WorldWideScience

Sample records for cavity ionization chambers

  1. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  2. Influence of water vapor on the ionization of air in the case of a cavity chamber

    International Nuclear Information System (INIS)

    Niatel, M.-T.

    1975-01-01

    Former measurements of ionization current produced in moist air by X rays led to propose a variation curve for W (mean energy expended in air per ion pair formed) as a function of the amount of water vapor in air. This curve is used here to predict the ionization current for a cavity chamber exposed to γ rays. The predictions are in agreement with measurements recently made in two other laboratories [fr

  3. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  4. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.

    2000-01-01

    It is necessary to obtain precise values of signal currents for the measurement of exposure rates for gamma rays with cavity ionization chambers. Signal currents are usually expected to have the same absolute values for both polarities of applied voltages. In the case of cylindrical cavity ionization chambers, volume recombination loss of ion pairs depends on the polarity of the applied voltage. This is because the values of mobility are different for positive and negative ions. It was found, however, that values of signal currents from a cylindrical ionization chamber change slightly more with a negative than with a positive applied voltage, even after being corrected for volume recombination loss. Moreover, absolute values of saturation currents, which are obtained by extrapolation of correction of initial recombination and diffusion loss, were larger for the negative than for the positive applied voltage. It is known from an experiment with parallel plate ionization chambers that when negative voltage is applied to the repeller electrode, the saturated signal current decreases with an increase in the applied voltage. This is because secondary electrons are accelerated and the stopping power of air for these electrons decreases. When positive voltage is applied, the reverse is true. The effects of acceleration and deceleration of secondary electrons by the electric field thus seem to cause a tendency opposite to the experimental results on the signal currents from cylindrical ionization chambers. The experimental results for the cylindrical ionization chamber can be explained as follows. When negative voltage is applied, secondary electrons are attracted to the central (collecting) electrode. Consequently, the path length of the trajectories of these secondary electrons in the ionization volume increases and signal current increases. The energy gain from the electric field by secondary electrons which stop in the ionization chamber also contributes to the

  5. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  6. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  7. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  8. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  9. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  10. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  11. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  12. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2010-01-01

    resolution and high sensitivity are necessary. For exact dosimetry which is done using ionization chambers (ICs), the recombination taking place in the IC has to be known. Up to now, recombination is corrected phenomenologically and more practical approaches are currently used. Nevertheless, Jaff´e's theory...... of columnar recombination was designed to model the detector efficiency of an ionization chamber. Here, we have shown that despite the approximations and simplification made, the theory is correct for the LETs typically found in clinical radiotherapy employing particles from protons to carbon ions...

  13. A liquid ionization chamber using tetramethylsilane

    International Nuclear Information System (INIS)

    Engler, J.; Keim, H.

    1983-12-01

    First results with a liquid ionization chamber using tetramethylsilane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. (orig.) [de

  14. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  15. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  16. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  17. Quantification of static magnetic field effects on radiotherapy ionization chambers

    Science.gov (United States)

    Agnew, J.; O'Grady, F.; Young, R.; Duane, S.; Budgell, G. J.

    2017-03-01

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  18. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  19. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  20. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  1. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  2. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Sugiarto, S.

    1976-01-01

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO 2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  3. Amplifier Design for Proportional Ionization Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. H.

    1950-08-24

    This paper presents the requirements of a nuclear amplifier of short resolving time, designed to accept pulses of widely varying amplitudes. Data are given which show that a proportional ionization chamber loaded with a 1,000-ohm resistor develops pulses of 0.5 microsecond duration and several volts amplitude. Results indicate that seven basic requirements are imposed on the amplifier when counting soft beta and gamma radiation in the presence of alpha particles, without absorbers. It should, (1) have a fast recovery time, (2) have a relatively good low frequency response, (3) accept pulses of widely varying heights without developing spurious pulsed, (4) have a limiting output stage, (5) preserve the inherently short rise time of the chamber, (6) minimize pulse integration, and (7) have sufficient gain to detect the weak pulses well below the chamber voltage at which continuous discharge takes place. The results obtained with an amplifier which meets these requirements is described. A formula is derived which indicates that redesign of the proportional ionization chamber might eliminate the need for an amplifier. This may be possible if the radioactive particles are collimated parallel to the collecting electrode.

  4. Ionization chamber for high dose measurements

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de Araujo

    2005-01-01

    Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60 Co gamma source with activity of TBq to P Bq (k Ci to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm 3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60 Co gamma industrial plant. Nitrogen and argon gas at pressure of 10 exp 5 Pa (1 bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma

  5. Individual dosemeter with ionization chamber for intervention

    International Nuclear Information System (INIS)

    Prigent, M.

    1982-01-01

    The altogether intervention ratemeter-dosemeter is a device for work condition control and for dosimetry of intervention gang in hostile medium. A portable irradiation marker with ionization chamber either carried by staff, either put at the work post, delivers an information function of the surrounding irradiation field in which moves the intervention staff. The information is processed so as the absorbed dose rate and the absorbed dose are given simultaneously. The connection between the marker and the process device is made by a cable (up to 100m) or by radio link [fr

  6. Smart ionization chamber for gamma-ray monitoring

    Directory of Open Access Journals (Sweden)

    Drndarević Vujo R.

    2014-01-01

    Full Text Available A design and implementation of a smart ionization chamber suitable for connection into gamma radiation monitoring networks is presented in this paper. The smart ionization chamber consists of air-equivalent one liter ionization chamber with associated electronics and a built-in memory for storage of electronic data specifications. Generally, operating and measurement characteristics of the used ionization chamber are written into the memory chip attached to the chamber. A microcontroller-based data acquisition system with a mixed-mode interface has been implemented for the purpose of reading electronic data specifications from the memory chip, and for configuration and interfacing of the ionization chamber to the monitoring network using plug-and-play concept. The details of smart ionization chamber implementation and test results are included in the paper. [Projekat Ministarstva nauke Republike Srbije, br. TR36047 i br. TR32043

  7. Pressurized air ionization chamber with aluminium walls for radiometric dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Netto, T.G.

    1996-01-01

    A pressurized air ionization chamber with 23 cm 3 and aluminium walls is evaluated concerning its sensitiveness in low exposure rate. Considering conventional ionization chambers, this chamber shows a better performance since the air pressure of 2500 kPa minimizes the energy dependence to less than 5% between 40 and 1.250 keV

  8. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  9. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  10. Development of a large position-sensitive gas ionization chamber

    International Nuclear Information System (INIS)

    Adler, L.; Rogers, R.

    1977-01-01

    The basic design of a position-sensitive gas ionization chamber is described. It spans an angle of 97 0 and fits inside at 15'' radius scattering chamber. Construction features and preliminary performance data are discussed. 2 figures, 1 table

  11. Angular dependence of the parallel plate ionization chambers of Ipen

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.

    1989-08-01

    The ionization chambers with parallel plates designed and constructed at IPEN for the dosimetry of soft X-radiation fields were studied in relation to thein angular dependence between O and +- 90 0 . The objective of this study is to verify the chambers response variation for small positioning errors during the field dosimetry used in Radiotherapy. The results were compared with those of commercial parallel plate ionization chambers used as secondary and testiary standards. (author) [pt

  12. Angular dependence of IPEN parallels plates ionization chambers

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.; Caldas, L.V.E.

    1989-01-01

    The angular dependence of parallel plates ionization chambers for X-radiation of low energy is studied, aiming at the correction of any influence that may occur, due to positioning. The national fabrication chambers behaviour is evaluated and the results are compared with imported similar chambers. (C.G.C.) [pt

  13. Characterization of a homemade ionization chamber for radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Santos, Gelson P. dos, E-mail: gpsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Xavier, Marcos, E-mail: mxavier@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.br [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, 50740-540 Recife (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil)

    2012-07-15

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of {sup 60}Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. - Highlights: Black-Right-Pointing-Pointer A homemade ionization chamber was studied for routine use in radiotherapy. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer This chamber was compared to commercial ones and the results were similar. Black-Right-Pointing-Pointer This chamber is suitable for calibration procedures in {sup 60}Co beams.

  14. Time expansion chamber and single ionization cluster measurement

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1978-10-01

    The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level

  15. Performance of ionization chambers in X radiation beams, radioprotection level

    International Nuclear Information System (INIS)

    Bessa, Ana C.M.; Potiens, Maria da Penha A.; Caldas, Linda V.E.

    2005-01-01

    Narrow beams, radioprotection level, were implanted in an X ray system, based on ISO 4037-1, as recommended by IAEA (SRS 16). Energy dependency tests were carried out and short-term stability in ionization chambers for use in radiation protection of trademark Physikalisch-Technische Werkstaetten (PTW), 32002 and 23361 models. The ionization chambers were studied with regard to short-term stability within the program of quality control of the laboratory, with a 90 Sr + 90 Y. The results of the short-term stability test were compared with the recommendations of IEC 60731, respect to dosemeters used in radiotherapy, since this standard presents the more restrictive limits with regard to the behaviour of ionization chambers. All cameras showed results within the limits recommended by this standard. With respect to the energy dependency of the response, the model Chamber 32002 presented a maximum dependence of only 2.7%, and the model Chamber 23361, 4.5%

  16. A pressurized ionization chamber dose ratemeter for enviromental radiation measaurement

    International Nuclear Information System (INIS)

    Yue Qingyu; Jin Hua

    1986-01-01

    The dose ratemeter, mainly used for measuring absorbed doserate of environmental gamma radiation and the charged particle components of cosmic-rays in f ree-air , consists of an energy compensated spherical pressurized ionization chamber, a MOS electrometer and a digital voltmeter. The flat energy response of the pressurized ionization chamber ranges from 60 keV to 1250 keV. It has good stability and higher sensitivity, and weights 6 kg

  17. Saturation curves of Tandem ionization chambers for Hp(10) measurement

    International Nuclear Information System (INIS)

    Vivolo, Vitor; Caldas, Linda V.E.

    2005-01-01

    It is very important that the radiation detectors measure doses with high precision and accuracy. The verification of the standard dosemeters such as ionization chambers is a very important step in quality control programs of calibration laboratories and in radioprotection procedures. In this work the polarity effect and ionic recombination of two ionization chambers were studied. Saturation curves were obtained using two identical in shape, parallel-plate ionization chambers developed at IPEN (radioprotection level), with collecting electrodes made of different materials (to obtain different energy dependences of their responses) in standard X radiation beams of low and medium energies. The tests were performed following international standard recommendations (IEC 60731). The results show that both ionization chambers were approved in the tests; the variation on the readings were lower than 1%, for bias voltage between - 400V and + 400V. The results of the polarity tests of the ionization chambers show that the response variation is within the standard IEC 60731 limits. The determined ionic recombination agrees with the recommendation of IAEA (TRS 398). Therefore, the ionization chambers tested in this work were approved. (author)

  18. Evaluation of the operational characteristics of a CT ionization chamber

    International Nuclear Information System (INIS)

    Maia, Ana F.; Caldas, Linda V.E.

    2006-01-01

    The most common ionization chamber used in computed tomography dosimetry is the 'pencil ionization chamber'. It is a special cylindrical dosimeter developed for attending computed tomography beams particularities. In this study, a Victoreen pencil ionization chamber was submitted to a set of tests for a detailed evaluation of its operational characteristics. Such as many kinds of detectors, especially field instruments, this ionization chamber had originally a preamplifier to keep it electrically more stable. In this study, the performance of the chamber was analyzed with the original preamplifier and after its removal, and the results were compared. The objective of the preamplifier removal was to enable connecting the chamber to other kinds of electrometers available in laboratories. The behavior of the pencil ionization chamber before and after the removal of the preamplifier was very similar, and the results obtained were always within the limits of international recommendations. The results obtained in both situations allow, if necessary, the preamplifier removal of the system without lack of precision in the measurements

  19. Ionization chambers for X-ray exposure devices

    International Nuclear Information System (INIS)

    1988-01-01

    The basic dimensions are given of ionization chambers with and without preamplifier such as are used in medical X-ray diagnosis for automatic exposure during radiography. Rated dimensions, and maximum area permeable for X-ray radiation are given for both types. Preferable choice of chamber is given for different diagnostic installations. (E.S.). 2 figs., 2 tabs

  20. Comparative study between ionization chambers with parallel plates

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Batistella, M.A.; Caldas, L.V.E.

    1988-01-01

    The main characteristics of an ionization chamber with parallel plates, constructed at IPEN, as reprodutibility, long term stability and energy dependence, were compared with those of commercial chambers of the same type, exposing them to standard fields of low energy X-radiation and beta radiation of 90 Sr+ 90 Y. (author) [pt

  1. Characterisation of an ionization chamber of the radioisotope metrology laboratory

    International Nuclear Information System (INIS)

    Bocca, Gabriel R.; Iglicki, Flora A.

    1999-01-01

    The sensitivity as a function of the photon energy up to 1.9 MeV has been studied for a special ionization chamber (50 cm length, stainless steel, high pressure Ar). The response of the chamber to 16 of the most frequently used radionuclides has been also determined. (author)

  2. Laboratory implantation for well type ionization chambers calibration

    International Nuclear Information System (INIS)

    Vianello, E.A.; Dias, D.J.; Almeida, C.E. de

    1998-01-01

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  3. Characterization of a CT ionization chamber for radiation field mapping

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Vivolo, Vitor, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Xavier, Marcos, E-mail: mxavier@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: hjkhoury@gmail.com [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, 50740-540, Recife, PE (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil)

    2012-07-15

    A pencil-type ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares (IPEN), was characterized with the objective to verify the possibility of its application in radiation field mapping procedures. The characterization tests were evaluated, and the results were satisfactory. The results obtained for the X radiation field mapping with the homemade chamber were compared with those of a PTW Farmer-type chamber (TN 30011-1). The maximum difference observed in this comparison was only 1.25%, showing good agreement. - Highlights: Black-Right-Pointing-Pointer A new ionization chamber was made and tested for radiation field mapping. Black-Right-Pointing-Pointer This ionization chamber was made using only accessible low cost materials. Black-Right-Pointing-Pointer The operational tests were made and the results were within the recommended limits. Black-Right-Pointing-Pointer The field map was compared with a commercial chamber presenting a 1.25% difference. Black-Right-Pointing-Pointer Our chamber presents potential for assurance reliability in calibration procedures.

  4. Characterization of a free air ionization chamber for low energies

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: mxavier@ipen.br, E-mail: vivolo@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition. (author)

  5. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  6. Gridded Ionization Chamber; Camara de ionizacion con reja

    Energy Technology Data Exchange (ETDEWEB)

    Manero Amoros, F.

    1962-07-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs.

  7. Experimental and calculated calibration of ionization chambers with air circulation

    CERN Document Server

    Peetermans, A

    1972-01-01

    The reports describes the method followed in order to calibrate the different ionization chambers with air circulation, used by the 'Health Physics Group'. The calculations agree more precisely with isotopes cited previously (/sup 11/C, /sup 13/N, /sup 15/O, /sup 41 /Ar, /sup 14/O, /sup 38/Cl) as well as for /sup 85/Kr, /sup 133/Xe, /sup 14/C and tritium which are used for the experimental standardisation of different chambers.

  8. Segmented ionization chambers for beam monitoring in hadrontherapy

    Science.gov (United States)

    Braccini, Saverio; Cirio, Roberto; Donetti, Marco; Marchetto, Flavio; Pittà, Giuseppe; Lavagno, Marco; La Rosa, Vanessa

    2015-06-01

    Segmented ionization chambers represent a good solution to monitor the position, the intensity and the shape of ion beams in hadrontherapy. Pixel and strip chambers have been developed for both passive scattering and active scanning dose delivery systems. In particular, strip chambers are optimal for pencil beam scanning, allowing for spatial and time resolutions below 0.1 mm and 1 ms, respectively. The MATRIX pixel and the Strip Accurate Monitor for Beam Applications (SAMBA) detectors are described in this paper together with the results of several beam tests and industrial developments based on these prototypes.

  9. A correction to Birks' Law in liquid argon ionization chamber simulations for highly ionizing particles

    International Nuclear Information System (INIS)

    Burdin, Sergey; Horbatsch, Marko; Taylor, Wendy

    2012-01-01

    We present a study of the performance of Birks' Law in liquid argon ionization chamber simulations as applied to highly ionizing particles, such as particles with multiple electric charges or with magnetic charge. We used Birks' Law to model recombination effects in a GEANT4 simulation of heavy ions in a liquid argon calorimeter. We then compared the simulation to published heavy-ion data to extract a highly ionizing particle correction to Birks' Law.

  10. Calibration of ionization chamber and GM counter survey meters, (1)

    International Nuclear Information System (INIS)

    Bingo, Kazuyoshi; Kajimoto, Yoichi; Suga, Shin-ichi

    1978-01-01

    Three types of ionization chamber survey meters and a type of GM counter survey meter were calibrated for measuring the β-ray absorbed dose rate in a working area. To estimate the β-ray absorbed dose rate, a survey meter was used without and with a filter. A reading of survey meter's indicator measured with the filter was subtracted from a reading measured without the filter, and then the absorbed dose rate was obtained by multiplying this remainder by a conversion coefficient. The conversion coefficients were roughly constant with distance more than 8 cm (ionization chamber survey meters) and with distance more than 5 cm (GM counter survey meter). The conversion coefficient was dependent on β-ray energies. In order to measure the absorbed dose rate of tissue whose epidermal thickness is 40 mg/cm 2 , the constant value, 4 (mrad/h)/(mR/h), was chosen independently of β-ray energies as the conversion coefficient of three types of ionization chamber survey meters. The conversion coefficient of the GM counter survey meter was more energy dependent than that of every type of ionization chamber survey meter. (author)

  11. Automatic control system for measuring currents produced by ionization chambers

    International Nuclear Information System (INIS)

    Brancaccio, Franco

    2002-01-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for 18 F and 153 Sm were obtained, making possible to determine activities of these radionuclides. (author)

  12. Pressurized rf cavities in ionizing beams

    Directory of Open Access Journals (Sweden)

    B. Freemire

    2016-06-01

    Full Text Available A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF_{6} and O_{2} were measured.

  13. An innovative ionization chamber based on conducting polymer electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luiz Antonio P. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil)]. E-mail: lasantos@cnen.gov.br; Araujo, Elmo S.; Amazonas, Irami B. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail: esa@ufpe.br; Azevedo, Walter M. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Quimica Fundamental]. E-mail: wma@ufpe.br

    2005-07-01

    A parallel-plate ionization chamber was developed to be used as detector for X-ray radiation measurements. The innovation here is the fact that there are no graphite or metallic electrodes as usually, but the proposed radiation detector was built with polyaniline (PANI) conducting polymer instead. A PANI thin film was chemically deposited on the surface of poly(methyl methacrylate) (PMMA) substrate. The PMMA layer can minimize the radiation beam attenuation effects and make the detector more robust. An HF-160 PANTAK unit was used to generate X-ray beam from 40 kV to 140 kV potentials. A Flip-flop electrometer was used as current read-out system. The results from proposed ionization chamber were compared with a PTW2532 standard ionization chamber. Preliminary results such as energy dependence and saturation curves have already been presented recently and here is presented additional results: angular dependence and some results concerning repeatability of the device under working circumstance and its response when the dose rate is changed. The results strongly indicate that the developed ion chamber can be used in diagnostic X-ray range for dosimetry applications. (author)

  14. Design and construction of a radiation monitor with ionization chamber

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1994-01-01

    The design and construction of a portable radiation monitor with ionization chamber for gamma and x rays measurements in the range from 40 KeV to 2 MeV are described in detail. The monitor is calibrated to give the exposure rate in Roentgens/hour in three linear ranges: 0-25 mR/h, 0-250 mR/h and 0-2500 mR/h for an ionization chamber with a sensitive volume of 600 cubic centimeters. Two conventional 9 V alkaline batteries are used to energize the monitor. The small current coming from the ionization chamber is measured by an operational amplifier with electrometer characteristics. The high voltage power supply to bias the chamber is made with a blocking oscillator and a ferrite transformer. Starting form a discussion of the desired characteristics of the monitor, the technical specifications are established. The design criteria for every section are shown. The testing procedures used to qualify every block and the results for three units are reported. (Author)

  15. Ionization chambers for the TRIUMF parity violation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Roy, G.; Korkmaz, E.; Green, P.W.; Soukup, J. [and others

    1993-10-01

    Transverse field ionization chambers (TRICs) have been constructed and tested for the TRIUMF parity violation experiment, which will measure the longitudinal polarization asymmetry A{sub z} in p-p elastic scattering at 230 MeV to an accuracy of {+-} 2x10{sup -8}. In order to obtain this accuracy, detector currents from ionization chambers rather than individual scattered protons will be measured. A universal curve was obtained for the TRIC response, when the normalized output was plotted versus applied voltage/pressure/{radical}beam current. Statistical fluctuations in the TRIC output are mainly due to spallation products from the entrance windows, delta rays, and space charge effects. The TRICs have been designed to minimize these effects. Fluctuations were measured by comparing the signals from two collector plates; results show that the required statistical accuracy can be obtained in 300 hours at a proton beam current of 500 nanoamps with a 40 cm LH2 target.

  16. Ionization chambers for the TRIUMF parity violation experiment

    International Nuclear Information System (INIS)

    Roy, G.; Korkmaz, E.; Green, P.W.; Soukup, J.

    1993-01-01

    Transverse field ionization chambers (TRICs) have been constructed and tested for the TRIUMF parity violation experiment, which will measure the longitudinal polarization asymmetry A z in p-p elastic scattering at 230 MeV to an accuracy of ± 2x10 -8 . In order to obtain this accuracy, detector currents from ionization chambers rather than individual scattered protons will be measured. A universal curve was obtained for the TRIC response, when the normalized output was plotted versus applied voltage/pressure/√beam current. Statistical fluctuations in the TRIC output are mainly due to spallation products from the entrance windows, delta rays, and space charge effects. The TRICs have been designed to minimize these effects. Fluctuations were measured by comparing the signals from two collector plates; results show that the required statistical accuracy can be obtained in 300 hours at a proton beam current of 500 nanoamps with a 40 cm LH2 target

  17. Proton-therapy and hadron-therapy ionization chambers

    International Nuclear Information System (INIS)

    Boissonnat, Guillaume

    2015-01-01

    In the framework of the ARCHADE project (Advanced Resource Center for Hadron-therapy in Europe), a research project in Carbone ion beam therapy and clinical Proton-therapy, this work investigates the beam monitoring and dosimetry aspects of ion beam therapy. The main goal, here, is to understand the operating mode of air ionization chambers, the detectors used for such applications. This study starts at a very fundamental level as the involved physical and chemical parameters of air were measured in various electric field conditions with dedicated setups and used to produce a simulation tools aiming at reproducing the operating response in high intensity PBS (Pencil Beam Scanning) coming from IBA's (Ion Beam Applications) next generation of proton beam accelerators. In addition, an ionization chamber-based dosimetry equipment was developed, DOSION III, for radiobiology studies conducted at GANIL under the supervision of the CIMAP laboratory. (author)

  18. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    Garcia, S.; Cecatti, E.R.

    1984-01-01

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author) [pt

  19. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  20. Electrical design considerations for a 40MHz gas ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Datte, P.; Manfredi, P.F.; Millaud, J.E.; Turner, W.C.; Placidi, M.; Ratti, L.; Speziali, V.; Traversi, G.

    2001-06-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction ({approx}235W at design luminosity 1034cm-2s-1). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chambers is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chamber must be capable of resolving individual bunch crossings at 40MHz. The ionization chamber is segmented into quadrants; each quadrant consists of sixty (40x40)mm2 Cu plates 1.0mm thick, with 0.5mm gaps. The 0.5mm gap width has been chosen so that the time for the ionization electrons to drift across the gap, is short enough to produce at the output of the shaping amplifier, a signal that returns to the base line is less than the 25ns bunch spacing of the LHC. From noise considerations in the presence of a cable the stack of plates are connected electrically 10 in parallel, 6 in series to achieve an equivalent detector capacitance Cd{approx}50pF. This type connection forms an electrode inductive Le and electrode capacitive Ce network that must be optimized to transfer charge from the chamber to the sensing amplifier. This paper describes the design of the collection electrodes optimized for 40 MHz operation.

  1. Study of the replacement correction factors for ionization chamber dosimetry by Monte Carlo simulations

    Science.gov (United States)

    Wang, Lilie

    In ionization chamber radiation dosimetry, the introduction of the ion chamber into medium will unavoidably distort the radiation field near the chamber because the chamber cavity material (air) is different from the medium. A replacement correction factor, Prepl was introduced in order to correct the chamber readings to give an accurate radiation dose in the medium without the presence of the chamber. Generally it is very hard to measure the values of Prepl since they are intertwined with the chamber wall effect. In addition, the P repl values always come together with the stopping-power ratio of the two media involved. This makes the problem of determining the P repl values even more complicated. Monte Carlo simulation is an ideal method to investigate the replacement correction factors. In this study, four different methods of calculating the values of Prepl by Monte Carlo simulation are discussed. Two of the methods are designated as 'direct' methods in the sense that the evaluation of the stopping-power ratio is not necessary. The systematic uncertainties of the two direct methods are estimated to be about 0.1-0.2% which comes from the ambiguous definition of the energy cutoff Delta used in the Spencer-Attix cavity theory. The two direct methods are used to calculate the values of P repl for both plane-parallel chambers and cylindrical thimble chambers in either electron beams or photon beams. The calculation results are compared to measurements. For electron beams, good agreements are obtained. For thimble chambers in photon beams, significant discrepancies are observed between calculations and measurements. The experiments are thus investigated and the procedures are simulated by the Monte Carlo method. It is found that the interpretation of the measured data as the replacement correction factors in dosimetry protocols are not correct. In applying the calculation to the BIPM graphite chamber in a 60Co beam, the calculated values of P repl differ from those

  2. Numerical solutions of differential equations of an ionization chamber: plane-parallel and spherical geometry

    International Nuclear Information System (INIS)

    Novkovic, D.; Tomasevic, M.; Subotic, K.

    1998-01-01

    A system of reduced differential equations generally valid for plane-parallel, cylindrical and spherical ionization chambers, which is appropriate for numerical solution, has been derived. The system has been solved numerically for plane-parallel and spherical ionization chambers filled with air. The comparison of the calculated results of Armstrong and Tate, for plane-parallel ionization chambers, and Sprinkle and Tate, for spherical ionization chambers, with the present calculations has shown a good agreement. The calculated values for ionization chambers filled with CO 2 were also in good agreement with the experimental data of Moriuchi et al. (author)

  3. Status of ionization chambers calibration for radiation therapy in Brazil

    Science.gov (United States)

    Gonçalves, M.; Joana, G.; Leal, P.; Vasconcelos, R.; do Couto, N.; Teixeira, F. C.; Soares, A. D.; Santini, E. S.; Salata, C.

    2018-03-01

    CNEN makes a constant effort to keep updated with international standards and national needs to strengthen the radiological protection status of the country. The guidelines related to radiation treatment facilities have been revised in the last five years in order to take in consideration the most relevant aspects of the growing technology as well as to mitigate the accidents or incidents observed in practice. Hence, clinical dosimeters have gained special importance as significant items in Brazilian regulation. In the present work we discuss the importance of inspections from the point of view of equipment dosimetry and instruments quality control. The dosimeter sets based on thimble and well ionization chambers need periodic calibration, and this calibration becomes a fundamental task in order to guarantee the dose prescribed-delivered to patients. Thus Brazilian guidelines enforce the need of at least two sets of clinical dosimeters with thimble chambers calibrated and one set of electrometer with well ionization chamber for hdr equipment. We call attention to the fact that inspections are a very valuable tool in order to enforce the application of guidelines around the country both by enlightening the weaker aspects of facilities concerning radiological protection and by stating in loco that reasons which lead the regulatory body to enforce such guidelines items.

  4. Establishment of a tandem ionization chamber system in standard mammography beams

    International Nuclear Information System (INIS)

    Silva, Jonas O. da; Caldas, L.V.E.

    2011-01-01

    A double-faced tandem ionization chamber system was developed at the Calibration Laboratory of IPEN. It has different collecting electrode materials: aluminium and graphite. The response repeatability and reproducibility and the energy dependence test of this tandem ionization chamber were evaluated. The chamber response stability is within the ±3% limit recommended in international standards. The energy dependence test of the ionization chamber system using the tandem curve obtained, presented agreement with literature results. (author)

  5. Evaluation of the energy dependence of ionization chambers pencil type calibrated beam tomography standards

    International Nuclear Information System (INIS)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha A.

    2015-01-01

    The Instrument Calibration Laboratory of IPEN (LCI - IPEN) performs calibrations of pencil-type ionization chambers (IC) used in measures of dosimetric survey on clinical systems of Computed Tomography (CT). Many users make mistakes when using a calibrated ionization chamber in their CT dosimetry systems. In this work a methodology for determination of factors of correction for quality (Kq) through the calibration curve that is specific for each ionization chamber was established. Furthermore, it was possible to demonstrate the energy dependence on an pencil-type Ionization Chamber(IC) calibrated at the LCI - IPEN. (author)

  6. Characteristics of Noble Gas-filled Ionization Chambers for a Low Dose Rate Monitoring

    International Nuclear Information System (INIS)

    Kim, Han Soo; Park, Se Hwan; Ha, Jan Ho; Lee, Jae Hyung; Lee, Nam Ho; Kim, Jung Bok; Kim, Yong Kyun; Kim, Do Hyun; Cho, Seung Yeon

    2007-01-01

    An ionization chamber is still widely used in fields such as an environmental radiation monitoring, a Radiation Monitoring System (RMS) in nuclear facilities, and an industrial application due to its operational stability for a long period and its designs for its applications. Ionization chambers for RMS and an environmental radiation monitoring are requested to detect a low dose rate at as low as 10-2 mR/h and several 3R/h, respectively. Filling gas and its pressure are two of the important factors for an ionization chamber development to use it in these fields, because these can increase the sensitivity of an ionization chamber. We developed cylindrical and spherical ionization chambers for a low dose rate monitoring. Response of a cylindrical ionization chamber, which has a 1 L active volume, was compared when it was filled with Air, Ar, and Xe gas respectively. Response of a spherical ionization chamber was also compared in the case of 9 atm and 25 atm filling-pressures. An inter-comparison with a commercially available high pressure Ar ionization chamber and a fabricated ionization chamber was also performed. A High Pressure Xenon (HPXe) ionization chamber, which was configured with a shielding mesh to eliminate an induced charge of positive ions, was fabricated both for the measurement of an environmental dose rate and for the measurement of an energy spectrum

  7. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  8. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed

  9. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  10. Development of special ionization chambers for a quality control program in mammography

    International Nuclear Information System (INIS)

    Silva, Jonas Oliveira da

    2013-01-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  11. Contribution to the measurement of β absorbed dose. Attempt for interpreting the main anomalies in the operation of a variable cavity chamber and methodological consequences

    International Nuclear Information System (INIS)

    Hillion, Philippe.

    1976-11-01

    The absorbed dose characterization of primary reference beta sources necessitates the use of a particular ionization chamber: the variable-cavity chamber, or extrapolation chamber. On account of the β particles energy distributions, such an instrument must satisfy to precise physical constraints, concerning the definition of the collecting volume as well as the composition of the constituting materials of the chamber. This kind of dosimeter presents however certains anomalies due to polarization phenomena, resulting from the stopping of β particles in insulators and in the collecting electrode. This last effect produces a direct polarization current which adds to the ionization current and whose value is a function of cavity size and applied voltage. After analysis of the behavior of the different charge-carriers present inside the cavity, when a voltage is applied, a working model is proposed to explain the variation of the direct polarization current, and so, to allow a more precise determination of the ionization current. After presenting the variable-cavity chamber constructed at the Laboratoire de Metrologie des Rayonnements Ionisants, the different steps are described for obtaining, from the collected information, the absorbed dose in a given material under fixed conditions. The numerical data presented concern the characterization of a 90 Sr+ 90 Y reference source [fr

  12. A multiwire ionization chamber readout circuit using current mirrors

    International Nuclear Information System (INIS)

    Rawnsley, W.R.; Smith, D.; Moskven, T.

    1997-01-01

    A circuit which utilizes current mirrors has been used to apply high voltage bias to the wires of a multiwire ionization chamber (MWIC) profile monitor while still allowing measurement of the beam-induced ion-electron currents collected on the wires. Bias voltages of up to 250 V have been used while wire currents over a range of 0.5 nA to 50 nA have been measured. The circuit is unipolar but can be designed for positive or negative bias. The mirrors also provide a current gain of 10, reducing the effects of transistor leakage and extending the useful range of the circuit to lower signal levels. A module containing 32 Wilson current mirrors has been constructed and is used with a MWIC monitor in TRIUMF close-quote s Parity experiment beamline. copyright 1997 American Institute of Physics

  13. A model for electron/ion recombination in ionization chambers

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1988-05-01

    The recombination of free electrons and positive ions along charged particle tracks in gases has been modeled using electron tranport equations, which assume homogeneous distribution in the vicinity of the tracks. The equations include space charge terms, which have been negelected in previous models. A formula for the electron yield as a function of detector applied potential is obtained from a perturbation solution valid when the ratio of the Debye length to the charge column radius is larger then unity. When this ratio is very large, the formula reduces to that of previous models. Pulse height measurements in a 3 He ionization chamber indicate 2% to 30% losses to recombination which vary with applied field, particle type, and energy. Using reasonable values for the electron transport coefficients, the calculated loss of signal to recommendation is generally in agreement with experiment, but the variation with applied bias is stronger in the experiment

  14. A longitudinal field multiple sampling ionization chamber for RIBLL2

    International Nuclear Information System (INIS)

    Tang Shuwen; Ma Peng; Lu Chengui; Duan Limin; Sun Zhiyu; Yang Herun; Zhang Jinxia; Hu Zhengguo; Xu Shanhu

    2012-01-01

    A longitudinal field MUltiple Sampling Ionization Chamber (MUSIC), which makes multiple measurements of energy loss for very high energy heavy ions at RIBLL2, has been constructed and tested with 3 constituent α source ( 239 Pu : 3.435 MeV, 241 Am : 3.913 MeV, 244 Cm : 4.356 MeV). The voltage plateau curve has been plotted and-500 V is determined as a proper work voltage. The energy resolution is 271.4 keV FWHM for the sampling unit when 3.435 MeV energy deposited. A Geant4 Monte Carlo simulation is made and it indicates the detector can provide unique particle identification for ions Z≥4. (authors)

  15. Scattering study at free air ionization chamber diaphragm

    International Nuclear Information System (INIS)

    Santos, Alexandre Lo Bianco dos

    2011-01-01

    The maim of this work consisted in the assessment of the correction factor for air kerma, due to scattered radiation in the diaphragm of the free-air ionization chamber model 481. LNMRl measurements were made to acquire x-ray spectra corresponding to the Qualities RQR-M, described in IEC 61627 standards (2005). These spectra were used as input data in the MC simulations. The operational range of energy spectra provide up to 35 keV. This energy range is typically used in diagnostic radiology, although there is not primary standard for air kerma. The determination of this factor is a fundamental process in the primary standardization of the air kerma. These factors were obtained by computer simulation using the Penelope code. The results are k RQR-M1 =0,9946, k RQR -M2 =0,9932, k RQR-M3 =0,9978 and k RQR-M4 =0,9885; with uncertainties of 0,007 and coverage factor equal to 2. lt can be concluded that, with respect to the diaphragm, the chamber can be used in the primary standard of air kerma. (author)

  16. Research on insulating material affecting the property of gas ionization chamber

    International Nuclear Information System (INIS)

    Wang Liqiang; Wang Zhentao; Zheng Jian

    2014-01-01

    The insulating material in ionization chamber affects the internal gas pressure and ionic pulse shape in the research process of the ion drift velocity in high pressure gas ionization chamber. It will affect the ion drift velocity measurement. It is required to isolate by insulating material between electrode to electrode and between electrodes to the shell of gas ionization chamber. Insulating material in gas ionization chamber is indispensable. Therefore it needs to carefully study the insulating material affecting the performance of gas ionization chamber. First of all, it is found that Teflon can slowly adsorb the working gas in ionization chamber, and the gas pressure in it is reduced when we measure the sensitivity of gas ionization chamber over time. It is verified by experiment that insulating materials absorbing and releasing gas is dynamically reversible process. Then the adsorbing gas property of 95% aluminium oxide ceramic and Teflon is studied through experimental comparision. Gas adsorption equilibrium time of ceramic material is faster, generally it is about a few hours, and the gas adsorption capacity is relatively less. Gas adsorption equilibrium time of Teflon is slower, it is about a few days, and the gas adsorption capacity is relatively more. It is found that Teflon will release part of the gas at higher temperature through experimental research on the influence of Teflon adsorbing gas. Finally it is studied that the distribution of insulation in ionization chamber affects the time response speed of ionization chamber by measuring the signal pulse shape of ionization chamber under the pulse X-ray. Through these experimental research, it is presented that it need to pay attention to select insulation material and to design the internal structure and arrangement of insulating material when we design gas ionization chamber. (authors)

  17. A measure method of the time respond function for gas ionization chamber

    CERN Document Server

    Wang Li; Qing Shang Yu

    2002-01-01

    In quick scanning radiography system, the time respond speed of array gas ionization chamber effects the image clarity directly. The author presents a measure method of the time respond function for gas ionization chamber. The image clarity will be improved by inverse convoluting the image data

  18. Search for impurities of counting gases in ionization chambers

    International Nuclear Information System (INIS)

    Hofmann, T.

    1992-03-01

    In order to reach for the gas detectors applied at the ALADIN spectrometer of the GSI an as good as possible and timely remaining gas purity, a study on the kind and effects of impurities in different counting gases was performed. The gas purity was observed via the signal height of an α source after a drift path of the electrons of 50 cm. A steady decrease of the α-signals was measures, the steepness of which decreases slowly as function of the time. The half-life lies in the range of weeks, which lets conclude on a slow outgassing from the materials of the arrangement. By a gas chromatography and mass spectroscopy these impurities could be determined. Beside impurities by polar molecules as water and oxygen from the atmosphere, which are deposed in microscopical capillaries of the chamber materials and then outgassed in the samples after several days so-called softeners could be observed. Because these impurities in the arrangement at the ALADIN spectrometer cannot be avoided, a purification system in the flow-through operation was constructed and its effect tested. The gas quality can by this over several days be kept in the mean constant. In this dynamical process the fluctuations of the signal heights lie at ±0.7%. A ionization chamber as monitor for the gas purity was constructed and tested with different gas mixtures concerning observables like signal height and drift time. By this calibrated monitor in the experiment at the ALADIN spectrometer the gas quality can be independently determined. (orig.) [de

  19. Simulation studies on a prototype ionization chamber for measurement of personal dose equivalent, Hp(10)

    International Nuclear Information System (INIS)

    Cardoso, J.; Oliveira, C.; Carvalho, A.F.

    2005-01-01

    Full text: The Metrological Laboratory of lonizing Radiation and Radioactivity (LMRIR) of Nuclear and Technological Institute (ITN) has designed and constructed a prototype ionization chamber for direct measurement of the personal dose equivalent, H p (10), similar to the developed by the Physikalisch-Technische Bundesanstalt (PTB) and now commercialized by PTW. Tests already performed had shown that the behaviour of this chamber is very close to the PTB chamber, namely the energy dependence for the x-ray radiation qualities of the ISO 4037-1 narrow series N-30, N-40, N-60, N-80, N-100 and N-120 and also for gamma radiation of 137 Cs and 60 Co. However, the results obtained also show a high dependence on the energy for some incident radiation angles and a low magnitude of the electrical response of the ionization chamber. In order to try to optimize the performance of the chamber, namely to decrease the energy dependence and to improve the magnitude of the electrical response of the ionization chamber, the LMRIR initiated numerical simulation of this ionization chamber using a Monte-Carlo method for simulation of radiation transport using, in a first step, the MCNPX code. So, simulation studies of some physical parameters are been performed in order to optimize the response of the ionization chamber, namely the diameter of the central electrode of the ionization chamber, the thickness of the front wall of the ionization chamber, among others. Preliminary results show that probably the actual geometry of the ionization chamber is not yet the optimized configuration. The simulation study will carry on in order to find the optimum geometry. (author)

  20. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  1. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  2. A new method for measuring the response time of the high pressure ionization chamber

    International Nuclear Information System (INIS)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-01-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers. - Highlights: ► A method for measuring response time of high pressure ionization chamber is proposed. ► A pulsed X-ray producer and a digital oscilloscope are used in the method. ► The response time of a 15 atm Xenon testing ionization chamber has been measured. ► The method has been proved to be simple, feasible and effective.

  3. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula

    2013-01-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  4. Ionization efficiency calculations for cavity thermoionization ion source

    International Nuclear Information System (INIS)

    Turek, M.; Pyszniak, K.; Drozdziel, A.; Sielanko, J.; Maczka, D.; Yuskevich, Yu.V.; Vaganov, Yu.A.

    2009-01-01

    The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model

  5. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  6. SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?

    International Nuclear Information System (INIS)

    Wegener, S; Herzog, B; Sauer, O

    2016-01-01

    Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent higher doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.

  7. SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, S; Herzog, B; Sauer, O [University of Wuerzburg, Wuerzburg (Germany)

    2016-06-15

    Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent higher doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.

  8. Stability results of a free air ionization chamber in standard mammography beams

    International Nuclear Information System (INIS)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E.

    2015-01-01

    Free air ionization chambers are absolute dosimeters, because they can measure basic physical quantities directly without the need of their calibration in a standard radiation beam. They are used for measuring exposure and air kerma in X and gamma radiation beams. The Calibration Laboratory (LCI) of IPEN has a free air ionization chamber of the cylindrical type for low energies. The characterization of this ionization chamber was already performed and reported in a previous study. After a modification in the support of the micrometers used for the movement of the internal cylinder devices, the tests were redone. The objective of this work was to present the new alignment protocol of the free air ionization chamber in low energies of X-ray beams of standard mammography qualities, assuring the positioning reproducibility, and new results of stability tests performed with the application of this protocol will be presented. (author)

  9. Specification and tests of three prototypes from tissue-equivalent ionization chamber

    International Nuclear Information System (INIS)

    Teixeira, D.L.; Cardoso, D.O.; Pereira, O.S.; Nobre Filho, L.S.; Cabral, T.S.

    1992-01-01

    Three prototypes of tissue-equivalent ionization chamber are specified and tested. The results obtained by these prototypes are presented, aiming the determination of operation parameters, defined by IEC 395 standard. (C.G.C.)

  10. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.

    1988-01-01

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of γ-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF 3 ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs

  11. Investigating the contamination of accelerated radioactive beams with an ionization chamber at MINIBALL

    CERN Document Server

    Zidarova, Radostina

    2017-01-01

    My summer student project involved the operation and calibration of an ionization chamber, which was used at MINIBALL for investigating and determining the contamination in post-accelerated radioactive beams used for Coulomb excitation and transfer reaction experiments.

  12. Dosimetry of tritium in the atmosphere. Use of the CD.2 type differential ionization chamber

    International Nuclear Information System (INIS)

    Tabot, Leon

    1964-07-01

    After having indicated some characteristics data regarding tritium β - radiation (energy, period, distance travelled by particles), admissible levels in terms of exposure, outlined the difficulty to detect low tritium concentrations, and indicated some characteristics of the ionization chamber and its equipment used to perform this detection, the author reports the study of the operation of the CD.2 differential ionization chamber in static regime (experimental installation, evidence of wall absorption and desorption, calibration) and in dynamic regime (experimental installation, response delay, calibration)

  13. Characteristics of the saturation curve of the ionization chambers in overlapping pulsed beams

    International Nuclear Information System (INIS)

    Park, S.H.; Kim, Y.K.; Kim, H.S.; Kang, S.M.; Ha, J.H.

    2006-01-01

    When a pulsed radiation is incident on an air-filled ionization chamber wherein the primary electrons are rapidly absorbed to become negative ions, it is known that the reciprocal of the ionizing current is linearly proportional to the reciprocal of the polarization voltage in the near saturation region. However, the relationship between the reciprocal of the ionizing current and the reciprocal of the polarization voltage will deviate from a simple linearity when the ion transit time in the ionization chamber is longer than the interval between the radiation pulses. Two thimble-type ionization chambers, one of which was designed and fabricated by us, were employed to measure the saturation curves of the ionization chambers in a pulsed Bremsstrahlung X-ray, which was generated with an electron accelerator. A model was developed to explain the shape of the measured saturation curves in the overlapping pulsed radiation, and the results of it were compared with the measured ones. The dependency of the shape of the saturation curve on the geometrical design of the ionization chambers in the pulsed radiation was discussed

  14. Simulation of the saturation curve of the ionization chamber in overlapping pulsed radiation

    International Nuclear Information System (INIS)

    Park, Se Hwan; Kim, Yong Kyun; Kim, Han Soo; Kang, Sang Mook; Ha, Jang Ho

    2006-01-01

    Procedures for determination of collection efficiency in ionization chambers have been studied by numerous investigators. If the theoretical approach for air-filled ionization chambers exposed to continuous radiation is considered, the result in the near-saturation region is a linear relationship between ) (1/I(V) vs 1/V 2 , where I(V) is the current measured with the ionization chamber at a given polarization voltage V . For pulsed radiation beams, Boag developed a model and the resulted in a linear relationship between ) (1/I(V) and 1/V when the collection efficiency, f , is larger than 0.9. The assumption of the linear relationship of ) (1/I(V) with 1/V or 1/V 2 in the near-saturation region makes the determination of the saturation current simple, since the linear relationship may be determined with only two measured data points. The above discussion of the collection efficiency of the ionization chamber exposed to the pulsed radiation is valid only if each pulse is cleared before the next one occurs. The transit times of the ions in the chamber must be shorter than the time interval between the radiation pulses. Most of the previous works concerning the characteristics of the saturation curve of an ionization chamber in the pulsed beam were done for the case where the transit times of the ions were shorter than the interval between the radiation pulses. However, the experimental data for the intermediate case, where the ion transit time was comparable to the interval between the radiation pulses or the ion transit time was slightly longer than the interval between the radiation pulses, were rare. The saturation curves of the ionization chambers in the pulsed radiation were measured with the pulse beamed electron accelerator at the Korea Atomic Energy Research Institute (KAERI), where the ion transit times in the ionization chambers were longer than the time interval between the radiation pulses. We used two ionization chambers: one was a commercial thimble

  15. Ionization statistics and diffusion: analytical estimate of their contribution to spatial resolution of drift chambers

    International Nuclear Information System (INIS)

    Tarnopolsky, G.J.

    1983-01-01

    The spatial resolution of a drift chamber often is the foremost design parameter. The calculation described here - a design tool - permits us to estimate the contributions of ionization statistics and diffusion to the spatial resolution when actually sampling the drift pulse waveform. Useful formulae are derived for the cylindrical and jet-chamber cell geometries

  16. Recommendations for ionization chamber smoke detectors for commercial and industrial fire protection systems (1988)

    International Nuclear Information System (INIS)

    1989-01-01

    Ionization chamber smoke detectors (ICSDs) utilising a radioactive substance as the source of ionization are used to detect the presence of smoke and hence give early warning of a fire. These recommendations are intended to ensure that the use of ICSDs incorporating radium-226 and americium-241 in commercial/industrial fire protection systems does not give rise to any unnecessary radiation exposure

  17. Pre-evaluation of an ionization chamber for clinical radiotherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P.; Perini, Ana P.; Xavier, Marcos; Caldas, Linda V.E., E-mail: mxavier@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    This work presents some pre-operational tests for characterization of a new homemade ionization chamber developed at the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP). This chamber was designed for use in radiotherapy dosimetry. To study the utilization of this chamber in radiotherapy, some tests were undertaken: short- and medium-term stabilities, saturation curve, recombination loss, polarity effect and leakage current. All results obtained in these tests were within the international recommendations. (author)

  18. Beam tests of ionization chambers for the NuMI neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Zwaska et al.

    2003-09-25

    We have conducted tests at the Fermilab Booster of ionization chambers to be used as monitors of the NuMI neutrino beamline. The chambers were exposed to proton fluxes of up to 10{sup 12} particles/cm{sup 2}/1.56 {micro}s. We studied space charge effects which can reduce signal collection from the chambers at large charged particle beam intensities.

  19. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    International Nuclear Information System (INIS)

    Antonio, Patricia L.; Caldas, Linda V.E.

    2011-01-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  20. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  1. A calibration technique for gas-flow ionization chambers with short half-lived rare gases

    International Nuclear Information System (INIS)

    Yoshida, M.; Oishi, T.; Honda, T.; Torii, T.

    1996-01-01

    A calibration technique for gas-flow ionization chambers was studied for implementation of reliable radioactive gas monitoring. Three radioactive gases with short half-lives of 133 Xe, 135 Xe and 41 Ar were prepared by activating stable isotopes and used for the calibration. On the basis of activity determination by the DLPC method, a gas-flow ionization chamber used as a secondary standard was precisely calibrated in terms of ionization efficiency for each radionuclide. The influence of impurities in the 133 Xe gas on calibration of gas monitoring instruments is also discussed. This technique is considered to make the easy and reliable calibration of gas monitoring instruments possible. (orig.)

  2. Application of a tandem ionization chamber in a quality control program of X-ray beams, radiotherapy level

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Caldas, Linda V.E.

    2008-01-01

    A tandem ionization chamber, developed at the Instituto de Pesquisas Energeticas e Nucleares (IPEN), for X radiation beams, radiotherapy level, was applied into a quality control program of the Calibration Laboratory of IPEN. This ionization chamber is composed by two ionization chambers, with a volume of 0.6 cm 3 each one. Its inner plane-parallel electrodes and guard rings are made of different materials: one is made of aluminum and the other is made of graphite. Because of this difference in materials, the ionization chamber forms a tandem system. The relative response of the calibration factors of both sides of the chamber allows an easy verification of the X-ray beam qualities stability. The ionization chamber was submitted to some tests to verify the stability of its response: leakage current before and after exposure, repeatability and reproducibility. The performance of the ionization chamber was satisfactory. (author)

  3. Influence on measurements of pre-irradiation due to differences in ionization chamber shape or frequency in use

    International Nuclear Information System (INIS)

    Shimono, Tetsunori; Nambu, Hidekazu; Matsubara, Kosuke; Koshida, Kichiro; Gomi, Tsutomu

    2012-01-01

    Ionization chamber measurements in radiation therapy should be repeatedly performed until a stable reading is obtained. Ionization chambers exhibit a response which depends on time elapsed since the previous irradiation. In this study, we investigated the response of a set of two Farmer-style, one Plane parallel, and seven small ionization chambers, which are exposed to 4, 6, 10, and 14 MV. The results show that Farmer-style and Plane parallel ionization chambers settle quickly within 9-20 min. On the other hand, small ionization chambers exhibit settling times of 12-33 min for 6, 10, and 14 MV. It will take longer for a settling time of 4 MV. The settling time showed time dependent irradiation. The first reading was up to 0.76% lower in the Farmer-style and Plane parallel ionization chambers. The small ionization chambers had a 2.60% lower first reading and more gradual response in reaching a stable reading. In this study, individual ionization chambers can vary significantly in their settling behavior. Variation of the responses on ionization chambers were confirmed not only when radiation was not used for a week but also when it was halted for a month. Pre-irradiation of small ionization chambers is clearly warranted for eliminating inadvertent error in the calibration of radiation beams. (author)

  4. Measurement of air kerma rate for Cs-137 using different ionization chambers

    International Nuclear Information System (INIS)

    Mohammed, K. T. A.

    2013-07-01

    Due to the importance of radiation doses in medical field quality assurance should be established in order to maintain a reasonable balance between the purpose of application and exposure. This study had been carried out to achieve quality control for protection based on air kerma rate. Measurements were performed by using Cs-137 for the comparison of two working ionization chambers in secondary standard dosimetry laboratory of Sudan. Spherical ionization chamber L S-01 1000 cc S/N 912 and Farmer ionization chamber 2675 A 600 cc S/N 0511, respectively. The results obtained from this study have been represented as mean and their standard deviations shown in most cases remains at 5% uncertainly. Comparison between kinetic energy released per unit mass in air rate (air kerma rate) were obtained by using spherical ionization chamber L S-01 1000 cc S/N 912 and results have been determined using inverse square law. The differences have been represented as means and standard deviations with significant P-value less than 0.05. Spherical ionization chamber gives accurate, reproducible results with acceptable uncertainty which is more suitable for calibration of radiation detectors.(Author)

  5. Evaluation of a plane-parallel ionization chamber for low-energy radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E., E-mail: aperini@ipen.br, E-mail: lpneves@ipen.br, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    A plane-parallel ionization chamber, with a sensitive volume of 6.3 cm{sup 3}, developed at the Calibration Laboratory of IPEN (LCI), was utilized to verify the possibility of its application in low-energy X-ray beam qualities for radiotherapy (T-qualities). This homemade ion chamber was manufactured using polymethyl methacrylate (PMMA) coated with graphite, and co-axial cables. In order to evaluate the performance of this ionization chamber, some characterization tests were performed: short- and medium-term stability, leakage current, saturation, ion collection efficiency, polarity effect and linearity of response. The maximum value obtained in the short-term stability test was 0.2%, in accordance with the limit value of 0.3% provided by the IEC 60731 standard. The saturation curve was obtained varying the applied voltage from -400 V to +400 V, in steps of 50 V, using the charge collecting time of 20 s. From the saturation curve two other characteristics were analyzed: the polarity effect and the ion collection efficiency, with results within the international recommendations. The leakage current of the ionization chamber was measured in time intervals of 20 minutes, before and after its irradiations, and all the results obtained were in agreement with the IEC 60731 standard. The linearity of response was verified utilizing the T-50(b) radiation quality, and the ionization chamber was exposed to different air kerma rates. The response of the ionization chamber presented a linear behavior. Therefore, all results were considered satisfactory, within international recommendations, indicating that this homemade ionization chamber presents potential routine use in dosimetry of low-energy radiotherapy beams. (author)

  6. Evaluation of a plane-parallel ionization chamber for low-energy radiotherapy beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E.

    2014-01-01

    A plane-parallel ionization chamber, with a sensitive volume of 6.3 cm 3 , developed at the Calibration Laboratory of IPEN (LCI), was utilized to verify the possibility of its application in low-energy X-ray beam qualities for radiotherapy (T-qualities). This homemade ion chamber was manufactured using polymethyl methacrylate (PMMA) coated with graphite, and co-axial cables. In order to evaluate the performance of this ionization chamber, some characterization tests were performed: short- and medium-term stability, leakage current, saturation, ion collection efficiency, polarity effect and linearity of response. The maximum value obtained in the short-term stability test was 0.2%, in accordance with the limit value of 0.3% provided by the IEC 60731 standard. The saturation curve was obtained varying the applied voltage from -400 V to +400 V, in steps of 50 V, using the charge collecting time of 20 s. From the saturation curve two other characteristics were analyzed: the polarity effect and the ion collection efficiency, with results within the international recommendations. The leakage current of the ionization chamber was measured in time intervals of 20 minutes, before and after its irradiations, and all the results obtained were in agreement with the IEC 60731 standard. The linearity of response was verified utilizing the T-50(b) radiation quality, and the ionization chamber was exposed to different air kerma rates. The response of the ionization chamber presented a linear behavior. Therefore, all results were considered satisfactory, within international recommendations, indicating that this homemade ionization chamber presents potential routine use in dosimetry of low-energy radiotherapy beams. (author)

  7. Evaluation of a tissue equivalent ionization chamber in X-ray beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E.; Frimaio, Audrew; Costa, Paulo R.

    2014-01-01

    Tissue equivalent materials present a variety of uses, including routine quality assurance and quality control programs in both diagnostic and therapeutic physics. They are frequently used in research facilities to measure doses delivered to patients undergoing various clinical procedures. This work presents the development and evaluation of a tissue equivalent ionization chamber, with a sensitive volume of 2.3 cm 3 , for routine use in X-rays beams. This ionization chamber was developed at the Calibration Laboratory/IPEN. The new tissue equivalent material was developed at the Physics Institute of the University of Sao Paulo. In order to evaluate the dosimetric performance of the new ionization chamber, several tests described by international standards were undertaken, and all results were within the recommended limits. (author)

  8. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    CERN Document Server

    Datte, P S; Haguenauer, Maurice; Manfredi, P F; Manghisoni, M; Millaud, J E; Placidi, Massimo; Ratti, L; Riot, V J; Schmickler, Hermann; Speziali, V; Traversi, G; Turner, W C

    2003-01-01

    A novel segmented multigap pressurized gas ionization chamber is being developed for optimization of the luminosity of the Large Hadron Collider (LHC). The ionization chambers are to be installed in the front quadrupole and 0 degrees neutral particle absorbers in the high luminosity interaction regions (IRs) and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast pulse-shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper, we report the initial results of our second test of this instrumentation in a super proton synchrotron (SPS) external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic showers produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentation to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated. (10 refs) .

  9. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    International Nuclear Information System (INIS)

    Datte, P.; Beche, J.-F.; Haguenauer, M.; Manfredi, P.F.; Manghisoni, M.; Millaud, J.; Placidi, M.; Ratti, L.; Riot, V.; Schmickler, H.; Speziali, V.; Turner, W.

    2002-01-01

    A novel, segmented, multi-gap, pressurized gas ionization chamber is being developed for optimization of the luminosity of the LHC. The ionization chambers are to be installed in the front quadrupole and zero degree neutral particle absorbers in the high luminosity IRs and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper we report the initial results of our second test of this instrumentation in an SPS external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic shower produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentations to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated

  10. Determination of 137Cs half-life with an ionization chamber

    International Nuclear Information System (INIS)

    The half-life of 137 Cs was measured with an ionization chamber by following the decay of 5 sources over a 30 years period between 1983 and 2013. The ratio between the ionization chamber current for the cesium sources and 226 Ra source was used for the half-life calculation. The value found for the 137 Cs half-life is 10,955.2±10.7 days, where the uncertainty evaluation combines type A and B for one standard deviation. - Highlights: • Decay measurements of 137 Cs for a period of 30 years. • Uncertainty estimation for measurements of the ionization chamber current. • Fitting procedure for half-life determination. • Comparison of 137 Cs half-life with the recommended DDEP value and with previous measurements.

  11. Evaluation of a ionization chamber response with different phantoms in diagnostic radiology fields

    Energy Technology Data Exchange (ETDEWEB)

    Franciscatto, Priscila Cerutti; Miranda, Jurema Aparecida de; Potiens, Maria da Penha Albuquerque [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: pfranciscatto@yahoo.com.br; mppalbu@ipen.br

    2007-07-01

    This present work shows the behaviour of an ionization chamber with volume of 180 cm{sup 3} used in diagnostic radiology measurements in X radiation standard fields using two different acrylic phantoms, one is a slab phantom and the other is a head-neck phantom. This special model of ionization chamber (Radcal, 10x5-180) can be used to perform measurements in field and scattered radiations. The radiation qualities were established in a X-radiation system in order to calibrate ionization chambers and other dosimeters to diagnostic radiology applications. The results showed a variation in the calibrations coefficient of 10% in the range studied (from 50 to 150 kV). (author)

  12. Nuclear signal simulation applied to gas ionizing chambers

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, Romain; Dumazert, Jonathan [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette, (France)

    2015-07-01

    Particle transport codes used in detector simulation allow the calculation of the energy deposited by charged particles produced following an interaction. The pulses temporal shaping is more and more used in nuclear measurement into pulse shape analysis techniques. A model is proposed in this paper to simulate the pulse temporal shaping and the associated noise level thanks to the output track file PTRAC provides by Monte-Carlo particle transport codes. The model has been dedicated to ion chambers and more especially for High Pressure Xenon chambers HPXe where the pulse shape analysis can resolve some issues regarding with this technology as the ballistic deficit phenomenon. The model is fully described and an example is presented as a validation of such full detector simulation. (authors)

  13. Tritium metrology in a total absorption ionization chamber

    International Nuclear Information System (INIS)

    Blondel, M.; Dalmazzone, J.

    1969-01-01

    Because of its low maximum energy (18 keV), the beta spectrum of tritium can be measured in an ionisation chamber with total absorption and fixed sensitive volume. The results obtained are compared with those given by an absolute measurement method using a differential counter. They confirm the possibility of making simple and rapid tritium measurements within a wide range (10 -3 curie to 100 curies) with a precision of ± 1,5 per cent. (authors) [fr

  14. Measurement of dose rate components of the BNCT beam at THOR using paired ionization chambers

    International Nuclear Information System (INIS)

    Tsai Wenchyi; Chen Angyu; Liu Yuanhao; Jiang Shianghuei; Liu Yenwan Hsueh; Liu Hongming

    2006-01-01

    Paired ionization chambers were used in this work to measure the neutron and gamma-ray dose rates of the BNCT epithermal neutron beam at THOR along the beam axis free-in-air and in the water phantom. The position dependent and kerma rate weighted neutron sensitivities of the TE(TE) chamber were adopted in the measurements. Monte Carlo calculations of the neutron fluence rates and neutron kerma rates using the MCNP4C code were used to support the measurements and compare with the measured results. It concludes that the relative neutron sensitivity of the Mg(Ar) chamber warrants a detailed investigation to improve the accuracy of the dose rate measurement using paired ionization chambers in a mixed field. (author)

  15. Comparison of the half-value layer: ionization chambers vs solid-state meters

    International Nuclear Information System (INIS)

    Pereira, L.C.S.; Navarro, V.C.C.; Navarro, M.V.T.; Macedo, E.M.

    2015-01-01

    Generally, the half value layer (HVL) is determined by using ionization chambers and aluminum filters. However, some solid-state dosimeters allow simultaneous measurements of X-ray's parameters, among which the HVL. The main objective of this study was to compare the HVL's values indicated by four different solid-state dosimeters, whose values were measured by ionization chambers. The maximum difference found between the two methods was 11.42%, one the solid-state dosimeters, showing that the use these instruments to determine CSR in industrial X-ray should be subject to a more thorough evaluation. (author)

  16. Performance of three pencil-type ionization chambers (10 cm) in computed tomography standard beams

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The use of computed tomography (CT) has increased over the years, thus generating a concern about the doses received by patients undergoing this procedure. Therefore, it is necessary to perform routinely beam dosimetry with the use of a pencil-type ionization chamber. This detector is the most utilized in the procedures of quality control tests on this kind of equipment. The objective of this work was to perform some characterization tests in standard CT beams, as the saturation curve, polarity effect, ion collection efficiency and linearity of response, using three ionization chambers, one commercial and two developed at the IPEN. (author)

  17. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create......-plate ionization chamber exposed to heavy ions Phys. Med. Biol. 43 3549–58, 1998. ELSAESSER, T. et al.: Impact of track structure on biological treatment planning ion ion radiotherapy. New Journal pf Physics 10. 075005, 2008...

  18. A comparison of different experimental methods for general recombination correction for liquid ionization chambers

    DEFF Research Database (Denmark)

    Andersson, Jonas; Kaiser, Franz-Joachim; Gomez, Faustino

    2012-01-01

    Radiation dosimetry of highly modulated dose distributions requires a detector with a high spatial resolution. Liquid filled ionization chambers (LICs) have the potential to become a valuable tool for the characterization of such radiation fields. However, the effect of an increased recombination...... of the charge carriers, as compared to using air as the sensitive medium has to be corrected for. Due to the presence of initial recombination in LICs, the correction for general recombination losses is more complicated than for air-filled ionization chambers. In the present work, recently published...

  19. A multiple sampling time projection ionization chamber for nuclear fragment tracking and charge measurement

    International Nuclear Information System (INIS)

    Bauer, G.; Bieser, F.; Brady, F.P.; Chance, J.C.; Christie, W.F.; Gilkes, M.; Lindenstruth, V.; Lynen, U.; Mueller, W.F.J.; Romero, J.L.; Sann, H.; Tull, C.E.; Warren, P.

    1997-01-01

    A detector has been developed for the tracking and charge measurement of the projectile fragment nuclei produced in relativistic nuclear collisions. This device, MUSIC II, is a second generation Multiple Sampling Ionization Chamber (MUSIC), and employs the principles of ionization and time projection chambers. It provides unique charge determination for charges Z≥6, and excellent track position measurement. MUSIC II has been used most recently with the EOS (equation of state) TPC and other EOS collaboration detectors. Earlier it was used with other systems in experiments at the Heavy Ion Superconducting Spectrometer (HISS) facility at Lawrence Berkeley Laboratory and the ALADIN spectrometer at GSI. (orig.)

  20. Update of NIST half-life results corrected for ionization chamber source-holder instability.

    Science.gov (United States)

    Unterweger, M P; Fitzgerald, R

    2014-05-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties. © 2013 Published by Elsevier Ltd.

  1. INVESTIGATION OF THE HUMIDITY EFFECT ON THE FAC-IR-300 IONIZATION CHAMBER RESPONSE.

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-02-01

    The free-air ionization chamber is communicating with the ambient air, therefore, the atmospheric parameters such as temperature, pressure and humidity effect on the ionization chamber performance. The free-air ionization chamber, entitled as FAC-IR-300, that design at the Atomic Energy Organization of Iran, AEOI, is required the atmospheric correction factors for correct the chamber reading. In this article, the effect of humidity on the ionization chamber response was investigated. For this reason, was introduced the humidity correction factor, kh. In this article, the Monte Carlo simulation was used to determine the kh factor. The simulation results show in relative humidities between 30% to 80%, the kh factor is equal 0.9970 at 20°C and 0.9975 at 22°C. From the simulation results, at low energy the energy dependence of the kh factor is significant and with increasing energy this dependence is negligible. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Design of ionization chambers for use in teaching x-ray dosimetry

    Science.gov (United States)

    Ross, Joseph

    Ionization chambers are one of the most commonly used radiation detectors in radiation dosimetry. In this project, nine ionization chambers were constructed for use in teaching radiation dosimetry to students of health physics, medical physics, nuclear engineering, and related disciplines. The components of these detectors such as detector wall composition, type of electrode, type of leakage current guard ring, fill gas pressure, and interior conducting material differ in a systematic way to show that various parameters of ionization chamber design can affect the response of the detectors. Each of these variables was investigated using an 80 keV x-ray machine to determine detector response in terms of absorbed dose, HVL, polarity, and operating voltage. Of the components studied, wall thickness and composition was found to be the most sensitive variable. The pressure inside the chamber did have a significant effect on the amount of charge collected and the absorbed dose. The leakage current guard ring was not a critical component for this ionization chamber design.

  3. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    CERN Document Server

    Kawaguchi, T

    2002-01-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the gamma-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is a...

  4. Calibration and consistency of results of an ionization-chamber secondary standard measuring system for activity

    International Nuclear Information System (INIS)

    Schrader, Heinrich

    2000-01-01

    Calibration in terms of activity of the ionization-chamber secondary standard measuring systems at the PTB is described. The measurement results of a Centronic IG12/A20, a Vinten ISOCAL IV and a radionuclide calibrator chamber for nuclear medicine applications are discussed, their energy-dependent efficiency curves established and the consistency checked using recently evaluated radionuclide decay data. Criteria for evaluating and transferring calibration factors (or efficiencies) are given

  5. Effects of ionization chamber construction on dose measurements in a heterogeneity

    International Nuclear Information System (INIS)

    Mauceri, T.; Kase, K.

    1987-01-01

    Traditionally, measurements have been made in heterogeneous phantoms to determine the factors which should be applied to dose calculations, when calculating a dose to a heterogeneous medium. Almost all measurements have relied on relatively thin-walled ion chambers, with no attempt to match ion chamber wall material to the measuring medium. The recent AAPM dosimetry protocol has established that a mismatch between ion chamber wall and phantom material can have an effect on dose measurement. To investigate the affect of this mismatch of ion chamber wall material to phantom material, two parallel-plate ion chambers were constructed. One ion chamber from solid water, for measurements in a solid water phantom and the other from plastic lung material, for measurements in a plastic lung material phantom. Correction factors measured by matching ion chamber to media were compared to correction factors measured by using a thin-walled cavity ion chamber with no regard for matching wall and media for cobalt-60, 6-, 10- and 20-MV photon beams. The results demonstrated that the matching of ion chamber to measuring media can be ignored, provided that a small, approximately tissue-equivalent, thin-walled ion chamber is used for measuring the correction factors

  6. Investigation of thermal and temporal responses of ionization chambers in radiation dosimetry.

    Science.gov (United States)

    AlMasri, Hussein; Funyu, Akira; Kakinohana, Yasumasa; Murayama, Sadayuki

    2012-07-01

    The ionization chamber is a primary dosimeter that is used in radiation dosimetry. Generally, the ion chamber response requires temperature/pressure correction according to the ideal gas law. However, this correction does not consider the thermal volume effect of chambers. The temporal and thermal volume effects of various chambers (CC01, CC13, NACP parallel-plate, PTW) with different wall and electrode materials have been studied in a water phantom. Measurements were done after heating the water with a suitable heating system, and chambers were submerged for a sufficient time to allow for temperature equilibrium. Temporal results show that all chambers equilibrate quickly in water. The equilibration time was between 3 and 5 min for all chambers. Thermal results show that all chambers expanded in response to heating except for the PTW, which contracted. This might be explained by the differences in the volumes of all chambers and also by the difference in wall material composition of PTW from the other chambers. It was found that the smallest chamber, CC01, showed the greatest expansion. The magnitude of the expansion was ~1, 0.8, and 0.9% for CC01, CC13, and parallel-plate chambers, respectively, in the temperature range of 295-320 K. The magnitude of the detected contraction was <0.3% for PTW in the same temperature range. For absolute dosimetry, it is necessary to make corrections for the ion chamber response, especially for small ion chambers like the CC01. Otherwise, room and water phantom temperatures should remain within a close range.

  7. Digital mammography with multi-electrode ionization chamber

    CERN Document Server

    Groshev, V R; Nifontov, V I; Pishenuok, S M; Samsonov, A A; Shekhtman, L I; Telnov, V I

    2000-01-01

    For viewing micro-calcifications smaller than 100 mu m investigation of image formation in mammography shows that a significant dose to the patient is imperative. We propose a novel one-dimensional Multi- electrode Ionisation Chamber (MIC), with high spatial resolution, and lowered doses. In this work, first results from a prototype are presented. High spatial resolution is demonstrated working with Xe mixture at high pressure. An addition of a Gas Electron Multiplier (GEM) allowed an improvement in sensitivity up to almost single- photon level. (8 refs).

  8. Ionization Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Assmann, R W; Ferioli, G; Gschwendtner, E; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Ionisation chambers will be mounted outside the cryostat to measure the secondary shower particles caused by lost beam particles. Since the stored particle beam intensity is eight orders of magnitude larger than the lowest quench level and the losses should be detected with a relative error of two, the design and the location of the detectors have to be optimised. For that purpose a two-fold simulation was carried out. The longitudinal loss locations of the tertiary halo is investigated by tracking the halo through several magnet elements. These loss distributions are combined with simulations of the particle fluence outside the cryostat, which is induced by lost protons at the vacuum pipe. The base-line ionisation chamber has been tested at the PS Booster in order to determine the detector response at the high end of the dynamic range.

  9. Development of a Grid Ionization Chamber for a Dram of α Ray

    Directory of Open Access Journals (Sweden)

    YANG Lu;WANG Qiang;ZHENG Yu-lai;WANG Guo-bao

    2016-11-01

    Full Text Available This article introduced the parallel grid ionization chamber that used to measure the α radioactivity, which had a independent vacuum system. The system was composed of main body of the chamber, gas-filled and electronics system. Energy resolution was 26 keV for 239Pu, background was 10 counts for one hour from 4 MeV to 6 MeV energy range, the stability of 24 hours was less than 0.5% . The chamber can measure the energy of nuclide and analyze the energy spectrum structure to identify nuclear.

  10. An alternative method of neutron-gamma mixed-field dosimetry by using paired ionization chambers

    International Nuclear Information System (INIS)

    Nohtomi, A.; Sugiura, N.; Itoh, T.; Sakae, T.; Terunuma, T.; Fujibuchi, T.

    2010-01-01

    In order to expand the available energy range of neutron dosimetry by the paired ionization chambers, an alternative method has been newly proposed. The method employs another TE-TE chamber with a gamma-ray attenuator instead of conventional C-CO 2 chamber. A rough comparison of uncertainty estimates between conventional method and newly proposed one is carried out. The result indicates that the accuracy of the present method is far less-sensitive to the change of neutron energy and is evidently superior to that of the conventional method.

  11. An alternative method of neutron-gamma mixed-field dosimetry by using paired ionization chambers

    International Nuclear Information System (INIS)

    Nohtomi, A.; Sugiura, N.; Itoh, T.; Sakae, T.; Terunuma, T.; Fujibuchi, T.

    2010-01-01

    In order to expand the available energy range of neutron dosimetry by the paired ionization chambers, an alternative method has been newly proposed. The method employs another TE-TE chamber with a gamma-ray attenuator instead of conventional C-CO 2 chamber. A rough comparison of uncertainty estimates between conventional method and newly-proposed one is carried out. The result indicates that the accuracy of the present method is far less-sensitive to the change of neutron energy and is evidently superior to that of the conventional method. (author)

  12. A high resolution gridded ionization chamber for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Vitale, E.R.

    1988-01-01

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  13. Use of well-type ionization chambers in radioactive metrology

    International Nuclear Information System (INIS)

    Dalmazzone, J.; Guiho, J.P.

    1968-01-01

    A summary is given of the results of our observations and experiments gathered together over a period of 10 years in the Radioelement Measurements Laboratory, concerning the use of well-type chambers in refined metrology. The optimum conditions for obtaining good reproducibility are defined; this is indispensable if improved sensitivity and accuracy are required. For this, we consider, and measure, the effects of: the nature and the shape of the sources and of the containers; the random form of the response and its statistical treatment; the non-linearity and the show drift of the installation. A sound knowledge of the causes of error, the application of adequate correction methods and an exact calculation of the error, all make it possible to carry out measurements under the best conditions for obtaining a good reproducibility. The accuracy can attain 1.5 per cent. (author) [fr

  14. Calibration of ionization chambers and determination of the absorbed doses

    International Nuclear Information System (INIS)

    RANDRIANTSEHENO, H.F

    1996-01-01

    In order to further improve the accuracy of dosimetric measurements in radiation therapy, the IAEA and WHO supported the establishment of Secondary Standard Dosimetry Laboratory (SSDLs). These SSDLs bridge the gap between the primary measurement standards and the user of ionizing radiation by providing the latter with calibrations against the SSDLs' secondary standards and by giving technical advice and assistance. However, a properly calibrated dosimeter is just necessary first condition for the determination of the dose. It has been demonstrated that the success or failure of radiation treatment depends on the absorbed dose delivered to the tumour and that this should not vary by more than a few per cent from described values. [fr

  15. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes

    NARCIS (Netherlands)

    Louwe, R. J. W.; Tielenburg, R.; van Ingen, K. M.; Mijnheer, B. J.; van Herk, M. B.

    2004-01-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the

  16. The proper calibration and use of pocket ionization chamber in personnel radiation monitoring

    International Nuclear Information System (INIS)

    Mollah, A.S.

    1993-01-01

    The PIC (pocket ionization chambers) has often been criticized for its lack of precision and accuracy and its tendency to produce false readings. The direct-reading PICs and other dosimeters have numerous characteristics which influence the dosimetric response in a radiation environment

  17. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  18. Calculational-theoretical studies of the system of local automated regulators and lateral ionization chambers

    International Nuclear Information System (INIS)

    Aleksakov, A.N.; Emel'yanov, I.Ya.; Nikolaev, E.V.; Panin, V.M.; Podlazov, L.N.; Rogova, V.D.

    1987-01-01

    Methods of engineering synthesis of the systems for nuclear reactor local automated power regulation and radial-azimuthal energy distribution stabilization operating according to lateral ionization chamber signals are described. Results of calculational-theoretical investigations into the system efficiency and peculiarities of its reaction to some perturbations typical of the RBMK type reactors are considered

  19. Performance of a Roos ionization chamber in gamma radiation beams ({sup 60}Co)

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Among the different types of dosimetry instruments, the ionization chambers are the most practical and and important radiation measurement devices due to their high sensitivity and relatively constant response within a wide range of energies. A commercial PTW ionization chamber (Roos electron chamber) usually utilized in X-ray beams, was tested to verify the possibility of its dosimetric application in {sup 60}Co beams. The main tests in this work were: short- and long-term stability, saturation, ion collection efficiency, polarity effect, leakage current and angular dependence. The characterization tests were performed using a Gammatron {sup 60}Co irradiator and a special goniometer made of PMMA. All results were within international recommendations. The reproducibility test presented results within the recommended limit of {+-}1%, and all coefficients of variation observed in the repeatability test were lower than {+-}0.07%. The ion collection efficiency was better than 99.9% for both polarities. For all pairs of polarity evaluated during the saturation test, the polarity effect was lower than the recommended limit. The maximum variation obtained for angular dependence test was only 0.5%. The chamber tested in this work achieved the expected results in the case of all pre-operational tests realized: stability, leakage current, angular dependence, saturation, ion collection and polarity effect. Evaluating the satisfactory results obtained, it is possible to indicate the usefulness of this ionization chamber for dosimetry in {sup 60}Co gamma radiation beams. (author)

  20. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    Science.gov (United States)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  1. Stability of A-150 plastic ionization chamber response over a ∼30 year period

    International Nuclear Information System (INIS)

    Kroc, Thomas K.; Lennox, Arlene J.

    2007-01-01

    At the NIU Institute for Neutron Therapy at Fermilab, the clinical tissue-equivalent ionization chamber response is measured every treatment day using a cesium source that was configured to match readings obtained at the National Bureau of Standards. Daily measurements are performed in air using the air-to-tissue dose conversion factors given in AAPM Report no. 7. The measured exposure calibration factors have been tabulated and graphed as a function of time from 1978 to present. For A-150 plastic ionization chambers, these factors exhibit a sinusoidal variation with a period of approximately one year and amplitude of ± 1%. This variation, attributable to the hygroscopic nature of A-150 plastic, is correlated with the relative humidity of the facility, and is greater than the humidity corrections for gas described in the literature. Our data suggest that chamber calibration should be performed at least weekly to accommodate these variations

  2. Automation of the reading of an ionization chamber: study and design of a data transfer system

    International Nuclear Information System (INIS)

    RANDRIAMAHOLISOA, C.O.

    1999-01-01

    Management of information obtained through ionization chamber, type of detector the most employed in centers or institutions using ionizing radiation machines and radioactive sources, is done manually because data are fed into computers from keyboard. This procedure presents hazards of loss and bad transcription of information. A more practical way of getting over this handicap is the setting up of a system that transfers data from ionization chamber into computer. Thereafter, it will be easier for the user to adjust his data processing software to the system underconsideration. This system, even though not directly designed to process data, that being a specific task of each user, is constituted of an electronic aspect which plays the interface part between them. It takes account parameters having relevance to the quality and the quantity of information put out by the detector [fr

  3. Electronic system for the automation of current measurements produced by ionization chambers

    International Nuclear Information System (INIS)

    Brancaccio, Franco; Dias, Mauro da Silva

    2002-01-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology in the determination of radionuclide activity. For this purpose measurements of very low ionization currents, in the range of 10 -8 to 10 -14 A, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. In the present work, an automation system, developed for current integration measurements at the Laboratorio de Metrologia Nuclear (LMN) of Instituto de Pesquisas Energeticas e Nucleares (IPEN), is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card CAD12/32 (LYNX Tecnologia Eletronica Ltda.). Measurements, using an electrometer Keithley 616 (Keithley Instruments, Inc) and an ionization chamber IG12/A20 (20 th Century Electronics Ltd.), were performed in order to check the system and for validating the project. (author)

  4. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  5. Development of Tandem ionization chambers for use in quality control programs in radiotherapy and diagnostic radiology

    International Nuclear Information System (INIS)

    Costa, Alessandro Martins da

    2003-01-01

    A quality control program of X-ray equipment used in diagnostic radiology and radiotherapy requires the check of the beam qualities constancy in terms of the half-value layers. In this work, two special double-faced parallel-plate ionization chambers were developed with inner electrodes of different materials, in tandem system. The different energy response of the two faces of each chamber allowed the development of tandem systems useful for the check of beam qualities constancy. The main application of these ionization chambers will be in quality control programs of diagnostic and therapeutic X-ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the tandem chambers may also be utilized for measurements of air kerma values (and air kerma rates) in kilo voltage X-radiation fields used for diagnostic and therapeutic procedures. The chambers were studied in relation to their operational characteristics, and they were calibrated in X-ray beams in accordance to international recommendations. They presented a very good level of performance. In this developed system no absorbers or special set-ups are necessary. A methodology of use of the chambers in the quality control of diagnostic and therapeutic X-ray systems was established, with the elaboration of the respective procedures. (author)

  6. Evaluation of linearity of response and angular dependence of an ionization chamber for dosimetry in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P.; Neves, Lucio P.; Xavier, Marcos; Caldas, Linda V.E., E-mail: mxavier@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    In this paper a pencil-type ionization chamber designed and manufactured at Instituto de Pesquisas Energeticas e Nucleares was evaluated for dosimetric applications in computed tomography beams. To evaluate the performance of this chamber two tests were undertaken: linearity of response and angular dependence. The results obtained in these tests showed good results, within the international recommendations. Moreover, this homemade ionization chamber is easy to manufacture, of low cost and efficient. (author)

  7. Long Term Stability Of Farmer Type Ionization Chamber Calibration Coefficient belonging To Local Radiotherapy Centres In Malaysia

    International Nuclear Information System (INIS)

    Mukhtar, A.M.; Samat, S.B.; Mohd Taufik Dolah

    2014-01-01

    The accuracy of the ionization chambers calibration coefficient is one of the factors that would contribute to efficient radiotherapy treatment. The IAEA therefore has recommended that an ionization chamber be calibrated every year, with a condition that the deviations between the previous and new calibration coefficients N D,w should not differ by ±1.5 %. It has been identified that Farmer type ionization chambers is the most popular ionization chamber among the radiotherapy centres in Malaysia. For this reason, the purpose of this work is to evaluate the calibration coefficients long term stability of the Farmer type ionization chambers. A total of 33 Farmer type ionization chambers were studied and the mean μ of the N D,w deviation together with its standard error SE were calculated. This μ ±SE will be used to measure stability of N D,w . Our results showed that most chambers have μ ±SE lies within the ±1.5 %. It is thus concluded that most of the Farmer type ionization chamber were stable in their N D,w and safe to be used for radiotherapy treatment. (author)

  8. Determination of the Kwall correction factor for a cylindrical ionization chamber to measure air-kerma in 60Co gamma beams

    International Nuclear Information System (INIS)

    Laitano, R.F.; Toni, M.P.; Pimpinella, M.; Bovi, M.

    2002-01-01

    The factor K wall to correct for photon attenuation and scatter in the wall of ionization chambers for 60 Co air-kerma measurement has been traditionally determined by a procedure based on a linear extrapolation of the chamber current to zero wall thickness. Monte Carlo calculations by Rogers and Bielajew (1990 Phys. Med. Biol. 35 1065-78) provided evidence, mostly for chambers of cylindrical and spherical geometry, of appreciable deviations between the calculated values of K wall and those obtained by the traditional extrapolation procedure. In the present work an experimental method other than the traditional extrapolation procedure was used to determine the K wall factor. In this method the dependence of the ionization current in a cylindrical chamber was analysed as a function of an effective wall thickness in place of the physical (radial) wall thickness traditionally considered in this type of measurement. To this end the chamber wall was ideally divided into distinct regions and for each region an effective thickness to which the chamber current correlates was determined. A Monte Carlo calculation of attenuation and scatter effects in the different regions of the chamber wall was also made to compare calculation to measurement results. The K wall values experimentally determined in this work agree within 0.2% with the Monte Carlo calculation. The agreement between these independent methods and the appreciable deviation (up to about 1%) between the results of both these methods and those obtained by the traditional extrapolation procedure support the conclusion that the two independent methods providing comparable results are correct and the traditional extrapolation procedure is likely to be wrong. The numerical results of the present study refer to a cylindrical cavity chamber like that adopted as the Italian national air-kerma standard at INMRI-ENEA (Italy). The method used in this study applies, however, to any other chamber of the same type. (author)

  9. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    International Nuclear Information System (INIS)

    Poirier, Aurelie; Douysset, Guilhem

    2006-01-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192 Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations

  10. Determination of the air attenuation and electronic loss for the free air concentric cylinders ionization chamber

    International Nuclear Information System (INIS)

    Oliveira, Hebert Pinto Silveira de

    2010-01-01

    Along the latest years, the LNMRI has been proceeding a continuous research work with a concentric cylinders type free air ionizing chamber (VICTOREEN, model 481), aiming to establish it as a new national standard, and, as a consequence, replace the worldwide accepted secondary standard, calibrated by PTB. Taking into account that the absolute determination of kerma in air with a free air ionizing chamber implies the acquirement of a number of correction factors. The main objective of the present work comprises the determination of the two factors, specifically, electronic loss (k e ) and air attenuation (k a ). The correction factors were obtained through mammography qualities reference spectrum, using Monte Carlo simulation method. The Penelope code was used in the simulation procedures. Simulations took place in two stages, the acquirement of specters related to the qualities of interest (mammography) with the x ray tube (Pantak, model HF160 e Panalytical, model XRF window), and the free-air ionization chamber. The data were compared to those related to the BIPM chamber, to electronic loss were not detected. The comparison between air attenuation factors was obtained data bellow 0.13%. (author)

  11. Radiation monitoring in a synchrotron light source facility using magnetically levitated electrode ionization chambers

    International Nuclear Information System (INIS)

    Ichiki, Hirofumi; Kawaguchi, Toshirou; Utsunomiya, Yoshitomo; Ishibashi, Kenji; Ikeda, Nobuo; Korenaga, Kazuhito

    2009-01-01

    We developed a highly accurate differential-type automatic radiation dosimeter to measure very low radiation doses. The dosimeter had two ionization chambers, each of which had a magnetically levitated electrode and it was operated in a repetitive-time integration mode. We first installed the differential-type automatic radiation dosimeter with MALICs at a high-energy electron accelerator facility (Kyushu Synchrotron Light Research Center Facility) and measured the background and ionizing radiations in the facility as well as the gaseous radiation in air. In the background dose measurements, the accuracy of the repetitive-time integration-type dosimeter was three times better than that of a commercial ionization chamber. When the radiation dose increased momentarily at the electron injection from the linac to the operating storage ring, the dosimeter with repetitive-time integral mode gave a successful response to the actual dose variation. The gaseous radiation dose in the facility was at the same level as that in Fukuoka City. We confirmed that the dosimeter with magnetically levitated electrode ionization chambers was usable in the accelerator facility, in spite of its limited response when operated in the repetitive-time integration mode. (author)

  12. The wall correction factor for a spherical ionization chamber used in brachytherapy source calibration

    Science.gov (United States)

    Piermattei, A.; Azario, L.; Fidanzio, A.; Viola, P.; Dell'Omo, C.; Iadanza, L.; Fusco, V.; Lagares, J. I.; Capote, R.

    2003-12-01

    The effect of wall chamber attenuation and scattering is one of the most important corrections that must be determined when the linear interpolation method between two calibration factors of an ionization chamber is used. For spherical ionization chambers the corresponding correction factors Aw have to be determined by a non-linear trend of the response as a function of the wall thickness. The Monte Carlo and experimental data here reported show that the Aw factors obtained for an Exradin A4 chamber, used in the brachytherapy source calibration, in terms of reference air kerma rate, are up to 1.2% greater than the values obtained by the linear extrapolation method for the studied beam qualities. Using the Aw factors derived from Monte Carlo calculations, the accuracy of the calibration factor NK,Ir for the Exradin A4, obtained by the interpolation between two calibration factors, improves about 0.6%. The discrepancy between the new calculated factor and that obtained using the complete calibration curve of the ion-chamber and the 192Ir spectrum is only 0.1%.

  13. Design, construction and tests of well type ionization chamber for beta and gamma radiation detection

    International Nuclear Information System (INIS)

    Breda, F.J.; Banados Perez, H.E.; Vieira, J.M.

    1990-01-01

    This paper describes the design, construction and tests of well type ionization chamber, with parallel plate electrodes, which is used in the measurements of radiopharmacous activities, by means of beta and/or gamma radiations detection. Its response was studied utilizing Tc-99, I-131, Co-60, Am-241 and Sr-90 sources. The results obtained show that, due to to the very low leakage current from the chamber and the linearity of response, its possible to measure activities in the range from 20KBq up to 10GBq, whith a precision better than 1%. (author) [pt

  14. Design of the free-air ionization chamber, FAC-IR-150, for X-ray dosimetry

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-03-01

    The primary standard for X-ray dosimetry is based on the free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) designed the free-air ionization chamber, FAC-IR-150, for low and medium energy X-ray dosimetry. The purpose of this work is the study of the free-air ionization chamber characteristics and the design of the FAC-IR-150. The FAC-IR-150 dosimeter has two parallel plates, a high voltage plate and a collector plate. A guard electrode surrounds the collector and is separated by an air gap. A group of guard strips is used between up and down electrodes to produce a uniform electric field in all the ion chamber volume. This design involves introducing the correction factors and determining the exact dimensions of the ionization chamber by using Monte Carlo simulation.

  15. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Müller, O., E-mail: o.mueller@uni-wuppertal.de; Lützenkirchen-Hecht, D.; Frahm, R. [Bergische Universität Wuppertal, Gaußstraße 20, Wuppertal 42119 (Germany)

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  16. Update of NIST half-life results corrected for ionization chamber source-holder instability

    International Nuclear Information System (INIS)

    Unterweger, M.P.; Fitzgerald, R.

    2014-01-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties. - Highlights: • The NIST half-life data is corrected for sample positioning variations and refitted. • These results are reported and increased errors in the reported values are given. • Longer lived radionuclides are discussed

  17. Calibration methods of plane-parallel ionization chambers used in electron dosimetry

    International Nuclear Information System (INIS)

    Bulla, Roseli Tadeu

    1999-01-01

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of 60 Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  18. Evaluation of a transfer system for calibration of kVp meters and ionization chambers

    International Nuclear Information System (INIS)

    Potiens, M.P.A.; Caldas, L.V.E.

    2002-01-01

    The assessment and control of the performance characteristics of X-ray generators and tubes is an essential part of a quality assurance programme, because the use of the X-rays in medicine for diagnosis of injuries and diseases represents the largest man-made source of public exposure to ionizing radiation. Others authors have suggested methods to determine the correct X-ray tube voltage to complete the characterization of standard radiation qualities. A method by spectrometry to calibrate ionization chambers and kVp meters used for quality control tests in diagnostic radiology has been applied at the Calibration Laboratory at IPEN. A transfer system for diagnostic radiology calibration was developed at IPEN as an alternative to calibrate those instruments that measure kVp and air kerma values. It consists of a pair of identical ionization chambers in form, but differing only by the electrode material: one is made of aluminum, and the other is made of graphite. It was calibrated using a spectrometer and a standard ionization chamber traceable to the German Primary Laboratory (Physikalisch-Technische Bundesanstalt - PTB). In this study the behaviour of the transfer system was analysed in the standard beams of two X-ray equipment of the Calibration Laboratory. The low energy X-ray generating system consists of a Rigaku Denki generator, model Geigerflex, coupled to a Philips tube model PW/2184/00 (Tungsten target and Beryllium window). Measurements were taken from 30 to 50 kV. The diagnostic radiology X-ray generating system consists of a Medicor Moevek Roentgengyara X-ray generator, model Neo-Diagnomax (125 kV). Measurements were taken from 50 to 90 kV. The established qualities are listed. As reference to the air kerma rate determination, a 1.0 cm 3 parallel plate ionization chamber, Physikalisch-Technische Werkstaetten (PTW), model 77334, traceable to PTB, Germany, was utilized in this work. The transfer system was placed in the X-ray beams, using a Lucite holder

  19. Determination of absorbed dose calibration factors for therapy level electron beam ionization chambers.

    Science.gov (United States)

    McEwen, M R; Williams, A J; DuSautoy, A R

    2001-03-01

    Over several years the National Physical Laboratory (NPL) has been developing an absorbed dose calibration service for electron beam radiotherapy. To test this service, a number of trial calibrations of therapy level electron beam ionization chambers have been carried out during the last 3 years. These trials involved 17 UK radiotherapy centres supplying a total of 46 chambers of the NACP, Markus, Roos and Farmer types. Calibration factors were derived from the primary standard calorimeter at seven energies in the range 4 to 19 MeV with an estimated uncertainty of +/-1.5% at the 95% confidence level. Investigations were also carried out into chamber perturbation, polarity effects, ion recombination and repeatability of the calibration process. The instruments were returned to the radiotherapy centres for measurements to be carried out comparing the NPL direct calibration with the 1996 IPEMB air kerma based Code of Practice. It was found that, in general, all chambers of a particular type showed the same energy response. However, it was found that polarity and recombination corrections were quite variable for Markus chambers-differences in the polarity correction of up to 1% were seen. Perturbation corrections were obtained and were found to agree well with the standard data used in the IPEMB Code. The results of the comparison between the NPL calibration and IPEMB Code show agreement between the two methods at the +/-1% level for the NACP and Farmer chambers, but there is a significant difference for the Markus chambers of around 2%. This difference between chamber types is most likely to be due to the design of the Markus chamber.

  20. Evaluating the variation of response of ionizing chamber type pencil for different collimators

    International Nuclear Information System (INIS)

    Andrade, Lucio das Chagas de; Peixoto, Jose Guilherme Pereira

    2014-01-01

    The pencil ionization chamber is used in dosimetric procedures for X-ray beams in the energy range of a scanner. Calibration of such camera is still being extensively studied because the procedure is different from the others. To study the variation of response of the camera for different collimators was analyzed three different collimators. It was found that among the other showed the best response was the opening of 30 mm. (author)

  1. Relative dosimetry of photon beam of 6 MV with a liquid ionization chamber

    International Nuclear Information System (INIS)

    Benitez Villegas, E. M.; Casado Villalon, F. J.; Martin-Cueto, J. A.; Caudepon Moreno, F.; Garcia Pareja, S.; Galan Montenegro, P.

    2011-01-01

    The increasing use of reduced size fields in the special techniques of treatment generates regions with high dose gradients. It therefore requires the use of detectors that present high spatial resolution. The aim of this study is to compare the dosimetric measurements obtained with a liquid ionization chamber PTW MicroLion recently acquired with other commonly used detectors for a photon beam of 6 MV linear electron accelerator Varian 600DBX.

  2. Development and characterization of a new graphite ionization chamber for dosimetry of {sup 60}Co beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio Pereira; Perini, Ana Paula; Santos, William de Souza; Caldas, Linda V.E., E-mail: lpneves@ipen.br, E-mail: aperini@ipen.br, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    Ionization chambers are the most employed dosimeters for precise measurements, as those required in radiotherapy. In this work, a new graphite ionization chamber was developed and characterized in order to compose a primary standard system for the beam dosimetry of the {sup 60}Co sources. This dosimeter is a cylindrical type ionization chamber, with walls and collecting electrode made of high-purity graphite, and the insulators and stem made of Teflon®. The walls are 3.0 mm thick, and it has a sensitive volume of 1.40 cm{sup 3}. The characterization was divided in two steps: experimental and Monte Carlo evaluations. This new dosimeter was evaluated in relation to its saturation curve, ion collection efficiency, polarity effect, short- and medium-term stabilities, leakage current, stabilization time, linearity of response and angular dependence. All results presented values within the established limits. The second part of the characterization process involved the determination of the correction factors, obtained by Monte Carlo simulations. Comparing these correction factors values with those from other primary standard laboratories, the highest differences were those for the wall and stem correction factors. The air-kerma rate of the {sup 60}Co source was determined with this new dosimeter and with the IPEN standard system, presenting a difference of 1.7%. These results indicate that this new dosimeter may be used as a primary standard system for {sup 60}Co gamma beams. (author)

  3. Development of a standard operating procedure for mammography equipment used in calibration of ionized chambers

    International Nuclear Information System (INIS)

    Rodrigues, Yklys Santos; Potiens, Maria da Penha Albuquerque

    2011-01-01

    Mammography is one widely used technique in the detection of breast cancer. In order to optimize the results achieving better images with lower dose rates, a quality assurance programme must be applied to the equipment. Some control tests use ionization chambers to measure air kerma and other quantities. These tests can only be reliable if the ionization chambers used on them are correctly calibrated. In the present work, it was developed a standard operating procedure (SOP) for quality control tests in a commercial mammography equipment installed in the Calibration Laboratory (LCI) at IPEN - Brazilian Institute for energy and nuclear research). Seven tests were performed in the equipment: Tube voltage and exposition time accuracy and reproducibility, linearity and reproducibility of Air kerma and Half Value Layer (HVL). Then, it was made a measurement of the air kerma in the mammography equipment, using a reference ionization chamber with traceability to a primary laboratory in Germany (Physikalisch-Technische Bundesanstalt - PTB), that was later compared with the air kerma measured in an industrial irradiator. This industrial X-ray generator was recently used in the implementation of X-radiation Standards beams, mammography level, following the Standard IEC 61267. The HVL values varied from 0.36 (25kV) to 0.41 mmA1 (35kV), and the measured air kerma rates were between 9.78 and 17.97 mGy/min. (author)

  4. Ionization efficiency of a gas-flow ion chamber used for measuring radioactive gases by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Torii, T.

    1995-01-01

    The ionization efficiencies of a cylindrical ionization chamber have been calculated using a Monte Carlo electron-photon transport code. The results agreed well with experimental values for radioactive gases. The present calculational procedure can be applied to the estimation of ionization efficiencies for radioactive gases, such as the short half-lived nuclides and positron emitters, which have been difficult to estimate through experimental calibrations. It can also be applied to evaluations of efficiencies in gases other than air. This paper describes the calculation method and results, and also presents the effects of shape and volume variations of the ionization chamber. ((orig.))

  5. An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission

    Science.gov (United States)

    Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.

    2001-01-01

    A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.

  6. Water calorimetry and ionization chamber dosimetry in an 85-MeV clinical proton beam.

    Science.gov (United States)

    Palmans, H; Seuntjens, J; Verhaegen, F; Denis, J M; Vynckier, S; Thierens, H

    1996-05-01

    In recent years, the increased use of proton beams for clinical purposes has enhanced the demand for accurate absolute dosimetry for protons. As calorimetry is the most direct way to establish the absorbed dose and because water has recently been accepted as standard material for this type of beam, the importance of water calorimetry is obvious. In this work we report water calorimeter operation in an 85-MeV proton beam and a comparison of the absorbed dose to water measured by ionometry with the dose resulting from water calorimetric measurements. To ensure a proper understanding of the heat defect for defined impurities in water for this type of radiation, a relative response study was first done in comparison with theoretical calculations of the heat defect. The results showed that pure hypoxic water and hydrogen-saturated water yielded the same response with practically zero heat defect, in agreement with the model calculations. The absorbed dose inferred from these measurements was then compared with the dose derived from ionometry by applying the European Charged Heavy Particle Dosimetry (ECHED) protocol. Restricting the comparison to chambers recommended in the protocol, the calorimeter dose was found to be 2.6% +/- 0.9% lower than the average ionometry dose. In order to estimate the significance of chamber-dependent effects in this deviation, measurements were performed using a set of ten ionization chambers of five different types. The maximum internal deviation in the ionometry results amounted to 1.1%. We detected no systematic chamber volume dependence, but observed a small but systematic effect of the chamber wall thickness. The observed deviation between calorimetry and ionometry can be attributed to a combination of the value of (Wair/e)p for protons, adopted in the ECHED protocol, the mass stopping power ratios of water to air for protons, and possibly small ionization chamber wall effects.

  7. Alkali suppression within laser ion-source cavities and time structure of the laser ionized ion-bunches

    CERN Document Server

    Lettry, Jacques; Köster, U; Georg, U; Jonsson, O; Marzari, S; Fedosseev, V

    2003-01-01

    The chemical selectivity of the target and ion-source production system is an asset for Radioactive Ion-Beam (RIB) facilities equipped with mass separators. Ionization via laser induced multiple resonant steps Ionization has such selectivity. However, the selectivity of the ISOLDE Resonant Ionization Laser Ion-Source (RILIS), where ionization takes place within high temperature refractory metal cavities, suffers from unwanted surface ionization of low ionization potential alkalis. In order to reduce this type of isobaric contaminant, surface ionization within the target vessel was used. On-line measurements of the efficiency of this method is reported, suppression factors of alkalis up to an order of magnitude were measured as a function of their ionization potential. The time distribution of the ion bunches produced with the RILIS was measured for a variety of elements and high temperature cavity materials. While all ions are produced within a few nanoseconds, the ion bunch sometimes spreads over more than 1...

  8. Establishment of a new calibration method of pencil ionization chamber for dosimetry in computed tomography

    International Nuclear Information System (INIS)

    Dias, Daniel Menezes

    2010-01-01

    Pencil ionization chambers are used for beam dosimetry in computed tomography equipment (CT). In this study, a new calibration methodology was established, in order to make the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (LCI) suitable to international metrological standards, dealing with specific procedures for calibration of these chambers used in CT. Firstly, the setup for the new RQT radiation qualities was mounted, in agreement with IEC61267 from the International Electrotechnical Commission (IEC). After the establishment of these radiation qualities, a specific calibration methodology for pencil ionization chambers was set, according to Technical Report Series No. 457, from the International Atomic Energy Agency (IAEA), which describes particularities of the procedure to be followed by the Secondary Standard Dosimetry Laboratories (SSDL's), concerning to collimation and positioning related to the radiation beam. Initially, PPV (kV) measurements and the determination of copper additional filtrations were carried out, measuring the half value layers (HVL) recommended by the IEC 61267 standard, after that the RQT 8, RQT 9 and RQT 10 radiation quality references were established. For additional filters, aluminum and copper of high purity (around 99.9%) were used. RQT's in thickness of copper filters equivalent to the set 'RQR (Al) + Additional Filtration (Cu)' was directly found by an alternative methodology used to determine additional filtrations, which is a good option when RQR's have not the possibility of be setting up. With the establishment of this new methodology for the ionization pencil chambers calibration, the LCI is ready to calibrate these instruments according to the most recent international standards. Therefore, an improvement in calibration traceability, as well as in metrological services offered by IPEN to all Brazil is achieved. (author)

  9. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and faraday cup

    International Nuclear Information System (INIS)

    Ghergherehchi, Mitra; Afarideh, Hossein; Mohammadzadeh, Ahmad; Boghrati, Behzad; Ghannadi, Mohammad; Aslani, Golam Reza

    2010-01-01

    In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy. (author)

  10. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    Science.gov (United States)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  11. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.

    Science.gov (United States)

    Ghergherehchi, Mitra; Afarideh, Hossein; Ghannadi, Mohammad; Mohammadzadeh, Ahmad; Aslani, Golam Reza; Boghrati, Behzad

    2010-01-01

    In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy.

  12. Evaluation of an ionization chamber response at small distances during dosimetry of gamma radiation beams

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, Luciana C.; Potiens, Maria da Penha A.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: lafonso@ipen.br; mppalbu@ipen.br; lcaldas@ipen.br

    2007-07-01

    The beam dosimetry measurements of a gamma irradiator, utilized for calibration of mainly portable radiation monitors, at the Calibration Laboratory of IPEN, have been taken between the source-instrument distance of 1 m and 4 m. Due to the source decay and instruments with higher dose rate ranges, calibrations at distances smaller than 1 m are necessary. For this purpose, a 30 cm{sup 3} ionization chamber calibrated against a secondary standard system was utilized. The use of this chamber is appropriate, because it can be totally irradiated. The behavior of this ionization chamber was studied in terms of: repeatability, stability and current leakage, using a {sup 90}Sr+{sup 90}Y source. The repeatability test presented uncertainties lower than {+-}0.5%. Analyzing the stability results, the variation did not exceed {+-}1.0%. The current leakage did not exceed 0.5% of the reference value. The measurements at the irradiator beams were taken at smaller distances than 1 m (in steps of 10 cm). The distance square inverse law was verified for both {sup 137}Cs and {sup 60}Co sources; the variations did not exceed {+-}5%, according to the ISO 4037-1 standard. (author)

  13. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  14. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    International Nuclear Information System (INIS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-01-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252 Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235 U(n th , f).

  15. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    Carnelli, P.F.F.; Almaraz-Calderon, S.; Rehm, K.E.; Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C.L.; Lai, J.; Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C.; Paul, M.; Ugalde, C.

    2015-01-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15 C+ 12 C fusion reactions at energies around the Coulomb barrier

  16. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  17. Flatness of two-dimensional beam profile measured with an ionization chamber array

    International Nuclear Information System (INIS)

    Stefanovski, Z.

    2006-01-01

    Open beam profiles are basic dosimetric characteristics for the formation of the dose calculation algorithms parameters and for determination of beam quality. One characteristic of the beam profiles as a measure for the beam quality is the field flatness defined as ratio of the difference of maximum and minimum dose in central 80% of the field to the sum of these doses in the part of the field. The measurements, instead with an ordinary ionization chamber, were performed with a chamber array in two depths (1.6 cm and 10 cm) in water phantom. Nominal photon beam energy was 6 MV and field size was 25 cm x 25 cm on the water surface. Field flatness was in the range of 1-2 % which is in accordance with the data acquired during the acceptance testing and commissioning of the accelerators. with the array chamber the beam profiles can be performed quickly and preciously. These features recommend a chamber array as an excellent tool for periodic quality control of beam profiles. (Author)

  18. A low-pressure cloud chamber to study the spatial distribution of ionizations

    International Nuclear Information System (INIS)

    Hodges, D.C.; Marshall, M.

    1977-01-01

    To further the understanding of the biological effects of radiation a knowledge of the spatial distribution of ionizations in small volumes is required. A cloud chamber capable of resolving the droplets formed on individual ions in the tracks of low-energy electrons has been constructed. It is made to high-vacuum specifications and contains a mixture of permanent gases and vapours, unsaturated before expansion, at a total pressure of 10 kPa. Condensation efficiencies close to 100% are obtained without significant background from condensation on uncharged particles and molecular aggregates. This paper describes the chamber, associated equipment and method of operation and discusses the performance of the system. Photographs of the droplets produced from the interaction of low-energy X-rays in the chamber gas for various modes of operation are presented. The mean energy loss per ion pair for electrons produced by the interaction of Al X-rays in the chamber gas (8130 Pa H 2 , 700 Pa C 2 H 5 OH, 690 Pa H 2 O, 400 Pa He, 70 Pa air) has been measured as 29.8 +- 0.7 eV per ion pair compared with a calculated value of 29.6 +- 0.4 eV per ion pair. (author)

  19. (n, {alpha}) cross section measurement of light nuclei using gridded ionization chamber and gaseous sample

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Yamazaki, Tetsuro; Sato, Jun; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    We have developed a measuring method of (n, {alpha}) cross section by using gaseous sample in a gridded ionization chamber. In this study, we measured the {sup 12}C(n, {alpha}{sub 0}) and the {sup 16}O(n, {alpha}{sub 0}), (n, {alpha}{sub 123}) cross sections for En=11.5 and 12.8 MeV neutrons. We also deduced the {sup 12}C(n, x{alpha}) spectrum and analyzed the data by a kinematic calculation combined with the reaction data of the {sup 12}C(n, n`3{alpha}). (author)

  20. Application of patent BR102013018500-0 in well type ionization chambers

    International Nuclear Information System (INIS)

    Sousa, C.H.S.; Peixoto, J.G.P.

    2015-01-01

    The definition of the radioactive sample position in a well type ionization chamber is the largest source of uncertainty in the measurement of quantity activity. The determination of this parameter in two activimeter helped to improve their accuracies, from 2.62 and 2.59% to 3.87 and 1.74%, with and without the use of the positioning device, concluding, that with their use has reached an uncertainty of U = 0.2276 and 0.2677 % (k = 2) 95.45%. (author)

  1. Comparison between calibration methods of ionization chamber type pencil in greatness PKL

    International Nuclear Information System (INIS)

    Macedo, E.M.; Pereira, L.C.S.; Ferreira, M.J.; Navarro, V.C.C.; Garcia, I.F.M.; Pires, E.J.; Navarro, M.V.T.

    2016-01-01

    Calibration of radiation meters is indispensable on Quality Assurance Program in Radiodiagnostic procedures, mainly Computed Tomography. Thus, this study aims evaluate two calibration methods of pencil ionization chambers in terms of Kerma-length Product (P KL ) (a direct substitution method and an indirect one, through Kerma and length measurements). The results showed a good equivalence, with minimal concordance of 98,5% between calibration factors. About uncertainties, both showed similar results (substitution 2.2% and indirect 2.3%), indicating that the last one is better, due the costs reduction to implant this calibration procedure. (author)

  2. Conceptual design for a fast neutron ionization chamber for fusion reactor plasma diagnostics

    International Nuclear Information System (INIS)

    Sailor, W.C.; Barnes, C.W.

    1994-01-01

    A conceptual design for a radiation-hard ''pointing'' fast neutron ionization chamber that is capable of delivering a 1 MHz countrate of T(D,n) events at ITER is given. The detector will use a ∼1 cm 3 volume of CO 2 fill gas at 0.1 bar pressure in a 500 V/cm electric field. The pulse widths will be ∼10 ns, enabling it to operate in a flux of ∼ 6 x 10 13 DT n/cm 2 /sec. A special collimator design is used, giving an estimated angular resolution of 4.5 degrees HWHM

  3. Conceptual design for a fast neutron ionization chamber for fusion reactor plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, W.C.; Barnes, C.W.

    1994-06-01

    A conceptual design for a radiation-hard ``pointing`` fast neutron ionization chamber that is capable of delivering a 1 MHz countrate of T(D,n) events at ITER is given. The detector will use a {approximately}1 cm{sup 3} volume of CO{sub 2} fill gas at 0.1 bar pressure in a 500 V/cm electric field. The pulse widths will be {approximately}10 ns, enabling it to operate in a flux of {approximately} 6 {times} 10{sup 13} DT n/cm{sup 2}/sec. A special collimator design is used, giving an estimated angular resolution of 4.5 degrees HWHM.

  4. Study on dosimetric characteristics of ionizing chambers with an electrostatic relay

    International Nuclear Information System (INIS)

    Yuryatin, E.N.; Fominykh, V.I.; Shumshurov, V.I.; Tel'tsov, M.V.

    1979-01-01

    The metrologic characteristics of the ionization integral-pulse dosimeters with the electrostatic relay, IC-5B and IC-14 (ionization chambers) are investigated. The dosimeter sizes are as followi IC-5ng 6B -m diameter, 80 mm height; IC-14 - 42 mm diameter, 67 mm height. The ionization volume is filled with argon. The electrostatic relay converts the charge (or current) of the ionization chamber into the succession of electric pulses and so the charge (or current) measurement comes to the calculation of the pulse number. The dosimeter stability is investigated in the beam of 137 Cs γ-radiation source. Distribution of results of operation for 8 hours does not exceed 3 and 1.2%, for 6 days - 1.5 and 2% respectively for IC-5B and IC-14. Sensitivity rate at the dosimeter rotation about the symmetry axis does not exceed +-2.5% at various effective energies of 137 Cs and 60 Co γ-radiations. At the dosimeter rotation about the axis, perpendicular to the symmetry axis, the dosage sensitivity twice as much at the radiation energy lower than 10O keV. The dosimeter sensitivity in the power range of exposure doze of 0.56-195 R/h changes not more than over 5%. The dosimeter dosage sensitivity to the X-ray radiation with the effective energy of 40 keV exceeds approximately 10 times the dosage sensitivity to 137 Cs γ-radiation. The obtained results are useful at the data analysis on the radiation situation of different cosmic devices

  5. Characteristics of ionization chambers for intense pulsed x-rays and Co-60 #betta#-rays, (2)

    International Nuclear Information System (INIS)

    Kanazawa, Tamotsu; Okabe, Shigeru; Fukuda, Kyue; Furuta, Junichiro; Fujino, Takahiro

    1981-01-01

    Mean ionization currents and pulse figures of parallel plate ionization chambers enclosed with various gases were measured when they were exposed to intense pulsed X-rays and continuous #betta#-rays. Relation between the measured ionization current and the intensity of X-rays was obtained at the applied voltage of 1000 V. In the case of intense pulsed X-rays, ionization current was smaller in comparison with the case of continuous #betta#-rays, under the X-rays of equal intensity. Pulse figures were observed with chambers which were filled with the gases of air and O 2 and they are considered to be caused by the free electrons of these gases. In these cases, polarity effects of the electric field on the pulse figures were not recognized. Various figures and their changes were also observed from chambers filled with He, Ne, N 2 , Ar, kr, and Xe, respectively. Polarity effects were recognized on those pulse figures. (author)

  6. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions

    Science.gov (United States)

    Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2018-04-01

    This study aims at developing an optimization strategy for photon-beam dosimetry in magnetic fields using ionization chambers. Similar to the familiar case in the absence of a magnetic field, detectors should be selected under the criterion that their measured 2D signal profiles M(x,y) approximate the absorbed dose to water profiles D(x,y) as closely as possible. Since the conversion of D(x,y) into M(x,y) is known as the convolution with the ‘lateral dose response function’ K(x-ξ, y-η) of the detector, the ideal detector would be characterized by a vanishing magnetic field dependence of this convolution kernel (Looe et al 2017b Phys. Med. Biol. 62 5131–48). The idea of the present study is to find out, by Monte Carlo simulation of two commercial ionization chambers of different size, whether the smaller chamber dimensions would be instrumental to approach this aim. As typical examples, the lateral dose response functions in the presence and absence of a magnetic field have been Monte-Carlo modeled for the new commercial ionization chambers PTW 31021 (‘Semiflex 3D’, internal radius 2.4 mm) and PTW 31022 (‘PinPoint 3D’, internal radius 1.45 mm), which are both available with calibration factors. The Monte-Carlo model of the ionization chambers has been adjusted to account for the presence of the non-collecting part of the air volume near the guard ring. The Monte-Carlo results allow a comparison between the widths of the magnetic field dependent photon fluence response function K M(x-ξ, y-η) and of the lateral dose response function K(x-ξ, y-η) of the two chambers with the width of the dose deposition kernel K D(x-ξ, y-η). The simulated dose and chamber signal profiles show that in small photon fields and in the presence of a 1.5 T field the distortion of the chamber signal profile compared with the true dose profile is weakest for the smaller chamber. The dose responses of both chambers at large field size are shown to be altered by not

  7. Micro ionization chamber dosimetry in IMRT verification: Clinical implications of dosimetric errors in the PTV

    International Nuclear Information System (INIS)

    Sanchez-Doblado, Francisco; Capote, Roberto; Rosello, Joan V.; Leal, Antonio; Lagares, Juan I.; Arrans, Rafael; Hartmann, Guenther H.

    2005-01-01

    Background and purpose: Absolute dose measurements for Intensity Modulated Radiotherapy (IMRT) beamlets is difficult due to the lack of lateral electron equilibrium. Recently we found that the absolute dosimetry in the penumbra region of the IMRT beamlet, can suffer from significant errors (Capote et al., Med Phys 31 (2004) 2416-2422). This work has the goal to estimate the error made when measuring the Planning Target Volume's (PTV) absolute dose by a micro ion chamber (μIC) in typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. Materials and Methods: Two IMRT treatment plans for common prostate carcinoma case, derived by forward and inverse optimisation, were considered. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the delivered dose to water and the dose delivered to the active volume of the ion chamber. However, the measured dose in water is usually derived from chamber readings assuming reference conditions. The MC simulation provides needed correction factors for ion chamber dosimetry in non reference conditions. Results: Dose calculations were carried out for some representative beamlets, a combination of segments and for the delivered IMRT treatments. We observe that the largest dose errors (i.e. the largest correction factors) correspond to the smaller contribution of the corresponding IMRT beamlets to the total dose delivered in the ionization chamber within PTV. Conclusion: The clinical impact of the calculated dose error in PTV measured dose was found to be negligible for studied IMRT treatments

  8. Laboratory implantation for well type ionization chambers calibration; Implantacao de um laboratorio para calibracao de camaras de ionizacao tipo poco

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, E.A.; Dias, D.J.; Almeida, C.E. de [Laboratorio de Ciencias Radiologicas- LCR- DBB (UERJ). R. Sao Francisco Xavier, 524- Pav. HLC, sala 136 terreo- CEP 20.550-013. Rio de Janeiro (Brazil)

    1998-12-31

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  9. Development of special ionization chambers for a quality control program in mammography; Desenvolvimento de camaras de ionizacao especiais para controle de qualidade em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas Oliveira da

    2013-07-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  10. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels

    International Nuclear Information System (INIS)

    Bessa, Ana Carolina Moreira de

    2007-01-01

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were inter compared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: 67 Ga, 201 Tl and 99m Tc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  11. Preliminary study of silica aerogel as a gas-equivalent material in ionization chambers

    Science.gov (United States)

    Caresana, M.; Zorloni, G.

    2017-12-01

    Since about two decades, a renewed interest on aerogels has risen. These peculiar materials show fairly unique properties. Thus, they are under investigation for both scientific and commercial purposes and new optimized production processes are studied. In this work, the possibility of using aerogel in the field of radiation detection is explored. The idea is to substitute the gas filling in a ionization chamber with the aerogel. The material possesses a density about 100 times greater than ambient pressure air. Where as the open-pore structure should allow the charge carriers to move freely. Small hydrophobic silica aerogel samples were studied. A custom ionization chamber, capable of working both with aerogel or in the classic gas set up, was built. The response of the chamber in current mode was investigated using an X-ray tube. The results obtained showed, under proper conditions, an enhancement of about 60 times of the current signal in the aerogel configuration with respect to the classic gas one. Moreover, some unusual behaviours were observed, i.e. time inertia of the signal and super-/sub-linear current response with respect to the dose rate. While testing high electric fields, aerogel configuration seemed to enhance the Townsend's effects. In order to represent the observed trends, a trapping-detrapping model is proposed, which is capable to predict semi-empirically the steady state currents measured. The time evolution of the signal is semi-quantitatively represented by the same model. The coefficients estimated by the fits are in agreement with similar trapping problems in the literature. In particular, a direct comparison between the benchmark of the FET silica gates and aerogel case endorses the idea that the same type of phenomenon occurs in the studied case.

  12. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A.

    2015-01-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  13. A study to assess the long-term stability of the ionization chamber reference system in the LNMRI

    Science.gov (United States)

    Trindade Filho, O. L.; Conceição, D. A.; da Silva, C. J.; Delgado, J. U.; de Oliveira, A. E.; Iwahara, A.; Tauhata, L.

    2018-03-01

    Ionization chambers are used as secondary standard in order to maintain the calibration factors of radionuclides in the activity measurements in metrology laboratories. Used as radionuclide calibrator in nuclear medicine clinics to control dose in patients, its long-term performance is not evaluated systematically. A methodology for long-term evaluation for its stability is monitored and checked. Historical data produced monthly of 2012 until 2017, by an ionization chamber, electrometer and 226Ra, were analyzed via control chart, aiming to follow the long-term performance. Monitoring systematic errors were consistent within the limits of control, demonstrating the quality of measurements in compliance with ISO17025.

  14. Monte Carlo Simulation in the Optimization of a Free-Air Ionization Chamber for Dosimetric Control in Medical Digital Radiography

    International Nuclear Information System (INIS)

    Leyva, A.; Pinera, I.; Abreu, Y.; Cruz, C. M.; Montano, L. M.

    2008-01-01

    During the earliest tests of a free-air ionization chamber a poor response to the X-rays emitted by several sources was observed. Then, the Monte Carlo simulation of X-rays transport in matter was employed in order to evaluate chamber behavior as X-rays detector. The photons energy deposition dependence with depth and its integral value in all active volume were calculated. The obtained results reveal that the designed device geometry is feasible to be optimized

  15. Algorithm for evaluation of parameters of ionization chamber signals from the flash-ADC date

    International Nuclear Information System (INIS)

    Baturin, V.N.; Balin, D.V.; Maev, E.M.; Petrov, G.E.; Semenchuk, G.G.

    1991-01-01

    An algorithm for evaluation of parameters of pulses obtained from the ionization chamber (IC) and digitized by Flash-ADC is described. It was designed for determination of the energies and times of arrival of charged particles in DTμ catalyzed fusion that occurs in the IC sensitive volume, in order to measure directly the probability of muon sticking. The algorithm provides the extraction of weak pulses of sloped muon with 50% efficiency, the measurement of fusion energy, especially for long and low amplitude pulses, the recognition of pulse pileups, using special shape analysis procedure. The algorithm was tuned with a special electronic hardware that supplied sequences of pulses with specified amplitudes, durations and shapes and simulation of simulated tritium-noise background. 6 refs.; 7 figs.; 1 tab

  16. Development of multi-layer ionization chamber for heavy-ion therapy

    International Nuclear Information System (INIS)

    Yajima, Kaori; Kusano, Yohsuke; Shimojyu, Takuya; Kanai, Tatsuaki

    2007-01-01

    In heavy-ion radiotherapy, depth dose distributions measured in water phantom are applied to estimate the dose distributions in a patient body. In order to obtain depth dose distributions in water phantom easily and rapidly, Multi-Layer Ionization Chamber (MLIC) was developed and had been adapted as a field dosimeter at NIRS since 2002. Production cross section of fragments in high Z material of the MLIC, however, is very different from those in water material. Then, empirical correction should be required. In order to obtain depth dose distributions with high accuracy, we have to use low Z material as a phantom, which are thought to produce similar fragments with water phantom. From this point of view, we have developed a new MLIC made up of low Z materials, PMMA and graphite film. (author)

  17. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  18. Bias in the measurement of radon gas using ionization chambers: Application to SIR.

    Science.gov (United States)

    Pierre, S; Sabot, B; Cassette, P; Liang, J; Courte, S; Ferreux, L; Ratel, G

    2018-04-01

    Two main non-destructive techniques can be used to measure standard 222 Rn gas ampoules: well-type ionization chambers and gamma-ray spectrometry, the former being used in the Système International de Référence (SIR) for international comparison purposes. The reliability of these techniques requires that the variability of the flame-sealed gas glass ampoules used have a negligible influence on the detector response. This variability is studied in this work by considering three parameters: the volume of the ampoule, the position of the sealing point and the thickness of the glass. Results showed that variability of the gas ampoules induced measurement bias larger than the uncertainty of the standard sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Verification for the disagreement between effective point and geometrical center of thimble ionization chamber

    International Nuclear Information System (INIS)

    Shimomura, K.; Tabushi, K.

    2005-01-01

    In radiotherapy, it is certainly necessary to grasp the quantity and the distribution of the radiation administered to the human body. To measure these correctly, the standard measurement method of the absorbed dose of water is recommended by AAPM, IAEA, and JSPM. The standard method also recommends that absolute measurements should be performed using the thimble ionization chamber (TIC). The absorbed dose of water measured by TIC should be corrected for diverse effects. There is the definition of measurement point for TIC based on these effects. Because TIC is cylindrical form and has finite volume, the measurement point differs from the geometrical center of TIC. In the standard definitions, the point is called the effective point and recommended that its location is a shift equal to 0.6 times of the inner radius of TIC from the geometrical center. In this work, we examined the accuracy of the definitions of the effective point for TIC by simulation with EGS4. (author)

  20. Simulation study of the photon quality correction factors of ionization chambers for FiR 1 epithermal neutron beam

    International Nuclear Information System (INIS)

    Koivunoro, H.; Uusi-Simola, J.; Savolainen, S.; Kotiluoto, P.; Auterinen, I.; Kosunen, A.

    2006-01-01

    At FiR 1 BNCT facility in Finland, neutron-insensitive Mg(Ar) ionization chambers are used for photon dose measurements in an epithermal neutron beam. Previously, photon sensitivity factors for the chamber for the measurements in a water phantom in FiR 1 beam have been determined experimentally from measurements in 60 Co gamma and in a 6 MV clinical accelerator photon beams. However, the response of the ionization chamber in a water phantom depends on energy spectrum and angle of the photons and the secondary electrons created inside the phantom and may differ depending on type of the irradiation source (accelerator vs. an epithermal neutron beam). Also, the experimental sensitivity factor does not take into account the possible perturbations in the photon production in phantom caused by the ionization chamber materials. Therefore, it is necessary to determine the photon quality correction factors (k Qγ ) for the Mg(Ar) chamber at the FiR 1 beam through computer simulations. In this study, the k Qγ factors have been determined for Mg(Ar) chamber from Monte Carlo calculations of absorbed photon dose at two depths in a water phantom using MCNP code. The k qγ factors obtained with this method are compared to the sensitivity factors determined with measurements in an accelerator photon beam and to the k Qγ factors published previously. (author)

  1. Realize multiple hermetic chamber pressures for system-on-chip process by using the capping wafer with diverse cavity depths

    Science.gov (United States)

    Cheng, Shyh-Wei; Weng, Jui-Chun; Liang, Kai-Chih; Sun, Yi-Chiang; Fang, Weileun

    2018-04-01

    Many mechanical and thermal characteristics, for example the air damping, of suspended micromachined structures are sensitive to the ambient pressure. Thus, micromachined devices such as the gyroscope and accelerometer have different ambient pressure requirements. Commercially available process platforms could be used to fabricate and integrate devices of various functions to reduce the chip size. However, it remains a challenge to offer different ambient pressures for micromachined devices after sealing them by wafer level capping (WLC). This study exploits the outgassing characteristics of the CMOS chip to fabricate chambers of various pressures after the WLC of the Si-above-CMOS (TSMC 0.18 µm 1P5M CMOS process) MEMS process platform. The pressure of the sealed chamber can be modulated by the chamber volume after the outgassing. In other words, the pressure of hermetic sealed chambers can be easily and properly defined by the etching depth of the cavity on an Si capping wafer. In applications, devices sealed with different cavity depths are implemented using the Si-above-CMOS (TSMC 0.18 µm 1P5M CMOS process) MEMS process platform to demonstrate the present approach. Measurements show the feasibility of this simple chamber pressure modulation approach on eight-inch wafers.

  2. Monte Carlo aided design of an improved well-type ionization chamber for low energy brachytherapy sources.

    Science.gov (United States)

    Bohm, Tim D; Micka, John A; DeWerd, Larry A

    2007-04-01

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well-type ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, an improved well-type ionization chamber for low energy, low dose rate brachytherapy sources is designed using Monte Carlo transport calculations to aid in the design process. The design improvements are the elimination of the air density induced over-response effect seen in other air-communicating chambers for low energy photon sources, and a larger signal strength (response or current) for 103Pd and 125I based seeds. A prototype well chamber based on the Monte Carlo aided design but using graphite coated acrylic walls rather than the design basis air equivalent plastic (C-552) walls was constructed and experimentally evaluated. The prototype chamber produced an 85% stronger signal when measuring a commonly used 103Pd seed and a 26% stronger signal when measuring a commonly used 125I seed when compared to another commonly used well chamber. The normalized PTP corrected chamber response is, at most, 1.3% and 2.4% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 feet) above sea level for the commonly used 103Pd and 125I based seeds respectively. Comparing calculated and measured chamber responses for common 103Pd and 125I based brachytherapy seeds show agreement within 0.6% and 0.2%, respectively. We conclude that Monte Carlo transport calculations accurately model the response of this new well chamber and in general can be used to predict the response of well chambers. The prototype chamber built in this work responds as predicted by the Monte Carlo calculations.

  3. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    International Nuclear Information System (INIS)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Sann, H.; Young, J.C.

    1987-01-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon 40 Ar and 0.30e fwhm for 1.08 GeV/nucleon 139 La and 139 La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with σ≅100 μm. (orig.)

  4. Characteristic tests of ionization chamber and GM counter survey meters for beta-rays, (2)

    International Nuclear Information System (INIS)

    Suga, Shin-ichi; Bingo, Kazuyoshi; Kajimoto, Yoichi

    1979-03-01

    To estimate a beta-ray absorbed dose rate of contaminated skin, measurements were done twice by a survey meter without and with a filter, keeping the distance from the contaminated skin surface to the survey meter at 10 mm. The absorbed dose rate was obtained multiplying a net reading (equals a reading of survey meter's indicator measured without the filter minus that measured with the filter) by a multiplying factor. Calibrations were made with reference plane sources of natural uranium, 198 Au and 204 Tl, varying their area. The five types of ionization chamber survey meters had nearly same multiplying factors when the diameter of source was larger than the diameter of the chamber cylinder. Estimation of the absorbed doses due to beta-emitting nuclides was possible when the measured value without filter was larger by 20% or more than that of with filter. In the case of small sources, the multiplying factor varied significantly with area of the source. The multiplying factors agreed within +-30% in the respective types i.e. manufacturers and in maximum beta-ray energies from 0.7 up to 2.5 MeV. In the source to detector distance of 1 cm +-0.2 cm, the multiplying factor varied within +-20%. The multiplying factor of a GM counter survey meter varied with beta-ray energy, the multiplying factor for uranium was 1/3 that of 204 Tl. (author)

  5. Alpha spectroscopy with ionization chamber to determine uranium and thorium in environmental samples

    International Nuclear Information System (INIS)

    Carvalho Conti, L.F. de.

    1983-01-01

    A high-resolution, parallel Frisch ionization chamber with an efficient area of 320 cm 2 was developed and applied as an alpha spectrometer. The resolution of the spectrum is approximatelly 40 KeV fwhm (full width half maximum) for 233 U point source. The spectrum is recorded by a 1024 channels pulse-height analyser. The counting gas is commercial available mixture of argon and methane. The counting efficiency for 233 U energy-window selected is in order of 42% for a calibration source placed on the cathode axis. No radial dependence of this efficiency was observed. The chamber was used for counting the activity of uranium and thorium isotopes on large area stainless steel planchets. The large area thin sources were prepared extracting the uranium and thorium isotopes from 1M HNO 3 - aqueous solution with polymeric membranes containing tri-n-octyl-phosphine oxide adhered on the surface of the 314 cm 2 planchet. The integral back-ground is typically 7 counts/min between 4 and 6 MeV. The sensitivity of the procedure used ofr 238 U is about 30 Bq/1 based on 3S of back-ground, 1 liter sample volume and 30 min counting time. (Author) [pt

  6. Diaphragm correction factors for the FAC-IR-300 free-air ionization chamber.

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-02-01

    A free-air ionization chamber FAC-IR-300, designed by the Atomic Energy Organization of Iran, is used as the primary Iranian national standard for the photon air kerma. For accurate air kerma measurements, the contribution from the scattered photons to the total energy released in the collecting volume must be eliminated. One of the sources of scattered photons is the chamber's diaphragm. In this paper, the diaphragm scattering correction factor, k dia , and the diaphragm transmission correction factor, k tr , were introduced. These factors represent corrections to the measured charge (or current) for the photons scattered from the diaphragm surface and the photons penetrated through the diaphragm volume, respectively. The k dia and k tr values were estimated by Monte Carlo simulations. The simulations were performed for the mono-energetic photons in the energy range of 20 - 300keV. According to the simulation results, in this energy range, the k dia values vary between 0.9997 and 0.9948, and k tr values decrease from 1.0000 to 0.9965. The corrections grow in significance with increasing energy of the primary photons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber

    Science.gov (United States)

    Lehaut, G.; Salvador, S.; Fontbonne, J.-M.; Lecolley, F.-R.; Perronnel, J.; Vandamme, Ch.

    2015-10-01

    In this work, we studied the emission yields, decay times and coincidence resolving times (CRT) of two gases, nitrogen (N2) and tetrafluoromethane (CF4), used for particle detection in the context of fission products measurement. The set-up was made of an ionization chamber and two photomultiplier tubes (PMTs) placed front-to-front on each side of the active zone of the chamber. Using the photomultiplier tubes, the number of photoelectrons (phe) converted at the photocathodes from the scintillation processes in each gas was quantified and the scintillation time spectra were recorded. A scintillation emission yield of 24 phe MeV-1 with a decay time of τd = 2.5 ns in N2, and 225 phe MeV-1 with τd = 6.2 ns for CF4, has been measured. With our set-up, the coincidence resolving time (σ values) between the two PMTs have been measured using alpha particles at 1.4 ns and 0.34 ns for N2 and CF4, respectively.

  8. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  9. Development of an ionization chamber based high sensitivity detector for the measurement of radiation dose from X-ray whole body scanners

    International Nuclear Information System (INIS)

    Singh, Sunil K.; Tripathi, S.M.; LijiShaiju; Sathian, V.; Kulkarni, M.S.

    2016-01-01

    Using walk through metal detectors and undergoing frisking for personals at airports, seaports, railway stations and other sensitive places no longer meets proper security requirements. Now a days use of plastic explosives, drug trafficking or illegal carriage of dangerous items concealed under cloths or body cavities has increased many folds which in many cases is not possible to detect by conventional methods. One of the systems which are capable to overcome the above mentioned difficulties is the use of X-ray based whole body scanners, either transmission type or backscatter type, depending upon the nature of requirement. While using these whole body scanners the person being scanned possesses a radiation risk whose safety aspects can be monitored by following international standards (recommending certain dose limits). In order to check the compliance of these dose limits, the dose per scan received by the person (from these whole body scanners) needs to be measured. A very high sensitive ionization chamber has been designed and fabricated for measuring these extremely low X- ray fields ( few μR) produced by a scanning X-ray beam over a large area. A methodology has been developed to measure exposure per scan using large volume ionization chambers. This value of exposure was used to calculate whole body dose as per the recommendations of ANSI standard for its compliance

  10. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon de

    2004-01-01

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  11. Implementation of a laboratory for manufacture, repair and electric calibration of dosemeters based in ionization chambers utilized in radiotherapy

    International Nuclear Information System (INIS)

    Becker, P.H.B.; Peres, M.A.L.; Moreira, A.J.C.; Nette, H.P.

    1998-01-01

    Manufacturers of ionization chamber dosimeters for radiotherapy maintain only sales representatives in Brazil with no servicing capability causing difficulties to customers/users to get broken equipment back into operation. Aiming to partially solve this problem, a laboratory for maintenance, repair and electrical calibration was started in 1995 with the support of a two year IAEA Technical Assistance Project (BRA/1/031). (Author)

  12. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method

    International Nuclear Information System (INIS)

    Grau Carles, A.; Garcia Gomez-Tejedor, G.

    2001-01-01

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs

  13. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  14. Investigations of the signal production in liquid-ionization-chambers by the passage of strongly ionizing particles and a now theoretical description of recombination

    International Nuclear Information System (INIS)

    Supper, R.

    1991-12-01

    Starting from the original Onsager-theory an extended theory is presented describing the recombination of charge carriers and of signal production in TMS (tetramethylsilane) liquid ionization chambers. The shielding by the impurities of the liquid is explicitly taken into account. By dedicated measurements various parameter dependencies of the theory are checked and the parameter values are experimentally determined. The studies comprise test procedures of the TMS chamber operation and are in context of a hadron calorimeter set up of the cosmic ray experiment KASCADE. (orig.) [de

  15. High resolution multiple sampling ionization chamber (MUSIC) sensitive to position coordinates

    International Nuclear Information System (INIS)

    Petrascu, H.; Kumagai, H.; Tanihata, I.; Petrascu, M.

    1999-01-01

    A new type of MUSIC sensitive to position coordinates is reported. The development of the first version of this type of chamber is based on the principles presented by Badhwar in 1973. The present detector will be used in experiments on fusion by using radioactive beams. This chamber due to the high resolution is suitable to identification and tracking of low Z particles. One of our goals, when we started this work, was to reduce as much as possible the Z value of particles that can be 'seen' by an ionization chamber. The resolution of the chamber was significantly improved by connecting the preamplifiers directly to the MUSIC's pads. These preamplifiers are able to work in vacuum and very low gas pressure. In this way the value of signal to noise ratio was increased by a factor of ∼10. The detector is of Frisch grid type, with the anode split into 10 active pads. It is the first model of a MUSIC with the field shared between the position grid and the anode pads. The Frisch grid was necessary because the detector is originally designed for very accurate energy measurements and particle identification. A drawing of this detector is shown. The detector itself consists of four main parts. The first one is the constant field-gradient cage, sandwiched in between the cathode and the Frisch grid. The second is the Frisch grid. The third is the position grid located under the Frisch grid. The last one is the plate with the anode pads. The cage is made of 100 μm Cu-Be wires. Every wire was tensioned with a weight representing half of its breaking limit. The Frisch grid was done on an aluminium frame, on which 20 μm W wires spaced 0.3 mm, were wound. For the position grid, 10 groups of 20 μm gold plated W wires have been used. Each group consisted of 5 wires spaced 0.9 mm and connected in parallel. The anode pads 7.8 x 60 mm 2 were perpendicular to the beam direction. Each pad and each of the position wire groups were connected to a preamplifier. The energy resolution

  16. Recombination in liquid-filled ionization chambers beyond the Boag limit

    International Nuclear Information System (INIS)

    Brualla-González, L.; Roselló, J.; Aguiar, P.; González-Castaño, D. M.; Gómez, F.; Pombar, M.; Pardo-Montero, J.

    2016-01-01

    Purpose: The high mass density and low mobilities of charge carriers can cause important recombination in liquid-filled ionization chambers (LICs). Saturation correction methods have been proposed for LICs. Correction methods for pulsed irradiation are based on Boag equation. However, Boag equation assumes that the charge ionized by one pulse is fully collected before the arrival of the next pulse. This condition does not hold in many clinical beams where the pulse repetition period may be shorter than the charge collection time, causing overlapping between charge carriers ionized by different pulses, and Boag equation is not applicable there. In this work, the authors present an experimental and numerical characterization of collection efficiencies in LICs beyond the Boag limit, with overlapping between charge carriers ionized by different pulses. Methods: The authors have studied recombination in a LIC array for different dose-per-pulse, pulse repetition frequency, and polarization voltage values. Measurements were performed in a Truebeam Linac using FF and FFF modalities. Dose-per-pulse and pulse repetition frequency have been obtained by monitoring the target current with an oscilloscope. Experimental collection efficiencies have been obtained by using a combination of the two-dose-rate method and ratios to the readout of a reference chamber (CC13, IBA). The authors have also used numerical simulation to complement the experimental data. Results: The authors have found that overlap significantly increases recombination in LICs, as expected. However, the functional dependence of collection efficiencies on the dose-per-pulse does not change (a linear dependence has been observed in the near-saturation region for different degrees of overlapping, the same dependence observed in the nonoverlapping scenario). On the other hand, the dependence of collection efficiencies on the polarization voltage changes in the overlapping scenario and does not follow that of Boag

  17. Patient specific IMRT quality assurance with film, ionization chamber and detector arrays: Our institutional experience

    International Nuclear Information System (INIS)

    Cruz, Wilbert; Narayanasamy, Ganesh; Regan, Morgan; Mavroidis, Panayiotis; Papanikolaou, Niko; Ha, Chul S.; Stathakis, Sotirios

    2015-01-01

    (p-value>0.05). Conclusions: Among the TPSs, Tomoplan and Corvus had the best agreement with the point dose measurement. Based on anatomical location of treatment site, head and neck cancers had the lowest gamma value for the patients treated and brain sites had the highest gamma value. However, the values are not significantly different. TomoTherapy machines continue to have the best overall gamma values as compared to CLINAC machines. - Highlights: • IMRT QA methods performed at our institution were analyzed retrospectively. • IMRT QA using film & ionization chamber was compared with 2D array of ion chambers. • Dosimetric measurements were compared against the plan based on multiple criteria. • Criteria included TPS, anatomic site, Linac type, number of control points, arcs or beams. • Average dose differences and Gamma analysis were estimated to exceed passing criteria

  18. Construction of an ionization chamber for buildup measurements in megavoltage X-ray beams

    International Nuclear Information System (INIS)

    Rawlinson, J.A.; Pereira Junior, P.P.

    1979-01-01

    The design and construction of a simple homemade ion chamber for brildup measurements in megavoltage beams is described. Tests indicate that the performance of the chamber is superior in some respects to a commercially available chamber. Results obtained using the chamber in a 6 MV beam are presented. (Author) [pt

  19. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    Mang, M.

    1993-01-01

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z 4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  20. Feasibility study for the development of a Dose Calibrator with a well ionization chamber

    International Nuclear Information System (INIS)

    Arista Romeu, E. J.

    2015-01-01

    Dose calibrators are intended for the metrological assurance of medical diagnostic studies in which radiopharmaceuticals are used. It is the final link in the national system of standards to ensure quality control and the radiation safety of the dose administered to patients while using these nuclear techniques. The wide utilization of radiopharmaceuticals in our country in several modules of nuclear medicine and other laboratories where radio-isotopic preparations are used, as well as the existence of the National Center of Isotopes to produce them determine the necessity of national production of dose calibration equipment. In this paper, it is presented the result of a feasibility study to develop a dose calibrator with a well-type ionization chamber for nuclear medicine services of the National Health System with gamma camera. It is specifically intended to contribute to monitor and control the activity of the prepared samples to be administered to patients under studies with gamma cameras to ensure compliance with the current requirements of quality and radiation safety. (Author)

  1. Measurement of differential (n,x{alpha}) cross section using 4{pi} gridded ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Matsuyama, Shigeo; Kiyosumi, Takehide; Nauchi, Yasushi; Saito, Keiichiro; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Kawano, Toshihiko

    1997-03-01

    We carried out the measurements of high resolution {alpha} emission spectra of {sup 58}Ni and {sup nat}Ni between 4.5 and 6.5 MeV, and {sup 12}C(n,x{alpha}) cross section using a 4{pi} gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus ({sup 55}Fe). These results were compared with another direct measurement and statistical model calculations. In {sup 12}C measurement, GIC was applied for (n,x{alpha}) reactions of light nuclei. This application is difficult to (n,x{alpha}) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to {sup 12}C(n,x{alpha}) reaction at En=14.1 MeV. In our experiment, the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be angular differential cross section and {sup 12}C(n,n`3{alpha}) cross section were obtained. (author)

  2. X-ray and γ-radiation personnel monitoring by means of ionization chambers

    International Nuclear Information System (INIS)

    Gavrilovskij, L.P.; Nikitin, V.I.

    1981-01-01

    Several sets of condensator ionization chambers for measuring a dose of short-wave X-ray and gamma radiations within the limits of 0.005-50 R is described in short. In particular the following sets for personnel monitoring are described: the KID-2 set intended for determining an exposure dose of roentgen and gamma radiations of 150 keV - 2 MeV energy within the limits of 0.005-1R; the DK-02 set providing the measurement of personnel exposure doses of X-ray and gamma radiations within the limits of 0.02-200 mR in the energy range of 100 keV-2 MeV; the DP-22 V, DP-24 sets providing the measurement of an exposure dose of X-ray and gamma radiations within the limits of 1-50 R at a power of 0.5-200 R/h in the energy range of 0.1-2 MeV. An order of work with the sets is described [ru

  3. Dynamic wedge, electron energy and beam profile Q.A. using an ionization chamber linear array

    International Nuclear Information System (INIS)

    Kenny, M.B.; Todd, S.P.

    1996-01-01

    Since the introduction of multi-modal linacs the quality assurance workload of a Physical Sciences department has increased dramatically. The advent of dynamic wedges has further complicated matters because of the need to invent accurate methods to perform Q.A. in a reasonable time. We have been using an ionization chamber linear array, the Thebes 7000 TM by Victoreen, Inc., for some years to measure X-ray and electron beam profiles. Two years ago we developed software to perform Q.A. on our dynamic wedges using the array and more recently included a routine to check electron beam energies using the method described by Rosenow, U.F. et al., Med. Phys. 18(1) 19-25. The integrated beam and profile management system has enabled us to maintain a comprehensive quality assurance programme on all our linaccs. Both our efficiency and accuracy have increased to the point where we are able to keep up with the greater number of tests required without an increase in staff or hours spent in quality assurance. In changing the processor from the Z80 of the Thebes console to the 486 of the PC we have also noticed a marked increase in the calibration stability of the array. (author)

  4. Testing an ionization chamber with gaseous samples and measurements of the (n, alpha) reaction cross sections

    CERN Document Server

    Gledenov, Yu M; Salatskii, V I; Sedyshev, P V; Andrzejewski, J; Szalanski, P

    1999-01-01

    A new ionization chamber with gaseous samples (GIC) has been designed and tested on the thermal and resonance neutron beams of FLNP's neutron sources. The exposed gas volume serves as a target for neutrons. The obtained thermal cross sections for the sup 1 sup 7 O(n, alpha) sup 1 sup 4 C, sup 2 sup 1 Ne(n, alpha) sup 1 sup 8 O and sup 3 sup 6 Ar(n, alpha) sup 3 sup 3 S reactions are (233+-12) mb, (0.18+-0.09) mb and (5.43+-0.27) mb, respectively. These measurements have been performed on a pure beam of thermal neutrons from the high flux reactor IBR-2; and they demonstrated high efficiency and reliability of the method. Compared to samples on substrates, the application of gaseous samples makes the beam background essentially lower, and what is more important, the background component is totally absent due to the absence of Li and B microimpurities in gaseous samples while they do present in the samples on substrates. The method is also applicable to measurements with resonance neutrons. The recovery capabili...

  5. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer

    Science.gov (United States)

    Stasi, M.; Giordanengo, S.; Cirio, R.; Boriano, A.; Bourhaleb, F.; Cornelius, I.; Donetti, M.; Garelli, E.; Gomola, I.; Marchetto, F.; Porzio, M.; Sanz Freire, C. J.; Sardo, A.; Peroni, C.

    2005-10-01

    Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32 × 32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24 × 24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip. The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3 × 3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3 × 3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with γ parameter <=1 was 97.7% and 97

  6. Design and building of an extrapolation ionization chamber for beta dosimetry

    International Nuclear Information System (INIS)

    Silva, I.

    1985-01-01

    An extrapolation chamber was designed and built to be used in beta dosimetry. The basic characteristics of an extrapolation chamber are discussed, together with fundamental principle of the dosimetric method used. Details of the chamber's design and properties of materials employed are presented. A full evaluation of extrapolation chamber under irradiation from two 90 Sr + 90 Y beta sources is done. The geometric parameters of the chamber, leakage current and ion collection efficiency are determined. (Author) [pt

  7. Investigation of the initial and volume recombination losses in gamma versatile cylindrical ionization chamber VGIC developed for gamma ray dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Fares, M.; Mameri, S.; Abdlani, I.; Negara, K. [COMENA, Laboratoire Detection et Mesures, CRNB, BP no. 180 Ain-Oussera 17200 W. de Djelfa (Algeria)

    2015-07-01

    A versatile Gamma ionization chambers are used for flow control in systems with gamma nuclear reactors and reprocessing plants in and monitoring atmosphere around these facilities, this in order to protect staff. In the Laboratory Detection and Measures (LDM) Division for Study and Development of Nuclear Instrumentation (DSDNI) of CRNB, we designed, developed and characterized a versatile gamma ionization chamber (VGIC) to study experimentally its characteristics according to the geometry of the electrodes, the volume and pressure of the filler gas for the design of a gamma sealed chamber. The tests were conducted under the IEC (International Electro-technical Commission). In this paper, we present the results obtained in the various nuclear tests for characterization and calibration that we have made on the ionization chamber gamma VGIC prototype developed at our Department. To do this, three irradiators were operated at the Laboratory Calibration (SSDL) of the Department of Medical Physics Nuclear Research Center of Algiers (CRNA). Irradiator intensive gamma ({sup 60}Co: 1.25 MeV), one medium intensity gamma ({sup 137}Cs: 0.662 MeV) and 3rd low intensity ({sup 60}Co). Saturation curves and linearity were identified and the operating range and the sensitivity of the chamber have been deducted. The (I,V) characteristics of the chamber filled, with argon gas at 3 bar (0.3 M pa) pressure, for gamma ray irradiator sources were studied. To do so, the chamber was irradiated with gamma rays using different numbers of gamma sources (i.e. Up to 5). The plateau region is reached above 200 V and the detector operating voltage is found to be 600 V. It is observed that in the plateau region the slope is constant with an increase in the exposure rate. The (1/I, 1/V) and (I, l/V{sup 2}) characteristic curves reveal the presence of the initial and volume recombination losses. The volume recombination losses are found to be smaller than the initial recombination losses. Finally

  8. Determination of self-absorption coefficient in measurement of solid sample activity using 4π ionization chamber

    International Nuclear Information System (INIS)

    Dryak, P.

    1982-01-01

    Computation based on the Monte Carlo method was tested for a 4π cylindrical ionization chamber with a detection volume of 7 litres, filled with argon. The sources are placed in the geometrical centre. The correction coefficient for self-absorption was determined as being the ratio of ionization currents induced by a source of finite size and by a massless point source. A flowchart of the program is given. The computations were experimentally tested for cylindrical sources of aqueous 137 Cs and 57 Co solutions. (M.D.)

  9. The non-uniformity correction factor for the cylindrical ionization chambers in dosimetry of an HDR 192Ir brachytherapy source

    Directory of Open Access Journals (Sweden)

    Majumdar Bishnu

    2006-01-01

    Full Text Available The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory.

  10. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams; Projeto, construcao e caracterizacao de camaras de ionizacao para utilizacao como sistemas padroes em feixes de radiacao X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula

    2013-07-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  11. Automated system with LabVIEW for the obtention of voltage plateau, graphic of sensitivity and operation voltage in an ionization chamber

    International Nuclear Information System (INIS)

    Cruz E, P.

    2001-01-01

    The work developed for the Laguna Verde Nuclear Power Central allows to obtain the voltage plateau, graphic of sensitivity and operation voltage of three types of ionization chambers which are used in their monitoring systems of process radiation. The automated system is based in a personal computer (Pc) for controlling and acquiring data from the different instruments used, its programming was realized with virtual instruments (LabVIEW, National Instruments software). The system also realizes a diagnosis of the ionization chamber and determine whether the parameters obtained are inside of the manufacturer specifications, that is to say, it determines when the ionization chamber must be replaced. (Author)

  12. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes.

    Science.gov (United States)

    Louwe, R J W; Tielenburg, R; van Ingen, K M; Mijnheer, B J; van Herk, M B

    2004-04-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.

  13. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, J. [Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and Instituto de Física Corpuscular (UV-CSIC), Paterna 46980 (Spain); García-Martínez, T. [Radiation Oncology Department, Hospital La Ribera, Alzira 46600 (Spain); Niatsetski, Y.; Nauta, G.; Schuurman, J. [Elekta Brachytherapy, Veenendaal 3905 TH (Netherlands); Ouhib, Z. [Radiation Oncology Department, Lynn Regional Cancer Center, Boca Raton Community Hospital, Boca Raton, Florida 33486 (United States); Ballester, F. [Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Perez-Calatayud, J. [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and Department of Radiotherapy, Clínica Benidorm, Benidorm 03501 (Spain)

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers

  14. General collection efficiency in liquid iso-octane and tetramethylsilane used as sensitive media in a thimble ionization chamber

    International Nuclear Information System (INIS)

    Johansson, B.E.; Bahar-Gogani, J.; Wickman, G.

    1999-01-01

    The general collection efficiency in the dielectric liquids iso-octane (C 8 H 18 ; 2-2-4 trimethylpentane) and tetramethylsilane (Si(CH 3 ) 4 ), used as sensitive media in a thimble liquid ionization chamber (LIC) with a liquid layer thickness of 1 mm, has been studied. Measurements were made for continuous radiation at varying dose rates using 140 keV photons from the decay of 99m Tc for chamber polarizing voltages of 50, 100 and 500 V. The maximum dose rate in each measurement session was about 150 mGy min -1 . The experimental results were compared with theoretical general collection efficiencies calculated by the equation for the general collection efficiency in gases. The results show that the general collection efficiency in a thimble LIC for continuous radiation can be calculated with the equation for the general collection efficiency in gas ionization chambers, using the same chamber geometry correction factors and analogous characteristic ion recombination parameters for the dielectric liquids. (author)

  15. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Saverio Avino

    2015-02-01

    Full Text Available The measurement of ionizing radiation (IR is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.

  16. Performance of ionization chambers in X radiation beams, radioprotection level; Desempenho de camaras de ionizacao em feixes de radiacao X, nivel radioprotecao

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, Ana C.M.; Potiens, Maria da Penha A.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2005-07-01

    Narrow beams, radioprotection level, were implanted in an X ray system, based on ISO 4037-1, as recommended by IAEA (SRS 16). Energy dependency tests were carried out and short-term stability in ionization chambers for use in radiation protection of trademark Physikalisch-Technische Werkstaetten (PTW), 32002 and 23361 models. The ionization chambers were studied with regard to short-term stability within the program of quality control of the laboratory, with a {sup 90}Sr + {sup 90}Y. The results of the short-term stability test were compared with the recommendations of IEC 60731, respect to dosemeters used in radiotherapy, since this standard presents the more restrictive limits with regard to the behaviour of ionization chambers. All cameras showed results within the limits recommended by this standard. With respect to the energy dependency of the response, the model Chamber 32002 presented a maximum dependence of only 2.7%, and the model Chamber 23361, 4.5%.

  17. Evaluation of MLC leaf positioning using a scanning liquid ionization chamber EPID

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Mohammad [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA 5000 (Australia); Bezak, Eva [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA 5000 (Australia)

    2007-01-07

    A method was developed to determine the accuracy of multileaf collimator (MLC) positioning using transmitted dose maps measured by a scanning liquid ionization chamber electronic portal imaging device (SLIC-EPID). Several MLC fields were designed, using the Varian C-series standard MLC-80, as reference fields for open fields. The MLC leaves were then shifted from the reference positions along the direction of MLC leaf movement towards the central axis from 0.1 to 1.6 mm. The electronic portal images (EPIs), acquired for each case, were converted to two-dimensional dose maps using an appropriate calibration method and the relative dose difference maps were then calculated. The experiment was then performed at non-zero gantry angles in the presence of an anthropomorphic phantom for typical prostate and head and neck fields. Several standard edge detection algorithms were also used in order to find the shifted MLC leaf position. In addition, the short-term reproducibility of MLC leaf positioning was evaluated using the above-mentioned methods. It was found that the relationship between the relative dose difference and MLC leaf spatial displacement is linear. A variation of 0.2 mm in leaf position leads to approximately 4% change in the relative dose values for open fields. The variation of the relative dose difference for phantom studies depends on the phantom positioning and the EPI normalization. From the standard edge detection algorithms, used in the current study, the 'Canny' algorithm was found to be the optimum method to identify the minimum detectable MLC leaf displacements with a precision of approximately 0.1 mm for all cases. However, the result of edge detection algorithms generally is binary and there is no additional information compared to the relative dose maps. The reproducibility of MLC positions was found to be within 0.3 mm. In conclusion, a SLIC-EPID can be used for regular quality assurance (QA) of MLC leaf positioning. Despite

  18. Development and characterization of special ionization chambers for computed tomography beams; Desenvolvimento e caracterizacao de camaras de ionizacao especiais para feixes de tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa Costa de

    2016-10-01

    The use of computed tomography (CT) for imaging procedures is growing due to advances in the CT equipment technology, because they allow the obtention of images with better resolution than through other techniques. Therefore, they are responsible for increasing the dose radiation of patients during the procedure. This fact led to a greater concern about the doses received by patients who undergo this type of examination. To perform the dosimetry in CT beams, the most widely used instrument is the pencil type ionization chamber, because this dosimeter has a uniform response to the incident radiation beam for all angles. The conventional ionization chamber, which is available on the market, has a sensitive volume length of 10 cm; however, some studies have shown that this dosimeter has underestimated the dose values. Therefore, in this study two ionization chambers with sensitive volume lengths of 10 cm and 30 cm, making use of low cost national materials, were developed at the Calibration Laboratory of Instruments (LCI-IPEN/CNEN). The characterization of these chambers was performed, and the results were obtained within the international recommended limits. As an application, the developed ionization chambers and a commercial chamber were tested in a clinical tomograph. The developed ionization chambers were analyzed in a complete way for their possible uses. (author)

  19. Cavities

    Science.gov (United States)

    ... mother's bacteria from being passed to the child. Treatment of Cavities Fluoride Fillings Root canal or tooth extraction If ... to help the world be well. From developing new therapies that treat and prevent disease to helping people ...

  20. Influence of size of the ionization chamber in determination of the quality of an X-ray field of references

    International Nuclear Information System (INIS)

    Viana, R.N.; Cassiano, D.H.; Peixoto, J.G.P.

    2005-01-01

    The quality of an X-ray field of reference can be evaluated with the determination of the values of the first and second half-value layer - 1 st and 2 nd CSR, from measurements carried out with appropriate ionisation chambers. The acceptance criteria of ISO 4037-1 states that the values of 1 st and 2 nd CSR may not differ by more than -5% of the reference values. Procedures have been developed on X-ray equipment PANTAK, model HF160, adjusted to produce a field of 48 keV X-ray, to investigate the determination of the values of 1 st and 2 nd CSR with the use of different ionization chambers of varying volumes. The initial results indicate that the values of 1 st and 2 nd CSR are influenced by the size of the ionization chamber used, which suggests the determination of algorithm for the determination of a single value of 1 st and 2 nd CSR

  1. Comparison of three parallel plate ionization chambers for high energy electron dosimetry

    International Nuclear Information System (INIS)

    Rosenow, E.F.; Kasten, G.; Thienel, T.

    1994-01-01

    Various authors have claimed that the perturbation or replacement correction factor for the Markus electron dosimetry chamber drops from unity at higher electron energies to several per cent lower at the low energy end. Data gained from a comparison with cylindrical chambers showed a larger effect than those obtained from a comparison with Fricke dosimetry, indicating a systematic problem with cylindrical chambers. A similar controversy emerged in respect of the polarization effect. To confirm data obtained earlier and by others from Fricke dosimetry the perturbation effect of the Markus chambers was again measured. A drop of 2% was reconfirmed. Also, the small polarization effect was reconfirmed. For comparison and NACP and an Attix chamber were investigated. This investigation indicated a small margin for possible improvement of the Markus chamber. To separate the factors influencing the perturbation effect a number of modifications of the Markus chamber were examined. Guard ring size appeared to be only one parameter influencing the replacement correction, the others being collector diameter, plate separation, side wall angle, graphite coating and collector material. With small design modifications the perturbation effect of the Markus chamber can be made unity over the whole energy range while leaving basic characteristics such as the small sensitive volume, the negligible polarization effect and the outer dimensions unchanged. (author). 13 refs, 3 figs, 3 tabs

  2. Calibration of a 4π-γ well-type ionization chamber system for measuring of the radionuclides activity

    International Nuclear Information System (INIS)

    Dias, M.S.

    1978-01-01

    The calibration of a 4π well-type ionization Chamber System installed at the Laboratorio de Metrologia Nuclear, of the Instituto de Energia Atomica of Sao Paulo used for of the activity determination of radioactive solutions is descrided. The determination can be performed by two methods: 1) Direct Method, comparing the ionization Chamber response for solutions of unknown activity against that obtained with a solution which is standardized by the Absolute 4πβγ Coincidence Method. By this method the following radionuclides are standardized: 241 Am, 139 Ce, 198 Au, 22 Na, 134 Cs, 54 Mn, 60 Co, 42 K, 24 Na. In this case, the accuracy achieved is about 0.2 to 0,4%. 2) Indirect Method, by means of curves of relative beta or gama efficiency, which were determined in this work. This method can be applied for those radionuclides not included in the direct method. In this case, the accuracy depends on the gama energy range of the curves and on the accuracy of the absolute gama intensities, taken from the literature. In general the uncertainty is greater than the direct method, but values of 0,2% can be achieved in favourable cases. The upper and lower limits of Activity that can be measured depend on the radionuclide. These limits are from a few micro-curies to many mili-curies, which are satisfactory for most purposes. The sample preparation is simple and the time spent in the measurement is, in general, restricted to a few minutes. These are some of the advantages of this ionization Chamber System in comparison with other systems [pt

  3. Characterization of a free-air ionization chamber in direct X-ray beams as used in mammography

    International Nuclear Information System (INIS)

    Lima, Mateus Hilario de

    2014-01-01

    At this work stability and characterization tests were undertaken on a Victoreen free-air ionization chamber, model 481. The tests were realized using direct X-ray beams as a contribution for its establishment as a primary standard system of the quantity air kerma. The characterization tests were: saturation curve, ion collection efficiency, polarity effect, response linearity with the air kerma rate and response linearity with the chamber volume variation. The ion collection efficiency allowed the determination of the ion recombination factor. Most of the test results showed agreement with the limits established by international standards. Furthermore, the air attenuation factors for the mammography beams with aluminum and molybdenum filters were obtained. The factors for photon transmission and scattering at the diaphragm edges were also determined for mammography beams with aluminum filter and for the standard beam with molybdenum filter. (author)

  4. Description of the XXXIV ARCAL Project Repairing and calibration of electrometers and ionization chambers used in radiotherapy

    International Nuclear Information System (INIS)

    Cruz E, P.; Villaverde L, A.

    2002-01-01

    The technological tools from what the humanity has for the illnesses diagnosis and the cancer treatment, are based in great extent in the use of ionizing radiations. This situation worries to the International Atomic Energy Agency (IAEA), which has implemented technical cooperation programs for protecting the human health. In Latin America the ARCAL program (Regional Agreement of Cooperation for Promotion of Nuclear Science and Technology in Latina America and the Caribbean was created. The Project ARCAL XXXIV has as objective to establish three regional centers of repairing, maintenance and electric calibration of clinical dosemeters, equipment made up for an ionization chamber and an electrometer which is used in radiotherapy to generate calibration procedures, personnel training, establishment of an intercomparison net for the electrometers control used as standards and designing current intensity sources which serve as work standards for each one of the participant countries, Mexico is one of them. (Author)

  5. Discovery of multiple, ionization-created CS{sub 2} anions and a new mode of operation for drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Ifft, Daniel P. [Department of Physics, Occidental College, Los Angeles, California 90041 (United States)

    2014-01-15

    This paper focuses on the surprising discovery of multiple species of ionization-created CS{sub 2} anions in gas mixtures containing electronegative CS{sub 2} and O{sub 2}, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented.

  6. Study on the realization of a minimum ionizing particle detector: development of a PPAC (Parallel-plate Avalanche Chamber)

    International Nuclear Information System (INIS)

    Heil, C.

    1980-01-01

    Parallel-Plate Avalanche Chamber (PPAC) detectors are used currently to observe nuclear disintegrations in nuclear physics. The work that has been done here shows PPAC can be used in high energy physics under certain conditions to detect minimum ionizing particles. Their advantage is to join good time resolution with low matter density. A PPAC prototype has been made with 90% efficiency, 3 NS jitter, 2 NS rise time, 20 mg/cm 2 mass, 1.5 mm spatial accuracy. The parameters studied were electrodes design, choice of gas filling, electronics and anode strips. The detector is to be used as a hodoscope with high flux of particles [fr

  7. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    International Nuclear Information System (INIS)

    Gago-Arias, Araceli; Antolín, Elena; Fayos-Ferrer, Francisco; Simón, Rocío; González-Castaño, Diego M.; Palmans, Hugo; Sharpe, Peter; Gómez, Faustino; Pardo-Montero, Juan

    2013-01-01

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjäll, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, “A new formalism for reference dosimetry of small and nonstandard fields,” Med. Phys. 35, 5179–5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between

  8. Particle identification in a LKr ionization chamber by multiple induced current measurements using the shape analysis of the signal

    International Nuclear Information System (INIS)

    Cantoni, P.; Frabetti, P.L.; Stagni, L.; Diaferia, R.; Lanni, F.; Maggi, B.; Palombo, F.; Sala, A.; Manfredi, P.F.; Re, V.; Speziali, V.

    1995-01-01

    Charged particle (π/K) separation in the momentum range 0.5-0.7 GeV/c using a new method of shape analysis of the signal from a liquid krypton ionization chamber has been studied experimentally. The detector has been exposed to the T11 test beam at CERN PS. The shape of the preamplifier output signal has been recorded by a waveform digitizer and differentiated to obtain multiple measurements of induced current inside a 2 cm gap. Results on particle separation are presented. (orig.)

  9. SU-F-T-293: Experimental Comparisons of Ionization Chambers with Different Volumes for CyberKnife Delivery Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, M [Kobe Minimally invasive Cancer Center, Kobe, Hyogo (Japan); Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Munetomo, Y; Ogata, T; Uehara, K; Tsudou, S; Nishimura, H; Mayahara, H [Kobe Minimally invasive Cancer Center, Kobe, Hyogo (Japan); Sasaki, R [Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2016-06-15

    Purpose: To evaluate the practicality use of ionization chambers with different volumes for delivery quality assurance of CyberKnife plans, Methods: Dosimetric measurements with a spherical solid water phantom and three ionization chambers with volumes of 0.13, 0.04, and 0.01 cm3 (IBA CC13, CC04, and CC01, respectively) were performed for various CyberKnife clinical treatment plans including both isocentric and nonisocentric delivery. For each chamber, the ion recombination correction factors Ks were calculated using the Jaffe plot method and twovoltage method at a 10-cm depth for a 60-mm collimator field in a water phantom. The polarity correction factors Kpol were determined for 5–60-mm collimator fields in same experimental setup. The measured doses were compared to the doses for the detectors calculated using a treatment planning system. Results: The differences in the Ks between the Jaffe plot method and two-voltage method were −0.12, −0.02, and 0.89% for CC13, CC04, and CC01, respectively. The changes in Kpol for the different field sizes were 0.2, 0.3, and 0.8% for CC13, CC04, and CC01, respectively. The measured doses for CC04 and CC01 were within 3% of the calculated doses for the clinical treatment plans with isocentric delivery with collimator fields greater than 12.5 mm. Those for CC13 had differences of over 3% for the plans with isocentric delivery with collimator fields less than 15 mm. The differences for the isocentric plans were similar to those for the single beam plans. The measured doses for each chamber were within 3% of the calculated doses for the non-isocentric plans except for that with a PTV volume less than 1.0 cm{sup 3}. Conclusion: Although there are some limitations, the ionization chamber with a smaller volume is a better detector for verification of the CyberKnife plans owing to the high spatial resolution.

  10. Construction, calibration and test of an ionization chamber for exposure measurement of x and gamma radiation in region from 40 keV to 1250 keV

    International Nuclear Information System (INIS)

    Campos, C.A.A.L.

    1982-01-01

    An unsealed thimble ionization chamber with connecting cable was designed, manufactured and tested at the IRD=CNEN, for exposure or exposure rate measurement of X or gamma rays in the energy range from 40 KeV up to Cobalt-60. Recommendations given by IEC, TC-62 (1974) were used as acceptance tests of the ionization chamber for use as a tertiary standard (field class instruments) in radiation therapy. In addition, intercomparison with commercially available chambers of reference class type were carried out in respect to field size dependence, energy dependence, short and long term stability. The results of those tests indicated the usefulness of the developed ionization chamber as a tertiary standard. (author)

  11. Evaluation of the energy dependence of ionization chambers pencil type calibrated beam tomography standards; Avaliacao da dependencia energetica de camaras de ionizacao do tipo lapis calibradas em feixes padroes de tomografia

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha A., E-mail: lpfontes@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Instrument Calibration Laboratory of IPEN (LCI - IPEN) performs calibrations of pencil-type ionization chambers (IC) used in measures of dosimetric survey on clinical systems of Computed Tomography (CT). Many users make mistakes when using a calibrated ionization chamber in their CT dosimetry systems. In this work a methodology for determination of factors of correction for quality (Kq) through the calibration curve that is specific for each ionization chamber was established. Furthermore, it was possible to demonstrate the energy dependence on an pencil-type Ionization Chamber(IC) calibrated at the LCI - IPEN. (author)

  12. Cavities

    Science.gov (United States)

    ... Additional Content Medical News Cavities ˈkav-ət-ē (Dental Caries) By James T. Ubertalli, DMD, Private Practice, Hingham, ... access to dental care, and better treatment for tooth decay and periodontal disease. When teeth are lost, chewing is greatly hindered, and speaking ...

  13. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: the effect of the chamber shape

    International Nuclear Information System (INIS)

    Stocchino, Alessandro; Repetto, Rodolfo; Cafferata, Chiara

    2007-01-01

    The dynamics of the vitreous body induced by eye rotations is studied experimentally. In particular, we consider the case in which the vitreous cavity is filled by a Newtonian fluid, either because the vitreous is liquefied or because it has been replaced, after vitrectomy, by a viscous fluid. We employ a rigid Perspex container which models, in a magnified scale, the vitreous cavity of the human eye. The shape of the cavity closely resembles that of the real vitreous chamber; in particular, the anterior part of the container is concave in order to model the presence of the eye lens. The container is filled with glycerol and is mounted on the shaft of a computer-controlled motor which rotates according to a periodic time law. PIV (particle image velocimetry) measurements are taken on the equatorial plane orthogonal to the axis of rotation. The experimental measurements show that the velocity field is strongly influenced by the deformed geometry of the domain. In particular, the formation of a vortex in the vicinity of the lens, which migrates in time towards the core of the domain, is invariably observed. The vortex path is tracked in time by means of a vortex identification technique and it is found that it is significantly influenced by the Womersley number of the flow. Particle trajectories are computed from the PIV measurements. Particles initially located at different positions on the equatorial horizontal plane (perpendicular to the axis of rotation) tend to concentrate in narrow regions adjacent to the lens, thus suggesting the existence, in such regions, of a vertical fluid ejection. Such a strong flow three-dimensionality, which is essentially induced by the irregular shape of the domain, may play a significant role in the mixing processes taking place inside the eye globe. The tangential stresses acting on the rigid boundary of the domain are also computed from the experimental measurements showing that regions subject to particularly intense stresses

  14. Establishment of a primary standard system for low energy X-rays using a free air ionization chamber

    International Nuclear Information System (INIS)

    Silva, Natalia Fiorini da

    2016-01-01

    In this work a primary standard system was established for low energy X-rays (10 kV to 50 kV), using a free air ionization chamber with concentric cylinders, Victoreen (Model 481-5), at the Calibration Laboratory of Instruments (LCI) of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP). For this, a new ionization chamber alignment protocol was developed for the radiation system and a modification on the micrometer housing used for the movement of the internal cylinders was ma de. The results obtained for the stability and characterization tests showed to be within the limits established by the standards IEC 61674 and IEC 60731. The correction factors for photon attenuation in the air, transmission and scattering in the diaphragm, scattering and fluorescence and ion recombination were also determined. These values were compared with those obtained by the German primary standard laboratory, Physikalisch-Technische Bundesanstalt (PTB), showing good agreement. Finally, the absolute values of the quantity air kerma rate for the standard qualities direct beams MWV28 and WMV35 and the attenuated beams WMH28 and WMH35 were determined; the results are in agreement, with a maximum difference of 3,8% with the values obtained using the secondary standard system of LCI. (author)

  15. Comparing of the yield curve of the pediatric X-ray equipment using thermoluminescent dosimeters and cylindrical ionization chamber

    International Nuclear Information System (INIS)

    Filipov, Danielle; Schelin, Hugo R.; Tilly Junior, Joao G.

    2014-01-01

    The determination of the yield curve of a radiographic equipment should be realized once a year, or when the unit be serviced. Besides being a requirement of ANVISA, through this test is possible to determine the incident air kerma (at a given point in the center of the beam) - INAK. Based on these concepts, the main objective of this work is the comparison of yield curves of the pediatric X-ray apparatus using two different detectors: one cylindrical ionization chamber and thermoluminescent dosimeters type LiF: Mg, Cu, P, as per protocol RLA / 9/057 IAEA. Then the equation of the yield curve (generated by each detector) was used to determine the INAK of 10 pediatric examinations, performed on this equipment. After the process of calibration of both detectors, they were placed side by side at a focus of the tube equipment for determining the performance of the same curve. Finally, using the curves generated by two detectors, INAK values of the 10 tests were calculated (from the kVp values, and mAs focus-patient of each exams), generating difference values at most 5%. As a conclusion, it can be said that the TLD lithium fluoride doped with Mg, Cu and P and the cylindrical ionization chambers may be used satisfactorily to determine the yield curve, whether as quality control or dosimetry

  16. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber

    International Nuclear Information System (INIS)

    Guzman Calcina, Carmen S; Oliveira, Lucas N de; Almeida, Carlos E de; Almeida, Adelaide de

    2007-01-01

    Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm 2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium

  17. Multiple sampling ionization chamber (MUSIC) for investigation of fusion induced by halo nuclei

    International Nuclear Information System (INIS)

    Petrascu, H.; Kumagai, H.; Tanihata, I.; Fueloep, Zs.; Petrascu, M.

    1999-01-01

    A high resolution MUSIC for low and medium energy ions up to ∼ 20 AMeV, for investigation of fusion processes induced by halo nuclei, has been achieved. The chamber was used in the first experiments, aiming at investigating fusion processes induced by 9,11 Li with light targets. In these experiments MUSIC was used for the identification of the inclusive evaporation residues produced in the Si detector target, mounted inside the chamber. By using MUSIC it was possible to separate the inclusive spectra corresponding to the fusion processes, from the background due to the energy degraded beam particles. In principle such a chamber could be also used for investigation of particular fusion channels produced in the entrance window. In this case one could obtain the fusion product trajectory angle with the horizontal plane, by coupling each anode pad to a TDC. The chamber was also provided by a position grid, mounted between the Frisch grid and the anode pads. The energy loss distribution widths were measured using α particles. The chamber was filled with P-10 gas at pressures between 200 and 300 torr. The obtained resolution corresponding to a single pad, is close to the limit derived from the theory of Badhwar. (authors)

  18. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, B., E-mail: babak_sharifi88@yahoo.com [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Zamani Zeinali, H. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of); Soltani, J.; Negarestani, A. [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Shahvar, A. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-11

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm{sup 3} dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  19. Air density dependence of the response of the PTW SourceCheck 4pi ionization chamber for 125I brachytherapy seeds.

    Science.gov (United States)

    Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M

    2017-06-01

    To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring 125 I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Energy dependence of the air kerma response of a liquid ionization chamber at photon energies between 8 keV and 1250 keV

    International Nuclear Information System (INIS)

    Hilgers, G.; Bahar-Gogani, J.; Wickman, G.

    2002-01-01

    Full text: In its recent reports on cardiovascular brachytherapy the DGMP recommends the source strength of brachytherapy sources being characterized in terms of absorbed dose to water at a distance of 2 mm from the central axis of the source. As a consequence, the response of a detector suitable for characterizing such sources with respect to absorbed dose to water should depend only to a small extent on radiation energy. Additionally, the detection volume of the detector has to be sufficiently small for the necessary spatial resolution to be obtained. The liquid ionization chamber as described in seems to be a promising means for this type of measurements. The two components of the ionization liquid (TMS and isooctane) can be mixed in a ratio which ensures that the mass-energy absorption coefficient of the resulting mixture deviates from that of water by less than ±15 % down to photon energies of 10 keV. Due to the high density of the ionization medium, the spacing between the two electrodes of the ionization chamber can be made as small as a few tenths of a millimeter and still the resulting ionization current is sufficiently large. The ionization chamber used in the present investigation is a plane parallel chamber 5 mm in diameter and of 0.3 mm electrode spacing. The ionization medium is a mixture of 40 % TMS and 60 % isooctane. The irradiations were carried out with the ISO wide spectra series with tube voltages between 10 kV and 300 kV and with 137 Cs and 60 Co γ-radiation. As a first step, the response of the liquid ionization chamber was investigated with respect to air kerma instead of absorbed dose to water. Although the mass-energy absorption coefficient of the liquid deviates from that of air by less than ±10 % over the photon energy range, the measured chamber response varies by a factor of about 3.5. Monte Carlo calculations carried out with EGSnrc show a variation of the chamber response smaller than ±20 %. Measurements of the ion yield of the

  1. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    Science.gov (United States)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  2. Multiple sampling ionization chamber (MUSIC) for fusion induced by halo nuclei investigation

    International Nuclear Information System (INIS)

    Petrascu, Horia; Kumagai, H.; Tanihata, I.; Fueloep, Z.S.

    2000-01-01

    A high resolution MUSIC, for low and medium energy ion, has been developed. The high pulse height resolution was obtained by coupling the preamplifiers directly to the anode pads. The pulse height measurements were performed by using a 241 Am alpha source. The energy loss distribution widths measured in P-10 gas at pressures between 200 and 300 torr are in agreement with the theory of Badhwar. The achieved resolution of the chamber is closed to the statistical limit. MUSIC was used for fusion investigation by using 11 Li radioactive beam and Si and C targets. It was found to be very useful in eliminating the energy degraded and parasitic beam admixtures. It was expected that this type of chamber could be used also for isotopes of light elements identification, in Accelerator Mass Spectrometry applications. (authors)

  3. Method for determining correction factors induced by irradiation of ionization chamber cables in large radiation field

    International Nuclear Information System (INIS)

    Rodrigues, L.L.C.

    1988-01-01

    A simple method was developed to be suggested to hospital physicists in order to be followed during large radiation field dosimetry, to evaluate the effects of cables, connectors and extension cables irradiation and to determine correction factors for each system or geometry. All quality control tests were performed according to the International Electrotechnical Commission for three clinical dosimeters. Photon and electron irradiation effects for cables, connectors and extention cables were investigated under different experimental conditions by means of measurements of chamber sensitivity to a standard radiation source of 90 Sr. The radiation induced leakage current was also measured for cables, connectors and extension cables irradiated by photons and electrons. All measurements were performed at standard dosimetry conditions. Finally, measurements were performed in large fields. Cable factors and leakage factors were determined by the relation between chamber responses for irradiated and unirradiated cables. (author) [pt

  4. Dosimetry in VMAT for prostate using ionization chambers of different volumes; Verificacao dosimetrica em VMAT para prostata com camaras de ionizacao de volumes diferentes

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, Daniela P.; Anderson, Ernani; Pavan, Guilherme A., E-mail: danielagroppo@grupocoi.com, E-mail: ernanianderson@grupocoi.com [Clinicas Oncologicas Integradas (Grupo COI), Rio de Janeiro, RJ (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    The volumetric modulated arc therapy is one of the most modern radiotherapy techniques. The advents of this modality in the dose delivery can also contribute to errors during the execution of the treatment, therefore various types of quality control are carried out. The individual assessment of dose delivered to the patient is also an important quality control test and required by the current regulations. The objective of this study was to evaluate the use of different volume ionization chambers for dosimetry of VMAT treatments for prostate cancer. Three ionization chambers were evaluated and all of them showed satisfactory results. (author)

  5. Uncertainty evaluation of the kerma in the air, related to the active volume in the ionization chamber of concentric cylinders, by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lo Bianco, A.S.; Oliveira, H.P.S.; Peixoto, J.G.P.

    2009-01-01

    To implant the primary standard of the magnitude kerma in the air for X-ray between 10 - 50 keV, the National Metrology Laboratory of Ionizing Radiations (LNMRI) must evaluate all the uncertainties of measurement related with Victtoren chamber. So, it was evaluated the uncertainty of the kerma in the air consequent of the inaccuracy in the active volume of the chamber using the calculation of Monte Carlo as a tool through the Penelope software

  6. Dosimetry of small circular beams of high energy photons for stereotactic radiosurgery and radiotherapy: the use of small ionization chambers

    International Nuclear Information System (INIS)

    Mazal, A.; Gaboriauid, G.; Zefkili, S.; Rosenwald, J.C.; Boutaudon, S.; Pontvert, D.

    1999-01-01

    The irradiation of small targets in the brain in a singe fraction (radiosurgery) or with a fractionated approach (stereotactic radiosurgery) with small beams of photons requires specific conditions to measure and to model the dosimetric data needed for treatment planning. In this work we present the method and materials adopted in our institution since 1988 to perform the dosimetry of high energy (6-23) circular photon beams with diameters ranging from 10 to 40 mm at the isocenter of linear accelerators, and its evolution as new dosimetric material became commercially available. in circular ionization chambers of small dimensions. We want to answer the following questions: Which are the minimal basic data needed to model small circular beams of high energy photons? Can we extrapolate or convert data from conventional data of larger beams? Which are the detectors well adapted for these kind of measurements and for which range of beam sizes?

  7. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  8. Measurement of 18O + 10B fusion cross section and construction of a position sensitive ionization chamber

    International Nuclear Information System (INIS)

    Added, N.

    1987-01-01

    The 18 O + 10 B fusion reaction has been investigated within the bombarding energy range of 29,0 MeV lab 0 lab 0 angular range. For this purpose, a high resolution position sensitive ionization chamber has been developed and constructed. Experimental results compared to model predictions and experimental systematics found in the literature allows to reject compound nucleus limitation to the fusion cross section up to energies as high as five times the coulomb barrier. Statistical model fits to the residues elementary distributions reveal a quite difuse partial fusion cross section in the angular momentum space. Systematic analysis of fusion barrier height (V B ) and radius (R B ) for neighbouring nuclei point out the importance of the nuclear matter difuseness in the competition between the fusion and quasi-direct process. Calculations within this framework were performed. (author) [pt

  9. Sensitive electrochemical enzyme immunoassay microdevice based on architecture of dual ring electrodes with a sensing cavity chamber.

    Science.gov (United States)

    Dong, H; Li, C M; Zhou, Q; Sun, J B; Miao, J M

    2006-12-15

    A novel electrochemical detection architecture was investigated for enzyme immunoassay sensors. Microchips with dual-ring working and counter electrodes, and a sensing cavity chamber were made on glass slides. The glass surface of the microchip was coated by 3-aminopropyltriethoxysilane (APTES). Goat IgG, as a example, was covalently captured on APTES-modified glass surfaces through glutaraldehyde (GA) as a cross-linker. Enzyme substrate, p-aminophenyl phosphate (PAPP) was prepared by electrolysis. The enzyme conversion from home-synthetic PAPP to p-aminophenol (PAP) was examined by differential pulse voltammetry (DPV). A competitive inhibition enzyme-linked immunosorbant assay (ELISA) was designed to test the system. Experimental results demonstrate that a detection limit of 118 fg/ml of goat IgG and a dynamic range of 118 fg/ml to 1.18 ng/ml, up to five orders of magnitude could be achieved. Due to its novel architecture design and electronic detection scheme, the method can be used to fabricate portable electrochemical ELISA lab-on-chip systems. The technology could have great potential in clinical diagnostic applications.

  10. Hot-cavity studies for the Resonance Ionization Laser Ion Source

    International Nuclear Information System (INIS)

    Henares, J.L.; Lecesne, N.; Hijazi, L.; Bastin, B.; Kron, T.; Lassen, J.; Le Blanc, F.; Leroy, R.; Osmond, B.; Raeder, S.; Schneider, F.; Wendt, K.

    2016-01-01

    The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency and beam emittance. Furthermore, a low work function material was tested to reduce the contaminants and molecular sidebands generated inside the ion source. First results with ZrC ionizer tubes will be presented. Furthermore, a method to measure the energy distribution of the ion beam as a function of the time of flight will be discussed.

  11. Scattering study at free air ionization chamber diaphragm; Estudo do espalhamento no diafragma da camara de ionizacao de ar livre

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Alexandre Lo Bianco dos

    2011-07-01

    The maim of this work consisted in the assessment of the correction factor for air kerma, due to scattered radiation in the diaphragm of the free-air ionization chamber model 481. LNMRl measurements were made to acquire x-ray spectra corresponding to the Qualities RQR-M, described in IEC 61627 standards (2005). These spectra were used as input data in the MC simulations. The operational range of energy spectra provide up to 35 keV. This energy range is typically used in diagnostic radiology, although there is not primary standard for air kerma. The determination of this factor is a fundamental process in the primary standardization of the air kerma. These factors were obtained by computer simulation using the Penelope code. The results are k{sub RQR-M1}=0,9946, k{sub RQR} {sub -M2}=0,9932, k{sub RQR-M3}=0,9978 and k{sub RQR-M4}=0,9885; with uncertainties of 0,007 and coverage factor equal to 2. lt can be concluded that, with respect to the diaphragm, the chamber can be used in the primary standard of air kerma. (author)

  12. Correction factors for photon beam quality for cylindrical ionization chambers: Monte Carlo calculations by using the PENELOPE code

    International Nuclear Information System (INIS)

    Barreras Caballero, A. A.; Hernandez Garcia, J.J.; Alfonso Laguardia, R.

    2009-01-01

    Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)

  13. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  14. Comparison of theoretical and experimental determinations of calibration factors for cylindrical and parallel plates ionization chambers

    International Nuclear Information System (INIS)

    Vallejos, Matias; Montano, Gustavo A.; Stefanic, Amalia; Saravi, Margarita

    2009-01-01

    The Ionizing Radiation Dosimetry Section of CNEA is the National Laboratory of Dosimeter Reference, having been designated by the National Institute of Industrial Technology (INTI, deposit taker by Law 19,511/72 of the national standards for metrology) for the safekeeping and operation of the national standards for dosimetry (Agreement INTI - CNEA, February 2004). From their creation, the CRRD provides, among other services, the calibration of dosemeters used in radiotherapy, in terms of Kerma in air, and since year 2002 provides calibration in terms of absorbed dose in water. In this work, those elements appear whereupon it counts the laboratory and that they tend to consolidate the securing of the quality of the results obtained in the calibrations of dosemeters. (author)

  15. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  16. An investigation of the effect of some gaseous admixtures on the ionization currents in the air in the discharge chambers of the proportional counter type

    International Nuclear Information System (INIS)

    Berdowska, E.; Zastawny, A.

    1981-01-01

    Voltage-current characteristics of the ionization discharge in chambers of the proportional counter filled with air with admixtures of CO, CO 2 , CH 4 and H 2 O have been investigated. It was found that in the transition region between dependent and self-maintained discharge the characteristics change sufficiently for detection of the presence of those admixtures in the air. (author)

  17. Application of the correction factor for radiation qualityKq in dosimetry with pencil-type ionization chambers using a Tandem system

    International Nuclear Information System (INIS)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha Albuquerque

    2017-01-01

    The pencil-type ionization chamber widely used in computed tomography (CT) dosimetry, is a measuring instrument that has a cylindrical shape and provides uniform response independent of the angle of incidence of ionizing radiation. Calibration and measurements performed with the pencil-type ionization chamber are done in terms of Kerma product in air-length (P k,l ) and values are given in Gy.cm. To obtain the values of (P k,l ) during clinical measurements, the readings performed with the ionization chamber are multiplied by the calibration coefficient (N k,l ) and the correction factor C for quality (K q ) which are given in Calibration certificates of the chambers. The application of the correction factor for radiation quality K q is done as a function of the effective energy of the beam that is determined by the Half Value layer (HVL) calculation. In order to estimate the HVL values in this work, a Tandem system made up of cylindrical aluminum and PMMA absorber layers was used as a low cost and easy to apply method. From the Tandem curve, it was possible to construct the calibration curve and obtain the appropriate K q to the beam of the computed tomography equipment studied. (author)

  18. A New Approach on Output Current Calculation for Thimble-type Ionization Chamber with Variation of Gamma-ray Irradiation Angle

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Kim, Soon Young; Kim, Yong Kyun; Kim, Jong Kyung

    2006-01-01

    The output current of an ionization chamber is directly connected with the size of the active volume and ion-pair distribution in air volume. Their accurate assessments are significantly important in order to analyze the design characteristics of an ionization chamber and interpret the measurements with it. It has been generally assumed that ion-pairs are generated uniformly in air volume for simplicity although they are not uniformly distributed due to various source and geometry conditions. Ion-pair distribution is mainly dependent on the irradiation source conditions, while active volume is deeply related to the ionization chamber design. Therefore, such assumption should be examined if the ion-pair distribution affects real output current of the active volume defined by electric field. A new analytical approach considering both electric field and ion-pair nonuniformity has been proposed to analyze accurately the design characteristics of an ionization chamber and interpretation of measurements with it. The angular dependence analysis was carried out to validate the new concept for calculation of output current

  19. Application of the correction factor for radiation qualityK{sub q} in dosimetry with pencil-type ionization chambers using a Tandem system

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha Albuquerque, E-mail: lpfontes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The pencil-type ionization chamber widely used in computed tomography (CT) dosimetry, is a measuring instrument that has a cylindrical shape and provides uniform response independent of the angle of incidence of ionizing radiation. Calibration and measurements performed with the pencil-type ionization chamber are done in terms of Kerma product in air-length (P{sub k,l}) and values are given in Gy.cm. To obtain the values of (P{sub k,l}) during clinical measurements, the readings performed with the ionization chamber are multiplied by the calibration coefficient (N{sub k,l}) and the correction factor C for quality (K{sub q}) which are given in Calibration certificates of the chambers. The application of the correction factor for radiation quality K{sub q} is done as a function of the effective energy of the beam that is determined by the Half Value layer (HVL) calculation. In order to estimate the HVL values in this work, a Tandem system made up of cylindrical aluminum and PMMA absorber layers was used as a low cost and easy to apply method. From the Tandem curve, it was possible to construct the calibration curve and obtain the appropriate K{sub q} to the beam of the computed tomography equipment studied. (author)

  20. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  1. National pattern for the realization of the unit of the dose speed absorbed in air for beta radiation. (Method: Ionometer, cavity of Bragg-Gray implemented in an extrapolation chamber with electrodes of variable separation, exposed to a field of beta radiation of 90Sr/90Y)

    International Nuclear Information System (INIS)

    Alvarez R, M. T.; Morales P, J. R.

    2001-01-01

    From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: 90 Sr/ 90 Y; Ophthalmic applicators 9 0 S r/ 90 Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)

  2. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  3. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    Science.gov (United States)

    Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  4. Evaluation of a liquid ionization chamber for relative dosimetry in small and large fields of radiotherapy photon beams

    International Nuclear Information System (INIS)

    Benítez, E.M.; Casado, F.J.; García-Pareja, S.; Martín-Viera, J.A.; Moreno, C.; Parra, V.

    2013-01-01

    Commissioning and quality assurance of radiotherapy linear accelerators require measurement of the absorbed dose to water, and a wide range of detectors are available for absolute and relative dosimetry in megavoltage beams. In this paper, the PTW microLion isooctane-filled ionization chamber has been tested to perform relative measurements in a 6 MV photon beam from a linear accelerator. Output factors, percent depth dose and dose profiles have been obtained for small and large fields. These quantities have been compared with those from usual detectors in the routine practice. In order to carry out a more realistic comparison, an uncertainty analysis has been developed, taking type A and B uncertainties into account. The results present microLion as a good option when high spatial resolution is needed, thanks to its reduced sensitive volume. The liquid filling also provides a high signal compared to other detectors, like that based on air filling. Furthermore, the relative response of microLion when field size is varied suggests that this detector has energy dependence, since it is appreciated an over-response for small fields and an under-response for the large ones. This effect is more obvious for field sizes wider than 20 × 20 cm 2 , where the differences in percent depth dose at great depths exceed the uncertainties estimated in this study. - Highlights: • When high spatial resolution is required the results confirm the suitability of the liquid chamber. • Some energy dependence of the liquid detector can be appreciated in OFs and PDDs for small and large fields. • For field sizes >20 × 20 cm 2 , the differences in PDDs at great depths exceed the uncertainties estimated. • Some drawbacks should be considered: the time to reach stability, the high voltage supply required and the acquiring cost

  5. Correction factors for A1SL ionization chamber dosimetry in TomoTherapy: Machine-specific, plan-class, and clinical fields

    International Nuclear Information System (INIS)

    Gago-Arias, Araceli; Rodriguez-Romero, Ruth; Sanchez-Rubio, Patricia; Miguel Gonzalez-Castano, Diego; Gomez, Faustino; Nunez, Luis; Palmans, Hugo; Sharpe, Peter; Pardo-Montero, Juan

    2012-01-01

    Purpose: Recently, an international working group on nonstandard fields presented a new formalism for ionization chamber reference dosimetry of small and nonstandard fields [Alfonso et al., Med. Phys. 35, 5179-5186 (2008)] which has been adopted by AAPM TG-148. This work presents an experimental determination of the correction factors for reference dosimetry with an Exradin A1SL thimble ionization chamber in a TomoTherapy unit, focusing on: (i) machine-specific reference field, (ii) plan-class-specific reference field, and (iii) two clinical treatments. Methods: Ionization chamber measurements were performed in the TomoTherapy unit for intermediate (machine-specific and plan-class-specific) calibration fields, based on the reference conditions defined by AAPM TG-148, and two clinical treatments (lung and head-and-neck). Alanine reference dosimetry was employed to determine absorbed dose to water at the point of interest for the fields under investigation. The corresponding chamber correction factors were calculated from alanine to ionization chamber measurements ratios. Results: Two different methods of determining the beam quality correction factor k Q,Q 0 for the A1SL ionization chamber in this TomoTherapy unit, where reference conditions for conventional beam quality determination cannot be met, result in consistent values. The observed values of overall correction factors obtained for intermediate and clinical fields are consistently around 0.98 with a typical expanded relative uncertainty of 2% (k = 2), which when considered make such correction factors compatible with unity. However, all of them are systematically lower than unity, which is shown to be significant when a hypothesis test assuming a t-student distribution is performed (p=1.8x10 -2 ). Correction factors k Q clin ,Q pcsr f clin ,f pcsr and k Q clin ,Q msr f clin ,f msr , which are needed for the computation of field factors for relative dosimetry of clinical beams, have been found to be very

  6. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    Energy Technology Data Exchange (ETDEWEB)

    Gotz, M; Karsch, L [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Pawelke, J [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany)

    2016-06-15

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  7. Activity measurements of radioactive solutions by liquid scintillation counting and pressurized ionization chambers and Monte Carlo simulations of source-detector systems for metrology

    International Nuclear Information System (INIS)

    Amiot, Marie-Noelle

    2013-01-01

    The research works 'Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems' was presented for the graduation: 'Habilitation a diriger des recherches'. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination

  8. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    Science.gov (United States)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M.; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V.; Pardo-Montero, Juan

    2012-08-01

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.

  9. Measurement of backscatter factor for kilovoltage x-ray beam using ionization chamber and Gafchromic XR-QA2 film

    Science.gov (United States)

    Shukor, N. S. Ab; Asri, N. H. Mohd; Syed Jaafar, S. M. F.; Rosnan, M. S.; Aziz, S. A. Abdul

    2018-01-01

    Backscatter factor (BSF) is an important parameter in the determination of surface dose for kilovoltage X-ray beam. The purpose of this study was to measure the BSF for kilovoltage diagnostic X-ray beam, and compare the measured BSF between Gafchromic XR-QA2 film and shadow free (SFD) ionization chamber (IC). The parameters that may affect the BSF, such as tube voltage (kVp) and field size, were also studied. The results were in good agreement with the TRS 457, with deviation of less than 12 %. Based on the film study, the BSF obtained from the film measurement were found to be lower than that of the IC, with average difference of 26 %. It was also found that smaller field size resulted in lower effective energy, and the amount of photons which scattered back onto the surface were also smaller. This study demonstrated that the Gafchromic XR-QA2 film was not suitable for the application of small field size.

  10. Experimental comparison of profiles of acquired small fields with ionization chambers, diodes, radiochromic s and TLD films

    International Nuclear Information System (INIS)

    Venencia, D.; Garrigo, E.; Filipuzzi, M.; Germanier, A.

    2014-08-01

    The use of radiation small fields, introduced by new techniques, can bring a considerable uncertainty in the precision of the acquired profiles, due to the conditions of lateral electronic non-equilibrium and the perturbations introduced by the detectors (volume effect and alteration of the charged particles flowing) [Das et al., 2007]. The development of new miniature detectors looks to diminish the uncertainty created by the material and the size of the sensitive volume of the dosimeter. For this reason, comparative measurements for three sizes of square field were carried out (20 mm, 10 mm and 5 mm, of side) using a detectors series: 3 ionization chambers (PTW-31003, IBA-CC04, PTW-31016), 2 diodes (PTW-60012, IBA-Sfd), thermoluminescent detectors micro-cubes of 1 mm of edge (TLD-700) and radiochromic s films EBT-3. These last two were used as reference detectors, due to their spatial high resolution and similar performance with Monte Carlo simulations [Francescon et al., 1998]. So much the thermoluminescent detectors as the radiochromic films resolved the profiles in a similar way. Both diodes responded correctly, but the rest of the detectors overestimated the gloom of the fields, which allows conclude that the used TLD (and both diodes) can resolve field sizes correctly, usually utilized in radio-surgery, without producing significant alterations in the acquired data. (author)

  11. Measurements of the Influence of Thermoplastic Mask in High Energy Photon Beams: Gel Dosimeter or Ionizing Chamber?

    Science.gov (United States)

    Moreira, M. V.; Petchevist, C. D.; de Almeida, A.

    2009-12-01

    The influence of the immobilization mask material on the absorbed dose distribution in patients exposed to radiotherapy treatment with photon beams has been investigated for photons from a 60Co source and a 6 MV Linac. Absorbed dose values have been inferred at different depths and in the build-up region. Dose measurements were obtained using Fricke Xylenol Gel dosimeter and the cylindrical PTW Freiburg TM 31016-0.016 cc ionizing micro chamber; their discrepancies are discussed. The affinities of FXG and PTW ICMicro for measurements with high energy photons and the difference in the effective atomic numbers due to their compositions are most likely the most important factors that contribute to the measured dose in the build-up region. The measured values show that the use of the mask material contributes to increase the absorbed doses near the surface of the tissue. The result also shows that the build-up effect for 60Co is significantly smaller than that for 6 MV photons; however, the variations noted in the final doses of the radiotherapic treatments with photons of high energy do not represent alterations in the total doses received by the patients submitted to the radiotherapy.

  12. Verification of absorbed doses determined with thimble and plane-parallel ionization chambers in clinical electron beams using ferrous sulphate dosimetry

    International Nuclear Information System (INIS)

    Thierens, H.

    1992-09-01

    Different ionometric methods to determine absorbed dose in phantoms irradiated with electron beams were tested using ferrous sulphate dosimetry as a reference method. Irradiation was carried out with three different types of accelerators in the energy range 4 to 20 MeV. Three different types of plane parallel ionization chambers were used and two types of cylindrical chambers. It was found that the ionization chamber dosimetry following the International Code of Practice (TRS 277) gave dose values as a mean 0.6% higher than the ferrous sulphate dosimetry based on the ICRU report 35. There were no significant differences between results measured at different electron energies. The mean deviation obtained using the two dosimeter systems is inside the experimental uncertainty. This proves that the TRS 277 can be used for accurate dosimetry. Further, the results show that corrections are needed for some types of plane parallel plate chambers to correct for the perturbation by the chamber of the electron fluence in the water phantom, and that values of these corrections are given as a function of the electron energy. 14 refs, 4 figs, 2 tabs

  13. The performance of the INER improved free-air ionization chamber in the comparison of air kerma calibration coefficients for medium-energy X-rays

    International Nuclear Information System (INIS)

    Lee, J.-H.; Kotler, L.H.; Bueermann, Ludwig; Hwang, W.-S.; Chiu, J.-H.; Wang, C.-F.

    2005-01-01

    This paper describes modifications to an original design, correction factors and uncertainty evaluations for an improved free-air ionization chamber constructed at the Institute of Nuclear Energy Research (INER, Taiwan). In addition, a comparison of secondary standard air kerma calibration coefficients for 100-250 kV medium-energy X-rays was performed to verify the experimental accuracy and measurement consistency of the improved chamber. The comparison results showed a satisfactory agreement in the measurements which were within the combined expanded uncertainties (k=2)

  14. Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

    Energy Technology Data Exchange (ETDEWEB)

    Degtiarenko, Pavel V.

    2017-12-19

    An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signal with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.

  15. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    CERN Document Server

    Menk, R H; Besch, H J; Walenta, Albert H; Amenitsch, H; Bernstorff, S

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30000 and more) provides stable operation yielding a huge dynamic range of about 10 sup 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  16. Calibration methods of plane-parallel ionization chambers used in electron dosimetry; Metodos de calibracao de camaras de ionizacao de placas paralelas para dosimetria de feixes de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Bulla, Roseli Tadeu

    1999-07-01

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of {sup 60} Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  17. Ion recombination and polarity correction factors for a plane-parallel ionization chamber in a proton scanning beam.

    Science.gov (United States)

    Liszka, Małgorzata; Stolarczyk, Liliana; Kłodowska, Magdalena; Kozera, Anna; Krzempek, Dawid; Mojżeszek, Natalia; Pędracka, Anna; Waligórski, Michael Patrick Russell; Olko, Paweł

    2018-01-01

    To evaluate the effect on charge collection in the ionization chamber (IC) in proton pencil beam scanning (PBS), where the local dose rate may exceed the dose rates encountered in conventional MV therapy by up to three orders of magnitude. We measured values of the ion recombination (k s ) and polarity (k pol ) correction factors in water, for a plane-parallel Markus TM23343 IC, using the cyclotron-based Proteus-235 therapy system with an active proton PBS of energies 30-230 MeV. Values of k s were determined from extrapolation of the saturation curve and the Two-Voltage Method (TVM), for planar fields. We compared our experimental results with those obtained from theoretical calculations. The PBS dose rates were estimated by combining direct IC measurements with results of simulations performed using the FLUKA MC code. Values of k s were also determined by the TVM for uniformly irradiated volumes over different ranges and modulation depths of the proton PBS, with or without range shifter. By measuring charge collection efficiency versus applied IC voltage, we confirmed that, with respect to ion recombination, our proton PBS represents a continuous beam. For a given chamber parameter, e.g., nominal voltage, the value of k s depends on the energy and the dose rate of the proton PBS, reaching c. 0.5% for the TVM, at the dose rate of 13.4 Gy/s. For uniformly irradiated regular volumes, the k s value was significantly smaller, within 0.2% or 0.3% for irradiations with or without range shifter, respectively. Within measurement uncertainty, the average value of k pol , for the Markus TM23343 IC, was close to unity over the whole investigated range of clinical proton beam energies. While no polarity effect was observed for the Markus TM23343 IC in our pencil scanning proton beam system, the effect of volume recombination cannot be ignored. © 2017 American Association of Physicists in Medicine.

  18. Determination of dose-area product from panoramic radiography using a pencil ionization chamber: Normalized data for the estimation of patient effective and organ doses

    International Nuclear Information System (INIS)

    Perisinakis, K.; Damilakis, J.; Neratzoulakis, J.; Gourtsoyiannis, N.

    2004-01-01

    The aims of the present study were (a) to investigate the potential of pencil ionization chamber to be used for the determination of dose-width product (DWP) and dose-area product (DAP) from panoramic radiographic exposures and (b) to provide data normalized to DAP for the determination of patient effective and gonadal dose from panoramic radiography performed in any laboratory. A pencil ionization chamber commonly used to measure CT dose index (CTDI) in CT scanners was employed to determine DWP for various combinations of panoramic exposure settings at the beam exit slit of a Cranex Tome panoramic x-ray unit (Soredex, Helsinki, Finland). DWP values were also measured using an array of thermoluminescence dosimeters. Reproducibility of the DWP measurement was tested. The effect of milliamperage and kilovoltage of panoramic exposures on DWP was investigated. DAP was estimated using the value of DWP measured using the pencil ionization chamber and the beam exit slit length measured using dosimetric film attached on the beam exit slit. A Rando anthropomorphic phantom appropriately loaded with thermoluminescent dosimeters (TLDs) was used to obtain organ dose and effective dose values from panoramic radiography. Reproducibility of DWP determination using the proposed method was better than 1.5%. DWP was found to be linearly related to milliamperage (r>0.999, p 2 DAP. The use of a pencil ionization chamber is proposed for the determination of DWP and DAP from panoramic radiographic exposures. Normalized data over DAP were provided for the determination of patient effective and gonadal dose from panoramic radiography

  19. Technical note: A new wedge-shaped ionization chamber component module for BEAMnrc to model the integral quality monitoring system®

    Science.gov (United States)

    Oderinde, Oluwaseyi Michael; du Plessis, FCP

    2017-12-01

    The purpose of this study was to develop a new component module (CM) namely IQM to accurately model the integral quality monitoring (IQM) system® to be used in the BEAMnrc Monte Carlo (MC) code. The IQM is essentially a double wedge ionization chamber with the central electrode plate bisecting the wedge. The IQM CM allows the user to characterize the double wedge of this ionization chamber and BEAMnrc can then accurately calculate the dose in this CM including its enclosed air regions. This has been verified against measured data. The newly created CM was added into the standard BEAMnrc CMs, and it will be made available through the NRCC website. The BEAMnrc graphical user interface (GUI) and particle ray-tracing techniques were used to validate the IQM geometry. In subsequent MC simulations, the dose scored in the IQM was verified against measured data over a range of square fields ranging from 1 × 1-30 × 30 cm2. The IQM system is designed for the present day need for a device that could verify beam output in real-time during treatment. This CM is authentic, and it can serve as a basis for researchers that have an interest in real-time beam delivery checking using wedge-shaped ionization chamber based instruments like the IQM.

  20. Some studies on the pulse-height loss due to capacitive decay in the detector-circuit of parallel plate ionization chambers

    International Nuclear Information System (INIS)

    Sharma, S.L.; Anil Kumar, G.; Choudhury, R.K.

    2006-01-01

    Pulse-type ionization chambers are invariably operated in the electron-sensitive mode where the capacitive decay in the detector-circuit during the electron collection produces loss in the pulse-height. In order to understand and appreciate the effect of this capacitive decay on the detector response, we have carried out Monte Carlo simulations of the response of two-electrode parallel plate ionization chambers with and without the capacitive decay keeping shaping time so large that the ballistic deficit is negligibly small. These simulations have been carried out incorporating the physical processes, namely, emission of charged particles from a point radioactive source, the generation of charge carriers in the active volume, separation and acceleration of the charge carriers, transport of the charge carriers, induction of charges on the electrodes, pulse processing by preamplifier-amplifier network, etc. These simulations have shown that the concerned capacitive decay produces appreciable loss in the pulse-height, if the detector-circuit time constant is of the order of maximum electron collection time. We have also carried out measurements on the pulse-height loss due to the capacitive decay in the detector-circuit during the electron collection for a two-electrode parallel plate ionization chamber. The experimental data on the pulse-height loss match reasonably well with the theoretical predictions

  1. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi [Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976 (Japan); Kakei, Kiyotaka; Yoshiyama, Fumiaki [Department of Radiotherapy, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto 860-8556 (Japan); Kawamura, Shinji [Department of Radiotherapy, Miyazaki University Hospital, 5200 Kihara Ohaza Kiyotake-Machi, Miyazaki 889-1692 (Japan)

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43

  2. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Pietrzak, Robert [Department of Nuclear Physics and Its Applications, Institute of Physics, University of Silesia, Katowice (Poland); Konefał, Adam, E-mail: adam.konefal@us.edu.pl [Department of Nuclear Physics and Its Applications, Institute of Physics, University of Silesia, Katowice (Poland); Sokół, Maria; Orlef, Andrzej [Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Center, Institute of Oncology, Gliwice (Poland)

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method. - Highlights: • Influence of the bin structure on the proton dose distributions was examined for the MC simulations. • The considered relative proton dose distributions in water correspond to the clinical application. • MC simulations performed with the logical detectors and the

  3. Correction factors for A1SL ionization chamber dosimetry in TomoTherapy: Machine-specific, plan-class, and clinical fields

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Arias, Araceli; Rodriguez-Romero, Ruth; Sanchez-Rubio, Patricia; Miguel Gonzalez-Castano, Diego; Gomez, Faustino; Nunez, Luis; Palmans, Hugo; Sharpe, Peter; Pardo-Montero, Juan [Departamento de Fisica de Particulas, Facultad de Fisica, Universidad de Santiago de Compostela (Spain); Servicio de Radiofisica, Hospital Universitario Puerta de Hierro, Madrid 28222 (Spain); Departamento de Fisica de Particulas, Facultad de Fisica, Universidad de Santiago de Compostela, 15782 (Spain) and Radiation Physics Laboratory, Universidad de Santiago de Compostela, 15782 (Spain); Servicio de Radiofisica, Hospital Universitario Puerta de Hierro, Madrid, 28222 (Spain); National Physical Laboratory, Teddington, Middx, TW11 OLW (United Kingdom); Departamento de Fisica de Particulas, Facultad de Fisica, Universidad de Santiago de Compostela, 15782 (Spain)

    2012-04-15

    Purpose: Recently, an international working group on nonstandard fields presented a new formalism for ionization chamber reference dosimetry of small and nonstandard fields [Alfonso et al., Med. Phys. 35, 5179-5186 (2008)] which has been adopted by AAPM TG-148. This work presents an experimental determination of the correction factors for reference dosimetry with an Exradin A1SL thimble ionization chamber in a TomoTherapy unit, focusing on: (i) machine-specific reference field, (ii) plan-class-specific reference field, and (iii) two clinical treatments. Methods: Ionization chamber measurements were performed in the TomoTherapy unit for intermediate (machine-specific and plan-class-specific) calibration fields, based on the reference conditions defined by AAPM TG-148, and two clinical treatments (lung and head-and-neck). Alanine reference dosimetry was employed to determine absorbed dose to water at the point of interest for the fields under investigation. The corresponding chamber correction factors were calculated from alanine to ionization chamber measurements ratios. Results: Two different methods of determining the beam quality correction factor k{sub Q,Q{sub 0}} for the A1SL ionization chamber in this TomoTherapy unit, where reference conditions for conventional beam quality determination cannot be met, result in consistent values. The observed values of overall correction factors obtained for intermediate and clinical fields are consistently around 0.98 with a typical expanded relative uncertainty of 2% (k = 2), which when considered make such correction factors compatible with unity. However, all of them are systematically lower than unity, which is shown to be significant when a hypothesis test assuming a t-student distribution is performed (p=1.8x10{sup -2}). Correction factors k{sub Q{sub c{sub l{sub i{sub n,Q{sub p{sub c{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub p}{sub c}{sub s}{sub r}}}}}}}}}} and k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s

  4. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    Science.gov (United States)

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-07

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison.

  5. Dosimetric verification of IMRT treatments using ionization chamber, radiographic film and gamma function; Verificacao dosimetrica de tratamentos de IMRT utilizando camara de ionizacao, filme radiografico e funcao gama

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Tatiana M.M.T.; Casagrande, Thais M.; Neves-Junior, Wellington F.P.; Mancini, Anselmo; Pelosi, Edilson L.; Haddad, Cecilia M.K.; Silva, Joao L.F., E-mail: tatiana.alves@hsl.org.b [Sociedade Beneficente de Senhoras Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Setor de Radioterapia

    2010-06-15

    This study aimed to evaluate the method adopted for patient specific intensity modulated radiotherapy (IMRT) quality assurance through the verification of planned and measured dose distributions and analyzing the correlation of the results with the acceptance criteria previously established. In the planning system, the patients complete plan is transferred to the computed tomography images of a pelvis or head and neck (HN) phantom composed of slabs of polymethylmethacrylate with an ionization chamber and radiographic film in the coronal plane. The dose measured with the ionization chamber and the dose distribution obtained with the film were compared with the planning. The comparison between measured and planned dose distributions was performed using the gamma function (y), assessing the percentage of points that meet the criteria of 3% dose difference and 3mm distance to agreement. By the previous analysis of 111 plans an acceptance criteria was defined based on the average results and after that they were applied on 30 new cases. The acceptance criteria were: 1.8+-1.4% (prostate), 2.7+-1.9% (HN) and 2.1+-1.7% (others) for the mean absolute errors between the doses provided by the planning system and those measured with the ionization chamber. The criteria for the average percentage of agreement (y<-1) between the dose distributions was 97.2+-2.8% (prostate), 95.2+-3.3% (HN) and 92.3+-7.4% (others). The new analyzed cases showed mean absolute errors of 1.1+-1.2% (prostate), 2.2+-1.5% (HN) and 1.6+-1.2% (others) and average percentage of agreement of 98.3+-1.0% (prostate), 95.2+-2.3% (HN) and 96.7+-2.9% (others). The acceptance criteria agreed with other authors and were respected by the planning verified posteriorly. We conclude that the established acceptance criteria are appropriate for the reality of our institution, and we are able to treat the patients safely. (author)

  6. Analysis of Tandem curves by set of cylindrical absorber layers and ionization chamber type pencil for evaluation of HVL in computerized tomography

    International Nuclear Information System (INIS)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha Albuquerque

    2017-01-01

    A Tandem system consists of the use of different energy dependent dosimeters, where the ratio of the responses of the calibration curves to energy provides the effective energy of the beam. The efficiency of this system is related to the uncertainties inherent in the dosimeter used and the degree of energy dependence of each set. The greater the slope of the Tandem curve the better will be the identification of values close to HVL making the system useful. In this work, the Tandem system consists of ionization chamber of the pencil type and cylindrical absorber layers of materials with different energetic dependencies, for application in computed tomography. (author)

  7. Measurements of the 234U(n,f) Reaction with a Frisch-Grid Ionization Chamber up to En=5 MeV

    OpenAIRE

    Al-Adili, Ali

    2013-01-01

    This study on the neutron-induced fission of 234U was carried out at the 7 MV Van de Graaff accelerator of IRMM in Belgium. A Twin Frisch-Grid Ionization Chamber (TFGIC) was used to study 234U(n,f) between En = 0.2 and 5.0 MeV. The reaction is important for fission modelling of the second-chance fission in 235U(n,f). The fission fragment (FF) angular-, energy and mass distributions were determined using the 2E-method highlighting especially the region of the vibrational resonance at En = 0.77...

  8. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    Science.gov (United States)

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical

  9. Review of data and methods recommended in the international code of practice for dosimetry IAEA Technical Reports Series No. 381, The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon beams. Final report of the co-ordinated research project on dose determination with plane parallel ionization chambers in therapeutic electron and photon beams

    International Nuclear Information System (INIS)

    Dusautoy, A.; Roos, M.; Svensson, H.; Andreo, P.

    2000-01-01

    An IAEA Co-ordinated Research Project was designed to validate the data and procedures included in the International Code of Practice Technical Reports Series (TRS) No. 381, ''The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams''. This work reviews and analyses the procedures used and the data obtained by the participants of the project. The analysis shows that applying TRS-381 generally produces reliable results. The determination of absorbed dose to water using the electron method in reference conditions is within the stated uncertainties (2.9%). Comparisons have shown TRS-381 is consistent with the AAPM TG-39 protocol within 1% for measurements made in water. Based on the analysis, recommendations are given with respect to: (i) the use of plane parallel ionization chambers of the Markus type, (ii) the values for the fluence correction factor for cylindrical chambers, (iii) the value of the wall correction factor for the Roos chamber in 60 Co beams, and (iv) the use of plastic phantoms and the values of the fluence correction factors. (author)

  10. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels; Intercomparacao de camaras de ionizacao em feixes padroes de raios X, niveis radioterapia, radiodiagnostico e radioprotecao

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, Ana Carolina Moreira de

    2006-07-01

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were intercompared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: {sup 67}Ga, {sup 201}Tl and {sup 99m}Tc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  11. Correction of Thick Foil Errors in Prompt Neutron (CALIFORNIUM-252 Nu), Fission Cross Section (sigma(f)) and Other Ionization Chamber Fission Data Standards.

    Science.gov (United States)

    Cohensedgh, Farhad

    This research resolves two problems that have long been of important concern in experimental fission physics: (1) determination of pulse height distribution response of ionization chambers in fission fragment detection measurements, and (2) correction of "thick-foil effect" systematic errors in standard values of the fundamental parameters of fission physics--the average number of prompt neutrons per fission (=nu), absolute fission activity and true fission rate of samples (TFR), and isotopic fission cross sections (sigma _{f}). Results are obtained by a comprehensive digital simulation of the electrostatics and pulse height distribution response of the parallel-plate, ungridded, electron-pulse ionization fission chamber together with prompt neutron -fragment multiplicity and angular distribution correlations, neutron-fragment coincidence detection and related variations in the 4pi^here around the chamber for a wide range of the relevant factors--foil thickness, alpha particle interference bias level, fission detector configuration characteristics, fissile isotopes (^{252}Cf, ^{235}U, etc.) and other experimental parameters. Isotope-specific double-energy (E_1,E_2) natural variations in fragment spectrum, in fragment-specific range-energy (dE/dx) relations and in prompt neutron-fragment multiplicity (nu) and nuclear temperature dependent angular distribution correlations are simulated in detail. Detailed results are obtained for double-energy, fragment-specific count loss fractions resulting from in -foil fragment absorption and from alpha -interference discrimination as well as for chamber detection efficiency, fragment spectrum distortion and prompt neutron -fragment coincidence detection distribution variations. Decay alpha pulse pileup statistics are discussed, and the behavior of and factors affecting the fragment pulse height distribution tail are analyzed in detail. Fragment pairs and prompt neutrons issued from them are tracked in the 4pi^ace around the

  12. Comparison of the measured radiation dose-rate by the ionization chamber and G (Geiger-Mueller) counter after radioactive lodine therapy in differentiated thyroid cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    Radioactive iodine(131I) treatment reduces recurrence and increases survival in patients with differentiated thyroid cancer. However, it is important in terms of radiation safety management to measure the radiation dose rate generated from the patient because the radiation emitted from the patient may cause the exposure. Research methods, it measured radiation dose-rate according to the elapsed time from 1 m from the upper abdomen of the patient by intake of radioactive iodine. Directly comparing the changes over time, high dose rate sensitivity and efficiency is statistically significant, and higher chamber than GM counter(p<0.05). Low dose rate sensitivity and efficiency in the chamber had lower levels than gm counter, but not statistically significant(p>0.05). In this study confirmed the characteristics of calibrated ionization chamber and GM counter according to the radiation intensity during high-dose radioactive iodine therapy by measuring the accurate and rapid radiation dose rate to the patient explains, discharged patients will be reduced to worry about radiation hazard of family and others person.

  13. Ionization chamber with build-up cup spectral sensitivity to megavoltage (0.5-20 MeV) photon fluences in free air

    International Nuclear Information System (INIS)

    Gorlachev, G.E.

    2002-01-01

    In-air measurements of photon beam properties, used in radiation therapy, is common practice for determining radiation output dependence from the field size, known as head scatter factors (HSF). PMMA and brass build-up caps are most popular miniphantoms for providing electron equilibrium. Discrepancies up to 2% in HSF measurements by different combinations of detectors and equilibrium caps have been published. One of the main reasons of those discrepancies is the detector system spectral sensitivity and differences in primary and scatter radiation spectra. In the light of new model based dose calculation methods direct radiation fluence measurement is of great interest. So, understanding of detector spectral sensitivity is important task for modern dosimetry of radiation therapy. In the present study Monte Carlo (MC) method was employed to calculate ionization chamber response to monoenergetic photon fluences, normalized to water kerma units. Simulation was done using EGS4 package. Electron transport was performed with ESTEPE equal to 4%. PEGS cross sections were generated for maximal energy 20 MeV with cutoff kinetic energy 10 KeV both for photons and electrons. Scanditronix RK-05 ionization chamber was chosen as a prototype. Eight cylindrical miniphantoms, representing four materials (PMMA, Al, Cu, Pb) and two front wall thickness, were simulated. Results are presented. Miniphantom front wall thicknesses in each case are shown in the figure. Diameter depends on the material and equal respectively: PMMA - 4, Al - 2.5, Cu - 1.5, and PB - 1.5 cm. Ionization chamber outer diameter is equal to 0.7 cm. Detector sensitivity has considerable energy dependence. Two effects explain it. First is the radiation attenuation in the miniphantom. Second is pair production, which dominates in high atomic number miniphantoms for energies above 5 MeV. Depending on the miniphantom material detector response changes from 1.5 to 5 times in the energy range from 0.5 to 20 MeV. Correct

  14. Comparison of the response of a NaI scintillation crystal with a pressurized ionization chamber as a function of altitude, radiation level and Ra-226 concentration

    International Nuclear Information System (INIS)

    Provencher, R.; Smith, G.; Borak, T.B.; Kearney, P.

    1986-01-01

    The Grand Junction Uranium Mill Tailings Remedial Action-Radiological Survey Activities Group (UMTRA-RASA) program employs a screening method in which external exposure rates are used to determine if a property contaminated with uranium mill tailings is eligible for remedial action. Portable NaI detectors are used by survey technicians to locate contaminated areas and determine exposure rates. The exposure rate is calculated using a regression equation derived from paired measurements made with a pressurized ionization chamber (PIC) and a NaI detector. During July of 1985 extensive measurements were taken using a PIC and a NaI scintillator with both analogue and digital readout for a wide range of exposure rates and at a variety of elevations. The surface soil was sampled at most of these locations and analyzed for 226 Ra. The response of the NaI detectors was shown to be highly correlated to radiation level but not to 226 Ra concentration or elevation

  15. Development and clinical evaluation of an ionization chamber array with 3.5 mm pixel pitch for quality assurance in advanced radiotherapy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Togno, M., E-mail: michele.togno@iba-group.com [Physik-Department, Technische Universität München, Munich 85748 (Germany); Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675 (Germany); IBA Dosimetry GmbH, Schwarzenbruck 90592 (Germany); Wilkens, J. J. [Physik-Department, Technische Universität München, Munich 85748, Germany and Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675 (Germany); Menichelli, D. [IBA Dosimetry GmbH, Schwarzenbruck 90592 (Germany); Oechsner, M. [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675 (Germany); Perez-Andujar, A.; Morin, O. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143 (United States)

    2016-05-15

    Purpose: To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. Methods: The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm{sup 3}. The detector has been characterized with {sup 60}Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both the source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Results: Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, −0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09–2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm{sup 2}, the

  16. Development and clinical evaluation of an ionization chamber array with 3.5 mm pixel pitch for quality assurance in advanced radiotherapy techniques.

    Science.gov (United States)

    Togno, M; Wilkens, J J; Menichelli, D; Oechsner, M; Perez-Andujar, A; Morin, O

    2016-05-01

    To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm(3). The detector has been characterized with (60)Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both the source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, -0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09-2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm(2), the output factors are in agreement with a

  17. Measurement of absorbed doses in a homogeneous β rays fields with an extrapolation chamber

    International Nuclear Information System (INIS)

    1983-07-01

    The main characteristics of a variable cavity ionization chamber are described. Using the ionization current of the detector irradiated in homogeneous β rays fields, the tissue absorbed dose is determined. The corrective factors required to compute this quantity are analysed. Finally, international recommandations (ISO standards) relating to β rays reference fields are given, with the characteristics of β sources required for the energy response study of radiation protection instruments [fr

  18. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Aragón-Martínez, Nestor, E-mail: nestoraragon@fisica.unam.mx; Massillon-JL, Guerda, E-mail: massillon@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, D.F (Mexico); Gómez-Muñoz, Arnulfo [Hospital de Oncología, Centro Médico Nacional Siglo XXI, D.F (Mexico)

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  19. Field correction factors for a PTW-31016 Pinpoint ionization chamber for both flattened and unflattened beams. Study of the main sources of uncertainties.

    Science.gov (United States)

    Puxeu-Vaqué, Josep; Duch, Maria A; Nailon, William H; Cruz Lizuain, M; Ginjaume, Mercè

    2017-05-01

    The primary aim of this study was to determine correction factors, kQclin,Qmsrfclin,fmsr for a PTW-31016 ionization chamber on field sizes from 0.5 cm × 0.5 cm to 2 cm × 2 cm for both flattened (FF) and flattened filter-free (FFF) beams produced in a TrueBeam clinical accelerator. The secondary objective was the determination of field output factors, ΩQclin,Qmsrfclin,fmsr over this range of field sizes using both Monte Carlo (MC) simulation and measurements. kQclin,Qmsrfclin,fmsr for the PTW-31016 chamber were calculated by MC simulation for field sizes of 0.5 cm × 0.5 cm, 1 cm × 1 cm, and 2 cm × 2 cm. MC simulations were performed with the PENELOPE code system for the 10 MV FFF Particle Space File from a TrueBeam linear accelerator (LINAC) provided by the manufacturer (Varian Medical Systems, Inc. Palo Alto, CA, USA). Simulations were repeated taking into account chamber manufacturing tolerances and accelerator jaw positioning in order to assess the uncertainty of the calculated correction factors. Output ratios were measured on square fields ranging from 0.5 cm × 0.5 cm to 10 cm × 10 cm for 6 MV and 10 MV FF and FFF beams produced by a TrueBeam using a PTW-31016 ionization chamber; a Sun Nuclear Edge detector (SunNuclear Corp., Melbourne, FL, USA) and TLD-700R (Harshaw, Thermo Scientific, Waltham, MA, USA). The validity of the proposed correction factors was verified using the calculated correction factors for the determination of ΩQclin,Qmsrfclin,fmsr using a PTW-31016 at the four TrueBeam energies and comparing the results with both TLD-700R measurements and MC simulations. Finally, the proposed correction factors were used to assess the correction factors of the SunNuclear Edge detector. The present work provides a set of MC calculated correction factors for a PTW-31016 chamber used on a TrueBeam FF and FFF mode. For the 0.5 cm × 0.5 cm square field size, kQclin,Qmsrfclin,fmsr is equal to 1.17 with a combined uncertainty of 2% (k = 1). A detailed

  20. Detection of gamma-rays with a 3.5 l liquid xenon ionization chamber triggered by the primary scintillation light

    CERN Document Server

    Aprile, E; Chen Dan Li; Muhkerjee, R; Xu Fan

    2002-01-01

    A gridded ionization chamber with a drift length of 4.5 cm and a total volume of 3.5 l, was operated with high-purity liquid xenon and extensively tested with gamma-rays from sup 1 sup 3 sup 7 Cs, sup 2 sup 2 Na and sup 6 sup 0 Co radioactive sources. An electron lifetime in excess of 1 ms was inferred from two independent measurements. The electric field dependence of the collected charge and energy resolution was studied in the range 0.1-4 kV/cm, for different gamma-ray energies. With an electric field of 4 kV/cm, the spectral performance of the detector is consistent with an energy resolution of 5.9% at 1 MeV, scaling with energy as E sup - sup 0 sup . sup 5. The chamber was also used to detect the primary scintillation light produced by gamma-ray interactions in liquid xenon. The light signal was successfully used to trigger the acquisition of the charge signal with a FADC readout. A trigger efficiency of approx 85% was measured at 662 keV.

  1. Comparison of ionization chamber calibration for mimeographs in W/Mo and W/Al qualities; Comparacao de calibracoes de camaras de ionizacao para mamografia nas qualidades W/Mo and W/Al

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Lara; Macedo, Eric; Navarro, Marcus; Ferreira, Mario; Garcia, Igor; Pires, Evandro; Leite, Handerson; Navarro, Valeria, E-mail: larapereira@ifba.edu.br [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador , BA (Brazil). Lab. de Produtos para Saude

    2016-07-01

    The calibration of ionization chambers for mammography laboratories seek to keep pace with technological advancement of manufacturers who have used new combinations anode/filter in mammography beyond the classic combinations of molybdenum and rhodium. This paper proposes to investigate the equivalence between calibrations of chambers different using the combinations W/Mo and W/Al at LABPROSAUD. The results showed a variation less than 1% on relationship between the calibration coefficients obtained in the evaluated combinations anode/filter for an uncertainty of 2.4%. The excellent performance of the chambers suggests a new possibility of calibration in the mammography quality at LABPROSAUD. (author)

  2. Automatic control system for measuring currents produced by ionization chambers; Automatizacao de um sistema de medidas de correntes produzidas por camaras de ionizacao e aplicacao na calibracao do {sup 18}F e {sup 153}Sm

    Energy Technology Data Exchange (ETDEWEB)

    Brancaccio, Franco

    2002-07-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for {sup 18}F and {sup 153}Sm were obtained, making possible to determine activities of these radionuclides. (author)

  3. Implementation of a laboratory for manufacture, repair and electric calibration of dosemeters based in ionization chambers utilized in radiotherapy; Implementacao de um laboratorio para manutencao, reparo e calibracao eletrica de dosimetros baseados em camaras de ionizacao, utilizados em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Becker, P.H.B.; Peres, M.A.L.; Moreira, A.J.C.; Nette, H.P. [Instituto de Radioprotecao e Dosimetria. Av. Salvador Allende S/N. Barra de Tijuca CEP: 22780-160. Caixa Postal: 37750 Rio de Janeiro-RJ (Brazil)

    1998-12-31

    Manufacturers of ionization chamber dosimeters for radiotherapy maintain only sales representatives in Brazil with no servicing capability causing difficulties to customers/users to get broken equipment back into operation. Aiming to partially solve this problem, a laboratory for maintenance, repair and electrical calibration was started in 1995 with the support of a two year IAEA Technical Assistance Project (BRA/1/031). (Author)

  4. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method; Simulacion Monte Carlo de la Interaccion de Rays X con el Gas de una Camara de Ionizacion

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Garcia Gomez-Tejedor, G.

    2001-07-01

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs.

  5. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  6. National pattern for the realization of the unit of the dose speed absorbed in air for beta radiation. (Method: Ionometer, cavity of Bragg-Gray implemented in an extrapolation chamber with electrodes of variable separation, exposed to a field of beta radiation of {sup 90}Sr/{sup 90}Y); Patron Nacional para la realizacion de la unidad de la rapidez de dosis absorbida en aire para radiacion beta. (Metodo: Ionometrico, cavidad de Bragg-Gray implementada en una camara de extrapolacion con electrodos de separacion variable, expuesta a un campo de radiacion beta de {sup 90}Sr/{sup 90}Y)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, M. T.; Morales P, J. R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-01-15

    From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: {sup 90}Sr/{sup 90}Y; Ophthalmic applicators {sup 9}0{sup S}r/{sup 90}Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)

  7. Pulse valve with gas preliminary ionization

    International Nuclear Information System (INIS)

    Voronin, A.V.; Goncharov, S.E.; Danilov, A.D.; Kil'keev, R.Sh.; Kuznetsov, V.M.

    1984-01-01

    A pulse electrodynamic valve for the injection of weakly ionized gas into vacuum has been described. Gas ionization is realized in an intermediate chamber, located in electric field antinode in a waveguide cavity, in which a standing wave is excited. Total number of particles injected can be gradually varied in the range 10 14 -10 20 , at that, the number of charged particles varies from 10 10 to 10 11 . The valve time response constitutes approximately 400 μs. The valve is used to in ect the preliminarily ionized plasma into the ''Tornado'' magnetic trap. With its help in the volUme of 256 l a preliminarily ionized hydrogen plasma with the charged particle concentration 10 5 -10 6 cm -3 has been produced

  8. Determination of the air attenuation and electronic loss for the free air concentric cylinders ionization chamber; Determinacao da atenuacao do ar e perda eletronica para a camara de ionizacao de ar livre de cilindros concentricos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hebert Pinto Silveira de

    2010-07-01

    Along the latest years, the LNMRI has been proceeding a continuous research work with a concentric cylinders type free air ionizing chamber (VICTOREEN, model 481), aiming to establish it as a new national standard, and, as a consequence, replace the worldwide accepted secondary standard, calibrated by PTB. Taking into account that the absolute determination of kerma in air with a free air ionizing chamber implies the acquirement of a number of correction factors. The main objective of the present work comprises the determination of the two factors, specifically, electronic loss (k{sub e}) and air attenuation (k{sub a}). The correction factors were obtained through mammography qualities reference spectrum, using Monte Carlo simulation method. The Penelope code was used in the simulation procedures. Simulations took place in two stages, the acquirement of specters related to the qualities of interest (mammography) with the x ray tube (Pantak, model HF160 e Panalytical, model XRF window), and the free-air ionization chamber. The data were compared to those related to the BIPM chamber, to electronic loss were not detected. The comparison between air attenuation factors was obtained data bellow 0.13%. (author)

  9. The estimation of lung dose from mid-perineum ionization chamber measurements in total body irradiations: A quality control check on dose delivery

    International Nuclear Information System (INIS)

    Cross, P.

    1995-01-01

    A series of patients (eleven males and eight females) receiving total body irradiation prior to bone marrow transplantation was monitored during treatment by recording the dose from an ionization chamber placed between the thighs in the mid-perineal region. The treatment was delivered by opposed lateral 6 MV photon beams. The patient was encompassed by the radiation field with the maximum collimator opening at a distance of 3.49 m from the X-ray focus to the patient mid-line. An analysis was made of the measured dose and the calculated percentage average lung dose for each patient in the series to seek a correlation between measured doses and patients' anatomical data so that estimates of delivered lung doses could be made. Whilst a global factor can be applied to measured dose to predict lung dose, it is concluded that perineal dose measurements distal to the region where dose is prescribed (mean lung dose) are sub-optimal for checks on target dose delivery. Entrance and exit dose measurements at the level of dose prescription (in the thorax) are preferable for more accurate predictions and quality control checks. 6 refs., 1 tab., 2 figs

  10. RESPONSE OF THE GREEK EARLY WARNING SYSTEM REUTER-STOKES IONIZATION CHAMBERS TO TERRESTRIAL AND COSMIC RADIATION EVALUATED IN COMPARISON WITH SPECTROSCOPIC DATA AND TIME SERIES ANALYSIS.

    Science.gov (United States)

    Leontaris, F; Clouvas, A; Xanthos, S; Maltezos, A; Potiriadis, C; Kiriakopoulos, E; Guilhot, J

    2018-02-01

    The Telemetric Early Warning System Network of the Greek Atomic Energy Commission consists mainly of a network of 24 Reuter-Stokes high-pressure ionization chambers (HPIC) for gamma dose rate measurements and covers all Greece. In the present work, the response of the Reuter-Stokes HPIC to terrestrial and cosmic radiation was evaluated in comparison with spectroscopic data obtained by in situ gamma spectrometry measurements with portable hyper pure Germanium detectors (HPGe), near the Reuter-Stokes detectors and time series analysis. For the HPIC detectors, a conversion factor for the measured absorbed dose rate in air (in nGy h-1) to the total ambient dose equivalent rate Ḣ*(10), due to terrestrial and cosmic component, was deduced by the field measurements. Time series analysis of the mean monthly dose rate (measured by the Reuter-Stokes detector in Thessaloniki, northern Greece, from 2001 to 2016) was performed with advanced statistical methods (Fast Fourier Analysis and Zhao Atlas Marks Transform). Fourier analysis reveals several periodicities (periodogram). The periodogram of the absorbed dose rate in air values was compared with the periodogram of the values measured for the same period (2001-16) and in the same location with a NaI (Tl) detector which in principle is not sensitive to cosmic radiation. The obtained results are presented and discussed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Evaluation of a new pencil-type ionization chamber for dosimetry in computerized tomography beams; Avaliacao de uma nova camara de ionizacao tipo lapis para dosimetria em feixes de tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C. de; Neves, Lucio P.; Silva, Natalia F. da; Santos, William de S.; Caldas, Linda V.E., E-mail: maysadecastro@gmail.com, E-mail: lpneves@ipen.br, E-mail: na.fiorini@gmail.com, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    For performing dosimetry in computed tomography beams (CT), use is made of a pencil-type ionization chamber, since this has a uniform response to this type of beam. The common commercial chambers in Brazil have a sensitive volume length of 10 cm. Several studies of prototypes of this type of ionization chamber have been conducted, using different materials and geometric configurations, in the Calibration Laboratory Instruments of the Institute of Nuclear and Energy Research (LCI) and these showed results within internationally acceptable limits. These ion chambers of 10 cm are widely used nowadays, however studies have revealed that they have underestimated the dose values. In order to solve this problem, we developed a chamber with sensitive volume length of 30 cm. As these are not yet very common and no study has yet been performed on LCI conditions on their behavior, is important that the characteristics of these dosemeters are known, and the influence of its various components. For your review, we will use the Monte Carlo code Penelope, freely distributed by the IAEA. This method has revealed results consistent with other codes. The results for this new prototype can be used in dosimetry of the CT of the hospitals and calibration laboratories as the LCI.

  12. Relative dosimetry of photon beam of 6 MV with a liquid ionization chamber; Dosimetria relativa de un haz de fotones de 6 MV con una camara de ionizacion liquida

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Villegas, E. M.; Casado Villalon, F. J.; Martin-Cueto, J. A.; Caudepon Moreno, F.; Garcia Pareja, S.; Galan Montenegro, P.

    2011-07-01

    The increasing use of reduced size fields in the special techniques of treatment generates regions with high dose gradients. It therefore requires the use of detectors that present high spatial resolution. The aim of this study is to compare the dosimetric measurements obtained with a liquid ionization chamber PTW MicroLion recently acquired with other commonly used detectors for a photon beam of 6 MV linear electron accelerator Varian 600DBX.

  13. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    International Nuclear Information System (INIS)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm 3 thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm 3 active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response

  14. Isobar separation of 93Zr and 93Nb at 24 MeV with a new multi-anode ionization chamber

    International Nuclear Information System (INIS)

    Martschini, Martin; Buchriegler, Josef; Collon, Philippe; Kutschera, Walter; Lachner, Johannes; Lu, Wenting; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-01-01

    93 Zr with a half-life of 1.6 Ma is produced with high yield in nuclear fission, and thus should be present as a natural or anthropogenic trace isotope in all compartments of the general environment. Sensitive measurements of this isotope would immediately find numerous applications, however, its detection at sufficiently low levels has not yet been achieved. AMS measurements of 93 Zr suffer from the interference of the stable isobar 93 Nb. At the Vienna Environmental Research Accelerator VERA a new multi-anode ionization chamber was built. It is optimized for isobar separation in the medium mass range and is based on the experience from AMS experiments of 36 Cl at our 3-MV tandem accelerator facility. The design provides high flexibility in anode configuration and detector geometry. After validating the excellent energy resolution of the detector with 36 S, it was recently used to study iron–nickel and zirconium–niobium–molybdenum isobar separation. To our surprise, the separation of 94 Zr (Z = 40) from 94 Mo (Z = 42) was found to be much better than that of 58 Fe (Z = 26) from 58 Ni (Z = 28), despite the significantly larger ΔZ/Z of the latter pair. This clearly contradicts results from SRIM-simulations and suggests that differences in the stopping behavior may unexpectedly favor identification of 93 Zr. At 24 MeV particle energy, a 93 Nb (Z = 41) suppression factor of 1000 is expected based on a synthetic 93 Zr spectrum obtained by interpolation between experimental spectra from the two neighboring stable isotopes 92 Zr and 94 Zr. Assuming realistic numbers for chemical niobium reduction, a detection level of 93 Zr/Zr below 10 −9 seems feasible.

  15. Water equivalent thickness of immobilization devices in proton therapy planning - Modelling at treatment planning and validation by measurements with a multi-layer ionization chamber.

    Science.gov (United States)

    Fellin, Francesco; Righetto, Roberto; Fava, Giovanni; Trevisan, Diego; Amelio, Dante; Farace, Paolo

    2017-03-01

    To investigate the range errors made in treatment planning due to the presence of the immobilization devices along the proton beam path. The measured water equivalent thickness (WET) of selected devices was measured by a high-energy spot and a multi-layer ionization chamber and compared with that predicted by treatment planning system (TPS). Two treatment couches, two thermoplastic masks (both un-stretched and stretched) and one headrest were selected. At TPS, every immobilization device was modelled as being part of the patient. The following parameters were assessed: CT acquisition protocol, dose-calculation grid-sizes (1.5 and 3.0mm) and beam-entrance with respect to the devices (coplanar and non-coplanar). Finally, the potential errors produced by a wrong manual separation between treatment couch and the CT table (not present during treatment) were investigated. In the thermoplastic mask, there was a clear effect due to beam entrance, a moderate effect due to the CT protocols and almost no effect due to TPS grid-size, with 1mm errors observed only when thick un-stretched portions were crossed by non-coplanar beams. In the treatment couches the WET errors were negligible (0.5mm with a 3.0mm grid-size. In the headrest, WET errors were negligible (0.2mm). With only one exception (un-stretched mask, non-coplanar beams), the WET of all the immobilization devices was properly modelled by the TPS. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of functioning of an extrapolation chamber using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Alfonso Laguardia, R.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm 2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)

  17. Contribution to the study of the {alpha} spectrometry by the impulse ionization chamber. Application to the study of the beam fine structure of some heavy nuclei; Contribution a l'etude de la spectrometrie {alpha} par la chambre d'ionisation a impulsion. Application a l'etude de la structure fine du rayonnement de quelques noyaux lourds

    Energy Technology Data Exchange (ETDEWEB)

    Valladas, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1954-05-15

    In the first part, it studies an impulse spectrometer of which the resolution and stability have been pushed to their maximum possibilities. It uses an ionization chamber because of its simple and steady functioning. The general characteristics and building of the ionization chamber are described. The electronic devices are described as well as the recording system. The theoretical study of the amplifier has allowed to reduce the amplitude dispersion from electronic devices as background noise. The resolution in energy of an {alpha} spectrometer using an impulse ionization chamber is studied and results are discussed. The spectral lines display of the fine structure under the effect of conversion electrons emitted by coincidence in the ionization chamber is studied. Finally, the detection possibilities of very low intensity spectral lines of fine structure of detection are considered. In the second part, the {alpha} emission of fine structure of {sup 230}Th, {sup 234}U and {sup 238}U nuclei is studied. (M.P.)

  18. Methane standards made in whole and synthetic air compared by cavity ring down spectroscopy and gas chromatography with flame ionization detection for atmospheric monitoring applications.

    Science.gov (United States)

    Flores, Edgar; Rhoderick, George C; Viallon, Joële; Moussay, Philippe; Choteau, Tiphaine; Gameson, Lyn; Guenther, Franklin R; Wielgosz, Robert Ian

    2015-03-17

    There is evidence that the use of whole air versus synthetic air can bias measurement results when analyzing atmospheric samples for methane (CH4) and carbon dioxide (CO2). Gas chromatography with flame ionization detection (GC-FID) and wavelength scanned-cavity ring down spectroscopy (WS-CRDS) were used to compare CH4 standards produced with whole air or synthetic air as the matrix over the mole fraction range of 1600-2100 nmol mol(-1). GC-FID measurements were performed by including ratios to a stable control cylinder, obtaining a typical relative standard measurement uncertainty of 0.025%. CRDS measurements were performed using the same protocol and also with no interruption for a limited time period without use of a control cylinder, obtaining relative standard uncertainties of 0.031% and 0.015%, respectively. This measurement procedure was subsequently used for an international comparison, in which three pairs of whole air standards were compared with five pairs of synthetic air standards (two each from eight different laboratories). The variation from the reference value for the whole air standards was determined to be 2.07 nmol mol(-1) (average standard deviation) and that of synthetic air standards was 1.37 nmol mol(-1) (average standard deviation). All but one standard agreed with the reference value within the stated uncertainty. No significant difference in performance was observed between standards made from synthetic air or whole air, and the accuracy of both types of standards was limited only by the ability to measure trace CH4 levels in the matrix gases used to produce the standards.

  19. Ionization detection system for aerosols

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber. 8 claims, 7 figures

  20. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mille, M; Bergstrom, P [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  1. Calorimetric determination of kQ factors for NE 2561 and NE 2571 ionization chambers in 5 cm x 5 cm and 10 cm x 10 cm radiotherapy beams of 8 MV and 16 MV photons.

    Science.gov (United States)

    Krauss, Achim; Kapsch, Ralf-Peter

    2007-10-21

    The relative uncertainty of the ionometric determination of the absorbed dose to water, D(w), in the reference dosimetry of high-energy photon beams is in the order of 1.5% and is dominated by the uncertainty of the calculated chamber- and energy-dependent correction factors k(Q). In the present investigation, k(Q) values were determined experimentally in 5 cm x 5 cm and 10 cm x 10 cm radiotherapy beams of 8 MV and 16 MV bremsstrahlung by means of a water calorimeter operated at 4 degrees C. Ionization chambers of the types NE 2561 and NE 2571 were calibrated directly in the water phantom of the calorimeter. The measurements were carried out at the linear accelerator of the Physikalisch-Technische Bundesanstalt. It is shown that the k(Q) factor of a single ionization chamber can be measured with a standard uncertainty of less than 0.3%. No significant variations of k(Q) were found for the different lateral sizes of the radiation fields used in this investigation.

  2. SU-E-T-225: Correction Matrix for PinPoint Ionization Chamber for Dosimetric Measurements in the Newly Released Incise™ Multileaf Collimator Shaped Small Field for CyberKnife M6™ Machine

    International Nuclear Information System (INIS)

    Zhang, Y; Li, T; Heron, D; Huq, M

    2015-01-01

    Purpose: For small field dosimetry, such as measurements of output factors for cones or MLC-shaped irregular small fields, ion chambers often Result in an underestimation of the dose, due to both the volume averaging effect and the lack of lateral charged particle equilibrium. This work presents a mathematical model for correction matrix for a PTW PinPoint ionization chamber for dosimetric measurements made in the newly released Incise™ Multileaf collimator fields of the CyberKnife M6™ machine. Methods: A correction matrix for a PTW 0.015cc PinPoint ionization chamber was developed by modeling its 3D dose response in twelve cone-shaped circular fields created using the 5mm, 7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm cones in a CyberKnife M6™ machine. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. The contribution of each dose pixel to a measurement point depended on the radial distance and the angle to the chamber axis. These readings were then compared with the theoretical dose as obtained with Monte Carlo calculation. A penalized least-square optimization algorithm was developed to generate the correction matrix. After the parameter fitting, the mathematical model was validated for MLC-shaped irregular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for PinPoint chamber for dosimetric measurements in small MLC-shaped irregular fields. The correction matrix is dependent on detector, treatment unit and the geometry of setup. The model can be applied to non-standard composite fields and provides an access to IMRT point dose validation

  3. Dosimetric verification of IMRT treatments using ionization chamber, radiographic film and gamma function;Verificacao dosimetrica de tratamentos de IMRT utilizando camara de ionizacao, filme radiografico e funcao gama

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Tatiana M.M.T.; Casagrande, Thais M.; Neves-Junior, Wellington F.P.; Mancini, Anselmo; Pelosi, Edilson L.; Haddad, Cecilia M.K.; Silva, Joao L.F. [Sociedade Beneficente de Senhoras Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Servico de Radioterapia

    2009-07-01

    This study aims to evaluate the method adopted for patient specific intensity modulated radiotherapy (IMRT) quality assurance through the verification of planned and measured dose distributions and analyzing the correlation of the results with the acceptance criteria previously established. In the planning system, the patient's complete plan is transferred to the computed tomography images of a pelvis or head and neck (HN) phantom composed of slabs of polymethylmethacrylate with an ionization chamber and radiographic film in the coronal plane. The dose measured with the ionization chamber and the dose distribution obtained with the film are compared with the planning. The comparison between measured and planned dose distributions was performed using the gamma function (gamma), assessing the percentage of points that meet the criteria of 3% dose difference and 3 mm distance to agreement. By the previous analysis of 111 plans an acceptance criteria was defined based on the average results and after that they were applied on 30 new cases. The acceptance criteria were: 1.8%+-1.4% (prostate), 2.7%+-1.9% (HN) and 2.1%+-1.7% (others) for the mean absolute errors between the doses provided by the planning system and those measured with the ionization chamber. The criteria for the average percentage of agreement (gamma<=1) between the dose distributions was 97.2%+-2.8% (prostate), 95.2%+-3.3% (HN) and 92.3%+-7.4% (others). The new analyzed cases showed mean absolute errors of 1.1%+-1.2% (prostate), 2.2%+-1.5% (HN) and 1.6%+-1.2% (others) and average percentage of agreement of 98.3%+-1.0% (prostate), 95.2%+-2.3% (HN) and 96.7%+-2.9% (others). The acceptance criteria agreed with other authors and were respected by the planning verified posteriorly. We conclude that the established acceptance criteria are appropriate for the reality of our institution, and we are able to treat the patients safely. (author)

  4. Characterization of a free-air ionization chamber in direct X-ray beams as used in mammography; Caracterizacao de uma camara de ionizacao de ar-livre em feixes diretos de raios X utilizados em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Mateus Hilario de

    2014-08-01

    At this work stability and characterization tests were undertaken on a Victoreen free-air ionization chamber, model 481. The tests were realized using direct X-ray beams as a contribution for its establishment as a primary standard system of the quantity air kerma. The characterization tests were: saturation curve, ion collection efficiency, polarity effect, response linearity with the air kerma rate and response linearity with the chamber volume variation. The ion collection efficiency allowed the determination of the ion recombination factor. Most of the test results showed agreement with the limits established by international standards. Furthermore, the air attenuation factors for the mammography beams with aluminum and molybdenum filters were obtained. The factors for photon transmission and scattering at the diaphragm edges were also determined for mammography beams with aluminum filter and for the standard beam with molybdenum filter. (author)

  5. Description of the XXXIV ARCAL Project {sup R}epairing and calibration of electrometers and ionization chambers used in radiotherapy; Descripcion del proyecto ARCAL XXXIV {sup R}eparacion y calibracion de electrometros y camaras de ionizacion utilizados en radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Cruz E, P.; Villaverde L, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The technological tools from what the humanity has for the illnesses diagnosis and the cancer treatment, are based in great extent in the use of ionizing radiations. This situation worries to the International Atomic Energy Agency (IAEA), which has implemented technical cooperation programs for protecting the human health. In Latin America the ARCAL program (Regional Agreement of Cooperation for Promotion of Nuclear Science and Technology in Latina America and the Caribbean was created. The Project ARCAL XXXIV has as objective to establish three regional centers of repairing, maintenance and electric calibration of clinical dosemeters, equipment made up for an ionization chamber and an electrometer which is used in radiotherapy to generate calibration procedures, personnel training, establishment of an intercomparison net for the electrometers control used as standards and designing current intensity sources which serve as work standards for each one of the participant countries, Mexico is one of them. (Author)

  6. Determination of the air attenuation correction factor for a free air ionization chamber; Determinacao do fator de correcao para atenuacao no ar para uma camara de ionizacao de ar livre

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia F.; Cintra, Felipe B.; Castro, Maysa C. de; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: fbelonsi@ipen.br, E-mail: mcastro@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    The objective of this work is to present the experimental and simulation results for the air attenuation correction factor for a free air ionization chamber with concentric cylinders of Victoreen, model 481-5. This correction factor was obtained for the standard mammography qualities established in the Instrument Calibration Laboratory (LCI) of IPEN. The values were compared with the results from the German primary standard laboratory Physikalisch- Technische Bundesanstalt (PTB), and maximum differences of 0.40% in relation to the experimental value and 0.31% in relation to the simulated value were obtained. (author)

  7. Calibração das câmaras de ionização para feixes de tomografia computadorizada no Brasil: a realidade atual Calibration of ionization chambers for computed tomography beams in Brazil: the present reality

    Directory of Open Access Journals (Sweden)

    Ana Figueiredo Maia

    2006-06-01

    Full Text Available OBJETIVO: O objetivo deste trabalho foi estabelecer, no Laboratório de Calibração de Instrumentos do Instituto de Pesquisas Energéticas e Nucleares, uma metodologia de calibração específica para as câmaras de ionização tipo lápis, que são utilizadas em procedimentos dosimétricos em feixes de tomografia computadorizada, seguindo as mais recentes recomendações internacionais. MATERIAIS E MÉTODOS: Foram utilizados, neste estudo, um equipamento de radiação X industrial, várias câmaras de ionização, um sistema de colimação móvel (tipo diafragma e vários filtros de alumínio de alta pureza. RESULTADOS: Foram estabelecidos os campos padrões de radiodiagnóstico descritos na norma internacional IEC 61267, e foi elaborado um procedimento de calibração adequado para as câmaras de ionização tipo lápis. CONCLUSÃO: Atualmente, já é possível calibrar apropriadamente as câmaras de ionização tipo lápis no Brasil. O procedimento de calibração foi definido com base nas recomendações internacionais e em testes feitos com duas metodologias distintas.OBJECTIVE: The aim of this study was to establish a calibration methodology specific for pencil ionization chambers used in computed tomography dosimetric procedures, in compliance with the most recent recommendations. The study was developed at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares. MATERIALS AND METHODS: An industrial x-ray equipment, several types of ionization chambers, a mobile collimator (diaphragm type, and several high purity aluminum filters were utilized in this study. RESULTS: Diagnostic radiology standard irradiation fields were established according to IEC 61267 standard, and an adequate calibration procedure for pencil ionization chambers was elaborated. CONCLUSION: The appropriate calibration of pencil ionization chambers is already a reality in Brazil. The calibration procedure was defined on the basis of

  8. Evaluation of the use of radiochromic films alongside of the ionization chamber and TLDs in measuring peripheral doses; Avaliacao do uso de filmes radiocromicos ao lado de camara de ionizacao e TLDs na mensuracao de doses perifericas

    Energy Technology Data Exchange (ETDEWEB)

    Soboll, Danyel S.; Wolter, Brenda Von; Nascimento, Josiane Q., E-mail: soboll@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Viamonte, Alfredo; Alves, Victor G.L., E-mail: aviamonte@inca.gov.br [Instituto Nacional de Cancer (PQRT/INCA), Rio de Janeiro, RJ (Brazil). Programa de Qualidade em Radioterapia

    2014-07-01

    The objective of this work is to submit radiochromic films, thermoluminescent dosimeters and ionization chamber to identical situations irradiation, in order to assess their capabilities in measuring peripheral doses. The growing number of survivors of childhood cancer has created the need to investigate the cause of the sequelae of treatment. Measurements of peripheral radiation to the radiotherapy target region increment the knowledge of the subject and assist in the development of protection methods. As the periphery of the radiation spectrum is different from that in the beam, the energy independence supposedly provided in radiochromic films can overcome the energy dependence found of ionization and TLD chambers, in order to discard the necessity of correction of the values if films are used. In this work the three dosimeters were exposed to doses arising from the issuance of 6 MV beams, field 10 cm x 10 cm and 500 UM. The dosimeters were placed at 0, 10, 17.5 and 30 cm from the central ray, always under 5 cm of water. The results showed that the figures reported by the films have high average standard deviation and for more conclusive results is necessary to proceed with the radiations, employing more intense beams.

  9. Comparing of the yield curve of the pediatric X-ray equipment using thermoluminescent dosimeters and cylindrical ionization chamber; Comparacao da curva de rendimento de um aparelho de raios X pediatrico utilizando dosimetros termoluminescentes e camara de ionizacao cilindrica

    Energy Technology Data Exchange (ETDEWEB)

    Filipov, Danielle, E-mail: dfilipov@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Schelin, Hugo R., E-mail: ledesmaiorgealberto@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil); Tilly Junior, Joao G., E-mail: joao.tilly@derax.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Hospital de Clinicas

    2014-07-01

    The determination of the yield curve of a radiographic equipment should be realized once a year, or when the unit be serviced. Besides being a requirement of ANVISA, through this test is possible to determine the incident air kerma (at a given point in the center of the beam) - INAK. Based on these concepts, the main objective of this work is the comparison of yield curves of the pediatric X-ray apparatus using two different detectors: one cylindrical ionization chamber and thermoluminescent dosimeters type LiF: Mg, Cu, P, as per protocol RLA / 9/057 IAEA. Then the equation of the yield curve (generated by each detector) was used to determine the INAK of 10 pediatric examinations, performed on this equipment. After the process of calibration of both detectors, they were placed side by side at a focus of the tube equipment for determining the performance of the same curve. Finally, using the curves generated by two detectors, INAK values of the 10 tests were calculated (from the kVp values, and mAs focus-patient of each exams), generating difference values at most 5%. As a conclusion, it can be said that the TLD lithium fluoride doped with Mg, Cu and P and the cylindrical ionization chambers may be used satisfactorily to determine the yield curve, whether as quality control or dosimetry.

  10. Establishment of a primary standard system for low energy X-rays using a free air ionization chamber; Estabelecimento de um sistema padrao primario para raios-X de energias baixas com uma camara de ionizacao de ar livre

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia Fiorini da

    2016-08-01

    In this work a primary standard system was established for low energy X-rays (10 kV to 50 kV), using a free air ionization chamber with concentric cylinders, Victoreen (Model 481-5), at the Calibration Laboratory of Instruments (LCI) of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP). For this, a new ionization chamber alignment protocol was developed for the radiation system and a modification on the micrometer housing used for the movement of the internal cylinders was ma de. The results obtained for the stability and characterization tests showed to be within the limits established by the standards IEC 61674 and IEC 60731. The correction factors for photon attenuation in the air, transmission and scattering in the diaphragm, scattering and fluorescence and ion recombination were also determined. These values were compared with those obtained by the German primary standard laboratory, Physikalisch-Technische Bundesanstalt (PTB), showing good agreement. Finally, the absolute values of the quantity air kerma rate for the standard qualities direct beams MWV28 and WMV35 and the attenuated beams WMH28 and WMH35 were determined; the results are in agreement, with a maximum difference of 3,8% with the values obtained using the secondary standard system of LCI. (author)

  11. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  12. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  13. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  14. Uncertainty evaluation of the kerma in the air, related to the active volume in the ionization chamber of concentric cylinders, by Monte Carlo simulation; Avaliacao de incerteza no kerma no ar, em relacao ao volume ativo da camara de ionizacao de cilindros concentricos, por simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Lo Bianco, A.S.; Oliveira, H.P.S.; Peixoto, J.G.P., E-mail: abianco@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI)

    2009-07-01

    To implant the primary standard of the magnitude kerma in the air for X-ray between 10 - 50 keV, the National Metrology Laboratory of Ionizing Radiations (LNMRI) must evaluate all the uncertainties of measurement related with Victtoren chamber. So, it was evaluated the uncertainty of the kerma in the air consequent of the inaccuracy in the active volume of the chamber using the calculation of Monte Carlo as a tool through the Penelope software

  15. Study of vaporization of LiI, LiI/C70, LiI/LiF/C70 from the Knudsen cell located into ionization chamber of the mass spectrometer

    Directory of Open Access Journals (Sweden)

    Đustebek Jasmina

    2014-01-01

    Full Text Available The vaporization of LiI, LiI/C70 and LiI/LIF/C70 were studied using a Knudsen cell located into ionization chamber of a magnetic sector mass spectrometer in a temperature range from 350 ˚C to 850 ˚C. Аs the ion species, LinI+ (n = 2, 3, 4, and 6 were identified from a mixture LiI/C70. While the clusters LinI+ and LinF+ (n = 2 - 6 were detected from a mixture LiI/LiF/C70. The intensities of LinI+ were higher than the emission of LinF+ cluster when the ratio of LiI to LiF was 2:1. By contrast, the emission of the LinF+ is favored when the ratio of LiI to LiF was 1:2. These results show that the vaporization of a mixture LiI/LIF/C70 from the Knudsen cell located into ionization chamber of the mass spectrometer represents an efficient and simple way to obtain and investigate clusters of the type LinX, X-F, I. In this work it has also been shown that the trend of the ln (Intensity, arbit. units versus temperature for all LinI+ clusters before and after the melting point of LiI was not same. It suggested that the way of the formation of these clusters can be different due to changes in temperature. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  16. Final Technical Report on STTR Project DE-FG02-02ER86145 Pressurized RF Cavities for Muon Ionization Cooling

    International Nuclear Information System (INIS)

    Rolland Johnson

    2006-01-01

    This project was to design and build an RF test cell (TC), which could be operated at 800 MHz, filled with high pressure gases including hydrogen, at temperatures down to that of liquid nitrogen, in strong magnetic fields, in a strong radiation environment, and with interchangeable electrodes, in order to examine the use of high-pressure RF cavities for muon beam cooling

  17. Final Technical Report on STTR Project DE-FG02-02ER86145 Pressurized RF Cavities for Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2006-07-13

    This project was to design and build an RF test cell (TC), which could be operated at 800 MHz, filled with high pressure gases including hydrogen, at temperatures down to that of liquid nitrogen, in strong magnetic fields, in a strong radiation environment, and with interchangeable electrodes, in order to examine the use of high-pressure RF cavities for muon beam cooling.

  18. SU-E-T-96: Demonstration of a Consistent Method for Correcting Surface Dose Measurements Using Both Solid State and Ionization Chamber Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T; Gerbi, B; Higgins, P [UniversityMinnesota, Minneapolis, MN (United States)

    2014-06-01

    Purpose: To compare the surface dose (SD) measured using a PTW 30-360 extrapolation chamber with different commonly used dosimeters (Ds): parallel plate ion chambers (ICs): RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial; TLD chips (cTLD), TLD powder (pTLD), optically stimulated (OSLs), radiochromic (EXR2) and radiographic (EDR2) films, and to provide an intercomparison correction to Ds for each of them. Methods: Investigations were performed for a 6 MV x-ray beam (Varian Clinac 2300, 10x10 cm{sup 2} open field, SSD = 100 cm). The Ds were placed at the surface of the solid water phantom and at the reference depth dref=1.7cm. The measurements for cTLD, OSLs, EDR2 and EXR2 were corrected to SD using an extrapolation method (EM) indexed to the baseline PTW 30-360 measurements. A consistent use of the EM involved: 1) irradiation of three Ds stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. An additional measurement was performed with externally exposed OSLs (eOSLs), that were rotated out of their protective housing. Results: All single Ds measurements overestimated the SD compared with the extrapolation chamber, except for Attix IC. The closest match to the true SD was measured with the Attix IC (− 0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EXR2 (14%), EDR2 (14.8%) and OSL (26%). The EM method of correction for SD worked well for all Ds, except the unexposed OSLs. Conclusion: This EM cross calibration of solid state detectors with an extrapolation or Attix chamber can provide thickness corrections for cTLD, eOSLs, EXR2, and EDR2. Standard packaged OSLs were not found to be simply corrected.

  19. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  20. Standard Test Method for Application of Ionization Chambers to Assess the Low Energy Gamma Component of Cobalt-60 Irradiators Used in Radiation-Hardness Testing of Silicon Electronic Devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Low energy components in the photon energy spectrum of Co-60 irradiators lead to absorbed dose enhancement effects in the radiation-hardness testing of silicon electronic devices. These low energy components may lead to errors in determining the absorbed dose in a specific device under test. This method covers procedures for the use of a specialized ionization chamber to determine a figure of merit for the relative importance of such effects. It also gives the design and instructions for assembling this chamber. 1.2 This method is applicable to measurements in Co-60 radiation fields where the range of exposure rates is 7 × 10 −6 to 3 × 10−2 C kg −1 s−1 (approximately 100 R/h to 100 R/s). For guidance in applying this method to radiation fields where the exposure rate is >100 R/s, see Appendix X1. Note 1—See Terminology E170 for definition of exposure and its units. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information onl...

  1. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  2. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers; Comparacao entre os protocolos IAEA/TRS-277 e IAEA/TRS-398 para dosimetria em feixes de eletrons com camaras de ionizacao cilindricas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberto Salomon de

    2004-07-01

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  3. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    1999-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  4. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  5. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  6. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV

    Science.gov (United States)

    Krauss, A.; Kapsch, R.-P.

    2018-02-01

    For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  7. Determination of the correction factor for attenuation, dispersion and production of electrons (Kwall) in the wall of graphite of a ionization chamber Pattern National Type CC01 in fields of gamma radiation of 60Co

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, J.; Cruz E, P.

    2001-12-01

    It was determined the Kwall correction factor for the wall of graphite of the chamber of the pattern national type CC01 series 133 for a radiation field Gamma of 60 Co. With this end to measured the currents of ionization l(x) as function of the thickness of the wall of the chamber: X=4,8,12,16 and 20 mm.The mensurations for each thickness consisting of three groups, of sizes n = 30 or 60 data for each group; obtaining 8 complete groups of mensurations independent in eight different dates.The determinate the factor carried out using three regression models: lineal, logarithmic and quadratic, models that were tried to validate with the tests of : i) Shapiro-Wilk and χ 2 for the normality of the entrance data ii) Tests of Bartlett for variances homogeneity among groups for each thickness iii) The tests of Duncan for the stockings among groups of each thickness, and iv) The tests of adjustment lack (LOF) for the models used. Nevertheless, alone the models of the group of corresponding mensurations at 01-03-2000 17-08-2001 they can be validated by LOF, but not for tests of normality and homogeneity of variances. Among other assignable causes of variation we have: i) The values captured by the system of mensuration of the variables of it influences: pressure, temperature and relative humidity don t belong together with the existent ones to the moment to capture the l(x). ii) The mensuration room presents flows of air, for what was suited o diminish their volume and to eliminate the flows of air. iii) A protocol settled down of taking of measures that it consisted in: - Pre-irradiation 5 minutes the chamber after the change of polarity and hood change, with a period of stabilization of 5 minutes after the pre-irradiation. - Pre-irradiation for 5 minutes before the taking of the readings, with the object of eliminating variation sources assigned to currents of escapes or due variations to transitory. iv) To realize corrections for relative humidity of agreement with the

  8. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  9. Measurement of cross section and angular distribution for sup 6 sup 4 Ze(n, alpha) sup 6 sup 1 Ni by using gridded ionization chamber of Kr(CH sub 4) gas

    CERN Document Server

    Yuan Jing; Tang Guo You; Chen Jin Xiang; Zhang Guo Hui; Gledenov, Yu M; Sedysheva, M V

    2002-01-01

    By using a gridded ionization chamber, the angular distribution and total cross section for sup 6 sup 4 Zn(n, alpha) sup 6 sup 1 Ni reaction were measured at 5.0, 5, 7 and 6.5 MeV, and included sup 1 sup 0 B(n, alpha) sup 7 Li measurement. The neutrons were produced through D(d, n) sup 3 He reaction, working gas was Kr + 4.71% CH sub 4. Because using Kr + 4.71% CH sub 4 as working gas, there is no interference from sup 1 sup 6 O(n, alpha), the authors got two dimensions events spectrums of the many excited states groups of sup 6 sup 4 Zr(n, alpha) sup 6 sup 1 Ni and high excited state of sup 1 sup 0 B(n, alpha) sup 7 Li clearly at first in the world, the result of measurement show that the distribution of sup 6 sup 4 Zn(n, alpha) sup 6 sup 1 Ni was nearly 90 degree symmetric at 5.7 MeV, and obviously backward peaked in the center of mass reference system

  10. Experimental comparison of profiles of acquired small fields with ionization chambers, diodes, radiochromic s and TLD films; Comparacion experimental de perfiles de campos pequenos adquiridos con camaras de ionizacion, diodos, peliculas radiocromicas y TLD

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, D.; Garrigo, E. [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina); Filipuzzi, M. [Instituto Balseiro, Centro Atomico Bariloche, Av. Bustillo 9500, 8400 Bariloche - Rio Negro (Argentina); Germanier, A., E-mail: devenencia@radioncologia-zunino.org [Centro de Excelencia en Productos y Procesos, Santa Maria de Punilla, 5164 Cordoba (Argentina)

    2014-08-15

    The use of radiation small fields, introduced by new techniques, can bring a considerable uncertainty in the precision of the acquired profiles, due to the conditions of lateral electronic non-equilibrium and the perturbations introduced by the detectors (volume effect and alteration of the charged particles flowing) [Das et al., 2007]. The development of new miniature detectors looks to diminish the uncertainty created by the material and the size of the sensitive volume of the dosimeter. For this reason, comparative measurements for three sizes of square field were carried out (20 mm, 10 mm and 5 mm, of side) using a detectors series: 3 ionization chambers (PTW-31003, IBA-CC04, PTW-31016), 2 diodes (PTW-60012, IBA-Sfd), thermoluminescent detectors micro-cubes of 1 mm of edge (TLD-700) and radiochromic s films EBT-3. These last two were used as reference detectors, due to their spatial high resolution and similar performance with Monte Carlo simulations [Francescon et al., 1998]. So much the thermoluminescent detectors as the radiochromic films resolved the profiles in a similar way. Both diodes responded correctly, but the rest of the detectors overestimated the gloom of the fields, which allows conclude that the used TLD (and both diodes) can resolve field sizes correctly, usually utilized in radio-surgery, without producing significant alterations in the acquired data. (author)

  11. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber...

  12. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  13. Analysis of dosimetry of a Gamma Knife Perfexion using polystyrene and solid water phantoms for small volume ionization chambers; Analise da dosimetria de um Gamma Knife Perfexion utilizando phantoms de poliestireno e de agua solida para camaras de ionizacao de volume pequeno

    Energy Technology Data Exchange (ETDEWEB)

    Costa, N.A.; Potiens, M.P.A., E-mail: nathaliaac@ymail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saraiva, C.W.C. [Hospital do Coracao (HCor), Sao Paulo, SP (Brazil); Benmakhlouf, H. [Stockholm University, Karolinska Hospital (Sweden)

    2016-07-01

    The Gamma Knife Perfexion (GKP) is a radiosurgery equipment that has been developed by Elekta. Its dose-rate calibration is performed using phantoms developed by Elekta and a small volume ionization chamber. The purpose of this study was to evaluate the collected charge values obtained in its dosimetry using two different phantoms, polystyrene and solid water and the ion chambers PTW Semiflex, volume 0,125 cm{sup 3}, model 31010 and PTW Pinpoint, volume 0,016 cm{sup 3}, model 31016. (author)

  14. Dental cavities

    Science.gov (United States)

    ... acids in plaque damage the enamel covering your teeth. It also creates holes in the tooth called cavities. Cavities usually do not hurt, unless they grow very large and affect nerves or cause a tooth fracture. An untreated cavity can lead to an infection ...

  15. Cavity-cavity conditional logic

    Science.gov (United States)

    Rosenblum, Serge; Gao, Yvonne Y.; Reinhold, Philip; Wang, Chen; Axline, Christopher; Frunzio, Luigi; Girvin, Steven M.; Jiang, Liang; Mirrahimi, Mazyar; Devoret, Michel H.; Schoelkopf, Robert J.

    In a superconducting circuit architecture, the highest coherence times are typically offered by 3D cavities. Moreover, these cavities offer a hardware-efficient way of redundantly encoding quantum information. While single-qubit control on a cavity has already been demonstrated, there is a need for a universal two-qubit gate between such cavities. In this talk, we demonstrate a cavity-cavity gate by parametric pumping on a fixed-frequency transmon interacting with the two cavities. Every gate application lowers the state fidelity by only 1%, while maintaining an entangling rate on-off ratio of 29dB. Additionally, we show that the gate is applicable not only to qubits consisting of single photons, but also to more complex encodings. These results illustrate the usefulness of cavities beyond the mere storage of quantum information, and pave the way towards gates between error-corrected logical qubits.

  16. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Recombination chambers for BNCT dosimetry

    International Nuclear Information System (INIS)

    Tulik, Piotr

    2006-01-01

    Parallel plate recombination ionization chambers are known as the detectors which can be used for determination of gamma and high-LET dose components and for characterization of radiation quality of mixed radiation fields. Specially designed chambers can operate correctly even at dose rates of therapeutic beams. In this work the investigations were extended to a set of cylindrical chambers including a TE chamber and three graphite chambers filled with different gases - CO 2 , N 2 and 10 BF 3 , in order to determine the thermal neutrons, 14 N capture, gamma, and fast neutron dose components. The separation of the dose components is based on differences of the shape of the saturation curve, in dependence on LET spectrum of the investigated radiation. The measurements using all the chambers and a parallel plate recombination chamber were performed in a reactor beam of NRI Rez (Czech Republic). The gamma component was determined with accuracy of about 5%, while the variations of its value could be monitored with accuracy of about 0.5%. Relative changes of the beam components could be detected with accuracy of about 5% using the parallel plate chamber. The use of the chambers filled with different gases considerably improved the resolution of the method. (author)

  19. Novel Semi-Direct OH Reactivity (kOH) Measurements by Chemical Ionization Mass Spectrometry during a Chamber Instrument Comparison Campaign and Continuous Ambient Air Sampling at a Central European GAW Station

    Science.gov (United States)

    Muller, J.; Kubistin, D.; Elste, T.; Plass-Duelmer, C.; Claude, A.; Englert, J.; Holla, R.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Novelli, A.; Tillmann, R.; Wegener, R.; Rohrer, F.; Yu, Z.; Bohn, B.; Williams, J.; Pfannerstill, E.; Edtbauer, A.; Kluepfel, T.

    2016-12-01

    Total OH reactivity (kOH) has been recognized as a useful measure to gauge the potential atmospheric oxidation capacity and a few different in-situ measurement techniques have been developed over the last 15 years. Here results are presented from a novel semi-direct method developed by the German Weather Service (DWD) utilizing a chemical ionization mass spectrometer (CIMS). Recently in April 2016, the CIMS system participated in a half-blind kOH instrument comparison campaign at the Forschungszentrum Jülich (FZJ) SAPHIR chamber. Experiments provided controlled conditions with a range of different VOC mixtures and varying NOx levels, representing environments dominated by biogenic or urban emissions. Alongside CIMS, kOH was also measured by systems using the comparative reactivity method (CRM) and the pump-probe technique with OH detection. The intercomparison revealed a good performance of CIMS at lower OH reactivities (0-15 s-1), a range for which the instrumental set up was optimized. Limitations of the CIMS system consist of an upper limit for kOH detection and the need for applying a chemical correction function as a result of instrument-internal HOx recycling. Findings and instrument parameters obtained from the FZJ SAPHIR campaign and flow tube experiments are then applied to ambient air kOH measurements at the Meteorological Observatory Hohenpeissenberg (MOHp), Germany. The CIMS instrument is used there for long-term measurements of OH, H2SO4, ROx and kOH. Here, we show ambient air kOH measurements, interpreted in conjunction with volatile organic compounds (VOC) and inorganic trace gases also measured at the GAW station Hohenpeissenberg. These observations provide a unique dataset to investigate turnover rates and seasonal cycles of reactive trace gases, i.e. sources that make up total OH reactivity in this central European, rural setting.

  20. Monolithic JFET preamplifier for ionization chamber calorimeter

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  1. Cavity types

    CERN Document Server

    Gerigk, Frank

    2011-01-01

    In the field of particle accelerators the most common use of RF cavities is to increase the particle velocity of traversing particles. This feature makes them one of the core ingredients of every accelerator, and in the case of linear accelerators they are even the dominant machine component. Since there are many different types of accelerator, RF cavities have been optimized for different purposes and with different abilities, e.g., cavities with fixed or variable RF frequency, cavities for short or long pulses/CW operation, superconducting and normal-conducting cavities. This lecture starts with a brief historical introduction and an explanation on how to get from Maxwell's equations to a simple cavity. Then, cavities will be classified by the type of mode that is employed for acceleration, and an explanation is given as to why certain modes are used in particular cavity types. The lecture will close with a comparison of normal versus superconducting cavities and a few words on the actual power consumption ...

  2. Analysis of the effective point of measurement of a thimble chamber dosimeter set parallel to the X-ray beam axis

    International Nuclear Information System (INIS)

    Shimono, Tetsunori; Nanbu, Hidekazu; Koshida, Kichiro; Kikuchi, Yuzo

    2007-01-01

    To measure the narrow beam used in stereotactic irradiation, installation of the ionization chamber parallel to the X-ray beam axis has been used instead of perpendicular installation. However, the definition of the effective point is a major problem in the parallel installation. In this study, we analyzed the effective point in parallel installation, and considered the prediction and evaluation of measurement point displacement. Relative dosimetry was carried out by installing the thimble ionization chamber in both perpendicular and parallel configurations. We then searched for the measurement point that coincided with the percentage depth dose (PDD) of the perpendicular installation by using the displacement of the measurement point of the parallel installation. We found that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length and the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The amount of effective point displacement for the parallel installation was quantified with the linear expression of tissue peak ratio (TPR) 20, 10 . Our results showed that the amount of effective point displacement can be estimated by the ionization volume of the dosimeter and the energy used. (author)

  3. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. Display of charged ionizing particles

    International Nuclear Information System (INIS)

    Cano S, D.; Ortiz A, M. D.; Amarillas S, L. E.; Vega C, H. R.

    2017-10-01

    The human being is exposed to sources of ionizing and non-ionizing radiation, both of natural or anthropogenic origin. None of these, except non-ionizing such as visible light and infrared radiation, can be detected by the sense of sight and touch respectively. The sun emits charged particles with speeds close to the light that interact with the atoms of the gases present in the atmosphere, producing nuclear reactions that in turn produce other particles that reach the surface of the Earth and reach the living beings. On Earth there are natural radioisotopes that, when they disintegrate, emit ionizing radiation that contributes to the dose we receive. A very old system that allows the visualization of the trajectories of the charged ionizing particles is the Fog Chamber that uses a saturated steam that when crossed by particles with mass and charge, as alpha and beta particles produce condensation centers along its path leaves a trace that can be seen. The objective of this work was to build a fog chamber using easily accessible materials. To measure the functioning of the fog chamber, cosmic rays were measured, as well as a source of natural metal uranium. The fog chamber allowed seeing the presence of traces in alcohol vapor that are produced in a random way. Introducing the uranium foil inside the fog chamber, traces of alpha particles whose energy varies from 4 to 5 MeV were observed. (Author)

  8. Robert Chambers

    NARCIS (Netherlands)

    K. Biekart (Kees); D.R. Gasper (Des)

    2013-01-01

    textabstractProfessor Robert Chambers is a Research Associate at the Institute of Development Studies (IDS), University of Sussex (Brighton, UK), where he has been based for the last 40 years, including as Professorial Research Fellow. He became involved in the field of development management in the

  9. Apparatus and process for passivating an SRF cavity

    Science.gov (United States)

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  10. Imaging of ionizing radiations from electronic avalanches, limited, in gases

    International Nuclear Information System (INIS)

    Charpak, G.

    1995-01-01

    This work deals with the imaging of ionizing radiations from electronic avalanches in gases. Some applications realized with the help of physical instruments like : fog chambers, Geiger-Mueller counters, proportional counters, scintillation counters, semiconductor detectors, nuclear emulsions, bubble chambers, drift chambers, wire spark chambers and calorimeters are described and their performances compared. (O.L.). 5 refs., 10 figs

  11. Radio frequency plasma method for uniform surface processing of RF cavities and other three-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Svetozar; Upadhyay, Janardan; Vuskovic, Leposava; Phillips, H. Lawrence; Valente-Feliciano, Anne-Marie

    2017-12-26

    A method for efficient plasma etching of surfaces inside three-dimensional structures can include positioning an inner electrode within the chamber cavity; evacuating the chamber cavity; adding a first inert gas to the chamber cavity; regulating the pressure in the chamber; generating a plasma sheath along the inner wall of the chamber cavity; adjusting a positive D.C. bias on the inner electrode to establish an effective plasma sheath voltage; adding a first electronegative gas to the chamber cavity; optionally readjusting the positive D.C. bias on the inner electrode reestablish the effective plasma sheath voltage at the chamber cavity; etching the inner wall of the chamber cavity; and polishing the inner wall to a desired surface roughness.

  12. Experimental determination of kQ factors for cylindrical ionization chambers in 10 cm × 10 cm and 3 cm × 3 cm photon beams from 4 MV to 25 MV.

    Science.gov (United States)

    Krauss, A; Kapsch, R P

    2014-08-07

    For the ionometric determination of absorbed dose to water, Dw, in megavoltage photon beams from a linear accelerator, beam-quality-dependent correction factors, kQ, are used for the ionization chambers. By using a water calorimeter, these factors can be determined experimentally and with substantially lower standard uncertainties compared to calculated values of the kQ, which are published in various dosimetry protocols. In this investigation, kQ for different types of cylindrical ionization chambers (NE 2561, NE 2571, FC 65 G) were determined experimentally in 10 cm × 10 cm photon beams from 4 MV to 25 MV (corresponding beam quality index TPR20,10 from 0.64 to 0.80). The measurements were carried out at the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. It is shown that the kQ factors for a single ionization chamber in 10 cm × 10 cm photon beams can be measured with a relative standard uncertainty of 0.31%. In addition to these measurements in 10 cm × 10 cm fields, kQ factors for the NE 2561 chamber were also determined in smaller 3 cm × 3 cm photon beams between 6 MV and 25 MV. In this case, relative standard uncertainties between 0.35 % and 0.38 % are achieved for the kQ factors. It is found for this ionization chamber, that the ratio of the kQ factors in 3 cm × 3 cm and in 10 cm × 10 cm beams increases with increasing TPR20,10 to reach a value of 1.0095 at TPR20,10 = 0.8 with a relative standard uncertainty of 0.4 %.

  13. Advanced acoustic cavity technology. [for hydrogen oxygen rocket engines

    Science.gov (United States)

    Hines, W. S.; Oberg, C. L.; Kusak, L.

    1974-01-01

    A series of rocket motor firings was performed in a modified linear aerospike thrust chamber with the H2/O2 propellant combination to allow determination of the physical properties of the combustion gases in acoustic cavities located in the chamber side walls. A preliminary analytical study was first conducted to define theoretically both the appropriate cavity dimensions and the combustion gas flow field adjacent to the cavity openings. During the subsequent motor firings, cavity gas temperature profiles were measured and gas samples were withdrawn from the bottom of the cavities for compositional analysis by measurement of pressure/temperature variation and gas chromatography. Data were obtained with both radially and axially oriented cavities and with and without hydrogen bleed flow through the cavities. A simplified procedure was developed for predicting gas cavity and acoustic velocity for use in acoustic cavity design analyses.

  14. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  15. Collection efficiency of charges in ionization chambers in presence of constant or variable radiation intensity; Efficacite de la collection des charges dans les chambres d'ionisation en presence d'une intensite de rayonnement ionisant constante ou variable

    Energy Technology Data Exchange (ETDEWEB)

    Decuyper, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    The theoretical and experimental study of the collection of carriers built up by ionization in standard chambers, is made by varying the value of different acting parameters. In the presence of constant ionization intensity and under a D.C. and A.C. voltage, the effect of geometry, recombination, diffusion and attachment is analyzed. The compensation of thermal neutron D.C. chambers is equally considered. Under a time dependent ionization intensity and D.C. voltage, is then studied the effect of recombination on current response, and on the collection efficiency of all formed charges. (author) [French] L'etude theorique et experimentale de la collection des porteurs crees par ionisation dans les chambres couramment utilisees est entreprise en fonction de la valeur des differents parametres agissants. En presence d'une ionisation constante et sous une tension d'alimentation d'abord continue puis alternative, on analyse l'influence de la geometrie, de la recombinaison, de la diffusion et de l'attachement. La compensation des chambres a courant continu de mesure neutronique est egalement examinee. Ensuite, sous une intensite d'ionisation variable dans le temps et en alimentation continue, on etudie l'effet de la recombinaison sur la reponse en courant et sur l'efficacite de la collection de la charge totale liberee. (auteur)

  16. Suppression chamber

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Tsuji, Akio.

    1976-01-01

    Purpose: To miniaturize the storage tank of condensated water in BWR reactor. Constitution: A diaphragm is provided in a suppression chamber thereby to partition the same into an inner compartment and an outer compartment. In one of said compartments there is stored clean water to be used for feeding at the time of separating the reactor and for the core spray system, and in another compartment there is stored water necessary for accomplishing the depressurization effect at the time of coolant loss accident. To the compartment in which clean water is stored there is connected a water cleaning device for constantly maintaining water in clean state. As this cleaning device an already used fuel pool cleaning device can be utilized. Further, downcomers for accomplishing the depressurization function are provided in both inner compartment and outer compartment. The capacity of the storage tank can be reduced by the capacity of clean water within the suppression chamber. (Ikeda, J.)

  17. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  18. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  19. Time projection chamber

    International Nuclear Information System (INIS)

    Kamae, Tsuneyoshi

    1984-01-01

    A time projection chamber (TPC) was developed at Lawrence Berkeley Laboratory to compensate the shortcoming of drift chambers. The characteristics of the TPC are the improvement of the distortion of the trace of particles in long drift, the improvement of particle identification by taking out the analog signal proportional to the number of electrons, and the improvement of the method to analyze the three-dimensional analog signal. Two large TPC's are designed and manufactured in Japan. The details of these TPC's are explained in this paper. The results of test experiment are as follows. The accuracy of the measurement of particle position was about 100 micrometer in the r-theta plane and about 340 micrometer in the Z-direction. The accuracy of the measurement of ionization loss (dE/dx) was less than 4.0 percent. The reconstruction of quark pair production can be made. At present, the identification of K-mesons in jet phenomena is possible, and the cross-sections of inclusive processes are easily obtained. (Kato, T.)

  20. A Fano cavity test for Monte Carlo proton transport algorithms

    International Nuclear Information System (INIS)

    Sterpin, Edmond; Sorriaux, Jefferson; Souris, Kevin; Vynckier, Stefaan; Bouchard, Hugo

    2014-01-01

    Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE 0 and a mass macroscopic cross section of (Σ)/(ρ) are transported, having the ability to generate protons with kinetic energy E 0 and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluence must equal (ΣE 0 )/(ρ) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm 2 parallel virtual field and a cavity (2 × 2 × 0.2 cm 3 size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy straggling if step size is not

  1. Atmospheric sampling glow discharge ionization source

    Science.gov (United States)

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  2. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1982-01-01

    A neutron accelerator tube is described having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least one cathode member located in the tube adjacent to th replenisher section may have a protuberant portion extending axially into the ionization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  3. Characterization of a extrapolation chamber in standard X-ray beam, radiodiagnosis level; Caracterizacao de uma camara de extrapolacao em feixes padroes de raios X, nivel radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Eric A.B. da; Caldas, Linda V.E., E-mail: ebrito@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The extrapolation chamber is a ionization chamber used for detection low energy radiation and can be used as an standard instrument for beta radiation beams. This type of ionization chamber have as main characteristic the variation of sensible volume. This paper performs a study of characterization of a PTW commercial extrapolation chamber, in the energy interval of the qualities of conventional radiodiagnostic

  4. Weld Development for Aluminum Fission Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Jesse Norris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in this application, this presented an unexplored challenge.

  5. Cavity Optomechanics

    OpenAIRE

    Kippenberg, T. J.; Vahala, K. J.

    2007-01-01

    The coupling of mechanical and optical degrees of freedom via radiation pressure has been a subject of early research in the context of gravitational wave detection. Recent experimental advances have allowed studying for the first time the modifications of mechanical dynamics provided by radiation pressure. This paper reviews the consequences of back-action of light confined in whispering-gallery dielectric micro-cavities, and presents a unified treatment of its two manifestations: notably th...

  6. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  7. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  8. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1981-01-01

    A neutron accelerator tube having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emmission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least 2. One cathode member located in the tube adjacent to the replenisher section may have a protuberant portion extending axially into the ioization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  9. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  10. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  11. 201 MHz Cavity R and D for MUCOOL and MICE

    International Nuclear Information System (INIS)

    Li, Derun; Virostek, Steve; Zisman, Michael; Norem, Jim; Bross, Alan; Moretti, Alfred; Norris, Barry; Torun, Yagmur; Phillips, Larry; Rimmer, Robert; Stirbet, Mircea; Reep, Michael; Summers, Don

    2006-01-01

    We describe the design, fabrication, analysis and preliminary testing of the prototype 201 MHz copper cavity for a muon ionization cooling channel. Cavity applications include the Muon Ionization Cooling Experiment (MICE) as well as cooling channels for a neutrino factory or a muon collider. This cavity was developed by the US muon cooling (MUCOOL) collaboration and is being tested in the MUCOOL Test Area (MTA) at Fermilab. To achieve a high accelerating gradient, the cavity beam irises are terminated by a pair of curved, thin beryllium windows. Several fabrication methods developed for the cavity and windows are novel and offer significant cost savings as compared to conventional construction methods. The cavity's thermal and structural performances are simulated with an FEA model. Preliminary high power RF commissioning results will be presented

  12. On unsteady reacting flow in a channel with a cavity

    Directory of Open Access Journals (Sweden)

    Ivar Ø. Sand

    1991-10-01

    Full Text Available The problem investigated is the stability of a flame anchored by recirculation within a channel with a cavity, acting as a two-dimensional approximation to a gas turbine combustion chamber. This is related to experiments of Vaneveld, Hom and Oppenheim (1982. The hypothesis studied is that hydrodynamic oscillations within the cavity can lead to flashback.

  13. Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Doblado, Francisco [Hospital Universitario Virgen Macarena, RadiofIsica, Sevilla (Spain); Capote, Roberto [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria); Leal, Antonio [Hospital Universitario Virgen Macarena, RadiofIsica, Sevilla (Spain); Rosello, Joan V [RadiofIsica, ERESA, Hospital General Universitario, Valencia (Spain); Lagares, Juan I [Hospital Universitario Virgen Macarena, RadiofIsica, Sevilla (Spain); Arrans, Rafael [Hospital Universitario Virgen Macarena, RadiofIsica, Sevilla (Spain); Hartmann, Guenther H [Deutsches Krebsforschungszentrum, Abt. Medizinische Physik, Heidelberg (Germany)

    2005-03-07

    Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm{sup 2} are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes {<=}0.1 cm{sup 3}are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber ({mu}IC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the {mu}IC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (D{sub air}). The absorbed dose to water (D{sub water}) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the D{sub water}/D{sub air} dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the {mu}IC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.

  14. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  15. The dosimetry of ionizing radiation

    CERN Document Server

    Bjaerngard, Bengt E; Kase, Kenneth R

    1987-01-01

    The Dosimetry of Ionizing Radiation, Volume II, attempts to fill the need for updated reference material on the field of radiation dosimetry. This book presents some broad topics in dosimetry and a variety of radiation dosimetry instrumentation and its application. The book opens with a chapter that extends and applies the concepts of microdosimetry to biological systems. This is followed by separate chapters on the state- of-the-art equipment and techniques used to determine neutron spectra; studies to determine recombination effects in ionization chambers exposed to high-intensity pulsed ra

  16. Development of fission chamber for nuclear reactors controlling

    International Nuclear Information System (INIS)

    Pereira, M. da C.C.; Napolitano, C.M.; Banados Perez, H.E.

    1990-01-01

    Fission Chambers are gas-filled type detectors that operate in the ionization chamber regime, which is without electron multiplication. As the fill-gas is not directly ionized by neutrons, fission chambers are lined with fissile material that through interaction with neutrons fission products are produced, are highly ionizing particles. Pulse type operation of these detectors are used for neutron flux measurements during start up and shut-down reactor conditions in which pulses of high amplitude produced by fission products can be easily discriminated from those produced by alpha radiation from uranium and also from the external gamma field. With current or current fluctuation mode operation (Campbell) the use of these detectors can be extended for the whole range of reactor operation. In this work, it is presented the development and construction of a fission chamber at IPEN-CNEN/SP. Furthermore, the material and techniques used and also the operational characteristics obtained with the first prototype are given. (author) [pt

  17. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    International Nuclear Information System (INIS)

    Anderson, D; McEwen, M; Shen, H; Siegbahn, EA; Fallone, BG; Warkentin, B

    2014-01-01

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors

  18. Glove box chamber

    International Nuclear Information System (INIS)

    Cox, M.E.; Cox, M.E.

    1975-01-01

    An environmental chamber is described which enables an operator's hands to have direct access within the chamber without compromising a special atmosphere within such chamber. A pair of sleeves of a flexible material are sealed to the chamber around associated access apertures and project outwardly from such chamber. Each aperture is closed by a door which is openable from within the sleeve associated therewith so that upon an operator inserting his hand and arm through the sleeve, the operator can open the door to have access to the interior of the chamber. A container which is selectively separable from the remainder of the chamber is also provided to allow objects to be transferred from the chamber without such objects having to pass through the ambient atmosphere. An antechamber permitting objects to be passed directly into the chamber from the ambient atmosphere is included. (auth)

  19. Ionization detector with improved radiation source

    International Nuclear Information System (INIS)

    Solomon, E.F.

    1977-01-01

    The detector comprises a chamber having at least one radiation source disposed therein. The chamber includes spaced collector plates which form a part of a detection circuit for sensing changes in the ionization current in the chamber. The radiation source in one embodiment is in the form of a wound wire or ribbon suitably supported in the chamber and preferably a source of beta particles. The chamber may also include an adjustable electrode and the source may function as an adjustable current source by forming the wire or ribbon in an eliptical shape and rotating the structure. In another embodiment the source has a random shape and is homogeneously disposed in the chamber. 13 claims, 5 drawing figures

  20. Characterization of the exradin A18 chamber ionization according to the IEC70631 standards. This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances; Caracterizacion de la camara de ionizacion exradin A18 segun el estandar IEC70631. Estudio para haces de fotones sin filtro aplanador

    Energy Technology Data Exchange (ETDEWEB)

    Onses Segarra, A.; Puxeu Vaque, J.; Sancho Kolster, I.; Lizuain Arroyo, M. C.; Picon Olmos, C.

    2013-07-01

    This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances. (Author)

  1. Design of an optical cavity for gravimetry

    Science.gov (United States)

    Billion Reyes, M. S.; Lopez-Vazquez, A.; Pimenta, W. M.; Gonzalez, M. A.; Franco-Villafane, J. A.; Gomez, E.

    2017-04-01

    Atomic interferometry is a widely used method to perform precision measurements of accelerations. We enhance the interferometric signal by adding an optical cavity around the free-falling atoms inside of a vacuum chamber. We use a bow-tie configuration to support a traveling wave and avoid spatial fluctuations in the light shift. To induce collective behavior (entangled state), we design the optical cavity with a cooperativity factor higher than one. We present the characterization of an optical cavity with a maximized beam waist to reach homogeneous illumination of the atomic cloud. The mirrors have high reflectivity (R =99.999%) at 780 nm, in a non-confocal arrangement so that we can excite transverse modes independently or simultaneously. We describe our progress to achieve a transverse mode closer to a flat-top and a cavity design that fits our geometrical restrictions. Funding from CONACYT.

  2. bubble chamber lens

    CERN Multimedia

    Before the days of electronic detectors, visual techniques were used to detect particles, using detectors such as spark chambers and bubble chambers. This plexiglass lens was used to focus the image of tracks so they could be photographed.

  3. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  4. Passive control of supersonic cavity flowfields

    Science.gov (United States)

    Chokani, N.; Kim, I.

    1991-01-01

    A computational investigation has been conducted to study the effect and mechanisms of the passive control of a supersonic flow over a rectangular two-dimensional cavity. The passive control was included through the use of a porous surface over a vent chamber in the floor of the cavity. The passive control effectively suppressed the low-frequency pressure oscillations for the open type cavity, (length-to-depth ratio = 6.0). The mechanism for the suppression was observed to be the stabilization of the motion of the free shear layer. For the closed type cavity flow, (length-to-depth ratio = 17.5), the passive control modified the flowfield to nearly that of an open type cavity flow; further the cavity drag was reduced by a factor of four. The computational results of both cases showed good agreement with the available experimental data and the predictions of a semiempirical formula. This study demonstrates that the passive control concept can be used to improve the aerodynamic characteristics of open and closed cavity flowfields.

  5. Analyzing the Formation, Physicochemical, and Optical Properties of Aging Biomass Burning Aerosol Using an Indoor Smog Chamber

    Science.gov (United States)

    Smith, D. M.; Fiddler, M. N.; Bililign, S.; Spann, M.

    2017-12-01

    Biomass burning (BB) is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc., which alters their optical properties. To this end, an indoor smog chamber was constructed to study aging BB aerosol in a laboratory setting. Injections to the chamber, including NOx, O3, and various biogenic and anthropogenic VOCs, can simulate a variety of atmospheric conditions. These components and some of their oxidation products are monitored during the aging process. A tube furnace is used for combustion of biomass to be introduced to the chamber, while size distributions are taken as the aerosol ages. Online measurements of optical properties are determined using a Cavity Ring-down Spectrometry and Integrating Nephelometry system. Chemical properties are measured from samples captured on filters and analyzed using Ultra-Performance Liquid Chromatography coupled in-line to both a Diode Array Detector and High-Resolution Time-of-Flight Mass Spectrometer equipped with electrospray ionization. The measured changes in the optical properties as a function of particle size, aging, and chemical properties are presented for fuel sources used in Africa.

  6. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Martinez, L.; Duran, I.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs

  7. Improvements in or relating to ionization smoke detectors

    International Nuclear Information System (INIS)

    Ryall, D.C.

    1979-01-01

    To overcome the tendency exhibited by ionization smoke detectors to false alarms, due to the entry of ionized particles into the outer chamber, the present invention describes an outermost guard electrode maintained at the same potential as the inner electrode. An operating circuit is given. (UK)

  8. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  9. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  10. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  11. Detailed models for timing and efficiency in resistive plate chambers

    CERN Document Server

    AUTHOR|(CDS)2067623; Lippmann, Christian

    2003-01-01

    We discuss detailed models for detector physics processes in Resistive Plate Chambers, in particular including the effect of attachment on the avalanche statistics. In addition, we present analytic formulas for average charges and intrinsic RPC time resolution. Using a Monte Carlo simulation including all the steps from primary ionization to the front-end electronics we discuss the dependence of efficiency and time resolution on parameters like primary ionization, avalanche statistics and threshold.

  12. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  13. Refrigeration Test Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The enclosed and environmentally controlled chamber is able to test four units (single-phase) simultaneously at conditions ranging from tundra to desert temperatures...

  14. Low ionization source velocimetric smoke detector

    International Nuclear Information System (INIS)

    1980-01-01

    The low ionization source velocimetric smoke detector described is characterized in that the air ionization system is an alpha emitting radioactive source of very low intensity. This single source is inserted, without causing any corrosion couple, on both sides of a rigid partition separating into two equal volumes the space between the two polarized plates of an air capacitor. This then forms a reference chamber and an analytical chamber. As the assembly of chambers, source and metal frame is contained in an aerated sheet metal cage, the electric capacity of this capacitor varies when detections occur. The variations are sensed and amplified by a transistorized circuit that memorizes the electric background noises of the detector assembly as well as its slow variations and sorts them out from the variations due to the detection, by a simplified velocimetric electric measuring assembly connected upstream of a warning system that it controls [fr

  15. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  16. bubble chamber lens

    CERN Multimedia

    Was used in a PS experiment. Before the days of electronic detectors, visual techniques were used to detect particles, using detectors such as spark chambers and bubble chambers. This plexiglass lens was used to focus the image of tracks so they could be photographed.

  17. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  18. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  19. DELPHI time projection chamber

    CERN Document Server

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  20. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  1. MUSIC chamber for investigation of fusion processes with radioactive beams

    International Nuclear Information System (INIS)

    Petrascu, H.; Petrascu, M.; Tanihata, I.; Kobayashi, T.; Kumagai, H.

    1997-01-01

    An improved model of a Multiple Sampling Ionization Chamber (MUSIC) has been achieved. An outline of the chamber is presented. One can distinguish the 11 pads of the anode, the cage allowing to obtain a uniform electric field inside the chamber, the 5 x 5 cm 2 Silicon microstrip detector-target and the Veto silicon detector. The 11 channel preamplifier is coupled directly to the anode pads. Due to this arrangement, an important increase of the signal noise ratio was obtained. The preamplifier scheme is given also. The integrated circuit of the type AMP-3 has a special construction of hybrid type. The circuitry layout is also presented. (authors)

  2. Gas chambers for identification of charged particles in 4π systems

    International Nuclear Information System (INIS)

    Barczyk, T.; Brzychczyk, J.; Burzynski, P.

    1995-01-01

    Gas ionization chambers of a special shape adapted for 4π detector systems are presented. Different anode wire configurations are discussed for three working gases: Ar + methane(10%), isobutane, and tetrafluoromethane. (orig.)

  3. An uncommon variant of double-chambered right ventricle masquerading as double-chambered left ventricle.

    Science.gov (United States)

    Baritakis, Nikolaos; Grapsas, Nikolaos; Kotsalos, Andreas; Davlouros, Periklis

    2018-02-01

    We present a rare case of a double-chambered right ventricle masquerading as a double-chambered left ventricle, which was found incidentally on cardiac imaging in an adult female patient with atypical chest pain. The most common form of double-chambered right ventricle is characterized by compartmentalization of the right ventricle by muscular bands into 2 distinct chambers. The main features of this malformation are a pressure gradient between the 2 compartments, and the frequent (up to 90%) association with a membranous ventricular septal defect. In our case, the muscular band dividing the right ventricle was located in the inferoseptal part of the latter, creating a diminutive cavity that had no communication with the main right ventricle but communicated with the left ventricle creating the false impression of a double-chambered left ventricle. This constitutes a rare variant of double-chambered right ventricle with unknown clinical implications. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Device for detecting ionizing radiation

    International Nuclear Information System (INIS)

    Anatychuk, L.I.; Kharitonov, J.P.; Kusniruk, V.F.; Meir, V.A.; Melnik, A.P.; Ponomarev, V.S.; Skakodub, V.A.; Sokolov, A.D.; Subbotin, V.G.; Zhukovsky, A.N.

    1980-01-01

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon

  5. Ionizing radiations

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled some fundamental notions and measurement units related to ionizing radiations, this document describes various aspects of natural and occupational exposures: exposure modes and sources, exposure levels, biological effects, health impacts. Then, it presents prevention principles aimed at, in an occupational context of use of radiation sources (nuclear industry excluded), reducing and managing these exposures: risk assessment, implementation of safety from the front end. Some practical cases illustrate the radiation protection approach. The legal and regulatory framework is presented: general notions, worker exposure, measures specific to some worker categories (pregnant and breast feeding women, young workers, temporary workers). A last part describes what is to be done in case of incident or accident (dissemination of radioactive substances from unsealed sources, anomaly occurring when using a generator or a sealed source, post-accident situation)

  6. Advanced Thin Ionization Calorimeter (ATIC)

    Science.gov (United States)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  7. Suppressing drift chamber diffusion without magnetic field

    International Nuclear Information System (INIS)

    Martoff, C.J.; Snowden-Ifft, D.P.; Ohnuki, T.; Spooner, N.; Lehner, M.

    2000-01-01

    The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 μm has been achieved over a 15 cm drift path at 40 torr with zero magnetic field. The method can provide high spatial resolution in detectors with long drift distances and zero magnetic field. Negative ion drift chambers would be particularly useful at low pressures and in situations such as space-based or underground experiments where detector size scaleability is important and cost, space, or power constraints preclude the use of a magnetic field

  8. PS wire chamber

    CERN Document Server

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  10. Fast sampling calorimetry with solid argon ionization chambers

    International Nuclear Information System (INIS)

    Clark, E.; Linn, S.; Piekarz, H.; Wahl, H.; Womersley, J.; Hansen, S.; Hurh, P.; Rivetta, C.; Sanders, R.; Schmitt, R.; Stanek, R.; Stefanik, A.

    1992-01-01

    A proposal for the fast sampling calorimetry with solid argon as active medium and the preliminary results from the solid argon test cell are presented. The proposed test calorimeter module structure, the signal routing and the mechanical and cryogenic arrangements are also discussed

  11. Comparison between thermoluminiscence dosimetry and transmission ionization chamber measurements

    International Nuclear Information System (INIS)

    Hernando, I.; Torres, R.

    2001-01-01

    Radiofrequency catheter ablation is an effective option to treat life-threatening arrhythmias. Among the risks of this type of procedure are the high radiation doses to patients. The major concern for monitoring of doses has been related to skin damage. Skin dose can be measured directly with thermoluminescence dosimeters (TLDs) or can be determined from the dose-area product (DAP). In this work these two different methods are discussed. The radiation doses have been estimated in more than 20 patients with the two types of monitoring. In order to find the location of the maximum dose from the procedure with TLDs, dosimeter arrays can be placed on the patient. Unfortunately TLDs do not allow immediate feedback to the fluoroscopist. They require a fair amount of handling, calibrating, processing and annealing. On the other hand, the DAP provides immediate feedback of the cumulative dose. To obtain the skin dose from DAP the area of the radiation field on the skin must be determined, and it is necessary to correct the result by a factor that includes the variation of geometry during the procedure. Nevertheless, these and other factors can lead to significant errors in dose estimation. (author)

  12. Effectiveness in detecting fission fragments with ionization chambers

    International Nuclear Information System (INIS)

    Manrique Garcia, J.; Monne, G.

    1991-01-01

    Detection of fission fragments is important in nuclear measurements. When a high detection accuracy is required it is necessary to take in account the detection losses due to the absorption of fragments in the fissionable material. The losses corrections might change the final results in 2-3%. The traditional expression used in the calculation of the detection efficiency does not consider neither the density variation of the fissionable substance with its width, because it depends on the target material. That's why actually in many labs it is being searched new methods that allow to find the efficiency for each target. In this work a new method for determination of absorption efficiency is presented. The obtained results are analyzed

  13. The uncertainty associated to the position of the ionization chamber

    International Nuclear Information System (INIS)

    Lopez, F.; Cabral, T.S.; Peixoto, J.G.

    2013-01-01

    This work is about the determination of the components of uncertainties originated for the positioning of 600cm 3 camera in a field of radiation for a 137 Cs source for a Dosimetry Laboratories. The basic idea is the inverse square of the distance law and its influence on the kerma in air. It was demonstrated that the effect over the uncertainty is negligible, for a 30 cm 3 camera the result will be different. (author)

  14. Optical spark chamber

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    An optical spark chamber developed for use in the Omega spectrometer. On the left the supporting frame is exceptionally thin to allow low momentum particles to escape and be detected outside the magnetic field.

  15. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  16. Vacuum chamber 'bicone'

    CERN Multimedia

    1977-01-01

    This chamber is now in the National Museum of History and Technology, Smithsonian Institution, Washington, DC, USA, where it was exposed in an exhibit on the History of High Energy Accelerators (1977).

  17. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  18. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  19. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  20. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  1. Performance of an extrapolation chamber in computed tomography standard beams

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E., E-mail: mcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  2. Conditioning of vacuum chamber by RF plasma

    International Nuclear Information System (INIS)

    Elizondo, J.I.; Nascimento, I.C. do

    1985-01-01

    A new conditioning vaccum chamber system is presented. It consists in hydrogen plasm generation by microwaves with low electronic temperature (Te approx. 5eV) and low ionization degree. The ions and neutral atoms generated in the reaction: e + H 2 -> H+ H+ e, bomb the chamber walls combinig themselves to impurities of surface and generating several compounds: H 2 O, CO, CH 4 , CO 2 etc. The vacuum system operates continuosly and remove these compounds. A microwave system using magnetron valve (f=2,45 GHz, P=800W) was constructed for TBR (Brazilian tokamak). The gas partial pressures were monitored before, during and after conditioning showing the efficiency of the process. (M.C.K.) [pt

  3. Resonance ionization in a gas cell: a feasibility study for a laser ion source

    International Nuclear Information System (INIS)

    Qamhieh, Z.N.; Vandeweert, E.; Silverans, R.E.; Duppen, P. van; Huyse, M.; Vermeeren, L.

    1992-01-01

    A laser ion source based on resonance photo-ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light. The extraction of the ions from the ionization chamber through the exit hole-skimmer setup is similar to the ion-guide system. The conditions to obtain an optimal system are given. The results of a two-step one-laser resonance photo-ionization of nickel and the first results of laser ionization in a helium buffer gas cell are presented. (orig.)

  4. Characterization and application of two extrapolation chambers in standard X radiation beams

    International Nuclear Information System (INIS)

    Silva, Eric Alexandre Brito da

    2011-01-01

    The extrapolation chambers are ionization chambers with variable volume, and they are mainly utilized as beta radiation detectors. In this work two extrapolation chambers were characterized, a commercial PTW extrapolation chamber and another extrapolation chamber developed at the Calibration Laboratory of IPEN, for application as reference systems in mammography, conventional diagnostic radiology and radiotherapy beams. The results obtained from the characterization tests of the chamber response: leakage current, short- and medium terms stability, determination of the saturation currents and the ion collection efficiencies, angular and energy dependence, show that these extrapolation chambers may be utilized for low-energy X radiation beam dosimetry. The transmission factors in tissue and the calibration factors were also determined for all cited radiation qualities. Finally, a procedure was established for calibration of radiation detectors in standard X radiation beams, using the extrapolation chambers. (author)

  5. Search for the best timing strategy in high-precision drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    1983-06-01

    Computer simulated drift chamber pulses are used to investigate various possible timing strategies in the drift chambers. In particular, the leading edge, the multiple threshold and the flash ADC timing methods are compared. Although the presented method is general for any drift geometry, we concentrate our discussion on the jet chambers where the drift velocity is about 3 to 5 cm/..mu..sec and the individual ionization clusters are not resolved due to a finite speed of our electronics.

  6. Search for the best timing strategy in high-precision drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1983-06-01

    Computer simulated drift chamber pulses are used to investigate various possible timing strategies in the drift chambers. In particular, the leading edge, the multiple threshold and the flash ADC timing methods are compared. Although the presented method is general for any drift geometry, we concentrate our discussion on the jet chambers where the drift velocity is about 3 to 5 cm/μsec and the individual ionization clusters are not resolved due to a finite speed of our electronics

  7. Ionization smoke detector and alarm system

    International Nuclear Information System (INIS)

    1974-01-01

    An ionization smoke detector particularly suited to residential use is disclosed. The detector is battery-operated and is connected with a non-latching, pulsating alarm circuit. The detector has a sensing chamber formed by a perforated metallic shell and an electrode within which an insulated radiation source is centrally positioned to generate an ionization current for detecting smoke or other similar aerosols. The alarm circuit provides a pulsating alarm signal when smoke levels above a pre-determined value are sensed. The alarm circuit also includes a low voltage detection circuit for sounding the alarm when the end of useful battery life is approaching. (Auth.)

  8. A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sands, M; Rees, J.; /SLAC

    2016-12-19

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch to an rf cavity or other vacuum-chamber structure--the so-called "cavity radiation". The proposed method is analyzed in some detail.

  9. Study of energy dependence of a extrapolation chamber in low energy X-rays beams

    International Nuclear Information System (INIS)

    Bastos, Fernanda M.; Silva, Teogenes A. da

    2014-01-01

    This work was with the main objective to study the energy dependence of extrapolation chamber in low energy X-rays to determine the value of the uncertainty associated with the variation of the incident radiation energy in the measures in which it is used. For studying the dependence of energy, were conducted comparative ionization current measurements between the extrapolation chamber and two ionization chambers: a chamber mammography, RC6M model, Radcal with energy dependence less than 5% and a 2575 model radioprotection chamber NE Technology; both chambers have very thin windows, allowing its application in low power beams. Measurements were made at four different depths of 1.0 to 4.0 mm extrapolation chamber, 1.0 mm interval, for each reference radiation. The study showed that there is a variable energy dependence on the volume of the extrapolation chamber. In other analysis, it is concluded that the energy dependence of extrapolation chamber becomes smaller when using the slope of the ionization current versus depth for the different radiation reference; this shows that the extrapolation technique, used for the absorbed dose calculation, reduces the uncertainty associated with the influence of the response variation with energy radiation

  10. Target Chamber Manipulator

    Science.gov (United States)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  11. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  12. The variation in dose at the interface due to the location of a small air cavity for low and medium energy X-rays

    International Nuclear Information System (INIS)

    Doppke, Karen P.; Wang, C.C.

    1997-01-01

    PURPOSE This study was initiated to determine if the location of a small air cavity would modify the underdosing that occurs at the air tissue interface. Several authors have measured the lack of electronic equilibrium for most megavoltage X-ray beams including Co-60. In the treatment of cancer of the larynx and paranasal sinuses with 4 and 6 MV x-rays. Often the cavity depth can be less than one centimeter. The cavity effect may influence the local control of these tumors. METHODS To evaluate this effect a cavity 2.5 cm in width, 3 cm in depth and 15 cm long was located at depths of 0.5, 1.0, 1.5 and 2.5 cm in a polystyrene phantom and irradiated. The re-build-up of the dose at the interface was determined for Co-60, 4, 6 and 10 MV x-rays using a parallel plate ionization chamber, the field sizes evaluated were 10x10, 10x5 and 5x5 cm at the interface. In addition a polystyrene phantom was designed to simulate the neck at the level of the vocal cord including a small air cavity. This phantom was irradiated with conventional right and left lateral wedged fields using radiochromic film to evaluate the dose under treatment conditions. RESULTS The results indicate that for Co-60 irradiation the depth of the cavity did not modify the re-build up of dose beyond the air cavity and that the relative dose at the surface for the same field size remained the same. The dose increased with cavity depth for the smallest field by 6% for 4 MV x-rays. The increase in dose for the 5 x 5 cm field at the interface for 6 MV and 10 MV x-rays was 10% and 25% respectively. The modification in dose at the interface due to the size of the radiation field increased as the field size increased and the length of the side walls irradiated. The comparison of the dose profiles from the opposed lateral fields across the small air cavity in the neck phantom for 6 MV x-rays and Co-60 treatment indicated a superficial dose of 54% and 66% respectively at the interface of the cavity but increasing

  13. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  14. The KLOE drift chamber

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; Lucia, E D; Robertis, G D; Sangro, R D; Simone, P D; Zorzi, G D; Dell'Agnello, S; Denig, A; Domenico, A D; Donato, C D; Falco, S D; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Von Hagel, U; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nedosekin, A; Panareo, M; Pacciani, L; Pagès, P; Palutan, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K sub L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm sup 2 in size in the 12 innermost layers and 3x3 cm sup 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  15. The KLOE drift chamber

    International Nuclear Information System (INIS)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; Lucia, E. De; Robertis, G. De; Sangro, R. De; Simone, P. De; Zorzi, G. De; Dell'Agnello, S.; Denig, A.; Domenico, A. Di; Donato, C. Di; Falco, S. Di; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U.V.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y.

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm 2 in size in the 12 innermost layers and 3x3 cm 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented

  16. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  17. Charpak hemispherical wire chamber

    CERN Document Server

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  19. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  20. Suppressing drift chamber diffusion without magnetic field

    CERN Document Server

    Martoff, C J; Ohnuki, T; Spooner, N J C; Lehner, M

    2000-01-01

    The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 mu m has been achieved over a 15 cm drift path at 40 torr with ze...

  1. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  2. The Design of the Orthogonal Box Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Alfred; /Fermilab

    2010-09-15

    The muon collider and/or the neutrino factory require large accelerating electric field gradients immersed in large (3 to 6 T) solenoidal magnetic fields for ionization cooling of muon beams. Our original vacuum breakdown study demonstrated a loss of achievable peak accelerating gradient in solenoidal magnetic fields by a factor 2 or greater. The Muon Collaboration has developed a theory of a method to suppress high electric field breakdown in vacuum cavities needed for a Muon collider or neutrino factory. It has been shown in our studies and by others that high gradient electric field emitted electrons (dark current) are the primary cause of breakdown. A DC magnetic field orthogonal to the RF electric accelerating field prevents dark current high field emitted electrons from traveling across the accelerating gap and then will prevent breakdown. We have decided to test this theory by building a special cavity in the shape of vacuum box. Figure 1 is a simplified view of the cavity design. The design is based on an 805 MHz WR975 waveguide cavity resonating in the TE{sub 101} mode. For the TE{sub 101} mode the resonant frequency f{sub 0} is given by the relationship f{sub 0} = c[(I/a){sup 2} + (m/b){sup 2} + (n/d){sup 2}]{sup 0.5}/2 where a and d are the lengths of the base sides and b is the height of the box in MKS units and c is the velocity of light.

  3. Resonant laser ionization of radioactive atoms

    CERN Document Server

    Köster, U; Mishin, V I

    2003-01-01

    Intense radioactive ion beams are produced by the isotope separation on-line method. The resonance ionization laser ion source (RILIS) can provide the chemical selectivity to separate beams with reduced isobaric contamination. The hot cavity RILIS at ISOLDE (CERN) uses copper vapor laser pumped dye lasers for the resonant transitions. Up to now 22 elements have been ionized with efficiencies of the order of 10%. Additional elements have been ionized with similar RILIS set- ups at the Institute of Spectroscopy (Troitsk), IRIS (Gatchina), Mainz University and TIARA (Takasaki). Ideas are discussed for future developments of this type of RILIS, which could further improve the efficiency, selectivity, rapidity of release and stability of the operation. The RILIS can also be applied for atomic spectroscopy studies of exotic radioactive isotopes, which are produced at rates of few atoms per second only. An interesting parallel is shown to the atomic vapor laser isotope separation (AVLIS), a large-scale application o...

  4. Large planar drift chambers

    CERN Document Server

    Marel, Gérard; Bréhin, S; Devaux, B; Diamant-Berger, Alain M; Leschevin, C; Maillard, J; Malbequi, Y; Martin, H; Patoux, A; Pelle, J; Plancoulaine, J; Tarte, Gérard; Turlay, René

    1977-01-01

    The authors describe 14 m/sup 2/ hexagonal planar drift chambers designed for the neutrino experiment of the CERN-Dortmund-Heidelberg- Saclay Collaboration. Details on mechanical construction, electronic read-out, results on efficiency and accuracy are presented. (6 refs).

  5. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  6. Review of straw chambers

    International Nuclear Information System (INIS)

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e + e - experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed

  7. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  8. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  9. MISSING: BUBBLE CHAMBER LENS

    CERN Multimedia

    2001-01-01

    Would the person who borrowed the large bubble chamber lens from the Microcosm workshops on the ISR please return it. This is a much used piece from our object archives. If anybody has any information about the whereabouts of this object, please contact Emma.Sanders@cern.ch Thank you

  10. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  11. Chamber Profile Measurement System.

    Science.gov (United States)

    1980-10-01

    travel with the proper electronics. Other features of tihe gage assembly are: 1. Micrometer controlled down chamber positioning of the master template to...pressure sensitive "stiff stick" for infinitely varying the rate of travel from zero to maximum. A manual vernier control is incorporated to permit fine

  12. The KLOE drift chamber

    International Nuclear Information System (INIS)

    Ferrari, A.

    2002-01-01

    The design and construction of the large drift chamber of the KLOE experiment is presented. The track reconstruction is described, together with the calibration method and the monitoring systems. The stability of operation and the performance are studied with samples of e + e - , K S K L and K + K - events

  13. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  14. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  15. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  16. Multicolor cavity soliton.

    Science.gov (United States)

    Luo, Rui; Liang, Hanxiao; Lin, Qiang

    2016-07-25

    We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.

  17. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  18. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  19. Proofs of acceptance of ionization cameras for use in radiotherapy

    International Nuclear Information System (INIS)

    Davila, Hernan Olaya; Flores, Guillermo

    2013-01-01

    Shows the main technical tests released in the Secondary Standard Dosimetry Laboratory (SSDL) of one cylindrical ionization chamber and another plane parallel ionization chamber similar to used in radiotherapy services in Colombia to the radiation dose control that is delivered to the patient to the cancer treatment. The previous test of one calibration see in this work are: correction for recombination losses, polarity dependence, stabilization time, total dose dependence, atmospheric communication, stability check, leakage current and physical integrity. Calculates the acceptability values in the SSDL to be account as reference for the dosimetry systems that are carry in calibration process. (author)

  20. Free-air ionization intensity in the lower atmosphere due to cosmic-ray

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Katsurayama, Kousuke

    1979-01-01

    Being able to be determined by subtracting the gamma-ray ionization intensity from that obtained with ionization chamber, cosmic-ray ionization intensity in free air was estimated by using with 15l air-filled ionization chamber and 3''diameter spherical NaI(Tl) scintillation spectrometer. Optimum applied voltage to 15l air-filled ionization chamber was determined in accordance with Scott and Greening's formula to obtain the ionization intensity caused by gamma-rays and cosmic-rays. Pulse-height distribution of cosmic-rays created in 3''diameter spherical NaI(Tl) scintillation spectrometer was investigated for the precise determination of gamma-ray ionization intensity. Field measurements were carried out by using with these two instruments at about 1.5 meter above the ground in the several locations around Research Reactor Institute of Kyoto University. Cosmic-ray ionization intensity in free air was estimated from the results obtained with air-filled ionization chamber and was 3.33 +- 0.15 μR/hr equivalent in natural environment near Research Reactor Institute of Kyoto University. (author)