WorldWideScience

Sample records for cavity formation solute

  1. Fluid Density and Impact Cavity Formation

    Directory of Open Access Journals (Sweden)

    Ga-Chun Lin

    2018-01-01

    Full Text Available Characteristics of the impact cavity formed when a steel ball is dropped into aqueous solutions of densities ranging from 0.98 g·cm-3 to 1.63 g·cm-3 were investigated. A high-speed camera was used to record the formation and collapse of the cavity. The results showed cavity diameter, volume, and pinch-off time are independent of fluid density, on average. There was an unexplained reduction in cavity formation for densities of 1.34 g·cm-3 and 1.45 g·cm-3.

  2. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  3. A geosynthetic reinforcement solution to prevent the formation of localized sinkholes

    Energy Technology Data Exchange (ETDEWEB)

    Villard, P.; Gourc, J. P.; Giraud, H. [Universite Joseph Fourier, LIRIGM, Grenoble (France)

    2000-10-01

    A research program to guard against the risk of accidents linked to the presence of small diameter cavities under both road and railway lines is described. The program involves study of the complex behaviour of the overlying fill in the event of sinkhole formation, given that the deformation of the geosynthetic membrane results from the progressive loading of the overlying soil layer and not from the collapse of the underlying soil. Full-scale tests were carried out on reinforced, instrumented road and railway structures subjected to localized collapse. Experimental work was accompanied by a numerical study of the mechanics involved in sinkhole formation. Experimental results were analyzed and compared with the results of the three-dimensional finite element modeling. Similarity of the results suggests that formation of a stable arch for two metre cavities and an unstable arch for four metre cavities, filled with 1.5 m thick fill consisting of large grain size granular material, is satisfactory for small diameter cavities at moderate depths. However, this solution is not suitable for large large diameter cavities at moderate depths. 18 refs., 22 figs.

  4. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  5. Main features of nucleation in model solutions of oral cavity

    Science.gov (United States)

    Golovanova, O. A.; Chikanova, E. S.; Punin, Yu. O.

    2015-05-01

    The regularities of nucleation in model solutions of oral cavity have been investigated, and the induction order and constants have been determined for two systems: saliva and dental plaque fluid (DPF). It is shown that an increase in the initial supersaturation leads to a transition from the heterogeneous nucleation of crystallites to a homogeneous one. Some additives are found to enhance nucleation: HCO{3/-} > C6H12O6 > F-, while others hinder this process: protein (casein) > Mg2+. It is established that crystallization in DPF occurs more rapidly and the DPF composition is favorable for the growth of small (52.6-26.1 μm) crystallites. On the contrary, the conditions implemented in the model saliva solution facilitate the formation of larger (198.4-41.8 μm) crystals.

  6. Experimental observations of effects of inert gas on cavity formation during irradiation

    International Nuclear Information System (INIS)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present

  7. Experimental observations of effects of inert gas on cavity formation during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present.

  8. Solute-solvent cavity and bridge functions. I. Varying size of the solute

    International Nuclear Information System (INIS)

    Vyalov, I.; Chuev, G.; Georgi, N.

    2014-01-01

    In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersen theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function

  9. Analytical solutions in the two-cavity coupling problem

    International Nuclear Information System (INIS)

    Ayzatsky, N.I.

    2000-01-01

    Analytical solutions of precise equations that describe the rf-coupling of two cavities through a co-axial cylindrical hole are given for various limited cases.For their derivation we have used the method of solution of an infinite set of linear algebraic equations,based on its transformation into dual integral equations

  10. Water entry without surface seal: Extended cavity formation

    KAUST Repository

    Mansoor, Mohammad M.

    2014-03-01

    We report results from an experimental study of cavity formation during the impact of superhydrophobic spheres onto water. Using a simple splash-guard mechanism, we block the spray emerging during initial contact from closing thus eliminating the phenomenon known as \\'surface seal\\', which typically occurs at Froude numbers Fr= V0 2/(gR0) = O(100). As such, we are able to observe the evolution of a smooth cavity in a more extended parameter space than has been achieved in previous studies. Furthermore, by systematically varying the tank size and sphere diameter, we examine the influence of increasing wall effects on these guarded impact cavities and note the formation of surface undulations with wavelength λ =O(10)cm and acoustic waves λa=O(D0) along the cavity interface, which produce multiple pinch-off points. Acoustic waves are initiated by pressure perturbations, which themselves are generated by the primary cavity pinch-off. Using high-speed particle image velocimetry (PIV) techniques we study the bulk fluid flow for the most constrained geometry and show the larger undulations ( λ =O (10cm)) have a fixed nature with respect to the lab frame. We show that previously deduced scalings for the normalized (primary) pinch-off location (ratio of pinch-off depth to sphere depth at pinch-off time), Hp/H = 1/2, and pinch-off time, τ α (R0/g) 1/2, do not hold for these extended cavities in the presence of strong wall effects (sphere-to-tank diameter ratio), ε = D 0/Dtank 1/16. Instead, we find multiple distinct regimes for values of Hp/H as the observed undulations are induced above the first pinch-off point as the impact speed increases. We also report observations of \\'kinked\\' pinch-off points and the suppression of downward facing jets in the presence of wall effects. Surprisingly, upward facing jets emanating from first cavity pinch-off points evolve into a \\'flat\\' structure at high impact speeds, both in the presence and absence of wall effects.

  11. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  12. Study on the spectrum of photonic crystal cavity and its application in measuring the concentration of NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Wuxi Institute of Commerce, Wuxi (China). School of Electromechanical Technology; Xie, Xun; Hao, Jiong-Ju; Yang, Hong-Wei [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Yang, Ze-Kun [Lanzhou Univ. (China). School of Information Science and Engineering; Xu, Zhi-Gang [Nanjing Agricultural Univ., Nanjing (China). College of Agriculture

    2017-07-01

    In this article, we propose an approach to measure solution concentrations by using photonic crystal cavities. Based on the experimental data, the refractive index of a NaCl solution is proportional to the concentration. Filling the proposed photonic crystal cavity with a NaCl solution, we calculate the spectral transmission using the transfer matrix method. We found that the cavity transmittance was proportional to the refractive index of the NaCl solution, and thus we obtained a linear relationship between cavity transmittance and the concentration of the NaCl solution. The formula was found by fitting the simulation results with experimental data. Such a formula can be applied to the measurement of an unknown concentration of NaCl solution utilizing a photonic crystal cavity.

  13. Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction

    International Nuclear Information System (INIS)

    Horiuchi, Hiromi; Iwami, Noriya; Tachibana, Fumi; Ohtaki, Akashi; Iizuka, Ryo; Zako, Tamotsu; Oda, Masaru; Yohda, Masafumi; Tani, Toshiro

    2007-01-01

    Feasibilities to stabilize CdSe/ZnS/trioctylphosphineoxide (TOPO) nanocrystals (quantum dots, QDs) in aqueous solutions with prefoldin macromolecules in their bioactive states are reported. Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. As a protein folding intermediate is captured within its central cavity, so CdSe/ZnS/TOPO QDs would also be included within this cavity. It is also found the QDs can be much more dispersed in aqueous solutions and suspended for certain period of time by adding trace amount of t-butanol in the buffer prior to the mixing of the QDs mother solution. While biochemical procedures are evaluated with ordinary fluorescence measurements, possible complex formations are also evaluated with TIRFM single-molecule detection techniques

  14. Structural analysis of salt cavities formed by solution mining: I. Method of analysis and preliminary results for spherical cavities

    International Nuclear Information System (INIS)

    Fossum, A.F.

    1976-01-01

    The primary objective of this effort is an analysis of the structural stability of cavities formed by solution mining in salt domes. In particular, the effects of depth (i.e. initial state of in situ stress), shape, volume (i.e. physical dimensions of the cavity), and sequence of salt excavation/fluid evacuation on the timewise structural stability of a cavity are of interest. It is anticipated that an assessment can be made of the interrelation between depth, cavern size, and cavern shape or of the practical limits therewith. In general, the cavity shape is assumed to be axisymmetric and the salt is assumed to exhibit nonlinear creep behavior. The primary emphasis is placed on the methodology of the finite element analysis, and the results of preliminary calculations for a spherically shaped cavity. It is common practice for engineers to apply elasticity theory to the behavior of rock in order to obtain near field stresses and displacements around an underground excavation in an effort to assess structural stability. Rock masses, particularly at depth, may be subjected to a rather complex state of initial stress, and may be nonhomogeneous and anisotropic. If one also includes complex geometrical excavation shape, the use of analytical techniques as an analysis tool is practically impossible. Thus, it is almost a necessity that approximate solution techniques be employed. In this regard, the finite element method is ideal as it can handle complex geometries and nonlinear material behavior with relative ease. An unusual feature of the present study is the incorporation into the finite element code of a procedure for handling the gradual creation or excavation of an underground cavity. During the excavation sequence, the salt is permitted to exhibit nonlinear stress-strain-time dependence. The bulk of this report will be devoted to a description of the analysis procedures, together with a preliminary calculation for a spherically shaped cavity

  15. On the Construction and Properties of Weak Solutions Describing Dynamic Cavitation

    KAUST Repository

    Miroshnikov, Alexey

    2014-08-21

    We consider the problem of dynamic cavity formation in isotropic compressible nonlinear elastic media. For the equations of radial elasticity we construct self-similar weak solutions that describe a cavity emanating from a state of uniform deformation. For dimensions d=2,3 we show that cavity formation is necessarily associated with a unique precursor shock. We also study the bifurcation diagram and do a detailed analysis of the singular asymptotics associated to cavity initiation as a function of the cavity speed of the self-similar profiles. We show that for stress free cavities the critical stretching associated with dynamically cavitating solutions coincides with the critical stretching in the bifurcation diagram of equilibrium elasticity. Our analysis treats both stress-free cavities and cavities with contents.

  16. Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing

    Science.gov (United States)

    Gilgannon, James; Fusseis, Florian; Menegon, Luca; Regenauer-Lieb, Klaus; Buckman, Jim

    2017-12-01

    Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener-Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener-Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.

  17. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  18. An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer

    Science.gov (United States)

    Gautam, Sashank; Lang, Amy; Wilroy, Jacob

    2016-11-01

    Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.

  19. The Formation and Maintenance of the Dominant Southern Polar Crown Cavity of Cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Karna, N.; Pesnell, W. D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Zhang, J. [George Mason University, Fairfax, VA (United States)

    2017-02-01

    In this article, we report a study of the longest-lived polar crown cavity of Solar Cycle 24, using an observation from 2013, and propose a physical mechanism to explain its sustained existence. We used high temporal and spatial resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic Magnetic Imager (HMI) instruments on board the Solar Dynamics Observatory ( SDO ) to explore the structure and evolution of the cavity. Although it existed for more than a year, we examined the circumpolar cavity in great detail from 2013 March 21 to 2013 October 31. Our study reinforces the existing theory of formation of polar crown filaments that involves two basic processes to form any polar crown cavity as well as the long-lived cavity that we studied here. First, the underlying polarity inversion line (PIL) of the circumpolar cavity is formed between (1) the trailing part of dozens of decayed active regions distributed in different longitudes and (2) the unipolar magnetic field in the polar coronal hole. Second, the long life of the cavity is sustained by the continuing flux cancellation along the PIL. The flux is persistently transported toward the polar region through surface meridional flow and diffusion. The continuing flux cancellation leads to the shrinking of the polar coronal hole.

  20. Numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities

    International Nuclear Information System (INIS)

    Milioli, F.E.

    1985-01-01

    In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author) [pt

  1. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  2. Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons

    International Nuclear Information System (INIS)

    Sanchis-Gual, Nicolas; Font, José A; Carlos Degollado, Juan; Herdeiro, Carlos; Radu, Eugen

    2017-01-01

    Recent numerical relativity simulations within the Einstein–Maxwell–(charged-)Klein–Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner–Nordström black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these unstable solitons leads, again, to the formation of a hairy BH. In some other cases, unstable solitons evolve into a (bald) Reissner–Nordström BH. These results establish that the system admits two distinct channels to form hairy BHs at the threshold of superradiance: growing hair from an unstable (bald) BH, or growing a horizon from an unstable (horizonless) soliton. Some parallelism with the case of asymptotically flat boson stars and Kerr BHs with scalar hair is drawn. (paper)

  3. Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons

    Science.gov (United States)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Font, José A.; Herdeiro, Carlos; Radu, Eugen

    2017-08-01

    Recent numerical relativity simulations within the Einstein-Maxwell-(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordström black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these unstable solitons leads, again, to the formation of a hairy BH. In some other cases, unstable solitons evolve into a (bald) Reissner-Nordström BH. These results establish that the system admits two distinct channels to form hairy BHs at the threshold of superradiance: growing hair from an unstable (bald) BH, or growing a horizon from an unstable (horizonless) soliton. Some parallelism with the case of asymptotically flat boson stars and Kerr BHs with scalar hair is drawn.

  4. Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations

    Energy Technology Data Exchange (ETDEWEB)

    Yarlong Wang [Petro-Geotech Inc., Calgary, AB (Canada); Papamichos, Euripides [IKU Petroleum Research, Trondheim (Norway)

    1999-07-01

    The coupled heat-fluid-stress problem of circular wellbore or spherical cavity subjected to a constant temperature change and a constant fluid flow rate is considered. Transient analytical solutions for temperature, pore pressure and stress are developed by coupling conductive heat transfer with Darcy fluid flow in a poroelastic medium. They are applicable to lower permeability porous media suitable for liquid-waste disposal and also simulating reservoir for enhanced oil recovery, where conduction dominates the heat transfer process. A full range of solutions is presented showing separately the effects of temperature and fluid flow on pore pressure and stress development. It is shown that injection of warm fluid can be used to restrict fracture development around wellbores and cavities and generally to optimise a fluid injection operation. Both the limitations of the solutions and the convective flow effect are addressed. (Author)

  5. Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum

    International Nuclear Information System (INIS)

    Gisler, G.

    1989-01-01

    Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock

  6. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  7. Bilayer formation in thin films of a binary solution

    International Nuclear Information System (INIS)

    Govor, L.V.; Reiter, G.; Bauer, G.H.; Parisi, J.

    2006-01-01

    We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation

  8. Bilayer formation in thin films of a binary solution

    Energy Technology Data Exchange (ETDEWEB)

    Govor, L.V. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)]. E-mail: leonid.govor@uni-oldenburg.de; Reiter, G. [Institut de Chimie des Surfaces et Interfaces, CNRS-UHA, F-8057 Mulhouse cedex (France); Bauer, G.H. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany); Parisi, J. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)

    2006-04-24

    We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation.

  9. Kinetic characteristics of crystallization from model solutions of the oral cavity

    Science.gov (United States)

    Golovanova, O. A.; Chikanova, E. S.

    2015-11-01

    The kinetic regularities of crystallization from model solutions of the oral cavity are investigated and the growth order and constants are determined for two systems: saliva and dental plaque fluid (DPF). It is found that the stage in which the number of particles increases occurs in the range of mixed kinetics and their growth occurs in the diffusion range. The enhancing effect of additives HCO- 3 > C6H12O6 > F- and the retarding effect of Mg2+ are demonstrated. The HCO- 3 and Mg2+ additives, taken in high concentrations, affect the corresponding rate constants. It is revealed the crystallization in DPF is favorable for the growth of small crystallites, while the model solution of saliva is, vice versa, favorable for the growth of larger crystals.

  10. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  11. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Ford, Denise C; Cooley, Lance D; Seidman, David N

    2013-01-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium–hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. (paper)

  12. FEA stress analysis considering cavity formation of metallic fuel pin under transient state

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun-Woo; Oh, Young-Ryun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of)

    2016-05-15

    The aim of this research is to study the stress state of the fuel and the cladding under transient state using the commercial finite element analysis software, ABAQUS v6.13. It is checked out that the gap distance between the fuel and the cladding is a major factor determining FCMI stress. In this regard, initial boundary condition of the fuel pin such as the initial gap distance should be set carefully when the stress analysis of the fuel pin under transient state is conducted. In case of simulating cavity formation, it is confirmed that the new cavity simulation model that elements in cavity region lose their stiffness is valid. There is a great deal of research into SFR, which is one of GEN IV reactors. When it comes to the accidents of SFR, there are two cases of accident process. One of them is In-pin process that molten fuel is discharged into upper plenum. The other is Ex-pin process that the molten fuel is discharged into coolant because of breakage of cladding.

  13. Binding of copper and nickel to cavities in silicon formed by helium ion implantation

    International Nuclear Information System (INIS)

    Myers, S.M.; Follstaedt, D.M.; Bishop, D.M.

    1993-01-01

    Cavities formed in Si by He ion implantation and annealing are shown to be strong traps for Cu and Ni impurities. Experiments utilizing ion-beam analysis and transmission electron microscopy indicate that Cu is trapped at the internal surfaces of cavities up to ∼1 monolayer coverage with a binding energy of 2.2±0.2 eV relative to solution. This is greater than the heat of solution from the precipitated Cu 3 Si phase, determined to be 1.7 eV in agreement with earlier work. Copper at cavity-wall sites is reversibly replaced by H during heating in H 2 gas, indicating the relative stability of the two surface terminations. Initial results for Ni impurities indicate that trapping at cavities is again energetically preferred to silicide formation. The saturation coverage of Ni on the internal surfaces, however, is an order of magnitude smaller for Ni than Cu, consistent with published studies of external-surface adsorption. These results suggest that cavity trapping may getter metallic impurities in Si more effectively than methods based on silicide precipitation

  14. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  15. Miniinvasive paracentetic drain surgical interventions under ultrasonic control concerning liquid formations of abdominal cavity

    Directory of Open Access Journals (Sweden)

    G.I. Ohrimenko

    2013-08-01

    Full Text Available Entry. Presently miniinvasive surgical interventions under ultrasonic control became the method of choice in treatment of quite a number of abdominal and retroperitoneal organs diseases, and their complications. These operations have a row of advantages, as compared to open and laparoscopic ones: comparative simplicity, insignificant infecting of abdominal region, least of intra- and postoperative complications. Actuality of problem is conditioned by that indications to the use of paracentetic drain surgical interventions, most optimal methods of preoperative diagnostic, features of postoperative treatment of patients remain not enough studied. Research aim. To study the results of diagnostics and treatment of patients with liquid formations of abdominal cavity that were exposed to miniinvasive surgical interventions under ultrasonic control and, on the basis of it, to work out an optimal curative diagnostic algorithm. Materials and research methods. The results of treatment of 25 patients with liquid formations of abdominal cavity are analyzed. They were submitted to miniinvasive paracentetic drain surgical interventions under ultrasonic control. The pseudocysts of pancreas were in 16 patients, abscesses of abdominal cavity – in 2 patients. Research results. Intraoperative complications were not marked. Postoperative complications were observed in 5 patients. Among them there were inadequate drainage of all cavities of multicamerate abscess of the liver in 2 patients, progress of sacculated uremic peritonitis developing in presence of ascites in one patient, and arrosive hemorrhage in the cavity of pancreas pseudocyst in 2 persons. It is determined that it is necessary to include the spiral computer tomography to the complex of preoperative inspection of patients that allows to diagnose multicamerate abscess of the liver in time and to drain all the additional cavities adequately. 2 patients after paracentetic drain surgical interventions

  16. EFFECTS OF NATURAL ORIFICE SECRETIONS IN PERITONEAL CAVITY IN THE BACKGROUND OF NATURAL ORIFICE TRANSLUMINAL ENDOSCOPIC SURGERY (NOTES AN EXPERIMENTAL STUDY IN ANIMALS

    Directory of Open Access Journals (Sweden)

    Devendra

    2015-03-01

    Full Text Available Natural Orifice Transluminal Endoscopic Surgery (NOTES is a new form of minimally invasive surgery which eliminates traditional skin incisions by accessing internal body cavities through natural orifices. In our experimental animal study, we compared the incidences intraperitoneal abscess formation , culture swab of peritoneal cavity positive for organism, intraperitoneal adhesion formation and mean adhesion score before and after lavaging the portal of entry of albino rat , i.e. transgastric and transvaginal. On vaginal route as a portal of entry into peritoneal cavity , on the 7th day , 66% rats developed abscesses , 88% rats had culture swab positive and 88% rats developed intraperitoneal adhesion (grade - 2 before any cleansing of vaginal cavity with antiseptic solution . Now after lavage with povidone iodine solution, only 11% developed abscesses , 22% were peritoneal swab culture positive and 33% had interbowel and parietal adhesion of (grade 0 - 1. On 21 st day , the complication observed was adhesion formation in pre lavage group of 66% incidence and 16% after vaginal lavage. The incidence of complications were reduced significantly after lavage with antiseptic solution as shown by p values (p<0.01 for abscess formation, p< 0.01 for culture positivity and p< 0.01 for adhesions formation. Also the mean adhesion scoring was significantly reduced (p <0.02 after vaginal lavage on the 7 th day. Gastric route as the portal of entry into the peritoneal cavity, again the same variables were compared on the 7th and the 21st day , but wash was given with antibiotic solution (Cefazolin. On the 7th day , 44% had abscesses, 77% were culture positive and 66% had adhesions (Grade 1 - 2 before gastric lavage with antibiotic solution . After wash of stomach, 11% were culture positive and 44% developed adhesions (Grade 0 - 1. Here, abscess formation (p<0.02 and mean adhesion scoring (p<0.05 were significantly reduced after stomach wash. On the 21st day

  17. Estimating the size of the cavity and surrounding failed region for underground nuclear explosions from scaling rules

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leo A [El Paso Natural Gas Company (United States)

    1970-05-01

    The fundamental physical principles involved in the formation of an underground cavity by a nuclear explosion and breakage of the rock surrounding the cavity are examined from the point of view of making preliminary estimates of their sizes where there is a limited understanding of the rock characteristics. Scaling equations for cavity formation based on adiabatic expansion are reviewed and further developed to include the strength of the material surrounding the shot point as well as the overburden above the shot point. The region of rock breakage or permanent distortion surround ing the explosion generated cavity is estimated using both the Von Mises and Coulomb-Mohr failure criteria. It is found that the ratio of the rock failure radius to the cavity radius for these two criteria becomes independent of yield and dependent only on the failure mechanics of the rock. The analytical solutions developed for the Coulomb-Mohr and Von Mises criteria are presented in graphical form. (author)

  18. Evaluation of ocular prosthesis biofilm and anophthalmic cavity contamination after use of three cleansing solutions

    Directory of Open Access Journals (Sweden)

    Regina Márcia Zuccolotto Felippe Paranhos

    2007-02-01

    Full Text Available In addition to an initial socket discomfort, ocular prosthesis (OP installation may allow the adherence of fungi and/or bacteria due to the superficial characteristics of the prosthesis' material, use of inadequate cleansing solutions and methods, or because the void located between the internal portion of the prosthesis and the anophthalmic cavity (AC mucosa. Objective: The aim of this study was to evaluate OP biofilm formation and the level of contamination of the internal portion of the OP and the AC in 24 patients. Material and Methods: Material was collected from the AC at the beginning of the study and 15 days after cleansing of the OP with 3 cleansing solutions: a neutral liquid soap, a multiuse solution for contact lens (Complete and 0.12% chlorhexidine (Periogard. The collected materials were sowed in Petri dishes containing selective media for aerobic and facultative microorganisms, specifically staphylococci (Hipersalt agar with egg yolk, aerobic microorganisms (Brain Heart Infusion Blood Agar, streptococci (Mitis salivarius Agar, gram-negative bacilli (MacConkey Agar and yeasts (Chromagar CandidaTM, incubated at 35ºC or 37ºC and the number of colony forming units were counted. Data were analyzed statistically by ANOVA, Friedman's test and Spearman's correlation. Results: Aerobic microorganisms, gram-negative bacilli and S. aureus were found in the OP biofilm and in the AC. There was statistically significant difference (p<0.05 between the number of microorganisms before and after the use of the cleansing solutions. Conclusion: There was positive correlation with respect to the microorganisms present in the OP biofilm and AC for the 4 proposed treatments, indicating that the decrease of OP contamination leads to AC contamination as well.

  19. Radiation-induced formation of cavities in amorphous germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  20. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  1. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    Science.gov (United States)

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747

  2. [Effects of special mouth care with an aroma solution on oral status and oral cavity microorganism growth in elderly stroke patients].

    Science.gov (United States)

    Lee, Eun-Hye; Park, Hyojung

    2015-02-01

    This study was conducted to examine the effect of oral care with an aroma solution on oral status and oral cavity microorganism growth in elderly patients with stroke. A non-equivalent control group, with a pretest-posttest design was used in this study. The participants were assigned to the experimental group (n=30) that received oral care with an aroma solution or the control group (n=31) that received 0.9% saline solution. To identify the effect of the experimental treatments, objective/subjective assessments of oral status and oral cavity microorganism growth were performed using the oral assessment guide, oral perception guide, and oral swab culture. Data were analyzed using Chi-square test, Fisher's exact test, and t-test with the SPSS version 21.0 program. The objective oral status was significantly lower in the experimental group than in the control group (t= -3.64, pspecial mouth care using an aroma solution could be an effective oral health nursing intervention for elderly patients with stroke.

  3. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  4. Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ

    DEFF Research Database (Denmark)

    Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A

    2012-01-01

    This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation of der...... in solution of partial differential equations (PDEs).......This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation...... is applied on a two-dimensional geometry. The obtained results from the numerical simulations are compared with those gained by previous works. Outcomes prove that the current technique is in very good agreement with previous investigations and this fact that RBF-DQ method is an accurate and flexible method...

  5. Precipitation and cavity formation in austenitic stainless steels during irradiation

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Mansur, L.K.

    1982-01-01

    Microstructural evolution in austenitic stainless steels subjected to displacement damage at high temperature is strongly influenced by the interaction between helium atoms and second phase particles. Cavity nucleation occurs by the trapping of helium at partially coherent particle-matrix interfaces. The recent precipitate point defect collector theory describes the more rapid growth of precipitate-attached cavities compared to matrix cavities where the precipitate-matrix interface collects point defects to augment the normal point deflect flux to the cavity. Data are presented which support these ideas. It is shown that during nickel ion irradiation of a titanium-modified stainless steel at 675 0 C the rate of injection of helium has a strong effect on the total swelling and also on the nature and distribution of precipitate phases. (orig.)

  6. Quasilinear infiltration from an elliptical cavity

    Science.gov (United States)

    Kuhlman, Kristopher L.; Warrick, Arthur W.

    2008-08-01

    We develop analytic solutions to the linearized steady-state Richards equation for head and total flowrate due to an elliptic cylinder cavity with a specified pressure head boundary condition. They are generalizations of the circular cylinder cavity solutions of Philip [Philip JR. Steady infiltration from circular cylindrical cavities. Soil Sci Soc Am J 1984;48:270-8]. The circular and strip sources are limiting cases of the elliptical cylinder solution, derived for both horizontally- and vertically-aligned ellipses. We give approximate rational polynomial expressions for total flowrate from an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution is in terms of Mathieu functions, which themselves are generalizations of and computed from trigonometric and Bessel functions. The required Mathieu functions are computed from a matrix eigenvector problem, a modern approach that is straightforward to implement using available linear algebra libraries. Although less efficient and potentially less accurate than the iterative continued fraction approach, the matrix approach is simpler to understand and implement and is valid over a wider parameter range.

  7. Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation

    International Nuclear Information System (INIS)

    Ding, Edwin; Kutz, J Nathan; Luh, Kyle

    2011-01-01

    A theoretical model is proposed to describe the formation of two-dimensional solitons in a laser cavity, extending the concept of the mode locking of temporal solitons in fibre lasers to spatial mode locking in nonlinear crystals. A linear stability analysis of the governing model based upon radial symmetry is performed to characterize the multi-pulsing instability of the laser as a function of gain. It is found that a stable n-pulse solution of the system bifurcates into a (n + 1)-pulse solution through the development of a periodic solution (Hopf bifurcation), and the results are consistent with simulations of the full model.

  8. A superconducting test cavity for DORIS

    International Nuclear Information System (INIS)

    Bauer, W.; Brandelik, A.; Lekmann, W.; Szecsi, L.

    1978-03-01

    A summary of experimental goals, technical requirements and possible solutions for the construction of a superconducting accelerating cavity to be tested at DORIS is given. The aim of the experiment is to prove the applicability of superconducting cavities in storage rings and to study the problems typical for this application. The paper collects design considerations about cavity geometry and fabrication, input coupling, output coupling for higher modes, tuner, cryostat and controls. (orig.) [de

  9. A study of liposome formation using a solution (isoperibol) calorimeter.

    Science.gov (United States)

    Barriocanal, L; Taylor, K M G; Buckton, G

    2004-12-09

    A solution (isoperibol) calorimeter has been employed to study the process of formation of phospholipid vesicles from natural and synthetic phospholipid films. Phospholipid films were hydrated in the solution calorimeter at temperatures exceeding the main phospholipid phase transition temperature, with continuous agitation to ensure conversion of the hydrating bilayers into multilamellar liposomes. It was seen that retention of chloroform in phospholipid films altered the apparent enthalpy change of vesicle formation to a far greater extent than would be expected from the contribution of the enthalpy of solution of chloroform; this indicates that chloroform alters the hydration process of the lipid. The overall measured enthalpy change for the formation of egg phosphatidylcholine vesicles was exothermic, whilst that for dimyristoylphosphatidylcholine was endothermic. This difference, it is suggested, results from the influence of the hydrocarbon chains mostly on the hydration process and also on the process of vesicle formation.

  10. Theoretical Analysis on Marangoni-driven Cavity Formation in Ice during In Situ Burning of Oil Spills in Ice-infested Waters

    Science.gov (United States)

    Farmahini Farahani, H.; Jomaas, G.; Rangwala, A. S.

    2017-12-01

    In situ burning, intentional burning of discharged oil on the water surface, is a promising response method to oil spill accidents in the Arctic. However, burning of the oil adjacent to ice bodies creates a lateral cavity in the ice. As a result of the cavity formation the removal efficiency which is a key success criterion for in situ burning operation will decrease. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. These experiments have shown lateral cavities with a length of severe horizontal temperature gradient which in turn generates a Marangoni flow from hot to cold regions. This is found to be the dominant heat transfer mechanism that is providing the heat for the ice to melt. Here, we introduce an order of magnitude analysis on the governing equations of the ice melting problem to estimate the penetration length of a burning oil near ice. This correlation incorporates the flame heat feedback with the surface flow driven by Marangoni convection. The melting energy continuity is also included in the analysis to complete the energy transfer cycle that leads to melting of the ice. The comparison between this correlation and the existing experimental data shows a very good agreement. Therefore, this correlation can be used to estimate the penetration length for burning of an actual spill and can be applied towards improved guidelines of burning adjacent to ice bodies, so as to enhance the chances for successful implantation of in situ burning.

  11. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    Science.gov (United States)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  12. Ice-water convection in an inclined rectangular cavity filled with a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. (Dept. of Mechanical Engineering, Ecole Polytechnique de Montreal (Canada)); Kahawita, R. (Dept. of Civil Engineering, Ecole Polytechnique de Montreal (Canada))

    1994-10-01

    This paper reports on the results of a numerical study on the equilibrium state of the convection of water in the presence of ice in an inclined rectangular cavity filled with a porous medium. One side of the cavity is maintained at a temperature higher than the fusion temperature while the opposite side is cooled to a temperature lower than the fusion temperature. The two remaining sides are insulated. Results are analysed in terms of the density inversion parameter, the tilt angle, and the cooling temperature. It appears that the phenomenon of density inversion plays an important role in the equilibrium of an ice-water system when the heating temperature is below 20 . In a vertical cavity, the density inversion causes the formation of two counter-rotating vortices leading to a water volume which is wider at the bottom than at the top. When the cavity is inclined, there exist two branches of solutions which exhibit the bottom heating and the side heating characteristics, respectively (the Benard and side heating branches). Due to the inversion of density, the solution on the Benard branch may fail to converge to a steady state at small tilt angles and exhibits an oscillating behavior. On the side heating branch, a maximum heat transfer rate is obtained at a tilt angle of about 70 but the water volume was found to depend very weakly on the inclination of the cavity. Under the effect of subcooling, the interplay between conduction in the solid phase and convection in the liquid leads to an equilibrium ice-water interface which is most distorted at some intermediate cooling temperature. (orig.)

  13. The analytical solution of wake-fields in an elliptical pillbox cavity

    International Nuclear Information System (INIS)

    Yang, J.S.; Chen, K.W.

    1991-01-01

    The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is derived analytically in the limit of vanishing aperture. It is found that the resonant modes of an elliptical cavity can be expressed in terms of Mathieu functions. Calculation results are presented and compared with numerical ones. (author) 10 refs., 10 figs., 2 tabs

  14. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  15. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry

    International Nuclear Information System (INIS)

    Buschmann, H.-J.; Schollmeyer, E.; Mutihac, L.

    2003-01-01

    The complex stabilities and the thermodynamic data for the complexation of α-cyclodextrin and cucurbit[6]uril with some amino acids (glycine, L-alanine, L-valine, L-phenylalanine, 6-amino hexanoic acid, 8-amino octanoic acid, 11-amino undecanoic acid) and dipeptides (glycyl-glycine, glycyl-L-valine, glycyl-L-leucine and glycyl-L-phenylalanine) have been determined in aqueous solution by calorimetric titrations. The complex formation with α-cyclodextrin is mainly favoured by entropic contributions due to the release of water molecules from the cavity of the ligand. The values of the reaction enthalpies are small with the exception of 11-amino undecanoic acid. In case of the ligand cucurbit[6]uril, ion-dipole interactions between the protonated amino groups of the amino acids and the carbonyl groups take place. By steric reasons these interactions are lowered for native amino acids because the polar carboxylic groups are always located outside the hydrophobic cavity of cucurbit[6]uril. The complexes of both ligands with dipeptides in water are characterised by hydrophobic interactions and in case of cucurbit[6]uril by additional ion-dipole interactions

  16. Formation and disappearance of superoxide radicals in aqueous solutions

    International Nuclear Information System (INIS)

    Allen, A.O.; Bielski, B.H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO 2 /HO 2 - by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O 2 - , and photosensitization; and properties of HO 2 /O 2 - in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction

  17. [Serial change of perilymphatic potassium ion concentration in the scala tympani after introducing KCl-solution into the guinea pigs' tympanic cavity].

    Science.gov (United States)

    Ikeno, K

    1990-09-01

    Characteristic nystagmus similar to the Meniere's attack could be observed after introducing KCl solution into the tympanic cavity of guinea pigs. To confirm the fact that this nystagmus was provoked by the high perilymphatic potassium ion concentration, the K+ activity of perilymph was recorded serially through the K+ specific microelectrode inserted into the scala tympani. The rapid increment of K+ activity reached maximum at 120 minutes after introducing KCl solution, and then it decreased gradually to a half of the maximum activity. However, such change of perilymphatic potassium ion concentration was not observed by introducing sucrose solution as control.

  18. Orientational structure formation of silk fibroin with anisotropic properties in solutions

    International Nuclear Information System (INIS)

    Kholmuminov, A.A.

    2008-06-01

    Key words:silk fibroin, dissolution, solution's model systems, gelation, orientational crystallization, optical polarization, longitudinal stream, α - β transition, structure formation, phase transformations, relaxation, anisotropy of swelling and desorption, thermo- and biodegradation. Subjects of the inquiry: silk fibroin is the main subject of investigation. Fibroin's solutions were obtained on the base of water and organic solvents, containing salts. Comparative investigations were carried out by using biosolution - secretion of silkworm, solutions of silk sericin, cotton cellulose, methylcellulose, polystyrene and (co) polycrylonitrile. Aim of the inquiry: the elucidation of the regularities of silk fibroin anisotropic structures formation in the direct generation of orientational ordering in solutions taking into account of influences of its the molecular structures, configuration information, α - β conformational transformations, and development jointly using polarization-optical and hydrodynamic methods to control of structure formation. And also definition of possibility fields for use biopolymers anisotropic structure formation principles. Method of inquiry: birefringence, dispersion optical rotation, circular dichroism, polarization- ultramicroscope, ultracentrifuge, viscosimetry, potentiometry, differential thermal analysis, chromatography, x-ray analysis, spectroscopy. The results achieved and their novelty: the physical regularity amorphous-crystalline fibroin dissolutions in salt-containing solvents based on chains melting, distribution and redistribution were recognized; fibroin statistical parameters, molecular-mass and conformational characteristics were established; It was shown that fibroin molecules turned into fully uncoiled and oriented state with the breakdown decay of α-spiral chain sections by I type phase transition mechanism, but in oriented state with α-spiral conservation by II type transition; the presence of longitudinal field

  19. Camouflet blasting in water. The role of damping additives in the formation process of a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Batalov, V.A.; Kotov, V.A.; Orekin, U.K.; Panov, N.V.; Telegin, G.F.; Trunin, R.F.

    1980-01-01

    Results are given from an X-ray analysis of the formation of a camouflet cavity in water during blasting using chemical explosives. Variations on combined blasting are examined together with variations for blasting schemes when layers made from less dense materials-water and polystyrene foam (is approximately equal to .5 grams per cubic centimeter)-are placed between the explosive charges and the water. It is demonstrated that the calculation model of the medium choosen describes with sufficient accuracy the entire aggragate of experimental data.

  20. Prominence mass supply and the cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, Donald J.; Innes, D. [Max Planck Institute for Solar System Research, D-37191 Katlenburg-Lindau (Germany); Gibson, S. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Luna, M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Karpen, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-20

    A prevalent but untested paradigm is often used to describe the prominence-cavity system: the cavity is under-dense because it is evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolution of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model with diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prominence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 Å bandpass near the prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of our one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  1. Prominence Mass Supply and the Cavity

    Science.gov (United States)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  2. Effect of Urea on the Thermodynamics of Hexadecyltrimethylammonium Bromide Micelle Formation in Aqueous Solutions

    Science.gov (United States)

    Velikov, A. A.

    2018-02-01

    The effect of urea on the thermodynamics of hexadecyltrimethylammonium bromide (CTAB) micelle formation in aqueous urea solutions was studied by isothermal titration microcalorimetry. The thermodynamic functions of Δ H, Δ G, and Δ S of CTAB micelle formation were calculated. The critical micelle concentrations (CMC) were determined. The addition of urea to the solution decreased the micelle formation entropy. This was attributed to the "lowering" of the structural temperature of the solution, which led to an increased number of hydrogen bonds and structure formation of water.

  3. A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study

    Science.gov (United States)

    Mondal, Sukanta; Goswami, Tamal; Jana, Gourhari; Misra, Anirban; Chattaraj, Pratim Kumar

    2018-01-01

    In this letter, a possible reason behind selective host-guest organization in the initial stage of sI methane hydrate nucleation is provided, through density functional theory based calculations. In doing so, we have connected earlier experimental and theoretical observations on the structure and energetics of sI methane hydrate to our findings. Geometry and relative stability of small (H2O)5 and (H2O)6 clusters, presence of CH4 guest, integrity and cavity radius of (H2O)20 and (H2O)24, as well as the weak van der Waals type of forces, particularly dispersion interaction, are major factors responsible for initial formation of methane encapsulated dodecahedron cavity over tetrakaidecahedron.

  4. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  5. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  6. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Saleh, Tarik A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eftink, Benjamin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, the synergies between ' and fine-scale and moderate-scale cavity formation is investigated.

  7. Thermodynamics of micelle formation in a water-alcohol solution of sodium tetradecyl sulfate

    Science.gov (United States)

    Shilova, S. V.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-01-01

    The effects of addition of ethanol and propan-1-ol on sodium tetradecyl sulfate micelle formation in an aqueous solution are studied via microprobe fluorescence microscopy and conductometry. The critical micelle concentration, quantitative characteristics of micelles, and thermodynamic parameters of micelle formation are determined. Addition of 5-15 vol % of ethanol or 5-10 vol % of propan-1-ol is shown to result in a lower critical micelle concentration than in the aqueous solution, and in the formation of mixed spherical micelles whose sizes and aggregation numbers are less than those for the systems without alcohol. The contribution from the enthalpy factor to the free energy of sodium tetradecyl sulfate micelle formation is found to dominate in mixed solvents, in contrast to aqueous solutions.

  8. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  9. Stable–streamlined and helical cavities following the impact of Leidenfrost spheres

    KAUST Repository

    Mansoor, Mohammad M.

    2017-06-23

    We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.

  10. Stable–streamlined and helical cavities following the impact of Leidenfrost spheres

    KAUST Repository

    Mansoor, Mohammad M.; Vakarelski, Ivan Uriev; Marston, J. O.; Truscott, T. T.; Thoroddsen, Sigurdur T

    2017-01-01

    We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.

  11. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-07-17

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  12. Vacancy effects on the formation of He and Kr cavities in 3C-SiC irradiated and annealed at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Hang, E-mail: zanghang@xjtu.edu.cn [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Liu, Wenbo [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Tao; He, Chaohui; Yun, Di [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-15

    Highlights: • He and Kr cavities are formed in ion-implanted and 1600 °C annealed 3C-SiC. • A higher vacancy concentration leads to formation of cavities with a smaller size and higher density. • Presence of He in irradiated 3C-SiC can significantly promote cavity growth. • Small voids are formed in Kr ion penetrated 3C-SiC during thermal annealing at 1600 °C. • Local Kr migration and trapping at cavities in SiC are observed, but long-range Kr diffusion does not occur at 1600 °C. - Abstract: Polycrystalline 3C-SiC was sequentially irradiated at 400 and 750 °C with 120 keV He{sup 2+} and 4 MeV Kr{sup 15+} ions to 10{sup 17} and 4 × 10{sup 16} cm{sup −2}, respectively. The Kr{sup 15+} ions penetrated the entire depth region of the He{sup 2+} ion implantation. Three areas of He{sup 2+}, Kr{sup 15+} and He{sup 2+} + Kr{sup 15+} ion implanted SiC were created through masked overlapping irradiation. The sample was subsequently annealed at 1600 °C in vacuum and characterized using cross-sectional transmission electron microscopy and energy-dispersive X-ray spectroscopy. Compared to the He{sup 2+} ion only implanted SiC, He cavities show a smaller size and higher density in the co-implanted SiC. At 25 dpa, presence of He in the co-implanted 3C-SiC significantly promotes cavity growth; much smaller voids are formed in the Kr{sup 15+} ion only irradiated SiC at the same dose. In addition, local Kr migration and trapping at cavities occurs, but long-range Kr diffusion in SiC is not observed up to 1600 °C.

  13. Ternary complex formation at mineral/solution interfaces

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1995-01-01

    Adsorption of trace concentrations of radionuclides and heavy metals from aqueous solution is dependent on pH, absorbent and adsorbate concentration, and speciation of the metal in solution. In particular, complexation of metal ions by organic and inorganic ligands can dramatically alter adsorption behavior compared to ligand-free systems. The presence of complexing ligands can cause the formation of ''metal like'' or ''ligand like'' ternary surface complexes depending on whether adsorption of the ternary complex increases or decreases with increasing pH, respectively. Examples of ternary surface complexes behaving ''metal like'' include uranyl-EDTA surface complexes on goethite, neptunyl-EDTA surface complexes on hematite and neptunyl-humic surface complexes on gibbsite. Examples of ''ligand like'' ternary surface complexes include uranyl-carbonato and neptunyl-carbonato surface complexes on iron oxides. The effects of complex solutions and multimineralic systems are discussed. (authors). 39 refs., 16 figs., 8 tabs

  14. Dense CO2 as a Solute, Co-Solute or Co-Solvent in Particle Formation Processes: A Review

    Directory of Open Access Journals (Sweden)

    Ana V. M. Nunes

    2011-11-01

    Full Text Available The application of dense gases in particle formation processes has attracted great attention due to documented advantages over conventional technologies. In particular, the use of dense CO2 in the process has been subject of many works and explored in a variety of different techniques. This article presents a review of the current available techniques in use in particle formation processes, focusing exclusively on those employing dense CO2 as a solute, co-solute or co-solvent during the process, such as PGSS (Particles from gas-saturated solutions®, CPF (Concentrated Powder Form®, CPCSP (Continuous Powder Coating Spraying Process, CAN-BD (Carbon dioxide Assisted Nebulization with a Bubble Dryer®, SEA (Supercritical Enhanced Atomization, SAA (Supercritical Fluid-Assisted Atomization, PGSS-Drying and DELOS (Depressurization of an Expanded Liquid Organic Solution. Special emphasis is given to modifications introduced in the different techniques, as well as the limitations that have been overcome.

  15. Some aspects of the formation of the dispersed phase in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Sukhov, N.L.; Troitskii, D.I.

    1992-01-01

    The experimental results on the formation of silver colloids and some insoluble salts in aqueous solutions are discussed. Colloidal silver particles are formed as a result of radiation-chemical reduction of Ag + ions in deaerated solution containing alcohols or formic acid. Subcolloidal species containing 12-16 atoms are the precursors of the metal sol. The rate of nucleation increases with increasing concentration of indifferent electrolyte (NaClO 4 ) in solution as a result of the change in the ionic strength. Some anions such as sulphate, formate and others are chemisorbed on the subcolloidal silver surfaces, which dramatically decreases their stability. (author)

  16. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-12-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.

  17. Contact nuclei formation in aqueous dextrose solutions

    Science.gov (United States)

    Cerreta, Michael K.; Berglund, Kris A.

    1990-06-01

    A laser Raman microprobe was used in situ to observe the growth of alpha dextrose monohydrate on alpha anhydrous dextrose crystals. The Raman spectra indicate growth of the monohydrate below 28.1°C, but the presence of only the anhydrous form above 40.5°C. Contact nucleation experiments with parent anhydrous crystals yielded only monohydrate nuclei below 28.1°C, while contacts in solutions between 34.5 and 41.0°C produced both crystalline forms, and contacts in solutions above 43.5°C produced only anhydrous nuclei. The inability of the monohydrate to grow on anhydrous crystals in the same solution that forms the two crystalline phases with a single contact precludes a simple attrition mechanism of nuclei formation. For the same reason, the hypothetical mechanism involving parent crystal stabilization of pre-crystalline clusters, allowing the clusters to grow into nuclei, is also contradicted. A third, mechanism, which may be a combination of the two, is believed to apply.

  18. Dependence of pKa on solute cavity for diprotic and triprotic acids.

    Science.gov (United States)

    Lee, Tae Bum; McKee, Michael L

    2011-06-07

    A systematic study of ΔG(aq)/pK(a) for monoprotic, diprotic, and triprotic acids has been carried out based on DFT/aug-cc-pVTZ combined with CPCM and SMD solvation modeling. All DFT/cavity set combinations considered showed similar accuracy for ΔG(aq)(1)/pK(a1) (70% within ±2.5 kcal mol(-1) of experiment) while only the M05-2X/Pauling cavity combination gave reasonable results for ΔG(aq)(2)/pK(a2) when both pK(a) values are separated by more than three units (70% within ±5.0 kcal mol(-1) of experiment). The choice of experimental data is critical to the interpretation of the calculated accuracy especially for several inorganic acids. For the calculation of ΔG(aq)(3)/pK(a3), the larger experimental uncertainty and an unrealistic orbital population of diffuse function for trianions in the gas phase hinders an evaluation of the predictive performance. We find the M05-2X functional with the Pauling cavity set is the best choice for ΔG(aq)(2)/pK(a2) prediction in aqueous media while all DFT/cavity sets considered were competitive for ΔG(aq)(1)/pK(a1).

  19. A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem

    Science.gov (United States)

    2013-02-01

    obtained by using the block Gauss – Seidel iterative meth- od. To show the convergence of the iterative method, we define the error between two...models to the general multiple cavity setting. Numerical examples indicate that the convergence of the Gauss – Seidel iterative method depends on the...variational approach. A block Gauss – Seidel iterative method is introduced to solve the cou- pled system of the multiple cavity scattering problem, where

  20. Precipitation pathways for ferrihydrite formation in acidic solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Frandsen, Cathrine; Wallace, Adam F.

    2016-01-01

    to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 ... occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process....

  1. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-01-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting

  2. Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam

    International Nuclear Information System (INIS)

    Thomas, V.A.

    1989-01-01

    The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989

  3. Design of half-reentrant SRF cavities

    International Nuclear Information System (INIS)

    Meidlinger, M.; Grimm, T.L.; Hartung, W.

    2006-01-01

    The shape of a TeSLA inner cell can be improved to lower the peak surface magnetic field at the expense of a higher peak surface electric field by making the cell reentrant. Such a single-cell cavity was designed and tested at Cornell, setting a world record accelerating gradient [V. Shemelin et al., An optimized shape cavity for TESLA: concept and fabrication, 11th Workshop on RF Superconductivity, Travemuende, Germany, September 8-12, 2003; R. Geng, H. Padamsee, Reentrant cavity and first test result, Pushing the Limits of RF Superconductivity Workshop, Argonne National Laboratory, September 22-24, 2004]. However, the disadvantage to a cavity is that liquids become trapped in the reentrant portion when it is vertically hung during high pressure rinsing. While this was overcome for Cornell's single-cell cavity by flipping it several times between high pressure rinse cycles, this may not be feasible for a multi-cell cavity. One solution to this problem is to make the cavity reentrant on only one side, leaving the opposite wall angle at six degrees for fluid drainage. This idea was first presented in 2004 [T.L. Grimm et al., IEEE Transactions on Applied Superconductivity 15(6) (2005) 2393]. Preliminary designs of two new half-reentrant (HR) inner cells have since been completed, one at a high cell-to-cell coupling of 2.1% (high-k cc HR) and the other at 1.5% (low-k cc HR). The parameters of a HR cavity are comparable to a fully reentrant cavity, with the added benefit that a HR cavity can be easily cleaned with current technology

  4. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  5. Class of nonsingular exact solutions for Laplacian pattern formation

    International Nuclear Information System (INIS)

    Mineev-Weinstein, M.B.; Dawson, S.P.

    1994-01-01

    We present a class of exact solutions for the so-called Laplacian growth equation describing the zero-surface-tension limit of a variety of two-dimensional pattern formation problems. These solutions are free of finite-time singularities (cusps) for quite general initial conditions. They reproduce various features of viscous fingering observed in experiments and numerical simulations with surface tension, such as existence of stagnation points, screening, tip splitting, and coarsening. In certain cases the asymptotic interface consists of N separated moving Saffman-Taylor fingers

  6. Model format for a vaccine stability report and software solutions.

    Science.gov (United States)

    Shin, Jinho; Southern, James; Schofield, Timothy

    2009-11-01

    A session of the International Association for Biologicals Workshop on Stability Evaluation of Vaccine, a Life Cycle Approach was devoted to a model format for a vaccine stability report, and software solutions. Presentations highlighted the utility of a model format that will conform to regulatory requirements and the ICH common technical document. However, there need be flexibility to accommodate individual company practices. Adoption of a model format is premised upon agreement regarding content between industry and regulators, and ease of use. Software requirements will include ease of use and protections against inadvertent misspecification of stability design or misinterpretation of program output.

  7. Mathematical model governing laser-produced dental cavity

    Science.gov (United States)

    Yilbas, Bekir S.; Karatoy, M.; Yilbas, Z.; Karakas, Eyup S.; Bilge, A.; Ustunbas, Hasan B.; Ceyhan, O.

    1990-06-01

    Formation of dental cavity may be improved by using a laser beam. This provides nonmechanical contact, precise location of cavity, rapid processing and increased hygienity. Further examination of interaction mechanism is needed to improve the application of lasers in density. Present study examines the tenperature rise and thermal stress development in the enamel during Nd YAG laser irradiation. It is found that the stresses developed in the enamel is not sufficiently high enough to cause crack developed in the enamel.

  8. The cavity electromagnetic field within the polarizable continuum model of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  9. Cavity parameters identification for TESLA control system development

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). ELHEP Lab., ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  10. Cavity parameters identification for TESLA control system development

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S.

    2005-01-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  11. Modelling of the nonlinear soliton dynamics in the ring fibre cavity

    Science.gov (United States)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2018-04-01

    Using the cabaret method numerical realization, long-time spatio-temporal dynamics of the electromagnetic field in a nonlinear ring fibre cavity with dispersion is investigated during the hundreds of round trips. Formation of both the temporal cavity solitons and irregular pulse trains is demonstrated and discussed.

  12. Technetium electrodeposition from aqueous formate solutions at graphite electrode: electrochemical study

    International Nuclear Information System (INIS)

    Maslennikov, A.; Peretroukhine, V.; Masson, M.; Lecomte, M.

    1999-01-01

    Recovery of technetium from aqueous formate buffer solutions of ionic strength μ = 1.0 was studied in the pH interval from 1.6 to 7.5 at graphite cathode in an electrolytic cell with separated compartments was studied, using cyclic voltammetry (CV) and inverse stripping voltammetry (ISV) techniques. It has been shown that Tc electrodeposition process becomes possible at the potentials of graphite cathode E cath. 1/2 = -0.72±0.02 V/SCE and was pH independent in the interval pH = 3.46-7.32. Mechanism of electrodeposition, including Tc(VII)/Tc(IV) reduction in the solution followed by Tc(IV) hydrolysis at the electrode surface with formation of hydrated Tc oxide cathodic deposit has been proposed. The further precision of the Tc(VII) electrochemical reduction mechanism in formate buffer media and optimization of the electrodeposition process seems to be possible using additional analytical facilities except electrochemical methods. (orig.)

  13. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  14. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  15. Quantum state engineering and reconstruction in cavity QED. An analytical approach

    International Nuclear Information System (INIS)

    Lougovski, P.

    2004-01-01

    The models of a strongly-driven micromaser and a one-atom laser are developed. Their analytical solutions are obtained by means of phase space techniques. It is shown how to exploit the model of a one-atom laser for simultaneous generation and monitoring of the decoherence of the atom-field ''Schroedinger cat'' states. The similar machinery applied to the problem of the generation of the maximally-entangled states of two atoms placed inside an optical cavity permits its analytical solution. The steady-state solution of the problem exhibits a structure in which the two-atom maximally-entangled state correlates with the vacuum state of the cavity. As a consequence, it is demonstrated that the atomic maximally-entangled state, depending on a coupling regime, can be produced via a single or a sequence of no-photon measurements. The question of the implementation of a quantum memory device using a dispersive interaction between the collective internal ground state of an atomic ensemble and two orthogonal modes of a cavity is addressed. The problem of quantum state reconstruction in the context of cavity quantum electrodynamics is considered. The optimal operational definition of the Wigner function of a cavity field is worked out. It is based on the Fresnel transform of the atomic inversion of a probe atom. The general integral transformation for the Wigner function reconstruction of a particle in an arbitrary symmetric potential is derived

  16. Computed tomography of the normal feline nasal cavity and paranasal sinuses

    International Nuclear Information System (INIS)

    Losonsky, J.M.; Abbott, L.C.; Kuriashkin, I.V.

    1997-01-01

    Computed tomography (CT) images of the feline nasal cavity and paranasal sinuses were acquired from normal adult cats, Good resolution and anatomic detail were obtained from the CT images using soft tissue formatting. A description of normal feline nasal cavity and paranasal sinus anatomy using CT is presented

  17. Evolution of pH during in-situ leaching in small concrete cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saguees, A.A. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil and Environmental Engineering; Moreno, E.I. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil and Environmental Engineering]|[CINVESTAV Merida-Unit (Mexico); Andrade, C. [CSIC, Madrid (Spain). Inst. Eduardo Torroja de Ciencias de la Construccion

    1997-11-01

    Small amounts (0.4 cc) of neutral water placed in small cylindrical cavities (5 mm diameter) in concrete exposed to 100% relative humidity first developed a pH comparable to that of a saturated Ca(OH){sub 2} solution. The pH then increased over a period of days-weeks toward a higher terminal value. A micro pH electrode arrangement was used. This behavior was observed in samples of 12 different concrete mix designs, including some with pozzolanic additions. The average terminal cavity pH closely approached that of expressed pore water from the same concretes. A simplified mathematical model reproduced the experimentally observed behavior. The model assumed inward diffusional transport of the pH-determining species in the surrounding concrete pore solution. The experimental results were consistent with the model predictions when using diffusion parameters on the order of those previously reported for alkali cations in concrete. The cavity size, cavity water content, and exposure to atmospheric CO{sub 2} should be minimized when attempting to obtain cavity pH values approaching those of the surrounding pore water.

  18. Strategies for waveguide coupling for SRF cavities

    International Nuclear Information System (INIS)

    Doolittle, L.R.

    1998-01-01

    Despite widespread use of coaxial couplers in SRF cavities, a single, simple waveguide coupling can be used both to transmit generator power to a cavity, and to remove a large class of Higher Order Modes (HOMs, produced by the beam). There are balances and tradeoffs to be made, such as the coupling strength of the various frequencies, the transverse component of the coupler fields on the beam axis, and the magnitude of the surface fields and currents. This paper describes those design constraints, categories of solutions, and examples from the CEBAF Energy Upgrade studies

  19. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-01-01

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we

  20. Two-channel interaction models in cavity QED

    International Nuclear Information System (INIS)

    Wang, L.

    1993-01-01

    The authors introduce four fully quantized models of light-matter interactions in optical or microwave cavities. These are the first exactly soluble models in cavity quantum electrodynamics (cavity QED) that provide two transition channels for the flipping of atomic states. In these models a loss-free cavity is assumed to support three or four quantized field modes, which are coupled to a single atom. The atom exchanges photons with the cavity, in either the Raman configuration including both Stokes and anti-Stokes modes, or through two-photon cascade processes. The authors obtain the effective Hamiltonians for these models by adiabatically eliminating an off-resonant intermediate atomic level, and discuss their novel properties in comparison to the existing one-channel Jaynes-Cummings models. They give a detailed description of a method to find exact analytic solutions for the eigenfunctions and eigenvalues for the Hamiltonians of four models. These are also valid when the AC Stark shifts are included. It is shown that the eigenvalues can be expressed in very simple terms, and formulas for normalized eigenvectors are also given, as well as discussions of some of their simple properties. Heisenberg picture equations of motions are derived for several operators with solutions provided in a couple of cases. The dynamics of the systems with both Fock state and coherent state fields are demonstrated and discussed using the model's two key variables, the atomic inversion and the expectation value of photon number. Clear evidences of high efficiency mode-mixing are seen in both the Raman and cascade configurations, and different kinds of collapses and revivals are encountered in the atomic inversions. Effects of several factors like the AC Stark shift and variations in the complex coupling constants are also illustrated

  1. Study of the beam-cavity interaction in the CERN PS 10 MHz cavities and investigation of hardware solutions to reduce beam loading

    CERN Document Server

    AUTHOR|(CDS)2086984; Palumbo, Luigi

    In the Proton Synchrotron (PS), where the LHC protons longitudinal structure (bunch spacing) is determined as the result of a sophisticated series of Radio Frequency (RF) gymnastics, collective effects were identified as a major limitation to the achievable beam current delivered to the LHC. Dedicated machine development studies pointed out the RF cavities to be one of the major source of instability in the PS. In particular, the 10 MHz RF system, responsible for beam acceleration, was identified as the most probable impedance source in the machine. The cavity impedance limits the circulating intensity in the accelerator since the beam-induced voltage could trigger longitudinal instabilities causing beam losses. For this reason the cavity impedance seen by the beam must be kept as low as possible. In the framework of the LHC Injector Upgrade (LIU) project, the present PS 10 MHz RF system requires an upgrade, in order to reach higher beam intensities and to reduce beam loading. This thesis focuses on the impro...

  2. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  3. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs

  4. Radiation chemistry connection with the positronium formation in aqueous solution of triton X-100

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1996-01-01

    Positronium formation bears its connection to radiation chemical phenomenon. This has been demonstrated here to probe the micelle formation and further structural changes in Triton X-100 surfactant solution. (author). 6 refs., 3 figs

  5. Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions

    International Nuclear Information System (INIS)

    Osfouri, Shahriar; Azin, Reza; Gholami, Reza; Izadpanah, Amir Abbas

    2015-01-01

    Highlights: • A new predictive model is proposed for prediction of hydrate formation pressures. • A new local composition model was used to evaluate water activity in the presence of electrolyte. • MEG, DEG and TEG were used to test ability of the proposed model in the presence of polar inhibitors. • Cage occupancies by methane for the small cage were higher than carbon dioxide for gas mixtures. • The proposed model gives better match with experimental data in mixed electrolyte solutions. - Abstract: In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γ–φ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions

  6. Analysis of short-term reactor cavity transient

    International Nuclear Information System (INIS)

    Cheng, T.C.; Fischer, S.R.

    1981-01-01

    Following the transient of a hypothetical loss-of-coolant accident (LOCA) in a nuclear reactor, peak pressures are reached within the first 0.03 s at different locations inside the reactor cavity. Due to the complicated multidimensional nature of the reactor cavity, the short-term analysis of the LOCA transient cannot be performed by using traditional containment codes, such as CONTEMPT. The advanced containment code, BEACON/MOD3, developed at the Idaho National Engineering Laboratory (INEL), can be adapted for such analysis. This code provides Eulerian, one and two-dimensional, nonhomogeneous, nonequilibrium flow modeling as well as lumped parameter, homogeneous, equilibrium flow modeling for the solution of two-component, two-phase flow problems. The purpose of this paper is to demonstrate the capability of the BEACON code to analyze complex containment geometry such as a reactor cavity

  7. SRF Cavity Fabrication and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, W [DESY (Germany)

    2014-07-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. The equator welds are particularly critical. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on halfcells and by careful tracking of weld shrinkage. The established procedure is suitable for large series production. The main aspects of quality assurance management are mentioned. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and EBW. Accelerating gradients at the level of 35–45 MV·m–1 can be achieved by applying Electropolishing (EP) treatment. Furthermore, the single-crystal option (grain boundary free) is promising. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the

  8. Bifurcation structure of an optical ring cavity

    DEFF Research Database (Denmark)

    Kubstrup, C.; Mosekilde, Erik

    1996-01-01

    One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...

  9. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  10. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  11. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  12. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  13. Development of a TE011 Cavity for Thin-Films Study

    CERN Document Server

    Martinet, G; Fouaidy, M; Hammoudi, N

    2010-01-01

    Bulk niobium cavities have almost reached their maximum performances. Maximum accelerating gradient field is above 35-40 MV/m for a multi-cells cavity at 1.8 Kelvin and it achieves 25-30 MV/m with high reliability. The question of increasing the accelerating gradient in a significant way is running regarding the huge amount of units required for new projects (16000 units for ILC). A promising solution is to use thin films of new materials deposited on copper or niobium. In order to investigate the behaviour of these materials for the accelerating cavities, we have developed a dedicated setup based on thermometric method and a TE011 cavity. We present here the design study of the setup and the expected sensitivity of the method for the surface measurement of materials properties under RF fields.

  14. Quantum and classical nonlinear dynamics in a microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Meaney, Charles H.; Milburn, Gerard J. [The University of Queensland, Department of Physics, St Lucia, QLD (Australia); Nha, Hyunchul [Texas A and M University at Qatar, Department of Physics, PO Box 23874, Doha (Qatar); Duty, Timothy [The University of New South Wales, Department of Physics, Kensington, NSW (Australia)

    2014-12-01

    We consider a quarter wave coplanar microwave cavity terminated to ground via a superconducting quantum interference device. By modulating the flux through the loop, the cavity frequency is modulated. The flux is varied at twice the cavity frequency implementing a parametric driving of the cavity field. The cavity field also exhibits a large effective nonlinear susceptibility modelled as an effective Kerr nonlinearity, and is also driven by a detuned linear drive. We show that the semi-classical model corresponding to this system exhibits a fixed point bifurcation at a particular threshold of parametric pumping power. We show the quantum signature of this bifurcation in the dissipative quantum system. We further linearise about the below threshold classical steady state and consider it to act as a bifurcation amplifier, calculating gain and noise spectra for the corresponding small signal regime. Furthermore, we use a phase space technique to analytically solve for the exact quantum steady state. We use this solution to calculate the exact small signal gain of the amplifier. (orig.)

  15. The use of erbium fiber laser relaxation frequency for sensing refractive index and solute concentration of aqueous solutions

    International Nuclear Information System (INIS)

    Arellano-Sotelo, H; Barmenkov, Yu O; Kir'yanov, A V

    2008-01-01

    We report a novel-principle fiber-laser intra-cavity sensor for measuring refractive index and solute concentration of aqueous solutions. The sensor operation is based on a variation of the laser oscillation relaxation frequency (the measured parameter), sensitive to the intra-cavity loss change. The sensor capacity is demonstrated on the example of measurements of sugar concentration in water. A modeling of the sensor operation is presented, allowing its performance optimization

  16. Some studies on the formation of excited states of aromatic solutes in hydrocarbons and other solvents

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, G A [Leeds Univ. (UK). Cookridge High Energy Radiation Research Centre

    1976-01-01

    This paper reviews the work of the author and his co-workers on the radiation-induced formation of excited states of aromatic compounds in solution. The experimental methods used are surveyed and in particular the method of measuring the yields of triplet and singlet excited states of the solute are described. The problems discussed are: (1) the effect of solvent on the yields of excited states, (2) formation of excited states in cyclohexane and other alicyclic hydrocarbons, (3) the formation of excited states in benzene and (4) the identification of T-T absorption spectra.

  17. The calcium oxide influence on formation of manganese, calcium pyrovanadate solid solutions

    International Nuclear Information System (INIS)

    Vatolin, N.A.; Volkova, P.I.; Sapozhnikova, T.V.; Ovchinnikova, L.A.

    1988-01-01

    The X-ray graphic, derivatographic, microscopic and chemical methods are used to study solid solutions of manganese, calcium pyrovanadates containing 1-10 mass% CaO and the products of interaction of reprocessing charges of vanadium-containing converter slags intended for he formation of manganese and calcium pyrovanadates with additions of calcium oxide within 10-90 mass%. It is established that in the case of 1-6 mass% CaO content in manganese pyrovanadate solid interstitial solutions appear, while at 6-20 mass% CaO - solid substitution solutions form. The results of calculating elementary cell parameters as well as melting temperatures and pyrovanadate solid solution solubility depending on CaO content are presented. The best solubility of introduction solid solutions during vanadium extraction according to the lime technology is found

  18. Formation of silicides in a cavity applicator microwave system

    International Nuclear Information System (INIS)

    Thompson, D.C.; Kim, H.C.; Alford, T.L.; Mayer, J.W.

    2003-01-01

    Metal silicides of nickel and cobalt are formed in a cavity applicator microwave system with a magnetron power of 1200 W and a frequency of 2.45 GHz. X-ray diffraction, Rutherford backscattering spectrometry, and four-point-probe measurements are used to identify the silicide phase present and layer thicknesses. Additional processing confirmed that the products attained from heating by microwaves do not differ appreciably from those attained in heating by thermal processes. Materials properties are used to explain microwave power absorption and demonstrate how to tailor a robust process in which thin film reactions can be attained and specific products isolated

  19. Films of Agarose Enable Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength

    OpenAIRE

    Horger, Kim S.; Estes, Daniel J.; Capone, Ricardo; Mayer, Michael

    2009-01-01

    This paper describes a method to form giant liposomes in solutions of physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl. Formation of these cell-sized liposomes proceeded from hybrid films of partially dried agarose and lipids. Hydrating the films of agarose and lipids in aqueous salt solutions resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid formation of giant liposomes in high yield. This method did not require the pre...

  20. Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver

    International Nuclear Information System (INIS)

    Ponton, A.

    2009-07-01

    EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)

  1. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution

    International Nuclear Information System (INIS)

    Nan Junmin; Yang Yong; Lin Zugeng

    2006-01-01

    The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at -0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni 3 O 4 and high-valence nickel oxides with the structure of NiO 2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution

  2. Development of a Fabry-Perot cavity for the Compton polarimetry

    International Nuclear Information System (INIS)

    Jorda, Jean-Paul

    1997-01-01

    A quick, precise and non-destructive longitudinal polarisation measurement should be a great advantage for the HAPPEX experiment at CEBAF (Jefferson Lab, USA). To achieve this, it could be possible to use a Fabry-Perot cavity to get a high photon flux at the electron-photon interaction point of a Compton polarimeter. This thesis is a first study for the design of such a system. We have shown that a 'monolithic' cavity, i.e. with mirrors mounted on fixed stage, is a good solution. My contribution for these studies is the development of a code to compute the optimum geometry of a cavity. Another of my contribution concerns the test of a cavity based on commercial mirrors with a gain > 160, using the Pound-Drever method to lock the laser frequency. My studies concern optical matching between the laser beam and the cavity, the choice of the frequency of modulation for the feed-back system and the characterization of the intracavity power. This work is a first step of the studies which will lead to the integration of a cavity based system on the CEBAF beam line. (author) [fr

  3. Improvement of cavity performance in the Saclay/Cornell/DESY's SC cavities

    International Nuclear Information System (INIS)

    Kako, E.; Noguchi, S.; Ono, M.

    2000-01-01

    Development of 1.3 GHz Nb superconducting cavities for TESLA (TeV Energy Superconducting Linear Collider) has been carried out with international collaboration. Three Saclay single-cell cavities, one Cornell two-cell cavity and one DESY nine-cell cavity were sent to KEK in order to compare the cavity performance. These cavities were tested at KEK after the following surface treatment: 1) high pressure rinsing, HPR, 2) chemical polishing and HPR, 3) electropolishing and HPR. The test results, especially, improvement of the cavity performance due to electropolishing are reported in this paper. (author)

  4. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  5. Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution, and Inversion

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Wasniewski, Jerzy; Dongarra, Jack J

    2010-01-01

    of the storage space but provide high performance via the use of Level 3 BLAS. Standard packed format arrays fully utilize storage (array space) but provide low performance as there is no Level 3 packed BLAS. We combine the good features of packed and full storage using RFPF to obtain high performance via using...... Level 3 BLAS as RFPF is a standard full-format representation. Also, RFPF requires exactly the same minimal storage as packed the format. Each LAPACK full and/or packed triangular, symmetric, and Hermitian routine becomes a single new RFPF routine based on eight possible data layouts of RFPF. This new...... RFPF routine usually consists of two calls to the corresponding LAPACK full-format routine and two calls to Level 3 BLAS routines. This means no new software is required. As examples, we present LAPACK routines for Cholesky factorization, Cholesky solution, and Cholesky inverse computation in RFPF...

  6. Ionic association and interspecies interactions of 1-1 electrolytes in ethyl acetate solutions at 5-45 deg C

    International Nuclear Information System (INIS)

    Kalugin, O. N.; Panchenko, V. G.; V'yunnik, I. N.

    2005-01-01

    The data of conductometric studies of LiClO 4 , NaClO 4 , NaBPh 4 , and Bu 4 NClO 4 solutions in ethylacetate in the temperature range 5 to 45 deg C are reported. The constants of ionic association resulting in formation of ion pairs and triple ions, as well as limiting molar electric conductivities of the ions and triple ions are determined. It is found that the formation of contact triple ions having mutually interpenetrated structural elements in cavities of each others is characteristic of electrolytes with bulky organic ions. Anomalous temperature dependence of dynamic sizes of the [Na 2 BPh 4 ] + and [Na(BPh 4 ) 2 ] - ions and substantial differences in energy characteristics of inter-ion interactions are revealed during formation of ion pairs and triple ions in ethylacetate solutions of NaBPh 4 [ru

  7. Status of the AC perpendicular biased ferrite tuned cavity development program at TRIUMF

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enchevich, I.B.

    1993-01-01

    The rf cavity for the Booster Synchrotron requires a frequency swing from 46 MHz to 61 MHz at a repetition rate of 50 Hz and a maximum accelerating voltage of 62,5 kV. These parameters have been achieved on a prototype cavity at TRIUMF using yttrium garnet ferrites rather than the conventional parallel biased NiZn ferrites. The results of the tests performed on the prototype cavity as well as some of the problems encountered and their solutions are reported. 4 refs.; 8 figs

  8. Segregation gettering by implantation-formed cavities and B-Si precipitates in silicon

    International Nuclear Information System (INIS)

    Myers, S.M.; Petersen, G.A.; Follstaedt, D.M.

    1998-01-01

    The authors show that Fe, Co, Cu, and Au in Si undergo strong segregation gettering to cavities and B-Si precipitates formed by He or B ion implantation and annealing. The respective mechanisms are argued to be chemisorption on the cavity walls and occupation of solution sites within the disordered, B-rich, B-Si phase. The strengths of the reactions are evaluated, enabling prediction of gettering performance

  9. CO Gas Inside the Protoplanetary Disk Cavity in HD 142527: Disk Structure from ALMA

    OpenAIRE

    Perez, S.; Casassus, S.; Ménard, F.; Roman, P.; van der Plas, G.; Cieza, L.; Pinte, C.; Christiaens, Valentin; Hales, A. S.

    2014-01-01

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue 2-1 line ...

  10. Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.

    Science.gov (United States)

    Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim

    2017-09-01

    The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.

  11. Action of acoustical oscillations and hydrodynamic factors on the chemical activity of iodne in solution

    International Nuclear Information System (INIS)

    Nikolaev, L.A.; Fadeev, G.N.

    1984-01-01

    Investigation results on the effect of acoustic oscillations within the frequency range of 1-500 Hz on aqueous iodine solutions and dark blue iodide-starch complex have been presented. Experiments were carried out within the range of action of acoustical and hydrodynamic oscillations without visual formation of bubbles. Form of kinetic dependences corresponds to the first order reaction in respect to iodine. Sharp increase of solution electric conductivity and noticeable increase of medium acidity were observed after the action of oscillations. It has been shown that low-frequency oscillations strengthen iodine hydrolysis and lead to iodate atom formation. Effect of oscillations with 25-30 Hz upon the iodide-starch complex results in the complex destruction, i. e. iodide atom chains removal out of clathrate starch cavities. Formation of iodide-starch complexes is promoted under the action of 250 Hz frequency, as such oscillations lead to the change of starch structure, but do not effect upon iodide

  12. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  13. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    Science.gov (United States)

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  14. Radical pair formation in γ-irradiated 2-methyltetrahydrofuran rigid solutions of polynitrobenzenes

    International Nuclear Information System (INIS)

    Konishi, S.; Hoshino, M.; Imamura, M.

    1981-01-01

    The γ-irradiated MTHF (2-methyltetrahydrofuran) rigid solutions of mDNB (m-dinitrobenzene) and sTNB (s-trinitrobenzene) showed at 77 K ESR spectra characteristic of triplet species in addition to the spectra of doublet species, whereas no triplet ESR spectra were observed for the mononitrobenzene and o- and p-di-nitrobenzene solutions. The distances of the unpaired spins evaluated from the observed fine structure constants by using a point-dipole approximation are 4.3 and 4.6 A for the mDNB solution and 3.9 and 4.7 A for the sTNB solution. The detection of only the solute anion radicals by the optical absorption spectra of the irradiated solutions and the difference of the rate of formation for the triplet species and the solute anion strongly suggest that the triplet species are ascribed to the solute anion-solvent radical pairs. Such radical pairs are most likely to be formed through the migration of a MTHF cation radical, i.e., so-called hole migration, to a specific site between the two nitro groups on the meta positions of a solute anion followed by the production of a stable solvent radical, which is paired with the solute anion

  15. Study of reaction sequences for formation of solid solution: 0,48 ...

    African Journals Online (AJOL)

    ... of a low concentration of ions forming the perovskite structure PZT (Pb2+, Zr4+ et Ti4+) by other ions (Zn2+, Cr3+ et Sb+5 in our study) alters the reaction sequences training of the solid solution PZT and especially the formation of intermediate phase. Keywords: PZT / Calcination / TGA / DTA / RX / Piezoelectric Ceramics ...

  16. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Science.gov (United States)

    Ford, Denise Christine

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities---hydrogen, oxygen, nitrogen, and carbon---in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic

  17. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise Christine [Northwestern Univ., Evanston, IL (United States)

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  18. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  19. Heat and mass transportation as factor of formation abnormally high stratum pressure (on the example of the east part of Dniper-Donets cavity

    Directory of Open Access Journals (Sweden)

    Vasily Suyarko

    2016-06-01

    Full Text Available On the example of the eastern part of the Dnieper-Donets cavity (DDC considered the role of the heat and mass transportation in the Earth's crust as a factor of the formation of abnormally high stratum pressure (AHPS. Investigated the regularity of the spatial distribution geochemical and positive anomalies of thermal field as indicators of AHPS zones.Established restriction sites abnormally-high reservoir pressure to areas of deep faults activated and drawn schematic map of the distribution of abnormally high reservoir-ticks 

  20. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    Science.gov (United States)

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  1. Thermodynamic study on salt effects on complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Chibunova, E.S.; Kumeev, R.S.; Terekhova, I.V.

    2015-01-01

    Highlights: • Thermodynamic study on salt effects in CD/pABA complex formation was performed. • Effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant and nonspecific. • Specific influence of KBr is caused by the ability of Br − to penetrate into CD cavity. • Coexistence of two complexation equilibria is accompanied by solvent reorganization. - Abstract: The aim of this work was to gain a deeper understanding of salt effects in the inclusion complex formation of cyclodextrins. For this purpose, thermodynamic study of complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid was carried out in water and solutions of KCl, KBr, KH 2 PO 4 and K 2 SO 4 (0.2 mol/kg). Stability constants were calculated from the binding isotherms obtained on the basis of 1 H NMR measurements. Enthalpy and entropy of complex formation were estimated from the van’t Hoff plots. It was found that effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant, while the influence of KBr on complex formation of cyclodextrins with p-aminobenzoic acid is more pronounced and results in a decrease of the stability constants. Specific action of Br − is caused by the ability of these anions to penetrate into macrocyclic cavity. Coexistence of two complexation equilibria in KBr solution is accompanied by significant solvent reorganization originated from more intensive dehydration of the interacting species. This results in an increase of the enthalpy and entropy of complex formation. Manifestation of Br − effect was found to be the same in the binding of p-aminobenzoic acid with α-, β- and γ-cyclodextrins.

  2. Formation of ammonia complexes of alkaline earth elements in aqueous solutions

    International Nuclear Information System (INIS)

    Padar, T.G.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1990-01-01

    Coefficients of ammonia distribution between aqueous solutions of calcium, strontium, barium and ammonium perchlorate mixtures at ionic strength - 0.50; 1.0 and 1.5 at 298.2 K and ammonia concentrations 0.2-10 mol/dm 3 are measured. Formation of ammonia complexes of M(NH 3 ) n 2+ composition is shown. Logarithms of stepped stability constants for solutions with zero ionic strength for Ca 2+ are: -0.13; -0.25; -0.52 and -0.77, where n=1-4; for Sr 2+ : -0.04; -0.42 and -0.70, where n=1-3 and for Ba 2+ : -0.11; -0.50 and 0.76, where n=1-3

  3. Shock formation in small-data solutions to 3D quasilinear wave equations

    CERN Document Server

    Speck, Jared

    2016-01-01

    In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he prov...

  4. Chronic Ulceration and Sinus Formation due to Foreign Body

    DEFF Research Database (Denmark)

    Hansen, Karin Birgitte; Gottrup, Finn

    2015-01-01

    generated from a foreign body reaction. The case report shows that this condition is often overlooked and even using advanced equipment, it is difficult to diagnose. The only solution is to diagnose and remove the triggering cause. Fistulography and ultrasound scanning seem to be the optimal diagnostic tool......Foreign bodies like residues of suture or mesh may lead to a foreign body reaction, cavity formation and continuous secretion and perhaps ulceration. We present a more than 9 years long medical record of a 49 year old man after a simple surgical procedure. The background was a sinus formation...... in these cases. The knowledge of the foreign body reaction in tissue continuously needs to be reestablished in the health care system especially in areas, where implantation of foreign material is used....

  5. Computer analysis of potentiometric data of complexes formation in the solution

    Science.gov (United States)

    Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira

    2018-02-01

    The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.

  6. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    Science.gov (United States)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  7. Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness

    International Nuclear Information System (INIS)

    Pozrikidis, C.

    1994-01-01

    Shear flow over a plane wall that contains an axisymmetric depression or pore is studied using a new boundary integral method which is suitable for computing three-dimensional Stokes flow within axisymmetric domains. Numerical results are presented for cavities in the shape of a section of a sphere or a circular cylinder of finite length, and for a family of pores or orifices with finite thickness. The results illustrate the distribution of shear stresses over the plane wall and inside the cavities or pores. It is found that in most cases, the distribution of shear stresses over the plane wall, around the depressions, is well approximated with that for flow over an orifice of infinitesimal thickness for which an exact solution is available. The kinematic structure of the flow is discussed with reference to eddy formation and three-dimensional flow reversal. It is shown that the thickness of a circular orifice or depth of a pore play an important role in determining the kinematical structure of the flow underneath the orifice in the lower half-space

  8. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  9. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  10. Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    -linear zone and the volume reduction. Results are given for cavities in rock salt, and a comparison with measured stress concentrations is used to support the assumption of a hydrostatic stress state in undisturbed salt formations. Finally a method to estimate convergence due to creep is outlined....

  11. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  12. Thermodynamics of curium(III) in concentrated electrolyte solutions: formation of sulfate complexes in NaCl/Na2SO4 solutions

    International Nuclear Information System (INIS)

    Paviet, P.; Fanghaenel, T.; Klenze, R.; Kim, J.I.

    1996-01-01

    The formation of sulfate complexes of Curium in aqueous solutions is studied by time resolved laser fluorescence spectroscopy (TRLFS) at 25 C. The species Cm 3+ , Cm(SO 4 ) - , Cm(SO 4 ) - 2 and Cm(SO 4 ) 3- 3 are quantified spectroscopically in the trace concentration range by peak deconvolution of fluorescence emission spectra. The complex formation equilibria are measured in NaCl/ Na 2 SO 4 solutions of constant ionic strength (3 molal) as a function of the sulfate concentration. The stability constants of Cm(SO 4 ) + and Cm(SO 4 ) - 2 are determined to be log β 1 = 0.93±0.08 and log β 2 = 0.61±0.08, respectively. The complex Cm(SO 4 ) 3- 3 is found to be stable only at very high sulfate concentrations (above 1 molal) and therefore not considered for further evaluation. (orig.)

  13. Study on characteristics of coupled cavity chain filled with plasma

    International Nuclear Information System (INIS)

    Li Jianqing; Xiao Shu; Mo Yuanlong

    2003-01-01

    In this paper, by using rigorous field analysis, a coupled-cavity (CC) chain filled with plasma has been analyzed. How the hybrid wave between the cavity mode and plasma mode is formed has been studied. The periodical CC chain filled with plasma demonstrates periodical TG modes with a cutoff frequency of zero. When the plasma density increase to a large scale, the cavity mode of the CC chain overlaps the TG mode, these two modes couple with each other and form the hybrid modes. In the case of hybrid modes, the 'cold' bandwidth and the 'warm' bandwidth expand, and the coupled impedance increases about 5 times larger than that of the vacuum. As a whole, the slow wave characteristics are improved substantially due to the formation of the hybrid mode

  14. Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions

    International Nuclear Information System (INIS)

    Szymanska-Chargot, M.; Gruszecka, A.; Smolira, A.; Bederski, K.; Gluch, K.; Cytawa, J.; Michalak, L.

    2009-01-01

    The synthesis of silver nanoparticles via UV irradiation of AgNO 3 solutions was controlled by using UV-vis absorption spectra and TEM (transmission electron microscope) images. The UV-vis absorption method is good enough for the general control of synthesis process, and TEM images give us information about size of formed species. For investigated solutions of silver nitrate in ethanol and water, we observed formation of large nanoparticles (size about 100 nm) and nanorods (100 nm in length). Moreover, there was effort to confirm evidence of formation of these particles by using TOF mass spectrometer. Due to laser desorption/ionization process there is only evidence of small silver nanoparticles Ag x , x ≤ 4 (clusters), and variety of silver compounds Ag x N y O z (x ≤ 5, y ≤ 2, z ≤ 3).

  15. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  16. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    Science.gov (United States)

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-04-01

    Nanoscale defect structure within the magnetic penetration depth of ˜100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  17. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-01-01

    Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120°C baking. Furthermore, we demonstrate that adding 800°C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120°C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120°C bake

  18. Asymptotic solution of natural convection problem in a square cavity heated from below

    NARCIS (Netherlands)

    Grundmann, M; Mojtabi, A; vantHof, B

    Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and

  19. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  20. Formation and properties of radiocolloids in aqueous solution - a literature survey

    International Nuclear Information System (INIS)

    Olofsson, U.; Allard, B.; Andersson, K.; Torstenfelt, B.

    1981-06-01

    The sorption of radionuclides on various rocks and minerals has been studied within many national waste programs as a means of predicting the migration behaviour of radionuclides that might be released from e.g. an underground repository for radioactive waste. One major objection against the conclusions that can be drawn from laboratory sorption studies is that the possibility of a formation of small fractions of highly mobile particulates are usually not considered. The elements, present in spent nuclear fuel, which are most likely to form colloid species would be hydrolyzable elements like the actinides and possibly Sr as well as Pb and Cu representing the encapsulation material. Moreover the radionuclides would be present in aqueous solutions in very low concentrations and under these conditions other phenomena occurs than at macroconcentrations. This literature survey is meant to be a basis for further studies on the formation and transport of radiocolloids in the groundwater-rock environment. The colloids will probably not be retarded by the same mechanisms as dissolved species in true solution, but may in some cases migrate with the same velocity as the groundwater. (Auth.)

  1. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  2. Implosion of the small cavity and large cavity cannonball targets

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Yamanaka, Chiyoe.

    1984-01-01

    Recent results of cannonball target implosion research are briefly reviewed with theoretical predictions for GEKKO XII experiments. The cannonball targets are classified into two types according to the cavity size ; small cavity and large cavity. The compression mechanisms of the two types are discussed. (author)

  3. Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity.

    Science.gov (United States)

    Paramo, Teresa; East, Alexandra; Garzón, Diana; Ulmschneider, Martin B; Bond, Peter J

    2014-05-13

    Protein cavities and tunnels are critical in determining phenomena such as ligand binding, molecular transport, and enzyme catalysis. Molecular dynamics (MD) simulations enable the exploration of the flexibility and conformational plasticity of protein cavities, extending the information available from static experimental structures relevant to, for example, drug design. Here, we present a new tool (trj_cavity) implemented within the GROMACS ( www.gromacs.org ) framework for the rapid identification and characterization of cavities detected within MD trajectories. trj_cavity is optimized for usability and computational efficiency and is applicable to the time-dependent analysis of any cavity topology, and optional specialized descriptors can be used to characterize, for example, protein channels. Its novel grid-based algorithm performs an efficient neighbor search whose calculation time is linear with system size, and a comparison of performance with other widely used cavity analysis programs reveals an orders-of-magnitude improvement in the computational cost. To demonstrate its potential for revealing novel mechanistic insights, trj_cavity has been used to analyze long-time scale simulation trajectories for three diverse protein cavity systems. This has helped to reveal, respectively, the lipid binding mechanism in the deep hydrophobic cavity of a soluble mite-allergen protein, Der p 2; a means for shuttling carbohydrates between the surface-exposed substrate-binding and catalytic pockets of a multidomain, membrane-proximal pullulanase, PulA; and the structural basis for selectivity in the transmembrane pore of a voltage-gated sodium channel (NavMs), embedded within a lipid bilayer environment. trj_cavity is available for download under an open-source license ( http://sourceforge.net/projects/trjcavity ). A simplified, GROMACS-independent version may also be compiled.

  4. Performance test of a vertically-directed electric-field cavity resonator made for the rapid gelation apparatus with microwave heating

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Ogawa, Toru; Hasegawa, Atsushi.

    1996-06-01

    A cavity resonator with vertically-directed electric field was produced and attached to 'the rapid gelation apparatus with microwave heating' previously reported. Using the rapid gelation apparatus, drops of a simulated solution and of U-containing solutions for internal gelation were heated. The results indicated that the heating required for gelation of the U-containing solutions was possible. However, the electric field strength in the cavity resonator at that time was comparable to that causing the discharge due to the gaseous ammonia released from the heated drops. As a result, gel microspheres were not obtained in a stable state. The discussion suggests that the stable gelation would be realized by improving the cavity resonator shape and/or by modifying the power supply accompanied with using a power stabilizer. (author)

  5. Postirradiation flap infection about the oral cavity

    International Nuclear Information System (INIS)

    Cabbabe, E.B.; Herbold, D.R.; Sunwoo, Y.C.; Baroudi, I.F.

    1983-01-01

    Postirradiation alteration of oral flora is well documented in the literature. Infection as a complication leading to partial or complete loss of a flap used to reconstruct a defect in the oral cavity is a worrisome outcome. We describe how a flap that was judged clinically to be viable became overwhelmingly infected with the Klebsiella oxytoca, an oral cavity pathogen encountered in this patient following irradiation. Local and systemic changes led to detachment of the flap. This complication may be explained, in view of the absence of venous congestion or arterial ischemia both clinically and pathologically, by the proven contamination of the flap by the Klebsiella pathogen. Local factors resulted in lower resistance and subsequent overwhelming infection. Discussion of the case, review of pertinent literature, and proposed solutions are presented

  6. Technetium electrodeposition from aqueous formate solutions: electrolysis kinetics and material balance study

    International Nuclear Information System (INIS)

    Maslennikov, A.; Peretroukhine, V.

    1998-01-01

    The kinetics of the Tc electrodeposition and the material balance of potentiostatic electrolysis of formate buffer solutions (pH = 1.79-8.5) containing 5*10 -4 - 1*10 -2 M Tc(VII) at graphite cathode has been studied. The deposition of Tc from the solution was found to become possible at E x *y H 2 O (x ≤ 2, 1.5 cath. ) towards more negative values and the augmentation of the electrolyte surface/volume ratio (S/V) were found to increase the yield of the electrolysis and the rate of the electrodeposition process. A maximum technetium recovery of 92-95% has been observed in the electrolysis of neutral HCOONa solutions (pH = 6.0-7.5, μ = 1.0) containing up to 5*10 -1 M Tc(VII) at potentials of the graphite cathode E 2 . A starting Tc concentration in the solution of [Tc(VII)] > 5 *10 -1 M and the presence of more than 0.05 M NO 3 - in the electrolyte were found to suppress the recovery of technetium from the solution. (orig.)

  7. Electromagnetic and mechanical design of gridded radio-frequency cavity windows

    Energy Technology Data Exchange (ETDEWEB)

    Alsharo' a, Mohammad M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2004-12-01

    Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements.

  8. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  9. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities

    International Nuclear Information System (INIS)

    Zhang Ke; Li Zhiyuan

    2010-01-01

    In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.

  10. Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures

    Science.gov (United States)

    Glibitskiy, Dmitriy M.; Gorobchenko, Olga A.; Nikolov, Oleg T.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Zibarov, Artem M.; Shestopalova, Anna V.; Semenov, Mikhail A.; Glibitskiy, Gennadiy M.

    2018-03-01

    Formation of patterns on the surface of dried films of saline biopolymer solutions is influenced by many factors, including particle size and structure. Proteins may be modified under the influence of ionizing radiation. By irradiating protein solutions with gamma rays, it is possible to affect the formation of zigzag (Z) structures on the film surface. In our study, the films were obtained by desiccation of bovine serum albumin (BSA) solutions, which were irradiated by a 60Co gamma-source at doses ranging from 1 Gy to 12 kGy. The analysis of the resulting textures on the surface of the films was carried out by calculating the specific length of Z-structures. The results are compared against the absorption and fluorescence spectroscopy and dynamic light scattering (DLS) data. Gamma-irradiation of BSA solutions in the 1-200 Gy range practically does not influence the amount of Z-structures on the film surface. The decrease in fluorescence intensity and increase in absorbance intensity point to the destruction of BSA structure at 2 and 12 kGy, and DLS shows a more than 160% increase in particle size as a result of BSA aggregation at 2 kGy. This prevents the formation of Z-structures, which is reflected in the decrease of their specific length.

  11. State of the art of multicell SC cavities and perspectives

    International Nuclear Information System (INIS)

    Peter Kneisel

    2002-01-01

    Superconducting cavity technology has made major progresses in the last decade with the introduction of high purity niobium on an industrial scale and, at the same time, by an improved understanding of the limiting processes in cavity performance, such as multipacting, field emission loading and thermal break-down. Multicell niobium cavities for beta = 1 particle acceleration, e.g. for the TESLA project, are routinely exceeding gradients of Eacc = 20 MV/m after the application of surface preparation techniques such as buffered chemical polishing or electropolishing, high pressure ultrapure water rinsing, UHV heat treatment and clean room assembly. The successes of the technology for beta = 1 accelerators has triggered a whole set of possible future applications for beta < 1 particle acceleration such as spallation neutron sources (SNS, ESS), transmutation of nuclear waste (TRASCO, ASH) or rare isotopes (RIA). The most advanced of these projects is SNS now under construction at Oak Ridge National Laboratory. This paper will review the technical solutions adopted to advance SRF technology and their impact on cavity performance, based on the SNS prototyping efforts. 2K at these high gradients are no longer out of reach. For the accelerator builder the challenge remains to come up with a good and reasonable design, which takes into account the status of the technology and does not over-estimate the achievable cavity performances in a large assembly such as, e.g., a multi-cavity cryo-module. In the following the criteria for multi-cell sc cavity design are reviewed and it is attempted to give a snapshot of the present status of multi-cell cavity performances

  12. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trenikhina, Y., E-mail: yuliatr@fnal.gov [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Romanenko, A., E-mail: aroman@fnal.gov [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Kwon, J.; Zuo, J.-M. [Materials Science and Engineering Department, University of Illinois, Urbana, Illinois 61801 (United States); Zasadzinski, J. F. [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  13. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production

    Science.gov (United States)

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; William G. Ross; David L. Kulhavy

    1998-01-01

    The authors evaluated selection of nest sites by male red-cockaded woodpeckers (Picoides borealis) in Texas relative to the age of the cavity when only cavities excavated by the woodpeckers were available and when both naturally excavated cavities and artificial cavities were available. They also evaluated nest-cavity selection relative to the ability of naturally...

  14. Study of micelle formation in solutions of alkylammonium carboxylates in apolar solvents by positron annihilation techniques

    International Nuclear Information System (INIS)

    Fucugauchi, L.A.; Djermouni, B.; Handel, E.D.; Ache, H.J.

    1979-01-01

    The positron annihilation technique was applied to the study of the self-association process in solutions of alkylammonium carboxylates in apolar solvents, such as cyclohexane and benzene. The results indicate that the positronium formation probability responds very sensitively to changes in the microenvironment in these solutions. A distinct cooperative effect of the solution resulting in abrupt changes in the number of thermal ortho-positronium atoms formed was observed and studied as a function of the length and structure of the hydrocarbon chain in the cationic and anionic parts of the surfactant molecules. While the chain length in the cationic portion of the surfactant seems to have little effect on the positronium formation probability, distinct differences can be observed when the structure of the carboxylate is changed. Furthermore, a profound effect in the physical property of the solutions was recognized when cyclohexane was replaced by benzene as a solvent. The results are discussed in terms of the existing models for self-association. 4 figures

  15. Solution chemistry of element 105. Pt. III. Hydrolysis and complex formation of Nb, Ta, Db and Pa in HF and HBr solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Bastug, T.

    1999-01-01

    Calculations of the electronic structure of MF 6 - and MBr 6 - complexes of Nb, Ta, Pa and element 105, Db, formed in HF and HBr solutions have been performed using the Dirac-Slater Discrete Variational method. On the basis of results of these calculations, relative values of the free energy change of reactions of complex formation have been determined. The order of the complex formation for both acids is shown to be Pa >> Nb > Db > Ta. Such a sequence is defined by a predominant electrostatic energy of the metal-ligand interaction. The hydrolysis of compounds, as a reverse process, proved to change as Ta > Db > Nb >> Pa. Using the theory of metal extraction by anion exchange, the following trend in the extraction of the anionic species from both the HF and HBr aqueous solutions has been predicted: Pa >> Nb ≥ Db > Ta. The strength of the ML 6 - complexes is shown to decrease from MF 6 , to MCl 6 and further to MBr 6 - which is reflected by shifting the complex formation process to the area of higher acid concentrations. (orig.)

  16. The formation and quenching of positronium in solution: some theoretical and experimental studies

    International Nuclear Information System (INIS)

    Beling, C.D.

    1981-05-01

    Reviews are made of the present theoretical knowledge of the formation and quenching of positronium in solution. Formation is described on both the Ore model and the spur model. Quenching via pickoff and chemical processes is considered. The uncertainties that are presently found in the theoretical modelling are considered. Experimentally the positron lifetime technique is used in which positrons are emitted from a vitrified 22 Na source. The lifetime spectrum is obtained conventionally and is analysed by a modified form of the program POSITRONFIT EXTENDED. (author)

  17. Dental cavities

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  18. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  19. Syndrome of shperical enlightement (cavitary formation)

    International Nuclear Information System (INIS)

    Ginzburg, M.A.

    1987-01-01

    Syndrome is characterized by spherical enlightement surrounded by a closed ring-shaped shadow. Such picture is created by the lung cavity. Intrasyndrome differential diagnosis of the cavitary formations in the lungs and differential diagnosis of restricted pneumothorax, intrapulmonary cavities are given. Ethiology, pathogenesis and pathomorphology of spherical enlightement syndrome, its clinical picture and investigation methods are discussed

  20. Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions

    International Nuclear Information System (INIS)

    Refait, Ph.; Bourdoiseau, J.A.; Jeannin, M.; Nguyen, D.D.

    2012-01-01

    Highlights: ► Green rust is electro-generated at low NaHCO 3 concentration (0.003 mol dm −3 ). ► Chukanovite and carbonated green rust are obtained in NaHCO 3 + Na 2 SO 4 deaerated electrolytes. ► The mechanisms of formation of carbonated corrosion products of carbon steel are specified. - Abstract: To investigate the nature and properties of carbonated rust layers, carbon steel electrodes were polarised anodically at a potential ∼100–200 mV higher than the open circuit potential in NaHCO 3 solutions (0.003, 0.1 and 1 mol dm −3 ) continuously deaerated by an argon flow. X-ray diffraction and μ-Raman spectroscopy were used to identify the electro-generated compounds. GR(CO 3 2− ) (=Fe II 4 Fe III 2 (OH) 12 CO 3 ·4H 2 O) is observed at 0.003 and 0.1 mol dm −3 NaHCO 3 whereas FeCO 3 is obtained at the largest concentration (1 mol dm −3 ). GR(CO 3 2− ) is accompanied by magnetite Fe 3 O 4 at the lowest NaHCO 3 concentration. The current density decreases to negligible values in each case, indicating that a passive film also forms independently of the nature of the carbonated compound. Experiments were performed similarly in solutions of NaHCO 3 and Na 2 SO 4 . Chukanovite Fe 2 (OH) 2 CO 3 could be obtained in solutions containing 0.03 mol dm −3 of each salt. In contrast with the results obtained in the solutions free of sulphate, the current density remains important during the formation of the rust layer

  1. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  2. Formation of tyrosine isomers in aqueous phenylalanine solutions by gamma irradiation

    International Nuclear Information System (INIS)

    Aflaki, F.; Salahinejad, M.; Roozbehani, A.

    2009-01-01

    Ortho-tyrosine detection method can be used for detection of irradiated protein rich foods. Tyrosine isomers produced by gamma radiation of aqueous phenylalanine solutions at wide dose levels (0.1-50 k Gy) were examined to obtain basic information for o-tyrosine detection method of irradiated foods. Determination of tyrosines produced in aqueous phenylalanine solutions were carried out by high performance liquid chromatography and fluorescence detection. The detection limit of o-tyrosine was 0.01 ppm and the linear range of calibration and the relative standard deviation of analysis was 50 ng and 4-13%, respectively. The amounts of the tyrosines increased with the irradiation level up to 10 k Gy and no further tyrosine formation was observed when the dose level was increased. At a constant dose level, the yield of tyrosines initially increased with the phenylalanine concentration, while with further increase of phenylalanine concentration no effect on increase of tyrosine yield was observed. When the dose rate was varying from 2.3 k Gy/h to 1.2 k Gy/h with a total amount of 10 k Gy in each case, there was no significant effect on tyrosine isomers formation was observed. Also the results showed that tyrosine yield was affected by temperature, p H and the presence of oxygen

  3. Resonant cavity enhanced multi-analyte sensing

    Science.gov (United States)

    Bergstein, David Alan

    Biological research and medicine increasingly depend on interrogating binding interactions among small segments of DNA, RNA, protein, and bio-specific small molecules. Microarray technology, which senses the affinity for target molecules in solution for a multiplicity of capturing agents fixed to a surface, has been used in biological research for gene expression profiling and in medicine for molecular biomarker detection. Label-free affinity sensing is preferable as it avoids fluorescent labeling of the target molecules, reducing test cost and variability. The Resonant Cavity Imaging Biosensor (RCIB) is a label-free optical inference based technique introduced that scales readily to high throughput and employs an optical resonant cavity to enhance sensitivity by a factor of 100 or more. Near-infrared light centered at 1512.5 nm couples resonantly through a cavity constructed from Si/SiO2 Bragg reflectors, one of which serves as the binding surface. As the wavelength is swept 5 nm, an Indium-Gallium-Arsenide digital camera monitors cavity transmittance at each pixel with resolution 128 x 128. A wavelength shift in the local resonant response of the optical cavity indicates binding. Positioning the sensing surface with respect to the standing wave pattern of the electric field within the cavity, one can control the sensitivity of the measurement to the presence of bound molecules thereby enhancing or suppressing sensitivity where appropriate. Transmitted intensity at thousands of pixel locations are recorded simultaneously in a 10 s, 5 nm scan. An initial proof-of-principle setup was constructed. A sample was fabricated with 25, 100 mum wide square regions, each with a different density of 1 mum square depressions etched 12 nm into the S1O 2 surface. The average depth of each etched region was found with 0.05 nm RMS precision when the sample remains loaded in the setup and 0.3 nm RMS precision when the sample is removed and replaced. Selective binding of the protein

  4. Influence of silicate ions on the formation of goethite from green rust in aqueous solution

    International Nuclear Information System (INIS)

    Kwon, Sang-Koo; Kimijima, Ken'ichi; Kanie, Kiyoshi; Suzuki, Shigeru; Muramatsu, Atsushi; Saito, Masatoshi; Shinoda, Kozo; Waseda, Yoshio

    2007-01-01

    We investigated the influence of silicate ions on the formation of goethite converted from hydroxysulphate green rust, which was synthesized by neutralizing mixed solution of Fe 2 (SO 4 ) 3 and FeSO 4 with NaOH solution, by O 2 in an aqueous solution. The pH and oxidation-reduction potential of the suspension and the Fe and Si concentrations in supernatant solutions were analyzed. X-ray diffraction results for the solid particles formed during the conversion were consistent with the results of the solution analyses. The results indicated that silicate ions suppressed the conversion from green rust to α-FeOOH and distorted the linkages of FeO 6 octahedral units in the α-FeOOH structure

  5. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity.

    Science.gov (United States)

    Cantrell, John H; Adler, Laszlo; Yost, William T

    2015-02-01

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  6. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  7. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  8. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions

    Directory of Open Access Journals (Sweden)

    Siddharth Kackar

    2017-01-01

    Full Text Available Background: Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. Objectives: The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. Materials and Methods: One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD. Statistical analysis was done by SPSS 11.5, Kruskal–Wallis test and Chi-square test. Results: Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020 on biofilm formation on soft lenses and also lens cases (P < 0.001. Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001. There was no significant inhibitory effect by bacteriophages. Conclusion: This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.

  9. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    Science.gov (United States)

    Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert

    2018-01-01

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686

  10. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.

    Science.gov (United States)

    Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert

    2018-03-06

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  11. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    Directory of Open Access Journals (Sweden)

    Joanna Mystkowska

    2018-03-01

    Full Text Available Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  12. Modelling of shrinkage cavity defects during the wheel and belt casting process

    International Nuclear Information System (INIS)

    Dablement, S; Mortensen, D; Fjaer, H; Lee, M; Grandfield, J; Savage, G; Nguyen, V

    2012-01-01

    Properzi continuous casting is a wheel and belt casting process used for producing aluminium wire rod which is essential to the making of electrical cables and over head lines. One of the main concerns of Properzi process users is to ensure good quality of the final product and to avoid cast defects especially the presence of shrinkage cavity. Numerical models developed with the Alsim software, which allows an automatic calculation of gap dependent heat transfer coefficients at the metal-mould interface due to thermal deformation, are used in order to get a better understanding on the shrinkage cavity formation. Models show the effect of process parameters on the cavity defect development and provide initial guidance for users in order to avoid this kind of casting defect.

  13. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S.

    2010-01-01

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb 2 O 5 ) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  14. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  15. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    Science.gov (United States)

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics

    Directory of Open Access Journals (Sweden)

    Selin Aradag

    2017-01-01

    Full Text Available Supersonic flow over cavities has been of interest since 1960s because cavities represent the bomb bays of aircraft. The flow is transient, turbulent, and complicated. Pressure fluctuations inside the cavity can impede successful weapon release. The objective of this study is to use active and passive control methods on supersonic cavity flow numerically to decrease or eliminate pressure oscillations. Jet blowing at several locations on the front and aft walls of the cavity configuration is used as an active control method. Several techniques are used for passive control including using a cover plate to separate the flow dynamics inside and outside of the cavity, trailing edge wall modifications, such as inclination of the trailing edge, and providing curvature to the trailing edge wall. The results of active and passive control techniques are compared with the baseline case in terms of pressure fluctuations, sound pressure levels at the leading edge, trailing edge walls, and cavity floor and in terms of formation of the flow structures and the results are presented. It is observed from the results that modification of the trailing edge wall is the most effective of the control methods tested leading to up to 40 dB reductions in cavity tones.

  17. Formation of the second organic phase during uranyl nitrate extraction from aqueous solution by 30% tributylphosphate solution in paraffin

    International Nuclear Information System (INIS)

    Yhrkin, V.G.

    1996-01-01

    For extraction systems aqueous solution of uranyl nitrate-30% solution of tributylphosphate in individual paraffins from C 13 to C 17 the influence of the second organic phase of uranyl nitrate concentration in aqueous and organic phases, the length of hydrocarbon chain of paraffin hydrocarbon and temperature from 25 to 50 deg C on formation conditions has been defected. A special method of achieving the conditions of organic phase stratification from three-phase region, involving definition of equilibrium phases composition by density and refractive index, has been elaborated for more precise definition of organic phase homogeneity region. It has been revealed that without addition of nitric acid to uranyl nitrate solution the organic phase homogeneity limits can be achieved solely on paraffins C 15 , C 16 and C 17 and only under conditions similar to equeous phase saturation in terms of uranyl nitrate. 16 refs., 2 figs

  18. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  19. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons

    Science.gov (United States)

    Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.

    2016-12-01

    In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.

  20. Improved reactor cavity

    International Nuclear Information System (INIS)

    Katz, L.R.; Demarchais, W.E.

    1984-01-01

    A reactor pressure vessel disposed in a cavity has coolant inlet or outlet pipes extending through passages in the cavity walls and welded to pressure nozzles. The cavity wall has means for directing fluid away from a break at a weld away from the pressure vessel, and means for inhibiting flow of fluid toward the vessel. (author)

  1. Effect of cold cap boundary conditions on Joule-heating flow in the sloping bottom cavity

    International Nuclear Information System (INIS)

    Zhou, Jiaju; Tanaka, Hiromasa; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2015-01-01

    Flow behavior in a sloping bottom cavity is observed to study the effect of cavity shape on flow behavior for Joule-heating flow. In the former study, a simple cubic cavity is applied to study the chaotic flow behavior of Joule-heating convection due to simplification as the real melter case is complicated. In this study, a sloping bottom cavity of the dimension one-fifth of the actual melter is applied to study the detail flow behavior. Carbon electrodes and top cooling surface are placed to make Joule-heating and the chaotic flow behavior. The working fluid is 80%wt Glycerol-water solution with LiCl as electrolyte. To observe the chaotic flow behavior spatio-temporally, Ultrasonic Velocity Profiler (UVP) is applied in this experiment to obtain the one-dimensional continuous velocity profiles in the center line of cavity. Particle Image Velocity (PIV) method is also applied to observe the two-dimensional flow behavior and to examine the cross-check between UVP and PIV for the chaotic flow behavior with temperature distribution. The flow profiles of the former cubic cavity and the sloping bottom cavity are compared changing voltage magnitude and cooling temperature of the electrodes side to analyze the effect of cavity shape under Joule-heating condition. The flow behavior in the upper part of the sloping bottom cavity is similar to that in the cubic cavity in the experiment in whole cavity, the range down-flow achieved is larger than the cubic cavity. (author)

  2. The use of lithium as a marker for the retention of liquids in the oral cavity after rinsing.

    Science.gov (United States)

    Hanning, Sara M; Kieser, Jules A; Ferguson, Martin M; Reid, Malcolm; Medlicott, Natalie J

    2014-01-01

    The aim of this study was to validate the use of lithium as a marker to indicate the retention of simple liquids in the oral cavity and use this to determine how much liquid is retained in the oral cavity following 30 s of rinsing. This is a validation study in which saliva was spiked with known concentrations of lithium. Twenty healthy participants then rinsed their mouths with either water or a 1 % w/v carboxymethylcellulose (CMC) solution for 30 s before expectorating into a collection cup. Total volume and concentration of lithium in the expectorant were then measured, and the percentage of liquid retained was calculated. The mean amount of liquid retained was 10.4 ± 4.7 % following rinsing with water and 15.3 ± 4.1 % following rinsing with 1 % w/v CMC solution. This difference was significant (p < 0.01). Lithium was useful as a marker for the retention of liquids in the oral cavity, and a value for the amount of water and 1 % w/v CMC solution remaining in the oral cavity following a 30-s rinse was established. The present study quantifies the retention of simple fluids in the oral cavity, validating a technique that may be applied to more complex fluids such as mouth rinses. Further, the application of this method to specific population groups such as those with severe xerostomia may assist in developing effective saliva substitutes.

  3. Enlargement of the inversionless lasing domain by using broad-area cavities

    Energy Technology Data Exchange (ETDEWEB)

    Mompart, J [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Torrent, M C [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Ahufinger, V [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Garcia-Ojalvo, J [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Corbalan, R [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Vilaseca, R [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain)

    2003-06-01

    We investigate analytically and numerically the role of diffraction in the operation of a broad-area inversionless laser in a cascade three-level configuration. Through a linear stability analysis of the trivial non-lasing solution and numerical integration of the corresponding Maxwell-Schroedinger equations, we show that off-axis emission allows stationary inversionless lasing over a cavity detuning range much larger than in small-aspect-ratio cavities and in conventionally inverted three-level lasers. In addition, we investigate inversionless lasing in a self-pulsing regime in the presence of diffraction, which leads to rich spatiotemporal dynamics.

  4. Solute segregation and void formation in ion-irradiated vanadium-base alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1985-01-01

    The radiation-induced segregation of solute atoms in the V-15Cr-5Ti alloys was determined after either single- dual-, or helium implantation followed by single-ion irradiation at 725 0 C to radiation damage levels ranging from 103 to 169 dpa. Also, the effect of irradiation temperature (600-750 0 C) on the microstructure in the V-15Cr-5Ti alloy was determined after single-ion irradiation to 200 and 300 dpa. The solute segregation results for the single- and dual-ion irradiated alloy showed that the simultaneous production of irradiation damage and deposition of helium resulted in enhanced depletion of Cr solute and enrichment of Ti, C and S solute in the near-surface layers of irradiated specimens. The observations of the irradiation-damaged microstructures in V-15Cr-5Ti specimens showed an absence of voids for irradiations of the alloy at 600-750 0 C to 200 dpa and at 725 0 C to 300 dpa. The principle effect on the microstructure of these irradiations was to induce the formation of a high density of disc-like precipitates in the vicinity of grain boundaries and intrinsic precipitates and on the dislocation structure. 8 references, 4 figures

  5. Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics

    Science.gov (United States)

    Hagenmüller, David; Schütz, Stefan; Schachenmayer, Johannes; Genes, Claudiu; Pupillo, Guido

    2018-05-01

    We study the interplay between charge transport and light-matter interactions in a confined geometry by considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of nonequilibrium Green's functions and numerical simulations of the quantum master equation, and derive both analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are transferred to the lower one, giving rise to a delocalized state along the chain. Conversely, in the dissipative regime with low-cavity quality factors, we find that the current enhancement is due to a collective decay of populations from the upper to the lower band.

  6. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    Science.gov (United States)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  7. Botulinum toxin in preparation of oral cavity for microsurgical reconstruction.

    Science.gov (United States)

    Corradino, Bartolo; Di Lorenzo, Sara; Mossuto, Carmela; Costa, Renato Patrizio; Moschella, Francesco

    2010-01-01

    Infiltration of botulinum toxin in the major salivary glands allows a temporary reduction of salivation that begins 8 days afterwards and returns to normal within 2 months. The inhibition of salivary secretion, carried out before the oral cavity reconstructive surgery, could allow a reduction of the incidence of oro-cutaneous fistulas and local complications. Saliva stagnation is a risk factor for patients who have to undergo reconstructive microsurgery of the oral cavity, because of fistula formation and local complications in the oral cavity. The authors suggest infiltration of botulinum toxin in the major salivary glands to reduce salivation temporarily during the healing stage. During the preoperative stage, 20 patients with oral cavity carcinoma who were candidates for microsurgical reconstruction underwent sialoscintigraphy and a quantitative measurement of the salivary secretion. Injection of botulinum toxin was carried out in the salivary glands 4 days before surgery. The saliva quantitative measurement was repeated 3 and 8 days after infiltration, sialoscintigraphy after 15 days. In all cases, the saliva quantitative measurement revealed a reduction of 50% and 70% of the salivary secretion after 72 h and 8 days, respectively. A lower rate of local complications was observed.

  8. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul

    The strong coupling between excitons in a quantum well (QW) and photons in a semiconductor microcavity leads to the formation of quasi-particles known as cavity-polaritons. In this contribution, we investigate their interaction with coherent acoustic phonons in the form of surface acoustic waves...

  9. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  10. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  11. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  12. Pattern Formation During Phase Separation of Polymer-Ionic Liquid Co-Solutions

    Science.gov (United States)

    Meng, Zhiyong; Osuji, Chinedum

    2010-03-01

    Co-solutions of polystyrene (PS) with a 1-butyl-3-methylimidazolium based ionic liquid (IL) in DMF phase separated into IL-rich and PS-rich domains on solvent evaporation. Over a limited range of polymer molecular weights and substrate temperatures, a variety of striped and cellular or polygonal structures were found on the resulting film surface, as visualized using bright-field and phase-contrast optical microscopy. This effect appears to be due to a Benard-Marangoni instability at the free surface of the liquid film as it undergoes evaporation, setting up convection rolls inside the fluid which become locked in place as the system vitrifies on solvent removal. Differential scanning calorimetry shows that the IL does not significantly plasticize the polymer, suggesting that the viscosity of the polystyrene solution itself controls the formation of this instability.

  13. [Calculus formation in the prostatic cavity after transurethral resection of the prostate: causes, treatment and prevention].

    Science.gov (United States)

    Wei, Zhi-Feng; Xu, Xiao-Feng; Cheng, Wen; Zhou, Wen-Quan; Ge, Jing-Ping; Zhang, Zheng-Yu; Gao, Jian-Ping

    2012-05-01

    To study the causes, clinical manifestations, treatment and prevention of calculus that develops in the prostatic cavity after transurethral resection of the prostate. We reported 11 cases of calculus that developed in the prostatic cavity after transurethral resection or transurethral plasmakinetic resection of prostate. The patients complained of repeated symptoms of frequent micturition, urgent micturition and urodynia after operation, accompanied with urinary tract infection and some with urinary obstruction, which failed to respond to anti-infective therapies. Cystoscopy revealed calculi in the prostatic cavity, with eschar, sphacelus, uneven wound surface and small diverticula in some cases. After diagnosis, 1 case was treated by holmium laser lithotripsy and a second transurethral resection of the prostate, while the other 10 had the calculi removed under the cystoscope, followed by 1 -2 weeks of anti-infective therapy. After treatment, all the 11 cases showed normal results of routine urinalysis, and no more symptoms of frequent micturition, urgent micturition and urodynia. Three- to six-month follow-up found no bladder irritation symptoms and urinary tract infection. Repeated symptoms of frequent micturition, urgent micturition, urodynia and urinary tract infection after transurethral resection of the prostate should be considered as the indicators of calculus in the prostatic cavity, which can be confirmed by cystoscopy. It can be treated by lithotripsy or removal of the calculus under the cystoscope, or even a second transurethral resection of the prostate. For its prevention, excessive electric coagulation and uneven wound surface should be avoided and anti-infection treatment is needed.

  14. Process of egg formation in the female body cavity and fertilization in male eggs of Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Toyoshima, S; Nakamura, M; Nagahama, Y; Amano, H

    2000-01-01

    The process of egg formation in the body cavity of a phytoseiid mite, Phytoseiulus persimilis, was observed to examine fertilization of male eggs. After insemination, one of the ova at the periphery of the ovary began to expand, taking up yolk. Two pronuclei appeared in the expanded egg, located dorsally in the ovary, and yolk granules were formed gradually. After the egg became filled with yolk granules the two pronuclei fused. The egg moved via the narrow entrance at the ventral region into the oviduct, where the eggshell was formed. When the eggshell was complete, and while embryogenesis proceeded, the egg was deposited. In the meantime some ova began to expand sequentially and two joining pronuclei appeared in expanding eggs. The joining pronuclei in the first egg proved male diploidy. This is additional evidence of pseudo-arrhenotoky in this phytoseiid mite species, since the first eggs developed into males.

  15. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S. [GUAS, Tsukuba, Ibaraki 305-0801 (Japan); KEK, Tsukuba, Ibaraki 305-0801 (Japan); KAKEN Inc., Hokota, Ibaraki 311-1416 (Japan); GUAS, Tsukuba, Ibaraki 305-0801 (Japan) and KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-07-15

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb{sub 2}O{sub 5}) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  16. On the blister formation in copper alloys due to the helium ion implantation

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1997-01-01

    Structural materials in fusion reactors will be exposed to alpha radiation and helium implantation over a broad range of energies. A new approach to the blister-formation phenomenon is discussed by means of the mathematical solution on a uniformly loaded circular plate with clamped edges (circular diaphragm). In the present investigation, it was found that blister formation depends on the mechanical properties of the alloys and the near-surface concentration of the implanted gas, which itself is contingent on the crystallographic orientation by means of the stopping power of the implanted atoms. The reported model is based on the fact that at certain depths from the surface, the pressure in the cavities approaches the yield stress of the metal and blistering starts. The thickness of this thin film depends on the mechanical properties of the specific metal. Once a blister cavity is formed, the deformation of the thin film to form a blister cap depends on the buildup of pressure in the cavity contingent on the implanted dose. For the present model, it is sufficient to say that the thickness of the blister's cap cannot be correlated with the projected range of the implantation, as assumed by other authors. The implanted helium concentration needed to build up enough gas pressure to create a blister at a depth which is close to the projected range is higher by 50 times than the gas helium concentration in the cavity. Experimental results, such as the fact that the blisters have burst at the edge of the circular skin, where the maximum stresses are developed, and the fact that at high implantation energy (large projected range), the bursting of the blisters occurs by multilayer caps, support the present model

  17. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  18. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1999-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  19. Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities

    Science.gov (United States)

    Du, Kui

    2011-07-01

    We consider electromagnetic scattering from two-dimensional (2D) overfilled cavities embedded in an infinite ground plane. The unbounded computational domain is truncated to a bounded one by using a transparent boundary condition (TBC) proposed on a semi-ellipse. For overfilled rectangular cavities with homogeneous media, another TBC is introduced on the cavity apertures, which produces a smaller computational domain. The existence and uniqueness of the solutions of the variational formulations for the transverse magnetic and transverse electric polarizations are established. In the exterior domain, the 2D scattering problem is solved in the elliptic coordinate system using the Mathieu functions. In the interior domain, the problem is solved by a finite element method. Numerical experiments show the efficiency and accuracy of the new boundary conditions.

  20. Early 500 MHz prototype LEP RF Cavity with superposed storage cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The principle of transferring the RF power back and forth between the accelerating cavity and a side-coupled storage cavity was demonstrated with this 500 MHz prototype. In LEP, the accelerating frequency was 352.2 MHz, and accelerating and storage cavities were consequently larger. See also 8002294, 8006061, 8407619X, and Annual Reports 1980, p.115; 1981, p.95; 1985, vol.I, p.13.

  1. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  2. Strong Meissner screening change in superconducting radio frequency cavities due to mild baking

    Science.gov (United States)

    Romanenko, A.; Grassellino, A.; Barkov, F.; Suter, A.; Salman, Z.; Prokscha, T.

    2014-02-01

    We investigate "hot" regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-μSR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth λL=23±2 nm. In contrast, a cutout sample from the 120 ∘C baked cavity shows a much larger λ >100 nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions.

  3. Orientational structure formation of silk fibroin with anisotropic properties in solutions; Orientastionnoe strukturoobrazovanie fibroina shelka s anizotropnymi svojstvami v rastvorakh

    Energy Technology Data Exchange (ETDEWEB)

    Kholmuminov, A A [AS RU, Institute of Polymer Chemistry and Physics, Tashkent (Uzbekistan)

    2008-06-15

    Key words:silk fibroin, dissolution, solution's model systems, gelation, orientational crystallization, optical polarization, longitudinal stream, {alpha} - {beta} transition, structure formation, phase transformations, relaxation, anisotropy of swelling and desorption, thermo- and biodegradation. Subjects of the inquiry: silk fibroin is the main subject of investigation. Fibroin's solutions were obtained on the base of water and organic solvents, containing salts. Comparative investigations were carried out by using biosolution - secretion of silkworm, solutions of silk sericin, cotton cellulose, methylcellulose, polystyrene and (co) polycrylonitrile. Aim of the inquiry: the elucidation of the regularities of silk fibroin anisotropic structures formation in the direct generation of orientational ordering in solutions taking into account of influences of its the molecular structures, configuration information, {alpha} - {beta} conformational transformations, and development jointly using polarization-optical and hydrodynamic methods to control of structure formation. And also definition of possibility fields for use biopolymers anisotropic structure formation principles. Method of inquiry: birefringence, dispersion optical rotation, circular dichroism, polarization- ultramicroscope, ultracentrifuge, viscosimetry, potentiometry, differential thermal analysis, chromatography, x-ray analysis, spectroscopy. The results achieved and their novelty: the physical regularity amorphous-crystalline fibroin dissolutions in salt-containing solvents based on chains melting, distribution and redistribution were recognized; fibroin statistical parameters, molecular-mass and conformational characteristics were established; It was shown that fibroin molecules turned into fully uncoiled and oriented state with the breakdown decay of {alpha}-spiral chain sections by I type phase transition mechanism, but in oriented state with {alpha}-spiral conservation by II type transition; the

  4. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  5. On the Construction and Properties of Weak Solutions Describing Dynamic Cavitation

    KAUST Repository

    Miroshnikov, Alexey; Tzavaras, Athanasios

    2014-01-01

    deformation. For dimensions d=2,3 we show that cavity formation is necessarily associated with a unique precursor shock. We also study the bifurcation diagram and do a detailed analysis of the singular asymptotics associated to cavity initiation as a function

  6. Performance of a cavity-method-based algorithm for the prize-collecting Steiner tree problem on graphs

    Science.gov (United States)

    Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo

    2012-08-01

    We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.

  7. Effects of finite temperature on two-photon transitions in a Rydberg atom in a high-Q cavity

    International Nuclear Information System (INIS)

    Puri, R.R.; Joshi, A.

    1989-01-01

    The effects of cavity temperature on an effective two-level atom undergoing two-photon transitions in a high-Q cavity are investigated. The quantum statistical properties of the field and the dynamical properties of the atom in this case are studied and compared with those for an atom making one-photon transitions between the two levels. The analysis is based on the solution of the equation for the density matrix in the secular approximation which is known to be a valid approximation in the case of a Rydberg atom in a high-Q cavity. (orig.)

  8. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    International Nuclear Information System (INIS)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao

    2014-01-01

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH 2 O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH 2 O (9.0×10 4 )>NaCl (2.64×10 4 )/PBS (2.37×10 4 )>PBS-NaCl (0.88×10 4 ), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH 2 O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH 2 O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH 2 O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH 2 O than in buffer solutions

  9. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  10. Hydrolysis of Zr(4) with formation of mono- and polynuclear hydroxocomplexes in solutions

    International Nuclear Information System (INIS)

    Davydov, Yu.P.; Zabrodskij, V.N.

    1987-01-01

    The state of Zr(4) has been studied in the wide range of H + -ions concentrations (10 -3 -3.0 mol/l) and in the wide range of Zr(4) concentrations (10 -13 -10 -12 mol/l) in the solution using a set of such physical-chemical methods as spectrophotometry, ion exchange, dialysis, centrifugation. The conditions of formation of hydrated cations, monochange, dialysis, centrifugation. The conditions of formation of hydrated cations, mono- and polynuclear hydrocomplexes, colloidal-size particles have been determined. The thermodynamic stability of ZrOH 3+ and Zr(OH) 2 2+ complexes has been determined by the ion exchange and spectrophotometry methods

  11. Effects of intranasal medicines on microcirculatory blood flow of nasal cavity

    Directory of Open Access Journals (Sweden)

    Svistunov A.A.

    2012-09-01

    Full Text Available The article describes the new method of assessment of microcirculatory blood perfusion and introduction of this method into the study of intranasal drugs effects on mucosal blood flow in the nasal cavity. The research work presents some different groups of drugs — decongestants, physical solutions for irrigation therapy and local corticosteroids. It has been revealed that intranasal decongestants have a significant effect on the intranasal blood flow, but their intake affects the mucosal membrane of the nasal cavity. Other drugs have not shown such negative effects and have not caused tachyphylaxis. Therefore these medicines may be recommended for more common use in ENT-practice.

  12. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  13. phase formation and thermal stability of fcc (fluorite) Ce1-xTbxO2-d solid solutions

    NARCIS (Netherlands)

    de Vries, Karel Jan; de Vries, K.J.; Meng, G.Y.

    1998-01-01

    Ce1−xTbxO2−δ solid solutions (x = 0.3, 0.4, and 0.5) were synthesized by a coprecipitation method, using ammonia. The formation process of the solid solutions was studied as a function of temperature up to 1200°C by X-ray diffraction, thermogravimetric analysis, and differential scanning

  14. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    Science.gov (United States)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  15. Practical optimization of Steiner trees via the cavity method

    Science.gov (United States)

    Braunstein, Alfredo; Muntoni, Anna

    2016-07-01

    The optimization version of the cavity method for single instances, called Max-Sum, has been applied in the past to the minimum Steiner tree problem on graphs and variants. Max-Sum has been shown experimentally to give asymptotically optimal results on certain types of weighted random graphs, and to give good solutions in short computation times for some types of real networks. However, the hypotheses behind the formulation and the cavity method itself limit substantially the class of instances on which the approach gives good results (or even converges). Moreover, in the standard model formulation, the diameter of the tree solution is limited by a predefined bound, that affects both computation time and convergence properties. In this work we describe two main enhancements to the Max-Sum equations to be able to cope with optimization of real-world instances. First, we develop an alternative ‘flat’ model formulation that allows the relevant configuration space to be reduced substantially, making the approach feasible on instances with large solution diameter, in particular when the number of terminal nodes is small. Second, we propose an integration between Max-Sum and three greedy heuristics. This integration allows Max-Sum to be transformed into a highly competitive self-contained algorithm, in which a feasible solution is given at each step of the iterative procedure. Part of this development participated in the 2014 DIMACS Challenge on Steiner problems, and we report the results here. The performance on the challenge of the proposed approach was highly satisfactory: it maintained a small gap to the best bound in most cases, and obtained the best results on several instances in two different categories. We also present several improvements with respect to the version of the algorithm that participated in the competition, including new best solutions for some of the instances of the challenge.

  16. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    Science.gov (United States)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  17. RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity

    International Nuclear Information System (INIS)

    Virostek, S.; Li, D.

    2005-01-01

    A finite element analysis has been carried out to characterize the RF, thermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling channel. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. The high-gradient closed-cell cavity is currently being fabricated for the MICE (international Muon Ionization Cooling Experiment) and MUCOOL experiments. The 1200 mm diameter cavity is constructed of 6 mm thick copper sheet and incorporates a rounded pillbox-like profile with an open beam iris terminated by 420 mm diameter, 0.38 mm thick curved beryllium foils. Tuning is accomplished through elastic deformation of the cavity, and cooling is provided by external water passages. Details of the analysis methodology will be presented including a description of the ANSYS macro that computes the heat loads from the RF solution and applies them directly to the thermal model. The process and results of a calculation to determine the resulting frequency shift due to thermal and structural distortion of the cavity will also be presented

  18. Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Naguib, Ahmed M. [Michigan State University, East Lansing, MI (United States)

    2011-11-15

    The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity's side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity. (orig.)

  19. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    Science.gov (United States)

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  20. The mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels: The case of Fe-Cu model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, A.V., E-mail: Alexey.V.Subbotin@gmail.com [Scientific and Production Complex Atomtechnoprom, Moscow 119180 (Russian Federation); Panyukov, S.V., E-mail: panyukov@lpi.ru [PN Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924 (Russian Federation)

    2016-08-15

    Mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels is proposed and developed in case of Fe-Cu model alloys. The suggested solute-drag mechanism is analogous to the well-known zone-refining process. We show that the obtained results are in good agreement with available experimental data on the parameters of clusters enriched with the alloying elements. Our model explains why the formation of solute-enriched clusters does not happen in austenitic stainless steels with fcc lattice structure. It also allows to quantify the method of evaluation of neutron irradiation dose for the process of RPV steels hardening.

  1. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  2. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  3. Hydroforming of elliptical cavities

    Science.gov (United States)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  4. Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate

    Science.gov (United States)

    Suzuki, Chizuka; Furukawa, Yoshihiro; Kobayashi, Takamichi; Sekine, Toshimori; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2015-07-01

    The emergence of life's building blocks, such as amino acids and nucleobases, on the prebiotic Earth was a critical step for the beginning of life. Reduced species with low mass, such as ammonia, amines, or carboxylic acids, are potential precursors for these building blocks of life. These precursors may have been provided to the prebiotic ocean by carbonaceous chondrites and chemical reactions related to meteorite impacts on the early Earth. The impact of extraterrestrial objects on Earth occurred more frequently during this period than at present. Such impacts generated shock waves in the ocean, which have the potential to progress chemical reactions to form the building blocks of life from reduced species. To simulate shock-induced reactions in the prebiotic ocean, we conducted shock-recovery experiments on ammonium bicarbonate solution and ammonium formate solution at impact velocities ranging from 0.51 to 0.92 km/s. In the products from the ammonium formate solution, several amino acids (glycine, alanine, ß-alanine, and sarcosine) and aliphatic amines (methylamine, ethylamine, propylamine, and butylamine) were detected, although yields were less than 0.1 mol % of the formic acid reactant. From the ammonium bicarbonate solution, smaller amounts of glycine, methylamine, ethylamine, and propylamine were formed. The impact velocities used in this study represent minimum cases because natural meteorite impacts typically have higher velocities and longer durations. Our results therefore suggest that shock waves could have been involved in forming life's building blocks in the ocean of prebiotic Earth, and potentially in aquifers of other planets, satellites, and asteroids.

  5. Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Allan [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Grassellino, Anna [Fermilab; Melnychuk, Oleksandr [Fermilab; Merio, Margherita [Fermilab; Reid, Thomas [Argonne (main); Sergatskov, Dmitri [Fermilab

    2017-05-01

    The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, and LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.

  6. Strong Meissner screening change in superconducting radio frequency cavities due to mild baking

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A., E-mail: aroman@fnal.gov; Grassellino, A.; Barkov, F. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Suter, A.; Salman, Z.; Prokscha, T. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-02-17

    We investigate “hot” regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-μSR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth λ{sub L}=23±2 nm. In contrast, a cutout sample from the 120 ∘C baked cavity shows a much larger λ>100 nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions.

  7. Strong Meissner screening change in superconducting radio frequency cavities due to mild baking

    International Nuclear Information System (INIS)

    Romanenko, A.; Grassellino, A.; Barkov, F.; Suter, A.; Salman, Z.; Prokscha, T.

    2014-01-01

    We investigate “hot” regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-μSR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth λ L =23±2 nm. In contrast, a cutout sample from the 120 ∘C baked cavity shows a much larger λ>100 nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions

  8. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  9. Formation of by-products at radiation - chemical treatment of water solutions of chloroform

    International Nuclear Information System (INIS)

    Ahmedov, S.A.; Abdullayev, E.T.; Gurbanov, M.A.; Gurbanov, A.H.; Ibadov, N.A.

    2006-01-01

    Full text: Radiation-chemical treatment is considered as a perspective method of water purification from chloroform. It provides the high level of purification (98 percent) of water solutions from chloroform and other chlorine-containing compounds. Meanwhile, other chlorine-containing products can be formed during the process of chloroform degradation and as a result of it the quality of water can change. This work studies the formation of by-products of γ-radiolysis of water solutions at various initial contents of chloroform. Dichlormethane and tetrachlorethane are identified as by-products. It is shown that at high contents of chloroform after certain adsorbed dose the forming products are reducing till their full disappearing. At small contents of chloroform in the studied interval of doses di-chlor-methane is forming. Differences of dose dependences of by-products at various contents of chloroform can be connected with the transition from radical mechanism to chain reaction at high concentrations of chloroform in solutions saturated by oxygen. pH-solutions also reduces during the radiation till pH=1, although this reduction also depends on initial concentration of chloroform. Essential change of pH occurs only at the radiolysis of water solutions containing chloroform ≥0,2 percent. And at radiating of 0,03 percent solution pH reduces only till 4 - 4,5

  10. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  11. An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host

    International Nuclear Information System (INIS)

    Hendy, Gillian M.; Breslin, Carmel B.

    2012-01-01

    Highlights: ► DA and Sβ-CD form an Inclusion complex. ► Electrochemical techniques demonstrated this inclusion complex. ► The association constant, K, was computed as 331.3. ► 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. ► NMR studies confirmed the structural information on the inclusion complex. - Abstract: Clear evidence for the formation of a weak inclusion complex between dopamine (DA) and a sulfonated β-CD host in aqueous solution was obtained using a combination of electrochemical approaches. Using cyclic voltammetry, a distinct increase in the oxidation potential of DA and a reduction in the peak oxidation current were observed on adding an excess concentration of the sulfonated β-CD to the electrolyte solution. Equally, a clear increase in the half-wave oxidation potential of DA was observed in the presence of the sulfonated β-CD using rotating disc voltammetry. The association constant, K, was computed as 331.3 ± 5.8, indicating the formation of a weak inclusion complex, while a 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. The rate constant for the oxidation of DA was found to decrease on formation of the inclusion complex. This was attributed to higher reorganization energy for the oxidation of the included DA. These changes in the electrochemistry of DA were not observed when an excess of the smaller sulfonated α-CD was added to the electrolyte, indicating that these variations are not connected with simple electrostatic interactions between the protonated DA and the anionic sulfonated groups. It is proposed that the aromatic ring of the DA molecule includes within the cyclodextrin cavity, while the protonated amine group remains outside the cavity, bound electrostatically with the anionic sulfonated groups.

  12. Efficient encapsulation of chloroform with cryptophane-M and the formation of exciplex studied by fluorescence spectroscopy.

    Science.gov (United States)

    Shi, Yanqi; Li, Xueming; Yang, Jianchun; Gao, Fang; Tao, Chuanyi

    2011-03-01

    Efficient encapsulation of small molecules with supermolecules is one of significantly important subjects due to strong application potentials. This article presents the interaction between cryptophane-M and chloroform by fluorescence spectroscopy. The sonicated cryptophane-M solution exhibits light green color in chloroform, and the solid obtained from the evaporation of chloroform also has different color from that of cryptophane-M. In contrast, the sonicated cryptophane-M solutions in other solvents are colorless, and the solid obtained from the evaporation of these solvents has the same color as that of cryptophane-M. Furthermore, the freshly prepared cryptophane-M solution in different solvents is almost colorless, and the solid obtained from the evaporation of these solvents displays the same color as that of cryptophane-M. Although the sonicated cryptophane-M solutions in different solvents have very similar absorption spectra, they exhibit quite different emission spectra in chloroform. In contrast, the freshly-prepared cryptophane-M solutions show similar absorption and emission spectroscopy in various solvents. The variation of the fluorescence spectroscopy in binary solvents with the increasing chloroform ratio suggests that cryptophane-M and chloroform form a 1:1 exciplex, and the binding constant is estimated to be 292.95 M(-1). Although all solvents are able to enter into the cavity of cryptophane-M, only chloroform can stay in the cavity of cryptophane-M for a while, which is mostly due to the strong intermolecular interaction between cryptophane-M and chloroform, and this results in the formation of the exciplex between them. © Springer Science+Business Media, LLC 2010

  13. Investigation into formation of nanoparticles of tetravalent neptunium in slightly alkaline aqueous solution

    International Nuclear Information System (INIS)

    Husar, Richard

    2015-01-01

    Considering the worldwide growing discharge of minor actinides and the current need for geological disposal facilities for radioactive waste, this work provides a contribution to the safety case concerning Np transport if it would be released from deep repository sites and moving from alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed to be immobile in aqueous environment due to the low solubility solution of Np(IV). For tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous Np(IV) silica colloids under environmentally relevant conditions. The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO 3 ) 5 ] 6- ) induces the intrinsic formation of nanocrystalline NpO 2 in the solution phase. The resulting irregularly shaped nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type structure (space group Fm anti 3m). The NCs tend to agglomerate under ambient conditions due to the weakly charged hydrodynamic surface at neutral pH (zetapotential ζ ∝0 mV). The formation of micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent precipitation cause immobilization of the major amount of Np(IV) in the Np carbonate system. Agglomeration of NpO 2 nanocrystals in dependence on time was indicated by PCS and UV-vis absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 742 nm. Hitherto, unknown polynuclear species as intermediate species of NpO 2 nanocrystal formation were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides. Intrinsic formation of NpO 2

  14. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  15. The chemistry of positronium. Part VI: inhibition and enhancement of positronium formation in aqueous solutions of halides, sulfide and thiocyanate

    International Nuclear Information System (INIS)

    Duplatre, G.; Abbe, J.C.; Maddock, A.G.; Haessler, A.

    1977-01-01

    The formation of positronium in aqueous solutions of halides, sulfide and thiocyanate has been investigated. Inhibiting and enhancing reactions of positronium formation are found. The results are discussed in terms of the spur model

  16. Formation of 32P-labelled Polyphosphates in Reactor-irradiated Solutions of Orthophosphate

    DEFF Research Database (Denmark)

    Fenger, Jørgen Folkvard; Pagsberg, Palle Bjørn

    1973-01-01

    yield increases with the concentration of the irradiated solution and varies in a complicated way with the pH. These observations and some experiments with addition of radical scavengers indicate that oxidation of the 32P-recoils by OH-radicals is an important step in the polymerization. It is suggested...... that the actual formation of a P&z.sbnd;O&z.sbnd;P bridge takes place as an addition of a Lewis acid to a lone pair of electrons on a phosphate ion....

  17. Methylene blue 1% solution on the prevention of intraperitoneal adhesion formation in a dog model

    Directory of Open Access Journals (Sweden)

    Marco Augusto Machado Silva

    Full Text Available Intraperitoneal adhesions usually are formed after abdominal surgeries and may cause technical difficulties during surgical intervention, chronic abdominal pain and severe obstructions of the gastrointestinal tract. The current study aimed to evaluate the efficacy of methylene blue (MB 1% solution on the prevention of intraperitoneal postsurgical adhesion formation in a canine surgical trauma model. Twenty bitches were submitted to falciform ligament resection, omentectomy, ovariohysterectomy and scarification of a colonic segment. Prior to abdominal closure, 10 bitches received 1mg kg-1 MB intraperitoneally (MB group and 10 bitches received no treatment (control group, CT. On the 15th postoperative day the bitches were submitted to laparoscopy to assess adhesions. The mean adhesion scores were 13.9 (±5.6 for MB group and 20.5 (±6.4 for the CT group (P=0,043. In conclusion, the 1% MB solution was efficient on the prevention of intraperitoneal postoperative adhesion formation in bitches, especially those involving the colonic serosa.

  18. Giant Submandibular Calculus Eroding Oral Cavity Mucosa.

    Science.gov (United States)

    Lim, Eng Haw; Nadarajah, Sanjeevan; Mohamad, Irfan

    2017-09-01

    Sialolithiasis is the formation of calculi or sialoliths in the salivary gland. It is the most common benign condition of the salivary gland. Sialolithiasis can occur in all salivary glands. The submandibular gland is most commonly affected followed by the parotid gland. Calculi commonly measure less than 10 mm. Calculi of more than 15 mm are termed giant salivary gland calculi and are infrequently reported in the literature. Here, we report a case of unusually large submandibular gland calculus of 5 cm in greatest dimension which caused erosion of the oral cavity.

  19. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Cheng, Xuequn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083 (China); Li, Xiaogang, E-mail: lixiaogang@ustb.edu.cn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083 (China); Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang (China); Pan, Yue; Li, Jun [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-12-15

    Highlights: • Cr inhibits the formation of passive film at the beginning of its formation. • Cr promotes the formation of a denser and more compact passive film. • The passive film thickness presents a slight increase as the content of Cr goes up. - Abstract: Passive films grow on the surface of Cr-modified steels subjected to saturated Ca(OH){sub 2} solution. Electrochemical techniques, such as measurement of open circuit potentials, polarization curves, and electrochemical impedance spectroscopy combined with X-ray photoelectron spectrometer and auger electron spectroscopy, were applied to study the influence of low Cr content on the passive film formation mechanism of steel rebar in saturated Ca(OH){sub 2} solution. Results show that Cr inhibits the formation of passive film at the beginning of its formation. Corrosion current density decreases and polarization resistance increases with the extension of the immersion time. A stable passive film takes at least three days to form. The passive film resistance of HRB400 carbon steel is higher than that of Cr-modified steels in the early stage of immersion (<72 h). The polarization resistance of Cr-modified steel is larger after a stable passive film is formed (>72 h), and Cr promotes the formation of a denser and more compact passive film. The stable passive film is primarily made up of iron oxides with a thickness of 5–6 nm. Cr are involved in the formation of passive films, thereby resulting in a film that consists of an inner layer that contains Cr–Fe oxides and an outer layer that contains Fe oxides, whose thickness presents a slight increase as the content of Cr increases.

  20. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  1. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.

    Science.gov (United States)

    Hunger, Johannes; Tielrooij, Klaas-Jan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-04-26

    We study aqueous solutions of the amphiphilic osmolyte trimethylamine-N-oxide (TMAO) using broadband dielectric spectroscopy and femtosecond mid-infrared spectroscopy. Both experiments provide strong evidence for distinctively slower rotation dynamics for water molecules interacting with the hydrophobic part of the TMAO molecules. Further, water is found to interact more strongly at the hydrophilic site of the TMAO molecules: we find evidence for the formation of stable, TMAO·2H2O and/or TMAO·3H2O complexes. While this coordination structure seems obvious, the lifetime of these complexes is found to be extraordinarily long (>50 ps). The existence of these long-lived complexes leads to pronounced parallel dipole correlations between water and TMAO, reflected in enhanced amplitudes in the dielectric spectra. The strong interaction between water and TMAO also results in a red-shifted band for the O-D stretching vibration of HDO molecules in an isotopically diluted aqueous TMAO solution. This O-D stretching vibration has a vibrational lifetime of 670 fs, which is significantly shorter than the lifetime of the O-D stretch vibration of bulk-like HDO molecules, presumably due to efficient coupling to vibrational modes of TMAO. The rotational dynamics of these O-D groups are slowed down dramatically, and are limited by the rotation of the whole complex, while the O-D vector oriented away from TMAO probably shows an accelerated reorientation.

  2. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  3. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    Science.gov (United States)

    Chabalko, Matthew J; Shahmohammadi, Mohsen; Sample, Alanson P

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  4. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    Directory of Open Access Journals (Sweden)

    Matthew J Chabalko

    Full Text Available Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR, which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  5. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer

    Science.gov (United States)

    Shahmohammadi, Mohsen; Sample, Alanson P.

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power. PMID:28199321

  6. The kinetics of dye formation by pulse radiolysis of pararosaniline cyanide in aqueous or organic solution

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Holcman, J.; Sehested, K.; Kosanic, M.M.

    1979-11-01

    The radiation-induced conversion of the leucocyanide of pararosaniline dye to the highly colored salt-isomer of the dye in acidic aqueous solution (wavelength of maximum absorption lambda sub(max)=540 nm) or polar organic solution (lambda sub(max)=550 nm), takes place in two separate processes. The first is very fast (within 3 s -1 to 10 6 s -1 , as the acidity or concentration of an oxidizing agent increases. In oxygen-free acidic aqueous or organic solutions (argon saturated) there is an unstable transient species (lambdasub(max)=380 nm). When using O 2 or N 2 O-saturated aqueous or organic solution, there is no intermediate absorption band at 380 nm, but the slow process of dye formation at 540 or 550 nm is still sequential to the initial fast process having somewhat faster kinetics than in Ar-saturated solution. (author)

  7. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  8. Effect of two storage solutions on surface topography of two root-end fillings.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh

    2009-12-01

    The effect of different storage solutions on surface topography of mineral trioxide aggregate (MTA) and new experimental cement (NEC) as root-end fillings was investigated. Twenty-four single-rooted teeth were cleaned, shaped and obturated in a same manner. After root-end resection, 3-mm deep root-end cavities were ultrasonically prepared. Samples were randomly divided into four test groups (A1-A2-B1-B2, n = 6). Root-end cavities in groups A and B were filled with MTA and NEC, respectively, and were then stored in 100% humidity for 24 h. The samples of groups 1 and 2 were, respectively, immersed in normal saline (NS) and phosphate buffer saline solutions for 1 week. The samples were imaged under stereomicroscope before and after immersion and were then investigated and analysed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). Results showed significant difference among studied groups. Surface topography of all samples was altered by crystal formation and precipitation on root-end fillings except for group A1 (MTA-NS). SEM and EDXA results showed that the composition and structure of precipitated crystals were comparable with that of standard hydroxyapatite. It was concluded that biocompatibility, sealing ability, and cementogenic activity of MTA and probably NEC may be attributed to this fundamental bioactive reaction.

  9. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    Science.gov (United States)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  10. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  11. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  12. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  13. Impact of vacancy-solute clusters on the aging of α-Fe solid solutions

    International Nuclear Information System (INIS)

    Schuler, Thomas

    2015-01-01

    Understanding and monitoring the aging of steels under vacancy supersaturation is a challenge of great practical interest for many industrial groups, and most of all for those related to nuclear energy. These steels always contain interstitial solutes, either as alloying elements or as impurities, and vacancies (V) that are equilibrium structural defects of materials. We have chosen the Fe-V -X system (X = C, N or O) as a model system for ferritic steels. Vacancy-solute clusters are likely to form in such systems because, despite the very low concentrations of their components, these cluster show very high attractive bonding. First of all, we have been working on the computation of intrinsic equilibrium properties of individual clusters, both thermodynamic (free binding energies) and kinetic (mobilities, dissociation coefficients, and their relationship with continuum diffusion) properties. Thanks to this atomic-scale characterization procedure, we have been able to highlight various effects of these clusters on a macroscopic system containing different cluster types: increase of solute solubility limits and total vacancy concentrations, flux couplings between interstitial solutes and vacancies, acceleration of solute precipitation kinetics and precipitate dissolution by solid solution stabilization due to vacancies. These results would not have been obtained without the development and/or extension of analytical methods in statistical physics which are able to describe cluster's components and their interactions at the atomic scale. Finally, we have also been working on cavities in α-iron, the study of which requires a different approach. Our study highlights the impact of the atomic discrete lattice on the equilibrium shape of cavities, and describes various kinetic mechanisms of these objects at the atomic scale. (author) [fr

  14. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    International Nuclear Information System (INIS)

    Frigeri, P.A.; Nos, O.; Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J.

    2009-01-01

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  15. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

    Science.gov (United States)

    Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo

    2017-03-01

    A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.

  16. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  17. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  18. FLUORESCENCE SPECTROSCOPIC STUDY OF THE FORMATION OF HYDROPHOBIC MICRODOMAINS IN AQUEOUS-SOLUTIONS OF POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES)

    NARCIS (Netherlands)

    YANG, YJ; Engberts, Jan B F N

    The conformational state of poly(alkylmethyldiallylammonium bromides) was studied in aqueous solutions using pyrene as a fluorescence probe. The results are indicative for the formation of hydrophobic microdomains in the case of several copolymers which possess sufficiently hydrophobic alkyl side

  19. Optomechanically induced transparency with Bose–Einstein condensate in double-cavity optomechanical system

    Science.gov (United States)

    Liu, Li-Wei; Gengzang, Duo-Jie; An, Xiu-Jia; Wang, Pei-Yu

    2018-03-01

    We propose a novel technique of generating multiple optomechanically induced transparency (OMIT) of a weak probe field in hybrid optomechanical system. This system consists of a cigar-shaped Bose–Einstein condensate (BEC), trapped inside each high finesse Fabry-Pérot cavity. In the resolved sideband regime, the analytic solutions of the absorption and the dispersion spectrum are given. The tunneling strength of the two resonators and the coupling parameters of the each BEC in combination with the cavity field have the appearance of three distinct OMIT windows in the absorption spectrum. Furthermore, whether there is BEC in each cavity is a key factor in the number of OMIT windows determination. The technique presented may have potential applications in quantum engineering and quantum information networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034, 11105062, and 21663026) and the Scientific Research Funds of College of Electrical Engineering, Northwest University, China (Grant No. xbmuyjrc201115).

  20. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  1. Particle acceleration and wave emissions associated with the formation of auroral cavities and enhancements

    International Nuclear Information System (INIS)

    Winglee, R.M.; Pritchett, P.L.; Dusenbery, P.B.

    1988-01-01

    Observations from DE 1 and electrostatic particle simulations are combined in an effort to provide a unified model for (nightside) auroral particle acceleration and wave emissions and their association with plasma cavities and enhancements. The observations show that enhanced electron precipitation during inverted-V events is associated with broadband electrostatic bursts (BEB), increased upward field-aligned currents, and density enhancements. These regions are flanked by return current regions where the density is depleted (i.e., by plasma cavities). Perpendicular acceleration of ambient plasma ions can occur in both upward and return current regions. It is shown through the simulations that these processes are integrally related and are not independent of each other. The free energy for the auroral particle acceleration can be provided by energetic ion beams in the plasma sheet boundary layer with nonzero perpendicular energy. The perpendicular energy allows charge separation between the beam ions and costreaming electrons to occur. The resultant space charge fields accelerate electrons on the same field lines as the costreaming electrons downward toward the ionosphere, without the beam ions actually propagating down to auroral altitudes. Ambient plasma electrons on adjacent field lines are accelerated upward, forming a return current

  2. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H

    2013-05-01

    Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  5. Microleakage of three self-etch bonding agents in class 5 composite cavities

    Directory of Open Access Journals (Sweden)

    Saeed Nemati Anaraki

    2016-07-01

    Full Text Available Background and Aims: Microleakage is one of the most common problems in bonding systems, which cause different clinical shortcomings such as post operative sensitivity, marginal discoloration and pulp necrosis that can decrease those using bonding systems. The aim of this study was to compare the microleakage of three self etch bonding agents (generation 6 and 7 in class 5 composite cavities. Materials and Methods: In this experimental study, 30 facial class 5 cavities were prepared in 30 human premolar teeth which were freshly extracted for orthodontic purposes. Cl V cavities were prepared in 2*3*2 mm dimensions. Occlusal margins were in enamel and gingival ones in cementum and randomly divided into 3 groups of 10 each. Then the cavities were treated by clearhil SE Bond (Kuraray, Japan, G Bond (GC, Japan, and Opti Bond Solo Plus (Kerr, USA, according to the manufacturers’ insductions. Then the cavities were filled using Z100 resin composite. The specimens were then immersed in a 50% AgNo solution for 24 hrs. Then, the teeth were cut buccolingually to be evaluated for dye penetration with stereomicroscope. Data were analyzed using Kruskal-Wallis test. Results: This study revealed that Opti bond solo plus had type1 microleakage (dye penetration up to 1/3 of cavity in 80% of specimen, and type 4 microleakage (along axial wall in 10%. Clearfil SE bond had no leakage in 50%, type1 in 40% and type 2 (up to 2/3 of cavity in 10%. But there was no significant difference in the microleakage at the gingival margins between 3 groups (P>0.05. Conclusion: Clearfil SE Bond and G bond could prevent microleakage more effectively than that of Opti Bond Solo Plus on the occlusal margins. However, no difference in the microleakage on the gingival surfaces was found.

  6. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  7. Limitations and Extensions of the Lock-and-Key Principle: Differences between Gas State, Solution and Solid State Structures

    Directory of Open Access Journals (Sweden)

    Hans-Jörg Schneider

    2015-03-01

    Full Text Available The lock-and-key concept is discussed with respect to necessary extensions. Formation of supramolecular complexes depends not only, and often not even primarily on an optimal geometric fit between host and guest. Induced fit and allosteric interactions have long been known as important modifications. Different binding mechanisms, the medium used and pH effects can exert a major influence on the affinity. Stereoelectronic effects due to lone pair orientation can lead to variation of binding constants by orders of magnitude. Hydrophobic interactions due to high-energy water inside cavities modify the mechanical lock-and-key picture. That optimal affinities are observed if the cavity is only partially filled by the ligand can be in conflict with the lock-and-key principle. In crystals other forces than those between host and guest often dominate, leading to differences between solid state and solution structures. This is exemplified in particular with calixarene complexes, which by X-ray analysis more often than other hosts show guest molecules outside their cavity. In view of this the particular problems with the identification of weak interactions in crystals is discussed.

  8. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  9. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  10. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    Science.gov (United States)

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  11. Virtual cathode formations in nested-well configurations

    International Nuclear Information System (INIS)

    Stephens, K. F. II; Ordonez, C. A.; Peterkin, R. E. Jr.

    1999-01-01

    Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit

  12. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  13. Cavity design programs

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    Numerous computer programs are available to help accelerator physicists and engineers model and design accelerator cavities and other microwave components. This article discusses the problems these programs solve and the principles upon which these programs are based. Some examples of how these programs are used in the design of accelerator cavities are also given

  14. Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution.

    Science.gov (United States)

    Ncube, Somandla; Kunene, Phumlile; Tavengwa, Nikita T; Tutu, Hlanganani; Richards, Heidi; Cukrowska, Ewa; Chimuka, Luke

    2017-09-01

    A smart sorbent consisting of benzo[k]fluoranthene-imprinted and indeno[1 2 3-cd]pyrene-imprinted polymers mixed at 1:1 (w/w) was successfully screened from several cavity-tuning experiments and used in the isolation of polycyclic aromatic hydrocarbons from spiked solution. The polymer mixture showed high cross selectivity and affinity towards all the 16 US-EPA priority polycyclic aromatic hydrocarbons. The average extraction efficiency from a cyclohexane solution was 65 ± 13.3% (n = 16, SD). Batch adsorption and kinetic studies confirmed that the binding of polycyclic aromatic hydrocarbons onto the polymer particles resulted in formation of a monolayer and that the binding process was the rate limiting step. The imprinted polymer performance studies confirmed that the synthesized polymer had an imprinting efficiency of 103.9 ± 3.91% (n = 3, SD). A comparison of the theoretical number of cavities and the experimental binding capacity showed that the overall extent of occupation of the imprinted cavities in the presence of excess polycyclic aromatic hydrocarbons was 128 ± 6.45% (n = 3, SD). The loss of selectivity was estimated at 2.9% with every elution cycle indicating that the polymer can be re-used several times with limited loss of selectivity and sensitivity. The polymer combination has shown to be an effective adsorbent that can be used to isolate all the 16 US-EPA priority polycyclic aromatic hydrocarbons in solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  16. TEM observations of crack tip: cavity interactions

    International Nuclear Information System (INIS)

    Horton, J.A.; Ohr, S.M.; Jesser, W.A.

    1981-01-01

    Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities

  17. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation ... pling, wherein the real part represents diffusive coupling ... knowledge, this is the first time that cosh-Gaussian pro-.

  18. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    Science.gov (United States)

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high

  19. Creep cavity and carbide studies during creep of a 12%CrMoV-steel

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik; Storesund, J.; Seitisleam, F.

    1997-03-01

    Uniaxial creep tests of a X20CrMoV 12 1 steel has been carried out. The work was performed as a follow-up on earlier investigations on a similar steel with lower creep ductility. A comparison with this previous work is included. Both interrupted and rupture tests were performed and studies were made of cavity formation processes and carbide transformations. The creep curves could be reproduced using an analytical model. No secondary creep was observed. Cavities were found to form already at a strain of 1%. The cavity density, mean diameter and cavitated area fraction were found to have a linear relationship with the strain for strains up to about 10%. The mean carbide diameter was observed to be a function of time at temperature. A small decrease in carbide density with strain was detected 12 refs, 28 figs, 6 tabs

  20. STRUCTURAL ANALYSIS OF SUPERCONDUCTING ACCELERATOR CAVITIES

    International Nuclear Information System (INIS)

    Schrage, D.

    2000-01-01

    The static and dynamic structural behavior of superconducting cavities for various projects was determined by finite element structural analysis. The β = 0.61 cavity shape for the Neutron Science Project was studied in detail and found to meet all design requirements if fabricated from five millimeter thick material with a single annular stiffener. This 600 MHz cavity will have a Lorentz coefficient of minus1.8 Hz/(Mv/meter) 2 and a lowest structural resonance of more than 100 Hz. Cavities at β = 0.48, 0.61, and 0.77 were analyzed for a Neutron Science Project concept which would incorporate 7-cell cavities. The medium and high beta cavities were found to meet all criteria but it was not possible to generate a β = 0.48 cavity with a Lorentz coefficient of less than minus3 Hz/(Mv/meter) 2

  1. Superconducting cavities developments efforts at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Bagre, M.; Dwivedi, J.; Shrivastava, P.; Mundra, G.; Joshi, S.C.; Potukuchi, P.N.

    2011-01-01

    Superconducting RE cavities are the work-horse for many existing and proposed linear accelerators. Raja Ramanna Centre for Advanced Technology (RRCAT) has initiated a comprehensive R and D program for development of Superconducting RF cavities suitable for high energy accelerator application like SNS and ADS. For the initial phase of technology demonstration several prototype 1.3 GHz single cell-cavities have been developed. The work began with development of prototype single cell cavities in aluminum and copper. This helped in development of cavity manufacturing process, proving various tooling and learning on various mechanical and RF qualification processes. The parts manufacturing was done at RRCAT and Electron beam welding was carried out at Indian industry. These cavities further served during commissioning trials for various cavity processing infrastructure being developed at RRCAT and are also a potential candidate for Niobium thin film deposition R and D. Based on the above experience, few single cell cavities were developed in fine grain niobium. The critical technology of forming and machining of niobium and the intermediate RF qualification were developed at RRCAT. The EB welding of bulk niobium cavities was carried out in collaboration with IUAC, New Delhi at their facility. As a next logical step efforts are now on for development of multicell cavities. The prototype dumbbells and end group made of aluminium, comprising of RF and HOM couplers ports have also been developed, with their LB welding done at Indian industry. In this paper we shall present the development efforts towards manufacturing of 1.3 GHz single cell cavities and their initial processing and qualification. (author)

  2. Effect of cavity disinfectants on antibacterial activity and microtensile bond strength in class I cavity.

    Science.gov (United States)

    Kim, Bo-Ram; Oh, Man-Hwan; Shin, Dong-Hoon

    2017-05-31

    This study was performed to compare the antibacterial activities of three cavity disinfectants [chlorhexidine (CHX), NaOCl, urushiol] and to evaluate their effect on the microtensile bond strength of Scotchbond Universal Adhesive (3M-ESPE, St. Paul, MN, USA) in class I cavities. In both experiments, class I cavities were prepared in dentin. After inoculation with Streptococcus mutans, the cavities of control group were rinsed and those of CHX, NaOCl and urushiol groups were treated with each disinfectant. Standardized amounts of dentin chips were collected and number of S. mutans was determined. Following the same cavity treatment, same adhesive was applied in etch-and-rinse mode. Then, microtensile bond strength was evaluated. The number of S. mutans was significantly reduced in the cavities treated with CHX, NaOCl, and urushiol compared with control group (p<0.05). However, there was a significant bond strength reduction in NaOCl group, which showed statistical difference compared to the other groups (p<0.05).

  3. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a device that consists of a compound intended to coat a prepared cavity of a tooth before insertion of...

  4. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  5. Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges

    Science.gov (United States)

    Vinogradova, Elena D.

    2017-11-01

    The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.

  6. Development of superconducting cavities at JAERI

    International Nuclear Information System (INIS)

    Ouchi, N.

    2001-01-01

    Development of superconducting (SC) cavities is continued for the high intensity proton accelerator in JAERI. In FY-1999, we carried out R and D work; (1) 2nd vertical test of β=0.886 single-cell cavity, (2) vertical test for observation of Q-disease without heat treatment after electropolishing, (3) vertical test of β=0.5 5-cell cavity, (4) pretuning, surface treatment and vertical test of β=0.886 5-cell cavity, (5) pulsed operation of β=0.886 single-cell cavity in the vertical test to confirm the validity of a new model calculation. This paper describes the present status of the R and D work for the SC cavities in JAERI. (author)

  7. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  8. Fundamental limitations of cavity-assisted atom interferometry

    Science.gov (United States)

    Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.

    2017-11-01

    Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.

  9. Method for improving solution flow in solution mining of a mineral

    International Nuclear Information System (INIS)

    Moore, T.

    1980-01-01

    An improved method for the solution mining of a mineral from a subterranean formation containing same in which an injection and production well are drilled and completed within said formation, leach solution and an oxidant are injected through said injection well into said formation to dissolve said mineral, and said dissolved mineral is recovered via said production well, wherein the improvement comprises pretreating said formation with an acid gas to improve the permeabiltiy thereof

  10. Numerical and Experimental Analysis on the Cavity Formation and Shrinkage for Investment Cast Alloy 738 4 mm-Thick Rectangular Tube

    International Nuclear Information System (INIS)

    Park, Myeong-Il; Choi, Yoon Suk; Yoo, Jae-Hyun; Park, Sang-Hu; Kim, Kyeong-Min; Lee, Yeong-Chul; Lee, Jung-Seok; Lee, Jae-Hyun

    2017-01-01

    Investment casting for the thin (4 mm thick) rectangular tube (40 mm wide, 80 mm high and 200 mm long) was carried out numerically and experimentally for Alloy 738, which is a precipitation-hardened Ni-base superalloy. Two types of rectangular tubes, one with a regular array (10 mm by 10 mm square array) of protruded rods (3 mm in diameter and 3mm in height) embedded on the outer surface and the other with just smooth surface, were investment-cast at the same time through the side feeding mold design. The investment casting simulation predicted the presence of cavities, particularly in the area away from the gate for both types of rectangular tubes. In particular, for the rectangular tube with embedded protruded rods cavities were found mainly in the areas between the protruded rods. This simulation result was qualitatively consistent with the experimental observation from the X-ray analysis. Also, both prediction and experiment showed that the dimensional shrinkage (particularly in the longitudinal direction) of the investment-cast rectangular tube is reduced by having protruded rods embedded on the outer surface. Additional numerical attempts were made to check how the amount of cavities and dimensional shrinkage change by varying the preheating temperature and the thickness of the mold. The results predicted that the amount of cavities and the dimensional shrinkage are significantly reduced by increasing the preheating temperature of the mold by 200 ℃. However, an increase in mold thickness from 10 mm to 12 mm showed almost no difference in cavity population and a slight decrease in dimensional shrinkage.

  11. Numerical and Experimental Analysis on the Cavity Formation and Shrinkage for Investment Cast Alloy 738 4 mm-Thick Rectangular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myeong-Il; Choi, Yoon Suk; Yoo, Jae-Hyun; Park, Sang-Hu [Pusan National University, Busan (Korea, Republic of); Kim, Kyeong-Min; Lee, Yeong-Chul [Sung Il Turbine Co., Ltd., Busan (Korea, Republic of); Lee, Jung-Seok; Lee, Jae-Hyun [Changwon National University, Changwon (Korea, Republic of)

    2017-02-15

    Investment casting for the thin (4 mm thick) rectangular tube (40 mm wide, 80 mm high and 200 mm long) was carried out numerically and experimentally for Alloy 738, which is a precipitation-hardened Ni-base superalloy. Two types of rectangular tubes, one with a regular array (10 mm by 10 mm square array) of protruded rods (3 mm in diameter and 3mm in height) embedded on the outer surface and the other with just smooth surface, were investment-cast at the same time through the side feeding mold design. The investment casting simulation predicted the presence of cavities, particularly in the area away from the gate for both types of rectangular tubes. In particular, for the rectangular tube with embedded protruded rods cavities were found mainly in the areas between the protruded rods. This simulation result was qualitatively consistent with the experimental observation from the X-ray analysis. Also, both prediction and experiment showed that the dimensional shrinkage (particularly in the longitudinal direction) of the investment-cast rectangular tube is reduced by having protruded rods embedded on the outer surface. Additional numerical attempts were made to check how the amount of cavities and dimensional shrinkage change by varying the preheating temperature and the thickness of the mold. The results predicted that the amount of cavities and the dimensional shrinkage are significantly reduced by increasing the preheating temperature of the mold by 200 ℃. However, an increase in mold thickness from 10 mm to 12 mm showed almost no difference in cavity population and a slight decrease in dimensional shrinkage.

  12. Deactivation of nuclear explosions cavities in the salt domes by freezing method

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Murzadilov, T.D.

    1998-01-01

    I. There is a lot of negative consequences of underground nuclear explosions, conducted for creating some cavities of the gas condensate saving at the Azgir site and Karachaganak deposit. Some of them are radioactivity escape, ground pollution, underground water pollution, as result of depressurization and irrigation of cavities. Besides that there are dissolution of infected salt, displacement of brine from the cavities. Existing prolonged exchanges of rock-salt, brines and water can be accompanied by accumulation and throw outing of free chlorine and hydrogen with hydrochloric acid formation, ('white fog' of Azgir site). These questions demand supplementary researches. 2. It is known that more dangerous fission fragments are 9 0S r and 1 31C s, with half life periods equaled 27.7 and 30.3. Duration of their existence determines a period of an object danger. Radionuclide migration come with rock dispersion or with their concentration on the different physical, chemical, including sorptive, barriers on the way of radioactive water displacement. 3. The task of prevention of negative consequences is to save the forms and sizes of cavities, to immobilize the radioactive fluid's in the cavities and closed zone for the half-life time of the main nuclide mass. 4. Solving the task by laying of empty space with hard materials (concrete, rock) demand of big expenses because of cavities size, occurrence depth (850-900 m), high value of materials, their processing and transportation. The problem to render harmless and to utilize of displacing radioactive brines is not solved yet. 5, Freezing of flooding cavities appears to be an alternative, which allows to fill the space by hard ice and to less the moving of radioactive brines into the rocks around the cavities, and, what is more important, along the bore-holes above the cavities, blocking the radionuclides moving into the fractured rocks. This process divides onto 2 stages: (1) freezing with organizing of intensive heat

  13. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  14. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  15. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    International Nuclear Information System (INIS)

    Chuguryan, D.G.; Dzyubenko, V.I.; Gerbeleu, N.V.

    1987-01-01

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO 2 HA, NpO 2 A - , and NpOHA 2- , has been demonstrated with salicylaldehyde thiosemicarbazone (H 2 L) and salicylaldehyde S-methyl-isothiosemicarbazone (H 2 Q) at t = 25 +/- 1 0 C and μ = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H 2 L and H 2 Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO 2 OHL 2- and NpO 2 OHQ 2- were also determined, and found to be equal to (2.23 +/-0.37) x 10 -5 and (5.02 +/- 0.9) x 10 -5 , respectively. In the case of S-methyl-N 1 ,N 4 -bis(salicylidene)isothiosemicarbazide (H 2 Z), only one type of complex is formed under these experimental conditions, namely, NpO 2 Z - , with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H 2 Q and H 2 Z were also determined

  16. An economical wireless cavity-nest viewer

    Science.gov (United States)

    Daniel P. Huebner; Sarah R. Hurteau

    2007-01-01

    Inspection of cavity nests and nest boxes is often required during studies of cavity-nesting birds, and fiberscopes and pole-mounted video cameras are sometimes used for such inspection. However, the cost of these systems may be prohibitive for some potential users. We describe a user-built, wireless cavity viewer that can be used to access cavities as high as 15 m and...

  17. Cascade-induced fluctuations and the transition from the stable to the critical cavity radius for swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1985-01-01

    Recently, a cascade diffusion theory was developed to understand cacade-induced fluctuations in point defect flux during irradiation. Application of the theory revealed that such fluctuations give rise to a mechanism of cascade-induced creep that is predicted to be of significant magnitude. Here we extend the investigation to the formation of cavities. Specifically, we explore the possible importance of cascade-induced cavity growth excursions in triggering a transition from the gas-content-dictated stable radius to the critical radius for bias-driven growth. Two methods of analysis are employed. The first uses the variance of fluctuations to assess the average effect of fluctuations. The second is based on the fact that in a large ensemble of cavities, a small fraction will experience larger than average excursions. This prospect is assessed by estimating upper limits to the processes. For the conditions considered, it is concluded that cascade-induced fluctuations are of minor importance in triggering the onset of swelling in a population of stable gas-containing cavities

  18. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  19. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    International Nuclear Information System (INIS)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C 60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C 60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C 60 fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C 60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  20. New design concepts for ferrite-tuned low-energy-booster cavities

    International Nuclear Information System (INIS)

    Schaffer, G.

    1991-05-01

    The design concepts for ferrite-tuned accelerating cavities discussed in this paper differ from conventional solutions using thick ferrite toroids for frequency tuning. Instead, tuners consisting of an array of ferrite-loaded striplines are investigated. These promise more efficient cooling and higher operational reliability. Layout examples for the SSC-LEB rf system are presented (tuning range 47.5 to 59.8 MHz, repetition frequency 10 Hz). 15 refs., 4 figs., 1 tab

  1. A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Daehyeon; Yang, Yi [Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Hashimoto, Jun; Kusakabe, Nobuhiko [Astrobiology Center of NINS 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston 66 George Street, Charleston, SC 29424 (United States); Janson, Markus [Department of Astronomy, Stockholm University, AlbaNova University Center SE-106 91 Stockholm (Sweden); Kwon, Jungmi; Nakagawa, Takao [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Uyama, Taichi [Department of Astronomy, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Kudo, Tomoyuki; Currie, Thayne [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States); Abe, Lyu [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Coted’azur 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Akiyama, Eiji [National Astronomical Observatory of Japan 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Brandner, Wolfgang [Max Planck Institute for Astronomy, Köonigstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D.; Feldt, Markus [Astrophysics Department, Institute for Advanced Study Princeton, NJ (United States); Goto, Miwa [Universitats-Sternwarte Munchen, Ludwig-Maximilians-Universitat, Scheinerstr. 1, D-81679 Munchen (Germany); Grady, Carol A. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center Greenbelt, MD 20771 (United States); and others

    2016-11-01

    We present high-contrast H -band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.″07 and r ∼ 0.″05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 ± 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3–4 M {sub Jup} planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST /NICMOS, and this difference may indicate the grain growth process in the disk.

  2. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  3. A Solution Study of Complex Formation of Some Diamines with Lanthanones

    Directory of Open Access Journals (Sweden)

    J. J. Vora

    2009-01-01

    Full Text Available To study the metal ligand equilibrium in aqueous solution, the well known Irving-Rossotti titration method was used. The temperature selected is 30±0.10C at ionic strength 0.2 M (NaClO4 which was maintained constant through out the work. The binary metal complex (ML2 formation was studied. The metals selected are Sm3+, Gd3+, Dy3+ and Yb3+. The diamine ligands taken are ethylenediamine, 1,2 diamino propane, 1,3 diamino propane, N-N diethyl ethylenediamine and N-N -dimethyl ethylenediamine. Factors that affected the stability of the complexes are size and ionic potential of lanthanone ions, basicity of ligands, ring size and steric effect of ligands.

  4. Optically coupled cavities for wavelength switching

    Energy Technology Data Exchange (ETDEWEB)

    Costazo-Caso, Pablo A; Granieri, Sergio; Siahmakoun, Azad, E-mail: pcostanzo@ing.unlp.edu.ar, E-mail: granieri@rose-hulman.edu, E-mail: siahmako@rose-hulman.edu [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803 (United States)

    2011-01-01

    An optical bistable device which presents hysteresis behavior is proposed and experimentally demonstrated. The system finds applications in wavelength switching, pulse reshaping and optical bistability. It is based on two optically coupled cavities named master and slave. Each cavity includes a semiconductor optical amplifier (SOA), acting as the gain medium of the laser, and two pair of fiber Bragg gratings (FBG) which define the lasing wavelength (being different in each cavity). Finally, a variable optical coupler (VOC) is employed to couple both cavities. Experimental characterization of the system performance is made analyzing the effects of the coupling coefficient between the two cavities and the driving current in each SOA. The properties of the hysteretic bistable curve and switching can be controlled by adjusting these parameters and the loss in the cavities. By selecting the output wavelength ({lambda}{sub 1} or {lambda}{sub 2}) with an external filter it is possible to choose either the invert or non-invert switched signal. Experiments were developed employing both optical discrete components and a photonic integrated circuit. They show that for 8 m-long cavities the maximum switching frequency is about 500 KHz, and for 4 m-long cavities a minimum rise-time about 21 ns was measured. The switching time can be reduced by shortening the cavity lengths and using photonic integrated circuits.

  5. Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED

    International Nuclear Information System (INIS)

    Zou Xubo; Pahlke, K.; Mathis, W.

    2003-01-01

    We propose a scheme to implement the 1→2 universal quantum cloning machine of Buzek and Hillery [Phys. Rev. A 54, 1844 (1996)] in the context of cavity QED. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited to face the decoherence problem. That's why the requirements on the cavity quality factor can be loosened

  6. LHC crab-cavity aspects and strategy

    International Nuclear Information System (INIS)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-01-01

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  7. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  8. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    International Nuclear Information System (INIS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-01-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces

  9. On the formation, growth, and shapes of solution pipes - insights from numerical modeling

    Science.gov (United States)

    Szymczak, Piotr; Tredak, Hanna; Upadhyay, Virat; Kondratiuk, Paweł; Ladd, Anthony J. C.

    2015-04-01

    Cylindrical, vertical structures called solution pipes are a characteristic feature of epikarst, encountered in different parts of the world, both in relatively cold areas such as England and Poland (where their formation is linked to glacial processes) [1] and in coastal areas in tropical or subtropical climate (Bermuda, Australia, South Africa, Caribbean, Mediterranean) [2,3]. They are invariably associated with weakly cemented, porous limestones and relatively high groundwater fluxes. Many of them develop under the colluvial sandy cover and contain the fill of clayey silt. Although it is widely accepted that they are solutional in origin, the exact mechanism by which the flow becomes focused is still under debate. The hypotheses include the concentration of acidified water around stems and roots of plants, or the presence of pre-existing fractures or steeply dipping bedding planes, which would determine the points of entry for the focused groundwater flows. However, there are field sites where neither of this mechanisms was apparently at play and yet the pipes are formed in large quantities [1]. In this communication we show that the systems of solution pipes can develop spontaneously in nearly uniform matrix due to the reactive-infiltration instability: a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This leads to the formation of a system of solution pipes which then advance into the matrix. We study this process numerically, by a combination of 2d- and 3d-simulations, solving the coupled flow and transport equations at the Darcy scale. The relative simplicity of this system (pipes developing in a uniform porous matrix, without any pre-existing structure) makes it very attractive from the modeling standpoint. We quantify the factors which control the pipe diameters and the

  10. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  11. Offline estimation of decay time for an optical cavity with a low pass filter cavity model.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2012-08-01

    This Letter presents offline estimation results for the decay-time constant for an experimental Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2×2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity.

  12. Effects of superoxide dismutase, dithiothreitol and formate ion on the inactivation of papain by hydroxyl and superoxide radicals in aerated solutions

    International Nuclear Information System (INIS)

    Lin, W.S.; Armstrong, D.A.

    1978-01-01

    Losses in enzyme activity and sulphydryl content have been studied in aerated papain solutions containing formate, superoxide dismutase and dithiothreitol. Both formate and dithiothreitol converted .OH to .0 2 -, whereas superoxide dismutase completely suppressed the inactivation by .0 2 -. Using results from all systems, the fraction of .0 2 - reactions with papain that caused inactivation of the enzyme was 0.33+-0.07. The results also showed that the fraction of .OH reactions, which cause inactivation of papain, is significantly higher in aerated than in oxygen-free solutions. (author)

  13. RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS

    International Nuclear Information System (INIS)

    Andrews, Sean M.; Wilner, David J.; Espaillat, Catherine; Qi Chunhua; Brown, J. M.; Hughes, A. M.; Dullemond, C. P.; McClure, M. K.

    2011-01-01

    Circumstellar disks are thought to experience a rapid 'transition' phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (0.''3 ∼ 40-75 AU) Submillimeter Array (SMA) observations of the 880 μm (340 GHz) dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using two-dimensional Monte Carlo radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA continuum visibilities and spectral energy distributions. The cavities in these disks are large (R cav = 15-73 AU) and substantially depleted of small (∼μm-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are relatively common among the millimeter-bright disk population, comprising at least 1 in 5 (20%) of the disks in the bright half (and ≥26% of the upper quartile) of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. A sufficient decrease of the dust optical depths in these cavities by particle growth would be difficult to achieve: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions-very young (∼1 Myr) brown

  14. Present status of superconducting cavity developments

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Nobuo; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    An R and D work of a superconducting (SC) cavity for the high intensity proton linac has begun at JAERI in collaboration with KEK. The RF field calculation and the structural analysis have been made to determine the cavity shape in the proton energy range between 100 and 1500 MeV. The results indicate the feasibility of a SC proton linac. A vertical test stand with clean room, water rinsing system, cavity evacuation pumping system, cryostat and data acquisition system has been installed to demonstrate the cavity performance. A single cell cavity of {beta}=0.5 has been fabricated and tested at the test stand to obtain the Q-value and the maximum surface electric field strength. The measured Q-values have been found to be high enough for our requirement while the field strength was limited to about 75% of the specification by the multipacting. We describe the preliminary design of the SC cavity, the overview of the vertical test stand and experimental results of the single cell cavity. (author)

  15. Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Trubert, D.; Le Naour, C.; Kratz, J.V.

    2002-01-01

    Fully relativistic molecular density-functional calculations of the electronic structures of hydrated, hydrolyzed and fluoride/chloride complexes have been performed for group-4 elements Zr, Hf, and element 104, Rf. Using the electronic density distribution data, relative values of the free energy change for hydrolysis and complex formation reactions were defined. The results show the following trend for the first hydrolysis step of the cationic species: Zr>Hf>Rf in agreement with experiments. For the complex formation in HF solutions, the trend to a decrease from Zr to Hf is continued with Rf, provided no hydrolysis takes place. At pH>0, further fluorination of hydrolyzed species or fluoro-complexes has an inversed trend in the group Rf≥Zr>Hf, with the difference between the elements being very small. For the complex formation in HCl solutions, the trend is continued with Rf, so that Zr>Hf>Rf independently of pH. A decisive energetic factor in hydrolysis or complex formation processes proved to be a predominant electrostatic metal-ligand interaction. Trends in the K d (distribution coefficient) values for the group-4 elements are expected to follow those of the complex formation

  16. On the exactness of the cavity method for weighted b-matchings on arbitrary graphs and its relation to linear programs

    International Nuclear Information System (INIS)

    Bayati, Mohsen; Borgs, Christian; Chayes, Jennifer; Zecchina, Riccardo

    2008-01-01

    We consider the general problem of finding the minimum weight b-matching on arbitrary graphs. We prove that, whenever the linear programing relaxation of the problem has no fractional solutions, then the cavity or belief propagation equations converge to the correct solution both for synchronous and asynchronous updating. (letter)

  17. Comparative study of abdominal cavity temporary closure techniques for damage control

    Directory of Open Access Journals (Sweden)

    MARCELO A. F. RIBEIRO JR

    Full Text Available ABSTRACT The damage control surgery, with emphasis on laparostomy, usually results in shrinkage of the aponeurosis and loss of the ability to close the abdominal wall, leading to the formation of ventral incisional hernias. Currently, various techniques offer greater chances of closing the abdominal cavity with less tension. Thus, this study aims to evaluate three temporary closure techniques of the abdominal cavity: the Vacuum-Assisted Closure Therapy - VAC, the Bogotá Bag and the Vacuum-pack. We conducted a systematic review of the literature, selecting 28 articles published in the last 20 years. The techniques of the bag Bogotá and Vacuum-pack had the advantage of easy access to the material in most centers and low cost, contrary to VAC, which, besides presenting high cost, is not available in most hospitals. On the other hand, the VAC technique was more effective in reducing stress at the edges of lesions, removing stagnant fluids and waste, in addition to acting at the cellular level by increasing proliferation and cell division rates, and showed the highest rates of primary closure of the abdominal cavity.

  18. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  19. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  20. Triangle islands and cavities on the surface of evaporated Cu(In, Ga)Se2 absorber layer

    International Nuclear Information System (INIS)

    Han Anjun; Zhang Yi; Liu Wei; Li Boyan; Sun Yun

    2012-01-01

    Highlights: ► Lots of uncommon triangle islands and cavities are found on (1 1 2) planes terminated by Se atoms of evaporated Cu(In, Ga)Se 2 thin films. ► Se ad-dimer as a nucleus, Cu atom diffusion from Cu(In, Ga)Se 2 grains brings the epitaxial triangle island. ► The triangle islands grow with a two-dimensional layered mode. ► The triangle cavities are formed due to the insufficient coalescence of triangle islands. ► The performance of solar cell without triangle islands is improved. - Abstract: Cu(In, Ga)Se 2 (CIGS) thin films are co-evaporated at a constant substrate temperature of 500 °C on the Mo/soda lime glass substrates. The structural properties and chemical composition of the CIGS films are studied by an X-ray diffractometer (XRD) and an X-ray fluorescent spectrometer (XRF), respectively. A scanning electron microscope (SEM) is used to study the surface morphology. Lots of uncommon triangle islands and cavities are found on some planes of the CIGS thin films. We investigate the formation mechanism of these triangle islands. It is found that the planes with the triangle islands are (1 1 2) planes terminated by Se atoms. Se ad-dimer as a nucleus, Cu diffusion from CIGS grains brings the epitaxial triangle islands which grow with a two-dimensional layered mode. The film with Cu/(Ga + In) = 0.94–0.98 is one key of the formation of these islands. The triangle cavities are formed due to the insufficient coalescence of triangle islands. The growth of triangle islands brings a compact surface with large layered grains and many jagged edges, but no triangle cavity. Finally, we compare the performance of solar cell with triangle islands and layered gains. It is found that the performance of solar cell with large layered gains is improved.

  1. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  2. Discrete vapour cavity model with improved timing of opening and collapse of cavities

    NARCIS (Netherlands)

    Bergant, A.; Tijsseling, A.S.; Vítkovský, J.P.; Simpson, A.R.; Lambert, M.F.

    2007-01-01

    Transient vaporous cavitation occurs in hydraulic piping systems when the liquid pressure falls to the vapour pressure. Cavitation may occur as a localized vapour cavity (large void fraction) or as distributed vaporous cavitation (small void fraction). The discrete vapour cavity model (DVCM) with

  3. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water

    International Nuclear Information System (INIS)

    Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian

    2017-01-01

    Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).

  4. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  5. Isotope effects in the solution of gases in liquids. Progress report, November 1, 1979-October 31, 1980

    International Nuclear Information System (INIS)

    Benson, B.B.; Krause, D. Jr.

    1980-09-01

    Research under this contract provides strong evidence for the existence of structure in liquid water. Application of a simple zero-point-energy argument to our data for the isotopic fractionation of nonpolar gases during aqueous solution shows that a dissolved gas molecule may be considered to occupy a cavity with a size characteristic of water and independent of the size of the solute molecule. For a cubical cavity model for water, the length of a side of the cube would be approximately 6.3 A at 0 0 C, while a spherical cavity model would have a dia of 6.8 A. The isotopic measurements in addition may lead to a more consistent set of diameters for the solute molecules. Precise new measurements show that the isotopic fractionation of nitrogen during solution is only slightly smaller than that for oxygen, despite the fact that the difference between the reciprocal masses of the 28 to 29 pair is only one-half the difference for the 32 to 34 pair. The cavity model provides a simple quantitative explanation for this result. Measurements on the polar molecules 12 C 16 O, 13 C 16 O, and 12 C 18 O do not fit the simple model, because of the asymmetrical distributions of their masses. This leads to a correlation between rotational and translational degrees of freedom, which affects the energies of the ground states of these heteronuclear molecules as they oscillate within the cavity

  6. Pacer processing: cavity inventory relationships

    International Nuclear Information System (INIS)

    Dietz, R.J.; Gritzo, L.A.

    1975-09-01

    The pacer cavity and its associated primary power loop comprise a recirculating system in which materials are introduced by a series of thermonuclear explosions while debris is continuously removed by radioactive decay, sorption phenomena, and deliberate processing. Safe, reliable, and economical realization of the Pacer concept depends on the removal and control of both noxious and valuable by-products of the fusion reaction. Mathematical relationships are developed that describe the quantities of materials that are introduced into the Pacer cavity by a series of discrete events and are removed continuously by processing and decay. An iterative computer program based on these relationships is developed that allows both the total cavity inventory and the amounts of important individual species to be determined at any time during the lifetime of the cavity in order to establish the effects of the thermonuclear event, the cavity, the flow, and various processing parameters on Pacer design requirements

  7. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    Science.gov (United States)

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  8. Search of massive star formation with COMICS

    Science.gov (United States)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  9. Design of rf conditioner cavities

    International Nuclear Information System (INIS)

    Govil, R.; Rimmer, R.A.; Sessler, A.; Kirk, H.G.

    1992-06-01

    Theoretical studies are made of radio frequency structures which can be used to condition electron beams so as to greatly reduce the stringent emittance requirements for successful lasing in a free-electron laser. The basic strategy of conditioning calls for modulating an electron beam in the transverse dimension, by a periodic focusing channel, while it traverses a series of rf cavities, each operating in a TM 210 mode. In this paper, we analyze the cavities both analytically and numerically (using MAFIA simulations). We find that when cylindrical symmetry is broken the coupling impedance can be greatly enhanced. We present results showing various performance characteristics as a function of cavity parameters, as well as possible designs for conditioning cavities

  10. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  11. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  12. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  13. Voltage control of cavity magnon polariton

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S., E-mail: kaurs3@myumanitoba.ca; Rao, J. W.; Gui, Y. S.; Hu, C.-M., E-mail: hu@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Yao, B. M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); National Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-07-18

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  14. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  15. Cavity pressure history of contained nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, C E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Knowledge of pressure in cavities created by contained nuclear explosions is useful for estimating the possibility of venting radioactive debris to the atmosphere. Measurements of cavity pressure, or temperature, would be helpful in evaluating the correctness of present code predictions of underground explosions. In instrumenting and interpreting such measurements it is necessary to have good theoretical estimates of cavity pressures. In this paper cavity pressure is estimated at the time when cavity growth is complete. Its subsequent decrease due to heat loss from the cavity to the surrounding media is also predicted. The starting pressure (the pressure at the end of cavity growth) is obtained by adiabatic expansion to the final cavity size of the vaporized rock gas sphere created by the explosion. Estimates of cavity size can be obtained by stress propagation computer codes, such as SOC and TENSOR. However, such estimates require considerable time and effort. In this paper, cavity size is estimated using a scheme involving simple hand calculations. The prediction is complicated by uncertainties in the knowledge of silica water system chemistry and a lack of information concerning possible blowoff of wall material during cavity growth. If wall material blows off, it can significantly change the water content in the cavity, compared to the water content in the ambient media. After cavity growth is complete, the pressure will change because of heat loss to the surrounding media. Heat transfer by convection, radiation and conduction is considered, and its effect on the pressure is calculated. Analysis of cavity heat transfer is made difficult by the complex nature of processes which occur at the wall where melting, vaporization and condensation of the gaseous rock can all occur. Furthermore, the melted wall material could be removed by flowing or dripping to the cavity floor. It could also be removed by expansion of the steam contained in the melt (blowoff) and by

  16. Disposal of low- and intermediate-level solid radioactive wastes in rock cavities

    International Nuclear Information System (INIS)

    1983-01-01

    This Guidebook summarizes the factors to be considered and the activities to be undertaken in the overall planning and development of a disposal system for solid or solidified low- and intermediate-level wastes in rock cavities. Aspects related to repository site selection, design, construction, operation, shutdown, surveillance, regulation and safety assessment are discussed here in general terms. They will be covered in greater technical detail in a separate document. This report considers the emplacement of wastes in categories II, III, IV and V, as defined in Table 3.1, in different kinds of cavities located at various depths from just below the surface to deep continental rock. The choice of the type of cavity and its depth and of the disposal site itself is related to the radiological protection requirements for the wastes concerned. The repositories considered include natural caves and abandoned mines as well as specially excavated cavities in various geological formations. Consideration is also given to hydrogeological, environmental and societal factors. The guidelines given in the report are made sufficiently general to cover a broad variety of different circumstances. Consequently, the practical application of these guidelines needs a case-by-case consideration which takes into account the local conditions, e.g. natural circumstances, the characteristics of the wastes and national and international regulations and practices

  17. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed

    Science.gov (United States)

    Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo

    2018-01-01

    Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.

  18. Superconducting cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland); Simrock, S.; Brand, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chase, B.; Carcagno, R.; Cancelo, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Koeth, T.W. [Rutgers - the State Univ. of New Jersey, NJ (United States)

    2006-07-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  19. Superconducting cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S.; Simrock, S.; Brand, A.; Chase, B.; Carcagno, R.; Cancelo, G.; Koeth, T.W.

    2006-01-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  20. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  1. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium

    Science.gov (United States)

    Doinikov, Alexander A.; Marmottant, Philippe

    2018-04-01

    The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.

  2. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  3. Image transmission through a stable paraxial cavity

    International Nuclear Information System (INIS)

    Gigan, Sylvain; Lopez, Laurent; Treps, Nicolas; Maitre, Agnes; Fabre, Claude

    2005-01-01

    We study the transmission of a monochromatic 'image' through a paraxial cavity. Using the formalism of self-transform functions, we show that a transverse degenerate cavity transmits the self-transform part of the image, with respect to the field transformation over one round-trip of the cavity. This formalism gives insight into the understanding of the behavior of a transverse degenerate cavity, complementary to the transverse mode picture. An experiment of image transmission through a hemiconfocal cavity shows the interest of this approach

  4. Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement

    International Nuclear Information System (INIS)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2010-01-01

    A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.

  5. Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement

    Science.gov (United States)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2010-04-01

    A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.

  6. Generation and control of optical frequency combs using cavity electromagnetically induced transparency

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Yu, Rong; Wu, Ying

    2018-02-01

    We explore theoretically the generation and all-optical control of optical frequency combs (OFCs) in photon transmission based on a combination of single-atom-cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Here an external control field is used to form the cavity dark mode of the CQED system. When the strengths of the applied EIT control field are appropriately tuned, enhanced comb generation can be achieved. We discuss the properties of the dark mode and clearly show that the formation of the dark mode enables the efficient generation of OFCs. In our approach, the comb spacing is determined by the beating frequency between the driving pump and seed lasers. Our demonstrated theory may pave the way towards all-optical coherent control of OFCs using a CQED architecture.

  7. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  8. Cryostat for TRISTAN superconducting cavity

    International Nuclear Information System (INIS)

    Mitsunobu, S.; Furuya, T.; Hara, K.

    1990-01-01

    Superconducting cavities generate rather high heat load of hundreds watts in one cryostat and have high sensitivity for pressure. We adopted usual pool-boiling type cooling for its stable pressure operation. Two 5-cell Nb cavities were installed in one flange type cryostat. Tuning mechanics actuated by a pulse-motor and a Piezo-electric element are set at outside of vacuum end flange. The design and performance of the cryostat for TRISTAN superconducting cavities are described. (author)

  9. Analytic solution of magnetic induction distribution of ideal hollow spherical field sources

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-12-01

    The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.

  10. Label-Free, Single Molecule Resonant Cavity Detection: A Double-Blind Experimental Study

    Directory of Open Access Journals (Sweden)

    Maria V. Chistiakova

    2015-03-01

    Full Text Available Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.

  11. Mechanisms of bands and spirals formation during the drying of watery solutions of mercury (II) chloride with agar-agar

    International Nuclear Information System (INIS)

    Suarez-DomInguez, Edgardo Jonathan; Betancourt-Mar, Juvencio Alberto

    2005-01-01

    It is proposed two mechanisms to explain the formation of periodic and non periodic bands and spirals as thin films of gelatinous aqueous solutions of mercury (II) chloride are dried. The first mechanism supposes an homogeneous drying, where the height of the film decreases at constant rate, forming Liesegang bands. The second mechanism implies a non homogeneous drying where an evaporation front drives the formation of periodic bands and spirals

  12. LARGE-SCALE FLOWS IN PROMINENCE CAVITIES

    International Nuclear Information System (INIS)

    Schmit, D. J.; Gibson, S. E.; Tomczyk, S.; Reeves, K. K.; Sterling, Alphonse C.; Brooks, D. H.; Williams, D. R.; Tripathi, D.

    2009-01-01

    Regions of rarefied density often form cavities above quiescent prominences. We observed two different cavities with the Coronal Multichannel Polarimeter on 2005 April 21 and with Hinode/EIS on 2008 November 8. Inside both of these cavities, we find coherent velocity structures based on spectral Doppler shifts. These flows have speeds of 5-10 km s -1 , occur over length scales of tens of megameters, and persist for at least 1 hr. Flows in cavities are an example of the nonstatic nature of quiescent structures in the solar atmosphere.

  13. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  14. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions.

    Science.gov (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang

    2014-08-14

    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  15. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Konomi, T., E-mail: konomi@ims.ac.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yasuda, F. [University of Tokyo, Bunkyo-ku, Tokyo 113-8654 (Japan); Furuta, F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853 (United States); Saito, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-11

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q{sub 0} was 1.5×10{sup 10} with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity

  16. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q 0 was 1.5×10 10 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and

  17. Helicobacter pylori-coccoid forms and biofilm formation

    DEFF Research Database (Denmark)

    Andersen, Leif Percival; Rasmussen, Lone

    2009-01-01

    be detected by PCR in water supplies. There is no substantial evidence for viable H. pylori persisting in water supplies. Epidemiological studies suggest that environmental water is a risk factor for H. pylori infection when compared with tap water, and formation of H. pylori biofilm cannot be excluded....... Helicobacter pylori does not seem to take part in biofilm formation in the oral cavity even though the bacterium may be detected....

  18. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    International Nuclear Information System (INIS)

    Brighli, M.

    1984-07-01

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO 2 2+ and UO 4 species of uranium VI is studied in aqueous solution (NaClO 4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO 4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO 2 2+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO 4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO 2 2+ and its complexes on mercury drop are proposed. 143 refs [fr

  19. Nanometer cavities studied by positron annihilation

    International Nuclear Information System (INIS)

    Mogensen, O.E.

    1992-01-01

    Positronium (Ps) is trapped in cavities in insulating solids, and the lifetime of ortho Ps is determined by the size of the cavity. The information on the properties of the cavities obtained by use of the standard slow positron beam and the 'normal' positron annihilation techniques is compared for several selected cases. (author)

  20. Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Janik; Kewes, Guenter; Schell, Andreas W.; Aichele, Thomas; Benson, Oliver [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Nuesse, Nils; Schoengen, Max; Loechel, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Hanke, Tobias; Leitenstorfer, Alfred [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Bratschitsch, Rudolf [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Technische Universitaet Chemnitz, Institut fuer Physik, Chemnitz (Germany)

    2012-05-15

    We demonstrate the ability to modify the emission properties and enhance the interaction strength of single-photon emitters coupled to nanophotonic structures based on metals and dielectrics. Assembly of individual diamond nanocrystals, metal nanoparticles, and photonic crystal cavities to meta-structures is introduced. Experiments concerning controlled coupling of single defect centers in nanodiamonds to optical nanoantennas made of gold bowtie structures are reviewed. By placing one and the same emitter at various locations with high precision, a map of decay rate enhancements was obtained. Furthermore, we demonstrate the formation of a hybrid cavity quantum electrodynamics system in which a single defect center is coupled to a single mode of a gallium phosphite photonic crystal cavity. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Predictions of laminar natural convection in heated cavities

    International Nuclear Information System (INIS)

    Winters, K.H.

    1982-06-01

    Several examples of laminar, natural convection in heated cavities are discussed with illustrative calculations. These include convection in a square cavity at high Rayleigh number; in a narrow cavity at moderate aspect ratio; in a rectangular cavity heated from below; in a trapezoidal cavity, and in a rectangular cavity containing a conducting obstruction. The steady equations for the velocity, pressure and temperature are solved in the Boussinesq approximation, using a standard Galerkin formulation of the finite-element method. (author)

  2. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  3. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    Science.gov (United States)

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  4. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available at exploring the methods of generating optical vortex beams. We will discuss a typical extra-cavity approach that harnesses digital holography through the use of a SLM. We consider vortex beam generation as the fundamental mode of a monolithic microchip laser...-cavity phase diffractive elements can result in the desired mode as the fundamental mode of the cavity with pure modal quality. This approach, although very attractive is insufficient for the generation of these modes in monolithic microchip lasers. A...

  5. Statistics of magnetoconductance in ballistic cavities

    International Nuclear Information System (INIS)

    Yang, X.; Ishio, H.; Burgdoerfer, J.

    1995-01-01

    The statistical properties of magnetoconductance in ballistic microcavities are investigated numerically. The distribution of conductance for chaotic cavities is found to follow the renormalized Porter-Thomas distribution suggested by random-matrix theory for the Gaussian ensemble while the conductance distribution of regular cavities in magnetic fields is nonuniversal and shifted towards the maximum value for a given number of open channels. The renormalized Porter-Thomas distribution implies a universal dependence of fluctuation amplitude on the mean conductance for chaotic cavities in the absence of time-reversal symmetry. The fluctuation amplitude for regular cavities is found to be larger than the saturation value of the fluctuation amplitude of chaotic cavities predicted by random-matrix theory. The change of the mean conductance as a function of the external magnetic field is consistent with semiclassical predictions

  6. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  7. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  8. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  9. Suppression of hydride precipitates in niobium superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-10-01

    Niobium hydride is a suspected contributor to degraded niobium superconducting radio-frequency (SRF) cavity performance by Q slope and Q disease. The concentration and distribution of hydrogen atoms in niobium can be strongly affected by the cavity processing treatments. This study provides guidance for cavity processing based on density functional theory calculations of the properties of common processing impurity species—hydrogen, oxygen, nitrogen, and carbon—in the body-centered cubic (bcc) niobium lattice. We demonstrate that some fundamental properties are shared between the impurity atoms, such as anionic character in niobium. The strain field produced, however, by hydrogen atoms is both geometrically different and substantially weaker than the strain field produced by the other impurities. We focus on the interaction between oxygen and hydrogen atoms in the lattice, and demonstrate that the elastic interactions between these species and the bcc niobium lattice cause trapping of hydrogen and oxygen atoms by bcc niobium lattice vacancies. We also show that the attraction of oxygen to a lattice vacancy is substantially stronger than the attraction of hydrogen to the vacancy. Additionally, hydrogen dissolved in niobium tetrahedral interstitial sites can be trapped by oxygen, nitrogen and possibly carbon atoms dissolved in octahedral interstitial sites. These results indicate that the concentration of oxygen in the bcc lattice can have a strong impact on the ability of hydrogen to form detrimental phases. Based on our results and a literature survey, we propose a mechanism for the success of the low-temperature annealing step applied to niobium SRF cavities. We also recommend further examination of nitrogen and carbon in bcc niobium, and particularly the role that nitrogen can play in preventing detrimental hydride phase formation.

  10. Progress on SCRF cavity manufacturing activities at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Dwivedi, J.; Mundra, G.; Srivastava, P.; Joshi, S.C.; Gupta, P.D.

    2015-01-01

    The work on development of SCRF cavities and associated technologies is ongoing at RRCAT to support its upcoming projects involving SC LINAC. RRCAT is also a member of Indian Institution Fermilab Collaboration (IIFC) working on development of SCRF cavities and associated technologies. Subsequent to 1.3 GHz single cell SCRF cavities, a 650 MHz single cell, a 1.3 GHz five cell and a 1.3 GHz nine cell SCRF cavities have been fabricated. These were tested for their mechanical, vacuum and RF qualifications at RRCAT for pre qualifications. The 1.3 GHz five cell SCRF cavity and 650 MHz single cell SCRF cavity has been processed and successfully tested at Fermi lab under IIFC. The 1.3 GHz five-cell cavity has achieved E acc of 20.3 MV/m at 2 K and 42 MV/m at 1.5-1.7 K with Q o of 2 x 10 10 . The 650 MHz single cell cavity has achieved the E acc > 19.3 MV/m with Q> 4x 10 10 at 2K. A 15 kW Electron Beam Welding (EBW) Machine has also been installed and commissioned at RRCAT as part of special infrastructure for development of SCRF cavities. One each 1.3 GHz and 650 MHz single cell SCRF cavities have also been fabricated using this EBW facility. Present focus of work is towards development of 650 MHz (β=0.92) multi-cell SCRF cavities. This paper will present the various technology development efforts on SCRF cavity fabrication, cavity test results and future plans. (author)

  11. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems

  12. Electrocatalytic oxidation of alcohols on single gold particles in highly ordered SiO2 cavities

    International Nuclear Information System (INIS)

    Li, Na; Zhou, Qun; Tian, Shu; Zhao, Hong; Li, Xiaowei; Adkins, Jason; Gu, Zhuomin; Zhao, Lili; Zheng, Junwei

    2013-01-01

    In the present work, we report a new and simple approach for preparing a highly ordered Au (1 1 1) nanoparticle (NP) array in SiO 2 cavities on indium-doped tin oxide (ITO) electrodes. We fabricated a SiO 2 cavity array on the surface of an ITO electrode using highly ordered self-assembly of polystyrene spheres as a template. Gold NPs were electrodeposited at the bottom of the SiO 2 cavities, and single gold NPs dominated with (1 1 1) facets were generated in each cavity by annealing the electrode at a high temperature. Such (1 1 1) facets were the predominate trait of the single gold particle which exhibited considerable electrocatalytic activity toward oxidation of methanol, ethanol, and glycerol. This has been attributed to the formation of incipient hydrous oxides at unusually low potential on the specific (1 1 1) facet of the gold particles. Moreover, each cavity of the SiO 2 possibly behaves as an independent electrochemical cell in which the methanol molecules are trapped; this produces an environment advantageous to catalyzing electrooxidation. The oxidation of methanol on the electrodes is a mixed control mechanism (both by diffusion and electrode kinetics). This strategy both provided an approach to study electrochemical reactions on a single particle in a microenvironment and may supply a way to construct alcohols sensors

  13. Nucleation and growth characteristics of cavities during the early stages of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.; Nutt, S.R.

    1997-01-01

    Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions

  14. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  15. Spherical and ellipsoidal cavities in European sandstones: a product of sinking carbonate dissolution front

    Czech Academy of Sciences Publication Activity Database

    Adamovič, Jiří; Mikuláš, Radek; Navrátil, Tomáš

    2015-01-01

    Roč. 59, Supplement 1 (2015), s. 123-149 ISSN 0372-8854 R&D Projects: GA AV ČR IAA300130806; GA ČR GA13-28040S Institutional support: RVO:67985831 Keywords : symmetrical cavities * solutional landforms * cavernous weathering * tafoni * sandstone * concretions * carbonate dissolution front Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.103, year: 2015

  16. Investigation of superconducting niobium 1170 MHz cavities

    International Nuclear Information System (INIS)

    Anashin, V.V.; Bibko, S.I.; Fadeyev, E.I.

    1988-01-01

    The design, fabrication and experiments with superconducting L-band single cell cavities are described. These cavities model a cell of an accelerating RF structure. The cavities have been fabricated from technical grade and higher purity grade sheet niobium using deep-drawing, electron beam welding and chemical polishing. They have spherical geometry and are excited in the TM 010 mode. A computerized set-up was used for cavity tests. Qo=1.5 x 10 9 and E acc = 4.3 MV/m were obtained in the cavity made of higher purity grade niobium. 6 references, 8 figures, 3 tables

  17. Amplitude variations of ELF radio waves in the Earth-ionosphere cavity with the day-night non-uniformity

    Science.gov (United States)

    Galuk, Yu P.; Nickolaenko, A. P.; Hayakawa, M.

    2018-04-01

    The real structure of lower ionosphere should be taken into account when modeling the sub-ionospheric radio propagation in the extremely low frequency (ELF) band and studying the global electromagnetic (Schumann) resonance of the Earth-ionosphere cavity. In the present work we use the 2D (two dimensional) telegraph equations (2DTE) for evaluating the effect of the ionosphere day-night non-uniformity on the electromagnetic field amplitude at the Schumann resonance and higher frequencies. Properties of the cavity upper boundary were taken into account by the full wave solution technique for realistic vertical profiles of atmosphere conductivity in the ambient day and ambient night conditions. We solved the electromagnetic problem in a cavity with the day-night non-uniformity by using the 2DTE technique. Initially, the testing of the 2DTE solution was performed in the model of the sharp day-night interface. The further computations were carried out in the model of the smooth day-night transition. The major attention was directed to the effects at propagation paths "perpendicular" or "parallel" to the solar terminator line. Data were computed for a series of frequencies, the comparison of the results was made and interpretation was given to the observed effects.

  18. Hydroforming of superconducting TESLA cavities

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.

    2003-01-01

    Seamless fabrication of single-cell and multi-cell TESLA shape cavities by hydroforming has been developed at DESY. The forming takes place by expanding the seamless tube with internal water pressure while simultaneously swaging it axially. Tube radius and axial displacement are being computer controlled in accordance with results of FEM simulations and the experimentally obtained strain-stress curve of tube material. Several Nb single cell cavities have been produced. A first bulk Nb double cell cavity has been fabricated. The Nb seamless tubes have been produced by spinning and deep drawing. Surface treatment such as buffered chemical polishing, (BCP), electropolishing (EP), high pressure ultra pure water rinsing (HPR), annealing at 800degC and baking at ca. 150degC have been applied. The best single cell bulk Nb cavity has reached an accelerating gradient of Eacc > 42 MV/m after ca. 250 μm BCP and 100 μm EP. Several bimetallic NbCu single cell cavities of TESLA shape have been fabricated. The seamless tubes have been produced by explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 mm and 3 mm respectively. The RF performance of NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m after ca. 180 μm BCP, annealing at 800degC and baking at 140degC for 30 hours. The degradation of the quality factor Qo after repeated quenching is moderate, after ca. 150 quenches it reaches the saturation point of Qo=1.4x10 10 at low field. This indicates that on the basis of RF performance and material costs the combination of hydroforming with tube cladding is a very promising option. (author)

  19. Hydroforming of Tesla Cavities at Desy

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.; Gonin, I.; Zhelezov, I.; Khabibullin, T.; Kneisel, P.; Saito, K.

    2000-01-01

    Since several years the development of seamless niobium cavity fabrication by hydro forming is being pursued at DESY. This technique offers the possibility of lower cost of fabrication and perhaps better rf performance of the cavities because of the elimination of electron-beam welds, which in the standard fabrication technique have sometimes lead to inferior cavity performance due to defects. Several single cell 1300 MHz cavities have been formed from high purity seamless niobium tubes, which are under computer control expanded with internal pressure while simultaneously being swaged axially. The seamless tubes have been made by either back extrusion and flow forming or by spinning or deep drawing. Standard surface treatment techniques such as high temperature post purification, buffered chemical polishing (BCP), electropolishing (EP) and high pressure ultra pure water rinsing (HPR) have been applied to these cavities. The cavities exhibited high Q - values of 2 x 10 10 at 2K and residual resistances as low as 3 n(Omega) after the removal of a surface layer of app. 100 (micro)m by BCP. Surprisingly, even at high gradients up to the maximum measured values of E acc ∼ 33 MV/m the Q-value did not decrease in the absence of field emission as often observed. After electropolishing of additional 100 (micro)m one of the cavities reached an accelerating gradient of E acc (ge) 42 MV/m

  20. Harnessing the mode mixing in optical fiber-tip cavities

    International Nuclear Information System (INIS)

    Podoliak, Nina; Horak, Peter; Takahashi, Hiroki; Keller, Matthias

    2017-01-01

    We present a systematic numerical study of Fabry–Pérot optical cavities with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can be fabricated by laser machining of fiber tips and are promising systems for achieving strong coupling between atomic particles and an optical field as required for quantum information applications. Using a mode mixing matrix method, we analyze the cavity optical eigenmodes and corresponding losses depending on a range of cavity-shape parameters, such as mirror radius of curvature, indentation depth and cavity length. The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We investigate the effect of the mode mixing on the coherent atom-cavity coupling as well as the mode matching between the cavity and a single-mode optical fiber. While the mode mixing is associated with increased cavity losses, it can also lead to an enhancement of the local optical field. We demonstrate that around the resonance between the fundamental and 2nd order Laguerre–Gaussian modes of the cavity it is possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center while still maintaining low cavity losses and high cavity-fiber optical coupling. (paper)

  1. Coupling of an overdriven cavity

    International Nuclear Information System (INIS)

    Garbin, H.D.

    1993-01-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD's ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled

  2. A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity

    NARCIS (Netherlands)

    Cohen, M.A.; Yuan, M.; de Jong, B.W.A.; Beukers, Ewout; Bosman, S.J.; Steele, G.A.

    2017-01-01

    We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant

  3. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  4. Prototype superconducting radio-frequency cavity for LEP

    CERN Multimedia

    1985-01-01

    This niobium superconducting cavity was part of the prototype stages for an upgrade to LEP, known as LEP-2. Superconducting cavities would eventually replace the traditional copper cavities and allow beam energies of 100 GeV.

  5. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  6. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-01-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs

  7. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  8. Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model

    International Nuclear Information System (INIS)

    Chen Changyong; Zhang Xiaolong; Deng Zhijiao; Gao Kelin; Feng Mang

    2006-01-01

    We introduce a general displacement operator to investigate the unconventional geometric quantum computation with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms, based on a previous scheme [S.-B. Zheng, Phys. Rev. A 70, 052320 (2004)] for the large-detuning interaction of the atoms with the cavity mode. The analytical results we present will be helpful for experimental realization of geometric quantum computation in real cavities

  9. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  10. Design approach for the development of a cryomodule for compact crab cavities for Hi-Lumi LHC

    Science.gov (United States)

    Pattalwar, Shrikant; Jones, Thomas; Templeton, Niklas; Goudket, Philippe; McIntosh, Peter; Wheelhouse, Alan; Burt, Graeme; Hall, Ben; Wright, Loren; Peterson, Tom

    2014-01-01

    A prototype Superconducting RF (SRF) cryomodule, comprising multiple compact crab cavities is foreseen to realise a local crab crossing scheme for the "Hi-Lumi LHC", a project launched by CERN to increase the luminosity performance of LHC. A cryomodule with two cavities will be initially installed and tested on the SPS drive accelerator at CERN to evaluate performance with high-intensity proton beams. A series of boundary conditions influence the design of the cryomodule prototype, arising from; the complexity of the cavity design, the requirement for multiple RF couplers, the close proximity to the second LHC beam pipe and the tight space constraints in the SPS and LHC tunnels. As a result, the design of the helium vessel and the cryomodule has become extremely challenging. This paper assesses some of the critical cryogenic and engineering design requirements and describes an optimised cryomodule solution for the evaluation tests on SPS.

  11. A water-filled radio frequency accelerating cavity

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to study water-filled resonant cavities as a high-energy density source to drive high-current accelerator configurations. Basic considerations lead to the expectation that a dielectric-filled cavity should be able to store up to e/e o as much energy as a vacuum one with the same dimensions and thus be capable of accelerating a proportionately larger amount of charge before cavity depletion occurs. During this project, we confirmed that water-filled cavities with e/e o = 60-80 did indeed behave with the expected characteristics, in terms of resonant TM modes and cavity Q. We accomplished this result with numerical cavity eigenvalue codes; fully electromagnetic, two-dimensional, particle-in-cell codes; and, most significantly, with scaled experiments performed in water-filled aluminum cavities. The low-power experiments showed excellent agreement with the numerical results. Simulations of the high-field, high-current mode of operation indicated that charged-particle loss on the dielectric windows, which separate the cavity from the beamline, must be carefully controlled to avoid significant distortion of the axial fields

  12. Development of the L-band superconducting cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Ota, T.; Kakutani, N.; Sukenobu, S. [Toshiba Corp., Yokohama, Kanagawa (JP)] [and others

    2000-02-01

    R and D activities on superconducting cavities in 1998 at TOSHIBA are presented. An L-band single-cell niobium cavity with four ports on the beam pipes was fabricated in our company and tested at KEK. The cryostat and refrigerator system for the cavity were designed and fabricated. The cryostat installed the cavity was tested in low temperature. R and D of hydroforming to fabricate seamless cavities is also presented. (author)

  13. Development of the L-band superconducting cavity system

    International Nuclear Information System (INIS)

    Ota, T.; Kakutani, N.; Sukenobu, S.

    2000-01-01

    R and D activities on superconducting cavities in 1998 at TOSHIBA are presented. An L-band single-cell niobium cavity with four ports on the beam pipes was fabricated in our company and tested at KEK. The cryostat and refrigerator system for the cavity were designed and fabricated. The cryostat installed the cavity was tested in low temperature. R and D of hydroforming to fabricate seamless cavities is also presented. (author)

  14. The CEBAF separator cavity resonance control system

    International Nuclear Information System (INIS)

    M. Wissmann; C. Hovater; A. Guerra; T. Plawski

    2005-01-01

    The CEBAF energy upgrade will increase the maximum beam energy from 6 GeV to 12 GeV available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three halls. The resulting increase in RF separator cavity gradient and subsequent increase in RF power needed for these higher energies will require the cavities to have active resonance control. Currently, at the present 4 to 6 GeV energies, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW) which is maintained at a constant temperature of 95 Fahrenheit. This approach is no longer feasible and an active resonance control system that controls both water temperature and flow has been designed and built. The system uses a commercial PLC with embedded PID controls to regulate water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately, closed loop control will be maintained by monitoring each cavity's reflected power. This paper describes this system

  15. Beam tests and operation of superconducting cavities

    International Nuclear Information System (INIS)

    Akai, Kazunori

    1990-01-01

    Beam tests and operation of superconducting cavities conducted since the third workshop on RF superconductivity (Argonne, Sep. 1987) are reported in this paper. The paper is concerned particularly with electron machines. Storage and acceleration of the beam are discussed, focusing on the CERN test in SPS, the DESY test in PETRA, the superconducting injector at Darmstadt, and the KEK beam tests in T-AR. Then, long-term performance of the cavity in the ring is discussed focusing on Eacc (max) and O-value, environmental conditions, and operational experience in T-MR. RF controllability is addressed, centering on the Robinson stability, cavity tuning loop, quench detection and interlocks, recovery procedure, field calibration, and phase adjustment. Higher order modes are also discussed. Superconducting cavities have been operated successfully in accelerators. It has been confirmed that the superconducting cavities can be used stably for experimental use. For more than 5000 hours the cavities have indicated no essential degradation of the cavity performance. The study of long-term performance should be continued in longer range of period. (N.K.)

  16. Quasi-periodicity and chaos in a differentially heated cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mercader, Isabel; Batiste, Oriol [Universitat Politecnica de Catalunya, Dep. Fisica Aplicada, Barcelona (Spain); Ruiz, Xavier [Univesitat Rovira i Virgili, Lab. Fisica Aplicada, Facultat de Ciencies Quimiques, Tarragona (Spain)

    2004-11-01

    Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject to a lateral thermal gradient are studied numerically. The chosen geometry and the values of the material parameters are relevant to semiconductor crystal growth experiments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation, the periodic solution loses stability in a subcritical Neimark-Sacker bifurcation, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via some typical scenarios in the bifurcation of periodic solutions. After a complicated bifurcation diagram of the stable limit cycle of the 1:10 resonance horn, a soft transition to chaos is obtained. (orig.)

  17. Superconducting cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    Czarski, Tomasz; Koprek, Waldemar; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan; Brandt, Alexander; Chase, Brian; Carcagno, Ruben; Cancelo, Gustavo; Koeth, Timothy W.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. FPGA-based controller, supported by Matlab system, was applied. Electrical model of a resonator was used for design of a control system. Calibration of the signal path is considered. Identification of cavity parameters has been carried out for adaptive control algorithm. Feed-forward and feedback modes were applied in operating the cavities. Required performance has been achieved; i.e. driving on resonance during filling and field stabilization during flattop time, while keeping reasonable level of the power consumption. Representative results of the experiments are presented for different levels of the cavity field gradient

  18. Beam orbit control in TESLA superconducting cavities from dipole mode measurements

    International Nuclear Information System (INIS)

    Paparella, R.

    2006-09-01

    The knowledge of the electromagnetic interaction between a beam and the surrounding vacuum chamber is necessary in order to optimize the accelerator performance in terms of stored current. Many instability phenomena may occur in the machine because of the fields produced by the beam and acting back on itself. Basically, these fields, wake-fields, produce an extra voltage, affecting the longitudinal dynamics, and a transverse kick which deflects the beam. In this thesis we present the results of theoretical and experimental investigations to demonstrate the possibility of using the dipolar wake fields of the superconducting accelerating to measure the beam transverse position. After an introduction to the ILC project and to the TESLA technology, of superconducting RF cavities, we will approach the problem from an analytical point of view in chapter 2. The expression of the wake fields in a cylindrical cavity will be investigated and the electromagnetic field modes derived from Maxwell equations in an original way. Graphical solutions of a Matlab program simulating the fields due to a particle passing through a pill-box cavity along a generic path will be shown. The interaction of the beam with higher order modes (HOM) in the TESLA cavities has been studied in the past at the TESLA Test Facility (TTF) in order to determine whether the modes with the highest loss factor are sufficiently damped. Starting from the results obtained before 2003, HOM signals has been better observed and examined in order to use dipole modes to find the electric center of each cavity in the first TTF accelerating module. The results presented in chapter 3 will show that by monitoring the HOM signal amplitude for two polarizations of a dipole mode, one can measure electrical center of the modes with a resolution of 50 μm. Moreover, a misalignment of the first TTF module with respect to the gun axis has been predicted using cavity dipole modes. Alternatives to this method are described in

  19. Elliptical superconducting RF cavities for FRIB energy upgrade

    Science.gov (United States)

    Ostroumov, P. N.; Contreras, C.; Plastun, A. S.; Rathke, J.; Schultheiss, T.; Taylor, A.; Wei, J.; Xu, M.; Xu, T.; Zhao, Q.; Gonin, I. V.; Khabiboulline, T.; Pischalnikov, Y.; Yakovlev, V. P.

    2018-04-01

    The multi-physics design of a five cell, βG = 0 . 61, 644 MHz superconducting elliptical cavity being developed for an energy upgrade in the Facility for Rare Isotope Beams (FRIB) is presented. The FRIB energy upgrade from 200 MeV/u to 400 MeV/u for heaviest uranium ions will increase the intensities of rare isotope beams by nearly an order of magnitude. After studying three different frequencies, 1288 MHz, 805 MHz, and 644 MHz, the 644 MHz cavity was shown to provide the highest energy gain per cavity for both uranium and protons. The FRIB upgrade will include 11 cryomodules containing 5 cavities each and installed in 80-meter available space in the tunnel. The cavity development included extensive multi-physics optimization, mechanical and engineering analysis. The development of a niobium cavity is complete and two cavities are being fabricated in industry. The detailed design of the cavity sub-systems such as fundamental power coupler and dynamic tuner are currently being pursued. In the overall design of the cavity and its sub-systems we extensively applied experience gained during the development of 650 MHz low-beta cavities at Fermi National Accelerator Laboratory (FNAL) for the Proton Improvement Plan (PIP) II.

  20. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  1. Analysis of solutes in groundwaters from the Rustler Formation at and near the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Robinson, K.L.

    1997-09-01

    Between 1976 and 1986, groundwater samples from more than 60 locations in the vicinity of the Waste Isolation Pilot Plant site were collected and analyzed for a variety of major, minor, and trace solutes. Most of the samples were from the Rustler Formation (the Culebra Dolomite, the Magenta Dolomite, or the zone at the contact between the Rustler and underlying Salado Formations) or the Dewey Lake Red Beds. The analytical data from the laboratories are presented here with accompanying discussions of sample collection methods, supporting field measurements, and laboratory analytical methods. A comparison of four data sets and a preliminary evaluation of the data for the major solutes (Cl - , SO 4 -2 , Na, K, Ca, and Mg) shows that the data for samples analyzed by UNC/Bendix for SNL seem to be the most reliable, but that at some locations, samples representative of the native, unperturbed groundwater have not been collected. At other locations, the water chemistry has apparently changed between sampling episodes

  2. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model

    Science.gov (United States)

    Advani, Madhu; Bunin, Guy; Mehta, Pankaj

    2018-03-01

    A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur’s consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up to large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.

  3. Mounting system for optical frequency reference cavities

    Science.gov (United States)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  4. Q0 Degradation of LANL 700-MHZ β = 0.64 Elliptical Cavities and ANL 340 MHZ Spoke Cavities

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Chan, Kwok-Chi D.; Edwards, Randall L.; Gentzlinger, Robert C.; Kelley, John Patrick; Krawczyk, Frank L.; Madrid, Michael A.; Montoya, Debbie I.; Schrage, Dale L.; Shapiro, Alan H.

    2002-01-01

    The quality factor (Q 0 ) of most of the six LANL β = 0.64 700-MHz 5-cell elliptical cavities starts to drop at E acc = 8-10 MV/m, which may be related to multipacting. Residual resistances of these cavities were measured to be 5.0-7.6 n(Omega). The sensitivity of surface resistance to the external magnetic field was measured to be 0.22 n(Omega)/mG. Q disease tests have shown no significant Q 0 degradation for both elliptical cavities and a spoke cavity with our 100 (micro)m BCP.

  5. Superconducting Radio-Frequency Cavities for Low-Beta Particle Accelerators

    Science.gov (United States)

    Kelly, Michael

    2012-01-01

    High-power proton and ion linac projects based on superconducting accelerating cavities are driving a worldwide effort to develop and build superconducting cavities for beta < 1. Laboratories and institutions building quarter-wave, halfwave and single- or multi-spoke cavities continue to advance the state of the art for this class of cavities, and the common notion that low-beta SRF cavities fill a need in niche applications and have low performance is clearly no longer valid. This article reviews recent developments and results for SC cavity performance for cavities with beta up to approximately 0.5. The considerable ongoing effort on reduced beta elliptical cell cavities is not discussed. An overview of associated subsystems required to operate low-beta cavities, including rf power couplers and fast and slow tuners, is presented.

  6. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  7. Photons in a spherical cavity

    International Nuclear Information System (INIS)

    Ionescu-Pallas, N.; Vlad, V.I.

    1999-01-01

    The spectrum of black body radiation at the absolute temperature T, in an ideal spherical cavity of radius R, is studied. The departures from the classical predictions of Planck's theory, due to the discrete energies of the radiation quanta confined inside the cavity, depend on the adiabatic invariant RT and are significant for RT≤ 1 cm K. Special attention was paid to evidence sudden changes in the spectrum intensities, forbidden bands of frequency, as well as major modifications of the total energy for RT≤ 1 cm K. Similar effects were present in case of a cubic cavity too. (authors)

  8. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  9. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  10. Fractal apertures in waveguides, conducting screens and cavities analysis and design

    CERN Document Server

    Ghosh, Basudeb; Kartikeyan, M V

    2014-01-01

    This book deals with the design and analysis of fractal apertures in waveguides, conducting screens and cavities using numerical electromagnetics and field-solvers. The aim is to obtain design solutions with improved accuracy for a wide range of applications. To achieve this goal, a few diverse problems are considered. The book is organized with adequate space dedicated for the design and analysis of fractal apertures in waveguides, conducting screens, and cavities, microwave/millimeter wave applications followed by detailed case-study problems to infuse better insight and understanding of the subject. Finally, summaries and suggestions are given for future work. Fractal geometries were widely used in electromagnetics, specifically for antennas and frequency selective surfaces (FSS). The self-similarity of fractal geometry gives rise to a multiband response, whereas the  space-filling nature of the fractal geometries makes it an efficient element in antenna and FSS unit cell miniaturization. Until now, no e...

  11. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  12. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Science.gov (United States)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  13. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  14. Assessing the role of secondary electron emission on the characteristics of 6-cavity magnetrons with transparent cathode through particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hao; Joshi, Ravi P., E-mail: rjoshi@odu.edu [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246 (United States); Prasad, Sarita; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Ludeking, Lars [ATK Mission Systems, 8560 Cinderbed Road, Suite 700, Newington, Virginia 22122 (United States)

    2014-05-21

    Effects of secondary electron emission (SEE) on the performance of a 6-cavity relativistic magnetron with transparent cathodes are probed through particle-in-cell simulations. Appropriate relations for the secondary electron yield have been developed and used. For comparisons, separate simulations have been performed with- and without electron cascading. Simulation results seem to indicate SEE to be detrimental to the power output due to deviations in the starting trajectories of secondary electrons, and the reduced fraction with synchronized rotational velocity. A higher reduction in output power is predicted with electron cascading, though mode competition was not seen at the 0.65 T field. A possible solution to mitigating SEE in magnetrons for high power microwave applications would be to alter the surface properties of emitting electrodes through irradiation, which can lead to graphitic film formation.

  15. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  16. Preparation and handling of superconducting RF cavities

    International Nuclear Information System (INIS)

    Furuya, Takaaki

    1990-01-01

    The present paper outlines the recent preparation methods for superconducting cavities used in various laboratories and universities, and reports the problems of the cavity fabrication at KEK as an example of mass production. Preparation and handling are first addressed, focusing on material, fabrication, surface treatment, rinsing, clean environment, and heat treatment. Cavity production at KEK is then described, centering on defects on the surface and clean environments. Field gradients of more than 20 MV/m have been obtained by 1.5-3 GHz single cavities, for multi-cell cavities Eacc of 10 MV/m are available at any frequency range. The successful construction of thirty-two cavities for TRISTAN at KEK is due to the careful checking of the surface and quality control of all processes against the surface defects and contaminations. Eacc of 5 MV/m has been achieved by 94 % of the TRISTAN cavities at the first cold test, but 6 % of them had to be reworked because of the surface defects. These defects could not be detected by an X-ray photograph or visual inspections during the fabrication processes. (N.K.)

  17. The sink effect of the second-phase particle on the cavity swelling in RAFM steel under Ar-ion irradiation at 773 K

    International Nuclear Information System (INIS)

    Shen, T.L.; Wang, Z.G.; Yao, C.F.; Sun, J.R.; Li, Y.F.; Wei, K.F.; Zhu, Y.B.; Pang, L.L.; Cui, M.H.; Wang, J.; Zhu, H.P.

    2013-01-01

    The microstructures of the Chinese RAFM steel irradiated at 773 K with 792 MeV Ar-ions to fluences of 2.3 × 10 20 and 4.6 × 10 20 ions/m 2 , respectively, were investigated by using a transmission electron microscope with the cross-sectional specimen technique. Preferential nucleation and enhanced growth of the cavities at the interface between the second-phase particles and the matrix were observed in the irradiated specimen. The observation of the cavity-particle complex at lower dose indicated that the dose threshold for a cavity formation at the interface between MC particle and matrix was lower than that in matrix. With increasing irradiation dose, it was found that the second-phase particles changing their shape by attached cavities occurred. Furthermore, the role of the particle–matrix interface on nucleation and growth of the attached cavity with an increase of the dose were discussed in this work

  18. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  19. Status of the LCLS-II Accelerating Cavity Production

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Ed [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Marhauser, Frank [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Fitzpatrick, Jarrod A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Preble, Joe [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wilson, Katherine M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Grimm, C. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burrill, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gonnella, Daniel [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-05-01

    Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II.

  20. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  1. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    Science.gov (United States)

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  2. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  3. Beam induced rf cavity transient voltage

    International Nuclear Information System (INIS)

    Kramer, S.L.; Wang, J.M.

    1998-10-01

    The authors calculate the transient voltage induced in a radio frequency cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ω r of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω ο . The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(hω ο t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting rf cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kinds of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  4. Three-Dimensional Morphology of a Coronal Prominence Cavity

    Science.gov (United States)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; hide

    2010-01-01

    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  5. Morphological resilience to flow fluctuations of fine sediment deposits in bank lateral cavities

    Science.gov (United States)

    Juez, C.; Thalmann, M.; Schleiss, A. J.; Franca, M. J.

    2018-05-01

    Lateral cavities are built in the banks of rivers for several purposes: to create harbors, to capture sediment, to keep a central navigable channel (i.e., Casiers de Girardon in the Rhone river) or to promote the formation of aquatic habitats if a limited amount of sediment is captured, providing hydraulic and morphologic diversity (i.e., the case of Japanese Wandos). This work is focused on this latter purpose: promotion of hydraulic and morphologic diversity. In these scenarios, an increase in the flow discharge in the main channel may, however, re-mobilize the deposit of sediment inside these lateral embayments and cause a sudden increase of the sediment concentration and turbidity in the main channel. It is thus of interest to characterize the resistance and resilience of these sedimentary deposits when the main channel is subjected to high flow or flushing events. Laboratory tests were carried out for five different normalized geometries of the cavities installed in the banks of an open channel and for five hydrographs with different levels of unsteadiness. Water depth, sediment deposit mass, sediment concentration and area covered by the settled sediments were recorded throughout each experiment. Although sediment deposits established at equilibrium before the flushing events are different depending on the geometry of the cavities, generally, they are recovered after being flushed by the high flow events. It is shown that the resistance and resilience of the sediment deposits are strongly dependent on the flow field and the mass exchange between the main channel and the cavities. This mass exchange is governed by the geometry of the cavities and the magnitude of the hydrographs applied.

  6. Cavity-enhanced spectroscopy and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Gianluca [CNR-Istituto Nazionale di Ottica (INO), Pozzuoli (Italy); Loock, Hans-Peter (ed.) [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2014-07-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.

  7. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  8. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  9. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  10. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  11. Driven-Dissipative Supersolid in a Ring Cavity

    Science.gov (United States)

    Mivehvar, Farokh; Ostermann, Stefan; Piazza, Francesco; Ritsch, Helmut

    2018-03-01

    Supersolids are characterized by the counterintuitive coexistence of superfluid and crystalline order. Here we study a supersolid phase emerging in the steady state of a driven-dissipative system. We consider a transversely pumped Bose-Einstein condensate trapped along the axis of a ring cavity and coherently coupled to a pair of degenerate counterpropagating cavity modes. Above a threshold pump strength the interference of photons scattered into the two cavity modes results in an emergent superradiant lattice, which spontaneously breaks the continuous translational symmetry towards a periodic atomic pattern. The crystalline steady state inherits the superfluidity of the Bose-Einstein condensate, thus exhibiting genuine properties of a supersolid. A gapless collective Goldstone mode correspondingly appears in the superradiant phase, which can be nondestructively monitored via the relative phase of the two cavity modes on the cavity output. Despite cavity-photon losses the Goldstone mode remains undamped, indicating the robustness of the supersolid phase.

  12. Efficacy of XP-endo Finisher File in Removing Calcium Hydroxide from Simulated Internal Resorption Cavity.

    Science.gov (United States)

    Keskin, Cangül; Sariyilmaz, Evren; Sariyilmaz, Öznur

    2017-01-01

    The aim of this study was to evaluate the effect of supplementary use of XP-endo Finisher file, passive ultrasonic activation (PUI), EndoActivator (EA), and CanalBrush (CB) on the removal of calcium hydroxide (CH) paste from simulated internal resorption cavities. The root canals of 110 extracted single-rooted teeth with straight canals were prepared up to size 50. The specimens were split longitudinally, and standardized internal resorption cavities were prepared with burs. The cavities and root canals were filled with CH paste. The specimens were divided into 5 groups as follows: XP-endo Finisher, EA, PUI, CB, and syringe irrigation (SI). The root canals were irrigated with 5.25% NaOCl and 17% EDTA for 2 minutes, respectively. Apart from the SI group, both solutions were activated by using tested techniques for 1 minute. The quantity of CH remnants on resorption cavities was scored. Data were analyzed by using Kruskal-Wallis H and Mann-Whitney U tests. XP-endo Finisher and PUI removed significantly more CH than SI, EA, and CB (P  .05). Differences among SI, EA, and CB were also non-significant (P > .05). None of the tested techniques render the simulated internal resorption cavities free of CH debris. XP-endo Finisher and PUI were superior to SI, CB, and EA. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 05: Not all geometries are equivalent for magnetic field Fano cavity tests

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, Victor N.; Rogers, David W.O. [Carleton University (Canada)

    2016-08-15

    The coupling of MRI and radiation treatment systems for the application of magnetic resonance guided radiation therapy necessitates a reliable magnetic field capable Monte Carlo (MC) code. In addition to the influence of the magnetic field on dose distributions, the question of proper calibration has arisen due to the several percent variation of ion chamber and solid state detector responses in magnetic fields when compared to the 0 T case (Reynolds et al., Med Phys, 2013). In the absence of a magnetic field, EGSnrc has been shown to pass the Fano cavity test (a rigorous benchmarking tool of MC codes) at the 0.1 % level (Kawrakow, Med.Phys, 2000), and similar results should be required of magnetic field capable MC algorithms. To properly test such developing MC codes, the Fano cavity theorem has been adapted to function in a magnetic field (Bouchard et al., PMB, 2015). In this work, the Fano cavity test is applied in a slab and ion-chamber-like geometries to test the transport options of an implemented magnetic field algorithm in EGSnrc. Results show that the deviation of the MC dose from the expected Fano cavity theory value is highly sensitive to the choice of geometry, and the ion chamber geometry appears to pass the test more easily than larger slab geometries. As magnetic field MC codes begin to be used for dose simulations and correction factor calculations, care must be taken to apply the most rigorous Fano test geometries to ensure reliability of such algorithms.

  14. Design of 325 MHz spoke cavity

    International Nuclear Information System (INIS)

    Sha Peng; Huang Hong; Dai Jianping; Zu Guoquan; Li Han

    2012-01-01

    Spoke cavity can be used in the low-energy section of the proton accelerator. It has many significant advantages: compact structure, high value of R/Q, etc. The ADS (Accelerator Driven System) project will adopt many spoke cavities with different β values. Therefore, IHEP has began the research of β=0.14, 325 MHz spoke cavity. In this pa per, the dimensions, RF performances and mechanical properties of it are studied. (authors)

  15. JLab SRF Cavity Fabrication Errors, Consequences and Lessons Learned

    International Nuclear Information System (INIS)

    Marhauser, Frank

    2011-01-01

    Today, elliptical superconducting RF (SRF) cavities are preferably made from deep-drawn niobium sheets as pursued at Jefferson Laboratory (JLab). The fabrication of a cavity incorporates various cavity cell machining, trimming and electron beam welding (EBW) steps as well as surface chemistry that add to forming errors creating geometrical deviations of the cavity shape from its design. An analysis of in-house built cavities over the last years revealed significant errors in cavity production. Past fabrication flaws are described and lessons learned applied successfully to the most recent in-house series production of multi-cell cavities.

  16. Formation of metal and dielectric liners using a solution process for deep trench capacitors.

    Science.gov (United States)

    Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor.

  17. Comparison of Dentin Permeability After Tooth Cavity Preparation with Diamond Bur and Er:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masoumeh Hasani Tabatabaei

    2016-05-01

    Full Text Available Objectives: The aim of this study was to compare the permeability of dentin after using diamond bur and Er:YAG laser.Materials and Methods: Seventy-two recently extracted, intact, and restoration-free human permanent molars were used in this study. The samples were randomly divided into three groups of 24 each and class I cavities were prepared as follows. Group 1: High speed diamond bur with air and water spray. Group 2: Er:YAG laser. Group 3: Er:YAG laser followed by additional sub-ablative laser treatment. Each group consisted of two subgroups with different cavity depths of 2mm and 4mm.  The entire cavity floor was in dentin. Two samples from each subgroup were observed under scanning electron microscope (SEM. The external surfaces of other samples were covered with nail varnish (except the prepared cavity and immersed in 0.5% methylene blue solution for 48 hours.  After irrigation of samples with water, they were sectioned in bucco-lingual direction. Then, the samples were evaluated under a stereomicroscope at ×160 magnification. The data were analyzed using two-way ANOVA and Tukey’s HSD test.Results: Two-way ANOVA showed significant difference in permeability between groups 2 and 3 (laser groups with and without further treatment and group 1 (bur group. The highest permeability was seen in the group 1. There was no significant difference in dentin permeability between groups 2 and 3 and no significant difference was observed between different depths (2mm and 4mm.Conclusion: Cavities prepared by laser have less dentin permeability than cavities prepared by diamond bur.

  18. Fast thermometry for superconducting rf cavity testing

    International Nuclear Information System (INIS)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; Fermilab

    2007-01-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity

  19. Fast thermometry for superconducting rf cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  20. Estimating tree cavity distributions from historical FIA data

    Science.gov (United States)

    Mark D. Nelson; Charlotte. Roy

    2012-01-01

    Tree cavities provide important habitat features for a variety of wildlife species. We describe an approach for using historical FIA data to estimate the number of trees containing cavities during the 1990s in seven states of the Upper Midwest. We estimated a total of 280 million cavity-containing trees. Iowa and Missouri had the highest percentages of cavity-...

  1. Radiation-pressure-mediated control of an optomechanical cavity

    Science.gov (United States)

    Cripe, Jonathan; Aggarwal, Nancy; Singh, Robinjeet; Lanza, Robert; Libson, Adam; Yap, Min Jet; Cole, Garrett D.; McClelland, David E.; Mavalvala, Nergis; Corbitt, Thomas

    2018-01-01

    We describe and demonstrate a method to control a detuned movable-mirror Fabry-Pérot cavity using radiation pressure in the presence of a strong optical spring. At frequencies below the optical spring resonance, self-locking of the cavity is achieved intrinsically by the optomechanical (OM) interaction between the cavity field and the movable end mirror. The OM interaction results in a high rigidity and reduced susceptibility of the mirror to external forces. However, due to a finite delay time in the cavity, this enhanced rigidity is accompanied by an antidamping force, which destabilizes the cavity. The cavity is stabilized by applying external feedback in a frequency band around the optical spring resonance. The error signal is sensed in the amplitude quadrature of the transmitted beam with a photodetector. An amplitude modulator in the input path to the cavity modulates the light intensity to provide the stabilizing radiation pressure force.

  2. Fouling of Structured Surfaces during Pool Boiling of Aqueous Solutions

    International Nuclear Information System (INIS)

    Esawy, M.

    2011-01-01

    Bubble characteristics in terms of density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over the other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment which is prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led heat exchanger designers frequently to maintain the surface temperature below the boiling point if fouling occurs, e.g. in thermal seawater desalination plants. The present study investigates the crystallization fouling of various structured surfaces during nucleate pool boiling of CaSO 4 solutions to shed light into their fouling behaviour compared with that of plain surfaces for the same operating conditions. As for the experimental part, a comprehensive set of clean and fouling experiments was performed rigorously. The structured tubes included low finned tubes of different fin densities, heights and materials and re-entrant cavity Turbo-B tube types.The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 k W/m 2 and CaSO 4 concentrations of 1.2 and 1.6 g/L. For the sake of comparison, similar runs were performed on plain stainless steel and copper tubes.Overall for the finned tubes, the experimental results showed a significant reduction of fouling resistances of up to 95% compared to those of the stainless steel and copper plain tubes. In addition, the scale formation that occurred on finned tubes was primarily a scattered and thin crystalline layer which differs significantly from those of plain tubes which suffered from a thick and homogenous layer of deposit with strong adhesion. Higher fin densities and lower fin heights always led to better antifouling performance for all investigated finned tubes. It was also shown that the surface material strongly affects the scale formation of finned tubes i

  3. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  4. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  5. Electromagnetic Design of a Radiofrequency Cavity

    Science.gov (United States)

    Montoya Soto, G. R.; Duarte Galvan, Carlos; Monzon, Ildefonso Leon; Podesta Lerma, Pedro Luis manuel; Valerio-Lizarraga, C. A.

    2017-10-01

    Electromagnetic and mechanical studies have been performed with the aim of build a RF cavity in the S-Band (2998 MHz), the design takes into consideration the relativistic change in the electron velocity through the acceleration cavity. Four cavity cases were considered at different input energies, 50 KeV, 100 KeV, 150 KeV, with output energies of 350 KeV, the designs show good acceleration efficiency and beam coherence comparable to the one created in the cathode.

  6. SC-cavity operation via WG-transformer

    International Nuclear Information System (INIS)

    Dwersteg, B.

    1990-01-01

    Varying beam currents in storage rings like PETRA and HERA strongly change the match condition of the generator-cavity system. To maintain optimum energy transfer variable input coupling is needed. A variable waveguide transformer was developed which covers transformation ratios of 0.2 to 5. Additionally this device allows to change the cavity phase independently. The parameters of a system consisting of generator, transformer and superconducting cavity under operation in a storage ring will be discussed. (author)

  7. Optical microfiber-based photonic crystal cavity

    International Nuclear Information System (INIS)

    Yu, Yang; Sun, Yi-zhi; Li, Zhi-yuan; Ding, Wei; Andrews, Steve

    2016-01-01

    Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications. (paper)

  8. Acoustic trapping in bubble-bounded micro-cavities

    Science.gov (United States)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  9. Disposal of low- and intermediate-level solid radioactive wastes in rock cavities. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This Guidebook summarizes the factors to be considered and the activities to be undertaken in the overall planning and development of a disposal system for solid or solidified low- and intermediate-level wastes in rock cavities. Aspects related to repository site selection, design, construction, operation, shutdown, surveillance, regulation and safety assessment are discussed here in general terms. They will be covered in greater technical detail in a separate document. This report considers the emplacement of wastes in categories II, III, IV and V, as defined in Table 3.1, in different kinds of cavities located at various depths from just below the surface to deep continental rock. The choice of the type of cavity and its depth and of the disposal site itself is related to the radiological protection requirements for the wastes concerned. The repositories considered include natural caves and abandoned mines as well as specially excavated cavities in various geological formations. Consideration is also given to hydrogeological, environmental and societal factors. The guidelines given in the report are made sufficiently general to cover a broad variety of different circumstances. Consequently, the practical application of these guidelines needs a case-by-case consideration which takes into account the local conditions, e.g. natural circumstances, the characteristics of the wastes and national and international regulations and practices.

  10. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    Energy Technology Data Exchange (ETDEWEB)

    Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Olszynski, Marcin [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Mielniczek-Brzóska, Ewa [Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University of Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa (Poland)

    2015-11-15

    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.

  11. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer

  12. Momentum diffusion for coupled atom-cavity oscillators

    International Nuclear Information System (INIS)

    Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.

    2006-01-01

    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light

  13. An exit cavity was crucial to the polymerase activity of the early ribosome.

    Science.gov (United States)

    Fox, George E; Tran, Quyen; Yonath, Ada

    2012-01-01

    The emergence of an RNA entity capable of synthesizing peptides was a key prebiotic development. It is hypothesized that a precursor of the modern ribosomal exit tunnel was associated with this RNA entity (e.g., "protoribosome" or "bonding entity") from the earliest time and played an essential role. Various compounds that can bind and activate amino acids, including extremely short RNA chains carrying amino acids, and possibly di- or tripeptides, would have associated with the internal cavity of the protoribosome. This cavity hosts the site for peptide bond formation and adjacent to it a relatively elongated feature that could have evolved to the modern ribosomal exit tunnel, as it is wide enough to allow passage of an oligopeptide. When two of the compounds carrying amino acids or di- or tripeptides (to which we refer, for simplicity, as small aminoacylated RNAs) were in proximity within the heart of the protoribosome, a peptide bond could form spontaneously. The growing peptide would enter the nearby cavity and would not disrupt the attachment of the substrates to the protoribosome or interfere with the subsequent attachment of additional small aminoacylated RNAs. Additionally, the presence of the peptide in the cavity would increase the lifetime of the oligopeptide in the protoribosome. Thus, subsequent addition of another amino acid would be more likely than detachment from the protoribosome, and synthesis could continue. The early ability to synthesize peptides may have resulted in an abbreviated RNA World.

  14. Formation of coherent structures in a class of realistic 3D unsteady flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Clercx, H.J.H.; Klapp, J.; Medina, A.; Cros, A.; Vargas, C.

    2013-01-01

    The formation of coherent structures in three-dimensional (3D) unsteady laminar flows in a cylindrical cavity is reviewed. The discussion concentrates on two main topics: the role of symmetries and fluid inertia in the formation of coherent structures and the ramifications for the Lagrangian

  15. Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.

    Science.gov (United States)

    Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q

    2017-05-26

    Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.

  16. Enhanced photoelastic modulation in silica phononic crystal cavities

    Science.gov (United States)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  17. Analysis of performance limitations for superconducting cavities

    International Nuclear Information System (INIS)

    J. R. Delayen; L. R. Doolittle; C. E. Reece

    1998-01-01

    The performance of superconducting cavities in accelerators can be limited by several factors, such as: field emission, quenches, arcing, rf power; and the maximum gradient at which a cavity can operate will be determined by the lowest of these limitations for that particular cavity. The CEBAF accelerator operates with over 300 cavities and, for each of them, the authors have determined the maximum operating gradient and its limiting factor. They have developed a model that allows them to determine the distribution of gradients that could be achieved for each of these limitations independently of the others. The result of this analysis can guide an R and D program to achieve the best overall performance improvement. The same model can be used to relate the performance of single-cell and multi-cell cavities

  18. Cavity Cooling a Single Charged Levitated Nanosphere

    Science.gov (United States)

    Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.

    2015-03-01

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  19. Design of 650 MHz, β=0.61, 5-cell SRF cavity and development of single cell niobium cavity

    International Nuclear Information System (INIS)

    Seth, Sudeshna; Som, Sumit; Bhattacharyya, Pranab

    2015-01-01

    In India, DAE laboratories and other institutes are now actively involved in research and development activities on SRF cavities and associated technologies for the proposed high current, high energy proton linear accelerators like ISNS/IADS and also for the FERMILAB PIP-II program under Indian institutions-Fermilab collaboration (IIFC). As part of the above activities, VECC, Kolkata, has been involved in the design, analysis and development of a 650 MHz, β=0.61, 5-cell elliptical shape Superconducting RF linac cavity. RF design involves optimization of the geometry to get acceptable values of field enhancement factors (magnetic and electric), R/Q , Geometric factor, coupling factor and field flatness. This paper describes the RF design using 2-D superfish and 3-D CST Microwave studio and multipacting analysis using 2-D Multipac2.1 and 3-D CST Particle Studio. A prototype 1-cell aluminum cavity and a prototype 5-cell copper cavity have been fabricated using die-punch assembly designed for fabrication of elliptical half-cells to check the procedures for forming and to make sure the desired frequency and field flatness could be obtained. RF characterization has been carried out for both the prototypes using Vector Network Analyzer and Bead pull measurement set up.The fabrication of a single-cell niobium cavity has been carried out indigenously and with the help of Electron Beam Welding (EBW) facility at IUAC, New Delhi. CMM measurement and RF characterization of the niobium half cells and full cell cavities have been carried out. This paper describes the development and measurement of prototype cavities and single cell niobium cavity. (author)

  20. Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock

    Science.gov (United States)

    Li, Wei; Einstein, Herbert H.

    2017-11-01

    When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.

  1. Anticrab cavities for the removal of spurious vertical bunch rotations caused by crab cavities

    Directory of Open Access Journals (Sweden)

    G. Burt

    2008-09-01

    Full Text Available Many particle accelerators are proposing the use of crab cavities to correct for accelerator crossing angles or for the production of short bunches in light sources. These cavities produce a rotation to the bunch in a well-defined polarization plane. If the plane of the rotation does not align with the horizontal axis of the accelerator, the bunch will receive a small amount of spurious vertical bunch rotation. For accelerators with small vertical beam sizes and large beam-beam effects, this can cause significant unwanted effects. In this paper we propose the use of a 2nd smaller crab cavity in the vertical plane in order to cancel this effect and investigate its use in numerical simulations.

  2. In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids

    Science.gov (United States)

    Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko

    2012-11-01

    Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the

  3. Alfvenic resonant cavities in the solar atmosphere

    International Nuclear Information System (INIS)

    Hollweg, J.V.

    1984-01-01

    We investigate the propagation of Alfven waves in a simple medium consisting of three uniform layers; each layer is characterized by a different value for the Alfven speed, νsub(A). We show how the central layer can act as a resonant cavity under quite general conditions. If the cavity is driven externally, by an incident wave in one of the outer layers, there result resonant transmission peaks, which allow large energy fluxes to enter the cavity from outside. The transmission peaks result from the destructive interference between a wave which leaks out of the cavity, and a directly reflected wave. We show that there are two types of resonances. The first type occurs when the cavity has the largest (or smallest) of the three Alfven speeds; this situation occurs on coronal loops. The second type occurs when the cavity Alfven speed is intermediate between the other two values of νsub(A); this situation may occur on solar spicules. Significant heating of the cavity can occur if the waves are damped. We show that if the energy lost to heat greatly exceeds the energy lost by leakage out of the cavity, then the cavity heating can be independent of the damping rate. This conclusion is shown to apply to coronal resonances and to the spicule resonances. This conclusion agrees with a point made by Ionson in connection with the coronal resonances. Except for a numerical factor of order unity, we recover Ionson's expression for the coronal heating rate. However, Ionson's qualities are much too large. For solar parameters, the maximum quality is of the order of 100, but the heating is independent of the damping rate only when dissipation reduces the quality to less than about 10. (WB)

  4. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.

    Science.gov (United States)

    Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D

    2018-03-05

    Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.

  5. Upgraded cavities for the positron accumulator ring of the APS

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.; Mangra, D.

    1997-01-01

    Upgraded versions of cavities for the APS positron accumulator ring (PAR) have been built and are being tested. Two cavities are in the PAR: a fundamental 9.8-MHz cavity and a twelfth harmonic 117.3-MHz cavity. Both cavities have been manufactured for higher voltage operation with improved Q-factors, reliability, and tuning capability. Both cavities employ current-controlled ferrite tuners for control of the resonant frequency. The harmonic cavity can be operated in either a pulsed mode or a CW mode. The rf properties of the cavities are presented

  6. Setting Up Simulations of Failure Scenarios for a Crab Cavity in the Nominal LHC

    CERN Document Server

    Yee, B

    2010-01-01

    The crab cavity (CC) represents a possible solution for the problem of the reduction of the luminosity due to a crossing angle. The CC apply a transversal kick on the beam particles that varies with the longitudinal position along the bunch in order to produce an effective head-head collision and to increase the geometry luminosity. For that reason the BE-ABP group at CERN has been performing studies for the implementation of the CC in the LHC. Because machine protection is a critical element of LHC operation, it is essential to study the failure scenarios of the superconducting crab cavity and the possible resulting damage impact and well as to find possible mitigation measures. For this purpose we set up simulation tools to model CC failures in the nominal LHC.

  7. Mechanical design and fabrication of power feed cavity test setup

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Dhavle, A.S.; Sharma, Vijay; Sarkar, Shreya; Kumar, Mahendra; Nayak, Susanta; Barnwal, Rajesh; Jayaprakash, D.; Mondal, J.; Nimje, V.T.; Mittal, K.C.; Gantayet, L.M.

    2013-01-01

    Power feed cavity set up consists of nine number of accelerating cavity and eight numbers of coupling cavity for testing of power feed cavity with coupling flange for 2856 MHz S band standing wave coupled cavity linac. When we are assembling the cavity and applying the pressure, its resonance frequency changes with applied pressure/load. After some critical pressure/load frequency change becomes negligible or zero. This set up will be used to find out assembly performance of power feed cavity and its coupler. Top four cavity or eight half cells as well as bottom four cavity or eight half cells will be brazed separately. Power feed cavity will be sandwiched between this two brazed cavity assemblies. This paper discuss about linear motion bush, linear motion rod, load cell, hydraulic actuator, power pack, stepper motor PLC control, jig boring, alignment, tolerances and assembly procedure for this test setup. (author)

  8. Study of CSR longitudinal bunch compression cavity

    International Nuclear Information System (INIS)

    Yin Dayu; Li Peng; Liu Yong; Xie Qingchun

    2009-01-01

    The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring (CSR)is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch,which can be produced by non-adiabatic compression of bunch implemented by a fast compression with 90 degree rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF-voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET-FT-1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238 U 72+ with 250 MeV/u will be compressed from 200 ns to 50 ns.The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80 kV, and the cavity can be used to compress heavy ions in the CSR. (authors)

  9. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  10. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  11. Formation of hydrated layers in PMMA thin films in aqueous solution

    International Nuclear Information System (INIS)

    Akers, Peter W.; Nelson, Andrew R.J.; Williams, David E.; McGillivray, Duncan J.

    2015-01-01

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  12. Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers

    International Nuclear Information System (INIS)

    Lau, Ting Ting; Lee, Li Qi Priscilyn; Leong, Wenyan; Wang, Dong-An

    2012-01-01

    Primary hepatocyte is probably the preferred cell for cell therapy in liver regeneration. However, its non-ideal proliferation capacity and rapid loss of phenotype during 2D culture compromises the quality and quantity of the transplanted hepatocytes, resulting in variable success rates of this treatment. Many studies have shown that the formation of 3D hepatocellular spheroids aids in the maintenance of liver-specific functions in hepatocytes. However, many of the methodologies employed require a sophisticated set-up or specialized equipment which makes it uneconomical to scale up for clinical applications. In this study, we have developed dual-functioning genipin crosslinked gelatin microspheres that serve as cell carriers as well as porogens for delivering the model cells and also for creating cavities. The cells were first seeded onto genipin crosslinked gelatin microspheres for attachment, followed by encapsulation in alginate hydrogel. Collagenase, MMP-9, was introduced either in the culture media or mixed with alginate precursor solution to allow microsphere degradation for creating cavities within the gel bulk. Accordingly, the cells proliferate within the cavities, forming hepatocellular aggregates while the alginate hydrogel serves as a confinement, restricting the size and the shape of the aggregates to the size of the cavities. In addition, the final hepatocellular aggregates could be harvested from the system by removing the alginate hydrogel via citrate treatment. Therefore, this versatile platform not only has the advantage of injectability and simplicity, the cellular aggregates generated are in a controlled size and shape and can be extracted from the system. (paper)

  13. Application of Nondimensional Dynamic Influence Function Method for Eigenmode Analysis of Two-Dimensional Acoustic Cavities

    Directory of Open Access Journals (Sweden)

    S. W. Kang

    2014-04-01

    Full Text Available This paper establishes an improved NDIF method for the eigenvalue extraction of two-dimensional acoustic cavities with arbitrary shapes. The NDIF method, which was introduced by the authors in 1999, gives highly accurate eigenvalues despite employing a small number of nodes. However, it needs the inefficient procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues and mode shapes. The paper proposes a practical approach for overcoming the inefficient procedure by making the final system matrix equation of the NDIF method into a form of algebraic eigenvalue problem. The solution quality of the proposed method is investigated by obtaining the eigenvalues and mode shapes of a circular, a rectangular, and an arbitrarily shaped cavity.

  14. Scheme for quantum state manipulation in coupled cavities

    Science.gov (United States)

    Lin, Jin-Zhong

    By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.

  15. X-ray imaging of superconducting radio frequency cavities

    Science.gov (United States)

    Musser, Susan Elizabeth

    The goal of this research was to develop an improved diagnostic technique to identify the location of defects that limit superconducting radio frequency (SRF) cavity performance during cavity testing or in existing accelerators. SRF cavities are primarily constructed of niobium. Electrons within the metal of a cavity under high electric field gradient have a probability of tunneling through the potential barrier. i e. leave the surface or are field emitted in regions where defects are encountered. Field emitted electrons are accelerated in the electric fields within the cavity. The electrons can have complicated trajectories and strike the cavity walls thus producing x-rays via Coulomb interactions and/or bremsstrahlung radiation. The endpoint energy of an x-ray spectrum predicts the electron maximum final kinetic energy within the cavity. Field emission simulations can then predict the source of the field-emitted electrons and the defect(s). In a multicell cavity the cells are coupled together and act as a set of coupled oscillators. There are multiple passbands of excitation for a multicell structure operating in a particular mode. For different passbands of operation the direction and amplitude of the fields within a cavity change from that of the normal accelerating mode. Field emitted electrons have different trajectories depending on the mode and thus produce x-rays in different locations. Using a collimated sodium iodide detector and subjecting a cavity to multiple passband modes at high electric field gradient the source of a cavity's x-rays can be determined. Knowing the location of the x-rays and the maximum electron kinetic energy; field emission simulations for different passband modes can be used to determine and verify the source of the field emitted electrons from mode to mode. Once identified, the defect(s) can be repaired or modifications made to the manufacturing process.

  16. Chlorination and chloramination of aminophenols in aqueous solution: oxidant demand and by-product formation.

    Science.gov (United States)

    Mehrez, O Abou; Dossier-Berne, F; Legube, B

    2015-01-01

    Chlorination and monochloramination of aminophenols (AP) were carried out in aqueous solution at 25°C and at pH 8.5. Oxidant demand and disinfection by-product formation were determined in excess of oxidant. Experiments have shown that chlorine consumption of AP was 40-60% higher than monochloramine consumption. Compared with monochloramination, chlorination of AP formed more chloroform and haloacetic acids (HAA). Dichloroacetic acid was the major species of HAA. Chloroform and HAA represented, respectively, only 1-8% and 14-15% of adsorbable organic halides (AOX) by monochloramination but up to 29% and 39% of AOX by chlorination.

  17. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  18. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  19. Laser frequency modulator for modulating a laser cavity

    Science.gov (United States)

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  20. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.