anca

    2016-01-01

    This book is devoted to the fundamentals of classical electrodynamics, one of the most beautiful and productive theories in physics. A general survey on the applicability of physical theories shows that only few theories can be compared to electrodynamics. Essentially, all electric and electronic devices used around the world are based on the theory of electromagnetism. It was Maxwell who created, for the first time, a unified description of the electric and magnetic phenomena in his electromagnetic field theory. Remarkably, Maxwell’s theory contained in itself also the relativistic invariance of the special relativity, a fact which was discovered only a few decades later. The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, astronomy, engineering, applied mathematics and for researchers working ...

  16. Nonlinear electrodynamics and cosmology

    International Nuclear Information System (INIS)

    Breton, Nora

    2010-01-01

    Nonlinear electrodynamics (NLED) generalizes Maxwell's theory for strong fields. When coupled to general relativity NLED presents interesting features like the non-vanishing of the trace of the energy-momentum tensor that leads to the possibility of violation of some energy conditions and of acting as a repulsive contribution in the Raychaudhuri equation. This theory is worth to study in cosmological and astrophysical situations characterized by strong electromagnetic and gravitational fields.

  17. Deterministic Generation of Quantum State Transfer Between Spatially Separated Single Molecule Magnets

    International Nuclear Information System (INIS)

    Song Peijun; Lue Xinyou; Huang Pei; Hao Xiangying; Yang Xiaoxue

    2010-01-01

    We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum electrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network. (general)

  18. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  19. Electrodynamics in Arbitrary Reference Frames and in Arbitrary Material Media

    International Nuclear Information System (INIS)

    Horzela, A.; Kapuscik, E.; Widomski, M.

    1999-01-01

    Full text: The investigation of electromagnetic phenomena in material media still belongs to the most difficult tasks of electrodynamics. Complexity and variability of material media practically exclude effective applications of methods and computational techniques elaborated in the framework of standard microscopic electrodynamics with classical vacuum as a ground state. In order to obtain satisfactorily exact descriptions of electromagnetic properties of complex material media one is enforced to use methods and approximations which are difficult to control. Moreover, they usually break covariance properties and the results obtained are valid in one reference frame which choice remains subjective and model dependent. Some time ago we have proposed a reformulation of Maxwell electrodynamics which opens new ways in study of electromagnetic processes in material media. The formalism gets rid of assumptions characteristic for vacuum electrodynamics only and it avoids the usage of constitutive relations as primary relations put on quantities needed for a complete description of an electromagnetic system. Fundamental properties of all electromagnetic quantities are their uniquely defined transformation rules and their analysis allows to determine the possible relations between them. Within such a scheme it is possible to introduce constitutive relations which do not have analogies in macroscopic classical electrodynamics. They may be used in description of microscopic electromagnetic processes in a different way than it is done in the framework of quantum electrodynamics. (author)

  20. Detection of light-matter interaction in the weak-coupling regime by quantum light

    Science.gov (United States)

    Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying

    2018-04-01

    "Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.

  1. New analytical calculations of the resonance modes in lens-shaped cavities: applications to the calculations of the energy levels and electronic wavefunctions in quantum dots

    International Nuclear Information System (INIS)

    Even, J; Loualiche, S

    2003-01-01

    The problem of the energy levels and electronic wavefunctions in quantum dots is studied in the parabolic coordinates system. A conventional effective mass Hamiltonian is written. For an infinite potential barrier, it is related to the more general problem of finding the resonance modes in a cavity. The problem is found to be separable for a biconvex-shaped cavity or quantum dot with an infinite potential barrier. This first shape of quantum dot corresponds to the intersection of two orthogonal confocal parabolas. Then plano-convex lens-shaped cavities or quantum dots are studied. This problem is no more separable in the parabolic coordinates but using symmetry properties, we show that the exact solutions of the problem are simple combinations of the previous solutions. The same approach is used for spherical coordinates and hemispherical quantum dots. It is finally shown that convex lens-shaped quantum dots give a good description of self-organized InAs quantum dots grown on InP

  2. Generalized noise terms for the quantized fluctuational electrodynamics

    DEFF Research Database (Denmark)

    Partanen, Mikko; Hayrynen, Teppo; Tulkki, Jukka

    2017-01-01

    position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization...

  3. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    International Nuclear Information System (INIS)

    Yang Chuiping; Han Siyuan

    2004-01-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation

  4. Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)

    2017-06-15

    We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.

  5. Quantum phase fluctuations in the Jaynes-cummings model: effects of cavity damping

    International Nuclear Information System (INIS)

    Ho Trung Dung; Shumovskij, A.S.

    1992-01-01

    Phase properties of a coherent field interacting with a two-level atom in a cavity with very high but finite Q are studied. It is shown that due to the cavity damping the field phase is randomized more quickly than in the ideal-losslesscavity case. The Hermitian phase distribution and the phase distributions associated with the Q function and the Wigner function are compared. The similarities between them have clear interpretation in terms of the area-of-overlap in phase space. 29 refs.; 3 figs

  6. Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Reitzenstein, Stephan

    2013-01-01

    The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the ca...... the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar....

  7. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    -level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within......-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder...

  8. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  9. Indefinite metric and regularization of electrodynamics

    International Nuclear Information System (INIS)

    Gaudin, M.

    1984-06-01

    The invariant regularization of Pauli and Villars in quantum electrodynamics can be considered as deriving from a local and causal lagrangian theory for spin 1/2 bosons, by introducing an indefinite metric and a condition on the allowed states similar to the Lorentz condition. The consequences are the asymptotic freedom of the photon's propagator. We present a calcultion of the effective charge to the fourth order in the coupling as a function of the auxiliary masses, the theory avoiding all mass divergencies to this order [fr

  10. Modal analysis of the ultrahigh finesse Haroche QED cavity

    Science.gov (United States)

    Marsic, Nicolas; De Gersem, Herbert; Demésy, Guillaume; Nicolet, André; Geuzaine, Christophe

    2018-04-01

    In this paper, we study a high-order finite element approach to simulate an ultrahigh finesse Fabry–Pérot superconducting open resonator for cavity quantum electrodynamics. Because of its high quality factor, finding a numerically converged value of the damping time requires an extremely high spatial resolution. Therefore, the use of high-order simulation techniques appears appropriate. This paper considers idealized mirrors (no surface roughness and perfect geometry, just to cite a few hypotheses), and shows that under these assumptions, a damping time much higher than what is available in experimental measurements could be achieved. In addition, this work shows that both high-order discretizations of the governing equations and high-order representations of the curved geometry are mandatory for the computation of the damping time of such cavities.

  11. Multi-quantum spin resonances of intrinsic defects in silicon carbide

    International Nuclear Information System (INIS)

    Georgy Astakhov

    2014-01-01

    We report the observation of multi-quantum microwave absorption and emission, induced by the optical excitation of silicon vacancy related defects in silicon carbide (SiC). In particular, we observed two-quantum transitions from +3/2 to -1/2 and from -3/2 to +1/2 spin sublevels, unambiguously indicating the spin S = 3/2 ground state. Our findings may have implications for a broad range of quantum applications. On one hand, a single silicon vacancy defect is a potential source of indistinguishable microwave photon pairs due to the two-quantum emission process. On the other hand, the two-quantum absorption can be used generate a population inversion, which is a prerequisite to fabricate solid-state maser and quantum microwave amplifier. This opens a new platform cavity quantum electrodynamics experiments and quantum information processing on a single chip. (author)

  12. Photon echo quantum random access memory integration in a quantum computer

    International Nuclear Information System (INIS)

    Moiseev, Sergey A; Andrianov, Sergey N

    2012-01-01

    We have analysed an efficient integration of multi-qubit echo quantum memory (QM) into the quantum computer scheme based on squids, quantum dots or atomic resonant ensembles in a quantum electrodynamics cavity. Here, one atomic ensemble with controllable inhomogeneous broadening is used for the QM node and other nodes characterized by the homogeneously broadened resonant line are used for processing. We have found the optimal conditions for the efficient integration of the multi-qubit QM modified for the analysed scheme, and we have determined the self-temporal modes providing a perfect reversible transfer of the photon qubits between the QM node and arbitrary processing nodes. The obtained results open the way for realization of a full-scale solid state quantum computing based on the efficient multi-qubit QM. (paper)

  13. Implications of rail electrodynamics

    International Nuclear Information System (INIS)

    Rolader, G.E.; Jamison, K.A.

    1990-01-01

    A model is developed to investigate possible effects of rail electrodynamics on the performance of railguns. This model describes the oscillatory nature of the rail motion in response to the Lorentz force and the compressive restoration force of material which is behind the rails. In this simple model the rails are found to oscillate with a frequency of β. The rail dynamic behavior induces local electric fields. The authors investigate the significance of these electric fields on stationary particles (lab frame) and on particles moving at the velocity of the plasma/projectile system (projectile frame)

  14. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    Science.gov (United States)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  15. Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals

    Science.gov (United States)

    Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias

    2018-03-01

    We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.

  16. III–V quantum light source and cavity-QED on Silicon

    Science.gov (United States)

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  17. III-V quantum light source and cavity-QED on silicon.

    Science.gov (United States)

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  18. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  19. Wilson Fermions and Axion Electrodynamics in Optical Lattices

    International Nuclear Information System (INIS)

    Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.

    2010-01-01

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  20. Entanglement dynamics of two electron-spin qubits in a strongly detuned and dissipative quantum-dot-cavity system

    International Nuclear Information System (INIS)

    Xiang Shaohua; Deng Xiaopeng; Song Kehui; Wen Wei; Shi Zhengang

    2011-01-01

    We investigate the entanglement dynamics of two electron-spin qubits in the quantum-dot (QD)-microcavity system in the large-detuning limit and subjected to two different noise sources: electron-spin dephasing and relaxation. We show that when one of the two dots is prepared initially in the excited state, the created entanglement exhibits oscillatory behavior at the beginning of evolution and then completely disappears over time. For two QDs that are initially in either the Einstein-Podolsky-Rosen-Bell states or the Werner states, their entanglement evolution exhibits the same behavior in the presence of pure dephasing, but is completely different under the relaxation process. We also show that the interdot interaction induced by a single-mode cavity field does not contribute to the dynamics of entanglement for these Bell states and Werner states.

  1. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor; Lamperti, Marco; Gatti, Davide; Laporta, Paolo; Fermann, Martin E.; Farooq, Aamir; Marangoni, Marco

    2017-01-01

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  2. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor

    2017-11-02

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  3. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2017-07-31

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\\\mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {\\\\mu}m, which is the current wavelength limit for commercial cw EC-QCLs.

  4. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  5. Direct conversion of a three-atom W state to a Greenberger–Horne–Zeilinger state in spatially separated cavities

    International Nuclear Information System (INIS)

    Wang, Guo-Yuan; Wang, Dong-Yang; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    State conversion between the Greenberger–Horne–Zeilinger (GHZ) state and the W state is a challenging open problem because these states cannot be converted to each other by just local operations and classical communication. Here we propose a cavity quantum electrodynamics method based on interference of polarized photons emitted by the atoms trapped in spatially separated optical cavities that can convert a three-atom W state to a GHZ state. We calculate the success probability and fidelity of the converted GHZ state when the cavity decay, spontaneous atomic decay and photon leakage of the cavities are taken into account for a practical system, which shows that the proposed scheme is feasible and within the reach of current experimental technology. (paper)

  6. Simple schemes for generation of W-type multipartite entangled states and realization of quantum-information concentration

    International Nuclear Information System (INIS)

    Deng-Yu, Zhang; Shi-Qing, Tang; Li-Jun, Xie; Xiao-Gui, Zhan; Yin-Hua, Chen; Feng, Gao

    2010-01-01

    We propose simple schemes for generating W-type multipartite entangled states in cavity quantum electrodynamics (CQED). Our schemes involve a largely detuned interaction of Λ-type three-level atoms with a single-mode cavity field and a classical laser, and both the symmetric and asymmetric W states can be created in a single step. Our schemes are insensitive to both the cavity decay and atomic spontaneous emission. With the above system, we also propose a scheme for realizing quantum-information concentration which is the reverse process of quantum cloning. In this scheme, quantum-information originally coming from a single qubit, but now distributed into many qubits, is concentrated back to a single qubit in only one step. (general)

  7. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...... dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new...... avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission....

  8. Cavity switching : A novel resource for solid-state quantum optics

    NARCIS (Netherlands)

    Sattler, T.; Peinke, E.; Bleuse, J.; Claudon, J.; Vos, W. L.; Gerard, J.M.

    2017-01-01

    We present switching experiments performed on pillar microcavities containing a collection of quantum dots (QDs). Switching events are probed using QD luminescence, after ultrafast optical injection of free carriers. We observe large switching amplitudes (by as much as 20 linewidths), as well as

  9. Photomlxer for terahertz electromagnetic wave emission comprising quantum dots in a laser cavity

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photomixer for generating terahertz electromagnetic radiation in response to illumination by a time-modulated optical signal. The photomixer (300) comprises a carrier substrate (310) with a plurality of quantum dots arranged in an emission region (308) thereof...

  10. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  11. Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission

    DEFF Research Database (Denmark)

    Gregersen, Niels; Skovgård, Troels Suhr; Lorke, Michael

    2012-01-01

    We present a rate equation model for quantum-dot light-emitting devices that take into account Purcell enhancement of both spontaneous emission and stimulated emission as well as the spectral profile of the optical and electronic density-of-states. We find that below threshold the b-factor in a q...

  12. Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, P.

    2012-01-01

    of the physics and emphasize the important role played by the effective phonon density, describing the availability of phonons for scattering, in quantum dot decay dynamics. Based on the analytical expressions, we present the parameter regimes where phonon effects are expected to be important. Also, we include...

  13. Electrodynamics of continua

    CERN Document Server

    Eringen, A C

    1990-01-01

    The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De­ formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec­ tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic, and current fields). Because bodies of different constitutions respond to external stimuli in a different way, it is imperative to characterize properly the response functions relevant to a given class of continua. This is done by means of the constitutive theory. For example, an elastic dielectric responds to electro...

  14. The electrodynamics of Ritz

    International Nuclear Information System (INIS)

    Waldron, R.A.

    1979-01-01

    An account is given of Ritz's electrodynamics. Ritz's paper is divided into two parts. In the first he criticises the Lorentz-Maxwell theory based on fields, and comments on alternative theories based on particle interactions. In the second he develops his own theory, also based on particle interactions. He starts from a force law which is analogous to a force law derived by Schwarzschild from the Lorentz theory. While the approach is interesting, it leads to results which do not agree with experimental results obtained several decades later, after Ritz's death. A similar approach is applied to gravitation and is shown to be capable of explaining the anomalous precession of the planet Mercury. (Auth.)

  15. Interference effects on quantum light group velocity in cavity induced transparency

    International Nuclear Information System (INIS)

    Eilam, Asaf; Thanopulos, Ioannis

    2015-01-01

    We investigate the propagation of a quantized probe field in a dense medium composed of three-level Λ-type systems under cavity electromagnetically induced transparency conditions. We treat the medium as composed of collective states of the three-level systems while the light-medium interaction occurs within clusters of such collective states depending on the photon number state of the probe field. We observe slower group velocity for lower photon number input probe field only under conditions of no interference between different clusters of collective states in the system. (paper)

  16. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  17. A One-Dimensional Quantum Interface between a Few Atoms and Weak Light

    DEFF Research Database (Denmark)

    Béguin, Jean-Baptiste Sylvain

    Quantum interfaces between light and the collective degrees of freedom of an ensemble of identical atoms have been proposed as a valuable and promising alternative to cavity quantum electrodynamics enhanced interaction with single particles. Many features of the quantum world (e. g. multipartite...... entanglement, squeezed states), which are central to the future developments of Quantum Information Science and Metrology, can be explored with mesoscopic collective states of atoms. An efficient quantum interface needs a high optical depth for the atomic ensemble and a measurement sensitivity limited by both...... the intrinsic quantum noise of light and the quantum projection noise of atoms. This was achieved in the past in a free space optical dipole trap ensemble of Nat ∼ 10^6 atoms, which triggered the operation of a collective Ramsey atomic clock assisted by entanglement. We have characterized and prepared non...

  18. Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser

    International Nuclear Information System (INIS)

    Wu Yan-Hua; Jian Wu; Jin Peng; Wang Fei-Fei; Hu Fa-Jie; Wei Heng; Wang Zhan-Guo

    2015-01-01

    A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ. (paper)

  19. Quantum-nondemolition measurement of photon arrival using an atom-cavity system

    International Nuclear Information System (INIS)

    Kojima, Kunihiro; Tomita, Akihisa

    2007-01-01

    A simple and efficient quantum-nondemolition measurement (QND) scheme is proposed in which the arrival of a signal photon is detected without affecting the qubit state. The proposed QND scheme functions even if the ancillary photon is replaced with weak light composed of vacuum and one-photon states. Although the detection scheme is designed for entanglement sharing applications, it is also suitable for general purification of a single-photon state

  20. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...