WorldWideScience

Sample records for cavity lasers theoretical

  1. Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities

    International Nuclear Information System (INIS)

    A helium–neon ring laser cavity is modified by employing variable coupled passive cavities to introduce anomalous dispersion. An equivalent model for the coupled cavities is proposed, and new equations are performed. Theoretical analysis of the parameters is presented in detail, and a novel iterative method is proposed. Gyros using this ring laser are shown in different sensitivity enhancements with limited broadened passive cavity line-width, and the minimal measurable rotation rate is analyzed. The related quantum noise limited line-width is found to be broadened with limitations, which mainly depend on the round trip loss. Fluctuations are induced to analyze parameter influences on enhancements, and a novel modification method concerning mirror reflectivity is proposed for experimental setups. Finally several practical considerations are generally discussed, and some suggestions are proposed for realization. This fast light induced enhancement can be important for present gyros based on a He–Ne ring laser. (paper)

  2. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.

    Science.gov (United States)

    Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity. PMID:25353549

  3. Theoretical analysis of free carrier absorption in the cavity of a quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Andrey; Suris, Robert [Ioffe Physical-Technical Institute of the RAS, St. Petersburg (Russian Federation); St. Petersburg Academic University of the RAS, St. Petersburg (Russian Federation); St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation)

    2012-05-15

    In this work we analyze free carrier absorption (FCA) and polarization ratio (transversality degree) for eigenmodes of a quantum cascade laser (QCL) waveguide. We consider the dielectric function and conductivity of the waveguide core and cladding layers within the Drude-Lorentz approximation. We show that the entire spectrum of a QCL cavity consists of three kinds of eigenmodes: volume, surface, and Langmuir modes. We perform an analytical analysis and numerical calculations of FCA and polarization ratio for each type of the eigenmodes within a wide frequency range from the microwave up to the ultraviolet spectrum. We make a comparative analysis of FCA in the cladding layers and waveguide core. We specify frequency intervals where absorption in the core or in the cladding layers is dominant. Identification of the most favorable modes for lasing is carried out for each part of the spectrum. So, we identify that the main Langmuir mode is the most favorable mode for the lasing at the long-wave edge of the terahertz (THz) region: (i) it has no frequency cutoff and can be excited at arbitrarily low frequency, (ii) it is nearly transversal that is very favorable for the QCL operation, and (iii) it is almost totally confined within the waveguide core. The model analyzed is directly related to one-dimensional photonic crystals and metamaterials consisting of alternating anisotropic layers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  5. Laser cavity modelling

    OpenAIRE

    Damakoa, I.; Audounet, J.; Bouyssou, G.; Vassilieff, G.

    1993-01-01

    Two approachs of modelling nonhomogeneous cavity laser are presented. They are based on the beam propagation method which allows the use of fast Fourier transform (FFT). The resulting procedures provide selfconsistent solutions to the Maxwell and diffusion equations. Results are given to illustrate the two methods.


  6. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity......This thesis describes the design, fabrication and characterization of photonic crystal slab lasers. The main focus is on coupled photonic crystal cavity lasers which are examined in great detail. The cavity type which is mainly explored consists of a defect formed by a single missing hole in the...... structures with quantum wells. A detailed Analysis is conducted on single cavities, two coupled cavities and arrays of coupled cavities. The lasing threshold is determined by measuring the photoluminescence intensity depending on the excitation power. Changes in the linewidth and peak position for different...

  7. Metasurface external cavity laser

    Science.gov (United States)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Chen, Qi-Sheng; Itoh, Tatsuo; Williams, Benjamin S.

    2015-11-01

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  8. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  9. Vertical external cavity surface emitting semiconductor lasers

    CERN Document Server

    Holm, M

    2001-01-01

    Active stabilisation showed a relative locked linewidth of approx 3 kHz. Coarse tuning over 7 nm was achieved using a 3-plate birefingent filter plate while fine-tuning using cavity length change allowed tuning over 250 MHz. Vertical external cavity semiconductor lasers have emerged as an interesting technology based on current vertical cavity semiconductor laser knowledge. High power output into a single transverse mode has attracted companies requiring good fibre coupling for telecommunications systems. The structure comprises of a grown semiconductor Bragg reflector topped with a multiple quantum well gain region. This is then included in an external cavity. This device is then optically pumped to promote laser action. Theoretical modelling of AIGaAs based VECSEL structures was undertaken, showing the effect of device design on laser characteristics. A simple 3-mirror cavity was constructed to assess the static characteristics of the structure. Up to 153 mW of output power was achieved in a single transver...

  10. Spectral properties of a semiconductor α-DFB laser cavity

    International Nuclear Information System (INIS)

    The experimental and theoretical investigations of spectral properties of a semiconductor α-DFB laser cavity are carried out. It is shown that in these lasers the curvature of mode gain spectra near the maximum is higher by more than two orders of magnitude than in conventional semiconductor lasers with a Fabry-Perot cavity. The distance between the adjacent axial modes of an α-DFB laser is shorter than in the case of a Fabry-Perot cavity laser of the same length, and its experimental value agrees well with the value obtained in the simple geometrical model, taking into account a zigzag propagation of radiation inside the cavity. (lasers)

  11. Theoretical Analysis of Dependence of Nonlinear Effects in Mode-Locked Yb:YAG Lasers with a Highly Nonlinear Intra-Cavity Medium

    OpenAIRE

    Takeshi Yoshida; Hiroaki Okunishi; Keisuke Kyomoto; Kento Kato; Kyosuke Shimabayashi; Shinichi Inayoshi; Motoki Morioka; Sakae Kawato

    2015-01-01

    Nonlinear ultrashort pulse propagation in a mode-locked Yb:YAG laser with a highly nonlinear intra-cavity medium is analyzed using a nonlinear Schrodinger equation. The output spectra are extended by the increased laser intensity, and spectral bandwidths wider than those of the gain medium are achieved. Moreover, pulse widths are shortened by increased laser intensity to considerably less than those of the gain medium. The simulation results qualitatively agree with the experimental results.

  12. The rotating cavity laser

    OpenAIRE

    Eckold, Matthew

    2015-01-01

    This thesis describes a new technique for mitigating the detrimental thermal phenomena that often limit the power scaling potential of solid state lasers. The unavoidable heating effect that arisesfrom the quantum defect leads to a degradation in beam quality, reduced efficiency and, eventually catastrophic failure. However, lasing processes occur on a faster time scale than those associated with heat flow through a typical laser gain medium. This is made use of whenever a laser is operated i...

  13. Variation of Lasing Wavelength of Fiber Grating Semiconductor Laser with Temperature for Different External Cavity Lengths

    Institute of Scientific and Technical Information of China (English)

    Zhengmao Wu; Hanqing Zhou; Guangqiong Xia

    2003-01-01

    For different external cavity lengths, lasing wavelength variation of fiber grating external cavity semiconductor laser (FGECSL) with ambient temperature has been investigated theoretically, and the theoretical results are in agreement with reported experimental observations.

  14. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  15. External cavity quantum cascade laser

    International Nuclear Information System (INIS)

    In this paper we review the progress of the development of mid-infrared quantum cascade lasers (QCLs) operated in an external cavity configuration. We concentrate on QCLs based on the bound-to-continuum design, since this design is especially suitable for broadband applications. Since they were first demonstrated, these laser-based tunable sources have improved in performance in terms of output power, duty cycle, operation temperature and tuneability. Nowadays they are an interesting alternative to FTIRs for some applications. They operate at room temperature, feature a high spectral resolution while being small in size. They were successfully used in different absorption spectroscopy techniques. Due to their vast potential for applications in industry, medicine, security and research, these sources enjoy increasing interest within the research community as well as in industry. (topical review)

  16. Diffusion stabilizes cavity solitons in bidirectional lasers

    OpenAIRE

    Perez-Arjona, Isabel; Sanchez-Morcillo, Victor; Redondo, Javier; Staliunas, Kestutis; Roldan, Eugenio

    2009-01-01

    We study the influence of field diffusion on the spatial localized structures (cavity solitons) recently predicted in bidirectional lasers. We find twofold positive role of the diffusion: 1) it increases the stability range of the individual (isolated) solitons; 2) it reduces the long-range interaction between the cavity solitons. Latter allows the independent manipulation (writing and erasing) of individual cavity solitons.

  17. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  18. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...

  19. Laser plasma interactions in fused silica cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianzhong; Mao, Xianglei; Mao, Samuel S.; Yoo, Jong H.; Greif, Ralph; Russo, Richard E.

    2003-06-24

    The effect of laser energy on formation of a plasma inside a cavity was investigated. The temperature and electron number density of laser-induced plasmas in a fused silica cavity were determined using spectroscopic methods, and compared with laser ablation on a flat surface. Plasma temperature and electron number density during laser ablation in a cavity with aspect ratio of 4 increased faster with irradiance after the laser irradiance reached a threshold of 5 GW/cm{sup 2}. The threshold irradiance of particulate ejection was lower for laser ablation in a cavity compared with on a flat surface; the greater the cavity aspect ratio, the lower the threshold irradiance. The ionization of silicon becomes saturated and the crater depths were increased approximately by an order of magnitude after the irradiance reached the threshold. Phase explosion was discussed to explain the large change of both plasma characteristics and mass removal when irradiance increased beyond a threshold value. Self-focusing of the laser beam was discussed to be responsible for the decrease of the threshold in cavities.

  20. Cover slip external cavity diode laser

    CERN Document Server

    Carr, Adra V; Waitukaitis, Scott R; Perreault, John D; Lonij, Vincent P A; Cronin, Alexander D

    2007-01-01

    The design of a 671 nm diode laser with a mode-hop-free tuning range of 40 GHz is described. This long tuning range is achieved by simultaneously ramping the external cavity length with the laser injection current. The external cavity consists of a microscope cover slip mounted on piezoelectric actuators. In such a configuration the laser output pointing remains fixed, independent of its frequency. Using a diode with an output power of 5-7 mW, the laser linewidth was found to be smaller than 30 MHz. This cover slip cavity and feedforward laser current control system is simple, economical, robust, and easy to use for spectroscopy, as we demonstrate with lithium vapor and lithium atom beam experiments.

  1. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Abitan, Haim; Andersen, Ulrik Lund; Skettrup, Torben;

    2000-01-01

    Summary form only. Coupling of optical cavities offers a means of controlling the properties of one cavity (e.g. a laser) by making adjustments to another, external cavity. In this contribution we consider a unidirectional ring laser (bow-tie laser) coupled to an external ring cavity. Using...

  2. Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold

    International Nuclear Information System (INIS)

    Cavity solitons are stationary self-organized bright intensity peaks which form over a homogeneous background in the section of broad area radiation beams. They are generated by shining a writing/erasing laser pulse into a nonlinear optical cavity, driven by a holding beam. The ability to control their location and their motion by introducing phase or amplitude gradients in the holding beam makes them interesting as mobile pixels for all-optical processing units. We show the generation of a number of cavity solitons in broad-area vertical cavity semiconductor microresonators electrically pumped above transparency but slightly below threshold. We analyze the switching process in details. The observed spots can be written, erased, and manipulated as independent objects, as predicted by the theoretical model. An especially tailored one is used to simulate the studied phenomena and to compare our simulations to the experimental findings with good agreement

  3. Theoretical analysis of quantum game in cavity QED

    International Nuclear Information System (INIS)

    Recent years, several ways of implementing quantum games in different physical systems have been presented. In this paper, we perform a theoretical analysis of an experimentally feasible way to implement a two player quantum game in cavity quantum electrodynamic(QED). In the scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field. So the scheme is insensitive to the influence from the cavity decay and the thermal field, and it does not require the cavity to remain in the vacuum state throughout the procedure. (general)

  4. High-Q resonant cavities for terahertz quantum cascade lasers.

    Science.gov (United States)

    Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P

    2015-02-01

    We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference. PMID:25836227

  5. Electrostatically tunable optomechanical "zipper" cavity laser

    CERN Document Server

    Perahia, Raviv; Meenehan, Sean; Alegre, Thiago P Mayer; Painter, Oskar

    2010-01-01

    A tunable nanoscale "zipper" laser cavity, formed from two doubly clamped photonic crystal nanobeams, is demonstrated. Pulsed, room temperature, optically pumped lasing action at a wavelength of 1.3 micron is observed for cavities formed in a thin membrane containing InAsP/GaInAsP quantum-wells. Metal electrodes are deposited on the ends of the nanobeams to allow for micro-electro-mechanical actuation. Electrostatic tuning and modulation of the laser wavelength is demonstrated at a rate of 0.25nm/V^2 and a frequency as high as 6.7MHz, respectively.

  6. Identification of amplitude and timing jitter in external-cavity mode-locked semiconductor lasers

    OpenAIRE

    Mulet, Josep; Mørk, Jesper; Kroh, Marcel

    2004-01-01

    We theoretically and experimentally investigate the dynamics of external-cavity mode-locked semiconductor lasers, focusing on stability properties, optimization of pulsewidth and timing jitter. A new numerical approach allows to clearly separate timing and amplitude jitter.

  7. Soliton laser: A computational two-cavity model

    DEFF Research Database (Denmark)

    Berg, P.; If, F.; Christiansen, Peter Leth;

    1987-01-01

    An improved computational two-cavity model of the soliton laser proposed and designed by Mollenauer and Stolen [Opt. Lett. 9, 13 (1984)] is obtained through refinements of (i) the laser cavity model, (ii) the pulse propagation in the fiber cavity, and (iii) the coupling between the two cavities. As...

  8. Identification of amplitude and timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper; Kroh, Marcel

    2004-01-01

    We theoretically and experimentally investigate the dynamics of external-cavity mode-locked semiconductor lasers, focusing on stability properties, optimization of pulsewidth and timing jitter. A new numerical approach allows to clearly separate timing and amplitude jitter.......We theoretically and experimentally investigate the dynamics of external-cavity mode-locked semiconductor lasers, focusing on stability properties, optimization of pulsewidth and timing jitter. A new numerical approach allows to clearly separate timing and amplitude jitter....

  9. Dependence of mis-alignment sensitivity of ring laser gyro cavity on cavity parameters

    International Nuclear Information System (INIS)

    The ring laser gyroscope (RLG), as a rotation sensor, has been widely used for navigation and guidance on vehicles and missiles. The environment of strong random-vibration and large acceleration may deteriorate the performance of the RLG due to the vibration-induced tilting of the mirrors. In this paper the RLG performance is theoretically analyzed and the parameters such as the beam diameter at the aperture, cavity mirror alignment sensitivities and power loss due to the mirror tilting are calculated. It is concluded that by carefully choosing the parameters, the significant loss in laser power can be avoided.

  10. High brightness angled cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm−2 sr−1 is obtained, which marks the brightest QCL to date

  11. High brightness angled cavity quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  12. Femtosecond fibre laser with a hybrid linear-ring cavity

    International Nuclear Information System (INIS)

    A new type of a femtosecond self-mode-locked erbium fibre laser is proposed and fabricated. The original hybrid design of the laser cavity taking advantage of ring and linear cavity lasers allows continuous tuning of the pulse repetition rate in a broad range (more that 30 kHz) and provides a high reliability of the self-mode-locking regime. (letters)

  13. CONTROL OF LASER RADIATION PARAMETERS: Cavity amplitude and phase nonreciprocities of monolithic solid-state ring lasers

    Science.gov (United States)

    Boiko, D. L.; Golyaev, Yu D.; Lezhenin, D. G.

    1997-03-01

    The 2 × 2 Jones matrix method is used in a theoretical analysis of the cavity amplitude and phase nonreciprocities of monolithic nonplanar solid-state ring lasers. An approach is developed to the optimisation of the perimeter and parameters of the cavity to ensure the necessary amplitude and phase nonreciprocities. Calculations are reported of the cavity parameters optimal for the two most important applications: unidirectional single-frequency lasing and bidirectional lasing in a self-modulation regime which is of interest in laser gyroscopy.

  14. Computation Of An Optimal Laser Cavity Using Splines

    Science.gov (United States)

    Pantelic, Dejan V.; Janevski, Zoran D.

    1989-03-01

    As an attempt to improve the efficiency of a solid state laser cavity, a non-elliptical cavity is proposed. Efficiency was calculated by the ray trace method and the cavity was simulated using a novel approach with splines. Computation shows that substantial gain in efficiency can be achieved for a close coupled configuration.

  15. Stability analysis for bad cavity lasers with inhomogeneously broadened gain

    CERN Document Server

    Kazakov, Georgy A

    2016-01-01

    Bad cavity lasers are experiencing renewed interest in the context of active optical frequency standards, due to their enhanced robustness against fluctuations of the laser cavity. The gain medium would consist of narrow-linewidth atoms, either trapped inside the cavity or intersecting the cavity mode dynamically. A finite velocity distribution, atomic interactions, or interactions of realistic multilevel atoms with external field leads to an inhomogeneous broadening of the atomic gain profile. This can bring the bad cavity laser to operate in unstable regimes characterized by complex temporal patterns of the field amplitude. We present a new and efficient method for the stability analysis of bad cavity lasers with inhomogeneously broadened gain. We apply this method to identify the steady-state solutions for the metrology-relevant case of spin-1/2 atoms interacting with an external magnetic field.

  16. A rate equation approach to cavity mediated laser cooling

    OpenAIRE

    Blake, Tony; Kurcz, Andreas; Beige, Almut

    2012-01-01

    The cooling rate for cavity mediated laser cooling scales as the Lamb-Dicke parameter eta squared. A proper analysis of the cooling process hence needs to take terms up to eta^2 in the system dynamics into account. In this paper, we present such an analysis for a standard scenario of cavity mediated laser cooling with eta

  17. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers.

    Science.gov (United States)

    Averlant, Etienne; Tlidi, Mustapha; Thienpont, Hugo; Ackemann, Thorsten; Panajotov, Krassimir

    2016-01-01

    We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology. PMID:26847004

  18. Theoretical aspects of fibre laser cutting

    International Nuclear Information System (INIS)

    Fibre lasers offer distinct advantages over established laser systems with respect to power efficiency, beam guidance and beam quality. Consequently, the potential of these new laser beam sources will be increasingly exploited for laser cutting applications that are conventionally carried out with CO2 lasers. However, theoretical estimates of the effective absorptivity at the cut front suggest that the shorter wavelength of the fibre laser in combination with its high focusability seems to be primarily advantageous for thin sheet metal cutting whereas the CO2 laser is probably still capable of cutting thicker materials more efficiently. This surprising result is a consequence of the absorptivity behaviour of metals that shows essential quantitative differences for the corresponding wavelengths of both laser sources as a function of the angle of incidence between the laser beam and the material to be cut. In evaluation of the revealed dependences, solution strategies for an improvement of the efficiency of fibre laser cutting of thicker metal sheets are suggested.

  19. Theoretical aspects of fibre laser cutting

    Science.gov (United States)

    Mahrle, A.; Beyer, E.

    2009-09-01

    Fibre lasers offer distinct advantages over established laser systems with respect to power efficiency, beam guidance and beam quality. Consequently, the potential of these new laser beam sources will be increasingly exploited for laser cutting applications that are conventionally carried out with CO2 lasers. However, theoretical estimates of the effective absorptivity at the cut front suggest that the shorter wavelength of the fibre laser in combination with its high focusability seems to be primarily advantageous for thin sheet metal cutting whereas the CO2 laser is probably still capable of cutting thicker materials more efficiently. This surprising result is a consequence of the absorptivity behaviour of metals that shows essential quantitative differences for the corresponding wavelengths of both laser sources as a function of the angle of incidence between the laser beam and the material to be cut. In evaluation of the revealed dependences, solution strategies for an improvement of the efficiency of fibre laser cutting of thicker metal sheets are suggested.

  20. Center frequency shift and reduction of feedback in directly modulated external cavity lasers

    DEFF Research Database (Denmark)

    Schiellerup, G.; Pedersen, Rune Johan Skullerud; Olesen, H.;

    1989-01-01

    It is shown experimentally and theoretically that a center frequency shift occurs when an external cavity laser is directly modulated. The shift can be observed even when the frequency deviation is small compared to the roundtrip frequency of the external cavity and can qualitatively be explained...... by a reduction in the effective feedback level due to modulation. The frequency shift was measured as a function of modulation frequency and current, and frequency shifts up to 350 MHz were observed...

  1. External-cavity birefringence feedback effects of microchip Nd:YAG laser and its application in angle measurement

    International Nuclear Information System (INIS)

    External-cavity birefringence feedback effects of the microchip Nd: YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringence element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry–Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement. (classical areas of phenomenology)

  2. External-cavity birefringence feedback effects of microchip Nd:YAG laser and its application in angle measurement

    Institute of Scientific and Technical Information of China (English)

    Ren Cheng; Tan Yi-Dong; Zhang Shu-Lian

    2009-01-01

    External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented.When a birefringence element is placed in the external feedback cavity of the laser,two orthogonally polarized laser beams with a phase difference are output.The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions.The variable extra-cavity birefringence,caused by rotation of the external-cavity birefringenee element,results in tunable phase difference between the two orthogonally polarized beams.This means that the roll angle information has been translated to phase difference of two output laser beams.A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented,which is in good agreement with the experimental results.This phenomenon has potential applications for roll angle measurement.

  3. Twin laser cavity solitons in a VCSEL with saturable absorber

    Science.gov (United States)

    Eslami, Mansour; Kheradmand, Reza; Bahari, Parvin; Tajalli, Habib

    2015-09-01

    We show numerically the existence and stability of double-peak (twin) laser cavity solitons in a model of a semiconductor laser containing a saturable absorber. The onset of twin laser cavity solitons is observed in a narrow range of switching pulse energies above the maximum energy required to switch a normal single laser cavity soliton. Also, the FWHM value of the population dip at the end of injection is found to be wider which later breaks into two closely spaced dips. Three regimes of oscillating, oscillating-rotating and oscillating-rotating-travelling twin laser cavity solitons are reported depending on the value of a bifurcation parameter given by the ratio of the lifetimes of carriers in amplifier and absorber materials. The associated dynamical behaviors in these three regimes are also discussed.

  4. Theoretical study on controlling nonlinear behaviors of a coupled-cavity VCSEL by external optical injection

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Li(李孝峰); Wei Pan(潘炜); Bin Luo(罗斌); Dong Ma(马冬); Zheng Zhao(赵峥); Guo Deng(邓果)

    2004-01-01

    A master-slave configuration used to control the nonlinear behaviors arising in a vertical cavity surface emitting laser (VCSEL) with strong external optical feedback is established. In terms of bifurcation diagram, time and frequency domain, the influence of the continuous optical injection from the master VCSEL on the nonlinear characteristics of the slave is investigated theoretically. For relatively weak injection, the slave still keeps its intrinsic nonlinear state. With increasing the injection strength, these nonlinear behaviors evolve to periodic fluctuation, and at last are replaced by the steady-state (e.g. the critical injection parameter for steady-state is 1.2 when external cavity's reflectivity and length are 4% and 4 cm, respectively). During this evolution the bifurcation-contraction phenomena are also observed.

  5. Theoretical study on controlling nonlinear behaviors of a coupled-cavity VCSEL by external optical injection

    Institute of Scientific and Technical Information of China (English)

    李孝峰; 潘炜; 罗斌; 马冬; 赵峥; 邓果

    2004-01-01

    A master-slave configuration used to control the nonlinear behaviors arising in a vertical cavity surface emitting laser (VCSEL) with strong external optical feedback is established. In terms of bifurcation diagram, time and frequency domain, the influence of the continuous optical injection from the master VCSEL on the nonlinear characteristics of the slave is investigated theoretically. For relatively weak injection, the slave still keeps its intrinsic nonlinear state. With increasing the injection strength, these nonlinear behaviors evolve to periodic fluctuation, and at last are replaced by the steady-state (e.g. the critical injection parameter for steady-state is 1.2 when external cavity's reflectivity and length are 4%and 4 cm, respectively). During this evolution the bifurcation-contraction phenomena are also observed.

  6. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order to...

  7. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent;

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  8. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    Science.gov (United States)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Realization of a semiconductor-based cavity soliton laser

    OpenAIRE

    Tanguy, Y.; Ackemann, T.; Firth, W. J.; Jaeger, R.

    2007-01-01

    The realization of a cavity soliton laser using a vertical-cavity surface-emitting semiconductor gain structure coupled to an external cavity with a frequency-selective element is reported. All-optical control of bistable solitonic emission states representing small microlasers is demonstrated by injection of an external beam. The control scheme is phase-insensitive and hence expected to be robust for all-optical processing applications. The motility of these structures is also demonstrated.

  10. Coupled cavity terahertz quantum cascade lasers with integrated emission monitoring.

    Science.gov (United States)

    Krall, Michael; Martl, Michael; Bachmann, Dominic; Deutsch, Christoph; Andrews, Aaron M; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2015-02-01

    We demonstrate the on-chip generation and detection of terahertz radiation in coupled cavity systems using a single semiconductor heterostructure. Multiple sections of a terahertz quantum cascade laser structure in a double-metal waveguide are optically coupled and operate either as a laser or an integrated emission monitor. A detailed analysis of the photon-assisted carrier transport in the active region below threshold reveals the detection mechanism for photons emitted by the very same structure above threshold. Configurations with a single laser cavity and two coupled laser cavities are studied. It is shown that the integrated detector can be used for spatial sensing of the light intensity within a coupled cavity. PMID:25836210

  11. Dynamics of a vertical cavity quantum cascade phonon laser structure

    OpenAIRE

    Maryam, W.; Akimov, A. V.; Campion, R. P.; Kent, Anthony

    2013-01-01

    Driven primarily by scientific curiosity, but also by the potential applications of intense sources of coherent sound, researchers have targeted the phonon laser (saser) since the invention of the optical laser over 50 years ago. Here we fabricate a vertical cavity structure designed to operate as a saser oscillator device at a frequency of 325 GHz. It is based on a semiconductor superlattice gain medium, inside a multimode cavity between two acoustic Bragg reflectors. We measure the acoustic...

  12. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  13. Theoretical aspects of fibre laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Beyer, E, E-mail: achim.mahrle@iws.fraunhofer.d [University of Technology Dresden, Institute for Surface and Manufacturing Technology, PO Box, 01062 Dresden (Germany)

    2009-09-07

    Fibre lasers offer distinct advantages over established laser systems with respect to power efficiency, beam guidance and beam quality. Consequently, the potential of these new laser beam sources will be increasingly exploited for laser cutting applications that are conventionally carried out with CO{sub 2} lasers. However, theoretical estimates of the effective absorptivity at the cut front suggest that the shorter wavelength of the fibre laser in combination with its high focusability seems to be primarily advantageous for thin sheet metal cutting whereas the CO{sub 2} laser is probably still capable of cutting thicker materials more efficiently. This surprising result is a consequence of the absorptivity behaviour of metals that shows essential quantitative differences for the corresponding wavelengths of both laser sources as a function of the angle of incidence between the laser beam and the material to be cut. In evaluation of the revealed dependences, solution strategies for an improvement of the efficiency of fibre laser cutting of thicker metal sheets are suggested.

  14. Theoretical tools for atom laser beam propagation

    OpenAIRE

    Riou, J. -F.; Coq, Y. Le; Impens, F; Guerin, W.; Bordé, C. J.; Aspect, A; Bouyer, P.

    2008-01-01

    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce...

  15. A Coupled Cavity Micro Fluidic Dye Ring Laser

    OpenAIRE

    Gersborg-Hansen, M.; Balslev, S.; Mortensen, N. A.; Kristensen, A.

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass...

  16. The multi-cavity free-electron laser

    International Nuclear Information System (INIS)

    Consideration is made of a free-electron laser with many optical cavities where the cavities communicate with each other, not optically, but through the electron beam. Analysis is made in Ole one-dimensional approximation. A general expression is given for the growth rate in the exponential (high current) regime. In the regime where lethargy is important expressions are given in the two opposite limits of small and large numbers of cavities and bunches. Numerical simulation results, still in the one-dimensional approximation, but including non-linearities, are presented. The multi-cavity free-electron laser (MC/FEL) can be employed to avoid the slippage phenomena, and thus to make picosecond pulses of infra-red radiation. Three examples of this application are presented

  17. Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Kent D. Choquette

    2012-01-01

    Full Text Available We review the design, fabrication, and performance of photonic crystal vertical cavity surface emitting lasers (VCSELs. Using a periodic pattern of etched holes in the top facet of the VCSEL, the optical cavity can be designed to support the fundamental mode only. The electrical confinement is independently defined by proton implantation or oxide confinement. By control of the refractive index and loss created by the photonic crystal, operation in the Gaussian mode can be insured, independent of the lasing wavelength.

  18. Photoreflectance spectroscopy study of vertical cavity surface emitting laser structures

    International Nuclear Information System (INIS)

    This paper summarises the application of the laser-based electro-absorptive technique of photoreflectance (PR) for the study of vertical cavity surface emitting lasers (VCSELs). PR results are shown to reveal the technologically important cavity mode and ground state quantum well exciton structures. AlGaAs/GaAs based quantum well VCSELs were examined with and without top mirror layers as a function of laser pump excitation conditions, with results compared with angle-dependent PR data. Cavity mode and quantum well alignments were also studied with reference to the un-modulated reflectance signal as well as correlated with photoluminescence data. The results demonstrate the importance of PR metrology for state-of-art VCSEL characterisation

  19. Dynamics of a vertical cavity quantum cascade phonon laser structure

    Science.gov (United States)

    Maryam, W.; Akimov, A. V.; Campion, R. P.; Kent, A. J.

    2013-01-01

    Driven primarily by scientific curiosity, but also by the potential applications of intense sources of coherent sound, researchers have targeted the phonon laser (saser) since the invention of the optical laser over 50 years ago. Here we fabricate a vertical cavity structure designed to operate as a saser oscillator device at a frequency of 325 GHz. It is based on a semiconductor superlattice gain medium, inside a multimode cavity between two acoustic Bragg reflectors. We measure the acoustic output of the device as a function of time after applying electrical pumping. The emission builds in intensity reaching a steady state on a timescale of order 0.1 μs. We show that the results are consistent with a model of the dynamics of a saser cavity exactly analogous to the models used for describing laser dynamics. We also obtain estimates for the gain coefficient, steady-state acoustic power output and efficiency of the device. PMID:23884078

  20. Active Wavelength Control of an External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Tsai, Tracy; Wysocki, Gerard

    2012-01-01

    We present an active wavelength control system for grating-based external cavity lasers that increases the accuracy of predicting the lasing wavelength based on the grating equation and significantly improves scan-to-scan wavelength/frequency repeatability. The ultimate 3σ precision of a frequency scan is determined by the scan-to-scan repeatability of 0.042 cm−1. Since this control method can be applied to any external cavity laser with little to no modification, such a precision provides an excellent opportunity for spectroscopic applications that target molecular absorption lines at standard atmospheric conditions. PMID:23483850

  1. Active Wavelength Control of an External Cavity Quantum Cascade Laser

    OpenAIRE

    Tsai, Tracy; Wysocki, Gerard

    2012-01-01

    We present an active wavelength control system for grating-based external cavity lasers that increases the accuracy of predicting the lasing wavelength based on the grating equation and significantly improves scan-to-scan wavelength/frequency repeatability. The ultimate 3σ precision of a frequency scan is determined by the scan-to-scan repeatability of 0.042 cm−1. Since this control method can be applied to any external cavity laser with little to no modification, such a precision provides an...

  2. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    International Nuclear Information System (INIS)

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current

  3. Detection Of Multilayer Cavities By Employing RC-DTH Air Hammer System And Cavity Auto Scanning Laser System

    Science.gov (United States)

    Luo, Yongjiang; Li, Lijia; Peng, Jianming; Yin, Kun; Li, Peng; Gan, Xin; Zhao, Letao; Su, Wei

    2015-12-01

    The subterranean cavities are seriously threatened to construction and mining safety, and it's important to obtain the exact localization and dimensions of subterranean cavities for the planning of geotechnical and mining activities. Geophysical investigation is an alternative method for cavity detection, but it usually failed for the uncertainly solution of information and data obtained by Geophysical methods. Drilling is considered as the most accurate method for cavity detection. However, the conventional drilling methods can only be used for single cavity detection, and there is no effective solution for multilayer cavities detection have been reported. In this paper, a reverse circulation (RC) down-the-hole (DTH) air hammer system with a special structured drill bit is built and a cavity auto scanning laser system based on laser range finding technique was employed to confirm the localization and dimensions of the cavities. This RC-DTH air hammer system allows drilling through the upper cavities and putting the cavity auto scanning laser system into the cavity area through the central passage of the drill tools to protect the detection system from collapsing of borehole wall. The RC-DTH air hammer system was built, and field tests were conducted in Lanxian County Iron Ore District, which is located in Lv Liang city of Shan Xi province, the northwest of china. Field tests show that employing the RC-DTH air hammer system assisted by the cavity auto scanning laser system is an efficiency method to detect multilayer cavities.

  4. A hot cavity laser ion source at IGISOL

    Science.gov (United States)

    Reponen, M.; Kessler, T.; Moore, I. D.; Rothe, S.; Äystö, J.

    2009-12-01

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyväskylä, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N = Z 94Ag . A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via the heavy-ion fusion-evaporation reaction, 40Ca(58Ni, p3n)94Ag , are stopped in a graphite catcher, diffused, extracted and subsequently ionized using a three-step laser ionization scheme. The performance of the different components of the hot cavity laser ion source is discussed and initial results using stable 107, 109Ag are presented.

  5. A hot cavity laser ion source at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Reponen, M.; Kessler, T.; Moore, I.D.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, PO Box 35 (YFL), Jyvaeskylae (Finland); Rothe, S. [Johannes Gutenberg Universitaet, AG Larissa/Quantum, Institut fuer Physik, Mainz (Germany)

    2009-12-15

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyvaeskylae, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N=Z {sup 94}Ag. A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via the heavy-ion fusion-evaporation reaction, {sup 40}Ca({sup 58}Ni, p3n){sup 94}Ag, are stopped in a graphite catcher, diffused, extracted and subsequently ionized using a three-step laser ionization scheme. The performance of the different components of the hot cavity laser ion source is discussed and initial results using stable {sup 107,} {sup 109}Ag are presented. (orig.)

  6. A Hot Cavity Laser Ion Source at IGISOL

    CERN Document Server

    Reponen, M; Moore, I D; Rothe, S; Äystö, J

    2008-01-01

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyvaskyla, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N=Z 94Ag. A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via the heavy-ion fusion-evaporation reaction, 40Ca(58Ni, p3n)94Ag, are stopped in a graphite catcher, diffused, extracted and subsequently ionized using a three-step laser ionization scheme. The performance of the different components of the hot cavity laser ion source is discussed and initial results using stable 107,109Ag are presented.

  7. Pulse properties of external-cavity mode-locked semiconductor lasers

    OpenAIRE

    Mulet, Josep; Kroh, Marcel; Mork, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model. We find tha...

  8. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    OpenAIRE

    Mulet, Josep; Moerk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order to improve the mode-locking performance, such as reducing the pulsewidth and time-bandwidth product as much as possible. Timing jitter is determined by means of extensive numerical simulations of the ...

  9. A Hot Cavity Laser Ion Source at IGISOL

    OpenAIRE

    Reponen, M.; Kessler, T.; Moore, I D; Rothe, S.; Äystö, J.

    2008-01-01

    A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyvaskyla, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N=Z 94Ag. A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via t...

  10. Extended cavity semiconductor lasers in fundamental metrology

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Číp, Ondřej; Jedlička, Petr; Růžička, Bohdan

    Novosibirsk: SPIE, 2002, s. 132 - 138. ISBN 0-8194-4686-6. ISSN 0277-786X. [International symposium on laser metrology applied to science, industry, and everyday life. Novosibirsk (RU), 09.09.2002-13.09.2002] R&D Projects: GA ČR GA101/01/1104; GA AV ČR IBS2065009; GA AV ČR IAB2065001 Institutional research plan: CEZ:AV0Z2065902 Keywords : semiconductor lasers * frequency stabilization * absorption spectroscopy Subject RIV: BH - Optics, Masers, Lasers

  11. Entanglement formulation in the framework of electrically pumped laser cavity

    Science.gov (United States)

    Getahun, Solomon

    2016-02-01

    We analyze electrically pumped atomic cavity coupled to a two-mode vacuum reservoirs via a single-port mirror whose open cavity contains N nondegenerate three-level cascade atoms. We carry out our analysis by putting the noise operators associated with a vacuum reservoir in normal order. It is found that unlike the mean photon number, the quadrature squeezing and the degree of entanglement do not depend on the number of atoms. This implies that the quadrature squeezing and the degree of entanglement of the cavity light do not depend on the number of photons. We have also shown that the light generated by the three-level laser is in a squeezed and entangled state, with maximum quadrature squeezing and degree of entanglement being 50%. Moreover, the mean photon number of the system in which the laser operating at threshold and above threshold does not depend on the spontaneous decay constant.

  12. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tunable VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide...

  13. Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser.

    Science.gov (United States)

    Bergin, A G V; Hancock, G; Ritchie, G A D; Weidmann, D

    2013-07-15

    A cw distributed feedback quantum cascade laser (DFB-QCL) coupled to a two-mirror linear optical cavity has been used to successfully demonstrate optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) at 5.5 μm. The noise-equivalent absorption coefficient, α(min), was 2.4×10(-8) cm(-1) for 1 s averaging, limited by etalon-fringing. The temporal stability of the instrument allows NO detection down to 5 ppb in 2 s. PMID:23939085

  14. A birefringent cavity He-Ne laser and optical feedback

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2004-01-01

    Strong modes competition makes only one of o-light and e-light oscillate in a birefringent dual-frequency laser when the angle between the crystalline axis and the laser beam is nearly zero. When the oscillated mode is in a different part of the gain curve, the detected intensity curves of o-light and e-light are quite different in the existence of optical feedback. The curves are divided into five cases. Three cases of the experimental results can be used for direction discrimination. The polarization characteristics of the birefringent cavity He-Ne laser are also discussed without optical feedback.

  15. Polarization squeezing in vertical-cavity surface-emitting lasers

    CERN Document Server

    Golubev, Y M; Kolobov, M I; Giacobino, E

    2004-01-01

    We further elaborate the theory of quantum fluctuations in vertical-cavity surface-emitting lasers (VCSELs), developed in Ref. \\cite{Hermier02}. In particular, we introduce the quantum Stokes parameters to describe the quantum self- and cross-correlations between two polarization components of the electromagnetic field generated by this type of lasers. We calculate analytically the fluctuation spectra of these parameters and discuss experiments in which they can be measured. We demonstrate that in certain situations VCSELs can exhibit polarization squeezing over some range of spectral frequencies. This polarization squeezing has its origin in sub-Poissonian pumping statistics of the active laser medium.

  16. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density-of-states and it...

  17. Temporal laser pulse manipulation using multiple optical ring-cavities

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  18. Theoretical study of laser diodes with double optical feedbacks

    Institute of Scientific and Technical Information of China (English)

    Chunlin Wang(王春林); Jian Wu(伍剑); Jintong Lin(林金桐)

    2003-01-01

    A new set of nonlinear rate equations that can describe the external cavity semiconductor laser with twooptical feedbacks is proposed. The dynamics of the semiconductor laser with two optical feedbacks arestudied. It is found that when lasers are biased above the threshold and operate in regime V, anotherfeedback can induce low frequency fluctuations.

  19. Micro-cavity lasers with large device size for directional emission

    Science.gov (United States)

    Yan, Chang-ling; Li, Peng; Shi, Jian-wei; Feng, Yuan; Hao, Yong-qin; Zhu, Dongda

    2014-10-01

    Optical micro-cavity structures, which can confine light in a small mode volume with high quality factors, have become an important platform not only for optoelectronic applications with densely integrated optical components, but also for fundamental studies such as cavity quantum electrodynamics and nonlinear optical processes. Micro-cavity lasers with directional emission feature are becoming a promising resonator for the compact laser application. In this paper, we presented the limason-shaped cavity laser with large device size, and fabricated this type of micro-cavity laser with quantum cascade laser material. The micro-cavity laser with large device size was fabricated by using InP based InGaAs/InAlAs quantum cascade lasers material at about 10um emitting wavelength, and the micro-cavity lasers with the large device size were manufactured and characterized with light output power, threshold current, and the far-field pattern.

  20. Laser polishing for topography management of accelerator cavity surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. Mike [College of William and Mary, Williamsburg, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kelley, Michael J. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  1. Continuous wave room temperature external ring cavity quantum cascade laser

    OpenAIRE

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J.W.; Hempler, N.; Maker, G.T.; Malcolm, G.P.A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emi...

  2. Vertical-cavity laser with a novel grating mirror

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol

    Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG...... a very short evanescent tail. This reduces the photon lifetime of the laser cavity significantly without reducing the mirror reflectivity, leading to a very high intrinsic speed. A 3 dB frequency of 27.2 GHz was measured at a pumping power corresponding to a current injection of 0.7 mA. Since the...

  3. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q-switch the...... ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  4. Vectorial dissipative solitons in vertical-cavity surface-emitting Lasers with delays

    CERN Document Server

    Marconi, M; Barland, S; Balle, S; Giudici, M

    2014-01-01

    We show that the nonlinear polarization dynamics of a Vertical-Cavity Surface-Emitting Lasers placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These vectorial solitons arise as cycles in the polarization orientation, leaving the total intensity constant. The long cavity enables the observation of different coexisting states with multiple solitons within the same round-trip. Such states encompass either independent or bound solitons, which can be distinguished by their noise-induced motion: while independent solitons exhibit uncorrelated random walks, soliton molecules evolve as rigid bodies. The theoretical proof of localization is given by the analysis of the Floquet exponents. Finally, we reduce the dynamics to a single delayed equation for the polarization orientation allowing interpreting the vectorial solitons as polarization kinks and anti-kinks.

  5. External cavity coherent quantum cascade laser array

    Science.gov (United States)

    Vallon, Raphael; Parvitte, Bertrand; Bizet, Laurent; De Naurois, Guy Mael; Simozrag, Bouzid; Maisons, Grégory; Carras, Mathieu; Zeninari, Virginie

    2016-05-01

    We report on the development of a coherent quantum cascade laser array that consists in the fabrication of multi-stripes array. The main characteristic of this kind of source is that an anti-symmetrical signature with two lobes is obtained in the far field. Taking advantage of this drawback, a grating is aligned with one lobe of the source. Thus a Littrow configuration is designed that permit to obtain a wide tunability of the source. First results are presented and a preliminary test of the source is realized by measurements on acetone.

  6. A Coupled Cavity Micro Fluidic Dye Ring Laser

    CERN Document Server

    Gersborg-Hansen, M; Mortensen, N A; Kristensen, A

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass lid, using PMMA adhesive bonding. The laser is characterized using the laser dye Rhodamine 6G dissolved in ethanol or ethylene glycol as the active gain medium, which is pumped through the micro-fluidic channel and laser resonator. The dye laser is optically pumped normal to the chip plane at 532 nm by a pulsed, frequency doubled Nd:YAG laser and lasing is observed with a threshold pump pulse energy flux of around 55 micro-Joule/square-milimeter. The lasing is multi-mode, and the laser has switchable output coupling into...

  7. Laser frequency stabilization using folded cavity and mirror reflectivity tuning

    Science.gov (United States)

    Liu, X.; Cassou, K.; Chiche, R.; Dupraz, K.; Favier, P.; Flaminio, R.; Honda, Y.; Huang, W. H.; Martens, A.; Michel, C.; Pinard, L.; Sassolas, B.; Soskov, V.; Tang, C. X.; Zomer, F.

    2016-06-01

    A new method of laser frequency stabilization using polarization property of an optical cavity is proposed. In a standard Fabry-Perot cavity, the coating layers thickness of cavity mirrors is calculated to obtain the same phase shift for s- and p-wave but a slight detuning from the nominal thickness can produce s- and p-wave phase detuning. As a result, each wave accumulates a different round-trip phase shift and resonates at a different frequency. Using this polarization property, an error signal is generated by a simple setup consisting of a quarter wave-plate rotated at 45°, a polarizing beam splitter and two photodiodes. This method exhibits similar error signal as the Pound-Drever-Hall technique but without need for any frequency modulation. Lock theory and experimental results are presented in this paper.

  8. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm−1 is realized by the incorporation of a diffraction grating into the cavity

  9. Microencapsulation of silicon cavities using a pulsed excimer laser

    International Nuclear Information System (INIS)

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100 °C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24 ns), focused onto an area of 23 mm2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm−2 to 800 mJ cm−2, the pulse rate from 1 Hz to 50 Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. (paper)

  10. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  11. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x109 at 2.5K, and 8x109 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  12. Current trends in vertical cavity surface emitting lasers

    CERN Document Server

    Lee, TP

    1995-01-01

    With significant progress made in recent years, vertical cavity surface emitting lasers (VCSELs) have emerged as potential lightwave sources with a variety of applications, including high speed optical interconnects, parallel data links, optical recording, 2-D scanning, and optical signal processing. This volume, which contains a collection of articles by outstanding experts on this topic, encompasses a broad discussion of the current trends in the development of VCSELs. Discussions include material growths, structure designs, processing methods, performance analysis, improvement strategies, a

  13. Integrated optoelectronic probe including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring

    NARCIS (Netherlands)

    Serov, Alexander N.; Nieland, Janharm; Oosterbaan, Sjoerd; Mul, de Frits F.M.; Kranenburg, van Herma; Bekman, Herman H.P.Th.; Steenbergen, Wiendelt

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  14. Integrated Optoelectronic Probe Including a Vertical Cavity Surface Emitting Laser for Laser Doppler Perfusion Monitoring

    NARCIS (Netherlands)

    Serov, A.N.; Nieland, J.; Oosterbaan, S.; Steenbergen, W.; Bekman, H.H.P.T.; Mul, F.F.M. de; Kranenburg, H. van

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  15. Large optical cavity AlGaAs buried heterostructure window lasers

    OpenAIRE

    Blauvelt, H.; Margalit, S.; Yariv, A.

    1982-01-01

    Large optical cavity buried heterostructure window lasers in which only the transparent AlGaAs waveguiding layers, and not the active layer, extend to the laser mirrors have been fabricated. These lasers have threshold currents and differential quantum efficiencies comparable to those of regular large optical cavity buried heterostructure lasers in which the active region extends to the laser mirrors, however the window lasers have been operated under pulsed conditions at three times the powe...

  16. Theoretical evaluation of a mechanism of precipitate-enhanced cavity swelling during irradiation

    International Nuclear Information System (INIS)

    It is often observed experimentally in complex alloys such as the austenitic stainless steels that the largest cavities produced during irradiation are attached to second phase precipitate particles. One hypothesis that such observations suggest is that the precipitate-matrix interface may assist in the collection of irradiation-produced point defects which are channelled to the attached cavities. A theoretical analysis is developed to evaluate this mechanism. It is found that the growth of cavities attached to precipitates is increased compared to the growth of cavities in the matrix. The relative growth rates of the two types of cavities are also affected by differences in bias and differences in sink strength. The relationships required to evaluate these effects are developed and the consequences of enhanced point defect collection are explored in some detail

  17. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels. PMID:22714427

  18. Cavity ringdown spectroscopy with widely tunable swept-frequency lasers

    International Nuclear Information System (INIS)

    Full text: A novel approach to cavity ringdown (CRD) spectroscopy based on swept-frequency (SF) lasers enables rapid measurement of CRD absorption spectra. Our new SF CRD spectrometer incorporates a miniature widely-tunable continuous-wave SF laser and requires less than 1 s to record wide-ranging absorption spectra with high sensitivity in a single rapid sweep of the laser frequency. The spectrometer has a single-ended transmitter-receiver configuration based on retro-reflected optical-heterodyne detection, and yields a simple, compact, versatile instrument for efficient sensing of gases. The performance of the spectrometer is demonstrated by measuring weak absorption spectra of carbon dioxide gas at 1.5-1.6 μm. Copyright (2005) Australian Institute of Physics

  19. Theoretical study on setup of expanded-base pile considering cavity contraction

    Institute of Scientific and Technical Information of China (English)

    齐昌广; 刘干斌; 王艳; 邓岳保

    2015-01-01

    When an expanded-base pile is installed into ground, the cavity expansion associated with penetration of the enlarged pile base is followed by cavity contraction along the smaller-diameter pile shaft. In order to account for the influence of cavity contraction on the change of bearing capacity of expanded-base pile, a theoretical calculation methodology, predicting the setup of expanded-base pile, was established by employing the cavity contraction theory to estimate the shaft resistance of expanded-base pile, and horizontal consolidation theory to predict the dissipation of excess pore pressure. Finally, the numerical solutions for the setup of expanded-base pile were obtained. The parametric study about the influence of cavity contraction on setup of expanded-base pile was carried out, while a field test was introduced. The parametric study shows that the decrements in radial pressure and the maximum pore water pressure after considering cavity contraction are increased as the expanded ratio (base diameter/shaft diameter) and rigidity index of soil are raised. The comparison between calculated and measured values shows that the calculated results of ultimate bearing capacity for expanded-base pile considering cavity contraction agree well with the measured values; however, the computations ignoring cavity contraction are 2.5−3.0 times the measured values.

  20. Theoretical study on setup of expanded-base pile considering cavity contraction

    Institute of Scientific and Technical Information of China (English)

    齐昌广; 刘干斌; 王艳; 邓岳保

    2015-01-01

    When an expanded-base pile is installed into ground, the cavity expansion associated with penetration of the enlarged pile base is followed by cavity contraction along the smaller-diameter pile shaft. In order to account for the influence of cavity contraction on the change of bearing capacity of expanded-base pile, a theoretical calculation methodology, predicting the setup of expanded-base pile, was established by employing the cavity contraction theory to estimate the shaft resistance of expanded-base pile, and horizontal consolidation theory to predict the dissipation of excess pore pressure. Finally, the numerical solutions for the setup of expanded-base pile were obtained. The parametric study about the influence of cavity contraction on setup of expanded-base pile was carried out, while a field test was introduced. The parametric study shows that the decrements in radial pressure and the maximum pore water pressure after considering cavity contraction are increased as the expanded ratio(base diameter/shaft diameter) and rigidity index of soil are raised. The comparison between calculated and measured values shows that the calculated results of ultimate bearing capacity for expanded-base pile considering cavity contraction agree well with the measured values; however, the computations ignoring cavity contraction are 2.5-3.0 times the measured values.

  1. Influence of laser linewidth on external-cavity frequency doubling efficiency of a 1.56 μm master oscillator fiber power amplifier

    International Nuclear Information System (INIS)

    By using an external-cavity frequency-doubling master oscillator fiber power amplifier (MOPA), a 700 mW continuous-wave single-frequency laser source at 780 nm is produced. It is shown that the frequency doubling efficiency is improved when the seed diode laser is optically locked to a resonant frequency of a confocal Fabry–Perot (F–P) cavity. This phenomenon can be attributed to the narrowing of the 1.56 μm laser linewidth and explained by our presented theoretical model. The experimental results are found to be in good agreement with the theoretical predictions

  2. Wavelength Width Dependence of Cavity Temperature Distribution in Semiconductor Diode Laser

    OpenAIRE

    A. Alimorady; Abbasi, S. P.

    2013-01-01

    The study of heat distribution in laser diode shows that there is nonuniform temperature distribution in cavity length of laser diode. In this paper, we investigate the temperature difference in laser diode cavity length and its effect on laser bar output wavelength width that mounted on usual CS model. In this survey at the first, laser was simulated then the simulations result was compared with experimental test result. The result shows that for each emitter there is difference, about 2.5 d...

  3. Design of guided-mode resonance mirrors for short laser cavities.

    Science.gov (United States)

    Kondo, Tomohiro; Ura, Shogo; Magnusson, Robert

    2015-08-01

    A guided-mode resonance mirror (GMRM) consists of a waveguide grating integrated on an optical buffer layer on a high-reflection substrate. An incident free-space wave at the resonance wavelength is once coupled by the grating to a guided mode and coupled again by the same grating back to free space. The reflection characteristics of a GMRM are numerically calculated and theoretically analyzed. It is predicted that notch filtering or flat reflection spectra are obtained depending on the optical buffer layer thickness. Design of short cavities using a GMRM is discussed for potential application in surface-mount packaging of diode lasers onto a photonic circuit board. PMID:26367288

  4. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB. PMID:26974073

  5. Use of laser diodes in cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zare, R.N.; Paldus, B.A.; Ma, Y.; Xie, J. [Stanford Univ., CA (United States)

    1997-12-31

    We have demonstrated that cavity ring-down spectroscopy (CRDS), a highly sensitive absorption technique, is versatile enough to serve as a complete diagnostic for materials process control. In particular, we have used CRDS in the ultraviolet to determine the concentration profile of methyl radicals in a hot-filament diamond reactor; we have applied CRDS in the mid-infrared to detect 50 ppb of methane in a N{sub 2} environment; and, we have extended CRDS so that we can use continuous-wave diode laser sources. Using a laser diode at 810 nm, we were able to achieve a sensitivity of 2 x 10{sup -8} cm{sup -1}. Thus, CRDS can be used not only as an in situ diagnostic for investigating the chemistry of diamond film deposition, but it can also be used as a gas purity diagnostic for any chemical vapor deposition system.

  6. Micromechanical tunable vertical-cavity surface-emitting lasers

    Institute of Scientific and Technical Information of China (English)

    Guan Bao-Lu; Guo Xia; Deng Jun; Qu Hong-Wei; Lian Peng; Dong Li-Min; Chen Min; Shen Guang-Di

    2006-01-01

    We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended above an active region is utilized. Applied bridge-substrate bias produces an electrostatic force which reduces the spacing of air-gap and tunes the resonant wavelength toward a shorter wavelength (blue-shift). Good laser characteristics are obtained:such as continuous tuning ranges over 11 nm near 940 nm for 0-9 V tuning bias, the peak output power near 1 mW and the full-width-half-maximum limited to approximately 3.2-6.8 nm. A detailed simulation of the micromechanical and optical characteristics of these devices is performed, and the ratio of bridge displacement to wavelength shift has been found to be 3:1.

  7. An inductively heated hot cavity catcher laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Reponen, M., E-mail: mikael.reponen@riken.jp [Nuclear Physics Group, School of Physics and Astronomy, Schuster Laboratory, The University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Moore, I. D., E-mail: iain.d.moore@jyu.fi; Pohjalainen, I.; Savonen, M.; Voss, A. [Department of Physics, University of Jyväskylä, Survontie 9, FI-40014 Jyväskylä (Finland); Rothe, S. [CERN, CH-1211, Geneva 23 (Switzerland); Sonnenschein, V. [Department of Quantum Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2015-12-15

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary {sup 107}Ag{sup 21+} ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z {sup 94}Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  8. An inductively heated hot cavity catcher laser ion source

    CERN Document Server

    Reponen, M; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-01-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Agisotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusio...

  9. An inductively heated hot cavity catcher laser ion source

    Science.gov (United States)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Rothe, S.; Savonen, M.; Sonnenschein, V.; Voss, A.

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z 94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  10. An inductively heated hot cavity catcher laser ion source.

    Science.gov (United States)

    Reponen, M; Moore, I D; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined. PMID:26724021

  11. Transoral laser resections of oral cavity and oropharyngeal tumors

    Directory of Open Access Journals (Sweden)

    M. V. Bolotin

    2016-03-01

    Full Text Available The incidence of squamous cell carcinoma of the head and neck remains high and ranks tenth in the structure of overall cancer morbidity. Surgical radicality has remained one of the major determinants of the long-term results of treatment so far. In the period December 2014 to January 2016, our clinic performed surgical interventions as transoral laser oral cavity and oropharyngeal resections using carbon dioxide (CO2 laser in 34 patients. Tumors are most commonly located in the area of the tongue root and oropharynx in 16 (47.1 % patients, tongue (its anterior two thirds in 14 (41.2 %, and mouth floor in 4 (11.7 %. The average length of hospital stay after transoral laser resections was 10.14 days. A nasogastric tube was postoperatively placed in 6 (17.6 % patients for 8 to 17 days. According to the results of planned histological examination, surgical interventions were microscopically radical in all cases. Transoral CO2 laser resections make possible to perform rather large radical surgical interventions with a satisfactory functional and cosmetic results, without deteriorating the long-term results of treatment. 

  12. A Step Tunable External Cavity Semiconductor Laser for WDM Network Deployment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We put forward a kind of tunable external cavity semiconductor laser with feedback on both chip facets. It outputs the single-frequency laser with high side-mode suppression ratio and the frequency could be step tuned.

  13. Theoretical studies of solar pumped lasers

    Science.gov (United States)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  14. Theoretical analysis of radiation-balanced double clad fiber laser

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-xin; SUI Zhan; CHEN Fu-shen; LI Ming-zhong; WANG Jian-jun

    2005-01-01

    In this letter,a theoretical model of radiation-balanced double clad fiber laser is presented.The characteristic of the laser with Yb doped double clad fiber is analyzed numerically.It is concluded that high output laser power can be obtained by selecting output coupling mirror with lower reflectivity,improving Yb doped concentration and choosing fiber length. This result can help us to design radiation balanced fiber laser.

  15. Effect of SiO2 Reflection Reducing Coating on the Vertical Cavity Surface Emitting Laser

    International Nuclear Information System (INIS)

    The effects of epitaxis SiO2 film on the characteristics of DBR reflectivity were simulated, and the reflectivity of graded interface DBR is lower than the abrupt one was studied. 850nm vertical-cavity surface-emitting lasers were fabricated, the DBR is formed by graded heterojunction of AlxGa1-xAs, the top and bottom DBR have 22 and 34 pairs of mirror, and current was confined by oxide aperture, and then different thickness of SiO2 film were grew on the top DBR. and found that a certain thickness (λ/4) of the SiO2 reflection reducing coating could make the vertical-cavity surface-emitting lasers output power increased about 3-5 mW, the threshold current does not increase obviously, the reason is external quantum efficiency increases more than the threshold current. So the SiO2 reflection reducing coating does not affect the lasing of lasers and threshold current obviously, but It can significantly improve the output power. The experimental results agree well with the theoretical expectation.

  16. Effect of SiO2 Reflection Reducing Coating on the Vertical Cavity Surface Emitting Laser

    Science.gov (United States)

    Zhen-Bo, Zhao; Chen, Xu; Yi-Yang, Xie; Kang, Zhou; Fa, Liu; Bao-Qiang, Wang; Ying-Ming, Liu; Guang-Di, Shen

    2011-02-01

    The effects of epitaxis SiO2 film on the characteristics of DBR reflectivity were simulated, and the reflectivity of graded interface DBR is lower than the abrupt one was studied. 850nm vertical-cavity surface-emitting lasers were fabricated, the DBR is formed by graded heterojunction of AlxGa1-xAs, the top and bottom DBR have 22 and 34 pairs of mirror, and current was confined by oxide aperture, and then different thickness of SiO2 film were grew on the top DBR. and found that a certain thickness (λ/4) of the SiO2 reflection reducing coating could make the vertical-cavity surface-emitting lasers output power increased about 3-5 mW, the threshold current does not increase obviously, the reason is external quantum efficiency increases more than the threshold current. So the SiO2 reflection reducing coating does not affect the lasing of lasers and threshold current obviously, but It can significantly improve the output power. The experimental results agree well with the theoretical expectation.

  17. Widely tunable linear-cavity multiwavelength fiber laser with distributed Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    M. Ajiya; M. H. Al-Mansoori; M. A. Mahdi

    2011-01-01

    We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration. The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end. Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity. At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.%@@ We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration.The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end.Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity.At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.

  18. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan;

    1994-01-01

    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...

  19. Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a Quantum Cascade Laser.

    OpenAIRE

    Maisons, G.; Gorrotxategi Carbajo, P.; Carras, M.; Romanini, D.

    2010-01-01

    Optical{feedback cavity{enhanced absorption spectroscopy is demonstrated in the mid{IR using a quantum cascade laser (emitting at 4.46 ¹m). The laser linewidth reduction and frequency locking by selective optical feedback from the resonant cavity ¯eld turns out to be particularly important in this spectral range: It allows strong cavity transmission which compensates for low light sensitivity, especially when using room temperature detectors. We obtain a noise equivalent absorption coe±cient ...

  20. Vertical cavity surface-emitting semiconductor lasers with injection laser pumping

    Science.gov (United States)

    McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.

    1990-05-01

    Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.

  1. GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology

    Science.gov (United States)

    Orlando, Luciana

    2013-02-01

    I used theoretical forward models to show that a cavity embedded in a stratified sedimentary sequence can induce an equivalence problem in the ERT data inversion. Conductive top soil increases the misfit between the ground feature and the ERT model. The misfit depends on array and stratigraphy sequences. The latter induce an equivalence problem that manifests itself as wrong cavity depth positioning. The misfit is greater in the data acquired with Schlumberger array than with dipole-dipole. The ambiguity of ERT data inversion problems was tested in the detection of cavities linked to an 8th-6th century B.C. Sabine tomb, 3 m wide × 3 m long × 2 m high, excavated from a shaly gray volcanic ash (cinerite) layer covered by semi-lithoid tuff and top soil layers. In the real study I reduced the ambiguity in the inverse problem of ERT data using a priori information on geometry and resistivity of the cavity. The constrains were carried out from georadar data acquired with 80 and 200 MHz antenna. I demonstrate that this procedure has a practical application in cavity detection, and is a key to the reduction of the uncertainty inherent in the inversion process of ERT data.

  2. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: Stability theory, disorder, and laminates

    CERN Document Server

    Liarte, Danilo B; Transtrum, Mark K; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P

    2016-01-01

    We review our work on theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces. These limits are of key relevance to current and future accelerating cavities, especially those made of new higher-$T_c$ materials such as Nb$_3$Sn, NbN, and MgB$_2$. We summarize our calculations of the so-called superheating field $H_{\\mathrm{sh}}$, beyond which flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and disorder. Will we need to control surface orientation in the layered compound MgB$_2$? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. T...

  3. Single transverse mode selectively oxidized vertical cavity lasers

    Energy Technology Data Exchange (ETDEWEB)

    CHOQUETTE,KENT D.; GEIB,KENT M.; BRIGGS,RONALD D.; ALLERMAN,ANDREW A.; HINDI,JANA JO

    2000-04-26

    Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.

  4. Laser-induced autofluorescence of oral cavity hard tissues

    Science.gov (United States)

    Borisova, E. G.; Uzunov, Tz. T.; Avramov, L. A.

    2007-03-01

    In current study oral cavity hard tissues autofluorescence was investigated to obtain more complete picture of their optical properties. As an excitation source nitrogen laser with parameters - 337,1 nm, 14 μJ, 10 Hz (ILGI-503, Russia) was used. In vitro spectra from enamel, dentine, cartilage, spongiosa and cortical part of the periodontal bones were registered using a fiber-optic microspectrometer (PC2000, "Ocean Optics" Inc., USA). Gingival fluorescence was also obtained for comparison of its spectral properties with that of hard oral tissues. Samples are characterized with significant differences of fluorescence properties one to another. It is clearly observed signal from different collagen types and collagen-cross links with maxima at 385, 430 and 480-490 nm. In dentine are observed only two maxima at 440 and 480 nm, related also to collagen structures. In samples of gingival and spongiosa were observed traces of hemoglobin - by its re-absorption at 545 and 575 nm, which distort the fluorescence spectra detected from these anatomic sites. Results, obtained in this study are foreseen to be used for development of algorithms for diagnosis and differentiation of teeth lesions and other problems of oral cavity hard tissues as periodontitis and gingivitis.

  5. A tunable cavity-locked diode laser source for terahertz photomixing

    OpenAIRE

    Matsuura, Shuji; Chen, Pin; Blake, Geoffrey A.; Pearson, John C.; Pickett, Herbert M.

    2000-01-01

    An all solid-state approach to the precise frequency synthesis and control of widely tunable terahertz radiation by differencing continuous-wave diode lasers at 850 nm is reported in this paper. The difference frequency is synthesized by three fiber-coupled external-cavity laser diodes. Two of the lasers are Pound-Drever-Hall locked to different orders of a Fabry-Perot (FP) cavity, and the third is offset-frequency locked to the second of the cavity-locked lasers using a tunable microwave osc...

  6. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers

    OpenAIRE

    Hippler, M

    2015-01-01

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-eq...

  7. Design of a stacked diode array pumped Yb:YAG laser with a diffusive optical cavity

    International Nuclear Information System (INIS)

    A stacked diode array pumped Yb:YAG laser is designed using a five-fold symmetric diffusive optical cavity. By using a ray-tracing method, we analyzed numerically the absorbed pump power distribution, the absorbed pump power, and the threshold power for the various radii of the laser crystal and the optical cavity, and the doping rates of the laser crystal. Based upon these analyses, we found that the design of a highly efficient diode-pumped Yb:YAG laser is possible with the five-fold symmetric diffusive optical cavity. TYhe optimum absorption efficiency was 59.2%

  8. Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity

    International Nuclear Information System (INIS)

    We report on the passive mode locking of a diode pumped Yb:GdYAG ceramic laser with a near isotropic cavity. It is found that the laser could simultaneously mode lock in the two orthogonal principal polarization directions of the cavity, and the mode locked pulses of the two polarizations have identical features and are temporally perfectly synchronized. However, their pulse energy varies out-of-phase periodically, manifesting the antiphase dynamics of mode locked lasers. (letter)

  9. Discrete cavity model of a standing-wave free-electron laser

    International Nuclear Information System (INIS)

    A standing-wave free-electron laser (SWFEL) has been proposed for use in a two-beam accelerator (TBA). Unlike a conventional microwave free-electron laser, the SWFEL has a wiggler that is divided by irises into a series of standing-wave cavities, and the beam is reaccelerated by induction cells between cavities. We introduce a one-dimensional discrete-cavity model of the SWFEL. In contrast to the continuum model that has been extensively used to study the device, the new model takes into account time-of-flight effects within the cavity and applies the reacceleration field only between cavities, where the pondermotive force is absent. As in previous SWFEL models, only a single frequency is considered. Using this model, effects of finite cavity length are investigated. For moderately long cavities, it is shown that there are no adverse effects on the phase stability of the device. 4 refs., 3 figs., 1 tab

  10. Theoretical and experimental study of natural convection with surface thermal radiation in a side open cavity

    International Nuclear Information System (INIS)

    In this work a theoretical and experimental study of heat transfer by natural convection and thermal radiation on a solar open cubic cavity-type receiver is presented. The theoretical study consists on solving the laminar natural convection and the surface thermal radiation on a square open cavity at one end. The overall continuity, momentum, and energy equations in primitive variables are solved numerically by using the finite-volume method and the SIMPLEC algorithm. The thermophysical properties of the fluid are considered, for the first case, as temperature dependent in all the governing equations, and for the second case, constant, except for the density at the buoyancy term (Boussinesq approximation), with the purpose of comparing the results of both theoretical models with experimentally obtained results. Numerical calculations are conducted for Rayleigh number (Ra) values in the range of 104–106. The temperature difference between the hot wall and the bulk fluid (ΔT) is varied between 10 and 400 K, and is represented as a dimensionless temperature difference (φ) for the purpose of generalization of the trends observed. Experimental results include air temperature measurements inside the receiver. These results are compared with theoretically obtained air temperatures, and the average deviation between both results is around 3.0%, when using the model with variable thermophysical properties, and is around 5.4% when using the Boussinesq approximation

  11. Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling.

    Science.gov (United States)

    Shao, Guodong; Song, Yufeng; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan

    2015-10-01

    We report on the experimental observation of soliton-dark pulse pair formation in a birefringent cavity fiber laser. Temporal cavity solitons are formed in one polarization mode of the cavity. It is observed that associated with each of the cavity solitons a dark pulse is induced on the CW background of the orthogonal polarization mode. We show that the dark pulse formation is a result of the incoherent cross polarization coupling between the soliton and the CW beam and has a mechanism similar to that of the polarization domain formation observed in the fiber lasers. PMID:26480138

  12. A compact chaotic laser device with a two-dimensional external cavity structure

    Energy Technology Data Exchange (ETDEWEB)

    Sunada, Satoshi, E-mail: sunada@se.kanazawa-u.ac.jp; Adachi, Masaaki [Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Fukushima, Takehiro [Department of Information and Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Shinohara, Susumu; Arai, Kenichi [NTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Harayama, Takahisa [NTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Mechanical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-06-16

    We propose a compact chaotic laser device, which consists of a semiconductor laser and a two-dimensional (2D) external cavity for delayed optical feedback. The overall size of the device is within 230 μm × 1 mm. A long time delay sufficient for chaos generation can be achieved with the small area by the multiple reflections at the 2D cavity boundary, and the feedback strength is controlled by the injection current to the external cavity. We experimentally demonstrate that a variety of output properties, including chaotic output, can be selectively generated by controlling the injection current to the external cavity.

  13. III-V/SOI vertical cavity laser structure for 120 Gbit/s speed

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Mørk, Jesper;

    2015-01-01

    Ultrashort-cavity structure for III-V/SOI vertical cavity laser with light output into a Si waveguide is proposed, enabling 17 fJ/bit efficiency or 120 Gbit/s speed. Experimentally, 27-GHz bandwidth is demonstrated at 3.5 times of threshold. © 2015 OSA.......Ultrashort-cavity structure for III-V/SOI vertical cavity laser with light output into a Si waveguide is proposed, enabling 17 fJ/bit efficiency or 120 Gbit/s speed. Experimentally, 27-GHz bandwidth is demonstrated at 3.5 times of threshold. © 2015 OSA....

  14. A compact chaotic laser device with a two-dimensional external cavity structure

    International Nuclear Information System (INIS)

    We propose a compact chaotic laser device, which consists of a semiconductor laser and a two-dimensional (2D) external cavity for delayed optical feedback. The overall size of the device is within 230 μm × 1 mm. A long time delay sufficient for chaos generation can be achieved with the small area by the multiple reflections at the 2D cavity boundary, and the feedback strength is controlled by the injection current to the external cavity. We experimentally demonstrate that a variety of output properties, including chaotic output, can be selectively generated by controlling the injection current to the external cavity.

  15. Theoretical description of laser melt pool dynamics

    Science.gov (United States)

    Dykhne, A.

    1995-05-01

    Melting of solid matter under laser radiation is realized in almost every process of laser technology. The present paper addresses melted material flows in cases when melt zones are shallow, i.e., the zone width is appreciably greater than or of the same order as its depth. Such conditions are usually realized when hardening, doping or perforating thin plates or when using none-deep penetration. Melted material flowing under conditions of deep penetration, drilling of deep openings and cutting depends on a number of additional factors (as compared to the shallow-pool case), namely, formation of a vapor and gas cavern in the sample and propagation of the laser beam through the cavern. These extra circumstances complicate hydrodynamic consideration of the liquid bath and will be addressed is the paper to follow.

  16. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza; Semenova, Elizaveta; Yvind, Kresten; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light into...... the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes...

  17. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output in...... efficient frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical...

  18. Investigation of carrier to envelope phase and repetition rate: fingerprints of mode-locked laser cavities

    International Nuclear Information System (INIS)

    We use mode locked lasers in a non-conventional way, as a sensor to perform intracavity measurements. To understand this new technique of intracavity phase interferometry (IPI), one should take a detailed look at the characteristics of the frequency comb and its sensitivity to its parent cavity. The laser cavity provides a means to perform phase interferometry while outside the cavity one can only observe amplitude interference. Many physical quantities such as nonlinear index, Earth rotation, magnetic field, Fresnel drag, etc are converted to phase. IPI is performed by designing laser cavities in which two pulses circulate independently, generating two pulse trains that can have a phase difference that will be converted to frequency. We also explore repetition rate spectroscopy in Rb87 by tailoring a laser wavelength, power and bandwidth. Coherent population trapping is observed when the laser repetition rate matches submultiples of hyperfine splitting. (phd tutorial)

  19. Experimental and theoretical studies of N2/CO2 mixing-type gasdynamic lasers

    International Nuclear Information System (INIS)

    The performance of thermally excited mixing-type N2CO2 gasdynamic lasers (GDLs) is affected by various parameters; the nitrogen stagnation temperature and pressure, mixing methods, the CO2 flow rate, the foreign gas additions, etc. This paper describes theoretical and experimental studies on the mixing-type N2/CO2 GDLs, over a wide range of these parameters. Theoretical prediction, which uses a simplified mixing model and a linear mixing rate is able to give a qualitative explanation of the experimental results. It is found that a cavity mixing is the superior method and that, within the range of 1000 K -- 1500 K, the gain coefficients and the laser power increase almost linearly with the increase of the reservoir temperature, but the addition of foreign gases (He, Ar) exerts only a minor influence on them. (author)

  20. Photonic crystal-based flat lens integrated on a Bragg mirror for high-Q external cavity low noise laser.

    Science.gov (United States)

    Seghilani, M S; Sellahi, M; Devautour, M; Lalanne, P; Sagnes, I; Beaudoin, G; Myara, M; Lafosse, X; Legratiet, L; Yang, J; Garnache, A

    2014-03-10

    We demonstrate a high reflectivity (> 99%), low-loss (air gap high finesse (cold cavity Q-factor 10(6) - 10(7)) stable laser cavity is demonstrated with a GaAs-based quantum-wells 1/2-VCSEL gain structure at 1μm. Excellent laser performances are obtained in single frequency operation: low threshold density of 2kW/cm(2) with high differential efficiency (21%). And high spatial, temporal and polarization coherence: TEM(00) beam close to diffraction limit, linear light polarization (> 60dB), Side Mode Suppression Ratio > 46dB, relative intensity noise at quantum limit (< -150dB) in 1MHz-84GHz radio frequency range, and a theoretical linewidth fundamental limit at 10 Hz (Q-factor ∼ 3.10(13)). PMID:24663933

  1. Frequency stabilization based on high finesse glass-ceramic Fabry-Perot cavity for a 632.8-nm He-Ne laser

    Science.gov (United States)

    Fu, Tingting; Yang, Kaiyong; Tan, Zhongqi; Luo, Zhifu; Wu, Suyong

    2014-12-01

    A frequency stabilization technique for a 632.8nm He-Ne laser with a high finesse Fabry-Perot cavity is introduced in this paper. The resonant frequency of the cavity is taken as the frequency standard .In this system the Fabry-Perot cavity is composed of a glass-ceramic spacer, with thermal expansion coefficient smaller than 2×10-8/°C , which means an excellent thermal stabilization which greatly decreases the thermal impacts on the cavity length in the desired constant-temperature environment.The intra-cavity spherical mirror is specially designed, which makes the Fabry-cavity a sensor element in our subsequent experiments for a new practical optical accelerometer .Both cavity mirrors were custom made in our laboratory which have reflectivities greater than 99.995% at 632.8nm, so the Fabry-Perot cavity has a finesse of about 62830. The half-maximum transmission line width is about 55.48 KHz and the free spectral range is 3.5GHz .In the experimental setup, we adopt the frequency stabilization circuit with small dithering .With proper dithering voltage, the laser can be precisely locked to the Fabry-Perot cavity minimum reflection point. Theoretically the frequency stability can reach 10-10 order.

  2. Characteristics of selective oxidation during the fabrication of vertical cavity surface emitting laser

    Institute of Scientific and Technical Information of China (English)

    Hao Yong-Qin; Zhong Jing-Chang; Ma Jian-Li; Zhang Yong-Ming; Wang Li-Jun

    2006-01-01

    Taking into account oxidation temperature, N2 carrier gas flow, and the geometry of the mesa structures this paper investigates the characteristics of selective oxidation during the fabrication of the vertical cavity surface emitting laser (VCSEL) in detail. Results show that the selective oxidation follows a law which differs from any reported in the literature. Below 435°C selective oxidation of Al0.98 Ga0.02 As follows a linear growth law for the two mesa structures employed in VCSEL. Above 435°C approximately increasing parabolic growth is found, which is influenced by the geometry of the mesa structures. Theoretical analysis on the difference between the two structures for the initial oxidation has been performed, which demonstrates that the geometry of the mesa structures does influence on the growth rate of oxide at higher temperatures.

  3. Numerical model of capacitance in vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Wasiak, M.; Śpiewak, P.; Moser, P.; Walczak, J.; Sarzała, R. P.; Czyszanowski, T.; Lott, J. A.

    2016-05-01

    In this paper we present a model of impedance and modulation time constants for vertical-cavity surface-emitting lasers (VCSELs) operating above threshold current. A 3D numerical model of potential distribution in the device under a constant bias is used to determine resistances and capacitances of an appropriate equivalent circuit. The model has been verified by comparing the theoretical and measured impedance as a function of frequency Z(f). The measured Z(f) is determined from S 11 small signal modulation experiments. The comparison has been performed for frequencies up to 40 GHz and a wide range of above threshold currents, for two oxide-confined VCSELs of different aperture diameters. We obtained a very good quantitative agreement for frequencies up to about 15 GHz and qualitative agreement over the entire range of currents and frequencies.

  4. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  5. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  6. Study of low work function materials for hot cavity resonance ionization laser ion sources

    International Nuclear Information System (INIS)

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  7. A simple model for cavity-enhanced laser-driven ion acceleration from thin foil targets

    CERN Document Server

    Rączka, Piotr

    2012-01-01

    A scenario for the laser-driven ion acceleration off a solid target is considered, where the reflected laser pulse is redirected towards the target by reflection at the inner cavity wall, thus recycling to some extent the incident laser energy. This scenario is discussed in the context of sub-wavelength foil acceleration in the radiation pressure regime, when plasma dynamics is known to be reasonably well described by the laser-sail model. A semi-analytic extension of the 1D laser-sail model is constructed, which takes into account the effect of reflections at the inner cavity wall. The effect of cavity reflections on sub-wavelength foil acceleration is then illustrated with two concrete examples of intense laser pulses of picosecond and femtosecond duration.

  8. Cavity dumping of an injection-locked free-electron laser

    OpenAIRE

    Takahashi, Susumu; Ramian, Gerald; Sherwin, Mark S.

    2009-01-01

    This letter reports cavity dumping of an electrostatic-accelerator-driven free-electron laser (FEL) while it is injection-locked to a frequency-stabilized 240 GHz solid-state source. Cavity dumping enhances the FEL output power by a factor of $\\sim$8, and abruptly cuts off the end of the FEL pulse. The cavity-dumped, injection-locked FEL output is used in a 240 GHz pulsed electron spin resonance (ESR) experiment.

  9. Finite-element simulation of cavity modes in a micro-fluidic dye ring laser

    CERN Document Server

    Gersborg-Hansen, M; Mortensen, N A; 10.1088/1464-4258/8/1/003

    2006-01-01

    We consider a recently reported micro-fluidic dye ring laser and study the full wave nature of TE modes in the cavity by means of finite-element simulations. The resonance wave-patterns of the cavity modes support a ray-tracing view and we are also able to explain the spectrum in terms of standing waves with a mode spacing dk = 2pi/L_eff where L_eff is the effective optical path length in the cavity.

  10. Sub-gigahertz beam switching of vertical-cavity surface-emitting laser with transverse coupled cavity

    Energy Technology Data Exchange (ETDEWEB)

    Nakahama, M.; Gu, X.; Sakaguchi, T. [Photonics Integration System Research Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Matsutani, A. [Semiconductor and MEMS Processing Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ahmed, M.; Bakry, A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Koyama, F. [Photonics Integration System Research Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-08-17

    We report a high-speed electrical beam switching of vertical cavity surface emitting laser with a transverse coupled cavity. A high speed (sub-gigahertz) and large deflection angle (>30°) beam switching is demonstrated by employing the transverse mode switching. The angular switching speed of 900 MHz is achieved with narrow beam divergence of below 4° and extinction ratio of 8 dB. We also measured the near- and far-field patterns to clarify the origin of the beam switching. We present a simple one-dimensional Bragg reflector waveguide model, which well predicts the beam switching characteristic.

  11. Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Phillips, Mark C.

    2015-07-01

    A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.

  12. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.; Kriesel, Jason M.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  13. Hyperspectral microscopy using an external cavity quantum cascade laser and its applications for explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Suter, Jonathan D.; Bernacki, Bruce E.

    2012-04-01

    A hyperspectral infrared microscope using external cavity quantum cascade laser illumination and a microbolometer focal plane array is used to characterize nanogram-scale particles of the explosives RDX, tetryl, and PETN at fast acquisition rates.

  14. Optimization of an External Cavity Quantum Cascade Laser for Chemical Sensing Applications

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Bernacki, Bruce E.; Taubman, Matthew S.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-03-01

    We describe and characterize an external cavity quantum cascade laser designed for detection of multiple airborne chemicals, and used with a compact astigmatic Herriott cell for sensing of acetone and hydrogen peroxide.

  15. Theoretical study of selected laser dye materials

    International Nuclear Information System (INIS)

    In this work theoretical calculation of the ground and excited state of coumarin compounds are performed using DFT-B3LYP and CIS methods with 6-31G basis set. IR spectrum, UV/Vis spectrum, molecular orbitals and energy gap are calculated. We use different solvents ethanol, methanol, water, acetonitrile (ACN) dimethyl sulfoxide (DMSO) acetone, and dichloromethane to compare values of UV/Vis absorption spectra. Then the calculated results are compared with the experimental values. (author)

  16. E-beam accelerator cavity development for the ground-based free electron laser

    Science.gov (United States)

    Bultman, N. K.; Spalek, G.

    Los Alamos National Laboratory is designing and developing four prototype accelerator cavities for high power testing on the Modular Component Technology Development (MCTD) test stand at Boeing. These cavities provide the basis for the e-beam accelerator hardware that will be used in the Ground Based Free Electron Laser (GBFEL) to be sited at the White Sands Missile Range (WSMR) in New Mexico.

  17. Cavities

    Science.gov (United States)

    ... the bacteria produce acids that cause decay. Tooth pain occurs after decay reaches the inside of the tooth. Dentists can detect cavities by examining the teeth and taking x-rays periodically. Good oral hygiene and regular dental care plus a healthy diet can help prevent cavities. ...

  18. Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump

    International Nuclear Information System (INIS)

    We have demonstrated a new configuration of Brillouin-Erbium fiber laser, in which the Brillouin pump is pre-amplified within the laser cavity before entering the single-mode fiber. By using this simple scheme, a lower external Brillouin pump power is required to create the Brillouin gain and suppresses the laser cavity modes. The proposed laser structure exhibits a wide tuning range of 13 nm from 1597 nm to 1610 nm with 1480 nm pump power of 100 mW. The number of channels obtained within this wavelength range is 14 channels with 0.089 nm spacing

  19. Intracavity frequency-doubled green vertical external cavity surface emitting laser

    Institute of Scientific and Technical Information of China (English)

    Yanrong Song; Peng Zhang; Xinping Zhang; Boxia Yan; Yi Zhou; Yong Bi; Zhigang Zhang

    2008-01-01

    @@ An intracavity frequency-doubled vertical external cavity surface emitting laser (VECSEL) with green light is demonstrated. The fundamental frequency laser cavity consists of a distributed Bragg reflector (DBR) of the gain chip and an external mirror. A 12-mW frequency-doubled output has been reached at 540 nm with a nonlinear crystal LBO when the fundamental frequency output is 44 mW at 1080 nm. The frequency doubling efficiency is about 30%.

  20. Hybrid III-V-on-Si Vertical Cavity laser for Optical Interconnects

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Semenova, Elizaveta; Chung, Il-Sug

    2013-01-01

    Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers.......Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers....

  1. Highly Sensitive Photonic Crystal Cavity Laser Noise Measurements using Bayesian Filtering

    DEFF Research Database (Denmark)

    Piels, Molly; Xue, Weiqi; Schäffer, Christian G.;

    2015-01-01

    We measure for the first time the frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber-coupled output power using a coherent receiver and Bayesian filtering.......We measure for the first time the frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber-coupled output power using a coherent receiver and Bayesian filtering....

  2. Theoretical observation of two state lasing from InAs/InP quantum-dash lasers

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2011-09-01

    The effect of cavity length on the lasing wavelength of InAs/InP quantum dash (Qdash) laser is examined using the carrier-photon rate equation model including the carrier relaxation process from the Qdash ground state and excited state. Both, homogeneous and inhomogeneous broadening has been incorporated in the model. We show that ground state lasing occurs with longer cavity lasers and excited state lasing occurs from relatively short cavity lasers. © 2011 IEEE.

  3. Theoretical Femtosecond Physics Atoms and Molecules in Strong Laser Fields

    CERN Document Server

    Grossmann, Frank

    2008-01-01

    Theoretical femtosecond physics is a new field of research. Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers of up to atomic field strengths are leading to an understanding of many challenging experimental discoveries. Laser-matter interaction is treated on a nonperturbative level in the book using approximate and numerical solutions of the time-dependent Schrödinger equation. The light field is treated classically. Physical phenomena, ranging from ionization of atoms to the ionization and dissociation of molecules and the control of chemical reactions are presented and discussed. Theoretical background for experiments with strong and short laser pulses is given. Several exercises are included in the main text. Some detailed calculations are performed in the appendices.

  4. Theoretical tools for atom-laser-beam propagation

    OpenAIRE

    Riou, Jean-Félix; Le Coq, Yann; Impens, François; Guerin, William; Bordé, Christian,; Aspect, Alain; Bouyer, Philippe

    2008-01-01

    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce...

  5. Theoretical analysis of transmission characteristics for all fiber, multi-cavity Fabry-Perot filters based on fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    XU OU; LU ShaoHua; DONG XiaoWei; LI Bin; NING TiGang; JIAN ShuiSheng

    2008-01-01

    The characteristics of transmission spectra for the all fiber, multi-cavity FabryPerot (FP) configuration based on fiber Bragg gratings (FBG) are theoretically analyzed and modeled. The general transmission matrix function for the structure with any number of cavities is derived, and explicit expression of the power trans-mission coefficient for symmetrical two-cavity FP is presented. The general condi-tions for flat-top single resonant peak at the central wavelength in FBG stop band are derived and verified in the numerical simulation section. The transmission peaks of single-cavity and two-cavity FP structures are compared and discussed, and results show that compared to the single-cavity FP, flatness of the top and steepness at the edge of transmission peak can be improved by introducing one more cavity. The resonant transmission peak properties of two-cavity structure are investigated in detail for various values of cavity length and FBGs with different reflection characteristics, and the design guidelines for transmission-type filters are presented. The results show that the steepness of peak slope can be improved by increase of FBG reflectivities, and these kinds of filters can be used as nar-row-band single-channel selectors and multi-channel wavelength de-multiplexing by properly choosing the length of cavities and reflectivities of FBGs.

  6. Quantum dot SOA/silicon external cavity multi-wavelength laser.

    Science.gov (United States)

    Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael

    2015-02-23

    We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission. PMID:25836504

  7. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity

    International Nuclear Information System (INIS)

    Phase locking of a laser diode array is demonstrated experimentally by using an off-axis external Talbot cavity with a feedback plane mirror. Due to good spatial mode discrimination, the cavity does not need a spatial filter. By employing the cavity, a clear and stable far-field interference pattern can be observed when the driver current is less than 14 A. In addition, the spectral line width can be reduced to 0.8 nm. The slope efficiency of the phase-locked laser diode array is about 0.62 W/A. (fundamental areas of phenomenology(including applications))

  8. Properties of high-order transverse modes in astigmatic laser cavities

    International Nuclear Information System (INIS)

    A theory of the modes in a resonator bounded by the surface of a triaxial ellipsoid was given previously by Weinstein. We have applied this theory to characterize the modes observed in a large-aperture Brewster-window laser. Recognizing that Brewster windows impart astigmatism to the laser cavity, we can find an equivalent ellipsoidal cavity with which to associate the modes. The theory predicts various forms of mode structure, depending on the total astigmatism present. We have verified the theory experimentally and show that high-order modes having rectangular symmetry may be obtained even though a circular aperture is used in the cavity. (auth)

  9. Development of optical cavities for the laser-Compton scattering experiment at cERL

    International Nuclear Information System (INIS)

    A nondestructive assay method of isotopes by using quasi-monochromatic gamma-rays based on laser-Compton scattering (LCS) is under development. In order to demonstrate the accelerator and the laser performance required for the gamma-ray source, a LCS experiment is planned at Compact ERL (cERL) at KEK. An optical cavity which can achieve high finesse and small waist size is under construction for the LCS experiment. The new optical cavity comprises two sets of planar 4-mirror cavities. (author)

  10. Analysis of mode-hop free tuning of folded cavity grating feedback lasers.

    Science.gov (United States)

    Yan, Jinyi; Gong, Qian; Gao, Jinjin; Cao, Chunfang; Wang, Yang; Xu, Haixin; Zhao, Wangpeng; Wang, Hailong

    2015-10-01

    We analytically study an external cavity laser structure including a folded cavity. A steering mirror is utilized in the folded cavity to deflect the intracavity laser beam. A mode-hop free tuning range of ∼400  GHz can be achieved by control of the steering mirror, and a fast tuning rate is expected because of the small mass of the steering mirror. This technique has potential for applications in spectroscopy for turbulent media, especially in the mid-infrared region. PMID:26479606

  11. Reduced absorption of light by metallic intra-cavity contacts: Tamm plasmon based laser mode engineering

    CERN Document Server

    Kaliteevski, M A

    2013-01-01

    It was widely accepted that embedding of metallic layers into optoelectronic structures is detrimental to lasing due absorption in metal. However, recently macroscopic optical coherence and lasing was observed in microcavities with intra-cavity single metallic layer. Here we propose the design of the of microcavity-type structure with two intra-cavity metallic layers which could serve as contacts for electrical pumping. The design of optical modes based on utilizing peculiarities of Tamm plasmon provides vanishing absorption due to fixing of the node of electric field of optical mode to metallic layers. Proposed design can be used for fabrication of vertical cavity lasers with intra-cavity metallic contacts.

  12. STUDY OF THE PROPAGATION OF SHORT PULSE LASER WITH CAVITY USING NUMERICAL SIMULATION SOFTWARE

    Directory of Open Access Journals (Sweden)

    S. Terniche

    2015-07-01

    Full Text Available The purpose of this representation is to show the potentialities (Computational Time, access to the dynamic and feasibility of systematic studies of the numerical study of the nonlinear dynamics in laser cavity, assisted by software. We will give as an example, one type of cavity completely fibered composed of several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities.

  13. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    Science.gov (United States)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  14. DESIGN AND OPERATING EXPERIENCE ON LASER CAVITY IN A VACUUM OF 10-10 TORR

    OpenAIRE

    Velghe, M.

    1983-01-01

    The length of the A.C.O. storage ring laser is 5.50 meters, on each side of the undulator is a vacuum system monted with bellows in which the laser cavity mirrors are placed. The mechanical feed thoughs for the mirror adjustments have an accuracy of 1 µmeter for the length 10-6 Rd. for the angles.

  15. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak;

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  16. Transverse Mode Dynamics and Ultrafast Modulation of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We show that multiple transverse mode dynamics of VCSELs (Vertical-Cavity Surface-Emitting Lasers) can be utilized to generate ultrafast intensity modulation at a frequency over 100 GHz, much higher than the relaxation oscillation frequency. Such multimode beating can be greatly enhanced by taking laser output from part of the output facet.

  17. Transverse Mode Structure and Pattern Formation in Oxide Confined Vertical Cavity Semiconductor Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hegarty, S.P.; Hou, H.Q.; Huyet, G.; McInerney, J.G.; Porta, P.

    1999-07-06

    We analyze the transverse profiles of oxide-confined vertical cavity laser diodes as a function of aperture size. For small apertures we demonstrate that thermal lensing can be the dominant effect in determining the transverse resonator properties. We also analyze pattern formation in lasers with large apertures where we observe the appearance of tilted waves.

  18. III-V/SOI vertical cavity laser with in-plane output into a Si waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Semenova, Elizaveta;

    2015-01-01

    We experimentally demonstrate an optically-pumped III-V-on-SOI hybrid vertical-cavity laser that outputs light into an in-plane Si waveguide, using CMOS-compatible processes. The laser operates at 1.49 $\\mu$m with a side-mode suppression-ratio of 27 dB and has a similar threshold as long...

  19. An intra-cavity device with a discharge-drived CW DF chemical laser

    Science.gov (United States)

    Yan, Baozhu; Liu, Wenguang; Zhou, Qiong; Yuan, Shengfu; Lu, Qisheng

    2015-05-01

    The performance parameters of reflecting mirrors such as absorption coefficient or thermal distortion determine the beam quality of the output laser, so the quality of mirrors is one of the most important factors affecting the capability of the whole laser system. At the present time, there was obviously insufficient in test methods for the mirrors performance. The reflection coefficient, absorption coefficient and scattering coefficient of mirrors could be measured by a lot of test methods such as cavity ring-down method, photothermal deflection method, surface thermal lens method and laser calorimetry. But these methods could not test under high power density radiation. So the test data and results could not indicate the real performance in a real laser system exactly. Testing in a real laser system would be expensive and time consuming. Therefore, the test sequence and data would not be sufficient to analyze and realize the performance of mirrors. To examine the performance of mirrors under high power density radiation, the working principle of intra-cavity was introduced in this paper. Utilizing an output mirror with a low output coupling ratio, an intra-cavity could produce high-power density laser in the resonant cavity on the basis of a relatively small scale of gain medium, and the consumption and cost were very low relatively. Based on a discharge-drived CW DF chemical laser, an intra-cavity device was established. A laser beam of 3kw/cm2 was achieved in the resonant cavity. Two pieces of 22.5 degree mirrors and two pieces of 45 degree mirrors could be tested simultaneously. Absorption coefficient and thermal distortion were measured by calorimetry and Hartmann wavefront sensor respectively. This device was simple, convenient, low-maintenance, and could work for a long time. The test results would provide support for process improvement of mirrors.

  20. A low-temperature external cavity diode laser for broad wavelength tuning

    OpenAIRE

    Tobias, William G.; Rosenberg, Jason S.; Hutzler, Nicholas R.; Ni, Kang-Kuen

    2016-01-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64{\\deg}C, more than ...

  1. Semiconductor laser with a birefringent external cavity for information systems with wavelength division multiplexing

    Energy Technology Data Exchange (ETDEWEB)

    Paranin, V D; Matyunin, S A; Tukmakov, K N [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation)

    2013-10-31

    The spectrum of a semiconductor laser with a birefringent external Gires – Tournois cavity is studied. The generation of two main laser modes corresponding to the ordinary and extraordinary wave resonances is found. It is shown that the radiation spectrum is controlled with a high energy efficiency without losses for spectral filtration. The possibility of using two-mode lasing in optical communication systems with wavelength division multiplexing is shown. (control of laser radiation parameters)

  2. Polarization message encoding through vectorial chaos synchronization in vertical-cavity surface-emiting lasers

    OpenAIRE

    Scirè, Alessandro; Mulet, Josep; Mirasso, Claudio R.; Danckaert, Jan; San Miguel, Maxi

    2003-01-01

    We show that self-pulsating vertical-cavity surface-emitting lasers can exhibit vectorial chaos, i.e., chaos in both intensity and polarization. The achievable synchronization degree of two such lasers is high when using a continuous control scheme and unidirectional coupling. We propose a novel encryption scheme, where the phase of the vectorial field is modulated. Therefore, the total intensity of these lasers remains synchronized while the intensities in the polarization modes (de)synchron...

  3. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    International Nuclear Information System (INIS)

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments

  4. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    Energy Technology Data Exchange (ETDEWEB)

    Biebersdorf, A [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Lingk, C [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); De Giorgi, M [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Feldmann, J [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Sacher, J [Sacher Lasertechnik GmbH, Hannah Arendt Strasse 3-7, D-35037 Marburg (Germany); Arzberger, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Ulbrich, C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Boehm, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Amann, M-C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Abstreiter, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2003-08-21

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments.

  5. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    OpenAIRE

    Chen, H.; Li, H.; YC. Sun; Wang, Y.; PJ. Lü

    2016-01-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablat...

  6. Theoretical study on longitudinally pumped Yb3+:Y2O3 lasers

    Institute of Scientific and Technical Information of China (English)

    Haixia Ma; Qihong Lou; Yunfeng Qi; Jingxing Dong; Yunrong Wei

    2005-01-01

    @@ To optimize the performance of longitudinally pumped Yb3+:Y2O3 ceramic lasers, cavity parameters such as material length and output coupler transmission at a certain laser output power are calculated numerically using quasi-three-level laser model. The results show great potential of Yb3+:Y2O3 ceramics for highly efficient diode-pumped solid-state lasers.

  7. Spectral properties of a broad-area diode laser with off-axis external-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    intensity noise spectrum of the diode laser shows that the intensity noise is increased strongly by the external-cavity feedback. External-cavity modes are excited in the external cavity even in the off-axis configuration. The peak spacing of the intensity noise spectrum shows that single roundtrip external......Spectral properties, both the optical spectrum and the intensity noise spectrum, of a broad-area diode laser with off-axis external-cavity feedback are presented. We show that the optical spectrum of the diode laser system is shifted to longer wavelengths due to the external-cavity feedback. The......-cavity modes are excited. We believe that the four-wave mixing process in the broad-area diode laser is responsible for the establishment of the external-cavity mode....

  8. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    CERN Document Server

    Park, Gyeong Cheol; Taghizadeh, Alireza; Semenova, Elizaveta; Yvind, Kresten; Mørk, Jesper; Chung, Il-Sug

    2014-01-01

    We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS-compatible processes. It has the potential for ultrahigh-speed operation beyond 100 Gbit/s and features a novel mechanism for transverse mode control.

  9. Quantum Noise Reduction and Generalized Two-Mode Squeezing in a Cavity Raman Laser

    OpenAIRE

    Druhl, K.; Windenberger, C.

    1998-01-01

    We study a generalized notion of two-mode squeezing for the Stokes and anti-Stokes fields in a model of a cavity Raman laser, which leads to a significant reduction in decoherence or quantum noise. The model comprises a loss-less cavity with classical pump, unsaturated medium and arbitrary homogeneous broadening and dispersion. Allowing for arbitrary linear combinations of the two modes in the definition of quadrature variables, we find that there always exists a combination of the two output...

  10. Q-switched operation with Fox-Smith-Michelson laser cavity

    International Nuclear Information System (INIS)

    A new kind of three-mirror composite cavity, Fox-Smith-Michelson cavity has been configured. This laser cavity is capable of high power output, owing to the low threshold of Michelson cavity. Also, thanks to the mode selection function of Fox-Smith cavity, stable pulses at high repetition rate can be generated. In our experiment, 15.54 W CW output at 1064 nm has been achieved, with an optic-to-optic conversion efficiency of 42.2%. At the Q-switching repetition rate of 100 kHz, the average output power is 11.92 W, with an optic-to-optic conversion efficiency of 38.2%. For Q-switching frequency from 30 kHz to 100 kHz, the pulse width variation is below 4.4% and the amplitude variation is below 4.8%

  11. Optical enhancement cavity with astigmatism correction for laser compton light source

    International Nuclear Information System (INIS)

    Energetic photon beam produced via Laser-Compton scattering is expected to have variety of applications. An optical enhancement cavity with a small spot size at the collision point is a key to realize a high average flux. It is known that astigmatism arising from finite incident angle on the concave mirror limits the smallest spot size in the case of conventional 4-mirror ring cavity. We discuss a design of an optical cavity with astigmatism compensation utilizing additional convex mirrors. It improves the ellipticity of beam profile at the focus point and can realize a smaller spot size. (author)

  12. Comparison of Dentin Permeability After Tooth Cavity Preparation with Diamond Bur and Er:YAG Laser

    Science.gov (United States)

    Hasani Tabatabaei, Masoumeh; Shirmohammadi, Sara; Yasini, Esmaeil; Mirzaei, Mansoureh; Arami, Sakineh; Kermanshah, Hamid; Ranjbar Omrani, Ladan; Alimi, Azar; Chiniforush, Nasim; Nakhostin, Afrooz

    2015-01-01

    Objectives: The aim of this study was to compare the permeability of dentin after using diamond bur and Er:YAG laser. Materials and Methods: Seventy-two recently extracted, intact, and restoration-free human permanent molars were used in this study. The samples were randomly divided into three groups of 24 each and class I cavities were prepared as follows. Group 1: High speed diamond bur with air and water spray. Group 2: Er:YAG laser. Group 3: Er:YAG laser followed by additional sub-ablative laser treatment. Each group consisted of two subgroups with different cavity depths of 2mm and 4mm. The entire cavity floor was in dentin. Two samples from each subgroup were observed under scanning electron microscope (SEM). The external surfaces of other samples were covered with nail varnish (except the prepared cavity) and immersed in 0.5% methylene blue solution for 48 hours. After irrigation of samples with water, they were sectioned in bucco-lingual direction. Then, the samples were evaluated under a stereomicroscope at ×160 magnification. The data were analyzed using two-way ANOVA and Tukey’s HSD test. Results: Two-way ANOVA showed significant difference in permeability between groups 2 and 3 (laser groups with and without further treatment) and group 1 (bur group). The highest permeability was seen in the group 1. There was no significant difference in dentin permeability between groups 2 and 3 and no significant difference was observed between different depths (2mm and 4mm). Conclusion: Cavities prepared by laser have less dentin permeability than cavities prepared by diamond bur. PMID:27148373

  13. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier at 670 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, G.;

    2009-01-01

    A narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. 800 mW output power is obtained, and the laser system is tunable from 655 to 679 nm.......A narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. 800 mW output power is obtained, and the laser system is tunable from 655 to 679 nm....

  14. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback

    International Nuclear Information System (INIS)

    A systematic experimental and numerical investigation of the conditions for the spontaneous formation of laser cavity solitons in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback by a volume Bragg grating is reported. It is shown that the switching thresholds are controlled by a combination of frequency shifts induced by ambient temperature and Joule heating. The gain level has only a minor influence on the threshold but controls mainly the power of the solitons. At large initial detuning and high threshold gain, the first observed structure can be a high order soliton. In real devices spatial disorder in the cavity length causes a pinning of solitons and a dispersion of thresholds. The experimental observations are in good agreement with numerical simulations taking into account disorder and the coupling of gain and cavity resonance due to Joule heating. In particular, we demonstrate that the existence of the traps explain the spontaneous switch on of the solitons, but do not modify the soliton shape significantly, i.e. the observed solitons are a good approximation of the ones expected in a homogeneous system. (paper)

  15. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback

    Science.gov (United States)

    Jimenez, J.; Oppo, G.-L.; Ackemann, T.

    2016-03-01

    A systematic experimental and numerical investigation of the conditions for the spontaneous formation of laser cavity solitons in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback by a volume Bragg grating is reported. It is shown that the switching thresholds are controlled by a combination of frequency shifts induced by ambient temperature and Joule heating. The gain level has only a minor influence on the threshold but controls mainly the power of the solitons. At large initial detuning and high threshold gain, the first observed structure can be a high order soliton. In real devices spatial disorder in the cavity length causes a pinning of solitons and a dispersion of thresholds. The experimental observations are in good agreement with numerical simulations taking into account disorder and the coupling of gain and cavity resonance due to Joule heating. In particular, we demonstrate that the existence of the traps explain the spontaneous switch on of the solitons, but do not modify the soliton shape significantly, i.e. the observed solitons are a good approximation of the ones expected in a homogeneous system.

  16. Fiber cavities for atom chips

    OpenAIRE

    Klappauf, B.G.; Horak, P.; Kazansky, P. G.

    2003-01-01

    We present experimental realizations of several micro-cavities, constructed from standard fiber optic components, which meet the theoretical criteria for single atom detection from laser-cooled samples. We discuss integration of these cavities into state-of-the-art 'atom chips'.

  17. Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials

    International Nuclear Information System (INIS)

    Cavity coupling in a random laser with a weakly scattering disordered structure formed by ZnO nanoparticles is observed experimentally. The lasing characteristics are quite different from those of a traditional random laser. It is found that the threshold of coherent radiation with gain materials in such a structure is considerably low, and the emission spectrum and the threshold of each peak are orientationally uniform; the possible positions of the coherent peaks are fixed. These characteristics will be very useful in its applications. A new physical mechanism, cavity coupling, is suggested to discuss the lasing system. Nano-scale scatterers play an important role in providing randomly distributed feedback. (letter)

  18. Longitudinal Cavity Mode Referenced Spline Tuning for Widely Tunable MG-Y Branch Semiconductor Laser

    Directory of Open Access Journals (Sweden)

    H. Heininger

    2014-04-01

    Full Text Available This paper presents a novel method for wavelength-continuous tuning of a MG-Y-Branch Laser that possesses an intrinsic self-calibration capability. The method utilizes the measured characteristic output power pattern caused by the internal longitudinal cavity modes of the laser device to calibrate a set of cubical spline curves. The spline curves are then used to generate the tuning currents for the two reflector sections and the phase section of the laser from an intermediate tuning control parameter. A calibration function maps the desired laser wavelength to the intermediate tuning parameter, thus enabling continuous tuning with high accuracy.

  19. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications.

    Science.gov (United States)

    Paquet, Romain; Blin, Stéphane; Myara, Mikhaël; Gratiet, Luc Le; Sellahi, Mohamed; Chomet, Baptiste; Beaudoin, Grégoire; Sagnes, Isabelle; Garnache, Arnaud

    2016-08-15

    We report a continuous-wave highly-coherent and tunable dual-frequency laser emitting at two frequencies separated by 30 GHz to 3 THz, based on compact III-V diode-pumped quantum-well surface-emitting semiconductor laser technology. The concept is based on the stable simultaneous operation of two Laguerre-Gauss transverse modes in a single-axis short cavity, using an integrated sub-wavelength-thick metallic mask. Simultaneous operation is demonstrated theoretically and experimentally by recording intensity noises and beat frequency, and time-resolved optical spectra. We demonstrated a >80  mW output power, diffraction-limited beam, narrow linewidth of 45  dB), and low intensity noise class-A dynamics of <0.3% rms, thus opening the path to a compact low-cost coherent GHz to THz source development. PMID:27519080

  20. Effect of SiO{sub 2} Reflection Reducing Coating on the Vertical Cavity Surface Emitting Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhenbo; Xu Chen; Xie Yiyang; Zhou Kang; Liu Fa; Wang Baoqiang; Liu Yingming; Shen Guangdi, E-mail: taikong906@163.com, E-mail: zhaozhenbo@emails.bjut.edu.cn [Key Laboratory of Opto-electronics Technology (Beijing University of Technology), Ministry of Education, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2011-02-01

    The effects of epitaxis SiO{sub 2} film on the characteristics of DBR reflectivity were simulated, and the reflectivity of graded interface DBR is lower than the abrupt one was studied. 850nm vertical-cavity surface-emitting lasers were fabricated, the DBR is formed by graded heterojunction of Al{sub x}Ga{sub 1-x}As, the top and bottom DBR have 22 and 34 pairs of mirror, and current was confined by oxide aperture, and then different thickness of SiO{sub 2} film were grew on the top DBR. and found that a certain thickness ({lambda}/4) of the SiO{sub 2} reflection reducing coating could make the vertical-cavity surface-emitting lasers output power increased about 3-5 mW, the threshold current does not increase obviously, the reason is external quantum efficiency increases more than the threshold current. So the SiO{sub 2} reflection reducing coating does not affect the lasing of lasers and threshold current obviously, but It can significantly improve the output power. The experimental results agree well with the theoretical expectation.

  1. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    Science.gov (United States)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  2. Active mode locking of quantum cascade lasers operating in external ring cavity

    CERN Document Server

    Revin, D G; Wang, Y; Cockburn, J W; Belyanin, A

    2015-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode locked operation remains a challenge despite dedicated effort. Here we report the first demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents of a standard commercial laser chip.

  3. Reduce of the Linewidth of a Diode Laser by Locking to a High-Finesse Fabry-Perot Cavity

    Institute of Scientific and Technical Information of China (English)

    HUANG Kai-Kai; ZHANG Jian-Wei; CHEN Jing-Biao; YANG Dong-Hai

    2006-01-01

    @@ We report frequency locking of a commercial 657nm diode laser to a high finesse Fabry-Perot cavity by the Pound-Drever-Hall method. The laser linewidth relative to the cavity is estimated to be about 6 kHz.

  4. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity

    International Nuclear Information System (INIS)

    We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature

  5. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    Science.gov (United States)

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  6. Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging

    OpenAIRE

    Yun, S. H.; Boudoux, C.; Pierce, M. C.; de Boer, J F; Tearney, G. J.; Bouma, B. E.

    2004-01-01

    We demonstrate a compact high-power rapidly swept wavelength tunable laser source based on a semiconductor optical amplifier and an extended-cavity grating filter. The laser produces excellent output characteristics for biomedical imaging, exhibiting >4-mW average output power, 80-dB noise extinction with its center wavelength swept over 100 nm at 1310 nm at variable repetition rates up to 500 Hz.

  7. Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity

    Energy Technology Data Exchange (ETDEWEB)

    Turčinková, Dana; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme [ETH Zurich, Institute for Quantum Electronics, Auguste-Piccard-Hof 1, 8093 Zurich (Switzerland); Amanti, Maria Ines [ETH Zurich, Institute for Quantum Electronics, Auguste-Piccard-Hof 1, 8093 Zurich (Switzerland); Univ. Paris Diderot, Lab. Matererk iaux et Phenomenes Quantiques, F-75205 Paris (France)

    2015-03-30

    The continuous electrical tuning of a single-mode terahertz quantum cascade laser operating at a frequency of 3 THz is demonstrated. The devices are based on a two-section interdigitated third-order distributed feedback cavity. The lasers can be tuned of about 4 GHz at a constant optical output power of 0.7 mW with a good far-field pattern.

  8. Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity

    International Nuclear Information System (INIS)

    The continuous electrical tuning of a single-mode terahertz quantum cascade laser operating at a frequency of 3 THz is demonstrated. The devices are based on a two-section interdigitated third-order distributed feedback cavity. The lasers can be tuned of about 4 GHz at a constant optical output power of 0.7 mW with a good far-field pattern

  9. Mode-locked ytterbium-doped linear-cavity fiber laser operated at low repetition rate

    International Nuclear Information System (INIS)

    This paper reports an ytterbium-doped linear-cavity fiber laser with the optical length of 1.6 km passively mode-locked by a high modulation depth semiconductor saturable absorber mirror (SESAM). An ultra-low repetition rate of 191 kHz was achieved. The laser delivered the highly-chirped output pulses with the energy up to 75.2 nJ

  10. The Complex Way to Laser Diode Spectra: Example of an External Cavity Laser With Strong Optical Feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    2005-01-01

    An external cavity laser with strong grating-filtered feedback to an antireflection-coated facet is studied with a time-domain integral equation for the electric field, which reproduces the modes of the oscillation condition as steady-state solutions. For each mode, the stability and spectral...

  11. Dual-Cylinder Laser Reference Cavities for LISA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Summary: The Laser Interferometer Space Antenna (LISA) mission is under consideration by NASA and ESA as a joint mission to study gravitational wave signals from a...

  12. Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon

    Institute of Scientific and Technical Information of China (English)

    黄伟其; 黄忠梅; 苗信建; 刘世荣; 秦朝建

    2015-01-01

    The lattice structure image of a plasma standing wave in a Purcell cavity of silicon is observed. The plasma wave produced by the pulsed laser could be used to fabricate the micro-nanostructure of silicon. The plasma lattice structures induced by the nanosecond pulsed laser in the cavity may be similar to the Wigner crystal structure. It is interesting that the beautiful diffraction pattern could be observed in the plasma lattice structure. The radiation lifetime could be shortened to the nanosecond range throughout the entire spectral range and the relaxation time could be lengthened for higher emission efficiency in the Purcell cavity, which results in the fact that the plasmonic emission is stronger and its threshold is lower.

  13. Buried heterostructure vertical-cavity surface-emitting laser with semiconductor mirrors

    CERN Document Server

    Zhao, G; Deppe, D G; Konthasinghe, K; Muller, A

    2012-01-01

    We report a buried heterostructure vertical-cavity surface-emitting laser fabricated by epitaxial regrowth over an InGaAs quantum well gain medium. The regrowth technique enables microscale lateral confinement that preserves a high cavity quality factor (loaded $Q\\approx$ 4000) and eliminates parasitic charging effects found in existing approaches. Under optimal spectral overlap between gain medium and cavity mode (achieved here at $T$ = 40 K) lasing was obtained with an incident optical power as low as $P_{\\rm th}$ = 10 mW ($\\lambda_{\\rm p}$ = 808 nm). The laser linewidth was found to be $\\approx$3 GHz at $P_{\\rm p}\\approx$ 5 $P_{\\rm th}$.

  14. Performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Skovgaard, P.M.W.; Mørk, Jesper; Hanberg, Jesper; Kroh, M.

    We have experimentally investigated the performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers. We have measured the magnitude of trailing pulses when varying the chip length and studied the pulse quality when changing the driving conditions...

  15. Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy

    Science.gov (United States)

    Mukherjee, Nandini; Go, Rowel; Patel, C. Kumar N.

    2008-03-01

    A room temperature external grating cavity (EGC) quantum cascade laser (QCL) is characterized using saturation spectroscopy of NO2. The presence of two strong EGC QCL waveguide modes is evident from the saturation spectra. A linewidth of 21MHz for each EGC-QCL mode is measured from the width of the saturation peak at 10mTorr pressure of NO2.

  16. Self-Mixing Fringes of Vertical-Cavity Surface-Emitting Lasers under Dual Reflector Feedback

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiang; ZHANG Shu-Lian; ZHANG Lian-Qing; TAN Yi-Dong

    2006-01-01

    The self-mixing fringes which shift due to every one-twentieth wavelength displacement of the target are observed.Taking advantage of the dual reflectors in the external cavity of lasers, the resolution of the sensors has been improved by 10 times. The role of the each reflector has been discussed in detail.

  17. Application of principles of nonimaging optics to the construction of solid state laser pump cavities

    Science.gov (United States)

    Janevski, Zoran; Pantelic, Dejan V.

    1990-07-01

    In laser systems where it is impossible or impractical to use lamps and rod whose effective perimeters are matched, some elements of construction of cavities using nonimaging optical concentrators can be used to achieve improved designs in regard to efficiency and pumping uniformity.

  18. Intracavity Sensing via Compliance Voltage in an External Cavity Quantum Cascade Laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.

    2012-07-01

    We demonstrate a technique for gas phase spectroscopy and sensing by detecting changes in compliance voltage of an external cavity quantum cascade laser due to intracavity absorption. The technique is characterized and used to measure the absorption spectrum of water vapor and Freon-134a.

  19. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small...

  20. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent;

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  1. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan;

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have sh...

  2. Active mode locking of quantum cascade lasers in an external ring cavity

    Science.gov (United States)

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-05-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  3. Active mode locking of quantum cascade lasers in an external ring cavity.

    Science.gov (United States)

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  4. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    CERN Document Server

    Christensen, Bjarke T R; Schäffer, Stefan A; Westergaard, Philip G; Ye, Jun; Holland, Murray; Thomsen, Jan W

    2015-01-01

    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $\\lvert 5s^{2} \\, ^1 \\textrm{S}_0 \\rangle \\,-\\, \\lvert 5s5p \\, ^3 \\textrm{P}_1 \\rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynami...

  5. Experimental and theoretical characterisation of short pulse X ray lasers

    CERN Document Server

    Strati, F

    2002-01-01

    Since the demonstration in 1984 of x-ray laser action in Ne-like Se at 20.6 and 20.9 nm, much experimental and theoretical effort has been ongoing to investigate different lasing schemes. Aims in this research include improving pumping efficiency, beam quality and overall energy output of the demonstrated x-ray lasers and the production of lasing at shorter wavelengths. The envisaged and demonstrated applications of x-ray lasers utilise their short wavelength, high brightness and coherence. Examples of potential applications include x-ray imaging and holography of biological materials in the water window region (2.3 - 4.4 nm), x-ray photolithography for the fabrication of microcircuits and structures below the micron scale and x-ray interferometry, deflectometry and radiography of dense plasma environments of interest in inertial confinement fusion and astrophysics. Soft x-ray laser action has been demonstrated in various plasma active media with wavelengths ranging from 3.5 nm to 40.0 nm and above. However, ...

  6. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  7. The theoretical study of the optical klystron free electron laser

    International Nuclear Information System (INIS)

    The work of the theoretical study and numerical simulation of optical klystron free electron laser is supported by National 863 Research Development Program and National Science Foundation of China. The object of studying UV band free electron laser (FEL) is to understand the physical law of optical klystron FEL and to gain experience for design. A three-dimensional code OPFEL are made and it is approved that the code is correct completely. The magnetic field of the optical klystron, the energy modulation of the electron beam, the density modulation of the electron beam, spontaneous emission of the electron beam in optical klystron, the harmonic super-radiation of the electron beam, and the effects of the undulator magnetic field error on modulation of the electron beam energy are simulated. These results are useful for the future experiments

  8. VUV free electron laser with a distributed feedback cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Fujita, M.; Asakawa, M. [Osaka Univ. (Japan)] [and others

    1995-12-31

    Development of FEL to the VUV/x-ray regime is looked as one of the possible directions to its success. For eliminating the need for optical cavities, difficult to be built at that regime, we propose a VUV (50nm) SASE FEL. According to Pellegrini`s scaling law, for a 290MeV/200A e-beam passing through a 10.8m long and 2cm period wiggler, a high peak power 85.5MW and a high average brightness 2.44 X 10{sup +21} (photons/[mm{sup 2}.mrad{sup 2}.bw]) can be obtained. However, it requires {epsilon} n=2.3mm.mrad and {Delta}{gamma}/{gamma} = 0.15% about one order above the practical parameters we can realize. For enhancing the efficiency and decreasing the requirements on the e-beam quality and the wiggler length, we put forward a concept of VUV FEL with a distributed feedback cavity. In x-ray region, the natural periodicity of crystals provides strong Bragg coupling and it has been demonstrated as the parametric radiation. In vuv region, current intense research on superlattice can provide a periodical structure with a short period in 250 {Angstrom} order. High-performance vuv multilayer coatings on the inner-wall of the waveguide are used to guide the spontaneous emission and decrease the x-ray ohmic losses on the roundtrip passes. By this DFB cavity structure, it is expected to realize the lasing in a smaller size. Other practical methods such as the optical klystron for shortening the wiggler length and the tapper wiggler for enhancing the saturation power are also considered. The analytical considerations are based on the 1-D FEL equations and 1-D perturbation theory of dielectric waveguide.

  9. Cavity atom optics and the `free atom laser'

    OpenAIRE

    Heurich, J.; Moore, M. G.; Meystre, P.

    1999-01-01

    The trap environment in which Bose-Einstein condensates are generated and/or stored strongly influences the way they interact with light. The situation is analogous to cavity QED in quantum optics, except that in the present case, one tailors the matter-wave mode density rather than the density of modes of the optical field. Just as in QED, for short times, the atoms do not sense the trap and propagate as in free space. After times long enough that recoiling atoms can probe the trap environme...

  10. Alkali suppression within laser ion-source cavities and time structure of the laser ionized ion-bunches

    International Nuclear Information System (INIS)

    The chemical selectivity of the target and ion-source production system is an asset for radioactive ion-beam (RIB) facilities equipped with mass separators. Ionization via laser induced multiple resonant steps has such selectivity. However, the selectivity of the ISOLDE resonant ionization laser ion-source (RILIS), where ionization takes place within high temperature refractory metal cavities, suffers from unwanted surface ionization of low ionization potential alkalis. In order to reduce this type of isobaric contaminant, surface ionization within the target vessel was used. On-line measurements of the efficiency of this method is reported, suppression factors of alkalis up to an order of magnitude were measured as a function of their ionization potential. The time distribution of the ion-bunches produced with the RILIS was measured for a variety of elements and high temperature cavity materials. While all ions are produced within a few nanoseconds, the ion-bunch sometimes spreads over more than 100 μs. This demonstrates that ions are confined within high temperature metallic cavities. It is the internal electrical field of these cavities that causes the ions to drifts to the extraction region and defines the dwell time of the ions in the cavity. Beam optics calculations were carried out to simulate the pulse shape of a RILIS ion-bunch and are compared to the actual measurements

  11. Advances in commercial, mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Hempler, Nils; Lubeigt, Walter; Bialkowski, Bartlomiej; Hamilton, Craig J.; Maker, Gareth T.; Malcolm, Graeme P. A.

    2016-03-01

    In launching the Dragonfly, M Squared Lasers has successfully commercialized recent advances in mode-locked vertical external cavity surface emitting laser technologies operating between 920 nm - 1050 nm. This paper will describe the latest advances in the development of a new generation of Dragonfly lasers. The improved system has been engineered to utilise low-cost semiconductor gain media and integrated diode pumping, whilst exhibiting minimal footprint, diffraction limited beam quality and low intrinsic noise. Early experiments have resulted in pulses with 540mW of average output power and 150fs of duration at 200MHz pulse repetition frequency.

  12. Tunable semiconductor laser with an acousto-optic filter in an external fibre cavity

    International Nuclear Information System (INIS)

    A tunable semiconductor laser with a laser amplifier based on a double-pass superluminescent diode as an active element and an acousto-optic filter in an external fibre cavity as a selective element is investigated. A continuous spectral tuning is achieved in a band of width 60 nm centered at a wavelength of 845 nm and the 'instant' linewidth below 0.05 nm is obtained. The sweep frequency within the tuning range achieves 200 Hz. The cw power at the output of a single-mode fibre was automatically maintained constant at the level up to 1.5 mW. (lasers and amplifiers)

  13. Comparison of Dentin Permeability After Tooth Cavity Preparation with Diamond Bur and Er:YAG Laser

    OpenAIRE

    Hasani Tabatabaei, Masoumeh; Shirmohammadi, Sara; Yasini, Esmaeil; Mirzaei, Mansoureh; Arami, Sakineh; Kermanshah, Hamid; Ranjbar Omrani, Ladan; Alimi, Azar; Chiniforush, Nasim; Nakhostin, Afrooz; Abbasi, Mahdi

    2015-01-01

    Objectives: The aim of this study was to compare the permeability of dentin after using diamond bur and Er:YAG laser. Materials and Methods: Seventy-two recently extracted, intact, and restoration-free human permanent molars were used in this study. The samples were randomly divided into three groups of 24 each and class I cavities were prepared as follows. Group 1: High speed diamond bur with air and water spray. Group 2: Er:YAG laser. Group 3: Er:YAG laser followed by additional sub-ablativ...

  14. Theoretical and experimental investigation of the mode-spacing of fiber Bragg grating Fabry-Perot cavity

    Institute of Scientific and Technical Information of China (English)

    Wenhua Ren; Peilin Tao; Zhongwei Tan; Yan Liu; Shuisheng Jian

    2009-01-01

    The mode-spacing of the fiber Bragg grating Fabry-Perot(FBG F-P)cavity is calculated by using the effective cavity length which contains the effective length of the FBG.The expression of the effective length,defined by using the phase-time delay,is obtained and simplified as a function of the peak reflectivity at the Bragg wavelength,the band edges,and the first zero-reflectivity wavelength.The effective length is discussed from the energy penetration depth point of view.Three FBG F-P cavities are fabricated in order to validate the effective length approach.The experimental data fits well with the theoretical predictions.The limitation of this method is also pointed out and the improved approach is proposed.

  15. Over 10 Watt, collinear blue and green vertical external cavity surface emitting laser

    Science.gov (United States)

    Lukowski, Michal L.; Hessenius, Chris; Meyer, Jason T.; Fallahi, Mahmoud

    2016-03-01

    A high power, two color, collinear, blue and green vertical external cavity surface emitting laser (VECSEL) is demonstrated. Two different InGaAs/GaAs VECSEL chips operating with gain centers near 970 nm and 1070 nm are used to make two separate V-folded laser cavities. Two critically phase-matched intracavity lithium triborate nonlinear crystals are used to generate blue and green outputs which are then combined in a polarizing beam splitter. This results in a single beam which contains over 10 watts of combined blue and green output power. This concept can be expanded upon by adding a red output for the creation of a high power, white laser source.

  16. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Lang, N; Macherius, U; Wiese, M; Zimmermann, H; Röpcke, J; van Helden, J H

    2016-03-21

    We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found. PMID:27136874

  17. General phase-diagram of multimodal ordered and disordered lasers in closed and open cavities

    CERN Document Server

    Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca

    2014-01-01

    We present a unified approach to the theory of multimodal laser cavities including a variable amount of structural disorder. A general mean-field theory is studied for waves in media with variable non-linearity and randomness. Phase diagrams are reported in terms of optical power, degree of disorder and degree of non-linearity, tuning between closed and open cavity scenario's. In the thermodynamic limit of infinitely many modes the theory predicts four distinct regimes: a continuous wave behavior for low power, a standard mode-locking laser regime for high power and weak disorder, a random laser for high pumped power and large disorder and an intermediate regime of phase locking occurring in presence of disorder below the lasing threshold.

  18. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection.

    Science.gov (United States)

    Li, Nianqiang; Pan, Wei; Locquet, A; Citrin, D S

    2015-10-01

    The concealment of the time-delay signature (TDS) of chaotic external-cavity lasers is necessary to ensure the security of optical chaos-based cryptosystems. We show that this signature can be removed simply by optically injecting an external-cavity laser with a large linewidth-enhancement factor into a second, noninjection-locked, semiconductor laser. Concealment is ensured both in the amplitude and in the phase of the optical field, satisfying a sought-after property of optical chaos-based communications. Meanwhile, enhancement of the dynamical complexity, characterized by permutation entropy, coincides with strong TDS suppression over a wide range of parameters, the area for which depends sensitively on the linewidth-enhancement factor. PMID:26421545

  19. Fabrication of optical cavities with femtosecond laser pulses

    Science.gov (United States)

    Lin, Jintian; Song, Jiangxin; Tang, Jialei; Fang, Wei; Sugioka, Koji; Cheng, Ya

    2014-03-01

    We report on fabrication of three-dimensional (3D) high-quality (Q) whispering-gallery-mode microcavities by femtosecond laser micromachining. The main fabrication procedures include the formation of on-chip freestanding microdisk through selective material removal by femtosecond laser pulses, followed by surface smoothing processes (CO2 laser reflow for amorphous glass and focused ion beam (FIB) sidewall milling for crystalline materials) to improve the Q factors. Fused silica microcavities with 3D geometries are demonstrated with Q factors exceeding 106. A microcavity laser based on Nd:glass has been fabricated, showing a threshold as low as 69μW via free space continuous-wave optical excitation at the room temperature. CaF2 crystalline microcavities with Q factor of ~4.2×104 have also been demonstrated. This technique allows us to fabricate 3D high-Q microcavities in various transparent materials such as glass and crystals, which will benefit a broad spectrum of applications such as nonlinear optics, quantum optics, and bio-sensing.

  20. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.; A. Sukhorukov, Andrey

    This book collects chapters on different theoretical and experimental aspects of photonics crystals for Nanophotonics applications. It is divided in two parts - a theoretical section and an experimental and applicative section. The first part includes chapters developing several numerical methods...... for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic...

  1. Precise force measurement method by a Y-shaped cavity dual-frequency laser

    Institute of Scientific and Technical Information of China (English)

    Guangzong Xiao; Xingwu Long; Bin Zhang; Geng Li

    2011-01-01

    A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed. The principle of force measurement with this method is analyzed, and the analytic relation expression between the input force and the change in the output beat frequency is derived. Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed; they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range. The maximum scale factor is observed as 5.02×109 Hz/N, with beat frequency instability equivalent resolution of 10-5 N. By optimizing the optical and geometrical parameters of the laser sensor, a force measurement resolution of 10-6i N could be expected.%A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed.The principle of force measurement with this method is analyzed,and the analytic relation expression between the input force and the change in the output beat frequency is derived.Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed;they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range.The maximum scale factor is observed as 5.02× 109 Hz/N,with beat frequency instability equivalent resolution of 10-5 N.By optimizing the optical and geometrical parameters of the laser sensor,a force measurement resolution of 10 -6 N could be expected.Precise measurement of force and force-related nagnitudes,such as acceleration,pressure,and mass,is an often demanded task in modern engineering and science[1-3].In recent decades,some research efforts have been intensified to utilize optical measnrement procedures for obtaining precise force measurement.

  2. Cavity-Type BPMs For The TESLA Test Facility Free Electron Laser

    CERN Document Server

    Waldmann, H

    2003-01-01

    For measurements of the beam position at the undulator section of the TESLA Test Facility (TTF) at DESY cavity-type beam position monitors were developed, installed and brought into operation. Besides of some theoretical aspects results of in-beam measurements at the TTF are presented and pros and cons of this monitor concept are discussed.

  3. Passive cavity laser and tilted wave laser for Bessel-like beam coherently coupled bars and stacks

    Science.gov (United States)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.; Vashanova, K. A.; Kulagina, M. M.; Schmidt, N. Y.

    2015-03-01

    Ultralarge output apertures of semiconductor gain chips facilitate novel applications that require efficient feedback of the reflected laser light. Thick (10-30 μm) and ultrabroad (>1000 μm) waveguides are suitable for coherent coupling through both near-field of the neighboring stripes in a laser bar and by applying external cavities. As a result direct laser diodes may become suitable as high-power high-brightness coherent light sources. Passive cavity laser is based on the idea of placing the active media outside of the main waveguide, for example in the cladding layers attached to the waveguide, or, as in the case of the Tilted Wave Laser (TWL) in a thin waveguide coupled to the neighboring thick waveguide wherein most of the field intensity is localized in the broad waveguide. Multimode or a single vertical mode lasing is possible depending on the coupling efficiency. We demonstrate that 1060 nm GaAs/GaAlAs-based Tilted Wave Lasers (TWL) show wall-plug efficiency up to ~55% with the power concentrated in the two symmetric vertical beams having a full width at half maximum (FWHM) of 2 degrees each. Bars with pitch sizes in the range of 25-400 μm are studied and coherent operation of the bars is manifested with the lateral far field lobes as narrow as 0.1° FWHM. As the near field of such lasers in the vertical direction represents a strongly modulated highly periodic pattern of intensity maxima such lasers or laser arrays generate Bessel-type beams. These beams are focusable similar to the case of Gaussian beams. However, opposite to the Gaussian beams, such beams are self-healing and quasi non-divergent. Previously Bessel beams were generated using Gaussian beams in combination with an axicon lens or a Fresnel biprism. A new approach does not involve such complexity and a novel generation of laser diodes evolves.

  4. High spatial resolution laser cavity extinction and laser-induced incandescence in low-soot-producing flames

    Science.gov (United States)

    Tian, B.; Gao, Y.; Balusamy, S.; Hochgreb, S.

    2015-09-01

    Accurate measurement techniques for in situ determination of soot are necessary to understand and monitor the process of soot particle production. One of these techniques is line-of-sight extinction, which is a fast, low-cost and quantitative method to investigate the soot volume fraction in flames. However, the extinction-based technique suffers from relatively high measurement uncertainty due to low signal-to-noise ratio, as the single-pass attenuation of the laser beam intensity is often insufficient. Multi-pass techniques can increase the sensitivity, but may suffer from low spatial resolution. To overcome this problem, we have developed a high spatial resolution laser cavity extinction technique to measure the soot volume fraction from low-soot-producing flames. A laser beam cavity is realised by placing two partially reflective concave mirrors on either side of the laminar diffusion flame under investigation. This configuration makes the beam convergent inside the cavity, allowing a spatial resolution within 200 μm, whilst increasing the absorption by an order of magnitude. Three different hydrocarbon fuels are tested: methane, propane and ethylene. The measurements of soot distribution across the flame show good agreement with results using laser-induced incandescence (LII) in the range from around 20 ppb to 15 ppm.

  5. Optical feedback characteristics in a helium neon laser with a birefringent internal cavity

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian; Xu Ting; Wan Xin-Jun; Liu Gang

    2007-01-01

    The output characteristics of optical feedback in a helium-neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes. When the laser operates in the two end regions of the laser gain curve, one of the two orthogonally polarized modes will be a leading one in optical feedback. Strong mode competition can be observed. However, when the laser operates in the middle region of the laser gain curve, the two modes can oscillate equally with optical feedback. Besides the intensity of the two polarized lights, the total light intensity is also studied at the same time. M-shaped optical feedback curves are found. Particularly, when the average intensities of the two lights are comparable, the intensity modulation curve of the total light is doubled, which can be used to improve the resolution of an optical feedback system.

  6. Theoretical studies on the mechanisms of laser rust removal

    Science.gov (United States)

    Wang, Yupei; Zhang, Zunyue; Liu, Guigeng; Song, Feng

    2016-05-01

    Our studies introduce the three-layer model of laser rust removal by rotational mirror scanner and develop dry laser cleaning model Firstly, theoretically simulate the temperature field of the rotational mirror scanner. Use the superposition model of the instantaneous thermal source point from a point to a line, from a line to an area, to simulate the temperature field distribution of rust and iron with thermal source on its surface and how it varies with time. And then take the temperature field distribution of rotational mirror scanner as the thermal load and use ANSYS to solve the thermal conductivity equations with complicated boundary conditions, and calculate the temperature field distribution it can be found that the temperature of the rust surface reaches the melting even the boiling point of the rust, so the rust can be removed by the ablation effect. From the thermal stress distribution of rust and iron in the depth orientation, the thermal stress existed in the rust and iron is large enough to remove the last rust layer in one time. So ablation layer, thermal stress removal layer and substrate consist of the three-layer model of laser rust removal by rotational mirror scanner.

  7. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    OpenAIRE

    Christensen, Bjarke T. R.; Henriksen, Martin R.; Schäffer, Stefan A.; Westergaard, Philip G.; Ye, Jun; Holland, Murray; Thomsen, Jan W.

    2015-01-01

    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $\\lvert 5s^{2} \\, ^1 \\textrm{S}_0 \\rangle \\,-\\, \\lvert 5s5p \\, ^3 \\textrm{P}_1 \\rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and abs...

  8. Theoretical investigation of anomalously high efficiency in a three cavity gyroklystron amplifier

    International Nuclear Information System (INIS)

    The University of Maryland's three cavity gyroklystron amplifier operating at a frequency of 10 GHz, voltage of 425 kV, current of 160 A, and pitch angle (v perpendicular/vz) near .82, has demonstrated an efficiency of 35%. The author's simulations using fixed field profiles predict a significantly lower efficiency, primarily because of the small pitch angle in the experiment. They will be investigating two methods of improving the efficiency in their simulations: Beam-wave interaction after the output cavity, and modification of the first two cavity Qs due to beam loading. Results of their nonlinear code will be given for both cases

  9. Successful development of innovative fabrication technique based on laser welding, for superconducting RF cavities - results and path ahead

    International Nuclear Information System (INIS)

    Superconducting radio frequency (SCRF) cavities are the heart of any particle accelerator based on SCRF technology. All over the world, efforts are being made to develop a technique which can bring down the cost and time of fabrication of these cavities. The present day fabrication method of SCRF cavities uses Electron beam welding (EBW) technique. The cavities fabricated by this method turn out to be expensive and take long fabrication time. To overcome such difficulties related with EBW process, an innovative concept for fabrication of SCRF cavities based on laser welding was formulated at RRCAT. International patent application was immediately launched for this work, to protect intellectual property rights of DAE

  10. Quantum-trajectory simulations of a two-level atom cascaded to a cavity QED laser

    International Nuclear Information System (INIS)

    We use the quantum theory of cascaded open systems to calculate the transmitted photon flux for a weak beam of photons from a cavity QED laser strongly focused onto a single, resonant two-state atom in the narrow-bandwidth limit. We study the dependence of the transmitted flux on the quantum statistics of the incident light. Both bunched and antibunched light generated by the microlaser are considered as input. Working within and outside the semiclassical perturbative regime, we explicitly demonstrate that the normalized transmitted photon flux may coincide with the second-order correlation function of the incident bunched light, but not for incident antibunched light both of which are generated by a cavity QED laser. Interestingly, the thresholdless cavity QED laser is ideal for investigating statistical saturation effects by virtue of its small system size and the large quantum fluctuations accompanying it. It has the advantage of characterizing to a certain extent the quantum noise responsible for the statistical saturation. One can also easily vary the degree of antibunching of the incident light by manipulating the pumping rate of the laser

  11. Faraday laser using 1.2 km fiber as an extended cavity

    Science.gov (United States)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom–photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  12. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  13. Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays

    International Nuclear Information System (INIS)

    We describe ring-cavity surface-emitting lasers (ring-CSELs) based on quantum cascade structures as an elementary building block for two-dimensional quantum cascade laser arrays. The light emitters operate at high temperatures as high as 380 K and above. The devices facilitate a reduction in threshold current density as well as enhanced radiation efficiency in comparison to Fabry–Pérot lasers. Single-mode emission is observed at a wavelength of around 8 µm with a side-mode suppression ratio of 30 dB at room temperature. A tuning of the resonance is achieved by a variation in the grating period or a change in temperature. Phase locking of two ring-CSELs is demonstrated which is based on a direct coupling scheme. Coherent operation of ring-type lasers results in light emission at an identical wavelength and thus in an enhancement of the spectral brightness

  14. Two-photon cavity solitons in a laser: radiative profiles, interaction and control

    International Nuclear Information System (INIS)

    We study the properties of two-photon cavity solitons that appear in a broad-area cascade laser. These vectorial solitons consist of islands of two-photon emission emerging over a background of single-photon emission. Analysis of their structural properties reveals singular features such as their short distance radiation of outgoing waves, which can be interpreted in terms of the soliton frequency profile. However, the phase of these solitons is not determined by any external factor, which influences the way in which the structures can be written and erased. We also examine ways of controlling the cavity-soliton position, and analyse the interaction between neighbouring cavity solitons. Finally, investigation of the parameter dependence of these structures shows a route from soliton-dominated to defect-mediated turbulence

  15. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis

    International Nuclear Information System (INIS)

    With the aim of developing a portable system for an in field isotope analysis, we investigate an isotope analysis based on rapid-swept CW cavity ring-down laser spectroscopy, in which the concentration of a chemical species is derived from its photo absorbance. Such a system can identify the isotopomer and still be constructed as a quite compact system. We have made some basic experimental measurements of the overtone absorption lines of carbon dioxide (12C16O2, 13C16O2) by rapid-swept cavity ring-down spectroscopy with a CW infrared diode laser at 6,200 cm-1 (1.6 μm). The isotopic ratio has been obtained as (1.07±0.13)x10-2, in good agreement with the natural abundance within experimental uncertainty. The detection sensitivity in absorbance has been estimated to be 3x10-8 cm-1. (author)

  16. Frequency doubled femtosecond Ti:sapphire laser with an assisted enhancement cavity

    Science.gov (United States)

    Jin-Wei, Zhang; Hai-Nian, Han; Lei, Hou; Long, Zhang; Zi-Jiao, Yu; De-Hua, Li; Zhi-Yi, Wei

    2016-01-01

    We report an enhancement cavity for femtosecond Ti:sapphire laser at the repetition rate of 170 MHz. An enhancement factor of 24 is obtained when the injecting pulses have an average power of 1 W and a pulse duration of 80 fs. By placing a BBO crystal at the focus of the cavity, we obtain a 392-mW intracavity doubled-frequency laser, corresponding to a conversion efficiency of 43%. The output power has a long-term stability with a root mean square (RMS) of 0.036%. Project supported by the National Basic Research Program of China (Grant Nos. 2013CB922401 and 2012CB821304) and the National Natural Science Foundation of China (Grant No. 61378040).

  17. Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm.

    Science.gov (United States)

    Bek, Roman; Baumgärtner, Stefan; Sauter, Fabian; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-07-27

    We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm. PMID:26367654

  18. Vertical-Cavity Surface-Emitting Lasers: Advanced Modulation Formats and Coherent Detection

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto

    This thesis expands the state-of-the-art in coherent detection for optical fiber access networks employing vertical-cavity surface-emitting lasers (VCSELs) as light sources. Bit rates up to 10 Gb/s over 25 km single-mode fibre (SMF) transmission distance have been achieved supporting a passive...... experimentally demonstrated to increase the capacity for a given bandwidth and reduce the impact of optical fiber chromatic dispersion for a given capacity. Finally, 2 Gb/s bipolar impulse-radio ultra-wide band (IR-UWB) data communication over a combined distance of 25 km SMF optical fiber and 4 m air. These......-generation access networks and high- speed shortrange systems employing vertical-cavity surface-emitting lasers as light sources....

  19. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    Science.gov (United States)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  20. Reflective SOA fiber cavity adaptive laser source for measuring dynamic strains

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Smart sensors based on Optical fiber Bragg gratings (FBGs) are suitable for structural health monitoring of dynamic strains in civil, aerospace, and mechanical structures. In these structures, dynamic strains with high frequencies reveal acoustic emissions cracking or impact loading. It is necessary to find a practical tool for monitoring such structural damages. In this work, we explore an intelligent system based on a reflective semiconductor optical amplifier (RSOA)- FBG composed as a fiber cavity for measuring dynamic strain in intelligent structures. The ASE light emitted from a RSOA laser and reflected by a FBG is amplified in the fiber cavity and coupled out by a 90:10 coupler, which is demodulated by a low frequency compensated Michelson interferometer using a proportional-integral-derivative (PID) controller and is monitored via a photodetector. As the wavelength of the FBG shifts due to dynamic strain, the wavelength of the optical output from the laser cavity shifts accordingly, which is demodulated by the Michelson Interferometer. Because the RSOA has a quick transition time, the RSOA- FBG fiber cavity shows an ability of high frequency response to the FBG reflective spectrum shift, with frequency response extending to megahertz.

  1. Tunable Vertical-Cavity Surface-Emitting Lasers Integrated with Two Wafers

    Institute of Scientific and Technical Information of China (English)

    REN Xiu-Juan; GUAN Bao-Lu; GUO Shuai; LI Shuo; LI Chuan-Chuan; HAO Cong-Xia; ZHOU Hong-Yi; GUO Xiao

    2011-01-01

    A novel two-wafer concept for micro-electro-mechanically tunable vertical cavity surface emitting lasers (VCSELs)is presented. The VCSEL is composed by two wafers: one micro-electromechanical-system membrane wafer with four arms to adjust the cavity length through electrostatic actuation and a "half-VCSEL" wafer consisting of a fixed bottom mirror and an amplifying active region. The measurement results of the electricity pumped tunable VCSEL with more than 9mW output power at room temperature over the tuning range prove the feasibility of the proposition.%@@ A novel two-wafer concept for micro-electro-mechanically tunable vertical cavity surface emitting lasers (VCSELs) is presented.The VCSEL is composed by two wafers: one micro-electromechanical-system membrane wafer with four arms to adjust the cavity length through electrostatic actuation and a "half-VCSEL" wafer consisting of a fixed bottom mirror and an amplifying active region.The measurement results of the electricity pumped tunable VCSEL with more than 9mW output power at room temperature over the tuning range prove the feasibility of the proposition.

  2. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    Science.gov (United States)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  3. Study on hydrogen sulfide plasma passivation of 790-nm laser diode cavity surface

    Institute of Scientific and Technical Information of China (English)

    Chunling Liu; Yanping Yao; Chunwu Wang; Xin Gao; Zhongliang Qiao; Mei Li; Yuxia Wang; Baoxue Bo

    2008-01-01

    In order to improve the optical properties of the Ⅲ-Ⅴ laser diodes(LDs) by means of H2S plasma passivation technology,H2S plasma passivation treatment is performed on the GaAs(110) surface.The optimum passivation conditions obtained are 60-W radio frequency(RF)power and 20-min duration.So the laser cavity surfaces axe treated under the optimum passivation conditions.Consequently,compared with unpassivated lasers with only AR/HR-coatings,the catastrophic optical damage (COD) threshold value of the passivated lasers by H2S plasma treatment is increased by 33%,which is almost the same as that of (NH4)2Sx treatment.And the life-test experiment has demonstrated that this passivation method is more stable than(NH4)2Sx solution wet-passivated treatment.

  4. Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser.

    Science.gov (United States)

    Kosterev, A A; Malinovsky, A L; Tittel, F K; Gmachl, C; Capasso, F; Sivco, D L; Baillargeon, J N; Hutchinson, A L; Cho, A Y

    2001-10-20

    A spectroscopic gas sensor for nitric oxide (NO) detection based on a cavity ringdown technique was designed and evaluated. A cw quantum-cascade distributed-feedback laser operating at 5.2 mum was used as a tunable single-frequency light source. Both laser-frequency tuning and abrupt interruptions of the laser radiation were performed through manipulation of the laser current. A single ringdown event sensitivity to absorption of 2.2 x 10(-8) cm(-1) was achieved. Measurements of parts per billion (ppb) NO concentrations in N(2) with a 0.7-ppb standard error for a data collection time of 8 s have been performed. Future improvements are discussed that would allow quantification of NO in human breath. PMID:18364839

  5. Simulation of High Power Er/Yb Codoped Fiber Linear Cavity Lasers

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; L(U) Fu-yun; ZHANG Shu-min; XIE Chun-xia; DUAN Yun-feng

    2005-01-01

    The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ions. The behaviors of co-pump and counter-pump methods are contrasted. Dependence of output power on input pump power,output reflectivity, operating wavelength and active fiber length is simulated,respectively. High conversion efficiency Er/Yb laser output is obtained in simulations and experiments.

  6. Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity

    OpenAIRE

    Kalusniak, S.; Sadofev, S.; Halm, S.; Henneberger, F.

    2010-01-01

    We report on room temperature laser action of an all monolithic ZnO-based vertical cavity surface emitting laser (VCSEL) under optical pumping. The VCSEL structure consists of a 2{\\lambda} microcavity containing 8 ZnO/Zn(0.92)Mg(0.08)O quantum wells embedded in epitaxially grown Zn(0.92)Mg(0.08)O/Zn(0.65)Mg(0.35)O distributed Bragg reflectors (DBRs). As a prerequisite, design and growth of high reflectivity DBRs based on ZnO and (Zn,Mg)O for optical devices operating in the ultraviolet and bl...

  7. Operational characteristics of dual gain single cavity Nd:YVO4 laser

    Indian Academy of Sciences (India)

    Pranab K Mukhopadhyay; Jogy George; S K Sharma; P K Gupta; T P S Nathan

    2002-01-01

    Operational characteristics of a dual gain single cavity Nd:YVO4 laser have been investigated. With semiconductor diode laser pump power of 2 W, 800 mW output was obtained with a slope efficiency of 49%. Further, by changing the relative orientation of the two crystals the polarization characteristics of the output could be varied. In particular by keeping the two Nd:YVO4 crystals with their -axes orthogonal to each other and adjusting the gain of the crystals so that both operate at approximately the same power level, completely unpolarized beams could be obtained.

  8. High peak power output, high PRF by cavity dumping a Nd:YAG laser

    International Nuclear Information System (INIS)

    Intracavity modation of a Nd:YAG laser at high dumping efficiencies was achieved by driving an acoustooptic quartz modulator with 100 W of rf input power at 450 MHz. Stable output pulses of 25-nsec width and peak powers as high as 570 W were obtained at repetition frequencies up to 2 MHz. It is shown that the oscillation of the circulating laser power in the presence of a perturbation determines the dynamics of cavity dumping and sets a lower limit to the pulse repetition frequency of approximately 200 kHz

  9. Double-diamond high-contrast-gratings vertical external cavity surface emitting laser

    International Nuclear Information System (INIS)

    A new design of vertical external cavity surface emitting laser (VECSEL) with diamond-based high contrast gratings is proposed. The self-consistent model of laser operation has been calibrated based on experimental results and used to optimize the new proposed device and to perform comparative thermal and optical analysis of conventional and double-diamond high-contrast-grating VECSELs. The proposed design considerably reduces the dimensions and complexity of the device and provides up to 80% increase of the maximum emitted power as compared with the conventional design. (paper)

  10. Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback

    Directory of Open Access Journals (Sweden)

    Arkadiy Lyakh

    2016-04-01

    Full Text Available The recent demonstration of external cavity quantum cascade lasers with optical feedback, controlled by an acousto-optic modulator, paves the way to ruggedized infrared laser systems with the capability of tuning the emission wavelength on a microsecond scale. Such systems are of great importance for various critical applications requiring ultra-rapid wavelength tuning, including combustion and explosion diagnostics and standoff detection. In this paper, recent research results on these devices are summarized and the advantages of the new configuration are analyzed in the context of practical applications.

  11. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Long; TAO Tian-Jiong; CHENG Bing; WU Bin; XU Yun-Fei; WANG Zhao-Ying; LIN Qiang

    2011-01-01

    @@ A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry.The setup involves alldigital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking.The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs.The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  12. Hysteresis phenomena in the tuning characteristics of semiconductor lasers with a high-Q external cavity

    Science.gov (United States)

    Belovolov, M. I.; Dianov, E. M.; Kriukov, A. P.; Pencheva, V. Kh.

    1987-06-01

    A study is made of the hysteresis phenomena and bistability associated with lasing frequency tuning by pump current in an AlGaAs double heterostructure laser. These phenomena are usually observed during the self-stabilization of single-frequency lasing under conditions of high selectivity of the dispersion element in the external cavity and a strong optical freedback. It is suggested that anomalies observed in the tuning characteristics of some semiconductor lasers result from nonstationary thermal waveguide effects due to the adiabatic heating of the active region and self-focusing effects.

  13. Hysteresis phenomena in the tuning characteristics of semiconductor lasers with a high-Q external cavity

    Energy Technology Data Exchange (ETDEWEB)

    Belovolov, M.I.; Dianov, E.M.; Kriukov, A.P.; Pencheva, V.KH.

    1987-06-01

    A study is made of the hysteresis phenomena and bistability associated with lasing frequency tuning by pump current in an AlGaAs double heterostructure laser. These phenomena are usually observed during the self-stabilization of single-frequency lasing under conditions of high selectivity of the dispersion element in the external cavity and a strong optical freedback. It is suggested that anomalies observed in the tuning characteristics of some semiconductor lasers result from nonstationary thermal waveguide effects due to the adiabatic heating of the active region and self-focusing effects. 5 references.

  14. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    DEFF Research Database (Denmark)

    Larsson, David; Greve, Anders; Hvam, Jørn Märcher;

    2009-01-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and the...... junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was 60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed....

  15. Using Frequency Noise Feedback to Improve Stability in Extended Cavity Diode Lasers

    Science.gov (United States)

    Pugh, Mckinley; Durfee, Dallin

    2016-03-01

    We are developing a feedback system to stabilize extended cavity diode lasers using frequency noise. In other literature, amplitude noise has been used to predict and prevent mode hops. We've found, however, that amplitude noise only correlates to an impending mode hop when the laser is locked to a frequency reference. We have found evidence that the amplitude noise is generated from more fundamental frequency noise by the lock feedback. We therefore propose a way to use frequency noise directly to generate a signal to predict and prevent mode hops.

  16. High-performance optoelectronic switching network with vertical-cavity surface-emitting laser arrays

    International Nuclear Information System (INIS)

    A schematic solution is proposed for creating a highly efficient switching network with fully connected switching topology for use in supercomputers and telecommunication systems. An important characteristic of this solution is the use of vertical-cavity surface-emitting semiconductor laser arrays and polarising beamsplitters. Estimates show that the commercially available elemental base can be used for a practical realisation of an optoelectronic switching network with basic parameters and functional properties that are superior to those in known electronic analogues. (laser applications and other topics in quantum electronics)

  17. Standoff Hyperspectral Imaging of Explosives Residues Using Broadly Tunable External Cavity Quantum Cascade Laser Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Phillips, Mark C.

    2010-05-01

    We describe experimental results on the detection of explosives residues using active hyperspectral imaging by illumination of the target surface using an external cavity quantum cascade laser (ECQCL) and imaging using a room temperature microbolometer camera. The active hyperspectral imaging technique forms an image hypercube by recording one image for each tuning step of the ECQCL. The resulting hyperspectral image contains the full absorption spectrum produced by the illumination laser at each pixel in the image which can then be used to identify the explosive type and relative quantity using spectral identification approaches developed initially in the remote sensing community.

  18. Record Performance of Electrical Injection Sub-wavelength Metallic-Cavity Semiconductor Lasers at Room Temperature

    OpenAIRE

    Ding, K Kang; Hill, MT Martin; Liu, ZC; Yin, LJ; Veldhoven, van, A.D.; Ning, CZ

    2012-01-01

    Metallic-Cavity lasers or plasmonic nanolasers of sub-wavelength sizes have attracted great attentions in recent years, with the ultimate goal of achieving continuous wave (CW), room temperature (RT) operation under electrical injection. Despite great efforts, a conclusive and convincing demonstration of this goal has proven challenging. By overcoming several fabrication challenges imposed by the stringent requirement of such small scale devices, we were finally able to achieve this ultimate ...

  19. Broad wavelength tunability from external cavity quantum-dot mode-locked laser

    OpenAIRE

    Nikitichev, D. I.; Fedorova, K. A.; Ding, Y; Alhazime, A.; Able, A.; Kaenders, W.; Krestnikov, I; Livshits, D.; Rafailov, E.U.

    2012-01-01

    Broadband wavelength tunability over 136 nm (between 1182.5 nm and 1319 nm) of picosecond pulses in passive mode-locked regime is demonstrated in a multi-section quantum-dot laser in external cavity configuration at room temperature. The maximum peak power of 870 mW with 15 ps pulse duration was achieved at 1226 nm wavelength.

  20. Diode laser frequency stabilization using a low cost, low finesse Fabry-Perot cavity

    Science.gov (United States)

    Hastings, Hannah; Jaber, Noura B.; Piatt, Georgia; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.

    2016-05-01

    Our lab employs low cost, low finesse Fabry-Perot cavities to stabilize the frequency of diode lasers used in ultra-cold Rydberg atom experiments. To characterize the stability of this technique, we perform a self-heterodyne linewidth measurement. For comparison, we also measure the linewidth when using a saturated absorption spectrometer to provide frequency stability. This work is supported by the National Science Foundation under Grants No. 1205895 and No. 1205897.

  1. Angle-resolved scattering spectroscopy of explosives using an external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

    2012-04-01

    Investigation of angle-resolved scattering from solid explosives residues on a car door for non-contact sensing geometries. Illumination with a mid-infrared external cavity quantum cascade laser tuning between 7 and 8 microns was detected both with a sensitive single point detector and a hyperspectral imaging camera. Spectral scattering phenomena were discussed and possibilities for hyperspectral imaging at large scattering angles were outlined.

  2. Radiocarbon Dioxide detection based on Cavity Ring-Down Spectroscopy and a Quantum Cascade Laser

    OpenAIRE

    Genoud, Guillaume; Vainio, Markku; Phillips, Hilary; Dean, Julian; Merimaa, Mikko

    2015-01-01

    Monitoring of radiocarbon ($^{14}$C) in carbon dioxide is demonstrated using mid-infrared spectroscopy and a quantum cascade laser. The measurement is based on cavity ring-down spectroscopy, and a high sensitivity is achieved with a simple setup. The instrument was tested using a standardised sample containing elevated levels of radiocarbon. Radiocarbon dioxide could be detected from samples with an isotopic ratio $^{14}$C/C as low as 50 parts-per-trillion, corresponding to an activity of 5 k...

  3. Fast Hyperspectral Imaging Using a Mid-Infrared Tunable External Cavity Quantum Cascade Laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Ho, Nicolas

    2008-04-23

    An active hyperspectral imaging system using an external cavity quantum cascade laser and a focal plane array acquiring images at 25 Hz from 985 cm-1 to 1075 cm-1 with a resolution of 0.3 cm 1 is demonstrated. The chemical imaging of gases is demonstrated in both static and dynamic cases. The system was also used to analyze liquid and solid samples.

  4. Wide tunable laser with noise suppression for precise cavity length measurement

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej

    Piscataway : IEEE, 2014, s. 604-605. ISBN 978-1-4799-5205-2. ISSN 0589-1485. [Conference on Precision Electromagnetic Measuerements /29./ CPEM 2014. Rio de Janeiro (BR), 24.08.2014-29.08.2014] R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Fabry-Perot cavity * Fiber Interferometer * Noise supression * optical frequency comb Subject RIV: BH - Optics, Masers, Lasers

  5. Effects of output coupler reflectivity on the performance of a linear cavity Brillouin/erbium fiber laser

    Indian Academy of Sciences (India)

    X S Cheng; S W Harun; H Ahmad

    2007-03-01

    The effect of output coupler reflectivity (or output coupling ratio) on the performance of a linear cavity Brillouin/erbium fiber laser (BEFL) is demonstrated. The operating wavelength, output laser power and number of channels vary with changes in the coupling ratio in the linear cavity system. The optimum BEFL operation is obtained with an output coupling of 40%, i.e., 60% of the laser power is allowed to oscillate in the cavity. A stable laser comb consisting of up to 40 channels with line spacings of approximately 0.09 nm are obtained at the Brillouin pump and 980 nm pump with powers of 2.5 mW and 100 mW, respectively. The linear cavity BEFL has the potential to be used in inexpensive wavelength division multiplexing system.

  6. Investigation of combustion dynamics in a cavity-based combustor with high-speed laser diagnostics

    Science.gov (United States)

    Xavier, Pradip; Vandel, Alexis; Godard, Gilles; Renou, Bruno; Grisch, Frédéric; Cabot, Gilles; Boukhalfa, Mourad A.; Cazalens, Michel

    2016-04-01

    The dynamics of the flame/flow interaction produced in an optically accessible, premixed, and staged cavity-based combustor was investigated with high-speed particle image velocimetry (PIV) and OH-planar laser-induced fluorescence (OH-PLIF) . The combined PIV and OH-PLIF images were recorded at 2.5 kHz to assess stabilization mechanisms occurring between the cavity and the mainstream. Dynamic pressure and global heat-release rate fluctuations were complementary measured. Important characteristics were identified for two operating conditions, differing from the ratio of momentum J (taken between the mainstream and the cavity jet): a high ratio of momentum (J = 7.1) produced a "stable" flow, whereas a lower one (J = 2.8) displayed "unstable" conditions. Analysis of the "unstable" case revealed an intense flow instability, primarily due to premixed flow rate fluctuations inside the cavity. This effect is confirmed from a proper orthogonal decomposition analysis of PIV data, which illustrates the prominent role of large-scale flow oscillations in the whole combustor. Furthermore, the simultaneous analysis of flow velocities and gas state (either unburned or burned) displayed important fluctuations inside the shear layer, reducing effective flame-holding capabilities. By contrast, the increase in the ratio of momentum in the "stable" case reduces significantly the penetration of the cavity flow into the mainstream and consequently produces stable properties of the shear layer, being valuable to considerably improve flame stabilization.

  7. Theoretical and Numerical Investigation of a Four-cavity TE021-Mode Gyroklystron

    Science.gov (United States)

    Wang, Jianxun; Luo, Yong; Xu, Yong; Li, Hongfu

    2008-12-01

    Using self-consistent field theory and PIC simulation, the interaction of electron flow with HF fields in a four-cavity Gyroklystron with TE021-mode has been analyzed. Self-consistent field theory includes both linear theory and nonlinear theory. Optimized parameters and their corresponding efficiency, gain and bandwidth of the optimized Gyroklystron have been found. Numerical investigation using PIC simulation is also given. Parameters of the cavities which are operating in TE021 mode are optimized to minimize TE011 mode and to suppress parasitic self-oscillations. The results of theory are in good qualitative agreement with PIC simulation.

  8. Efficient second-harmonic generation of continuous-wave Yb fiber lasers coupled with an external resonant cavity

    Science.gov (United States)

    Kim, J. W.; Jeong, J.; Lee, K.; Lee, S. B.

    2012-09-01

    Efficient second-harmonic generation of continuous-wave Yb fiber lasers is reported. A simple bow-tie external resonant cavity incorporating a type I LBO nonlinear optical crystal was employed for second harmonic frequency conversion of a multi-longitudinal-mode Yb fiber laser. It is shown that strong coupling was formed between the Yb fiber laser and the external cavity and, as a result, the laser produced 9.1 W of green output at 535 nm for 43 W of absorbed diode pump power at 975 nm corresponding to an optical conversion efficiency of 21 % with respect to absorbed diode pump power. The prospects for further improvement are discussed.

  9. Fundamental transverse mode selection and self-stabilization in large optical cavity diode lasers under high injection current densities

    International Nuclear Information System (INIS)

    It is shown that in high-power, large optical cavity laser diodes at high injection currents, the optical losses due to nonuniform carrier accumulation in the optical confinement layer can ensure the laser operation in the fundamental transverse mode. An experimental demonstration of switching from second order mode to fundamental mode in large optical cavity lasers with current and/or temperature increase is reported and explained, with the calculated values for the switching current and temperature in good agreement with the measurements. The results experimentally prove the nonuniform nature of carrier accumulation in the confinement layer and may aid laser design for optimizing the output. (paper)

  10. Multistep laser pulse generation using passive electrical networks in the driver of a cavity-dumped Q-switched oscillator

    International Nuclear Information System (INIS)

    Multistep laser pulses of a type particularly useful in laser fusion and plasma physics research were generated in Soreq's cavity-dumped Q-switched oscillator. The pulses were tailored by adding passive electrical networks to the cavity-dumped Pockels cell driver. Laser light step ratios of between 1 and 10-3 in steps with durations of between 0.5 and 4 ns were systematically produced. Equations based on the theory of transmission lines and impedance-mismatched junctions were derived to predict accurately the voltage waveforms observed in the Pockels cell driver. Inclusion of the Pockels cell response yielded accurate quantitative prediction of the observed laser pulse duration. (author)

  11. Synchronized Q-switching of 1064 and 1342 nm laser cavities using a V:YAG saturable absorber

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Janousek, Jiri; Buchhave, Preben

    We prove that pumping of a V:YAG saturable absorber with 1064 nm pulses modulates the transmission of 1342 nm light. We then demonstrate a dual-cavity laser emitting synchronized, Q-switched pulses at 1064 and 1342 nm.......We prove that pumping of a V:YAG saturable absorber with 1064 nm pulses modulates the transmission of 1342 nm light. We then demonstrate a dual-cavity laser emitting synchronized, Q-switched pulses at 1064 and 1342 nm....

  12. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity

    Institute of Scientific and Technical Information of China (English)

    Chen Cheng; Zhao Ling-Juan; Qiu Ji-Fang; Liu Yang; Wang Wei; Lou Cai-Yun

    2012-01-01

    We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity.The device consists of three sections,a DBR grating section,a passive phase section,and an active gain section.The gain section facet is cleaved to work as a laser cavity mirror.The other laser mirror is the DBR grating,which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action.The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state.We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process.By tuning the injection currents on the DBR and the gain sections,the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.

  13. External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser.

    Science.gov (United States)

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2008-03-31

    We have developed a 5-W 756-nm injection-locked Ti:sapphire laser and frequency-doubled it in an external enhancement cavity for the generation of watt-level 378-nm single-frequency radiation, which is essential for isotope-selective optical pumping of thallium atoms. With a lithium triborate (LBO) crystal in the enhancement cavity, 1.1 W at 378 nm was coupled out from the cavity. Such results are to our knowledge the highest powers of continuous-wave single-frequency radiation generated from a Ti:sapphire laser and its frequency doubling. PMID:18542585

  14. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel

    2008-07-21

    In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10{sup -4} in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)

  15. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers

    International Nuclear Information System (INIS)

    In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10-4 in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)

  16. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    Science.gov (United States)

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature. PMID:21895284

  17. Grating-design based polarization modifications of ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Full text: Quantum cascade lasers are versatile light sources, covering the so-called molecular fingerprint region from the mid-infrared to the terahertz spectral region. A second-order distributed feedback grating permits vertical light extraction along with single-mode emission. Recently, our group reported a new waveguide design, the vertically emitting ring cavity quantum cascade laser. Such devices exhibit lower thresholds, higher slope-efficiencies, larger peak optical power and narrower emission beams compared to corresponding Fabry-Pérot devices. We realized novel grating designs, which enable manipulation of the polarization properties of these ring lasers. The processability of the substrate allows us further modification of the polarization properties. (author)

  18. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    Energy Technology Data Exchange (ETDEWEB)

    Lyakh, A., E-mail: alyakh@pranalytica.com; Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Patel, C. Kumar N., E-mail: patel@pranalytica.com [Pranalytica, Inc., 1101 Colorado Ave., Santa Monica, California 90401 (United States)

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs.

  19. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    International Nuclear Information System (INIS)

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm−1. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs

  20. Littrow-type external-cavity blue laser for holographic data storage

    Science.gov (United States)

    Tanaka, Tomiji; Takahashi, Kazuo; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro; Samuels, David; Takeya, Motonobu

    2007-06-01

    An external-cavity laser with a wavelength of 405 nm and an output of 80 mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3 mm; and the third is a six-mode state with a coherent length of 0.3 mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532 nm laser.

  1. VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    2013-01-01

    The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

  2. Surgical management of premalignant lesions of the oral cavity with the CO2 laser.

    Science.gov (United States)

    Pinheiro, A L; Frame, J W

    1996-01-01

    The management of patients with premalignant and malignant lesions of the oral cavity can present problems. The potentially invasive nature of premalignant lesions together with their large extent influences the treatment. The common modalities of treatment of these lesions are surgical excision, cryotherapy, electrosurgery and radiotherapy. Recently, CO2 laser surgery has become available. Less pain, little bleeding, minimal post-operative edema, reduced risk of infection, and low recurrence rates were advantages observed following CO2 laser surgery in the mouth when compared to other modalities of treatment. Healing following CO2 laser surgery progressed well with little postoperative scarring and re-epithelialization was complete after 4-6 weeks. The newly formed epithelium appeared normal and was soft on palpation. PMID:9206362

  3. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics

    International Nuclear Information System (INIS)

    The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realistic values of the linewidth enhancement factor α, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high α values

  4. Littrow-type external-cavity blue laser for holographic data storage.

    Science.gov (United States)

    Tanaka, Tomiji; Takahashi, Kazuo; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro; Samuels, David; Takeya, Motonobu

    2007-06-10

    An external-cavity laser with a wavelength of 405 nm and an output of 80 mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3 mm; and the third is a six-mode state with a coherent length of 0.3 mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532 nm laser. PMID:17514319

  5. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    Science.gov (United States)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  6. Hidden photon measurements using the long-baseline cavity of laser interferometric gravitational-wave detector

    CERN Document Server

    Inoue, Yuki

    2015-01-01

    We suggest a new application for the long-baseline and high powered cavities in a laser-interferometric gravitational-wave~(GW) detector to search for WISPs (weakly interacting sub-eV particles), such as a hidden U(1) gauge boson, called the hidden-sector photon. It is based on the principle of a light shining through the wall experiment, adapted to the laser with a wavelength of 1064 or 532 nm. The transition edge sensor (TES) bolometer is assumed as a detector, which the dark rate and efficiency are assumed as $0.000001~\\mathrm{s^{-1}}$ and 0.75, respectively. The TES bolometer is sufficiently sensitive to search for the low-mass hidden-sector photons. We assume that the reconversion cavity is mounted on the reconversion region of hidden-sector photons, which number of reflection and length are assumed as 1000 and 10, 100, and 1000m. We found that the second-point-five and the second generation GW experiments, such as KAGRA and Advanced LIGO with a regeneration cavity and TES bolometers. The expected lower ...

  7. Efficient intracavity frequency doubling of an Yb-doped fiber laser using an internal resonant enhancement cavity

    OpenAIRE

    Cieslak, R.; Sahu, J.K.; Clarkson, W. A.

    2010-01-01

    We describe a simple approach for efficient generation of visible light in high-power continuous-wave fiber lasers via second harmonic generation in an internal resonant cavity. Preliminary results for a cladding-pumped Yb fiber laser are presented.

  8. A sub-40 mHz linewidth laser based on a silicon single-crystal optical cavity

    CERN Document Server

    Kessler, T; Grebing, C; Legero, T; Sterr, U; Riehle, F; Martin, M J; Chen, L; Ye, J

    2011-01-01

    State-of-the-art optical oscillators based on lasers frequency stabilized to high finesse optical cavities are limited by thermal noise that causes fluctuations of the cavity length. Thermal noise represents a fundamental limit to the stability of an optical interferometer and plays a key role in modern optical metrology. We demonstrate a novel design to reduce the thermal noise limit for optical cavities by an order of magnitude and present an experimental realization of this new cavity system, demonstrating the most stable oscillator of any kind to date. The cavity spacer and the mirror substrates are both constructed from single crystal silicon and operated at 124 K where the silicon thermal expansion coefficient is zero and the silicon mechanical loss is small. The cavity is supported in a vibration-insensitive configuration, which, together with the superior stiffness of silicon crystal, reduces the vibration related noise. With rigorous analysis of heterodyne beat signals among three independent stable ...

  9. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  10. Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability.

    Science.gov (United States)

    Aguergaray, Claude; Runge, Antoine; Erkintalo, Miro; Broderick, Neil G R

    2013-08-01

    We report on the destabilization of the mode-locking operation of a long cavity fiber laser. We show that the destabilization is accompanied by the abrupt emergence of a strong frequency-downshifted Stokes signal, and simultaneously, we find that the laser output displays characteristics typical of noise-like pulses. We use numerical simulations to illustrate how the Stokes signal grows from stimulated Raman scattering and plays a key role in the destabilization of the laser output. Our results indicate that stimulated Raman scattering may impose an ultimate limit on the energy scalability via cavity lengthening. PMID:23903099

  11. Generation of Red Light Femtosecond Pulses from an Intra-Cavity Frequency-Doubled Cr4+: Forsterite Laser

    International Nuclear Information System (INIS)

    We demonstrate the generation of red light femtosecond laser pulses from an intra-cavity frequency-doubled Cr4+ :forsterite laser. An average output power of 75 mW is obtained at the central wavelength of 647 nm with a pulse width of 55 fs by inserting a 500-μm-thick BBO crystal in the laser cavity. The bandwidth of the spectrum of second harmonic pulses is 9 nm, corresponding to a time-bandwidth product of 0.355

  12. Application of ABCD Formalism in Theoretical and Experimental Analysis of Actively Modelocked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Time domain ABCD matrix formalism is a useful model for analyzing the characteristics of actively modelocked fiber laser. Based on this model and given more consideration on the influences of optical fiber dispersion and optical fiber nonlinearity, the laser characteristic of actively modelocked fiber laser is analyzed, and the comparision of the theoretical analysis results with experimental ones is given.

  13. Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

    Energy Technology Data Exchange (ETDEWEB)

    CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J.; KURTZ,STEVEN R.; BREILAND,WILLIAM G.; SIEG,ROBERT M.; GEIB,KENT M.; SCOTT,J.W.; NAONE,R.L.

    2000-06-05

    Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

  14. Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities

    Science.gov (United States)

    Peterka, Pavel; Navrátil, Petr; Dussardier, Bernard; Slavík, Radan; Honzátko, Pavel; Kubecek, Václav

    2012-06-01

    Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a relatively broad range of about 1076 -1084 nm in ring ytterbium-doped fiber laser (YDFL). The main characteristic of the SLLS is the scanning of the laser wavelength from shorter to longer wavelength, spanning over large interval of several nanometers, and instantaneous bounce backward. The period of this sweeping is usually quite long, of the order of seconds. This spectacular effect was attributed to spatial-hole burning caused by standing-wave in the laser cavity. In this paper we present experimental investigation of the SLLS in YDFLs in Fabry-Perot cavity and ring cavities. The SLLS was observed also in erbium-doped fiber laser around 1560 nm. We present for the first time observation of the laser wavelength sweep in reverse direction, i.e., from longer towards shorter wavelengths. It was observed in YDFL around 1080 nm.

  15. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.

    Science.gov (United States)

    Zhu, X; Cassidy, D T

    1996-08-20

    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%. PMID:21102889

  16. Trace-gas sensing using the compliance voltage of an external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.

    2013-06-04

    Quantum cascade lasers (QCLs) are increasingly being used to detect, identify, and measure levels of trace gases in the air. External cavity QCLs (ECQCLs) provide a broadly-tunable infrared source to measure absorption spectra of chemicals and provide high detection sensitivity and identification confidence. Applications include detecting chemical warfare agents and toxic industrial chemicals, monitoring building air quality, measuring greenhouse gases for atmospheric research, monitoring and controlling industrial processes, analyzing chemicals in exhaled breath for medical diagnostics, and many more. Compact, portable trace gas sensors enable in-field operation in a wide range of platforms, including handheld units for use by first responders, fixed installations for monitoring air quality, and lightweight sensors for deployment in unmanned aerial vehicles (UAVs). We present experimental demonstration of a new chemical sensing technique based on intracavity absorption in an external cavity quantum cascade laser (ECQCL). This new technique eliminates the need for an infrared photodetector and gas cell by detecting the intracavity absorption spectrum in the compliance voltage of the laser device itself. To demonstrate and characterize the technique, we measure infrared absorption spectra of chemicals including water vapor and Freon-134a. Sub-ppm detection limits in one second are achieved, with the potential for increased sensitivity after further optimization. The technique enables development of handheld, high-sensitivity, and high-accuracy trace gas sensors for in-field use.

  17. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    Science.gov (United States)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  18. Dynamics of Converging Laser-Created Plasmas in Semi-Cylindrical Cavities Studied using Soft X-Ray Laser Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, M A; Grava, J; Filevich, J; Marconi, M; Dunn, J; Moon, S J; Shlyaptsev, V N; Jankowska, E; Rocca, J J

    2007-09-19

    The evolution of dense aluminum and carbon plasmas produced by laser irradiation of 500 {micro}m diameter semi-cylindrical targets was studied using soft x-ray laser interferometry. Plasmas created heating the cavity walls with 120 picosecond duration optical laser pulses of {approx} 1 x 10{sup 12} W cm{sup -2} peak intensity were observed to expand and converge on axis to form a localized high density plasma region. Electron density maps were measured using a 46.9 nm wavelength tabletop capillary discharge soft x-ray laser probe in combination with an amplitude division interferometer based on diffraction gratings. The measurements show that the plasma density on axis exceeds 1 x 10{sup 20} cm{sup -3}. The electron density profiles are compared with simulations conducted using the hydrodynamic code HYDRA, which show that the abrupt density increase near the axis is dominantly caused by the convergence of plasma generated at the bottom of the groove during laser irradiation.

  19. Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver

    International Nuclear Information System (INIS)

    A linear Fresnel reflector (LFR) solar collector with modified V-shaped cavity receiver was investigated both experimentally and theoretically in this paper. Simplified ray tracing technique was employed to optimize the optical design of the LFR system. The Monte Carlo ray tracing method was used to predict the optical performance of the proposed LFR system. A 2D mathematical model was developed to investigate the effect of receiver surface temperature on the overall heat transfer coefficient which reflects the thermal performance of the modified linear cavity receiver. CFD simulation was carried out for the modified cavity receiver treated at various surface temperatures within a range of 90–150 °C, by taking into account the conductive, convective and radiative heat losses. Experimental results show that the overall heat loss coefficient varied from 6.25 to 7.52 W/m2 K for the tested surface temperature range, with an average deviation of about 12% when compared with simulation results. Also, at higher surface temperatures, heat loss through radiative mode was predominant and the system stagnation was found to be about 260 °C with optimal operating temperature of about 121 °C. The thermal efficiency decreased from 45% to 37% as the average surface temperature increased from 90 °C to 150 °C. -- Highlights: ► An LFR solar collector was investigated both experimentally and theoretically. ► Simplified ray tracing technique was used to optimize the optical design. ► The MCRT method was used to predict the optical performance of the LFR system. ► Thermal performance of the LFR system was evaluated by CFD method and experiments. ► The LFR system is a promising technology in generating mid-temperature heat

  20. A theoretical re-examination of Spencer–Attix cavity theory

    International Nuclear Information System (INIS)

    The aim of radiation dosimetry is to evaluate, under specific conditions, absorbed dose in a medium of interest using a detection device. In comparison to what is meant to be evaluated, the distinctive composition of the detector causes particle fluence perturbation and shifted absorbed-dose response, both effects depending on beam quality. For electron and megavoltage photon beams, Spencer–Attix cavity theory further adapted by Nahum remains the accepted standard method used to convert absorbed dose in a wall-less detector to absorbed dose in the medium of interest. For several decades, the approach has been widely used in protocols to generate data for ionization chamber dosimetry. As a considerable effort was made towards accurate Monte Carlo methods, computation techniques are nowadays available to determine absorbed dose accurately in complex geometries, including radiation detectors. In the development of nonstandard beam protocols, direct Monte Carlo dose calculations using realistic models are being suggested and used to generate data for ionization chamber dosimetry. This indicates that for a general dosimetric context, including nonstandard beams, a more general cavity theory in agreement with what is currently being done could be adopted. Not only this could be of interest in the dosimetry standards community, but also for educational purposes. This paper re-examines Spencer–Attix theory from first principles, using a new general cavity theory rigorously derived from radiation transport equations. The approach is based on the same schematization as for Spencer–Attix’s (i.e. groups of slow and fast electrons) and yields a general expression of absorbed dose for suitably implemented Monte Carlo methods. The Spencer–Attix–Nahum formulation is shown to be a special case of the presented model, outlining specific issues of the standard method. By providing an expression of absorbed dose which reflects the gold standard calculation method (i

  1. Ring Cavity Induced Performance Enhancement in Mid-Infrared and Terahertz Quantum Cascade Lasers

    International Nuclear Information System (INIS)

    Full text: Quantum cascade lasers (QCLs) are well established as reliable laser sources from the midinfrared (MIR) to the terahertz (THz) spectral region. These coherent sources of light are attractive compact emitters for a broad range of applications, such as free space communications, spectroscopy, imaging and heterodyne detection. For most of these applications, symmetric far fields and low beam divergence are of special interest. However, due to small dimensions and elongated shape of the resonator, the emitted light of standard Fabry-Perot and surface emitting QCLs is typically broad and asymmetric. Especially for THz QCLs, the sub wavelength dimensions of laser ridge facet lead to inhomogeneous diffractive-like patterns and limited output intensities. We describe ring cavity surface emitting lasers (RCSELs) and demonstrate how MIR and THz emission can effectively be emitted using an advanced ring geometry. Beam narrowing is given by constructive interference of light waves passing through the slits of a radial, light out-coupling grating on top of the laser. This results in the realization of single-mode operating ring-cavity QCLs with strongly collimated symmetric surface emission, with a full width at half maximum of 3o and 15o for MIR and THz emitters, respectively. For the latter the reduced divergence gives a twofold power enhancement compared to standard edge-emitters. We will present an extensive study in terms of output power, threshold behavior, beam shaping, dynamic beam steering and polarization characteristics. Furthermore we will talk about coherent coupling, two-dimensional integration of ring QCLs and their applicability in spectroscopy. (author)

  2. Morphological analysis of cavities prepared by different parameters of Er:YAG laser

    Science.gov (United States)

    Freitas, Patricia M.; Navarro, Ricardo S.; Almeida, Juliana; Imparato, Jose Carlos P.; Eduardo, Carlos P.

    2005-03-01

    The purpose of this study was to evaluate the morphological changes in cavities made by Er:YAG laser (2.94μm)(KaVo KEY 3)(LELO-FOUSP) and high-speed drill. Cavities were made on the buccal and lingual surfaces of 27 human molars (Banco de Dentes-FOUSP), using different laser parameters (n=3): G1-15Hz/160mJ enamel/ 6Hz/200mJ dentin; G2-15Hz/180mJ enamel/ 6Hz/200mJ dentin; G3-15Hz/160mJ enamel/ 6Hz/250mJ dentin; G4-15Hz/180mJ enamel/ 6Hz/250mJ dentin; G5-15Hz/180mJ enamel/ 10Hz/180mJ dentin; G6-15Hz/160mJ enamel/ 10Hz/180mJ dentin; G7-15Hz/160mJ enamel/ 10Hz/160mJ dentin; G8-15Hz/180mJ enamel/ 10Hz/160mJ dentin and G9-high-speed drill. Samples were fixed (2.5% glutaraldhyde, 12h, 4°C), dehydrated (25-100% ethanol), dried to a critical point and sputter-coated with gold for analysis under SEM. All laser parameters used showed no evidence of thermal damage and signs of burning and melting, Er:YAG laser ablated dental hard tissues, showing enamel prisms, like scales, dentin surface without smear layer and opened dentinal tubules. It was concluded that Er:YAG laser parameters were effective for ablation of hard tissues, promoting morphological changes in irradiated tissues, creating an irregular and microretentive morphological pattern.

  3. Highly-efficient, diffraction-limited laser emission from a Vertical External Cavity Surface-emitting Organic Laser

    CERN Document Server

    Rabbani-Haghighi, Hadi; Chenais, Sebastien; Siove, Alain

    2010-01-01

    We report on a solid-state laser structure being the organic counterpart of the Vertical External-Cavity Surface-Emitting Laser (VECSEL) design. The gain medium is a poly (methyl methacrylate) film doped with Rhodamine 640, spin-casted onto the High-Reflectivity mirror of a plano-concave resonator. Upon pumping by 7-ns pulses at 532 nm, a diffraction-limited beam (M^2=1) was obtained, with a conversion efficiency of 43%; higher peak powers (2kW) could be attained when resorting to shorter (0.5 ns) pump pulses. The spectrum was controlled by the thickness of the active layer playing the role of an intracavity etalon; tunability is demonstrated over up to 20 nm.

  4. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  5. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    Science.gov (United States)

    Alharthi, S. S.; Orchard, J.; Clarke, E.; Henning, I. D.; Adams, M. J.

    2015-10-01

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  6. Stable anticipation synchronization in mutually coupled vertical-cavity surface-emitting lasers system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two vertical-cavity surface-emitting lasers(VCSELs) are mutually coupled through a partially transparent mirror (PTM) placed in the pathway. The PTM plays the role of external mirror,which controls the feedback strength and coupling strength.We numerically simulate this system by establishing a visible SIMULINK model.The results demonstrate that the anticipation synchronization is achieved and it can tolerate some extent frequency detuning.Moreover,the system shows similar chaos-pass filtering effect on unidirectionally coupled system even both VCSELs are modulated.This system allows simultaneously bidirectional secure message transmission on public channels.

  7. Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser

    OpenAIRE

    Baylam, Işınsu; Çizmeciyan, Melisa Natali; Sennaroğlu, Alphan; Ozharar, Sarper; Balcı, Osman; Pince, Ercag; Kocabaş, Coşkun

    2013-01-01

    We report, for the first time to our knowledge, the use of graphene as a saturable absorber in an energy-scaled femtosecond Cr4+: forsterite laser. By incorporating a multipass cavity, the repetition rate of the original short resonator was reduced to 4.51 MHz, which resulted in the generation of 100 fs, nearly transform-limited pulses at 1252 nm with a peak power of 53 kW. To the best of our knowledge, this is the highest peak power obtained from a room-temperature, femtosecond Cr4+: forster...

  8. Short-Cavity Er/Yb-P/Al/Si Co-doped Fibre Grating Laser

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; KAI Gui-Yun; FENG De-Jun; LIU Yun-Qi; DING Lei; YUAN Shu-Zhong; DONG Xiao-Yi

    2001-01-01

    A short-cavity Er/Yb-P/AI/Si co-doped fibre grating laser is demonstrated, with a pair of fibre Bragg gratings whose central resonant wavelengths are around 1551 nm and the reflectivities are 10.5 and 15dB. The threshold value is about 48mW and the slope efficiency is 1.1%. The signal-to-noise ratio is 59dB, and the output central wavelength is 1550.94 nm. A peak power of 1.112mW at a pump power of 80mW has been achieved.

  9. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Ian M.; Taubman, Matthew S.; Lea, Alan S.; Phillips, Mark C.; Josberger, Erik E.; Raschke, Markus Bernd

    2013-12-16

    Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of explosives particles by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm-1, spatial resolution of 25 nm, <100 attomolar sensitivity, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.

  10. Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Bernacki, Bruce E.

    2012-12-26

    Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

  11. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    International Nuclear Information System (INIS)

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding

  12. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk [Institute of Photonics, SUPA Department of Physics, University of Strathclyde, TIC Centre, 99 George Street, Glasgow G1 1RD (United Kingdom); Javaloyes, Julien [Departament de Fisica, Universitat de les Illes Balears, c/Valldemossa km 7.5, 07122 Mallorca (Spain)

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  13. Effect of Mesa Size on Thermal Characteristics of Vertical-cavity Surface-emitting Lasers

    Institute of Scientific and Technical Information of China (English)

    HOU Shi-hua; ZHAO Ding; SUN Yong-wei; TAN Man-qing; CHEN Liang-hui

    2005-01-01

    The effect of mesa size on the thermal characteristics of etched mesa vertical-cavity surfaceemitting lasers(VCSELs) is studied. The numerical results show that the mesa size of the top mirror strongly influences the temperature distribution inside the etched mesa VCSEL. Under a certain driving voltage, with decreasing mesa size, the location of the maximal temperature moves towards the p-contact metal, the temperature in the core region of the active layer rises greatly, and the thermal characteristics of the etched mesa VCSELs will deteriorate.

  14. The passive Q-switching regime in a solid state laser with a multiloop cavity

    Science.gov (United States)

    Pogoda, A. P.; Burkovskii, G. V.; Makarchuk, P. S.; Khakhalin, I. S.; Boreisho, A. S.; Fedin, A. V.

    2016-03-01

    A compact, pulsed-periodic YAG: Nd3+ laser with self-pumped phase-conjugate multiloop cavity and passive Q-switching by YAG: Cr 4+ and GSGG: Cr 4+ crystals has been studied. It is established that the energy and temporal parameters of radiation in separate pulses of a periodic train can be controlled almost without changing the pulse train energy. A regime of generating modulated radiation pulses with a peak power of up to 30 MW and a spatial brightness of 1.7 × 1015 W/(cm2 sr) at a radiation beam quality parameter of M 2 < 1.2 has been realized in experiment.

  15. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy

    CERN Document Server

    De Vine, G; Close, J D; Gray, M B; Vine, Glenn de; Clelland, David E. Mc; Close, John D.; Gray, Malcolm B.

    2004-01-01

    We present an experimental technique enabling mechanical-noise free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The cell is placed in a traveling-wave Fabry-Perot interferometer (FPI) with counter-propagating pump and probe beams. The FPI is locked using the Pound-Drever-Hall (PDH) technique. Mechanical noise is rejected by differencing pump and probe signals. In addition, this differenced error signal gives a sensitive measure of differential non-linearity within the FPI.

  16. Cavity dumping of neodymium-doped fibre lasers using acousto-optic modulator

    OpenAIRE

    Abdulhalim, I.; Pannell, C.N.; Jedrzejewski, K.P.; Taylor, E.R.

    1994-01-01

    We report high-repetition-rate pulses obtained by cavity dumping of a neodymium-doped phosphate glass fibre laser operating at 1053 nm using a specially constructed acoustooptic modulator. With 27 mW absorbed pump power at 812 nm we obtained stable trains of output pulses with repetition rate in the range 0.5 to 8MHz having corresponding pulse widths in the range 127 to 19 ns without significant sacrifice in the average output power of 8 mW.

  17. Towards monolithic integration of mode-locked vertical cavity surface emitting laser

    Science.gov (United States)

    Aldaz, Rafael I.

    2007-12-01

    The speed and performance of today's high end computing and communications systems have placed difficult but still feasible demands on off-chip electrical interconnects. However, future interconnect systems may need aggregate bandwidths well into the terahertz range thereby making electrical bandwidth, density, and power targets impossible to meet. Optical interconnects, and specifically compact semiconductor mode-locked lasers, could alleviate this problem by providing short pulses in time at 10s of GHz repetition rates for Optical Time Division Multiplexing (OTDM) and clock distribution applications. Furthermore, the characteristic spectral comb of frequencies of these lasers could also serve as a multi-wavelength source for Wavelength Division Multiplexing (WDM) applications. A fully integrated mode-locked Vertical Cavity Surface Emitting Laser (VCSEL) is proposed as a low-cost high-speed source for these applications. The fundamental laser platform for such a device has been developed and a continuous-wave version of these lasers has been fabricated and demonstrated excellent results. Output powers close to 60mW have been obtained with very high beam quality factor of M2 unassisted ultrafast QD saturable absorbers, without the need to incorporate high concentrations of non radiative recombination centers by either ion-implantation or low temperature growth.

  18. Resonance ionization mass spectrometric analysis of thorium by external laser cavity enhancement techniques

    International Nuclear Information System (INIS)

    Over the last several years, extensive effort has been directed towards the demonstration of Resonance Ionization Mass Spectrometry (RIMS) as a generally-applicable isotopic analysis technique. The major problems in this task have been to achieve a high overall ionization efficiency as well as good sample utilization. Several aspects of these problems are apparent in the choice of the excitation and ionization sources for the selective RIMS process. Pulsed lasers have typically had low repetition rates, poor spectral and temporal behavior, and short pulse durations. These characteristics have limited the general utility of pulsed lasers because of the low duty cycle (low efficiency), pulse pile-up detection difficulties (limited dynamic range), and relatively poor stability (poor precision). In contrast, cw lasers offer 100% effective duty cycles, well-controlled laser profiles (spectrally, spatially and temporally), and excellent power stability. The main feature limiting the utility of cw lasers has been power. While sufficient intensity is available to saturate the resonant transition, efficient promotion of excited atoms to the ionization continuum is difficult. This last aspect is where the authors efforts have centered. Presently, they are pursuing an external cavity technique which will generate overall ionization efficiencies of tens of percent, as well as increase the available spectral range. Experimental aspects and process to date on thorium will be discussed in detail

  19. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers.

    Science.gov (United States)

    Sayyah, Keyvan; Efimov, Oleg; Patterson, Pamela; Schaffner, James; White, Carson; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander

    2015-07-27

    We demonstrate, both theoretically and experimentally, a pseudo-random, two-dimensional optical phased array (OPA) concept based on tandem injection locking of 64-element vertical cavity surface emitting laser (VCSEL) arrays. A low cavity-Q VCSEL design resulted in an injection locking optical power of less than 1 μW per VCSEL, providing large OPA scaling potential. Tandem injection locking of two VCSEL arrays resulted in measured controllable optical phase change of 0-1.6π. A high quality beam formed with suppressed grating lobes due to the pseudo-random array design was demonstrated with performance close to simulated results. A preliminary 2.2° x 1.2° beam steering example using the tandem arrays was also demonstrated. PMID:26367600

  20. Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity

    Science.gov (United States)

    Feldman, Yuri

    2015-08-01

    The instability mechanism of fully three-dimensional, highly separated, shear-driven confined flow inside a diagonally lid-driven cavity was investigated. The analysis was conducted on 1003 and 2003 stretched grids by a series of direct numerical simulations utilizing a standard second-order accuracy finite volume code, openFoam. The observed oscillatory instability was found to set in via a subcritical symmetry breaking Hopf bifurcation. Critical values of the Reynolds number Re cr = 2320 and the non-dimensional angular oscillating frequency for the transition from steady to oscillatory flow were accurately determined. An oscillatory regime of the bifurcated flow was analyzed in depth, revealing and characterizing the spontaneous symmetry breaking mechanism. Characteristic spatial patterns of the base flow and the main flow harmonic were determined for the velocity, vorticity and helicity fields. Lagrangian particle tracers were utilized to visualize the mixing phenomenon of the flow from both sides of the diagonal symmetry plane.

  1. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    Science.gov (United States)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  2. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  3. Matrices of 960-nm vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Matrices of vertical-cavity surface-emitting lasers with individual addressing of elements and radiation output through a gallium arsenide substrate are implemented. Individual laser emitters with a current aperture diameter of 6–7 μm exhibit continuous-wave room-temperature lasing at a wavelength of 958–962 nm with threshold currents of 1.1–1.3 mA, differential efficiency of 0.5–0.8 mW/mA, and a maximum output power of 7.5–9 mW. The parameter variation of individual emitters within a matrix chip containing 5 × 7 elements does not exceed ±20%.

  4. Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition - I. Theoretical description

    Science.gov (United States)

    Ma, Weiguang; Silander, Isak; Hausmaninger, Thomas; Axner, Ove

    2016-01-01

    Doppler-broadened (Db) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is conventionally described by an expression (here referred to as the CONV expression) that is restricted to the case when the single-pass absorbance, α0L, is much smaller than the empty cavity losses, π/F [here termed the conventional cavity-limited weak absorption (CCLWA) condition]. This limits the applicability of the technique, primarily its dynamic range and calibration capability. To remedy this, this work derives extended descriptions of Db NICE-OHMS that are not restricted to the CCLWA condition. First, the general principles of Db NICE-OHMS are scrutinized in some detail. Based solely upon a set of general assumptions, predominantly that it is appropriate to linearize the Beer-Lambert law, that the light is modulated to a triplet, and that the Pound-Drever-Hall sidebands are fully reflected, a general description of Db NICE-OHMS that is not limited to any specific restriction on α0L vs. π/F, here referred to as the FULL description, is derived. However, this description constitutes a set of equations to which no closed form solution has been found. Hence, it needs to be solved numerically (by iterations), which is inconvenient. To circumvent this, for the cases when α0LOHMS, which states that the out-of-phase and the in-phase signals can be referred to as a pure absorption and dispersion signal, respectively, breaks down when the CCLWA condition does not hold. In this case, the out-of-phase signal is additionally affected by the phase shifts of the laser components (i.e. dispersion) while the in-phase signal is also influenced by their attenuation. Access to new descriptions broadens considerably the dynamic range of Db NICE-OHMS and facilitates calibration using standard references samples, and thereby its applicability.

  5. External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range

    International Nuclear Information System (INIS)

    We discuss the design and operation of widely-tunable terahertz sources based on Cherenkov intra-cavity difference-frequency generation in mid-infrared quantum cascade lasers. Laser chips are integrated into a Littrow-type external cavity system. Devices demonstrate continuous terahertz emission tuning at room temperature with a record tuning range from 1.2 THz to 5.9 THz and peak power output varying between 5 and 90 μW, depending on the operating frequency. Beam steering of terahertz Cherenkov emission with frequency is suppressed and mid-infrared-to-terahertz conversion efficiency is improved by bonding devices onto high-resistivity silicon substrates that have virtually no refractive index dispersion and vanishingly-small optical loss in 1–6 THz range. (special issue article)

  6. Laser frequency stabilization and control of optical cavities with suspended mirrors for the VIRGO interferometric detector of gravitational waves

    International Nuclear Information System (INIS)

    The VIRGO detector is an interferometer with 3 km Fabry-Perot cavities in the arms. It is aimed at the detection of gravitational radiation emitted by astrophysical sources. This thesis comprises two independent parts. The first part is devoted to the laser frequency stabilization. In the second one we present a study of a suspended cavity. We determine the impact of laser frequency fluctuations on the overall VIRGO sensitivity. We study the frequency stabilization of the interferometer considered as an ultra-stable standard and we evaluate the noise pertaining to different signals taken into consideration. A strategy of control is discussed. We then study the VIRGO mode-cleaner prototype, a 30 m suspended triangular cavity, for which we have developed a control in order to keep it locked. Finally, we characterize this cavity in terms of mode spectra, finesse and mechanical transfer functions. (author)

  7. One step towards the fabrication of a nanoscale Si-nc based laser cavity

    International Nuclear Information System (INIS)

    In this paper, we report on the design of two major components of a laser architecture using Si-nc embedded in SiO2 as the optical gain medium and sub-wavelength periodic structures to form the resonant cavity. Dimensions of the structures have been matched to near-infrared wavelengths (∼850 nm) of the maximum photoluminescent emission where optical gain has been observed from Si-nc. Both the front (FM) and rear (RM) mirrors have been fabricated by the implantation of Si ions (50 keV, 2x1017 Si+/cm2) through a mask, in order to produce a Bragg reflector by optical index contrast between the implanted and the non-implanted zones. Two closely spaced Bragg reflectors are used in the FM structure to allow a narrow bandpass (partial transmission) centered at 850 nm. The implanted structures have been annealed to produce Si-nc and passivation. Scanning electron microscopy (SEM) images show that the design dimensions of the structure have been obtained. Characterization of the structures by laser excitation reveals an optical gap in both mirrors between 825 and 870 nm, as per the design parameters. A quality factor Q∼95 and a reflectivity R∼0.2 have been measured for the FM. These results support the concept that a complete Si-nc based laser cavity can be built to emit coherent light. - Research Highlights: → Ion implantation through a mask has been used to produce sub-wavelength periodic structures. → Bragg mirror has been tested as a part of Si-nanocrystals' laser architecture. → Numerical simulations have revealed an optical band gap as per the design parameters.

  8. Theoretical Analysis About Quantum Noise Squeezing of Optical Fields From an Intracavity Frequency-Doubled Laser

    Science.gov (United States)

    Zhang, Kuanshou; Xie, Changde; Peng, Kunchi

    1996-01-01

    The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.

  9. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  10. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    Science.gov (United States)

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density. PMID:25321756

  11. Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers.

    Science.gov (United States)

    Petersen, Eliot B; Shi, Wei; Nguyen, Dan T; Yao, Zhidong; Zong, Jie; Chavez-Pirson, Arturo; Peyghambarian, N

    2010-07-01

    We demonstrate a resonant external cavity approach to enhance narrowband terahertz radiation through difference-frequency generation for the first time (to our knowledge). Two nanosecond laser pulses resonant in an optical cavity interact with a nonlinear crystal to produce a factor of 7 enhancement of terahertz power compared to a single-pass orientation. This external enhancement approach shows promise to significantly increase both terahertz power and conversion efficiency through optical pump pulse enhancement and effective recycling. PMID:20596183

  12. Terahertz quantum-cascade lasers: time domain spectroscopy and micro cavity effects

    International Nuclear Information System (INIS)

    Full text: Quantum Cascade Lasers (QCL) are based on transitions within quantized states of semiconductor nanostructures. This allows the design of the emission wavelength form the infrared to the THz spectral region. We have combined few-cycle THz spectroscopy with quantum cascade technology. This combination allows to perform unique THz time-domain measurements of THz- QCLs. By coupling the few-cycle THz pulse into the waveguide of the QCL, the processes within the active zone can be probed. This gives direct information regarding the energy, dynamics and coherence of transitions in the QCL structure. In addition, we will present micro-cavity quantum-cascade lasers emitting in the THz region. Strong mode confinement in the growth and in-plane directions are provided by a double-plasmon waveguide. We observe whispering-gallery modes and the threshold currents are smaller than from Fabry-Perot cavities; in the detailed study of the emission we were able to observe dynamical frequency pulling effects. (author)

  13. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up.

    Science.gov (United States)

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars. PMID:26038665

  14. A low-temperature external cavity diode laser for broad wavelength tuning

    CERN Document Server

    Tobias, William G; Hutzler, Nicholas R; Ni, Kang-Kuen

    2016-01-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64{\\deg}C, more than 85{\\deg}C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation was achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers ...

  15. Proton irradiation effects in oxide-confined vertical cavity surface emitting laser (VCSEL) diodes

    International Nuclear Information System (INIS)

    Vertical cavity surface emitting laser (VCSEL) diodes are employed as the emitter portion of opto-couplers that are used in space applications. Proton irradiation studies on VCSELs were performed at the Indiana University cyclotron facility. The beam energy was set at 192 MeV, the beam current was 200 nA that is equivalent to a flux of approximately 1*1011 protons/cm2.s. We conclude that the oxide confined VCSELs examined in this study show more than sufficient radiation hardness for nearly all space applications. The observed proton-induced decreases in light output and the corresponding increases in laser threshold current can be explained in terms of proton-induced displacement damage which introduces non-radiative recombination centers in the active region of the lasers and causes a decrease in laser efficiency. These radiation effects accentuate the detrimental thermal effects observed at high currents. We also note that forward bias annealing is effective in these devices in producing at least partial recovery of the light output, and that this may be a viable hardness assurance technique during a flight mission. (A.C.)

  16. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    Science.gov (United States)

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C. PMID:23037431

  17. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup, Birgitte

    2010-04-01

    High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality. By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm between the emitters. An output power of 9 W has been achieved at an operating current of 30 A. The combined beam had an M2 value (1/e2) of 5.3 along the slow axis which is comparable to that of a single tapered emitter on the laser bar. The overall beam combining efficiency was measured to be 63%. The output spectrum of the individual emitters was narrowed considerably. In the free running mode, the individual emitters displayed a broad spectrum of the order of 0.5-1.0 nm while the spectral width has been reduced to 30-100 pm in the spectral beam combining mode.

  18. Theoretical investigation of external injection schemes for laser wakefield acceleration

    NARCIS (Netherlands)

    Luttikhof, Mark Jan Hendrik

    2010-01-01

    This thesis reports on laser wakefield acceleration, a radically new approach for particle acceleration that builds on the huge electric fields that a plasma wave can provide. In this approach, an ultra-short laser pulse of high intensity is sent through a plasma. At sufficient intensity, the radiat

  19. A 1550-nm linearly tunable continuous wave single-mode external cavity diode laser based on a single-cavity all-dielectric thin-film Fabry—Pérot filter

    International Nuclear Information System (INIS)

    A 1550-nm linearly tunable continuous wave (CW) single-mode external cavity diode laser (ECDL) based on a single-cavity all-dielectric thin-film Fabry—Pérot filter (s-AFPF) is proposed and realized in this paper. Its internal optical components as well as their operation mechanisms are introduced first, and then its longitudinal mode output characteristic is theoretically analyzed. Afterwards, we set up the experimental platform for the output characteristic measurement of this tunable ECDL; under different experimental conditions, we execute accurate and real-time measurements for the output central wavelength, output optical power, output longitudinal mode distribution, and the line-width of the tunable ECDL in its tuning process. By summing up the optimal experimental condition from the measured data, we obtain the optimal tunable ECDL relevant parameters: the tunable ECDL has a linear mode-hop-free wavelength tuning region of 1547.203 nm–1552.426 nm, a stable output optical power in the range of 40 μW–50 μW, and a stable output longitudinal mode distribution of a single longitudinal mode with a line-width in the range of 100 MHz–150 MHz. This tunable ECDL can be used in environmental gas monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on

  20. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Renat R. Letfullin

    2008-01-01

    Full Text Available The interaction between nanoparticles and ultrashort laser pulses holds great interest in laser nanomedicine, introducing such possibilities as selective cell targeting to create highly localized cell damage. Two models are studied to describe the laser pulse interaction with nanoparticles in the femtosecond, picosecond, and nanosecond regimes. The first is a two-temperature model using two coupled diffusion equations: one describing the heat conduction of electrons, and the other that of the lattice. The second model is a one-temperature model utilizing a heat diffusion equation for the phonon subsystem and applying a uniform heating approximation throughout the particle volume. A comparison of the two modeling strategies shows that the two-temperature model gives a good approximation for the femtosecond mode, but fails to accurately describe the laser heating for longer pulses. On the contrary, the simpler one-temperature model provides an adequate description of the laser heating of nanoparticles in the femtosecond, picosecond, and nanosecond modes.

  1. PAIN PERCEPTION OF PEDIATRIC PATIENTS DURING CAVITY PREPARATION WITH Er:YAG LASER AND CONVENTIONAL ROTARY INSTRUMENTS.

    OpenAIRE

    Ani Belcheva; Maria Shindova

    2014-01-01

    Aim: The aim of the present study is to evaluate and compare the pain perception of pediatric patients during cavity preparation with the use of Erbium:YAG laser 2940 nm and conventional rotary instruments. Methods and materials: A group of ninety 6-12-years-old patients with matched carious lesions (D3 threshold, WHO system) was divided into two equal treatment groups and treated without anaesthesia. In the intervention group the cavities were prepared with Erbium:YAG laser 2940nm and in ...

  2. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  3. Laser Cooling and Trapping of Neutral Mercury Atoms Using an Optically-Pumped External-Cavity Semiconductor Laser

    Science.gov (United States)

    Paul, Justin; Lytle, Christian; Jones, R. Jason

    2011-05-01

    The level structure of the Hg atom is similar to other alkaline earth-like atoms, offering the possibility to realize an extremely high quality resonance factor (Q) on the ``clock'' transition (1S0- 3P0) when confined in an optical lattice at the Stark-shift free wavelength. A key feature of the Hg system is the reduced uncertainty due to black-body induced Stark shifts, making it an interesting candidate as an optical frequency standard. One challenge to laser-cooling neutral Hg atoms is finding a reliable source for cooling on the 1S0-3 P1 transition at 253.7 nm. We employ an optically pumped semiconductor laser (OPSEL) operating at 1015 nm, whose frequency is quadrupled in two external-cavity doubling stages to generate over 120 mW at 253.7 nm. With this new laser source we have trapped Hg199 from a background vapor in a standard MOT. We trap up to 2 × 106 atoms with a 1/e2 radius of our MOT of ~310 microns, corresponding to a density of 1.28 × 1010 atoms/cm3. We report on the progress of our Hg system and plans for precision lattice-based spectroscopy of the clock transition. Support for this work is supported through the U.S. Air Force Office of Scientific Research (AFOSR) through grant no. FA9550-09-1-0563.

  4. Near-infrared wafer-fused vertical-cavity surface-emitting lasers for HF detection

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Zelinger, Zdeněk; Nevrlý, V.; Dorogan, A.; Ferus, Martin; Iakovlev, V.; Sirbu, A.; Mereuta, A.; Caliman, A.; Suruceanu, G.; Kapon, E.

    2014-01-01

    Roč. 147, NOV 2014 (2014), s. 53-59. ISSN 0022-4073 R&D Projects: GA MŠk(CZ) LD14022 Grant ostatní: Ministerstvo financí, Centrum zahraniční pomoci(CZ) PF049 Institutional support: RVO:61388955 ; RVO:68081707 Keywords : High resolution absorption spectroscopy * Monitoring of hydrogen fluoride, methane, and ammonia * Tunable diode laser spectroscopy (TDLS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.645, year: 2014

  5. Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror.

    Science.gov (United States)

    Bourdet, Gilbert L

    2005-02-20

    A numerical technique with which to compute the output characteristics of a solid-state laser with an unstable cavity and a super-Gaussian coupling mirror is proposed. This technique is applied to an Yb:YAG actively Q-switched laser. With this formalism, the mode formation for the fundamental mode is analyzed and the performance achievable by such a laser for various cavity parameters is determined. Then the results obtained with such a cavity are compared with those given for a stable cavity with graded phase output mirror that is also used for obtaining super-Gaussian mode. PMID:15751693

  6. Effect of pump wave reflections on the excitation of a dual-wavelength vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    The effect of pump wave reflections on the carrier generation rate and uniformity of carrier population in quantum wells (QWs) of a dual-wavelength vertical-cavity surface-emitting laser has been numerically analyzed. The laser's active region has been described within a mathematical model allowing any number of QWs and arbitrary distribution of carrier generation rate. It is shown that the optimal arrangement of blocking layers in the active region of a dual-wavelength vertical-cavity surface-emitting laser allows one to obtain a very uniform QW population. It is established that pump wave reflections significantly affect the local carrier generation rate and, therefore, the distribution of excited carriers in the laser structure.

  7. Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal.

    Science.gov (United States)

    Thirugnanasambandam, Manasadevi P; Senatsky, Yuri; Ueda, Ken-ichi

    2011-01-31

    We demonstrated the operation of cw diode-pumped Yb:YAG laser in radial or azimuthal polarized (RP or AP) beams using a combination of birefringent uniaxial crystal (c-cut YVO4 or α-BBO) and lens as intra-cavity elements. RP and AP doughnut modes (M2 = 2-2.5, polarization extinction ratio 50-100:1) with output power up to 60 mW were generated. Apart from doughnut modes, RP or AP ring-like off-axis oscillations and multi-ring beams with mixed RP and AP were also observed at the output of this laser scheme. Using intra-cavity short focus lenses with spherical aberrations AP or RP modes of higher orders was obtained. Mechanism of mode selection in the laser is discussed. The large variety of beams with axially symmetric polarizations from the output of the proposed laser scheme may find applications in different fields. PMID:21369005

  8. Modulation performance of semiconductor laser coupled with an ultra-short external cavity

    Science.gov (United States)

    Ahmed, Moustafa; Bakry, Ahmed

    2016-02-01

    We present modeling on the evaluation of the modulation performance of semiconductor laser coupled with an ultra-short external cavity in terms of the intensity modulation (IM) response, relative intensity noise (RIN), carrier to noise ratio (CNR), and frequency chirp. The modulation is characterized along the period-doubling (PD) route to chaos induced by optical feedback (OFB). We focus on the possibility of increasing the modulation bandwidth by improving the carrier-photon resonance (CPR) frequency or inducing resonant modulation due to photon-photon resonance (PPR). We show that along the route to chaos, OFB could increase the CPR frequency and improve the 3 dB-modulation bandwidth from 19 GHz to 28 GHz. When strong OFB keeps the continuous wave (CW) operation or induces periodic oscillation (PO), PPR becomes significant and reveals resonance modulation over mm-frequency passband exceeding 50 GHz. Both CNR and frequency chirp are also enhanced around the CPR and PPR frequencies. The highest CNR peak is obtained when modulating the CW or PO laser, whereas the maximum peak of chirp corresponds to non-modulated chaotic laser.

  9. Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions

    Science.gov (United States)

    Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph

    2004-01-01

    The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.

  10. Tunable multiwavelength mode-locked fiber laser using intra-cavity polarization and wavelength dependent loss

    Science.gov (United States)

    Jain, Ankita; Chandra, Nishanth; Anchal, Abhishek; Kumar K, Pradeep

    2016-09-01

    We report a tunable multiwavelength mode-locked fiber ring laser in C-band. Multiwavelength characteristic and tuning of laser wavelengths is achieved by inducing polarization and wavelength dependent loss in the cavity by using a combination of two polarization controllers (PCs) and an intensity modulator, inserted between the two PCs. With this technique we obtained pulses of 14 ps (FWHM) at a repetition rate of 10 GHz by actively mode-locking the laser. We obtained simultaneous lasing of 5 wavelengths with 3-dB spectral width of 0.2 nm for each lasing wavelength. We measured short-term stability of the pulses and corresponding spectra by continuously collecting time and spectral domain data for 600 s, sampled at an interval of 20 s. The pulsewidth was measured to be stable to within ±732 fs and peak power fluctuations were within ±0.16 mW. For simultaneous lasing of two wavelengths, the linewidth was found to be stable within ±0.07 nm with a peak power fluctuation of ±1 dB.

  11. Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity

    Science.gov (United States)

    Yu, J.; Schell, M.; Schulze, M.; Bimberg, D.

    1995-05-01

    By passive mode-locking of a semiconductor laser (lambda = 1.3 micron) in an external cavity, 1.6 ps sech(sup 2)-shaped pulses are generated with variable repetition rates from 1 to 26 GHz, presently limited only by the geometry of the set-up. The time-bandwidth product is between 0% and 40% over the theoretical limit. Wavelength tuning up to 50 nm is possible.

  12. Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150  nm employing hybrid gain.

    Science.gov (United States)

    Chen, Yizhu; Xiao, Hu; Xu, Jiangming; Leng, Jinyong; Zhou, Pu

    2016-05-10

    We demonstrate a laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm. The laser employs Yb and Raman gains simultaneously. The fiber laser with a simple structure achieves high-efficiency operation while efficiently suppressing the amplified spontaneous emission and parasitic oscillation. The maximum output power at 1150 nm is 110.8 W, with an optical-to-optical efficiency of 57%. Further power scaling at 1150 nm is expected with the optimization of the system design. PMID:27168299

  13. Flattop mode shaping of a vertical cavity surface emitting laser using an external-cavity aspheric mirror.

    Science.gov (United States)

    Yang, Zhaohui; Leger, James

    2004-11-01

    Both square-shaped and circular-shaped flattop modes were experimentally demonstrated in extended-cavity broad-area VCSELs using aspheric feedback mirrors. These refractive aspheric mirrors were fabricated by electron-beam lithography on curved substrates. Excellent single-mode operation and improved power extraction efficiency were observed. The three-mirror structure of the VCSEL and the state-of-the-art fabrication of the aspheric mirror contribute to the superior VCSEL performance. The modal loss analysis using a rigid three-mirror-cavity simulation method is discussed. PMID:19484117

  14. Marginal microleakage in vitro study on class V cavities prepared with Er:YAG laser and etched with acid or etched with Er:YAG laser and acid

    International Nuclear Information System (INIS)

    Microleakage at the interface between the teeth and the restorative materials remains a problem with composite resin restorations. Microleakage at the gingival margins of class V cavities restorations still challenge as they are usually placed in dentin and/or cementum. Previous studies have shown that the cavity preparation with Er:YAG laser is possible. It has been reported that Er:YAG laser has ability to create irregular surface providing micromechanical retention for adhesive dental restorative materials and to improve marginal sealing. The purpose of this in vitro study was to evaluate the marginal microleakage on class V cavities prepared with Er:YAG laser and etched with acid or with Er:YAG laser and acid, in compared to those prepared and etched conventionally. Thirty human molars were divided into three groups, namely: group I - prepared with Er:YAG laser (KaVo KEY Laser II - Germany) and etched with 37% phosphoric acid; group II - prepared with Er:YAG laser and etched with Er:YAG laser and 37% phosphoric acid; group III (control group) - prepared with high speed drill and etched with 37% phosphoric acid. All cavities were treated with same adhesive system (Single Bond - 3M) and restored with the composite resin (Z100 - 3M), according to the manufacturer's instructions. The specimens were stored at 37 deg C in water for 24 hours, polished with Sof-Lex discs (3M), thermally stressed, sealed with a nail polish coating except for the area of the restoration and 1 mm around it, and immersed in a 50% aqueous solution of silver nitrate for 24 hours. After that, the specimens were rinsed in water, soaked in a photodeveloping solution and exposed to a fluorescent light for 8 hours. The teeth were embedded in an autopolymerizing resin and sectioned longitudinally using a diamond saw microtome under running water. The sections were photographed. The microleakage at the occlusal cavity and at the gingival margins of each specimen was evaluated with scores (0-3) by

  15. Ionization of helium in strong XUV laser pulses - a theoretical simulation

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Šmydke, Jan

    Tokyo : Waseda University Tokyo, 2011. 7B2-3C. [Congress of the International Society for Theoretical Chemical Physics /7./. 02.09.2011-08.09.2011, Tokyo] Institutional research plan: CEZ:AV0Z40400503 Keywords : gas ionization * XUV laser pulses Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter;

    2010-01-01

    Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope...... efficiency is obtained, the highest reported TEM00 power from any 946 nm Nd:YAG laser pumped by a single emitter diode laser pump source. A quantum efficiency of 0.85 has been estimated from experimental data using a simple quasi-three-level model. The reported value is in good agreement with published...... values, suggesting that the model is adequate. Improvement of the 946 nm laser due to the ECDL's narrow spectrum proves to be less significant when compared to its spatial quality, inferring a broad spectrum tapered diode laser pump source may be most practical. Experimental confirmation of such setup is...

  17. Theoretical study of laser-ultrasonic wave generation

    International Nuclear Information System (INIS)

    We discuss the theories in the generation and detection of laser-ultrasonics and present the results obtained from the numerical calculations based on the theories. We carry out the computation of the spatial and temporal distributions of the temperature inside the material. Calculating the displacement of the surface at the epicenter, we make discussions on the characteristics of the ultrasonic wave propagation in the thermoelastic and ablation regions. The speed and the surface motion of the material element are investigated from the solution of the Rayleigh equation. We present the results obtained from the numerical computations based on the theories. The Rayleigh waves generated by the irradiation of the pulsed laser beam in the thermoelastic region and the ablation region are discussed. Also the discussions on the heat wave propagation caused by irradiations of the ultra-short laser pulses are included in the appendix

  18. Spatial profile of laser beam in antiresonant ring cavity: experimental study

    Science.gov (United States)

    Grabovski, Vitaly V.; Prokhorenko, Valentin I.; Yatskiv, Dmytro Y.

    1996-03-01

    This paper presents results of experimental studies of the spatial profile of the beam in lasers with an antiresonant ring. The near-field profile of the beam was measured by the pin-hole technique. In case of the active crystal placed into the ring, the beam profile was found to be Gaussian within a wide range of the pumping power. Variation of the width of the Gaussian profile is caused by the thermal lens in the active crystal. Measurements of the FWHM of the Gaussian profile demonstrated that it is proportional to the one-fourth power of the focal length of the thermal lens, as in the case of a stable cavity.

  19. Two-element phased array of antiguided vertical-cavity lasers

    International Nuclear Information System (INIS)

    We demonstrate antiguided coupling of two adjacent vertical-cavity surface-emitting lasers (VCSELs), obtaining a 1x2 phase-locked array at 869 nm. The lateral index modification required for antiguiding is achieved by a patterned 3 nm etch performed between two epitaxial growths. In contrast with prior coupled VCSELs, adjacent antiguided VCSELs can emit in phase and produce a single on-axis lobe in the far field. Greater than 2 mW of in-phase output power is demonstrated with two VCSELs separated by 8 μm. Moreover, phase locking of two VCSELs separated by 20 μm is observed, indicating the possibility of a promising class of optical circuits based upon VCSELs that interact horizontally and emit vertically. (c) 1999 American Institute of Physics

  20. Broadband-tunable external-cavity quantum cascade lasers for the spectroscopic detection of hazardous substances

    Science.gov (United States)

    Hugger, S.; Fuchs, F.; Jarvis, J.; Kinzer, M.; Yang, Q. K.; Driad, R.; Aidam, R.; Wagner, J.

    2013-01-01

    Broadband tunable external cavity quantum cascade lasers (EC-QCL) have emerged as attractive light sources for midinfrared (MIR) "finger print" molecular spectroscopy for detection and identification of chemical compounds. Here we report on the use of EC-QCL for the spectroscopic detection of hazardous substances, using stand-off detection of explosives and sensing of hazardous substances in water as two prototypical examples. Our standoff-system allows the contactless identification of solid residues of various common explosives over distances of several meters. Furthermore, results on an EC-QCL-based setup for MIR absorption spectroscopy on liquids are presented, featuring a by a factor of ten larger single-pass optical path length of 100 μm as compared to conventional Fourier transform infrared spectroscopy instrumentations.

  1. Dynamics of a low-threshold optically pumped organic vertical-cavity surface-emitting laser

    Science.gov (United States)

    Shayesteh, Mohammad Reza; Darvish, Ghafar

    2016-06-01

    We propose a low-threshold optically pumped organic vertical-cavity surface-emitting laser (OVCSEL). This device has the capability to apply both electrical and optical excitation. The microcavity structure consists of an organic light emitting diode with field-effect electron transport inserted in a high-quality factor double distributed Bragg reflector. The simulated quality factor of the microcavity is shown to be as high as 16,000. Also, we investigate threshold behaviour and the dynamics of the optically pumped OVCSEL with sub-picosecond pulses. Results from numerical simulation show that lasing threshold is 12.8 pJ/0.64 µJ cm-2 when pumped by sub-picosecond pulses of λ = 400 nm wavelength light.

  2. Orbital Angular Momentum (OAM) Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    Li, Huanlu; Wang, Xuyang; Ho, Daniel; Chen, Lifeng; Zhou, Xiaoqi; Zhu, Jiangbo; Yu, Siyuan; Cai, Xinlun

    2015-01-01

    Harnessing the Orbital Angular Momentum (OAM) of light is an appealing approach to developing photonic technologies for future applications in optical communications and high- dimensional Quantum Key Distributions (QKD). An outstanding challenge to the widespread uptake of the OAM resource is its efficient generation. We design a new device which can directly emit an OAM-carrying light beam. By fabricating micro-scale Spiral Phase Plates (SPPs) within the aperture of a Vertical-Cavity Surface-Emitting Laser (VCSELs), the linearly polarized Gaussian beam emitted by the VCSEL is converted into a beam carrying specific OAM modes and their superposition states with high efficiency and high beam quality. The innovative OAM emitter opens a new horizon in the field of OAM-based optical and quantum communications, especially for short reach data interconnects and Quantum Key Distribution (QKD).

  3. Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser.

    Science.gov (United States)

    Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted

    2014-12-01

    A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications. PMID:25490621

  4. Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap

    CERN Document Server

    Bahriz, Michael; Moreau, Virginie; Colombelli, Raffaele; Painter, Oskar; 10.1364/OE.15.005948

    2009-01-01

    We present the design of mid-infrared and THz quantum cascade laser cavities formed from planar photonic crystals with a complete in-plane photonic bandgap. The design is based on a honeycomb lattice, and achieves a full in-plane photonic gap for transverse-magnetic polarized light while preserving a connected pattern for efficient electrical injection. Candidate defects modes for lasing are identified. This lattice is then used as a model system to demonstrate a novel effect: under certain conditions - that are typically satisfied in the THz range - a complete photonic gap can be obtained by the sole patterning of the top metal contact. This possibility greatly reduces the required fabrication complexity and avoids potential damage of the semiconductor active region.

  5. Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser

    International Nuclear Information System (INIS)

    A room-temperature cw operation of a tunable external cavity (EC) quantum cascade laser (QCL) at an emitting wavelength of 4.6 μm is presented. Strain-compensation combined with two-phonon resonance in an active region design promises low threshold current density. A very low threshold current density of 1.47kA/cm2 for an EC-QCL operated in cw mode is realized. Single-mode cw operation with a side-mode suppression ratio of 20 dB and a wide tuning range of over 110cm−1 are achieved. Moreover, an even wider tuning range of over 135cm−1 is obtained in pulsed mode at room temperature. (fundamental areas of phenomenology(including applications))

  6. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  7. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser.

    Science.gov (United States)

    Craig, Ian M; Taubman, Matthew S; Lea, A Scott; Phillips, Mark C; Josberger, Erik E; Raschke, Markus B

    2013-12-16

    Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of particles of explosives by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm(-1), spatial resolution of 25 nm, sensitivity better than 100 attomoles, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection. PMID:24514618

  8. Comprehensive numerical model for cw vertical-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, G.R.; Lear, K.L.; Warren, M.E.; Choquette, K.D. [Sandia National Labs., Albuquerque, NM (United States); Scott, J.W. [Optical Concepts, Inc., Lompoc, CA (United States); Corzine, S.W. [Univ. of California, Santa Barbara, CA (United States)

    1995-03-01

    The authors present a comprehensive numerical model for vertical-cavity surface-emitting lasers that includes all major processes effecting cw operation of axisymmetric devices. In particular, the model includes a description of the 2D transport of electrons and holes through the cladding layers to the quantum well(s), diffusion and recombination processes of these carriers within the wells, the 2D transport of heat throughout the device, and a multi-lateral-mode effective index optical model. The optical gain acquired by photons traversing the quantum wells is computed including the effects of strained band structure and quantum confinement. They employ the model to predict the behavior of higher-order lateral modes in proton-implanted devices, and to provide an understanding of index-guiding in devices fabricated using selective oxidation.

  9. Progress and issues for high-speed vertical cavity surface emitting lasers

    Science.gov (United States)

    Lear, Kevin L.; Al-Omari, Ahmad N.

    2007-02-01

    Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.

  10. Quantum motion of laser-driven atoms in a cavity field

    International Nuclear Information System (INIS)

    We investigate the quantum motion of coherently driven ultracold atoms in the field of a damped high-Q optical cavity mode. The laser field is chosen far detuned from the atomic transition but close to a cavity resonance, so that spontaneous emission is strongly suppressed but a coherent field builds up in the resonator by stimulated scattering. On one hand the shape of the atomic wave function determines the field dynamics via the magnitude of the scattering and the effective refractive index the atoms create for the mode. The mode intensity on the other hand determines the optical dipole force on the atoms. The system shows rich coupled atom-field dynamics including self-organization, self-trapping, cooling or heating. In the limit of deep trapping we are able to derive a system of closed, coupled equations for a finite set of atomic expectations values and the field. This allows to determine the self consistent ground state of the system as well as the eigenfrequencies and damping rates for excitations. (author)

  11. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  12. Dynamic analysis of V-folded cavity for TEM00 operation of end-pumped solid-state laser

    Institute of Scientific and Technical Information of China (English)

    Cunfa Li; Xiangchun Shi

    2005-01-01

    Based on graphic analysis design method of optical resonator, a simple design expression of V-folded cavity of end-pumped solid-state lasers with TEMoo operation is described, which satisfies two criterias of the resonator design. We give numerical simulation of spot size as a function of thermal focal length using this design approach whose advantages axe validated experimentally.

  13. Scanning electron microscopy evaluation of the interaction pattern between dentin and resin after cavity preparation using Er:YAG laser

    International Nuclear Information System (INIS)

    The aim of this study was to describe the interaction pattern formed between dentin and resin on cavities prepared with an erbium laser (Er:YAG). The morphological aspect of the irradiated dentin after acid etching was also observed. Ten dentin disks were obtained from fresh extracted third molars. Each disk received two cavities, one prepared with a conventional high-speed drill, while the other cavity was obtained by the use of an Er:YAG laser (KaVo KEY Laser, KaVo Co.). The laser treatment was performed with 250 mJ/pulse, 4 Hz, non contact mode, focused beam, and a fine water mist was used. Five disks were prepared for morphological analysis of the acid etched dentin. The other five disks had their cavities restored with Single Bond (3M) followed by Z100 resin (3M). The specimens were observed under scanning electron microscopy after dentin-resin interface demineralization and deproteinization. It was observed that the morphological characteristics of the acid-etched irradiated dentin were not favorable to the diffusion of monomers through the collagen network. The dentin resin interfacial aspect of irradiated dentin, after acid etching, showed thin tags and scarce hybridization zones, which agreed with the morphology of the irradiated and acid-etched dentin substrate observed. (author)

  14. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode

    Science.gov (United States)

    Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro

    2016-01-01

    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 104 at 8.3 · 10−3 mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale. PMID:27538586

  15. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  16. Absolute measurements of total peroxy nitrate mixing ratios by thermal dissociation blue diode laser cavity ring-down spectroscopy.

    Science.gov (United States)

    Paul, Dipayan; Osthoff, Hans D

    2010-08-01

    Peroxycarboxylic nitric anhydrides (PANs) have long been recognized as important trace gas constituents of the troposphere. Here, we describe a blue diode laser thermal dissociation cavity ring-down spectrometer for rapid and absolute measurements of total peroxyacyl nitrate (SigmaPAN) abundances at ambient concentration levels. The PANs are thermally dissociated and detected as NO2, whose mixing ratios are quantified by optical absorption at 405 nm relative to a reference channel kept at ambient temperature. The effective NO2 absorption cross-section at the diode laser emission wavelength was measured to be 6.1 x 10(-19) cm2 molecule(-1), in excellent agreement with a prediction based on a projection of a high-resolution literature absorption spectrum onto the laser line width. The performance, i.e., accuracy and precision of measurement and matrix effects, of the new 405 nm thermal dissociation cavity ring-down spectrometer was evaluated and compared to that of a 532 nm thermal dissociation cavity ring-down spectrometer using laboratory-generated air samples. The new 405 nm spectrometer was considerably more sensitive and compact than the previously constructed version. The key advantage of laser thermal dissociation cavity ring-down spectroscopy is that the measurement can be considered absolute and does not need to rely on external calibration. PMID:20698583

  17. Development of a compact X-ray source via laser-Compton scattering using an optical super-cavity

    International Nuclear Information System (INIS)

    We have been developing a laser-Compton scattering (LCS) X-ray source using a normal conducting rf linac and pulsed-laser storage cavity at KEK-LUCX. The electron beam is produced by 3.6 cell rf photocathode gun and accelerated up to 23 MeV by the standing wave booster linac. The optical storage cavity, which has 4-mirrors bow-tie type cavity system with about 8 m round trip, is located after the booster and electron beam scatters the 1 μm laser photon in the optical cavity. The expected LCS X-ray energy is 9 keV in this setup. The round trip time is synchronized with electron bunch repetition of 2.8 nsec, thus the all multi-bunch electron beam can be interact with laser pulses. We have already succeeded in generating LCS X-ray with 1.8x107 photon flux, which is more than 100 times larger than before, in this setup. Moreover, we firstly tested SOI (Silicon-on-Insulator) pixel sensor for LCS experiment. SOI sensor was expected to have higher S/N, higher spatial resolution and availability of X-ray spectrum measurement. Using SOI sensor, we confirmed good S/N detection of LCS X-ray and demonstrated spectrum measurement and high resolution images. We will report our LUCX system, results of LCS X-ray generation experiment and future prospective in this conference. (author)

  18. Studies on 405nm blue-violet diode laser with external grating cavity

    Science.gov (United States)

    Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.

  19. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cendejas, Richard A.; Phillips, Mark C.; Myers, Tanya L.; Taubman, Matthew S.

    2010-11-30

    An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm-1 was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 s, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser

  20. On some theoretical problems of laser wake-field accelerators

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kiriyama, H.; Koga, J. K.; Kotaki, H.; Mori, M.; Kando, M.

    2016-06-01

    Enhancement of the quality of laser wake-field accelerated (LWFA) electron beams implies the improvement and controllability of the properties of the wake waves generated by ultra-short pulse lasers in underdense plasmas. In this work we present a compendium of useful formulas giving relations between the laser and plasma target parameters allowing one to obtain basic dependences, e.g. the energy scaling of the electrons accelerated by the wake field excited in inhomogeneous media including multi-stage LWFA accelerators. Consideration of the effects of using the chirped laser pulse driver allows us to find the regimes where the chirp enhances the wake field amplitude. We present an analysis of the three-dimensional effects on the electron beam loading and on the unlimited LWFA acceleration in inhomogeneous plasmas. Using the conditions of electron trapping to the wake-field acceleration phase we analyse the multi-equal stage and multiuneven stage LWFA configurations. In the first configuration the energy of fast electrons is a linear function of the number of stages, and in the second case, the accelerated electron energy grows exponentially with the number of stages. The results of the two-dimensional particle-in-cell simulations presented here show the high quality electron acceleration in the triple stage injection-acceleration configuration.

  1. Theoretical and Experimental Investigations of a Passively Mode-Locked Nd" Glass Laser

    OpenAIRE

    Kolmeder, Christian; Zinth, Wolfgang

    1981-01-01

    The presented theoretical model for a mode-locked Nd-glass laser simultaneously takes into account dynamics of the mode-locking dye, amplification saturation and radiation background. A systematic variation of laser parameters gives insight into the pulse formation process and allows to improve the laser design. The calculations show that it should be possible to decrease considerably the duration of light pulses of a mode-locked Nd-glass laser. Using a new mode-locking dye with a switching t...

  2. Stabilization and Shift of Frequency in an External Cavity Diode Laser with Solenoid-Assisted Saturated Absorption

    International Nuclear Information System (INIS)

    A simple method to realize both stabilization and shift of the frequency in an external cavity diode laser (ECDL) is reported. Due to the Zeeman effect, the saturated absorption spectrum of Rb atoms in a magnetic field is shifted. This shift can be used to detune the frequency of the ECDL, which is locked to the saturated absorption spectrum. The frequency shift amount can be controlled by changing the magnetic field for a specific polarization state of the laser beam. The advantages of this tunable frequency lock include low laser power requirement, without additional power loss, cheapness, and so on. (atomic and molecular physics)

  3. Laser-frequency locking to a whispering-gallery-mode cavity by spatial interference of scattered light.

    Science.gov (United States)

    Zullo, R; Giorgini, A; Avino, S; Malara, P; De Natale, P; Gagliardi, G

    2016-02-01

    We present a simple and effective method for frequency locking a laser source to a free-space-coupled whispering-gallery-mode cavity. The scheme relies on the interference of spatial modes contained in the light scattered by the cavity, where low- and high-order modes are simultaneously excited. A dispersion-shaped signal proportional to the imaginary component of the resonant optical field is simply generated by spatial filtering of the scattered light. Locking of a diode laser to the equatorial modes of a liquid droplet resonator is demonstrated using this scheme, and its performance is compared to the Pound-Drever-Hall technique. This new approach makes laser-frequency locking straightforward and shows a number of advantages, including robustness, low cost, and no need for sophisticated optical and electronic components. PMID:26907446

  4. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  5. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  6. Theoretical considerations of laser induced liquid-liquid interface deformation

    CERN Document Server

    Aanensen, Nina Sasaki; Brevik, Iver

    2013-01-01

    In the increasingly active field of optofluidics, a series of experiments involving near-critical two-fluid interfaces have shown a number of interesting non-linear effects. We here offer, for the first time to our knowledge, an explanation for one such feature, observed in experiments by Casner and Delville [Phys. Rev. Lett. {\\bf 90}, 144503 (2003)], namely the sudden formation of "shoulder"-like shapes in a laser-induced deformation of the liquid-liquid interface at high laser power. Two candidate explanations are the following: firstly, that the shape can be explained by balancing forces of buoyancy, laser pull and surface tension only, and that the observed change of deformation shape is the sudden jump from one solution of the strongly nonlinear governing differential equation to another. Secondly, it might be that the nontrivial shape observed could be the result of temperature gradients due to local absorptive heating of the liquid. We report that a systematic search for solutions of the governing equa...

  7. Theoretical modelling of the effect of photon lifetime on the output dynamics of Er-doped distributed feedback fibre lasers

    Institute of Scientific and Technical Information of China (English)

    Wang Li; Chen Bai; Chen Jia-Lin; Chang Li-Ping; Li Guo-Yang; Sun An; Lin Zun-Qi

    2008-01-01

    By employing a simple model of describing three-level lasers,we have theoretically investigated the effect of photon lifetime on the output dynamics of Er-doped distributed feedback fibre lasers.And based on the theoretical analysis we have proposed a promising method to suppress self-pulsing behaviour in the fibre lasers.

  8. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    Science.gov (United States)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity

  9. Spacer and well pumping of InGaN vertical cavity semiconductor lasers with varying number of quantum wells

    Science.gov (United States)

    Debusmann, R.; Brauch, U.; Hoffmann, V.; Weyers, M.; Kneissl, M.

    2012-08-01

    We have investigated the dependence of the threshold pump power and slope efficiency of 415 nm (In)GaN vertical cavity surface emitting lasers on the wavelength of the pump source and the number of quantum wells. InGaN double quantum well resonant-periodic-gain structures with 6, 8, and 10 periods have been compared. By barrier and well pumping of the samples with a 375 nm dye laser, a nearly 10 times reduction of the laser threshold was observed compared to pumping with a 337 nm nitrogen laser source. The laser threshold was found to be independent of the number of quantum wells. The slope efficiency seems to be not affected by the pump wavelength and resonant-periodic-gain periods. The results are discussed with a rate equation model that takes into account the inhomogeneous pumping of the quantum wells and optical thickness variations in the resonant-periodic-gain structure.

  10. Investigation on characteristics of self-organization in Mach-Zehnder erbium-doped fiber laser cavity

    Institute of Scientific and Technical Information of China (English)

    Fengnian Liu; Bo Liu; Bangcai Huang; Guiyun Kai; Shuzhong Yuan; Xiaoyi Dong

    2008-01-01

    The characteristics of coherent coupling in Mach-Zehnder erbium-doped fiber laser cavity are experimentally studied.By virtue of a seemly controlling of length difference between two interferometric arms,the obtained comb-like spectrum of interferometer resonator with a period of 0.06 nm commendably agrees with the theory of self-organization coherence The coherent output exits from the output mirror of a fiber Bragg grating with 4.5% reflectivity.A high coherent combining efficiency of 94% is obtained.Investigation on characteristics of the leak power opens out self-organization mechanism in Mach-Zehnder composite cavity.

  11. Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

    International Nuclear Information System (INIS)

    We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position

  12. Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sidler, Meinrad [School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, Massachusetts 02138 (United States); Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Rauter, Patrick; Blanchard, Romain; Métivier, Pauline; Capasso, Federico, E-mail: capasso@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, Massachusetts 02138 (United States); Mansuripur, Tobias S. [Department of Physics, Harvard University, 17 Oxford St., Cambridge, Massachusetts 02138 (United States); Wang, Christine [MIT Lincoln Laboratory, 244 Wood St., Lexington, Massachusetts 02420 (United States); Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D. [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0250 (United States); Faist, Jérôme [Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland)

    2014-02-03

    We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.

  13. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb3+:Er3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  14. Experimental and theoretical studies on keyhole dynamics in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Matsunawa, Akira; Katayama, Seiji; Kim, Jong-Do [Osaka Univ. (Japan); Semak, V.V. [Univ. of Tennessee Space Institute, Tullahoma, TN (United States)

    1996-12-31

    The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during CO{sub 2} laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed observation of the melt dynamics and keyhole evolution. The existence of a high speed melt flow which originated from the front part of weld pool and flowed along the sides wall of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

  15. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    International Nuclear Information System (INIS)

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained

  16. Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition - I. Theoretical description

    Science.gov (United States)

    Ma, Weiguang; Silander, Isak; Hausmaninger, Thomas; Axner, Ove

    2016-01-01

    Doppler-broadened (Db) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is conventionally described by an expression (here referred to as the CONV expression) that is restricted to the case when the single-pass absorbance, α0L, is much smaller than the empty cavity losses, π/F [here termed the conventional cavity-limited weak absorption (CCLWA) condition]. This limits the applicability of the technique, primarily its dynamic range and calibration capability. To remedy this, this work derives extended descriptions of Db NICE-OHMS that are not restricted to the CCLWA condition. First, the general principles of Db NICE-OHMS are scrutinized in some detail. Based solely upon a set of general assumptions, predominantly that it is appropriate to linearize the Beer-Lambert law, that the light is modulated to a triplet, and that the Pound-Drever-Hall sidebands are fully reflected, a general description of Db NICE-OHMS that is not limited to any specific restriction on α0L vs. π/F, here referred to as the FULL description, is derived. However, this description constitutes a set of equations to which no closed form solution has been found. Hence, it needs to be solved numerically (by iterations), which is inconvenient. To circumvent this, for the cases when α0L<π/F but without the requirement that the stronger CCLWA condition needs to be fulfilled, a couple of simplified extended expressions that are expressible in closed analytical form, referred to as the extended locking and extended transmission description, ELET, and the extended locking and full transmission description, ELFT, have been derived. An analysis based on simulations validates the various descriptions and assesses to which extent they agree. It is shown that in the CCLWA limit, all extended descriptions revert to the CONV expression. The latter one deviates though from the extended ones for α0L around and above 0.1π/F. The two simplified extended descriptions agree

  17. Characterization of the LIGO 4 km Fabry-Perot cavities via their high-frequency dynamic responses to length and laser frequency variations

    International Nuclear Information System (INIS)

    Recent measurements at the LIGO Hanford Observatory have confirmed the predicted high-frequency dynamic response of km scale Fabry-Perot cavities to length and laser frequency variations. The dynamic response functions have been exploited to determine a number of cavity parameters including the cavity length and the resonance width. A new technique based on a variation of these measurements has been utilized to measure the interferometer arm cavity lengths with a precision of 80 μm. We present an overview of these measurements and discuss how the dynamic field responses could be used to measure the cavity g factors which are related to the mirror radii of curvature

  18. Effect of External Optical Feedback for Nano-laser Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2013-01-01

    We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers.......We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers....

  19. Narrow Q-switching pulse width and low mode-locking repetition rate Q-switched mode locking with a new coupled laser cavity

    International Nuclear Information System (INIS)

    An original diode-pumped Q-switched and mode-locked solid state Nd:GdVO4 laser is demonstrated. The laser operates with double saturable absorbers and a new coupled laser cavity. The Q-switching envelope width is compressed to be about 15 ns and the mode-locking repetition rate is as low as 90 MHz. (paper)

  20. An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser

    Science.gov (United States)

    Hadmack, Michael R.

    A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point

  1. Generation of phase difference between self-mixing signals in a-cut Nd:YVO₄ laser with a waveplate in the external cavity.

    Science.gov (United States)

    Li, Jiang; Tan, Yidong; Zhang, Shulian

    2015-08-01

    We present a novel method using Nd:YVO4 laser with a waveplate in the external cavity to generate two orthogonally polarized signals with stable and adjustable phase difference. The phase difference is observed in the presence of external interference, and it is determined by the phase retardation of the waveplate. A model based on birefringent external-interference effect is proposed to theoretically explain the phase difference phenomenon, and the arithmetic solution of the relation between the phase difference and the phase retardation of waveplate is given. The simulated results accord with the experimental phenomena. This Letter provides the possibility for the measurement of phase retardation and also offers guidance to the design of interferometers based on fringe counting technique. PMID:26258371

  2. The spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: asymptotic analysis, numerics, and experiments

    CERN Document Server

    Susanto, H; Adams, M J; Henning, I D

    2016-01-01

    The spin-flip model describing optically pumped spin-polarized vertical-cavity surface-emitting lasers is considered. The steady-state solutions of the model for elliptically-polarised fields are studied. Asymptotic analysis for the existence and stability of the steady-state solutions is developed, particularly in the presence of pump polarisation ellipticity. The expansion is with respect to small parameters representing the ellipticity and the difference between the total pump power and the lasing threshold. The analytical results are then confirmed numerically, where it is obtained that generally one of the steady-state solutions is stable while the other is not. The theoretical results are shown to be in qualitative agreement with the experiments.

  3. Experimental and theoretical analysis of bias ionization by α-particles in a nitrogen laser

    Science.gov (United States)

    Silva, R. R.; Vieira Mendes, L. A.; Tsui, K. H.; De Simone Zanon, R. A.; de Oliveira, A. L.; Fellows, C. E.

    2011-09-01

    Nitrogen laser performance with TE configuration and wedge electrodes is analyzed with background ionization in the laser discharge channel by α particles at a low exposition rate. With the bias ionization, the laser power presents two peaks as a function of gas pressure, with one at the normal low pressure, without bias ionization, and the other at high pressure generated by bias ionization. A simple theoretical model has been developed in a trial to understand this behavior. This model was first tested in later results for a TE configuration nitrogen laser, with flat electrodes, without and with bias ionization. It has been observed that due to the competition between electrode shielding by positively charged α particles and bulk ionization by impact, the laser energy is suppressed with pressure below 50 Torr and enhanced above it.

  4. Laser cooling of atoms and impact in theoretical physics

    International Nuclear Information System (INIS)

    Exchange of momentum during resonant interaction of laser radiation with atomic systems can decelerate the atoms and reduce their kinetic temperature. Charged particles can be trapped by using a combination of electric and magnetic fields. The cold ions have no first order Doppler effect. This increases the precision of measurement in high resolution spectroscopy. Collisions with buffer gas atoms in a penning trap cool the cyclotron motion of ions but increase the magnetron radius leading to significant loss of ions in the trap. It has been shown that application of an RF field with frequency equal to the sum of the magnetron and cyclotron frequencies can lead to axialisation of ions thereby increasing the spatial overlap of the ions with the radiation and enhancing the sensitivity. The method has been used for measurement of electronic and nuclear g-factors. The high precision with which g-factors of fundamental particles is measured can be used as a test for results of QED calculations. The new mechanism used for trapping of neutral atoms will be discussed. This method has led to interesting new observations such as quantum jump, atomic fountains and Bose-Einstein condensation. Observation of atomic parity violation experiments have led to the discovery of nuclear anapole moment. (author)

  5. Theoretical studies of some nonlinear laser-plasma interactions

    International Nuclear Information System (INIS)

    The nonlinear coupling of intense, monochromatic, electromagnetic radiation with plasma is considered in a number of special cases. The first part of the thesis serves as an introduction to three-wave interactions. A general formulation of the stimulated scattering of transverse waves by longitudinal modes in a warm, unmagnetized, uniform plasma is constructed. A general dispersion relation is derived that describes Raman and Brillouin scattering, modulational instability, and induced Thomson scattering. Raman scattering (the scattering of a photon into another photon and an electron plasma wave) is investigated as a possible plasma heating scheme. Analytic theory complemented by computer simulation is presented describing the nonlinear mode coupling of laser light with small and large amplitude, resonantly excited electron plasma waves. The simulated scattering of a coherent electromagnetic wave by low frequency density perturbations in homogeneous plasma is discussed. A composite picture of the linear dispersion relations for filamentation and Brillouin scattering is constructed. The absolute instability of Brillouin weak and strong coupling by analytic and numerical means is described

  6. Improved beam profile of a 266 nm deep ultraviolet laser employing a multi-mirror-reflected cavity

    Science.gov (United States)

    Yang, Houwen; Cheng, Wenyong; Wang, Junhua; Zhang, Yaguang; Wang, Xiaoqian; Zhang, Lijie

    2016-04-01

    A 266 nm deep ultraviolet (DUV) laser with a good Gaussian profile is reported employing a multi-mirror-reflected cavity. A type-I LiB3O5 (LBO) crystal is used to double the fundamental-light (1064 nm) wavelength generated by an actively Q-switched Nd:YVO4 laser with an intra-cavity configuration. A fourth harmonic generation (FHG) wavelength is obtained by a type-I β-BaB2O4 (BBO) crystal. The output power as high as 440 mW at 266 nm is generated under an incident power of 2.26 W at 532 nm, corresponding to the conversion efficiency of 532 nm-266 nm up to 19.5% with a repetition rate of 15 kHz and the pulse duration of 266 nm is 10.7 ns.

  7. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-08-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  8. Polarized optical injection in long-wavelength vertical-cavity surface emitting lasers

    Science.gov (United States)

    Hurtado, A.; Schires, K.; Khan, N.; Al-Seyab, R.; Henning, I. D.; Adams, M. J.

    2011-05-01

    We report a comprehensive study of the effects of polarized optical injection in long-wavelength Vertical-Cavity Surface Emitting Lasers (LW-VCSELs) emitting at the telecom wavelength of 1550nm. We analyze the properties of the polarization switching and bistability that can be induced in a 1550nm-VCSEL under orthogonal and arbitrary polarized optical injection. Additionally, we study the injection locking bandwidth of these devices when subject to different polarized optical injection. Furthermore, we also analyze the relationship existing between the injection locking bandwidth and the polarization switching range when the device is subject to orthogonally-polarized optical injection. Finally, we have identified regions of different nonlinear dynamics outside the injection locking bandwidth, including regions of periodic dynamics (such as limit cycle and period doubling) and chaos when these devices are subject to parallel and to orthogonal optical injection. This rich variety of nonlinear effects observed at 1550nm offers exciting prospects for novel practical uses of VCSELs in optical switching/routing applications in optical networks.

  9. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers

    Institute of Scientific and Technical Information of China (English)

    Shi Guo-Zhu; Guan Bao-Lu; Li Shuo; Wang Qiang; Shen Guang-Di

    2013-01-01

    We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16-μm oxide aperture.Optical power,voltage,and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃.Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL.It is found that the carrier leakage induced self-heating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation.In addition,carrier leakage induced self-heating increases as the injection current increases,resulting in a rapid decrease of the internal quantum efficiency,which is a dominant contribution to the thermal rollover of the VCSEL at a larger current.Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.

  10. Radiocarbon dioxide detection based on cavity ring-down spectroscopy and a quantum cascade laser.

    Science.gov (United States)

    Genoud, G; Vainio, M; Phillips, H; Dean, J; Merimaa, M

    2015-04-01

    Monitoring of radiocarbon (C14) in carbon dioxide is demonstrated using mid-infrared spectroscopy and a quantum cascade laser. The measurement is based on cavity ring-down spectroscopy, and a high sensitivity is achieved with a simple setup. The instrument was tested using a standardized sample containing elevated levels of radiocarbon. Radiocarbon dioxide could be detected from samples with an isotopic ratio C14/C as low as 50 parts-per-trillion, corresponding to an activity of 5  kBq/m(3) in pure CO(2), or 2  Bq/m(3) in air after extraction of the CO(2) from an air sample. The instrument is simple, compact, and robust, making it the ideal tool for on-site measurements. It is aimed for monitoring radioactive gaseous emissions in a nuclear power environment, during the operation and decommissioning of nuclear power plants. Its high sensitivity also makes it the ideal tool for the detection of leaks in radioactive waste repositories. PMID:25831328

  11. Characterization of a swept external cavity quantum cascade laser for rapid broadband spectroscopy and sensing.

    Science.gov (United States)

    Brumfield, Brian E; Taubman, Matthew S; Suter, Jonathan D; Phillips, Mark C

    2015-10-01

    The performance of a rapidly swept external cavity quantum cascade laser (ECQCL) system combined with an open-path Herriott cell was evaluated for time-resolved measurements of chemical species with broad and narrow absorption spectra. A spectral window spanning 1278 - 1390 cm(-1) was acquired at a 200 Hz acquisition rate, corresponding to a tuning rate of 2x10(4) cm(-1)/s, with a spectral resolution of 0.2 cm(-1). The capability of the ECQCL to measure < 100 ppbv changes in nitrous oxide (N(2)O) and 1,1,1,2-tetrafluoroethane (F134A) concentrations on millisecond timescales was demonstrated in simulated plume studies with releases near the open-path Herriott cell. Absorbance spectra measured using the ECQCL system exhibited noise-equivalent absorption coefficients of 5x10(-9) cm(-1)Hz(-1/2). For a spectrum acquisition time of 5 ms, noise-equivalent concentrations (NEC) for N(2)O and F134A were measured to be 70 and 16 ppbv respectively, which improved to sub-ppbv levels with averaging to 100 s. Noise equivalent column densities of 0.64 and 0.25 ppmv × m in 1 sec are estimated for N(2)O and F134A. PMID:26480072

  12. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-01-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices. PMID:27491686

  13. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications

    Science.gov (United States)

    Seurin, Jean-Francois; Xu, Guoyang; Guo, Baiming; Miglo, Alexander; Wang, Qing; Pradhan, Prachi; Wynn, James D.; Khalfin, Viktor; Zou, Wei-Xiong; Ghosh, Chuni; Van Leeuwen, Robert

    2011-03-01

    Infrared illumination is used in the commercial and defense markets for surveillance and security, for high-speed imaging, and for military covert operations. Vertical-cavity surface-emitting lasers (VCSELs) are an attractive candidate for IR illumination applications as they offer advantageous properties such as efficiency, intrinsically low diverging circular beam, low-cost manufacturing, narrow emission spectrum, and high reliability. VCSELs can also operate at high temperatures, thereby meeting the harsh environmental requirements of many illuminators. The efficiency and brightness of these VCSELs also reduce the requirements of the power supply compared to, for example, an LED approach. We present results on VCSEL arrays for illumination applications, as well as results on VCSEL-based illumination experiments. These VCSELs are used in illuminators emitting from a few Watts up to several hundred Watts. The emission of these VCSEL-based illuminators is speckle-free with no interference patterns. Infra-red illumination at up to 1,600ft (500m) from the source has been demonstrated using VCSEL-based illumination, without any optics.

  14. Ultrafast pulse amplification in mode-locked vertical external-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    A fully microscopic many-body Maxwell–semiconductor Bloch model is used to investigate the influence of the non-equilibrium carrier dynamics on the short-pulse amplification in mode-locked semiconductor microlaser systems. The numerical solution of the coupled equations allows for a self-consistent investigation of the light–matter coupling dynamics, the carrier kinetics in the saturable absorber and the multiple-quantum-well gain medium, as well as the modification of the light field through the pulse-induced optical polarization. The influence of the pulse-induced non-equilibrium modifications of the carrier distributions in the gain medium and the saturable absorber on the single-pulse amplification in the laser cavity is identified. It is shown that for the same structure, quantum wells, and gain bandwidth the non-equilibrium carrier dynamics lead to two preferred operation regimes: one with pulses in the (sub-)100 fs-regime and one with multi-picosecond pulses. The recovery time of the saturable absorber determines in which regime the device operates

  15. Radiocarbon Dioxide detection based on Cavity Ring-Down Spectroscopy and a Quantum Cascade Laser

    CERN Document Server

    Genoud, Guillaume; Phillips, Hilary; Dean, Julian; Merimaa, Mikko

    2015-01-01

    Monitoring of radiocarbon ($^{14}$C) in carbon dioxide is demonstrated using mid-infrared spectroscopy and a quantum cascade laser. The measurement is based on cavity ring-down spectroscopy, and a high sensitivity is achieved with a simple setup. The instrument was tested using a standardised sample containing elevated levels of radiocarbon. Radiocarbon dioxide could be detected from samples with an isotopic ratio $^{14}$C/C as low as 50 parts-per-trillion, corresponding to an activity of 5 kBq/m$^3$ in pure CO$_2$, or 2 Bq/m$^3$ in air after extraction of the CO$_2$ from an air sample. The instrument is simple, compact and robust, making it the ideal tool for on-site measurements. It is aimed for monitoring of radioactive gaseous emissions in nuclear power environment, during the operation and decommissioning of nuclear power plants. Its high sensitivity also makes it the ideal tool for the detection of leaks in radioactive waste repositories.

  16. A novel approach to a PPM-modulated frequency-doubled electro-optic cavity-dumped Nd:YAG laser

    Science.gov (United States)

    Robinson, D. L.

    1989-01-01

    A technique which can provide frequency doubling, with high efficiency, while cavity dumping a laser for pulse position M-ary modulation while being used for an optical communication link is discussed. This approach uses a secondary cavity that provides feedback of the undoubled fundamental light, which is normally lost, into the primary cavity to be recirculated and frequency doubled. Specific operations of the electrooptic modulator and frequency-doubling crystal are described along with the overall modulation scheme and experimental setup.

  17. Broadband single-mode emission from two-dimensional ring cavity surface emitting quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Full text: We describe compact, two-dimensional single-mode quantum cascade laser arrays based on the ring cavity surface emitting laser, as a basic building block. The sixteen-element mid-infrared array shows a linear tuning range of ∼180 cm-1 (7.5 - 8.7 μm) in pulsed condition at room temperature. The measured spectral-dependent threshold current densities and optical power reflect the gain profile of the applied laser material. This suggests that the device performance is not affected by the individual grating design, given by the facet less nature of the incorporated single surface emitter. Such broadband laser arrays allow the realization of compact mid-infrared spectrometers. (author)

  18. A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.

    2012-04-01

    A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared (MIR) external cavity quantum cascade lasers (ECQCLs)and astigmatic Herriott cells, channels using visible or near infrared (NIR) lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, ow-noise signal recovery, failsafe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented.

  19. High-Power Hybrid Mode-Locked External Cavity Semiconductor Laser Using Tapered Amplifier with Large Tunability

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2008-01-01

    Full Text Available We report on hybrid mode-locked laser operation of a tapered semiconductor amplifier in an external ring cavity, generating pulses as short as 0.5 ps at 88.1 MHz with an average power of 60 mW. The mode locking is achieved through a combination of a multiple quantum well saturable absorber (>10% modulation depth and an RF current modulation. This designed laser has 20 nm tuning bandwidth in continuous wave and 10 nm tuning bandwidth in mode locking around 786 nm center wavelength at constant temperature.

  20. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.;

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...... 0.07 nm throughout the tuning range, and the beam quality factor M2 is 2.0 with the output power of 1.27 W....

  1. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Ho, Nicolas

    2008-02-04

    A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 μm). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

  2. Ultra-Stable Rubidium-Stabilized External-Cavity Diode Laser Based on the Modulation Transfer Spectroscopy Technique

    Institute of Scientific and Technical Information of China (English)

    QI Xiang-Hui; CHEN Wen-Lan; YI Lin; ZHOU Da-Wei; ZHOU Tong; XIAO Qin; DUAN Jun; ZHOU Xiao-Ji; CHEN Xu-Zong

    2009-01-01

    @@ We construct an ultra-stable external-cavity diode laser via modulation transfer spectroscopy referencing on a hyperfine component of the 87Rb D2 lines at 780 hm. The Doppler-free dispersion-like modulation transfer signal is obtained with high signal-to-noise-ratio. The instability of the laser frequency is measured by beating with an optical frequency comb which is phase-locked to an ultra-stable oven controlled crystal oscillator. The Allan deviation is 3.9×10-13 at 1s averaging time and 9.8×10-14 at 90s averaging time.

  3. Monitor of mirror distance of Fabry-Perot cavity by the use of stabilized femtosecond laser comb

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Ježek, Jan; Buchta, Zdeněk; Čížek, Martin; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    Žilina: Žilinská univerzita, 2010. s. 104. ISBN 978-80-554-0238-3. [Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics /17./. 06.09.2010, Liptovsky Jan] R&D Projects: GA MPO 2A-1TP1/127; GA ČR GAP102/10/1813; GA MŠk(CZ) LC06007 Institutional research plan: CEZ:AV0Z20650511 Keywords : length standard * femtosecond laser * stabilization * Fabry-Perot cavity Subject RIV: BH - Optics, Masers, Lasers

  4. Monitor of mirror distance of Fabry-Perot cavity by the use of stabilized femtosecond laser comb

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Ježek, Jan; Buchta, Zdeněk; Čížek, Martin; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    Bellingham: SPIE, 2010, 77460I: 1-8. ISBN 978-0-8194-8236-5. [Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics /17./. Liptovsky Jan (SK), 06.09.2010] R&D Projects: GA MŠk(CZ) LC06007; GA MPO 2A-1TP1/127; GA ČR GAP102/10/1813 Institutional research plan: CEZ:AV0Z20650511 Keywords : length standard * femtosecond laser * stabilization * Fabry-Perot cavity Subject RIV: BH - Optics, Masers, Lasers

  5. SUBJECTIVE ACCEPTANCE OF PEDIATRIC PATIENTS DURING CAVITY PREPARATION WITH Er:YAG LASER AND CONVENTIONAL ROTARY INSTRUMENTS.

    OpenAIRE

    Ani Belcheva; Maria Shindova

    2014-01-01

    Aim: The aim of the present study is to evaluate and compare the subjective acceptance in children during hard dental tissue therapy using Er:YAG laser 2940nm and conventional rotary instruments. Methods and materials: The study included ninety 6-12-years-old children with matched carious lesions (D3 threshold, WHO system), divided into two equal treatment groups. In the intervention group the cavities were prepared with Erbium:YAG laser 2940nm and in the control group with conventional r...

  6. Tunable External Cavity Quantum Cascade Lasers (EC-QCL): an application field for MOEMS based scanning gratings

    Science.gov (United States)

    Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim

    2014-03-01

    In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic anal­ysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.

  7. Morphological evaluation of cavity preparation surface after duraphat and Er:YAG laser treatment by scanning electronic microscopy

    International Nuclear Information System (INIS)

    The treatment of dental surface using different lasers to prevent dental caries has been studied for several on last years. The purpose of this in vitro study was to evaluate the morphological changes on dentin surface from pulpal wall of cavity preparations performed by high-speed drill, treated with 2,26% fluoride varnish (Duraphat) and Er:YAG laser, and then submitted after receiving or not to EDTA 15% treatment. Twenty Class V cavities were performed on ten humans molars. The specimens were randomly divided in to 4 groups: group 1- treatment with Duraphat followed by Er:YAG laser irradiation (120 mJ/ 4 Hz); group 2: Er:YAG laser irradiation, same parameters, followed by Duraphat treatment; group 3- same group 1 followed by immersion in EDTA (5 min); group 4 - same as group 2 followed by immersion in EDTA (5 min). The specimens were processed for SEM analysis. The micrographs showed that Duraphat treatment promoted morphological changes on dentin, closing dentinal tubules; the specimens treated by Duraphat and Er:YAG laser and immersed in EDTA (group 3) showed homogeneous surface, closed and protected dentinal tubules, maintenance of the fluoride varnish on the dentin surface and around the dentinal tubules, showing feasible and efficiency of these therapies the feasibility.(author)

  8. A compact gas single-mode radio-frequency excited laser with a hybrid unstable and waveguide cavity

    International Nuclear Information System (INIS)

    In recent years we have seen a steady increase in the use of transverse radio-frequency (RF) gas discharges for excitation of carbon dioxide (CO2) lasers. However, RF excitation can be realized in carbon oxide (CO) and xenon (Xe) lasers. We attempt to construct a RF laser, which can work in broad spectral range of radiation. The design of this laser is based on the use of unstable telescopic cavity with the radiation spreading both in the free space and inside the waveguide. Employed discharge structure is formed by two parallel identical electrodes 30 x 230 mm in area and allocated at 2.5 mm distance from one another, and it has a gap, which is not confined limited by side walls. This ensures convective gas exchange between the reserve and active zones. This construction allows to get a high output power of generation with lasers having small dimensions, provides an opportunity to use single-mode generation for the basic hybrid mode; the latter is a combination of the lowest mode of gap waveguide and the lowest mode of unstable cavity

  9. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  10. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Manfred, K. M.; Ritchie, G. A. D. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd, Oxford OX1 3QZ (United Kingdom); Lang, N.; Röpcke, J.; Helden, J. H. van, E-mail: jean-pierre.vanhelden@inp-greifswald.de [Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-06-01

    The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diode lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.

  11. Demodulation of a fiber Bragg grating sensor system based on a linear cavity multi-wavelength fiber laser

    Science.gov (United States)

    Cong, Shan; Sun, Yunxu; Pan, Lifeng; Fang, Yating; Tian, Jiajun; Yang, Yanfu; Yong, Yao

    2011-12-01

    A fiber Bragg grating (FBG) sensor demodulation scheme based on a multi-wavelength erbium-doped fiber laser (EDFL) with linear cavity configuration is presented and demonstrated. The scheme is one linear fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A power-symmetric nonlinear optical loop mirror (NOLM) is utilized in the laser in order to suppress the mode competition and hole-burning effect to lase two wavelengths output that correspond with two FBG sensors. The sensing quantity, which is demodulated by spectrometer, is represented by the output wavelength shift of the EDFL with temperature and strain applying on FBG sensors. In the experiment, strain measurement with a minimize resolution of 0.746μɛ, i.e. 0.9pm and adjustable linear sensitivity are achieved. Due to utilizing the linear cavity multi-wavelength EDFL with a NOLM as the light source, the scheme also exhibits important advantages including obviously high signal and noise ratio (SNR) of 40.467dB and low power consuming comparing with common FBG sensors with broadband light as the light source.

  12. Control of chaos in an external-cavity multi-quantum-well laser subjected to dual-wedges and optical dual-feedback

    Institute of Scientific and Technical Information of China (English)

    YAN SenLin

    2009-01-01

    A multi-parameter chaos-control method used to control chaos in an external cavity multi-quantum-well (MQW) laser via the dual-wedges and external delayed optical dual-feedback is presented. The physical model of the laser dynamic is established under the conditions of the dual-wedges and dual-feedback light control. The frequency detuning and stable ranges of the control system are theoretically demon-strated. The optical-length of the feedback light may be adjusted by shifting horizontally or sliding the dual-wedges relatively in the external optical road, which will alter the delaying time and feedback in-tensity of the dual-feedback light. Accordingly, the multi-parameter chaos-control of the optical dual-feedback may be achieved physically. The numerical simulations approve that the chaotic laser may be controlled into a stable state, a single-periodic state and multi-periodic states, and the con-trolled periodic pulse power may be increased.

  13. Hybrid III-V/SOI single-mode vertical-cavity laser with in-plane emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Semenova, Elizaveta; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold.......We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold....

  14. Experimental and theoretical studies of a dual-frequency laser free from anti-phase noise

    OpenAIRE

    El Amili, Abdelkrim; De, Syamsundar; Loas, Goulc'Hen; Bretenaker, Fabien; Alouini, Mehdi

    2013-01-01

    Strong reduction of the anti-phase intensity noise is shown in a two-polarization dual-frequency solid-state laser. The spectral behavior of the intensity noise correlations between the two orthogonally polarized modes is investigated, both experimentally and theoretically.

  15. Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10(5).

    Science.gov (United States)

    Schoof, A; Grünert, J; Ritter, S; Hemmerich, A

    2001-10-15

    An extended-cavity diode laser operating in the Littrow configuration emitting near 657 nm is stabilized through its injection current to a reference cavity with a finesse of more than 10(5) and a corresponding resonance linewidth of 14 kHz. The laser linewidth is reduced from a few megahertz to a value below 30 Hz. The compact and robust setup appears ideal as a portable optical frequency standard that uses the calcium intercombination line. PMID:18049663

  16. Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with finesse above 10^5

    OpenAIRE

    Schoof, Adrien; Gruenert, Jan; Ritter, Stephan; Hemmerich, Andreas

    2001-01-01

    An extended cavity diode laser operating in the Littrow configuration emitting near 657 nm is stabilized via its injection current to a reference cavity with a finesse of more than 10^5 and a corresponding resonance linewidth of 14 kHz. The laser linewidth is reduced from a few MHz to a value below 30 Hz. The compact and robust setup appears ideal for a portable optical frequency standard using the Calcium intercombination line.

  17. Reducing the linewidth of a diode laser below 10 Hz by stabilization to a reference cavity with finesse above 10^5

    CERN Document Server

    Schoof, A; Ritter, S; Hemmerich, A; Schoof, Adrien; Gruenert, Jan; Ritter, Stephan; Hemmerich, Andreas

    2001-01-01

    An extended cavity diode laser operating in the Littrow configuration emitting near 657 nm is stabilized via its injection current to a reference cavity with a finesse of more than 10^5 and a corresponding resonance linewidth of 14 kHz. The laser linewidth is reduced from a few MHz to a value below 10 Hz. The compact and robust setup appears ideal for a portable optical frequency standard using the Calcium intercombination line.

  18. Frequency tuning and stability of Nd:YVO4 in a dual coupled cavity

    DEFF Research Database (Denmark)

    Hansen, P. L.; Pedersen, Christian; Buchhave, Preben;

    1996-01-01

    Frequency tuning and stability properties of single- and multi-cavity designs have been investigated theoretically and experimentally. Special attention is paid to a dual coupled cavity single-frequency diode-pumped solid-state Nd:YVO4 laser crystal. 350 mW single frequency output power has...... previously been demonstrated using dual coupled linear cavity. Frequency tuning versus temperature and cavity length of a coupled cavity Nd:YVO4 have been investigated and compared to those of a non-planar monolithic, unidirectional Nd:YAG ring laser. A way to extend the tuning range by design of the air to...

  19. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    . Though both sides of the grating layer are not surrounded by low refractive-index materials as in high-index-contrast gratings (HCGs), the HG can provide a near-unity reflectivity over a broader wavelength range than HCGs, or work as a resonator with a quality (Q) factor as high as 109. The physics......-factor is investigated, which shows that the uncertainty in the Q-factor can be several orders of magnitude larger than the uncertainty in the resonance frequency. Next, the HG is shown to possess a near-unity reflectivity in a broad wavelength range, which can be broader than the HCG, since the cap layer introduces...... more guided mode resonances (GMRs) in the reflectivity spectrum. The fabrication tolerance of the HG is investigated numerically, which shows that the broadband near-unity reflectivity characteristic is prone to common fabrication errors. An experimental demonstration of the HG reflector confirms its...

  20. Nanobeam Cavities for Reconfigurable Photonics

    OpenAIRE

    Deotare, Parag

    2012-01-01

    We investigate the design, fabrication, and experimental characterization of high quality factor photonic crystal nanobeam cavities, with theoretical quality factors of \\(1.4 × 10^7\\) in silicon, operating at ~1550 nm. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a quality factor of nearly \\(7.5 × 10^5\\). We show on-chip integration of the cavities using waveguides and an inverse taper geometry based mode size converters, and also...

  1. All-PM fiber, net normal cavity, Tm-doped fiber laser

    Science.gov (United States)

    Aguergaray, Claude

    2016-03-01

    We demonstrate herein a PM-fiber based cavity design capable of supporting many different pulse dynamics, such as soliton propagation or dissipative solitons in a dispersion managed cavity. By changing the dispersion of the fiber Bragg grating of the cavity we modify the net cavity dispersion, and thus stimulate various pulse dynamics. In particular we demonstrate the first net normal cavity, all-PM, all-fiber, dipersion managed cavity operating the in the 2μm range. Furthermore, we also demonstrate an all-fiber all-PM MOPA system capable of delivering up to 6 W of average power at 16 MHz by direct amplification of 70 ps long narrowband pulses. The amplifier stages are not fully saturated and are currently limited by the pump power available.

  2. Ultra-short laser ablation of dielectrics: Theoretical analysis of threshold damage fluence and ablation depth

    International Nuclear Information System (INIS)

    A coupled theoretical model based on Fokker-Planck equation for ultra-short laser ablation of dielectrics is proposed. Multiphoton ionization and avalanche ionization are considered as the sources during the generation of free electrons. The impact of the electron distribution in thermodynamic nonequilibrium on relaxation time is taken into account. The calculation formula of ablation depth is deduced based on the law of energy conservation. Numerical calculations are performed for the femtosecond laser ablation of fused silica at 526 and 1053 nm. It shows that the threshold damage fluences and ablation depths resulted from the coupled model are in good agreement with the experimental results; while the damage thresholds resulted from the approximate model significantly differ from the experimental results for lasers of long pulse width. It is concluded that the coupled model can better describe the micro-process of ultra-short laser ablation of dielectrics.

  3. Experimental Observation of Dark Soliton Emitting with Spectral Sideband in an All-Fiber Ring Cavity Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-Yi; XU Wen-Cheng; LUO Zhi-Chao; LUO Ai-Ping; CAO Wen-Jun; DONG Jiang-Li; WANG Lu-Yan

    2011-01-01

    @@ The dark soliton pulse with spectral sideband is experimentally observed in a dispersion-managed ail-fiber ring laser with net negative cavity group velocity dispersion.We find that, for single or multiple dark solitons, the spectral sidebands always appear and exhibit asymmetric characteristics which are similar to bright solitons.The experimental measurements of spectral sideband positions are carried out and the results are in good agreement with the calculated values.Our results show that spectral sideband effect is also an intrinsic feature of a dark soliton fiber laser.%The dark soliton pulse with spectral sideband is experimentally observed in a dispersion-managed all-fiber ring laser with net negative cavity group velocity dispersion. We find that, for single or multiple dark solitons, the spectral sidebands always appear and exhibit asymmetric characteristics which are similar to bright solitons. The experimental measurements of spectral sideband positions are carried out and the results are in good agreement with the calculated values. Our results show that spectral sideband effect is also an intrinsic feature of a dark soliton fiber laser.

  4. PAIN PERCEPTION OF PEDIATRIC PATIENTS DURING CAVITY PREPARATION WITH Er:YAG LASER AND CONVENTIONAL ROTARY INSTRUMENTS.

    Directory of Open Access Journals (Sweden)

    Ani Belcheva

    2014-11-01

    Full Text Available Aim: The aim of the present study is to evaluate and compare the pain perception of pediatric patients during cavity preparation with the use of Erbium:YAG laser 2940 nm and conventional rotary instruments. Methods and materials: A group of ninety 6-12-years-old patients with matched carious lesions (D3 threshold, WHO system was divided into two equal treatment groups and treated without anaesthesia. In the intervention group the cavities were prepared with Erbium:YAG laser 2940nm and in the control group with conventional rotary instruments. At the end of the treatment each patient was asked to point the degree of its pain on the universal pain assessment tool. Results: Participants in the laser treatment group reported significantly lower pain scores compared to participants in the control group (p<0.005. The analysis of pain indicated that in the intervention group the scores obtained from the majority of cases (71.1% were low and only one patient reported severe pain perception. In the conventional treatment group the results showed approximately equal frequency for low (40% and moderate (42.2% pain level. Conclusions: The Erbium:YAG lasers produce less pain compared to the conventional mechanical preparation. They offer new and useful possibilities in restorative dentistry in pediatric dentistry and are good treatment options.

  5. Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms

    International Nuclear Information System (INIS)

    We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm−1 at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current

  6. Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Liu, Peter Q. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Institute of Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Wang, Xiaojun; Fan, Jen-Yu; Troccoli, Mariano [AdTech Optics, Inc., City of Industry, California 91748 (United States)

    2013-11-18

    We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.

  7. Injection and confinement of a laser pulse in an optical cavity for multi-pass Thomson scattering diagnostics in the TST-2 spherical tokamak device

    International Nuclear Information System (INIS)

    A multi-pass Thomson scattering (TS) system based on confining laser pulses in an optical cavity was constructed for measuring very low-density plasma in the TST-2 spherical tokamak device. This paper describes the setup of the optical system, injection of the laser pulse into the cavity, and properties of the confined laser pulse. A combination of Pockels cell plus polarizer, which serves as an optical shutter, allows us to inject and then confine intense laser pulses in the cavity. A photodiode signal monitoring the very weak light leaking from the cavity mirrors demonstrated that the laser pulse makes many round trips, with a round-trip efficiency of approximately 0.73. The effective number of round trips (i.e., the signal enhancement factor) is approximately 3.7. For an injection efficiency of approximately 0.69, a cavity-confined laser pulse, applied to Thomson scattering, will yield a scattered signal that is five times larger than that from a single-pass laser pulse. (author)

  8. On the application of cw external cavity quantum cascade infrared lasers for plasma diagnostics

    International Nuclear Information System (INIS)

    Three continuous wave external cavity quantum cascade lasers (EC-QCLs) operating between 1305 and 2260 cm−1 (4.42–7.66 µm) have been tested as radiation sources for an absorption spectrometer focused on the analysis of physical and chemical phenomena in molecular plasmas. Based on the wide spectral tunability of EC-QCLs, multiple species detection has become feasible and is demonstrated in a study of low-pressure Ar/N2 microwave plasmas containing methane as a hydrocarbon precursor. Using the direct absorption technique, the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions at a pressure of p = 0.5 mbar and at a frequency of f = 2.45 GHz in a planar microwave plasma reactor. The concentrations were found to be in the range of 1011–1014 molecules cm−3. In addition, based on the analysis of the line profile of selected absorption lines, the gas temperature Tg has been calculated in dependence on the discharge power. Tg increased with the power values and was in the range between 400 and 700 K. Further, in a pure He/Ar microwave plasma, the wavelength modulation spectroscopy technique has been applied for the sensitive detection of transient plasma species with absorbencies down to 10−5. The typical spectral line width of an EC-QCL under the study was found to be in the range 24 to 38 MHz depending (i) on the chopping technique used and (ii) on a single or averaged measurement approach. Further, different methods for the modulation and tuning of the laser radiation have been tested. Varying the power values of an EC-QCL between 0.1 and 154 mW for direct absorption measurements under low pressure conditions, no saturation effects in determining the concentrations of methane, acetylene and carbon monoxide could be found under the experimental conditions used, i.e. for lines with line strengths between 10−19 and 10−22 cm molecule−1. (paper)

  9. On the application of cw external cavity quantum cascade infrared lasers for plasma diagnostics

    Science.gov (United States)

    Lopatik, D.; Lang, N.; Macherius, U.; Zimmermann, H.; Röpcke, J.

    2012-11-01

    Three continuous wave external cavity quantum cascade lasers (EC-QCLs) operating between 1305 and 2260 cm-1 (4.42-7.66 µm) have been tested as radiation sources for an absorption spectrometer focused on the analysis of physical and chemical phenomena in molecular plasmas. Based on the wide spectral tunability of EC-QCLs, multiple species detection has become feasible and is demonstrated in a study of low-pressure Ar/N2 microwave plasmas containing methane as a hydrocarbon precursor. Using the direct absorption technique, the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions at a pressure of p = 0.5 mbar and at a frequency of f = 2.45 GHz in a planar microwave plasma reactor. The concentrations were found to be in the range of 1011-1014 molecules cm-3. In addition, based on the analysis of the line profile of selected absorption lines, the gas temperature Tg has been calculated in dependence on the discharge power. Tg increased with the power values and was in the range between 400 and 700 K. Further, in a pure He/Ar microwave plasma, the wavelength modulation spectroscopy technique has been applied for the sensitive detection of transient plasma species with absorbencies down to 10-5. The typical spectral line width of an EC-QCL under the study was found to be in the range 24 to 38 MHz depending (i) on the chopping technique used and (ii) on a single or averaged measurement approach. Further, different methods for the modulation and tuning of the laser radiation have been tested. Varying the power values of an EC-QCL between 0.1 and 154 mW for direct absorption measurements under low pressure conditions, no saturation effects in determining the concentrations of methane, acetylene and carbon monoxide could be found under the experimental conditions used, i.e. for lines with line strengths between 10-19 and 10-22 cm molecule-1.

  10. Theoretical analysis of material removal mechanisms in pulsed laser fusion cutting of ceramics

    International Nuclear Information System (INIS)

    It is well known that the efficiency of material removal mechanisms has a crucial influence on the performance and quality of the laser cutting process. However, they are very difficult to study since the physical processes and parameters which govern them are quite complicated to observe and measure experimentally. For this reason, the development of theoretical models to analyse the material removal mechanisms is very important for understanding the characteristics and influence of these processes. In this paper, a theoretical model of the pulsed laser fusion cutting of ceramics is presented. The material removal mechanisms from the cutting front are modelled under the assumption that the ceramic material may be, simultaneously, melted and evaporated by the laser radiation. Therefore, three ejection mechanisms are investigated together: ejection of molten material by the assist gas, evaporation of the liquid and ejection of molten material due to the recoil pressure generated by the evaporation from the cutting front. The temporal evolution of the material removal mechanisms and the thickness of the molten layer are solved for several laser pulse modes. Theoretical results are compared with experimental observations to validate the conclusions regarding the influence of frequency and pulse length on the cutting process

  11. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser

    Science.gov (United States)

    Hanon, M. M.; Akman, E.; Genc Oztoprak, B.; Gunes, M.; Taha, Z. A.; Hajim, K. I.; Kacar, E.; Gundogdu, O.; Demir, A.

    2012-06-01

    Alumina ceramics have found wide range of applications from semiconductors, communication technologies, medical devices, automotive to aerospace industries. Processing of alumina ceramics is rather difficult due to its high degree of brittleness, hardness, low thermal diffusivity and conductivity. Rapid improvements in laser technologies in recent years make the laser among the most convenient processing tools for difficult-to-machine materials such as hardened metals, ceramics and composites. This is particularly evident as lasers have become an inexpensive and controllable alternative to conventional hole drilling methods. This paper reports theoretical and experimental results of drilling the alumina ceramic with thicknesses of 5 mm and 10.5 mm using milisecond pulsed Nd:YAG laser. Effects of the laser peak power, pulse duration, repetition rate and focal plane position have been determined using optical and Scanning Electron Microscopy (SEM) images taken from cross-sections of the drilled alumina ceramic samples. In addition to dimensional analysis of the samples, microstructural investigations have also been examined. It has been observed that, the depth of the crater can be controlled as a function of the peak power and the pulse duration for a single laser pulse application without any defect. Crater depth can be increased by increasing the number of laser pulses with some defects. In addition to experimental work, conditions have been simulated using ANYS FLUENT package providing results, which are in good agreement with the experimental results.

  12. Diagnosis and indications for low-intensity laser therapy of the pathology of the oral cavity mucosa of patients with hematologic and gastroenteric diseases

    Science.gov (United States)

    Kunin, Anatoly A.; Minakov, E. V.; Sutscenko, A. V.; Vornovsky, V. A.; Dunaeva, S. V.; Stepanov, Nicolay N.; Shumilovitch, Bogdan R.

    1996-11-01

    In the recent years low intensity laser irradiation is made use of in stomatology with the view of treating numerous diseases of the oral cavity mucosa and parodontium. The oral cavity mucosa lesions caused by the internal organs diseases, especially those of blood and the gastroenteric tract, constitute a particular group. Such diseases are usually manifested by an inflammation, erosions, ulcers, hemorrhages. An abundant microflora of the oral cavity and diminished immunity of the patients contribute to the possibility of septicaemia development. Laser therapy of the oral cavity mucosa lesions according to strictly defined indications promotes rapid healing of ulcers, arresting the oral cavity mucosa inflammation, providing a reduction in bleeding and presents a safe prophylactic means of stomatogenic sepsis.

  13. Fixed-wavelength H2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser

    Science.gov (United States)

    Brittelle, Mack S.; Simms, Jean M.; Sanders, Scott T.; Gord, James R.; Roy, Sukesh

    2016-03-01

    We describe a system designed to perform fixed-wavelength absorption spectroscopy of H2O vapor in practical combustion devices. The system includes seven wavelength-stabilized distributed feedback (WSDFB) lasers, each with a spectral accuracy of  ±1 MHz. An on-board external cavity diode laser (ECDL) that tunes 1320-1365 nm extends the capabilities of the system. Five system operation modes are described. In one mode, a sweep of the ECDL is used to monitor each WSDFB laser wavelength with an accuracy of  ±30 MHz. Demonstrations of fixed-wavelength thermometry at 10 kHz bandwidth in near-room-temperature gases are presented; one test reveals a temperature measurement error of ~0.43%.

  14. Fixed-wavelength H2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser

    International Nuclear Information System (INIS)

    We describe a system designed to perform fixed-wavelength absorption spectroscopy of H2O vapor in practical combustion devices. The system includes seven wavelength-stabilized distributed feedback (WSDFB) lasers, each with a spectral accuracy of  ±1 MHz. An on-board external cavity diode laser (ECDL) that tunes 1320–1365 nm extends the capabilities of the system. Five system operation modes are described. In one mode, a sweep of the ECDL is used to monitor each WSDFB laser wavelength with an accuracy of  ±30 MHz. Demonstrations of fixed-wavelength thermometry at 10 kHz bandwidth in near-room-temperature gases are presented; one test reveals a temperature measurement error of ∼0.43%. (paper)

  15. A tunnel regenerated coupled multi-active-region large optical cavity laser with a high quality beam

    Institute of Scientific and Technical Information of China (English)

    Cui Bi-Feng; Guo Wei-Ling; Du Xiao-Dong; Li Jian-Jun; Zou De-Shu; Shen Guang-Di

    2012-01-01

    A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes.For a laser with three active regions,a slope efficiency as high as 1.49 W/A,a vertical divergence angle of 17.4°,and a threshold current density of 271 A/cm2 are achieved.By optimizing the structural parameters,the beam quality is greatly improved,and the level of the COD power increases by more than two times compared with that of the conventional laser.

  16. Theoretical model of an optothermal microactuator directly driven by laser beams

    International Nuclear Information System (INIS)

    This paper proposes a novel method of optothermal microactuation based on single and dual laser beams (spots). The theoretical model of the optothermal temperature distribution of an expansion arm is established and simulated, indicating that the maximum temperature of the arm irradiated by dual laser spots, at the same laser power level, is much lower than that irradiated by one single spot, and thus the risk of burning out and damaging the optothermal microactuator (OTMA) can be effectively avoided. To verify the presented method, a 750 μm long OTMA with a 100 μm wide expansion arm is designed and microfabricated, and single/dual laser beams with a wavelength of 650 nm are adopted to carry out experiments. The experimental results showed that the optothermal deflection of the OTMA under the irradiation of dual laser spots is larger than that under the irradiation of a single spot with the same power, which is in accordance with theoretical prediction. This method of optothermal microactuation may expand the practical applications of microactuators, which serve as critical units in micromechanical devices and micro-opto-electro-mechanical systems (MOEMS). (paper)

  17. Theoretical and Experimental Studies on Laser Beam Harmonic Production using Solid State Nonlinear Crystals

    International Nuclear Information System (INIS)

    There is a real demand for a high power UV laser due to its applications in science and technology. Very few lasers are found in this region. The question of how to produce such an effective laser is to be solved. The answer regarding this problem is the nonlinear optical frequency mixing. This process is not efficient in producing higher harmonics. In the present work, for the first time, a model for producing harmonics based on cascading process is suggested. Theoretical relations are derived for the efficiency evaluation and optimization for the generation of second harmonic and its consequence cascading to produce the third, fourth and fifth harmonics. These relations can be applied to a wide class of nonlinear optical materials that meet the prerequisite of the process. Calculations are made for KTP and borate crystals for Nd-YAG laser with 1.064 m wavelength. Our model is tested experimentally where a case study is carried out. The case study involved producing the fourth harmonics at 250 nm in the absence of the fundamental beam. Experimental setup is configured involving a high power diode laser as pump source and a Nd- KTP crystal chip. A second harmonic is obtained with this set-up. The second harmonic beam in this work is fed to a borate crystal configured and placed in a calculated position. The experimental results obtained with this set- up, are consistent with the prediction of the theoretical work for the fourth harmonic. (Author)

  18. Diode-pumped Q-switched Extra-cavity Frequency-doubled Nd: YVO4/KTP Green Laser

    Institute of Scientific and Technical Information of China (English)

    YANG Ji-min; LIU Jie; HE Jing-liang

    2005-01-01

    A diode-pumped acousto-optical(A-O) Q-switched extra-cavity frequency-doubled Nd: YVO4/KTP (KTiOPO4) green laser formed with a simple plane-plane cavity has been demonstrated. With the incident pump power of 12. 7 W, A-O Q-switched average output power at 1 064 nm was 3.81 W with a duration of 25 ns at a repetition rate of 20 kHz, extra-cavity frequency doubling with KTP as the nonlinear crystal yielded the maximum output power of 1. 92 W at 532 nm, the corresponding optical conversion efficiency from 1 064 nm to 532 nm light is 50.4%. The continuous-wave(CW) laser properties of diodepumped Nd: YVO4 crystal operating at 1 064 nm have been studied. With the incident pump power of 25 W,the maximum CW output power of 13.81 W was obtained with the corresponding optical conversion efficiency of 55.24%.

  19. Theoretical study on isotope separation of an ytterbium atomic beam by laser deflection

    International Nuclear Information System (INIS)

    Isotope separation by laser deflecting an atomic beam is analyzed theoretically. Interacting with a tilted one-dimensional optical molasses, an ytterbium atomic beam is split into multi-beams with different isotopes like 172Yb,173Yb, and 174Yb. By using the numerical calculation, the dependences of the splitting angle on the molasses laser intensity and detuning are studied, and the optimal parameters for the isotope separation are also investigated. Furthermore, the isotope separation efficiency and purity are estimated. Finally a new scheme for the efficient isotope separation is proposed. These findings will give a guideline for simply obtaining pure isotopes of various elements. (atomic and molecular physics)

  20. [Study on packaging-induced stress in 4 mm cavity length high-power single emitter semiconductor laser].

    Science.gov (United States)

    Zhang, Yong; Yang, Rui-xia; An, Zhen-feng; Xu, Hui-wu

    2014-06-01

    To reduce packaging-induced stress of long cavity length high-power single emitter semiconductor laser, the relationship between the stress and the wavelength shift was deduced on the basis of the theory that the stress can change the band gap. A method was developed for quantitatively calculating the stress by measuring the emission spectrum of the laser under pulse conditions. The results show that the soldering quality is a critical factor affecting thermal stress. The difference in stress can exceed 300 MPa due to the difference in soldering quality. By optimizing the reflowing soldering curve of the laser, the stress of the laser drops from 129.7 to 53.4 MPa. This method can also effectively solve the problem that the stress varies with storage time. This work demonstrates that the measurement and analysis of the emission spectrum of the laser can provide a useful method to study packaging stress of the high-power single emitter semiconductor laser. It is also an available means to evaluate and analyze soldering quality. PMID:25358141

  1. Molecular beam epitaxial regrowth on diffraction gratings for vertical-cavity, surface-emitting laser-based integrated optoelectronics

    International Nuclear Information System (INIS)

    Epitaxial regrowth techniques, using molecular beam epitaxy, were optimized for the inclusion of submicron diffraction gratings within a vertically resonant structure. Various growth conditions including chemical surface preparation, growth rate, and regrown interfacial structure were studied to determine the quality of the regrown materials and structures. Characteristics such as dislocation density and growth planarity (flatness of the regrown layers) were of particular importance due to the vertical geometry and resonance requirements of the structure. Threading dislocation densities of ≅3x106 cm-2 were measured, by means of transmission electron microscopy, in the regrown structures using optimized regrowth processes. Layer thickness variations, due to growth on nonplanar surfaces (diffraction gratings), were characterized using modeling and optical reflectometry. With these results, inclusion of diffraction gratings has been demonstrated with the accurate control over layer thickness needed for use in vertically oriented devices such as vertical-cavity, surface-emitting lasers, and resonant cavity photodetectors

  2. Investigation on 447.3 nm blue-violet laser by extra-cavity frequency doubling of a diode-pumped cesium vapor laser

    Science.gov (United States)

    Xu, Dongdong; Chen, Fei; Guo, Jin; Shao, Mingzhen; Xie, Jijiang

    2016-09-01

    447.3 nm blue-violet lasers are investigated by extra-cavity single-pass second harmonic generation (SHG) of diode-pumped cesium vapor lasers (Cs-DPALs) using a LBO crystal. Two types of 894.6 nm Cs-DPAL are constructed, and the beam quality factors are Mx2=1.02, My2=1.13 and Mx2=2.13, Mx2=2.66, respectively. The maximum output powers for the two types of Cs-DPAL operating in pulsed mode are 0.692 W and 2.6 W, and the corresponding maximum second harmonics (SH) powers are 9.5 μW and 11.2 μW at optimal focusing parameter of 1.68, respectively. The relative insensitivity of SH power to the LBO crystal temperature and the influence of Cs laser beam quality on the SHG efficiency are analyzed qualitatively.

  3. Towards high-frequency operation of polarization oscillations in spin vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Lindemann, Markus; Höpfner, Henning; Gerhardt, Nils C.; Hofmann, Martin R.; Pusch, Tobias; Michalzik, Rainer

    2015-09-01

    Compared to purely charge based devices, spintronic lasers offer promising perspectives for new superior device concepts. Especially vertical-cavity surface-emitting lasers with spin-polarization (spin-VCSELs) feature ultrafast spin and polarization dynamics. Oscillations in the circular polarization degree can be generated using pulsed spin-injection. The oscillations evolve due to the carrier-spin-photon system that is coupled for the linear modes in the VCSEL's cavity via the birefringence. The polarization oscillations are independent of the conventional relaxation oscillations and have the potential to exceed frequencies of 100 GHz. The oscillations are switchable and can be the basis for ultrafast directly modulated spin-VCSELs for, e.g., communication purposes. The polarization oscillation frequency is mainly determined by the birefringence. We show a method to tune the birefringence and thus the polarization oscillation frequency by adding mechanical strain to the substrate in the vicinity of the laser. We achieved first experimental results for high-frequency operation using 850 nm oxide-confined single-mode VCSELs. The results are compared with simulations using the spin-flip-model for high birefringence values.

  4. Effects of Er, Cr:YSGG laser irradiation on external adaptation of restorations in caries-affected cavities

    International Nuclear Information System (INIS)

    This study evaluated the effect of Er,Cr:YSGG laser irradiation on the external adaptation of composite resin restorations in caries-affected cavities. Mixed class V cavity preparations were performed in 36 intact human third molars, in half of which caries was artificially induced. Both healthy and carious dentin were etched with 35% phosphoric acid (Ultradent Products Inc., South Jordan, Utah, USA), and the teeth were divided into three groups, i.e., (a) untreated etched dentin, (b) application of the Er, Cr:YSGG laser and (c) use of chlorhexidine as an adjunct in the bonding process. Restorations were fabricated with Z350 XT FiltekTM composite resin (3M ESPE) and subsequently the specimens were subjected to thermocycling to simulate artificial ageing. Quantitative analysis of external adaptation was performed by scanning electron microscopy in both healthy and affected dentin using epoxy resin replicas. It was concluded that the application of laser and chlorhexidine did not affect the percentages of marginal adaptation of class V restorations. Furthermore, thermocycling may influence adaptation values. (letter)

  5. Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser

    Science.gov (United States)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink model implementation is developed to explore the feedback and feed-forward system operation and some experimental results for signals and power considerations are presented.

  6. Linewidth of a polariton laser: Theoretical analysis of self-interaction effects

    OpenAIRE

    Porras, D.; Tejedor, C.

    2003-01-01

    Polaritons in semiconductor microcavities can experience a Bose-Einstein condensation experimentally detectable in the spectrum of the emitted light. Scattering with noncondensed particles as well as self-interaction in the condensate provoke phase-diffusion limiting the coherence of the polariton condensate. We present a theoretical analysis of self-interaction effects on the lineshape of the emission from a polariton laser. Our calculations, for CdTe microcavities, show that there is an opt...

  7. Recent experimental and theoretical studies of laser enhanced ionization spectroscopy in flames and plasmas

    International Nuclear Information System (INIS)

    The results of spectroscopic investigations of laser-enhanced ionization (LEI) in flames and plasmas at atmospheric pressure are summarized. Theoretical models of one-step and two-step laser excitation are outlined; their application to the analysis of experimental data is explained; problems in the optical detection of LEI are considered; and results are presented from experiments in which metals were atomized into an air-acetylene flame and excited by 5-ns pulses from excimer-, YAG-, or N2-pumped dye lasers, and both LEI and fluorescence were measured. Two-step excitation to Rydberg states is found to give LEI yields approaching 100 percent, while the yield for one-step excitation is small. The applicability of the combined LEI/LIF technique to plasma and flame diagnostics is indicated. 27 references

  8. Numerical Investigation of Vertical Cavity Lasers with Subwavelength Gratings Using the Fourier Modal Method

    CERN Document Server

    Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    We show the strength of the Fourier modal method (FMM) for numerically investigating the optical properties of vertical cavities including subwavelength gratings. Three different techniques for determining the resonance frequency and Q-factor of a cavity mode are compared. Based on that, the Fabry-Perot approach has been chosen due to its numerical efficiency. The computational uncertainty in determining the resonance frequency and Q-factor is investigated, showing that the uncertainty in the Q-factor calculation can be a few orders of magnitude larger than that in the resonance frequency calculation. Moreover, a method for reducing 3D simulations to lower-dimensional simulations is suggested, and is shown to enable approximate and fast simulations of certain device parameters. Numerical calculation of the cavity dispersion, which is an important characteristic of vertical cavities, is illustrated. By employing the implemented FMM, it is shown that adiabatic heterostructures designs are advantageous compared ...

  9. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Orchard, J. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Clarke, E. [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, S1 3JD Sheffield (United Kingdom)

    2015-10-12

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  10. Laser pulse amplification and dispersion compensation in an effectively extended optical cavity containing Bose-Einstein condensates

    OpenAIRE

    Sennaroğlu, Alphan; Müstecaplıoğlu, Özgür Esat; Tarhan, D.

    2013-01-01

    Laser pulse amplification and dispersion compensation in effectively extended optical cavity containing Bose-Einstein condensates D Tarhan1, A Sennaroglu2, ¨O E M¨ustecaplıo˘glu2 1Harran University, Department of Physics, 63300, S¸anlıurfa, Turkey 2Ko¸c University, Department of Physics, 34450, Sarıyer, Istanbul, Turkey E-mail: Abstract. We review and critically evaluate our proposal of a pulse amplification scheme based on two Bose-Einstein cond...

  11. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-Zhen; XIAO Xiao-Sheng; MEI Jia-Wei; YANG Chang-Xi

    2012-01-01

    Transitional operations of multiple dissipative solitons in a long-cavity normal-dispersion Yb-doped fiber laser are experimentally investigated.Multiple dissipative solitons,including a stable soliton pair and a soliton triplet are observed by increasing the pump power or adjusting the polarization controllers.Two main boundaries of the stable asymmetric soliton and oscillating soliton are found between steady mode-locking.Moreover,multiple dissipative solitons with greater quantities of solitons are observed with pump power increasing.The experimental results agree well with a previous numerical study of multiple dissipative solitons.

  12. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization

  13. Real-Time Trace Gas Sensing of Fluorocarbons using a Swept-wavelength External Cavity Quantum Cascade Laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Cannon, Bret D.; Stahl, Robert D.; Schiffern, John T.; Myers, Tanya L.

    2014-05-04

    We present results demonstrating real-time sensing of four different fluorocarbons at low-ppb concentrations using an external cavity quantum cascade laser (ECQCL) operating in a swept-wavelength configuration. The ECQCL was repeatedly swept over its full tuning range at a 20 Hz rate with a scan rate of 3535 cm-1/s, and a detailed characterization of the ECQCL scan stability and repeatability is presented. The sensor was deployed on a mobile automotive platform to provide spatially resolved detection of fluorocarbons in outdoor experiments. Noise-equivalent detection limits of 800-1000 parts-per-trillion (ppt) are demonstrated for 1 s integration times.

  14. Realization of an All-Fibre Self-Organization Intra-Cavity Coherent Erbium-Doped Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    JIA Xiu-Jie; LIU Yan-Ge; LIU Feng-Nian; FU Sheng-Gui; LIU Bo; YUAN Shu-Zhong; KAI Gui-Yun; DONG Xiao-Yi

    2007-01-01

    An intra-cavity coherent coupling Michelson Er-doped fibre (EDF) laser (MCEDFL) is proposed and demonstrated. Characteristics of the MCEDFL are investigated. It is found that the MCEDFL with a polarizer can be coherent combined effectively. By the experiment based on fibre Bragg gratings (FBGs) with different reflectivity,we find that the reflectivity of the FBG play a vital role in improving the performance of the MCEDFL. This outcome adequately shows many favourable features, such as high efficiency, easy operation, and simple all-fibre configuration.

  15. Vertical‐cavity surface‐emitting laser based digital coherent detection for multigigabit long reach passive optical links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko;

    2011-01-01

    We report on experimental demonstration of digital coherent detection based on a directly modulated vertical‐cavity surface‐emitting laser with bit rate up to 10 Gbps. This system allows a cooler‐less, free running, and unamplified transmission without optical dispersion compensation up to 105 km...... at 5 Gbps long reach passive optical links. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2462–2464, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26331...

  16. Monolithic Yb-fiber femtosecond laser with intracavity all-solid PBG fiber and ex-cavity HC-PCF

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2010-01-01

    (PM) photonic bandgap fiber (PBG) is used in the cavity of the master oscillator for dispersion compensation and stabilization of modelocking. The final compression of an chirped-pulse-amplified laser signal is performed in a hollow PM PCF, yielding final fiber-delivered pulse energy of around 7 n......We demonstrate an all-fiber femtosecond master oscillator / power amplifier operating at the central wavelength of 1033 nm, based on Yb-doped fiber as gain medium, and two different kinds of photonic crystal fibers for dispersion control and stabilization. An all-solid (AS) polarization maintaining...

  17. In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Optical in-well pumped mid-infrared vertical external cavity surface emitting lasers based on PbTe quantum wells embedded in CdTe barriers are realized. In contrast to the usual ternary barrier materials of lead salt lasers such as PbEuTe of PbSrTe, the combination of narrow-gap PbTe with wide-gap CdTe offers an extremely large carrier confinement, preventing charge carrier leakage from the quantum wells. In addition, optical in-well pumping can be achieved with cost effective and readily available near infrared lasers. Free carrier absorption, which is a strong loss mechanism in the mid-infrared, is strongly reduced due to the insulating property of CdTe. Lasing is observed from 85 K to 300 K covering a wavelength range of 3.3–4.2 μm. The best laser performance is achieved for quantum well thicknesses of 20 nm. At low temperature, the threshold power is around 100 mWP and the output power more than 700 mWP. The significance of various charge carrier loss mechanisms are analyzed by modeling the device performance. Although Auger losses are quite low in IV–VI semiconductors, an Auger coefficient of CA = 3.5 × 10−27 cm6 s−1 was estimated for the laser structure, which is attributed to the large conduction band offset.

  18. Nanopillar array band-edge laser cavities on silicon-on-insulator for monolithic integrated light sources

    Science.gov (United States)

    Lee, Wook-Jae; Kim, Hyunseok; Farrell, Alan C.; Senanayake, Pradeep; Huffaker, Diana L.

    2016-02-01

    A simple and unique laser scheme comprised of a finite-size nanopillar array on a silicon-on-insulator grating layer is introduced for realizing an on-chip monolithically integrated light source. A photonic band-edge mode, confined by the grating substrate in the vertical direction, shows a quality factor as high as 4000. We show that the proposed laser cavity allows direct coupling into a waveguide, which is essential for monolithic integration. In addition, III-V semiconductor nanopillars are grown on a silicon-on-insulator grating substrate in order to demonstrate the feasibility of epitaxy on 3D surfaces. These results provide a practical solution for on-chip integration of a monolithic light source.

  19. Linear and nonlinear resonance features of an erbium-doped fibre ring laser under cavity-loss modulation

    Indian Academy of Sciences (India)

    Aditi Ghosh; R Vijaya

    2014-07-01

    The continuous-wave output of a single-mode erbium-doped fibre ring laser when subjected to cavity-loss modulation is found to exhibit linear as well as nonlinear resonances. At sufficiently low driving amplitude, the system resembles a linear damped oscillator. At higher amplitudes, the dynamical study of these resonances shows that the behaviour of the system exhibits features of a nonlinear damped oscillator under harmonic modulation. These nonlinear dynamical features, including harmonic and subharmonic resonances, have been studied experimentally and analysed with the help of a simple time-domain and frequency-domain information obtained from the output of the laser. All the studies are restricted to the modulation frequency lying in a regime near the relaxation oscillation frequency.

  20. Laser cooling of MgCl and MgBr in theoretical approach

    International Nuclear Information System (INIS)

    Ab initio calculations for three low-lying electronic states (X2Σ+, A2Π, and 22Π) of MgCl and MgBr molecules, including spin-orbit coupling, are performed using multi-reference configuration interaction plus Davidson correction method. The calculations involve all-electronic basis sets and Douglas–Kroll scalar relativistic correction. Spectroscopic parameters well agree with available theoretical and experimental data. Highly diagonally distributed Franck-Condon factors f00 for A2Π3/2,1/2 (υ′ = 0) → X2Σ+1/2 (υ″ = 0) are determined for both MgCl and MgBr molecules. Suitable radiative lifetimes τ of A2Π3/2,1/2 (υ′ = 0) states for rapid laser cooling are also obtained. The proposed laser drives A2Π3/2 (υ′ = 0) → X2Σ+1/2 (υ″ = 0) transition by using three wavelengths (main pump laser λ00; two repumping lasers λ10 and λ21). These results indicate the probability of laser cooling MgCl and MgBr molecules