WorldWideScience

Sample records for cavity formation solute

  1. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation. (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stabil- ity region is identified. Bifurcation analysis is done by smoothly varying the cavity loss ...

  2. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  3. Water entry without surface seal: Extended cavity formation

    KAUST Repository

    Mansoor, Mohammad M.

    2014-03-01

    We report results from an experimental study of cavity formation during the impact of superhydrophobic spheres onto water. Using a simple splash-guard mechanism, we block the spray emerging during initial contact from closing thus eliminating the phenomenon known as \\'surface seal\\', which typically occurs at Froude numbers Fr= V0 2/(gR0) = O(100). As such, we are able to observe the evolution of a smooth cavity in a more extended parameter space than has been achieved in previous studies. Furthermore, by systematically varying the tank size and sphere diameter, we examine the influence of increasing wall effects on these guarded impact cavities and note the formation of surface undulations with wavelength λ =O(10)cm and acoustic waves λa=O(D0) along the cavity interface, which produce multiple pinch-off points. Acoustic waves are initiated by pressure perturbations, which themselves are generated by the primary cavity pinch-off. Using high-speed particle image velocimetry (PIV) techniques we study the bulk fluid flow for the most constrained geometry and show the larger undulations ( λ =O (10cm)) have a fixed nature with respect to the lab frame. We show that previously deduced scalings for the normalized (primary) pinch-off location (ratio of pinch-off depth to sphere depth at pinch-off time), Hp/H = 1/2, and pinch-off time, τ α (R0/g) 1/2, do not hold for these extended cavities in the presence of strong wall effects (sphere-to-tank diameter ratio), ε = D 0/Dtank 1/16. Instead, we find multiple distinct regimes for values of Hp/H as the observed undulations are induced above the first pinch-off point as the impact speed increases. We also report observations of \\'kinked\\' pinch-off points and the suppression of downward facing jets in the presence of wall effects. Surprisingly, upward facing jets emanating from first cavity pinch-off points evolve into a \\'flat\\' structure at high impact speeds, both in the presence and absence of wall effects.

  4. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  5. Source mechanisms of a collapsing solution mine cavity

    Science.gov (United States)

    Lennart Kinscher, Jannes; Cesca, Simone; Bernard, Pascal; Contrucci, Isabelle; Mangeney, Anne; Piguet, Jack Pierre; Bigarre, Pascal

    2016-04-01

    The development and collapse of a ~200 m wide salt solution mining cavity was seismically monitored in the Lorraine basin in northeastern France. Seismic monitoring and other geophysical in situ measurements were part of a large multi-parameter research project founded by the research "group for the impact and safety of underground works" (GISOS), whose database is being integrated in the EPOS platform (European Plate Observing System). The recorded microseismic events (~ 50,000 in total) show a swarm-like behaviour, with clustering sequences lasting from seconds to days, and distinct spatiotemporal migration. The majority of swarming signals are likely related to detachment and block breakage processes, occurring at the cavity roof. Body wave amplitude patterns indicate the presence of relatively stable source mechanisms, either associated with dip-slip and/or tensile faulting. However, short inter-event times, the high frequency geophone recordings, and the limited network station coverage often limits the application of classical source analysis techniques. In order to deal with these shortcomings, we examined the source mechanisms through different procedures including modelling of observed and synthetic waveforms and amplitude spectra of some well located events, as well as modelling of peak-to-peak amplitude ratios for most of the detected events. The latter approach was used to infer the average source mechanism of many swarming events at once by using a single three component station. To our knowledge this approach is applied here for the first time and represents an useful tool for source studies of seismic swarms and seismicity clusters. The results of the different methods are consistent and show that at least 50 % of the microseismic events have remarkably stable source mechanisms, associated with similarly oriented thrust faults, striking NW-SE and dipping around 35-55°. Consistent source mechanisms are probably related to the presence of a

  6. Cavities

    Science.gov (United States)

    ... mother's bacteria from being passed to the child. Treatment of Cavities Fluoride Fillings Root canal or tooth extraction If ... to help the world be well. From developing new therapies that treat and prevent disease to helping people ...

  7. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the ... insight of the system dynamics. He's variational method is adopted to obtain the standard sech-type and the not- ... larger variety of systems such as physical [2–4], chem- ical [5], mathematical [6], and ...

  8. Experimental observations of effects of inert gas on cavity formation during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present.

  9. Stable, streamlined and helical cavity formation by the impact of Leidenfrost spheres

    Science.gov (United States)

    Mansoor, Mohammad; Vakarelski, Ivan; Marston, Jeremy; Truscott, Tadd; Thoroddsen, Sigurdur

    2016-11-01

    This work reports results from an experimental study on the formation of stable-streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. The Leidenfrost effect encapsulates the sphere by a vapor layer to prevent any physical contact with the surrounding liquid. This phenomenon is essential for the pacification of acoustic rippling along the cavity interface to result in a stable-streamlined cavity wake. Such a streamlined configuration experiences drag coefficients an order of magnitude lower than those acting on room temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers Re0 >= 1 . 4 ×105 and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. This helical configuration has 40 - 55 % smaller overall force coefficients than those obtained in the formation of stable cavity wakes.

  10. Cavities

    Science.gov (United States)

    ... Additional Content Medical News Cavities ˈkav-ət-ē (Dental Caries) By James T. Ubertalli, DMD, Private Practice, Hingham, ... access to dental care, and better treatment for tooth decay and periodontal disease. When teeth are lost, chewing is greatly hindered, and speaking ...

  11. Scaled-particle theory analysis of cylindrical cavities in solution.

    Science.gov (United States)

    Ashbaugh, Henry S

    2015-04-01

    The solvation of hard spherocylindrical solutes is analyzed within the context of scaled-particle theory, which takes the view that the free energy of solvating an empty cavitylike solute is equal to the pressure-volume work required to inflate a solute from nothing to the desired size and shape within the solvent. Based on our analysis, an end cap approximation is proposed to predict the solvation free energy as a function of the spherocylinder length from knowledge regarding only the solvent density in contact with a spherical solute. The framework developed is applied to extend Reiss's classic implementation of scaled-particle theory and a previously developed revised scaled-particle theory to spherocylindrical solutes. To test the theoretical descriptions developed, molecular simulations of the solvation of infinitely long cylindrical solutes are performed. In hard-sphere solvents classic scaled-particle theory is shown to provide a reasonably accurate description of the solvent contact correlation and resulting solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted to measured values of the contact correlation provides a quantitative free energy. Applied to the Lennard-Jones solvent at a state-point along the liquid-vapor coexistence curve, however, classic scaled-particle theory fails to correctly capture the dependence of the contact correlation. Revised scaled-particle theory, on the other hand, provides a quantitative description of cylinder solvation in the Lennard-Jones solvent with a fitted interfacial free energy in good agreement with that determined for purely spherical solutes. The breakdown of classical scaled-particle theory does not result from the failure of the end cap approximation, however, but is indicative of neglected higher-order curvature dependences on the solvation free energy.

  12. Evaluation of ocular prosthesis biofilm and anophthalmic cavity contamination after use of three cleansing solutions

    Directory of Open Access Journals (Sweden)

    Regina Márcia Zuccolotto Felippe Paranhos

    2007-02-01

    Full Text Available In addition to an initial socket discomfort, ocular prosthesis (OP installation may allow the adherence of fungi and/or bacteria due to the superficial characteristics of the prosthesis' material, use of inadequate cleansing solutions and methods, or because the void located between the internal portion of the prosthesis and the anophthalmic cavity (AC mucosa. Objective: The aim of this study was to evaluate OP biofilm formation and the level of contamination of the internal portion of the OP and the AC in 24 patients. Material and Methods: Material was collected from the AC at the beginning of the study and 15 days after cleansing of the OP with 3 cleansing solutions: a neutral liquid soap, a multiuse solution for contact lens (Complete and 0.12% chlorhexidine (Periogard. The collected materials were sowed in Petri dishes containing selective media for aerobic and facultative microorganisms, specifically staphylococci (Hipersalt agar with egg yolk, aerobic microorganisms (Brain Heart Infusion Blood Agar, streptococci (Mitis salivarius Agar, gram-negative bacilli (MacConkey Agar and yeasts (Chromagar CandidaTM, incubated at 35ºC or 37ºC and the number of colony forming units were counted. Data were analyzed statistically by ANOVA, Friedman's test and Spearman's correlation. Results: Aerobic microorganisms, gram-negative bacilli and S. aureus were found in the OP biofilm and in the AC. There was statistically significant difference (p<0.05 between the number of microorganisms before and after the use of the cleansing solutions. Conclusion: There was positive correlation with respect to the microorganisms present in the OP biofilm and AC for the 4 proposed treatments, indicating that the decrease of OP contamination leads to AC contamination as well.

  13. Formation of nano-cavities in dielectrics: influence of equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L.; Mezel, C.; Travaille, G.; Chimier, B.; Schurtz, G.; Tikhonchuk, V.T. [CELIA, 33 - Talence (France); Bourgeade, A.; Hebert, D. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France)

    2008-09-15

    Tight focusing of a sub-picosecond laser pulse in a transparent dielectric provides a mean for localized deposition and plasma formation. A micro-explosion in a confined geometry results in a sub-micron cavity formation. Our numerical simulations show the cavity size is strongly dependent on the parameters of the equation of state such as the Gruneisen coefficient or the latent heat of sublimation. A comparison of numerical simulations with experimental data should allow a tuning of equations of state in the domain of extreme parameters. (authors)

  14. Analytical solution to the transient beam loading effects of a superconducting cavity

    Science.gov (United States)

    Huang, Ran; He, Yuan; Wang, Zhi-Jun; Yue, Wei-Ming; Wu, An-Dong; Tao, Yue; Yang, Qiong; Zhang, Cong; Zhao, Hong-Wei; Li, Zhi-Hui

    2017-10-01

    Transient beam loading is one of the key issues in any high beam current intensity superconducting accelerators, and needs to be carefully investigated. The core problem in the analysis is to obtain the time evolution of effective cavity voltage under transient beam loading. To simplify the problem, the second order ordinary differential equation describing the behavior of the effective cavity voltage is intuitively simplified to a first order one, with the aid of two critical approximations which lack proof of their validity. In this paper, the validity is examined mathematically in some specific cases, resulting in a criterion for the simplification. It is popular to solve the approximate equation for the effective cavity voltage numerically, while this paper shows that it can also be solved analytically under the step function approximation for the driven term. With the analytical solution to the effective cavity voltage, the transient reflected power from the cavity and the energy gain of the central particle in the bunch can also be calculated analytically. The validity of the step function approximation for the driven term is examined by direct evaluations. After that, the analytical results are compared with the numerical ones. Supported by National Natural Science Foundation of China (11525523, 91426303)

  15. Numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities

    International Nuclear Information System (INIS)

    Milioli, F.E.

    1985-01-01

    In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author) [pt

  16. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  17. Hydrodynamics with strength: scaling-invariant solutions for elastic-plastic cavity expansion models

    Science.gov (United States)

    Albright, Jason; Ramsey, Scott; Baty, Roy

    2017-11-01

    Spherical cavity expansion (SCE) models are used to describe idealized detonation and high-velocity impact in a variety of materials. The common theme in SCE models is the presence of a pressure-driven cavity or void within a domain comprised of plastic and elastic response sub-regions. In past work, the yield criterion characterizing material strength in the plastic sub-region is usually taken for granted and assumed to take a known functional form restrictive to certain classes of materials, e.g. ductile metals or brittle geologic materials. Our objective is to systematically determine a general functional form for the yield criterion under the additional requirement that the SCE admits a similarity solution. Solutions determined under this additional requirement have immediate implications toward development of new compressible flow algorithm verification test problems. However, more importantly, these results also provide novel insight into modeling the yield criteria from the perspective of hydrodynamic scaling.

  18. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  19. The effect of triple ion beam irradiation on cavity formation on pure EFDA iron

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, M., E-mail: marcelo.roldan@ciemat.es [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain); Fernández, P.; Vila, R. [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain); Gómez-Herrero, A. [National Centre of Electronic Microscopy, Complutense University, 28040, Madrid (Spain); Sánchez, F.J. [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain)

    2016-10-15

    Pure EFDA Iron was irradiated under triple ions beam (Fe + He + H) at 350 °C, 450 °C and 550 °C respectively to a nominal 40 dpa with a uniform He concentration of ∼14 appm He/dpa and H content of ∼50 appm H/dpa at depth between 1 and 2 μm. Cavity characteristics (size, morphology, distribution and population) at each irradiation temperature have been thoroughly studied by TEM using FIB lamellae, showing bubble formation at all irradiation temperatures with several differences between one to another experimental condition. At 350 °C homogeneous distribution of small cavities with sizes in the range of 2–4 μm was observed. However, irradiations at 450 °C and 550 °C led to non-homogeneous distribution of cavities with a wide range of sizes. Additionally, it was detected at these temperatures, preferential nucleation of bubbles within the ferritic grains exhibiting rounded and faceted shapes. Faceted cavities with sizes larger than 16 nm were detected at 450 °C and 550 °C.

  20. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  1. Bilayer formation in thin films of a binary solution

    International Nuclear Information System (INIS)

    Govor, L.V.; Reiter, G.; Bauer, G.H.; Parisi, J.

    2006-01-01

    We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation

  2. Bilayer formation in thin films of a binary solution

    Science.gov (United States)

    Govor, L. V.; Reiter, G.; Bauer, G. H.; Parisi, J.

    2006-04-01

    We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation.

  3. Bilayer formation in thin films of a binary solution

    Energy Technology Data Exchange (ETDEWEB)

    Govor, L.V. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)]. E-mail: leonid.govor@uni-oldenburg.de; Reiter, G. [Institut de Chimie des Surfaces et Interfaces, CNRS-UHA, F-8057 Mulhouse cedex (France); Bauer, G.H. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany); Parisi, J. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)

    2006-04-24

    We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation.

  4. Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum

    International Nuclear Information System (INIS)

    Gisler, G.

    1989-01-01

    Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock

  5. Camouflet blasting in water. The role of damping additives in the formation process of a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Batalov, V.A.; Kotov, V.A.; Orekin, U.K.; Panov, N.V.; Telegin, G.F.; Trunin, R.F.

    1980-01-01

    Results are given from an X-ray analysis of the formation of a camouflet cavity in water during blasting using chemical explosives. Variations on combined blasting are examined together with variations for blasting schemes when layers made from less dense materials-water and polystyrene foam (is approximately equal to .5 grams per cubic centimeter)-are placed between the explosive charges and the water. It is demonstrated that the calculation model of the medium choosen describes with sufficient accuracy the entire aggragate of experimental data.

  6. Miniinvasive paracentetic drain surgical interventions under ultrasonic control concerning liquid formations of abdominal cavity

    Directory of Open Access Journals (Sweden)

    G.I. Ohrimenko

    2013-08-01

    Full Text Available Entry. Presently miniinvasive surgical interventions under ultrasonic control became the method of choice in treatment of quite a number of abdominal and retroperitoneal organs diseases, and their complications. These operations have a row of advantages, as compared to open and laparoscopic ones: comparative simplicity, insignificant infecting of abdominal region, least of intra- and postoperative complications. Actuality of problem is conditioned by that indications to the use of paracentetic drain surgical interventions, most optimal methods of preoperative diagnostic, features of postoperative treatment of patients remain not enough studied. Research aim. To study the results of diagnostics and treatment of patients with liquid formations of abdominal cavity that were exposed to miniinvasive surgical interventions under ultrasonic control and, on the basis of it, to work out an optimal curative diagnostic algorithm. Materials and research methods. The results of treatment of 25 patients with liquid formations of abdominal cavity are analyzed. They were submitted to miniinvasive paracentetic drain surgical interventions under ultrasonic control. The pseudocysts of pancreas were in 16 patients, abscesses of abdominal cavity – in 2 patients. Research results. Intraoperative complications were not marked. Postoperative complications were observed in 5 patients. Among them there were inadequate drainage of all cavities of multicamerate abscess of the liver in 2 patients, progress of sacculated uremic peritonitis developing in presence of ascites in one patient, and arrosive hemorrhage in the cavity of pancreas pseudocyst in 2 persons. It is determined that it is necessary to include the spiral computer tomography to the complex of preoperative inspection of patients that allows to diagnose multicamerate abscess of the liver in time and to drain all the additional cavities adequately. 2 patients after paracentetic drain surgical interventions

  7. Soret and Dufour effects on free convective heat and solute transfer in fluid saturated inclined porous cavity

    Directory of Open Access Journals (Sweden)

    Chandra Shekar Balla

    2015-12-01

    Full Text Available The present problem addresses double diffusive free convection in an inclined square cavity filled with fluid saturated porous medium under the influence of Soret and Dufour effects. The inclined cavity makes an angle with the horizontal plane. At the two horizontal walls of the cavity the heat and solute transverse gradients are applied and lateral walls of the cavity are being regarded insulated and impermeable. Using the appropriate dimensionless quantities, the governing equations with boundary conditions are transformed to non-dimensional form. The governing partial differential equations are solved by Finite element method of Galerkin weighted residual scheme. Numerical results are obtained for different values of the Rayleigh number, Lewis number, buoyancy ratio, Soret Number and Dufour number. The overall investigation of variation of streamlines, isotherms, iso-concentration, Nusselt number and Sherwood numbers are presented graphically. To examine the accuracy, the present results are compared with the available results.

  8. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Saleh, Tarik A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eftink, Benjamin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, the synergies between ' and fine-scale and moderate-scale cavity formation is investigated.

  9. Formation and disappearance of superoxide radicals in aqueous solutions

    International Nuclear Information System (INIS)

    Allen, A.O.; Bielski, B.H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO 2 /HO 2 - by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O 2 - , and photosensitization; and properties of HO 2 /O 2 - in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction

  10. The analytical solution of wake-fields in an elliptical pillbox cavity

    International Nuclear Information System (INIS)

    Yang, J.S.; Chen, K.W.

    1991-01-01

    The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is derived analytically in the limit of vanishing aperture. It is found that the resonant modes of an elliptical cavity can be expressed in terms of Mathieu functions. Calculation results are presented and compared with numerical ones. (author) 10 refs., 10 figs., 2 tabs

  11. A study of liposome formation using a solution (isoperibol) calorimeter.

    Science.gov (United States)

    Barriocanal, L; Taylor, K M G; Buckton, G

    2004-12-09

    A solution (isoperibol) calorimeter has been employed to study the process of formation of phospholipid vesicles from natural and synthetic phospholipid films. Phospholipid films were hydrated in the solution calorimeter at temperatures exceeding the main phospholipid phase transition temperature, with continuous agitation to ensure conversion of the hydrating bilayers into multilamellar liposomes. It was seen that retention of chloroform in phospholipid films altered the apparent enthalpy change of vesicle formation to a far greater extent than would be expected from the contribution of the enthalpy of solution of chloroform; this indicates that chloroform alters the hydration process of the lipid. The overall measured enthalpy change for the formation of egg phosphatidylcholine vesicles was exothermic, whilst that for dimyristoylphosphatidylcholine was endothermic. This difference, it is suggested, results from the influence of the hydrocarbon chains mostly on the hydration process and also on the process of vesicle formation.

  12. Transfer of Solutions to Conditional Probability Problems: Effects of Example Problem Format, Solution Format, and Problem Context

    Science.gov (United States)

    Chow, Alan F.; Van Haneghan, James P.

    2016-01-01

    This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…

  13. Formation of Cavities at and Away from Grain Boundaries during 600 MeV Proton Irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Green, W. V.

    1982-01-01

    ) regions beyond the CCZ containing a very low density of cavities. At the dose level of 2 dpa, a dense population of very small cavities is resolved on the grain boundaries and also in their immediate vicinity (in the CDZ). Furthermore, at the dose levels of 0.6 and 2 dpa, a well defined dual size...... were carried out at 120 degree C (0,42*Tm where Tm is the melting temperature in K). Transmission electron microscopy on specimens irradiated to 0.2 and 0.6 dpa has shown the presence of (a) cavity-denuded zones (CDZ) along grain boundaries, (b) cavity-containing zones (CCZ) adjacent to the CDZ and (c...... distribution of cavities is observed in the CCZ. The results are discussed in terms of agglomeration of helium atoms which are considered, during irradiation, to diffuse mainly via vacancies....

  14. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity.

    Science.gov (United States)

    Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun

    2014-04-15

    Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. EFFECTS OF BUOYANCY RATIO ON CONVECTIVE HEAT AND SOLUTE TRANSFER IN NEWTONIAN FLUID SATURATED INCLINED POROUS CAVITY

    Directory of Open Access Journals (Sweden)

    A LATRECHE

    2014-12-01

    Full Text Available This paper summarizes a numerical study of the effects of buoyancy ratio on double-diffusive natural convection in square inclined cavity filled with fluid saturated porous media. Transverse gradients of heat and solute are applied on the two horizontal walls of the cavity, while the other two walls are impermeable and adiabatic. The Darcy model with the Boussinesq approximation is used to solve the governing equations. The flow is driven by a combined buoyancy effect due to both temperature and concentration variations. A finite volume approach has been used to solve the non-dimensional governing equations. The results are presented in streamline, isothermal, iso-concentration, Nusselt and Sherwood contours for different values of the non-dimensional governing parameters.

  16. Saline Solutions in the Treatment of Inflammatory Diseases of the Nasal Cavity in Children

    Directory of Open Access Journals (Sweden)

    Iu.V. Marushko

    2016-09-01

    Full Text Available The article provides an review of researches on the effectiveness of the irrigation therapy in the diseases of the nasal cavity and paranasal sinuses. There are also considered the data on the effectiveness of Pshik spray in the complex treatment of acute rhinitis.

  17. Dependence of pKa on solute cavity for diprotic and triprotic acids.

    Science.gov (United States)

    Lee, Tae Bum; McKee, Michael L

    2011-06-07

    A systematic study of ΔG(aq)/pK(a) for monoprotic, diprotic, and triprotic acids has been carried out based on DFT/aug-cc-pVTZ combined with CPCM and SMD solvation modeling. All DFT/cavity set combinations considered showed similar accuracy for ΔG(aq)(1)/pK(a1) (70% within ±2.5 kcal mol(-1) of experiment) while only the M05-2X/Pauling cavity combination gave reasonable results for ΔG(aq)(2)/pK(a2) when both pK(a) values are separated by more than three units (70% within ±5.0 kcal mol(-1) of experiment). The choice of experimental data is critical to the interpretation of the calculated accuracy especially for several inorganic acids. For the calculation of ΔG(aq)(3)/pK(a3), the larger experimental uncertainty and an unrealistic orbital population of diffuse function for trianions in the gas phase hinders an evaluation of the predictive performance. We find the M05-2X functional with the Pauling cavity set is the best choice for ΔG(aq)(2)/pK(a2) prediction in aqueous media while all DFT/cavity sets considered were competitive for ΔG(aq)(1)/pK(a1).

  18. Asymptotic solution of natural convection problem in a square cavity heated from below

    NARCIS (Netherlands)

    Grundmann, M; Mojtabi, A; vantHof, B

    Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and

  19. Class of nonsingular exact solutions for Laplacian pattern formation

    International Nuclear Information System (INIS)

    Mineev-Weinstein, M.B.; Dawson, S.P.

    1994-01-01

    We present a class of exact solutions for the so-called Laplacian growth equation describing the zero-surface-tension limit of a variety of two-dimensional pattern formation problems. These solutions are free of finite-time singularities (cusps) for quite general initial conditions. They reproduce various features of viscous fingering observed in experiments and numerical simulations with surface tension, such as existence of stagnation points, screening, tip splitting, and coarsening. In certain cases the asymptotic interface consists of N separated moving Saffman-Taylor fingers

  20. [Calculus formation in the prostatic cavity after transurethral resection of the prostate: causes, treatment and prevention].

    Science.gov (United States)

    Wei, Zhi-Feng; Xu, Xiao-Feng; Cheng, Wen; Zhou, Wen-Quan; Ge, Jing-Ping; Zhang, Zheng-Yu; Gao, Jian-Ping

    2012-05-01

    To study the causes, clinical manifestations, treatment and prevention of calculus that develops in the prostatic cavity after transurethral resection of the prostate. We reported 11 cases of calculus that developed in the prostatic cavity after transurethral resection or transurethral plasmakinetic resection of prostate. The patients complained of repeated symptoms of frequent micturition, urgent micturition and urodynia after operation, accompanied with urinary tract infection and some with urinary obstruction, which failed to respond to anti-infective therapies. Cystoscopy revealed calculi in the prostatic cavity, with eschar, sphacelus, uneven wound surface and small diverticula in some cases. After diagnosis, 1 case was treated by holmium laser lithotripsy and a second transurethral resection of the prostate, while the other 10 had the calculi removed under the cystoscope, followed by 1 -2 weeks of anti-infective therapy. After treatment, all the 11 cases showed normal results of routine urinalysis, and no more symptoms of frequent micturition, urgent micturition and urodynia. Three- to six-month follow-up found no bladder irritation symptoms and urinary tract infection. Repeated symptoms of frequent micturition, urgent micturition, urodynia and urinary tract infection after transurethral resection of the prostate should be considered as the indicators of calculus in the prostatic cavity, which can be confirmed by cystoscopy. It can be treated by lithotripsy or removal of the calculus under the cystoscope, or even a second transurethral resection of the prostate. For its prevention, excessive electric coagulation and uneven wound surface should be avoided and anti-infection treatment is needed.

  1. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model

    Science.gov (United States)

    Advani, Madhu; Bunin, Guy; Mehta, Pankaj

    2018-03-01

    A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur’s consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up to large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.

  2. Molecular complex formation between positronium and organic molecules in solutions

    International Nuclear Information System (INIS)

    Madia, W.J.; Nichols, A.L.; Ache, H.J.

    1975-01-01

    Evidence is presented which supports the reversible formation of molecular complexes between Ps atoms and a series of nitrobenzene derivatives and p-benzoquinone in solution. The activation energy for the forward reaction step I (Ps + M (II) reversible PsM (I)) is generally very small; E/sub A/ approximately 1 kcal/mol. ΔH/sub EQ/, the enthalpy of the overall process, ranges from almost zero, in the case of very unreactive substrates, such as toluene or heptane, to -8 kcal/mol for dinitrobenzene or p-benzoquinone. The reactivities of the various substrate molecules toward Ps follow trends as observed in conventional molecular complex formation. Furthermore an attempt was made to assess the role of the solvent upon the stability of the molecular complexes

  3. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes

    Science.gov (United States)

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-11-01

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C-H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma-solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene.

  4. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  5. Vortex Ring Formation Characteristics in Synthetic Jet due to Changes of Excitation Frequency in the ½-Ball Cavity Actuator

    Science.gov (United States)

    Kosasih, Engkos A.; Harinaldi; Trisno, Ramon

    2017-04-01

    A jet flow that contains vortex ring has a large energy compared to a regular jet. As one of the causes of the aerodynamic drag to the vehicle, the flow separation that occurs behind the bluff body must be controlled, so that aerodynamic drag can be significantly reduced. This study is a basic work on the development of turbulent flow separation control for aerodynamic purpose, especially in the design of the vehicle body. The main objective of this study is to analyze the performance of the synthetic jet (SJA) as one of flow control tool to reduce separation area. To get the maximum performance of the synthetic jet actuator, the research starts by characterizing the actuator. Characterization of ½ ball-shaped cavity is done with excitation frequency changes and orifice diameter of 3, 5 and 8 mm. The study was conducted using computational and experimental methods. The experimental data was obtained by testing synthetic jet actuator with providing sinusoidal signal to drive the membrane and at the orifice end a hotwire probe that is set and plugged into a CTA (Constant Temperature Anemometry) to obtain the speed velocity of the exhaust jet. Computational methods used a commercial CFD software (FLUENT 6.3) with a Reynolds Stress Model as a model of turbulence. Each of these calculations or measurements was conducted under the same conditions. The research result is displayed in frequency testing curve to get the maximum velocity of the jet stream. The results are further indicative of the synthetic jet actuator capability to generate vortex rings. In the experimental results, the determination of ring vortex formation taken from the calculation of the flow velocity, while the CFD simulations, the formation of vortex rings can be seen from the visualization of the flow contour. Vortex ring formed from this ½ -ball cavity, occurred at 3 mm and 5 mm orifice diameter, while the 8 mm orifice diameter cavity cannot form a ring vortex.

  6. Impact of aggregate formation on the viscosity of protein solutions.

    Science.gov (United States)

    Nicoud, Lucrèce; Lattuada, Marco; Yates, Andrew; Morbidelli, Massimo

    2015-07-21

    Gaining knowledge on the stability and viscosity of concentrated therapeutic protein solutions is of great relevance to the pharmaceutical industry. In this work, we borrow key concepts from colloid science to rationalize the impact of aggregate formation on the changes in viscosity of a concentrated monoclonal antibody solution. In particular, we monitor the kinetics of aggregate growth under thermal stress by static and dynamic light scattering, and we follow the rise in solution viscosity by measuring the diffusion coefficient of tracer nanoparticles with dynamic light scattering. Moreover, we characterize aggregate morphology in the frame of the fractal geometry. We show that the curves of the increase in viscosity with time monitored at three different protein concentrations collapse on one single master curve when the reaction profiles are normalized based on an effective volume fraction occupied by the aggregates, which depends on the aggregate size, concentration and morphology. Importantly, we find that the viscosity of an aggregate sample is lower than the viscosity of a monomeric sample of a similar occupied volume fraction due to the polydispersity of the aggregate distribution.

  7. Study on how nanosilver-based inorganic antibacterial agent functions on biofilm formation of Candida albicans, inside the oral cavity.

    Science.gov (United States)

    Wang, Huili; Xie, Bing

    2016-09-01

    Candida albicans is a common symbiotic fungus in the oral cavity, which can easily adhere to the surface of implanted materials. Highlighted by a broad antibacterial spectrum and potent antibacterial effects, nanosilver-based inorganic antibacterial agents (NSBIAA) are currently being hotly discussed with regard to their influences on biofilm formation of Candida albicans. This paper aims to explore the influence of NSBIAA on biofilm formation of Candida albicans. The XTT reduction method and the method of crystal violet determination were applied in measuring the influence of NSBIAA on biofilm formation of Candida albicans. In addition, biofilm morphology was determined by crystal violet staining. It was observed that with the application of liquid antibacterial agent, at a concentration of 0.62 mg/ml, the biofilm activity of Candida albicans reduced (96.1 ± 3.0) %, along with a reduction in the biomass (95.4 ± 2.7) %, and biofilm formation was not observed under an inverted microscope. NSBIAA are able to inhibit biofilm formation.

  8. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.

    Science.gov (United States)

    Hunger, Johannes; Tielrooij, Klaas-Jan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-04-26

    We study aqueous solutions of the amphiphilic osmolyte trimethylamine-N-oxide (TMAO) using broadband dielectric spectroscopy and femtosecond mid-infrared spectroscopy. Both experiments provide strong evidence for distinctively slower rotation dynamics for water molecules interacting with the hydrophobic part of the TMAO molecules. Further, water is found to interact more strongly at the hydrophilic site of the TMAO molecules: we find evidence for the formation of stable, TMAO·2H2O and/or TMAO·3H2O complexes. While this coordination structure seems obvious, the lifetime of these complexes is found to be extraordinarily long (>50 ps). The existence of these long-lived complexes leads to pronounced parallel dipole correlations between water and TMAO, reflected in enhanced amplitudes in the dielectric spectra. The strong interaction between water and TMAO also results in a red-shifted band for the O-D stretching vibration of HDO molecules in an isotopically diluted aqueous TMAO solution. This O-D stretching vibration has a vibrational lifetime of 670 fs, which is significantly shorter than the lifetime of the O-D stretch vibration of bulk-like HDO molecules, presumably due to efficient coupling to vibrational modes of TMAO. The rotational dynamics of these O-D groups are slowed down dramatically, and are limited by the rotation of the whole complex, while the O-D vector oriented away from TMAO probably shows an accelerated reorientation.

  9. Visual Investigation of the Occurrence Characteristics of Multi-Type Formation Water in a Fracture–Cavity Carbonate Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2018-03-01

    Full Text Available It is difficult to investigate the formation process and occurrence states of water in multi-type reservoirs, due to the strong heterogeneity and complex microstructure of the fracture–cavity carbonate gas reservoirs. To date, there is no systematic study on the occurrence characteristics of multi-type formation water, especially through visual observation experiments. In this paper, a new creation method for visual micromodels based on CT scan images and microelectronic photolithography techniques was described. Subsequently, a gas–drive–water visual experiment was conducted to intuitively study the formation mechanism and the occurrence states of formation water. Then, the ImageJ gray analysis method was utilized to quantitatively investigate the gas-water saturation and the proportion of residual water film. Finally, the occurrence characteristics of formation water and its effects on gas seepage flow were comprehensively analyzed. Visual experimental results showed that: the migration processes of natural gas in different types of reservoirs are different; the water in multiple media consists of native movable water and residual water, and residual water is composed of secondary movable water and irreducible water; the residual water mainly occurs in different locations of different reservoirs with the forms of “water film”, “water mass”, “water column” and “water droplets”; the main influencing factors are capillary force, surface tension, displacement pressure and channel connectivity. Quantitative results reflect that the saturation of movable water and residual water are the parameters related directly to reservoir physical properties, pore structure and displacement pressure—the smaller the size of flow channel, the larger the space occupied by water film; the thickness proportion of water film is increasing exponentially with the channel size; the thickness proportion of water film decreases as the increase of

  10. [Biofilms of the oral cavity. Formation, development and involvement in the onset of diseases related to bacterial plaque increase].

    Science.gov (United States)

    Bortolaia, C; Sbordone, L

    2002-05-01

    Biofilm is defined as a community of bacteria intimately associated with each other and included within an exopolymer matrix: this biological unit exhibits its own properties, quite different in comparison with those showed by the single species in planktonic form. The oral cavity appears as an open ecosystem, with a dynamic balance between the entrance of microrganisms, colonisation modalities and host defences aimed to their removal: to avoid elimination, bacteria need to adhere to either hard dental surfaces or epithelial surfaces. The oral biofilm formation and development, and the inside selection of specific microrganisms have been correlated with the most common oral pathologies, such as dental caries, periodontal disease and peri-implantitis. Many of these bacteria are usual saprophytes of the oral environment, that, in particular situations, can overcome and express their virulence factors: to better understand the mechanisms of these pathologies it's necessary to know the complex interactions between all the bacterial species inside the biofilm and host tissues and responses. The present paper is a review of the most significant studies on the biofilm development modalities, their correlations with either health or illness of the oral cavity, the bacterial co-aggregation strategies and the biofilm response to antimicrobial agents.

  11. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2011-01-03

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  12. Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Gu, Pin-Gao; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Guilloteau, Stephane; Dutrey, Anne; Chapillon, Edwige; Folco, Emmanuel di [Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, alle Geoffroy Saint-Hilaire, F-33615 Pessac (France); Muto, Takayuki [Department of Physics, National Taiwan University, Taiwan (China); Shen, Bo-Ting [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Inutsuka, Shu-ichiro [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Pietu, Vincent [IRAM, 300 rue de la Piscine, Domaine Universitaire, F-38406 Saint-Martin-d’Hères (France); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Corder, Stuartt [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ohashi, Nagayoshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States); Hashimoto, Jun, E-mail: ywtang@asiaa.sinica.edu.tw [Astrobiology Center of NINS 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2017-05-01

    We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.″1; 14 au) images in {sup 12}CO J = 2 − 1 emission and in the dust continuum at the wavelength of 1.3 mm. The continuum emission is detected at the center and at the ring with a radius ( r ) of ∼120 au. The CO emission is dominated by two prominent spirals within the dust ring. These spirals are trailing and appear to be about 4 times brighter than their surrounding medium. Their kinematics is consistent with Keplerian rotation at an inclination of 23°. The apparent two-arm-spiral pattern is best explained by tidal disturbances created by an unseen companion located at r of 60–80 au, with dust confined in the pressure bumps created outside this companion orbit. An additional companion at r of 30 au, coinciding with the peak CO brightness and a large pitch angle of the spiral, would help to explain the overall emptiness of the cavity. Alternative mechanisms to excite the spirals are discussed. The origin of the large pitch angle detected here remains puzzling.

  13. Study of the beam-cavity interaction in the CERN PS 10 MHz cavities and investigation of hardware solutions to reduce beam loading

    CERN Document Server

    AUTHOR|(CDS)2086984; Palumbo, Luigi

    In the Proton Synchrotron (PS), where the LHC protons longitudinal structure (bunch spacing) is determined as the result of a sophisticated series of Radio Frequency (RF) gymnastics, collective effects were identified as a major limitation to the achievable beam current delivered to the LHC. Dedicated machine development studies pointed out the RF cavities to be one of the major source of instability in the PS. In particular, the 10 MHz RF system, responsible for beam acceleration, was identified as the most probable impedance source in the machine. The cavity impedance limits the circulating intensity in the accelerator since the beam-induced voltage could trigger longitudinal instabilities causing beam losses. For this reason the cavity impedance seen by the beam must be kept as low as possible. In the framework of the LHC Injector Upgrade (LIU) project, the present PS 10 MHz RF system requires an upgrade, in order to reach higher beam intensities and to reduce beam loading. This thesis focuses on the impro...

  14. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater

  15. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions.

    Science.gov (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang

    2014-08-14

    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  16. Molecular characterization of Candida in the oral cavity and factors involved in biofilm formation and virulence

    NARCIS (Netherlands)

    Kraneveld, E.A.

    2014-01-01

    The research described in this thesis addresses current issues related to oral Candida infections. Interactions of Candida with the oral microbiome were characterized and factors involved in biofilm formation and virulence were studied. All in all, the work described in this thesis contributes

  17. Structure Formation in Semi-Dilute Polymer Solution during Electrospinning

    Science.gov (United States)

    Zussman, Eyal; Paley, Yakov; Arinstein, Arkadii; Shuster, Kim

    2012-02-01

    In our recent work it was shown that longitudinal stretching of electrospun highly entangled semi-dilute polymer solution caused by jet hydrodynamic forces, transforms the topological network to an almost fully-stretched state within less than 1 mm from the jet start (PRE, 2011). Further evolution of the polymer network is related to a disentanglement of polymer chains and transformation of the topological network structure. As was sown by Malkin et al., (Rheol. Acta, 2011) high deformation rate of a topological polymer network, results in reptations of macromolecules caused by uncompensated local forces, whereas Brownian motion effect is negligible. Based on this conclusion, we examine the disentanglement process, using a mechanical pulley-block system assembled from multiple pulleys suspended by elastic springs, and taut string connecting two blocks. Each pulley corresponds to a topological knot; the taut string corresponds to a reptated chain; the springs correspond to surrounded polymer chains; and the blocks correspond to local deformation force. It turned out that the system is sensitive to system parameters. The pulleys can approach each other and the string stops to move. Such a behavior corresponds to formation of bundle of knots of entangled chains. In other conditions, the string continuously moves while the pulleys did not approach each other which corresponds to disentanglement of polymer chains. These experiments clarify the disentanglement kinetics in rapid-deformed polymer system.

  18. Solution of the Dynamic Interaction Problem between a Framed Structure and an Acoustic Cavity Using Imposed Deformation Functions at the Interface

    Directory of Open Access Journals (Sweden)

    Paulo Marcelo Vieira Ribeiro

    2010-01-01

    Full Text Available This article presents an analytical procedure for solution of the dynamic interaction problem of a vibrating framed structure connected to a bidimensional cavity, containing an acoustic fluid. Initially the pressure solution for the fluid domain is developed, using the separation of variables technique. In a next step, this solution is applied to an entirely open cavity and to a closed cavity in the transversal direction, both containing a vibrating boundary with an arbitrary deformation. The generalized parameters of the structure (mass, rigidity, and force are obtained by means of the virtual work principle, with the generalized force represented by the dynamic pressures acting on the interface. The dynamic equilibrium equation of the system is established for an imposed deformation, making a parametric study of the involved variables possible. Finally, it is demonstrated that this procedure can be generalized, allowing the construction of practical abacuses for other boundary conditions of both the structure and the cavity, and that these results allow a reasonable interpretation of the coupling regions, including the prediction of added mass and added stiffness effects, as well as corresponding frequencies and mode shapes of the coupled problem.

  19. Formation and characterization of nanoparticles via laser ablation in solution

    Science.gov (United States)

    Golightly, Justin Samuel

    The work presented in this thesis encompassed laser ablation of various transition metals within a liquid environment. Through an improved understanding of the ablation process, control over the properties of the resultant nanoparticles can be obtained, and thusly nanoparticles can be tailored with specific properties. Creation of nanoparticles via laser ablation in solution is a relatively youngtechnique for nanoparticle synthesis, and the work presented should prove useful in guiding further exploration in ablation processes in liquids for nanomaterial production. When a laser is focused onto a target under a liquid environment, the target material and its surrounding liquid are vaporized. The concoction of vapor is ejected normal to the surface as a bubble. The bubble has a temperature reaching the boiling point of the metal, and has a gradient to the boiling point of the solvent. The bubble expands until it reaches a critical volume, and then subsequently collapses. It is within this bubble that nanoparticle formation occurs. As the bubble expands, the vapor cools and nanoparticle growth transpires. During the bubble collapse, pressures reaching GigaPascals have been reported, and a secondary nanoparticle formation occurs as a result of these high pressures. Chapter 1 delves a little more into the nanoparticle formation mechanisms, as well as an introduction to the analytical techniques used for characterization. Ablation of titanium took place in isopropanol, ethanol, water, and n-hexane, under various fluences, with a 532 nm Nd:YAG operating at 10 Hz. It was found that a myriad of nanoparticles could be made with vastly different compositions that were both solvent and fluence dependent. Nanoparticles were made that incorporated carbon and oxygen from the solvent, showing how solvent choice is an important factor in nanoparticle creation. Chapter 3 discusses the results of the titanium work in great detail and demonstrates carbide production with ablation in

  20. Vertical-Cavity Surface-Emitting Lasers: Advanced Modulation Formats and Coherent Detection

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto

    transmission link with real-time demodulation. Furthermore, advanced modulation formats are considered in this thesis to expand the state-of-the-art in high-speed short-range data transmission system based on VCSELs. First, directly modulation of a VCSEL with a 4-level pulse amplitude modulation (PAM-4) signal...... at 50 Gb/s is achieved. This is the highest data rate ever transmitted with a single VCSEL at the time of this thesis work. The capacity of this system is increased to 100 Gb/s by using polarization multiplexing emulation and forward error correction techniques. Compared to a non return-to-zero on-off...

  1. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  2. Mechanics of the formation of orthogonal sets of solution seams, and solution seams and veins

    Science.gov (United States)

    Zhou, X.; Aydin, A.

    2011-12-01

    Orthogonal pressure solution seam (PSS) sets, orthogonal PSS-vein sets, and parallel PSS-vein sets are three fundamental structural assemblages forming networks that are frequently observed in nature. In this study, we investigated stress distributions around PSSs idealized as localized volume reduction structures (LVRSs) to identify the conditions for the formation of these three commonly observed assemblages. Various geometries of LVRSs are taken into account, including elliptical LVRSs with smooth flanks, LVRSs with triangular and rectangular asperities on their flanks, and LVRSs with overall columnar and conical geometries. The modeling results indicate that when PSSs have elliptical shapes with perfectly smooth flanks, the conditions for generating the above fundamental assemblies are highly restrictive, mostly because of relatively large average aspect ratios of PSSs in the field. However, both laboratory and field observations have shown that PSS surfaces are extremely rough. We find that PSSs with roughflanks and PSSs with overall irregular geometry are much more favorable for generating these structural assemblages. Based on a series of stress domain maps obtained from our mechanical model, we evaluated the stress, strain, and geometric conditions for the formation of each class of assemblages. It turns out that there are a wide variety of loading and geometric factors favoring the formation of a specific type of assemblage. Generally, orthogonal PSS-vein sets are likely to form under lower or negative ratios of vertical and horizontal remote stresses (tensile stress being negative), orthogonal PSS sets are likely to form under higher ratios of vertical and horizontal remote stresses, whereas parallel PSS-vein assemblage is favored by higher internal plastic strains within PSSs. However, with triangular asperities on PSS flanks, two orthogonal PSS sets can even form at relatively low ratios of remote stresses. In contrast, high internal plastic strains

  3. Radiation chemistry connection with the positronium formation in aqueous solution of triton X-100

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1996-01-01

    Positronium formation bears its connection to radiation chemical phenomenon. This has been demonstrated here to probe the micelle formation and further structural changes in Triton X-100 surfactant solution. (author). 6 refs., 3 figs

  4. Thermo-elasto-plastic simulations of femtosecond laser-induced structural modifications: Application to cavity formation in fused silica

    Science.gov (United States)

    Beuton, Romain; Chimier, Benoît; Breil, Jérôme; Hébert, David; Maire, Pierre-Henri; Duchateau, Guillaume

    2017-11-01

    The absorbed laser energy of a femtosecond laser pulse in a transparent material induces a warm dense matter region relaxation of which may lead to structural modifications in the surrounding cold matter. The modeling of the thermo-elasto-plastic material response is addressed to predict such modifications. It has been developed in a 2D plane geometry and implemented in a hydrodynamic Lagrangian code. The particular case of a tightly focused laser beam in the bulk of fused silica is considered as a first application of the proposed general model. It is shown that the warm dense matter relaxation, influenced by the elasto-plastic behavior of the surrounding cold matter, generates both strong shock and rarefaction waves. Permanent deformations appear in the surrounding solid matter if the induced stress becomes larger than the yield strength. This interaction results in the formation of a sub-micrometric cavity surrounded by an overdense area. This approach also allows one to predict regions where cracks may form. The present modeling can be used to design nanostructures induced by short laser pulses.

  5. Solution mining systems and methods for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; de Rouffignac, Eric Pierre [Rijswijk, NL; Schoeling, Lanny Gene [Katy, TX

    2009-07-14

    A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

  6. Dense CO2 as a Solute, Co-Solute or Co-Solvent in Particle Formation Processes: A Review

    Directory of Open Access Journals (Sweden)

    Ana V. M. Nunes

    2011-11-01

    Full Text Available The application of dense gases in particle formation processes has attracted great attention due to documented advantages over conventional technologies. In particular, the use of dense CO2 in the process has been subject of many works and explored in a variety of different techniques. This article presents a review of the current available techniques in use in particle formation processes, focusing exclusively on those employing dense CO2 as a solute, co-solute or co-solvent during the process, such as PGSS (Particles from gas-saturated solutions®, CPF (Concentrated Powder Form®, CPCSP (Continuous Powder Coating Spraying Process, CAN-BD (Carbon dioxide Assisted Nebulization with a Bubble Dryer®, SEA (Supercritical Enhanced Atomization, SAA (Supercritical Fluid-Assisted Atomization, PGSS-Drying and DELOS (Depressurization of an Expanded Liquid Organic Solution. Special emphasis is given to modifications introduced in the different techniques, as well as the limitations that have been overcome.

  7. Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ

    DEFF Research Database (Denmark)

    Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A

    2012-01-01

    This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation of der...

  8. Numerical Solution of a Model Equation of Price Formation

    Science.gov (United States)

    Chernogorova, T.; Vulkov, L.

    2009-10-01

    The paper [2] is devoted to the effect of reconciling the classical Black-Sholes theory of option pricing and hedging with various phenomena observed in the markets such as the influence of trading and hedging on the dynamics of an asset. Here we will discuss the numerical solution of initial boundary-value problems to a model equation of the theory. The lack of regularity in the solution as a result from Dirac delta coefficient reduces the accuracy in the numerical computations. First, we apply the finite volume method to discretize the differential problem. Second, we implement a technique of local regularization introduced by A-K. Tornberg and B. Engquist [7] for handling this equation. We derived the numerical regularization process into two steps: the Dirac delta function is regularized and then the regularized differential equation is discretized by difference schemes. Using the discrete maximum principle a priori bounds are obtained for the difference equations that imply stability and convergence of difference schemes for the problem under consideration. Numerical experiments are discussed.

  9. Radiolysis of concentrated solution of nitrate and formate

    International Nuclear Information System (INIS)

    Hickel, Bernard

    1970-08-01

    We have studied the influence of specific scavengers of solvated electron, the potassium nitrate and of OH radical, the sodium formate on the decomposition on water submitted to γ rays. By the analysis of the final products we have been able to determine the radical and molecular yields in function of the concentration of the scavengers and compare their evolution with the theoretical prediction of the spurs model. We have also studied the influence of oxygen and the importance of the direct effect of γ rays on the scavengers. The results show that the yields of the molecular products H 2 and H 2 O 2 and the atomic hydrogen yield decrease in function of the concentration of the scavengers in conformity with the prevision of the spurs model, while the yield of solvated electron and OH radical increases. The total yield of decomposition of water increases until the value of 4,6±0,3 (author) [fr

  10. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    OpenAIRE

    Syrakos, Alexandros; Georgiou, Georgios C.; Alexandrou, Andreas N.

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely det...

  11. Films of Agarose Enable Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength

    OpenAIRE

    Horger, Kim S.; Estes, Daniel J.; Capone, Ricardo; Mayer, Michael

    2009-01-01

    This paper describes a method to form giant liposomes in solutions of physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl. Formation of these cell-sized liposomes proceeded from hybrid films of partially dried agarose and lipids. Hydrating the films of agarose and lipids in aqueous salt solutions resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid formation of giant liposomes in high yield. This method did not require the pre...

  12. Charge transfer and radical ion formation in fullerene solution

    International Nuclear Information System (INIS)

    Tai, Y.; Osaki, T.; Tawaza, M.; Tanemura, S.; Inukai, K.; Sakakibara, S.; Ishiguro, K.

    1995-01-01

    Electron transfer kinetics in C 70 /donor system was investigated by means of laser flash spectrometer in benzonitrile and in acetonitrile-benzene (1:4 in volume) solution. Rehm-Weller semi-empirical equation could be fitted successfully for the quenching rate of triplet C 70 by various donors when the diffusion-controlled quenching rate was corrected according to the difference in viscosity between acetonitrile and the solvents studied. Not only the correlation of electron transfer rate to the free energy difference between initial and final state but also the rate constant data were fairly similar to those reported for C 60 /donor system by Foote et al. These coincidences can be attributed to the very small difference in triplet energy and reduction potential of these molecules. Free radical ion yield in C 60 or C 70 /donor system in benzonitrile was estimated from the absorbance of donor + compared with that in anthraquinone (AQ)/donor system whose radical ion yield (0.88) is known. The obtained value for each fullerene was significantly lower than that value. (orig.)

  13. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation.

    Science.gov (United States)

    Rieger, Katrina A; Birch, Nathan P; Schiffman, Jessica D

    2016-03-30

    Electrospinning hydrophilic nanofiber mats that deliver hydrophobic agents would enable the development of new therapeutic wound dressings. However, the correlation between precursor solution properties and nanofiber morphology for polymer solutions electrospun with or without hydrophobic oils has not yet been demonstrated. Here, cinnamaldehyde (CIN) and hydrocinnamic alcohol (H-CIN) were electrospun in chitosan (CS)/poly(ethylene oxide) (PEO) nanofiber mats as a function of CS molecular weight and degree of acetylation (DA). Viscosity stress sweeps determined how the oils affected solution viscosity and chain entanglement (Ce) concentration. Experimentally, the maximum polymer:oil mass ratio electrospun was 1:3 and 1:6 for CS/PEO:CIN and:H-CIN, respectively; a higher chitosan DA increased the incorporation of H-CIN only. The correlations determined for electrospinning plant-derived oils could potentially be applied to other hydrophobic molecules, thus broadening the delivery of therapeutics from electrospun nanofiber mats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  15. Formation of the second organic phase during uranyl nitrate extraction from aqueous solution by 30% tributylphosphate solution in paraffin

    International Nuclear Information System (INIS)

    Yhrkin, V.G.

    1996-01-01

    For extraction systems aqueous solution of uranyl nitrate-30% solution of tributylphosphate in individual paraffins from C 13 to C 17 the influence of the second organic phase of uranyl nitrate concentration in aqueous and organic phases, the length of hydrocarbon chain of paraffin hydrocarbon and temperature from 25 to 50 deg C on formation conditions has been defected. A special method of achieving the conditions of organic phase stratification from three-phase region, involving definition of equilibrium phases composition by density and refractive index, has been elaborated for more precise definition of organic phase homogeneity region. It has been revealed that without addition of nitric acid to uranyl nitrate solution the organic phase homogeneity limits can be achieved solely on paraffins C 15 , C 16 and C 17 and only under conditions similar to equeous phase saturation in terms of uranyl nitrate. 16 refs., 2 figs

  16. Dental cavities

    Science.gov (United States)

    ... acids in plaque damage the enamel covering your teeth. It also creates holes in the tooth called cavities. Cavities usually do not hurt, unless they grow very large and affect nerves or cause a tooth fracture. An untreated cavity can lead to an infection ...

  17. Cavity-cavity conditional logic

    Science.gov (United States)

    Rosenblum, Serge; Gao, Yvonne Y.; Reinhold, Philip; Wang, Chen; Axline, Christopher; Frunzio, Luigi; Girvin, Steven M.; Jiang, Liang; Mirrahimi, Mazyar; Devoret, Michel H.; Schoelkopf, Robert J.

    In a superconducting circuit architecture, the highest coherence times are typically offered by 3D cavities. Moreover, these cavities offer a hardware-efficient way of redundantly encoding quantum information. While single-qubit control on a cavity has already been demonstrated, there is a need for a universal two-qubit gate between such cavities. In this talk, we demonstrate a cavity-cavity gate by parametric pumping on a fixed-frequency transmon interacting with the two cavities. Every gate application lowers the state fidelity by only 1%, while maintaining an entangling rate on-off ratio of 29dB. Additionally, we show that the gate is applicable not only to qubits consisting of single photons, but also to more complex encodings. These results illustrate the usefulness of cavities beyond the mere storage of quantum information, and pave the way towards gates between error-corrected logical qubits.

  18. Study of reaction sequences for formation of solid solution: 0,48 ...

    African Journals Online (AJOL)

    To study the reaction sequences of formation of solid solution zirconate-lead titanate (PZT) in this work, we took into account the effect of adding oxide dopants on the progress of the reaction, so we added oxides ZnO, Cr2O3, Sb2O3 to our material composition in small quantities so that the solid solution must verify the ...

  19. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  20. Utilization of Electrolyte Solution in Nanotube Formation on Ti-6Al-4V Metal Alloy

    Directory of Open Access Journals (Sweden)

    Charlena

    2018-02-01

    Full Text Available Formation of nanotube morphology on the surface of Ti-6Al-4V metal did not occur homogeneously, so when it was coated with hydroxyapatite, it did not merge well. One of the factor that affected the inhomogeneously formed nanotube was the utilization of electrolyte solution. The research has been done to observe the effect of electrolyte solution in the formation of nanotube morphology on the surface of Ti-6Al-4V metal alloy. Electrolyte solution that was used was ethylene glycol, HF, and NH4F with time variation of an hour, 2 hour, and 3 hour. Formation of nanotube morphology on the surface of Ti-6Al-4V metal alloy was done using anodization process. The result showed that in HF electrolyte solution which was anodized for an hour ɑ and β phase that composed Ti-6Al-4V metal alloy was formed, meanwhile when using electrolyte solution of ethylene glycol + NH4F for 2 hours showed that there were pores that opened on Ti-6Al-4V metal alloy surface. Nanotube morphology on the surface of Ti-6Al-4V metal alloy was formed using electrolyte solution of ethylene glycol + NH4F which was anodized for 3 hours.

  1. Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions

    International Nuclear Information System (INIS)

    Osfouri, Shahriar; Azin, Reza; Gholami, Reza; Izadpanah, Amir Abbas

    2015-01-01

    Highlights: • A new predictive model is proposed for prediction of hydrate formation pressures. • A new local composition model was used to evaluate water activity in the presence of electrolyte. • MEG, DEG and TEG were used to test ability of the proposed model in the presence of polar inhibitors. • Cage occupancies by methane for the small cage were higher than carbon dioxide for gas mixtures. • The proposed model gives better match with experimental data in mixed electrolyte solutions. - Abstract: In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γ–φ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions

  2. Formation and disappearance of superoxide radicals in aqueous solutions. [79 references

    Energy Technology Data Exchange (ETDEWEB)

    Allen, A O; Bielski, B H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO/sub 2//HO/sub 2//sup -/ by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O/sub 2//sup -/, and photosensitization; and properties of HO/sub 2//O/sub 2//sup -/ in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction.

  3. The kinetics of dye formation by pulse radiolysis of pararosaniline cyanide in aqueous or organic solution

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Holcman, J.; Sehested, K.; Kosanic, M.M.

    1979-11-01

    The radiation-induced conversion of the leucocyanide of pararosaniline dye to the highly colored salt-isomer of the dye in acidic aqueous solution (wavelength of maximum absorption lambda sub(max)=540 nm) or polar organic solution (lambda sub(max)=550 nm), takes place in two separate processes. The first is very fast (within 3 s -1 to 10 6 s -1 , as the acidity or concentration of an oxidizing agent increases. In oxygen-free acidic aqueous or organic solutions (argon saturated) there is an unstable transient species (lambdasub(max)=380 nm). When using O 2 or N 2 O-saturated aqueous or organic solution, there is no intermediate absorption band at 380 nm, but the slow process of dye formation at 540 or 550 nm is still sequential to the initial fast process having somewhat faster kinetics than in Ar-saturated solution. (author)

  4. Computer analysis of potentiometric data of complexes formation in the solution

    Science.gov (United States)

    Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira

    2018-02-01

    The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.

  5. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    Science.gov (United States)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  6. Room temperature FePt nanoparticles formation kinetics by laser solution photolysis

    CSIR Research Space (South Africa)

    Nkosi, S

    2012-04-01

    Full Text Available Formation Kinetics by Laser solution photolysis S. Nkosi1, B.W. Mwakikunga2, E. Sideras-Haddad1 1University of the Witwatersrand 2 DST/NCNSM, Pretoria The 4th International Conference on Nanoscience and Nanotechnology 1 – 4 April 2012, University...

  7. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwager, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muller, R. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1981-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of and at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fast formation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  8. On the Construction and Properties of Weak Solutions Describing Dynamic Cavitation

    KAUST Repository

    Miroshnikov, Alexey

    2014-08-21

    We consider the problem of dynamic cavity formation in isotropic compressible nonlinear elastic media. For the equations of radial elasticity we construct self-similar weak solutions that describe a cavity emanating from a state of uniform deformation. For dimensions d=2,3 we show that cavity formation is necessarily associated with a unique precursor shock. We also study the bifurcation diagram and do a detailed analysis of the singular asymptotics associated to cavity initiation as a function of the cavity speed of the self-similar profiles. We show that for stress free cavities the critical stretching associated with dynamically cavitating solutions coincides with the critical stretching in the bifurcation diagram of equilibrium elasticity. Our analysis treats both stress-free cavities and cavities with contents.

  9. Cavity types

    CERN Document Server

    Gerigk, Frank

    2011-01-01

    In the field of particle accelerators the most common use of RF cavities is to increase the particle velocity of traversing particles. This feature makes them one of the core ingredients of every accelerator, and in the case of linear accelerators they are even the dominant machine component. Since there are many different types of accelerator, RF cavities have been optimized for different purposes and with different abilities, e.g., cavities with fixed or variable RF frequency, cavities for short or long pulses/CW operation, superconducting and normal-conducting cavities. This lecture starts with a brief historical introduction and an explanation on how to get from Maxwell's equations to a simple cavity. Then, cavities will be classified by the type of mode that is employed for acceleration, and an explanation is given as to why certain modes are used in particular cavity types. The lecture will close with a comparison of normal versus superconducting cavities and a few words on the actual power consumption ...

  10. Herniation of duodenum into the right ventral hepatic peritoneal cavity with groove formation at the ventral hepatic surface in a 2-week-old chicken.

    Science.gov (United States)

    Haridy, Mohie; Sasaki, Jun; Goryo, Masanobu

    2013-10-01

    Internal hernia in avian species is very rare. A necropsy of a 2-week-old SPF White Leghorn chicken revealed that a loop of the duodenum and part of the pancreas (4 × 2 × 1 cm) was protruding through the abnormal foramen (2.5 cm in diameter) in the right posthepatic septum into the right ventral hepatic peritoneal cavity. The herniated loop was located underneath the ventral hepatic surface, leaving a groove on the right hepatic lobe (2 × 1.5 × 0.4 cm). The part of the pancreas involved in the hernia was grossly enlarged. Microscopically, a zone of pressure atrophy of hepatic tissue was characterized by crowdedness of hepatocytes with pyknotic nuclei and faint eosinophilic cytoplasm and indistinct narrow sinusoids. The pancreas revealed hypertrophy of the acinar cells with an increase in the secretory granules and basophilic cytoplasm. This is the first report of duodenum herniation into the right ventral hepatic peritoneal cavity resulting in groove formation on the ventral hepatic surface in a 2-week-old chicken.

  11. Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution, and Inversion

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Wasniewski, Jerzy; Dongarra, Jack J

    2010-01-01

    of the storage space but provide high performance via the use of Level 3 BLAS. Standard packed format arrays fully utilize storage (array space) but provide low performance as there is no Level 3 packed BLAS. We combine the good features of packed and full storage using RFPF to obtain high performance via using...... Level 3 BLAS as RFPF is a standard full-format representation. Also, RFPF requires exactly the same minimal storage as packed the format. Each LAPACK full and/or packed triangular, symmetric, and Hermitian routine becomes a single new RFPF routine based on eight possible data layouts of RFPF. This new...... RFPF routine usually consists of two calls to the corresponding LAPACK full-format routine and two calls to Level 3 BLAS routines. This means no new software is required. As examples, we present LAPACK routines for Cholesky factorization, Cholesky solution, and Cholesky inverse computation in RFPF...

  12. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions

    Directory of Open Access Journals (Sweden)

    Siddharth Kackar

    2017-01-01

    Full Text Available Background: Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. Objectives: The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. Materials and Methods: One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD. Statistical analysis was done by SPSS 11.5, Kruskal–Wallis test and Chi-square test. Results: Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020 on biofilm formation on soft lenses and also lens cases (P < 0.001. Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001. There was no significant inhibitory effect by bacteriophages. Conclusion: This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.

  13. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  14. Formation of boron solid solution in Fe-Ni invar upon severe plastic deformation

    Science.gov (United States)

    Shabashov, V. A.; Litvinov, A. V.; Kataeva, N. V.; Lyashkov, K. A.; Novikov, S. I.; Titova, S. G.

    2011-09-01

    Mössbauer spectroscopy, X-ray diffraction, electron microscopy, and magnetic susceptibility measurements have been used to study the process of mechanical synthesis of the solid solution of boron in the matrix of an Fe-Ni alloy. The internal effective field, the Curie temperature, and the lattice parameter of the Fe-Ni austenite were found to increase after severe plastic deformation in Bridgman anvils, which is related to the incorporation of boron into the matrix and the formation of a crystalline supersaturated solid solution coexisting with metastable borides.

  15. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  16. Hydrolysis of Zr(4) with formation of mono- and polynuclear hydroxocomplexes in solutions

    International Nuclear Information System (INIS)

    Davydov, Yu.P.; Zabrodskij, V.N.

    1987-01-01

    The state of Zr(4) has been studied in the wide range of H + -ions concentrations (10 -3 -3.0 mol/l) and in the wide range of Zr(4) concentrations (10 -13 -10 -12 mol/l) in the solution using a set of such physical-chemical methods as spectrophotometry, ion exchange, dialysis, centrifugation. The conditions of formation of hydrated cations, monochange, dialysis, centrifugation. The conditions of formation of hydrated cations, mono- and polynuclear hydrocomplexes, colloidal-size particles have been determined. The thermodynamic stability of ZrOH 3+ and Zr(OH) 2 2+ complexes has been determined by the ion exchange and spectrophotometry methods

  17. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    Science.gov (United States)

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  18. Shock formation in small-data solutions to 3D quasilinear wave equations

    CERN Document Server

    Speck, Jared

    2016-01-01

    In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he prov...

  19. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-04-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

  20. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  1. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    International Nuclear Information System (INIS)

    Brighli, M.

    1984-07-01

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO 2 2+ and UO 4 species of uranium VI is studied in aqueous solution (NaClO 4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO 4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO 2 2+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO 4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO 2 2+ and its complexes on mercury drop are proposed. 143 refs [fr

  2. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  3. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao, E-mail: hao.haojing@gmail.com

    2014-11-15

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH{sub 2}O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH{sub 2}O (9.0×10{sup 4})>NaCl (2.64×10{sup 4})/PBS (2.37×10{sup 4})>PBS-NaCl (0.88×10{sup 4}), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH{sub 2}O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH{sub 2}O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH{sub 2}O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH{sub 2}O than in buffer solutions.

  4. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    International Nuclear Information System (INIS)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao

    2014-01-01

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH 2 O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH 2 O (9.0×10 4 )>NaCl (2.64×10 4 )/PBS (2.37×10 4 )>PBS-NaCl (0.88×10 4 ), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH 2 O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH 2 O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH 2 O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH 2 O than in buffer solutions

  5. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  6. Mechanics of the formation of orthogonal sets of solution seams, and solution seams and veins and parallel solution seams and veins

    Science.gov (United States)

    Zhou, Xiaoxian; Aydin, Atilla

    2012-04-01

    Commonly observed networks of pressure solution seams (PSSs) and PSSs and veins can be broken down to three basic assemblages: orthogonal PSS sets, orthogonal PSS/vein sets, and parallel PSS/vein sets. We investigate stress distributions around PSSs idealized as localized volume reduction structures (LVRSs) to identify the conditions for forming these three fundamental assemblages. Various geometries of LVRSs are taken into account, including elliptical LVRSs with smooth flanks, LVRSs with triangular and rectangular asperities on their flanks, and LVRSs with overall irregular geometries, such as columnar and conical shapes. The modeling results indicate that if the first PSS set has elliptical shapes with smooth flanks, the conditions for generating the fundamental assemblages listed above are highly restrictive, primarily due to relatively large average aspect ratios of PSSs as measured in the field, which indicate lower stresses around PSSs as they grow. However, both laboratory and field observations have shown that PSS surfaces are extremely rough. We find that PSSs with relatively rough flanks and PSSs with overall irregular trace geometry such as sutured and zig-zag or wiggly are much more favorable for generating the stresses for the formation of these fundamental structural assemblages. Based on a series of stress domain maps from our mechanical model, we evaluated the stress, strain, and geometric conditions for the formation of each of the three assemblages. It turns out that there are a wide variety of loading and geometric factors favoring the formation of a particular type of assemblage.

  7. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry

    International Nuclear Information System (INIS)

    Buschmann, H.-J.; Schollmeyer, E.; Mutihac, L.

    2003-01-01

    The complex stabilities and the thermodynamic data for the complexation of α-cyclodextrin and cucurbit[6]uril with some amino acids (glycine, L-alanine, L-valine, L-phenylalanine, 6-amino hexanoic acid, 8-amino octanoic acid, 11-amino undecanoic acid) and dipeptides (glycyl-glycine, glycyl-L-valine, glycyl-L-leucine and glycyl-L-phenylalanine) have been determined in aqueous solution by calorimetric titrations. The complex formation with α-cyclodextrin is mainly favoured by entropic contributions due to the release of water molecules from the cavity of the ligand. The values of the reaction enthalpies are small with the exception of 11-amino undecanoic acid. In case of the ligand cucurbit[6]uril, ion-dipole interactions between the protonated amino groups of the amino acids and the carbonyl groups take place. By steric reasons these interactions are lowered for native amino acids because the polar carboxylic groups are always located outside the hydrophobic cavity of cucurbit[6]uril. The complexes of both ligands with dipeptides in water are characterised by hydrophobic interactions and in case of cucurbit[6]uril by additional ion-dipole interactions

  8. Formation of Hydrogen-Ion in Isomolar Solution of Hydrochloric and Hydrobromic Acids and Their Salts

    Directory of Open Access Journals (Sweden)

    M.A. Kovaleva

    2016-09-01

    Full Text Available Despite the presence of a large amount of factual material on thermodynamic parameters of complexation of agents in different solvents, including mixed ones, obtained knowledge is specific in nature. In order to identify more general patterns, studies are relevant that would allow to interpret the obtained data taking into account the interaction between chemical forms in solutions. This paper presents a general approach to studying weak ionic interactions in solutions that allows to simultaneously determine the constants of these interactions and the parameters characterizing the influence of changes in the ionic environment on these constants by the example of chlorides and bromides of alkali metals. The obtained constants for hydrosulfate-ion formation and the imperfection parameters can be a reference material for more accurate calculation of the concentration of hydrogen ions in sulfuric acid solutions. The developed approach and patterns identified in the work can be used to study the balanced states for formation of low and medium stable complexes.

  9. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  10. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    Science.gov (United States)

    Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.

    1975-01-01

    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.

  11. Pattern Formation During Phase Separation of Polymer-Ionic Liquid Co-Solutions

    Science.gov (United States)

    Meng, Zhiyong; Osuji, Chinedum

    2010-03-01

    Co-solutions of polystyrene (PS) with a 1-butyl-3-methylimidazolium based ionic liquid (IL) in DMF phase separated into IL-rich and PS-rich domains on solvent evaporation. Over a limited range of polymer molecular weights and substrate temperatures, a variety of striped and cellular or polygonal structures were found on the resulting film surface, as visualized using bright-field and phase-contrast optical microscopy. This effect appears to be due to a Benard-Marangoni instability at the free surface of the liquid film as it undergoes evaporation, setting up convection rolls inside the fluid which become locked in place as the system vitrifies on solvent removal. Differential scanning calorimetry shows that the IL does not significantly plasticize the polymer, suggesting that the viscosity of the polystyrene solution itself controls the formation of this instability.

  12. Formation of ammonia complexes of alkaline earth elements in aqueous solutions

    International Nuclear Information System (INIS)

    Padar, T.G.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1990-01-01

    Coefficients of ammonia distribution between aqueous solutions of calcium, strontium, barium and ammonium perchlorate mixtures at ionic strength - 0.50; 1.0 and 1.5 at 298.2 K and ammonia concentrations 0.2-10 mol/dm 3 are measured. Formation of ammonia complexes of M(NH 3 ) n 2+ composition is shown. Logarithms of stepped stability constants for solutions with zero ionic strength for Ca 2+ are: -0.13; -0.25; -0.52 and -0.77, where n=1-4; for Sr 2+ : -0.04; -0.42 and -0.70, where n=1-3 and for Ba 2+ : -0.11; -0.50 and 0.76, where n=1-3

  13. Calculation of formation constants of single-charged complex ions of bivalent metals in solutions

    International Nuclear Information System (INIS)

    Allakhverdov, G.R.

    1985-01-01

    A new method for calculating formation constants of complexes of bivalent metals in solutions is suggested. The method is based on using relations characterizing concentration dependence of activity factors and theis interrelation with osmotic coefficients. It is shown that the results of formation constant calculations of complexes MX + (M-Mg, Ca, Sr, Ba, Cd, Co, Zn, Ni, Fe, Mn, Cu; X-Cl, Br, I, NOΛ3) performed with a computer using experimental data in the 0.1-0.5 m(m-molality) concentration range, are in satisfactory agreement with literature data obtained by various research methods. It is established that for all metals the stability of halide complexes drops in the MCl + >MBr + >MI + series. In the series of complexes formed by alkaline earth metals, the complexes stability grows with increase of metal atomic number

  14. Solute segregation and void formation in ion-irradiated vanadium-base alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1985-01-01

    The radiation-induced segregation of solute atoms in the V-15Cr-5Ti alloys was determined after either single- dual-, or helium implantation followed by single-ion irradiation at 725 0 C to radiation damage levels ranging from 103 to 169 dpa. Also, the effect of irradiation temperature (600-750 0 C) on the microstructure in the V-15Cr-5Ti alloy was determined after single-ion irradiation to 200 and 300 dpa. The solute segregation results for the single- and dual-ion irradiated alloy showed that the simultaneous production of irradiation damage and deposition of helium resulted in enhanced depletion of Cr solute and enrichment of Ti, C and S solute in the near-surface layers of irradiated specimens. The observations of the irradiation-damaged microstructures in V-15Cr-5Ti specimens showed an absence of voids for irradiations of the alloy at 600-750 0 C to 200 dpa and at 725 0 C to 300 dpa. The principle effect on the microstructure of these irradiations was to induce the formation of a high density of disc-like precipitates in the vicinity of grain boundaries and intrinsic precipitates and on the dislocation structure. 8 references, 4 figures

  15. Lack of Evidence for Prenucleation Aggregate Formation in Lysozyme Crystal Growth Solutions

    Science.gov (United States)

    Muschol, Martin; Rosenberger, Franz

    1996-01-01

    There have been numerous claims of large concentrations of prenucleation aggregates in supersaturated as well as undersaturated lysozyme solutions at high salt concentrations. The presence of these aggregates was derived from measurements of the light or neutron scattering intensity, ultracentrifugation and dialysis behavior, as well as over-simplified crystal growth kinetics considerations. In all these interpretations it has been assumed that lysozyme solutions are either ideal or that protein interactions are independent of salt concentration. Contrary to these presumptions, our static and dynamic light scattering experiments provide evidence that lysozyme forms highly non-ideal, strongly interacting solutions. At low salt concentrations, the scattering intensities fall well below the values expected for an ideal, monomeric solution at the same protein concentration, while diffusivities increase with increasing protein concentration. Upon increase in salt concentration, these trends are eventually reversed. This enhancement in scattering intensity and decrease in diffusivity was widely interpreted as sign of aggregate formation. Yet, a quantitative interpretation of the scattering behavior over the whole salt concentration range can only be given in terms of a transition from net repulsion to net attraction between lysozyme monomers. Increased salt screening of the electrostatic repulsion among the protein macro-ions, together with attractive protein interactions, such as van der Waals, hydrophobic and hydration forces, provide an unambiguous mechanism for the observed transition and a more physical interpretation of the various observations.

  16. Formation of 32P-labelled Polyphosphates in Reactor-irradiated Solutions of Orthophosphate

    DEFF Research Database (Denmark)

    Fenger, Jørgen Folkvard; Pagsberg, Palle Bjørn

    1973-01-01

    yield increases with the concentration of the irradiated solution and varies in a complicated way with the pH. These observations and some experiments with addition of radical scavengers indicate that oxidation of the 32P-recoils by OH-radicals is an important step in the polymerization. It is suggested...... that the actual formation of a P&z.sbnd;O&z.sbnd;P bridge takes place as an addition of a Lewis acid to a lone pair of electrons on a phosphate ion....

  17. Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution

    Science.gov (United States)

    Jiang, Zhong-Jie; Liu, Chun-Yan; Liu, Yun

    2004-06-01

    In a weak basic, weak acidic or neutral water-alcohol solution, silver nanoparticles were generated by the reduction of Ag + ions in the present of colloidal silica. Silica as a substrate played an important role in the formation of Silver particles. The plasmon band of silver particles supported on the surface of silica was considerably shifted to longer wavelength compared with the pure silver sol. The shift in absorption spectra was explained in terms of surface effects induced by the interaction of silver and silica, as well as size effects and irregular shape.

  18. Oxygen formation in gamma-ray irradiation of Fe2+ -Cu2+ solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Hart, E.J.

    1971-01-01

    The mechanism of O2 formation has been studied in 60 Co γ-ray-irradiated Fe(II) + Cu(II) solutions at 0.01 N HClO4 and at 0.01, 0.08, and 0.80 N H2 SO4. In the H2 SO4 system, ${\\rm G}({\\rm O}_{2})$ rises to plateau levels near 0.02 as the ${\\rm CuSO}_{4}/{\\rm FeSO}_{4}$ ratio increases. The plateau...

  19. Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate

    Science.gov (United States)

    Suzuki, Chizuka; Furukawa, Yoshihiro; Kobayashi, Takamichi; Sekine, Toshimori; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2015-07-01

    The emergence of life's building blocks, such as amino acids and nucleobases, on the prebiotic Earth was a critical step for the beginning of life. Reduced species with low mass, such as ammonia, amines, or carboxylic acids, are potential precursors for these building blocks of life. These precursors may have been provided to the prebiotic ocean by carbonaceous chondrites and chemical reactions related to meteorite impacts on the early Earth. The impact of extraterrestrial objects on Earth occurred more frequently during this period than at present. Such impacts generated shock waves in the ocean, which have the potential to progress chemical reactions to form the building blocks of life from reduced species. To simulate shock-induced reactions in the prebiotic ocean, we conducted shock-recovery experiments on ammonium bicarbonate solution and ammonium formate solution at impact velocities ranging from 0.51 to 0.92 km/s. In the products from the ammonium formate solution, several amino acids (glycine, alanine, ß-alanine, and sarcosine) and aliphatic amines (methylamine, ethylamine, propylamine, and butylamine) were detected, although yields were less than 0.1 mol % of the formic acid reactant. From the ammonium bicarbonate solution, smaller amounts of glycine, methylamine, ethylamine, and propylamine were formed. The impact velocities used in this study represent minimum cases because natural meteorite impacts typically have higher velocities and longer durations. Our results therefore suggest that shock waves could have been involved in forming life's building blocks in the ocean of prebiotic Earth, and potentially in aquifers of other planets, satellites, and asteroids.

  20. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water

    International Nuclear Information System (INIS)

    Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian

    2017-01-01

    Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).

  1. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  2. Methylene blue 1% solution on the prevention of intraperitoneal adhesion formation in a dog model

    Directory of Open Access Journals (Sweden)

    Marco Augusto Machado Silva

    Full Text Available Intraperitoneal adhesions usually are formed after abdominal surgeries and may cause technical difficulties during surgical intervention, chronic abdominal pain and severe obstructions of the gastrointestinal tract. The current study aimed to evaluate the efficacy of methylene blue (MB 1% solution on the prevention of intraperitoneal postsurgical adhesion formation in a canine surgical trauma model. Twenty bitches were submitted to falciform ligament resection, omentectomy, ovariohysterectomy and scarification of a colonic segment. Prior to abdominal closure, 10 bitches received 1mg kg-1 MB intraperitoneally (MB group and 10 bitches received no treatment (control group, CT. On the 15th postoperative day the bitches were submitted to laparoscopy to assess adhesions. The mean adhesion scores were 13.9 (±5.6 for MB group and 20.5 (±6.4 for the CT group (P=0,043. In conclusion, the 1% MB solution was efficient on the prevention of intraperitoneal postoperative adhesion formation in bitches, especially those involving the colonic serosa.

  3. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  4. Calculating reversible potentials for Pt-H and Pt-OH bond formation in basic solutions.

    Science.gov (United States)

    Cai, Yu; Anderson, Alfred B

    2005-04-21

    Two redox reactions on platinum electrodes in base, the formation of underpotential deposited hydrogen, forming a Pt-H bond, and the electro-oxidation of water, forming a Pt-OH bond, were studied by two methods. The first applies a linear relationship between reaction energy in solution and standard reversible potential, an approach recently used in this lab to predict the formation potential of the surface-bonded species. This method depends on the availability of accurate surface adsorption bond strengths from measurement or theory and can be applied in two formats, the empirical model and the linear correlation model. The second method treats the reaction within the so-called double-layer model where reactants and products on the surface are well defined and are experiencing the influence of the electrolyte. When this approach is used, two coordination shells of hydrogen bonded water molecules are found necessary to sufficiently stabilize the hydroxide ion in this model, unlike acid for which past work showed only one shell around the hydronium ion is needed. The calculated reversible potentials for both reactions by the empirical and linear correlation models are in good agreement with the experimental onset potentials observed in cyclic voltammetry measurements for Pt(111) surface electrodes when empirical or accurately calculated H, OH, and H(2)O adsorption energies are used. The double layer models for these reactions also yield satisfactory results, and it is concluded that the models should be useful for studying electron-transfer reactions in base, as has already been done for forming Pt-H and Pt-OH in acid solution.

  5. Investigation into formation of nanoparticles of tetravalent neptunium in slightly alkaline aqueous solution

    International Nuclear Information System (INIS)

    Husar, Richard

    2015-01-01

    Considering the worldwide growing discharge of minor actinides and the current need for geological disposal facilities for radioactive waste, this work provides a contribution to the safety case concerning Np transport if it would be released from deep repository sites and moving from alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed to be immobile in aqueous environment due to the low solubility solution of Np(IV). For tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous Np(IV) silica colloids under environmentally relevant conditions. The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO 3 ) 5 ] 6- ) induces the intrinsic formation of nanocrystalline NpO 2 in the solution phase. The resulting irregularly shaped nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type structure (space group Fm anti 3m). The NCs tend to agglomerate under ambient conditions due to the weakly charged hydrodynamic surface at neutral pH (zetapotential ζ ∝0 mV). The formation of micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent precipitation cause immobilization of the major amount of Np(IV) in the Np carbonate system. Agglomeration of NpO 2 nanocrystals in dependence on time was indicated by PCS and UV-vis absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 742 nm. Hitherto, unknown polynuclear species as intermediate species of NpO 2 nanocrystal formation were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides. Intrinsic formation of NpO 2

  6. Ox red-metric study of complex formation processes of manganese (II, III) in glycin aqueous solution

    International Nuclear Information System (INIS)

    Khamidov, B.O.; Offengenden, E.Ya.; Dikaya, I.R.; Yegorova, L.A.

    1992-01-01

    Present article is devoted to ox red-metric study of complex formation processes of manganese (II, III) in glycin aqueous solution. The possibility of application of ox red-metric method for study of complex formation processes of manganese (II, III) was shown. The composition of complex compounds was determined.

  7. Logic of historical development of the formation process of architectural and construction solutions

    Directory of Open Access Journals (Sweden)

    Baranov Valeriy Aleksandrovich

    2014-05-01

    necessary condition of its working implementation, and so-called "designing designing" becomes its necessary stage. Achievements of each of the revealed stages don't disappear, and pass into a new stage of development as a subordinated level, carrying out the certain function available to its opportunities. Each subsequent level differs from the previous one, first, in the wider covered subject content of activity of ACD formation, secondly, increase in the depth of penetration into ACD problem, and, thirdly, the contents, which is meant by the concept "architectural and construction solution" at each level.

  8. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation

    Science.gov (United States)

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-01

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (cryopreservation for practical applications.

  9. Cavity Optomechanics

    OpenAIRE

    Kippenberg, T. J.; Vahala, K. J.

    2007-01-01

    The coupling of mechanical and optical degrees of freedom via radiation pressure has been a subject of early research in the context of gravitational wave detection. Recent experimental advances have allowed studying for the first time the modifications of mechanical dynamics provided by radiation pressure. This paper reviews the consequences of back-action of light confined in whispering-gallery dielectric micro-cavities, and presents a unified treatment of its two manifestations: notably th...

  10. Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution

    DEFF Research Database (Denmark)

    Pedersen, Thomas Quistgaard

    In this paper we derive an approximate analytical solution to the optimal con- sumption and portfolio choice problem of an infinitely-lived investor with power utility defined over the difference between consumption and an external habit. The investor is assumed to have access to two tradable......, and introduces an additional component that works as a hedge against changes in the investor's habit level. In an empirical application, we calibrate the model to U.S. data and show that habit formation has significant effects on both the optimal consumption and portfolio choice compared to a standard CRRA...... assets: a risk free asset with constant return and a risky asset with a time-varying premium. We extend the ap- proach proposed by Campbell and Viceira (1999), which builds on log-linearizations of the Euler equation, intertemporal budget constraint, and portfolio return, to also contain the log...

  11. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations

    DEFF Research Database (Denmark)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.

    2017-01-01

    and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process...... parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection...... investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical...

  12. A Solution Study of Complex Formation of Some Diamines with Lanthanones

    Directory of Open Access Journals (Sweden)

    J. J. Vora

    2009-01-01

    Full Text Available To study the metal ligand equilibrium in aqueous solution, the well known Irving-Rossotti titration method was used. The temperature selected is 30±0.10C at ionic strength 0.2 M (NaClO4 which was maintained constant through out the work. The binary metal complex (ML2 formation was studied. The metals selected are Sm3+, Gd3+, Dy3+ and Yb3+. The diamine ligands taken are ethylenediamine, 1,2 diamino propane, 1,3 diamino propane, N-N diethyl ethylenediamine and N-N -dimethyl ethylenediamine. Factors that affected the stability of the complexes are size and ionic potential of lanthanone ions, basicity of ligands, ring size and steric effect of ligands.

  13. Mechanism of formation of silver nanoparticles in MAG–DMAEMA copolymer aqueous solutions

    International Nuclear Information System (INIS)

    Shvedchenko, Dmitry O.; Nekrasova, Tatiana N.; Nazarova, Olga V.; Buffat, Philippe A.; Suvorova, Elena I.

    2015-01-01

    Dispersed Ag nanoparticles were prepared in aqueous solutions in the presence of pure poly[2-(dimethylamino)ethyl methacrylate] (poly-DMAEMA), poly[2-deoxy-2-methacrylamido-d-glucose] (poly-MAG), and their copolymers of poly[MAG–DMAEMA] with different mole fractions. Polymers contributed to the silver reduction, formation of nanoparticles, and stabilization of suspensions. No agglomerations of nanoparticles are formed. For each sample, more than one thousand silver particles were measured by transmission and scanning transmission electron microscopy to determine their number vs diameter and volume versus diameter distributions. The samples with the smallest nanoparticle mode diameter of 2.3 nm were formed in DMAEMA homopolymer suspension, while the mode diameter increased up to 13.3 nm in copolymers depending on the mole fraction of DMAEMA. A model of Ag nanoparticles’ growth taking into account the structure of the copolymers and the amount of reducing centers per monomer is proposed. The volume fraction of large Ag particles (>15–20 nm) in the tail of distributions was determined to estimate the part of less efficient nanoparticles assuming that only surface atoms are active. The largest volume occupied by big particles is measured in the solution with pure poly-MAG. Figures of merit, as the ratio of particle area to total volume of particles, were compared for five systems of Ag NPs/polymer. They can be understood from an economical point of view as the total silver investment compared to efficiency

  14. Detection of stain formation on teeth by oral antiseptic solution using fiber optic displacement sensor

    Science.gov (United States)

    Rahman, H. A.; Rahim, H. R. A.; Harun, S. W.; Yasin, M.; Apsari, R.; Ahmad, H.; Wan Abas, W. A. B.

    2013-02-01

    The application of a simple intensity modulated fiber optic displacement sensor for the detection of stain formation on human teeth is demonstrated. The proposed sensor uses a concentric type bundled plastic optical fiber (POF) as a probe in conjunction with the surfaces of five human teeth as the reflecting targets. Prior to the experiment, the stains were produced extrinsically by soaking the teeth in different concentrations of oral antiseptic solution containing hexetidine. The concentration of the oral antiseptic solution is measured in volume%. For a concentration change from 0% to 80%, the peak voltage decreases exponentially from 1.15 mV to 0.41 mV with a measured resolution of 0.48% and 1.75% for concentration ranges of 0-40% and 40-80%, respectively. The correlation between the detector output and variation in the color of human tooth surface has successfully been examined. Simple in design and low in cost, this sensor can detect color changes due to hexetidine-induced stain on a tooth surface in a fast and convenient way. Thus, this sensor will be very promising in esthetic dentistry, dental color matching techniques, chemical and biomedical applications.

  15. Mechanistic constitutive model for wormlike micelle solutions with flow-induced structure formation

    Science.gov (United States)

    Dutta, Sarit; Graham, Michael

    2017-11-01

    We present a tensor constitutive model for stress and flow-induced structure formation in dilute wormlike micellar solutions. The fluid is treated as a dilute suspension of rigid Brownian rods whose length varies dynamically. Consistent with the mechanism of Turner and Cates, flow-induced alignment of the rods is assumed to promote increase of rod length that corresponds to the formation of flow-induced structures observed in experiments. At very high deformation rate, hydrodynamic stresses cause the rod length to decrease. These mechanisms are implemented in a phenomenological equation governing the evolution of rod length, with the number density of rods appropriately modified to ensure conservation of surfactant mass. The model leads first to an increase in both shear and extensional viscosity as deformation rate increases and then to a decrease at higher rates. If the rate constant for flow-induced rod growth is sufficiently large, the model predicts a multivalued relation between stress and deformation rate in both shear and uniaxial extension in agreement with experimental results. By design, the model is simple enough to serve as a tractable constitutive relation for computational fluid dynamics studies.

  16. Facile formation of ordered vertical arrays by droplet evaporation of Au nanorod organic solutions.

    Science.gov (United States)

    Martín, Alfonso; Schopf, Carola; Pescaglini, Andrea; Wang, Jin Jin; Iacopino, Daniela

    2014-09-02

    Droplet evaporation is a simple method to induce organization of Au nanorods into ordered superstructures. In general, the self-assembly process occurs by evaporation of aqueous suspensions under strictly controlled experimental conditions. Here we present formation of large area ordered vertical arrays by droplet evaporation of Au nanorod organic suspensions. The uncontrolled (free air) evaporation of such suspensions yielded to formation of ordered nanorod domains covering the entire area of a 5 mm diameter droplet. Detailed investigation of the process revealed that nanorods organized into highly ordered vertical domains at the interface between solvent and air on a fast time scale (minutes). The self-assembly process mainly depended on the initial concentration of nanorod solution and required minimal control of other experimental parameters. Nanorod arrays displayed distinct optical properties which were analyzed by optical imaging and spectroscopy and compared to results obtained from theoretical calculations. The potential use of synthesized arrays as surface-enhanced Raman scattering probes was demonstrated with the model molecule 4-aminobenzenthiol.

  17. Solution mining dawsonite from hydrocarbon containing formations with a chelating agent

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX

    2009-07-07

    A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

  18. Formation of Poly(vinylidene fluoride Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions

    Directory of Open Access Journals (Sweden)

    A. Akbari

    2012-06-01

    Full Text Available Poly(vinylidene fluoride (PVDF fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA. Proof of this incompatibility was explained by the properties of PVDF and its solutions with DMF (i.e. PVDF crystallization, microgel formation and spinodal decomposition. These factors caused to early stabilize liquid jet. Also, early gelation inhibited from the fiber formation by blockage of syringe needle with Mw = 180,000 g/mol and early spinodal decomposition helps to fiber formation by isolated droplets of polymer-rich phase with Mw=275,000 g/mol. Finally, a mechanism was proposed for the electrospinning of these solutions.

  19. Alteration of non-metallic barriers and evolution of solution chemistry in salt formations in Germany

    International Nuclear Information System (INIS)

    Herbert, H.J.; Becker, D.; Hagemann, S.; Meyer, Th.; Noseck, U.; Rubel, A.; Mauke, R.; Wollrath, J.

    2005-01-01

    Different Engineered Barrier Systems (EBS) materials considered in Germany for the sealing of repositories in salt formations are presented. Their long term behaviour in terms of interactions with salt solutions is discussed and evaluated. The discussed EBS materials are crushed salt, self sealing salt backfill, bentonite and salt concrete. Whereas the knowledge concerning the geochemical, geomechanical, hydrological and thermal behavior of crushed salt and salt concrete is well advanced further research is needed for other EBS materials. The self healing salt backfill has also been investigated in depth recently. In order to fully qualify this material large scale in situ experiments are still needed. The present knowledge on compacted bentonites in a salt environment is not yet sufficient for reliable predictions of the long-term performance in salt formations. The sealing concept of the low- and intermediate-level Radioactive Waste Repository Morsleben (ERAM) in a former rock salt and potash mine is presented. This concept is based on cementitious materials, i.e. salt concrete. The geochemical stability of different salt concretes in contact with brines expected in ERAM is addressed. It is shown how the results from leaching experiments and geochemical modelling are used in the safety analyses and how the chemical boundary conditions prevailing in the EBS influence the development of the permeability of the sealing system and thus control the radionuclide release. As a result of modelling the behaviour of the seals in the safety assessment it is shown, that the seals are corroded within a time span of about 20 000 years. The influence of the uncertainty in the model parameters on the safety of the repository was assessed by a variation of the initial permeability of the seal. The maximum dose rate resulting from the radionuclide release from ERAM is nearly independent of the variation of the initial permeability within four orders of magnitude. (authors)

  20. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    Science.gov (United States)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the

  1. Mechanisms of bands and spirals formation during the drying of watery solutions of mercury (II) chloride with agar-agar

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-DomInguez, Edgardo Jonathan; Betancourt-Mar, Juvencio Alberto [Laboratorio de Investigacion UNE-SAS, Universidad del Noreste, Prol. Av. Hidalgo 6315 Col. Nuevo Aeropuerto, Tampico, Tam., Mexico, C.P. 89337 (Mexico)

    2005-01-01

    It is proposed two mechanisms to explain the formation of periodic and non periodic bands and spirals as thin films of gelatinous aqueous solutions of mercury (II) chloride are dried. The first mechanism supposes an homogeneous drying, where the height of the film decreases at constant rate, forming Liesegang bands. The second mechanism implies a non homogeneous drying where an evaporation front drives the formation of periodic bands and spirals.

  2. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics

    1997-07-01

    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  3. Formation and characterization of porous SiC by anodic oxidation using potassium persulfate solution

    Science.gov (United States)

    Iwasa, Y.; Kamiyama, S.; Iwaya, M.; Takeuchi, T.; Akasaki, I.

    2018-01-01

    The formation process of porous SiC by anodic oxidation was investigated, aiming at the generation of pure white light with a high color rendering index (CRI) and high luminous efficiency. The efficiency of white light emission from porous SiC and its wavelength are strongly dependent on the porous structure such as the average pore size and porosity. In this study, we examined the structure and optical properties of porous SiC by adding potassium persulfate (K2S2O8) as an oxidant in HF solution to control the porosity of porous SiC formed by anodic oxidation. By increasing the amount of the oxidant, we enhanced the integrated light emission intensity of porous SiC to 81 times that of bulk SiC. Through the study of porous SiC we demonstrated that the peak wavelength of the porous SiC could be controlled from 370 to 500 nm. Porous SiC created by anodic oxidation was thus proven to have great potential for realizing high-CRI white light generation using LEDs.

  4. In situ optical monitoring of RDX nanoparticles formation during rapid expansion of supercritical CO2 solutions.

    Science.gov (United States)

    Matsunaga, Takuya; Chernyshev, Andrei V; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2007-10-14

    Nanoparticles of RDX (cyclotrimethylenetrinitramine) generated by RESS (rapid expansion of supercritical solutions) using supercritical CO2 were characterized in situ by a pulsed laser light scattering imaging technique using a gated ICCD (intensified CCD) camera. The absolute sensitivity calibration was performed using Rayleigh light scattering from air as well as light scattering from standard polystyrene spheres. The size distribution functions of the particles formed in the RESS jet were determined using the calibrated sensitivity. The diameter of RDX particles formed at the pre-expansion pressure of 180 bar was 73 nm at the maximum of the size distribution function. Assuming that the particles near the nozzle consisted mainly of CO2 and the size distribution was log-normal, the diameter of the particles near the nozzle (7.5 mm from the nozzle) at the distribution maximum was 3.3 microm at the pre-expansion pressure of 180 bar. The number densities of the particles in the RESS jet were determined by counting individual particles in the light scattering images. Based on the measured particle size distributions and the number density of particles along the RESS jet, the mechanism of particle formation in RESS is discussed. The homogeneous nucleation mechanism is rejected as it fails to explain the large particle size experimentally observed. Instead, a modified "spray-drying" mechanism is suggested.

  5. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  6. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-07-17

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  7. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  8. Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E PO

    DEFF Research Database (Denmark)

    Doreth, Maria; Löbmann, Korbinian; Grohganz, Holger

    2016-01-01

    a glass solution with Eudragit® E when immersed into water. In XRPD, reflections of the respective drugs decreased or disappeared completely. All samples showed a single glass transition temperature in the DSC, suggesting the formation of single phase amorphous systems. Ionic interactions between drug...

  9. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  10. Effect of some parameters on the formation of chloroform during chloramination of aqueous solutions of resorcinol.

    Science.gov (United States)

    Cimetiere, Nicolas; Dossier-Berne, Florence; De Laat, Joseph

    2010-08-01

    The effects of various factors (N/Cl ratio used to prepare monochloramine, monochloramine doses, pH and contact time) on the monochloramine demand and on the chloroform yield during chloramination of resorcinol have been investigated. Chloramination experiments were carried out at 24+/-1 degrees C, at pH values ranging from 6.5 to 12 using a bicarbonate/carbonate buffer and preformed monochloramine solutions prepared at pH 8.5 with N/Cl ratios ([NH(4)Cl](0)/[Total free Cl(2)](0) ranging from 1.0 to 150 mol/mol). Kinetic experiments ([Resorcinol](0)=5 or 100 microM, [NH(2)Cl](0)/[Resorcinol](0)=20 mol/mol, pH=8.5+/-0.1) showed a slow increase of the monochloramine consumption with reaction time. The monochloramine demands after reaction times of 7 days ([Resorcinol](0)=100 microM) and 14 days ([Resorcinol](0)=5 microM) were equal to 8.5 mol of NH(2)Cl/mole of resorcinol and were higher than the chlorine demands (approximately 7.3 mol/mol). Chloroform yields from monochloramination of resorcinol were lower than 8% (resorcinol) and were less than the yields obtained by chlorination (0.9-0.95 mol/mol). Chloroform productions increased with increasing monochloramine dose and reaction time and decreased with increasing pH values within the pH range 6.5-10. Chloroform formation markedly decreased when the N/Cl ratio increased from 1 to 1.5 mol/mol and was suppressed at N/Cl>100 mol/mol. The data obtained in the present work suggest that free chlorine released from monochloramine hydrolysis plays a significant role on the formation of chloroform during chloramination of resorcinol at N/Cl ratios close to unity (1.0

  11. Solution chemistry of element 105. Pt. III. Hydrolysis and complex formation of Nb, Ta, Db and Pa in HF and HBr solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Bastug, T.

    1999-01-01

    Calculations of the electronic structure of MF 6 - and MBr 6 - complexes of Nb, Ta, Pa and element 105, Db, formed in HF and HBr solutions have been performed using the Dirac-Slater Discrete Variational method. On the basis of results of these calculations, relative values of the free energy change of reactions of complex formation have been determined. The order of the complex formation for both acids is shown to be Pa >> Nb > Db > Ta. Such a sequence is defined by a predominant electrostatic energy of the metal-ligand interaction. The hydrolysis of compounds, as a reverse process, proved to change as Ta > Db > Nb >> Pa. Using the theory of metal extraction by anion exchange, the following trend in the extraction of the anionic species from both the HF and HBr aqueous solutions has been predicted: Pa >> Nb ≥ Db > Ta. The strength of the ML 6 - complexes is shown to decrease from MF 6 , to MCl 6 and further to MBr 6 - which is reflected by shifting the complex formation process to the area of higher acid concentrations. (orig.)

  12. Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures

    Science.gov (United States)

    Glibitskiy, Dmitriy M.; Gorobchenko, Olga A.; Nikolov, Oleg T.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Zibarov, Artem M.; Shestopalova, Anna V.; Semenov, Mikhail A.; Glibitskiy, Gennadiy M.

    2018-03-01

    Formation of patterns on the surface of dried films of saline biopolymer solutions is influenced by many factors, including particle size and structure. Proteins may be modified under the influence of ionizing radiation. By irradiating protein solutions with gamma rays, it is possible to affect the formation of zigzag (Z) structures on the film surface. In our study, the films were obtained by desiccation of bovine serum albumin (BSA) solutions, which were irradiated by a 60Co gamma-source at doses ranging from 1 Gy to 12 kGy. The analysis of the resulting textures on the surface of the films was carried out by calculating the specific length of Z-structures. The results are compared against the absorption and fluorescence spectroscopy and dynamic light scattering (DLS) data. Gamma-irradiation of BSA solutions in the 1-200 Gy range practically does not influence the amount of Z-structures on the film surface. The decrease in fluorescence intensity and increase in absorbance intensity point to the destruction of BSA structure at 2 and 12 kGy, and DLS shows a more than 160% increase in particle size as a result of BSA aggregation at 2 kGy. This prevents the formation of Z-structures, which is reflected in the decrease of their specific length.

  13. The genesis of solution pipes: Evidence from the Middle-Late Pleistocene Bridgewater Formation calcarenite, southeastern Australia

    Science.gov (United States)

    Lipar, Matej; Webb, John A.; White, Susan Q.; Grimes, Ken G.

    2015-10-01

    Solution pipes are abundant in Late Pleistocene aeolian calcarenites at Cape Bridgewater in southwestern Victoria, and were studied using field work, morphometric analysis, thin sections, mineralogical and chemical analyses, and OSL dating. The solution pipes are vertical tubes formed in aeolian limestone with matrix porosity. They are typically 0.1-1 m wide and 1-5 m deep, with rounded terminations and cemented rims up to 10 cm thick. They are overlain by palaeosols and filled mostly with palaeosol material; rhizoliths are commonly present in the solution pipe fills and the surrounding calcarenite. The solution pipes have formed by focused dissolution of aeolianite, relatively quickly after the sand deposition, and concurrently filled with soil as they developed. They most likely formed beneath trees (as a result of focused infiltration due to stemflow) or due to fingered flow (unstable wetting front that breaks into fingers as it moves downwards). Solution pipe formation was strongly dependent on climate; periods of solution pipe formation followed the deposition of aeolianites at the end of interglacials MIS 7, 9 and 11, when the dunes were stabilised by vegetation and there was sufficient rainfall for substantial subsoil dissolution. The cemented rims formed in the following drier glacial climates. Solution pipes are most abundant in the youngest aeolianite, probably reflecting the wetter climate at the end of MIS 7 that allowed a dense forest to cover the dunes. From MIS 5 to MIS 2 no deposition of calcareous sand occurred on Cape Bridgewater, and combined with a very wet interglacial period MIS 5e, resulted in additional karstification, allowing the pipes in the MIS 7 aeolianite to extend deeper and drill down into the underlying member. A well-developed calcrete layer drapes over these solution pipes, and probably formed during the dry, windy climate of the Last Glacial Maximum.

  14. Thermochemical characteristics of lanthanum and praseodymium chlorides and formation enthalpy of their solutions with calcium and potassium chlorides

    International Nuclear Information System (INIS)

    Savin, V.D.; Mikhajlova, N.P.; Morozova, V.A.

    1979-01-01

    Determined were fusion heats and specific heats enthalpies of lanthanum and praseodymium chlorides in the liquid state and formation heats of their solutions with calcium and potassium chlorides in melts. The thermographic calorimetry method was used in the study. Changes of chloride enthalpies in the liquid state in melting points and fusion heat with the error of +-0.5 kcal/mol comprise: ΔH=H 1135 -H 298 =34.8 kcal/mol LaCl 3 , ΔH=H 1045 -H 298 =29.4 kcal/mol PrCl 3 , ΔHsub(f)=7.4 kcal/mol LaCl 3 , ΔHsub(f)=6.9 kcal/mol PrCl 3 . Average specific heats in the liquid state for LaCl 3 and PrCl 3 are equal, respectively: 83.5 (862-910) deg C; 43.0 cal/molxdeg (770-920) deg C. High values of lanthanum chloride specific heat in the liquid state and formation peculiarities of solutions with calcium chloride are explained from the point of view of ''aftermelting'' phenomena in melts. Comparative study of dependences of heat consumption to heating-up CaCl 2 in the LaCl 3 and PrCl 3 melt on its content in cloride solution and dependences of heat consumption to heating-up KCl in the PrCl 3 melt to 870 and 890 deg C on its content in the solution permitted to conclude that solution formation in the LaCl 3 -CaCl 2 and PrCl 3 -CaCl 2 systems is accompanied by additional energy expenditure and is connected with breaking up into smaller structural units of initial melt, and in the PrCl 3 -KCl system - with energy release and formation of new complexes

  15. Basin of Attraction of Solutions with Pattern Formation in Slow-Fast Reaction-Diffusion Systems.

    Science.gov (United States)

    Ambrosio, B; Aziz-Alaoui, M A

    2016-12-01

    This article is devoted to the characterization of the basin of attraction of pattern solutions for some slow-fast reaction-diffusion systems with a symmetric property and an underlying oscillatory reaction part. We characterize some subsets of initial conditions that prevent the dynamical system to evolve asymptotically toward solutions which are homogeneous in space. We also perform numerical simulations that illustrate theoretical results and give rise to symmetric and non-symmetric pattern solutions. We obtain these last solutions by choosing particular random initial conditions.

  16. Formation of chromium oxide nanoparticles by gamma irradiation of chromate solutions

    International Nuclear Information System (INIS)

    Alrehaily, L.M.; Joseph, J.M.; Wren, J.C.; Guzonas, D.A.

    2012-09-01

    One of the operational and safety challenges of nuclear reactors is the corrosion of coolant system materials. Corrosion products released into the reactor coolant circulate through the reactor core and can be deposited on surfaces there where they can be neutron activated. If these radioactive species are then released into the coolant, they can migrate out of the core and deposit on piping and components located outside the biological shield of the reactor core. These activated corrosion products pose a radiological hazard to plant workers. The radiolysis of water produces redox-active radicals and molecules that can interact very effectively with metallic corrosion products, changing their oxidation states. The solubility of hydrated metal species varies considerably depending on their oxidation state. For example, ferrous iron is several orders of magnitude more soluble than ferric iron at acidic and neutral pHs, while Cr VI species are much more soluble than Cr III species at all pHs. Conversion of more soluble metal ions to less soluble ions will promote precipitation of metal oxide colloidal particles. The conversion of a dissolved ion to a particle will change the transport behaviour of corrosion products and their removal efficiency from system surfaces or by a purification system. Hence, a well-founded understanding of the behaviour of corrosion product ions in a radiolytic environment is very important in assessing their transport behaviour in a reactor coolant system, and the effectiveness of measures to limit radioactive contamination of the coolant system. The formation of chromium oxide nanoparticles by gamma radiolysis of Cr VI (aq) (CrO 4 2- or Cr 2 O 7 2- ) solutions was investigated as a function of pH and Cr VI (aq) concentration using a range of chemical and particle analysis techniques. The results show that Cr VI (aq) is reduced to less soluble Cr III species by reducing radiolysis products (e.g., .eaq - ). These insoluble Cr III species

  17. Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Trubert, D.; Le Naour, C.; Kratz, J.V.

    2002-01-01

    Fully relativistic molecular density-functional calculations of the electronic structures of hydrated, hydrolyzed and fluoride/chloride complexes have been performed for group-4 elements Zr, Hf, and element 104, Rf. Using the electronic density distribution data, relative values of the free energy change for hydrolysis and complex formation reactions were defined. The results show the following trend for the first hydrolysis step of the cationic species: Zr>Hf>Rf in agreement with experiments. For the complex formation in HF solutions, the trend to a decrease from Zr to Hf is continued with Rf, provided no hydrolysis takes place. At pH>0, further fluorination of hydrolyzed species or fluoro-complexes has an inversed trend in the group Rf≥Zr>Hf, with the difference between the elements being very small. For the complex formation in HCl solutions, the trend is continued with Rf, so that Zr>Hf>Rf independently of pH. A decisive energetic factor in hydrolysis or complex formation processes proved to be a predominant electrostatic metal-ligand interaction. Trends in the K d (distribution coefficient) values for the group-4 elements are expected to follow those of the complex formation

  18. Modulation of nitrate-nitrite conversion in the oral cavity.

    Science.gov (United States)

    van Maanen, J M; van Geel, A A; Kleinjans, J C

    1996-01-01

    The formation of nitrite from ingested nitrate can give rise to the induction of methemoglobinemia and endogenous nitrosation resulting in the formation of carcinogenic N-nitroso compounds. We investigated the possibility of modulation of the conversion of nitrate into nitrite in the oral cavity in order to seek ways of reducing the formation of the deleterious nitrite. We investigated the effectiveness of several mouthwash solutions with antibacterial constituents on the reduction of nitrate into nitrite in the oral cavity. In 15 studied subjects, the mean percentage of salivary nitrate reduced to nitrite after ingestion of 235 mg (3.8 mmol) nitrate was found to be 16.1 +/- 6.2%. The use of an antiseptic mouthwash with active antibacterial constituent chlorhexidine resulted in an almost complete decrease of the mean percentage of reduced nitrate, to 0.9 +/- 0.8%. Mouthwash solutions with antibacterial component triclosan or antimicrobial enzymes amyloglucosidase and glucose oxidase did not affect the reduction of nitrate into nitrite. A toothpaste with active components triclosan and zinc citrate with synergistic antiplaque activity was also without effect. Use of a pH-regulating chewing gum resulted in a rise in the pH in the oral cavity from 6.8 to 7.3. At 30 min after nitrate ingestion, this rise was accompanied by a significant increase in the salivary nitrite concentration, which might be explained by the pH being close to the optimal pH for nitrate reductase of 8. In conclusion, a limited number of possibilities of modulation of the conversion of nitrate into nitrite in the oral cavity are available.

  19. Investigations of foam formation and its stabilization in the extraction systems: TBP in kerosene-nitric acid solutions

    International Nuclear Information System (INIS)

    Zielinski, A.

    1980-01-01

    The paper is devoted to studies of foam formation and its stabilization in TBP - kerosene - nitric acid solutions extracting systems. It was experimentally found, that TBP acts as a stabilizator of thin, liquid foam films as well as an emulgator in forming dispersions. The stabilizing effect of fine emulsions w/o on formed foams column was observed. Relevant references on the subject are also reviewed. (author)

  20. A New Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys (Postprint)

    Science.gov (United States)

    2015-11-02

    AFRL-RX-WP-JA-2016-0345 A NEW THERMODYNAMIC PARAMETER TO PREDICT FORMATION OF SOLID SOLUTION OR INTERMETALLIC PHASES IN HIGH ENTROPY ...INTERMETALLIC PHASES IN HIGH ENTROPY ALLOYS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-10-D-5226-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...simple thermodynamic criterion is proposed to predict the presence or absence of equilibrium intermetallic phases in a high entropy alloy at a given

  1. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open-circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-11-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fast formation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  2. Addition of Carbon-Fluorine Bonds to a Mg(I)-Mg(I) Bond: An Equivalent of Grignard Formation in Solution

    OpenAIRE

    Bakewell, C; White, AJ; Crimmin, MR

    2016-01-01

    Addition of the carbon?fluorine bond of a series of perfluorinated and polyfluorinated arenes across the Mg?Mg bond of a simple coordination complex proceeds rapidly in solution. The reaction results in the formation of a new carbon?magnesium bond and a new fluorine?magnesium bond and is analogous to Grignard formation in homogeneous solution.

  3. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  4. Formation of 32P-labelled Polyphosphates in Reactor-irradiated Solutions of Orthophosphate

    DEFF Research Database (Denmark)

    Fenger, Jørgen Folkvard; Pagsberg, Palle Bjørn

    1973-01-01

    Aqueous solutions of potassium orthophosphate were reactor irradiated and analysed by electrophoresis. The resulting distributions of 32P-activity in phosphorus oxyanions resemble the ones obtained with reactor-irradiated solid phosphates. Even in dilute solutions, polymers are formed; their total...... yield increases with the concentration of the irradiated solution and varies in a complicated way with the pH. These observations and some experiments with addition of radical scavengers indicate that oxidation of the 32P-recoils by OH-radicals is an important step in the polymerization. It is suggested...

  5. Octamer formation in lysozyme solutions at the initial crystallization stage detected by small-angle neutron scattering.

    Science.gov (United States)

    Boikova, Anastasiia S; Dyakova, Yulia A; Ilina, Kseniia B; Konarev, Petr V; Kryukova, Alyona E; Kuklin, Alexandr I; Marchenkova, Margarita A; Nabatov, Boris V; Blagov, Alexandr E; Pisarevsky, Yurii V; Kovalchuk, Mikhail V

    2017-07-01

    Solutions of lysozyme in heavy water were studied by small-angle neutron scattering (SANS) at concentrations of 40, 20 and 10 mg ml -1 with and without the addition of precipitant, and at temperatures of 10, 20 and 30°C. In addition to the expected protein monomers, dimeric and octameric species were identified in solutions at the maximum concentration and close to the optimal conditions for crystallization. An optimal temperature for octamer formation was identified and both deviation from this temperature and a reduction in protein concentration led to a significant decrease in the volume fractions of octamers detected. In the absence of precipitant, only monomers and a minor fraction of dimers are present in solution.

  6. Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

    1980-10-01

    The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

  7. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  8. Post-precipitations from MOX fuel solutions and analysis of microparticle formation in the PUREX process

    International Nuclear Information System (INIS)

    Henkelmann, R.; Baumgaertner, F.; Klein, F.; Niestroj, B.

    1989-01-01

    Subsequent precipitates of feed solutions from reprocessing were examined with the aid of the SEM-EDX method. On the one hand the examinations give information about the particle form and size distribution, on the other hand about the element distribution in single particles with consideration of the radiation data of the fuel. The subsequent precipitation samples which are examined in this study were taken after different residence times of the clarified fuel solutions. The examinations give information about the kind, element frequency, distribution and stoichiometry of single particles of the submicro- and microrange. (RB) [de

  9. Formation of biologically relevant compounds of interest in chemical evolution from the radiolysis of succinonitrile solutions

    International Nuclear Information System (INIS)

    Albarran, G.; Juarez, C.; Negron-Mendoza, A.

    1991-01-01

    Low molecular weight compounds such as H 2 , CO 2 , NH 3 were identified among the radiolytic products. Irradiated samples exhibit positive biuret test. IR spectra of the dry residue confirm the presence of amide groups. These results suggest the presence of peptidic type material, which increased with the radiation dose. Other compounds identified were several di and tricarboxylic acids. The initial yield of formation of a variety of products was calculated from the concentration vs dose plots. Some of the radiolytic compounds are of biological importance and their formation is significant to chemical evolution studies. (author) 7 refs

  10. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  11. Structural aspects of the formation of solid solutions in the NaF-KF-AlF3 system

    Science.gov (United States)

    Samoilo, Alexander S.; Zaitseva, Yulia N.; Dubinin, Peter S.; Piksina, Oksana E.; Ruzhnikov, Sergei G.; Yakimov, Igor S.; Kirik, Sergei D.

    2017-08-01

    The formation of solid solutions in the ternary system NaF-KF-AlF3 has been studied by X-ray diffraction and thermal analysis. Chiolite has been shown to form solid solutions with the composition (Na(5-x)Kx)Al3F14, in the limited range of 0solutions are stable in the range from room to melting point temperature. A wide range of solid solutions based on β-cryolite (Na3AlF6) and elpasolite (K2NaAlF6) above 540 °C has been studied in detail. It is only the 8-fold cationic position in the β-cryolite structure which appears to have contributed into the substitution in the full range of solid solutions. The solid solution decays into a mixture of α-Na3AlF6 and K2NaAlF6 upon calcination below 540 °C., followed by further cooling without changing the α-Na3AlF6 composition. Elpasolite initially containing an excess of sodium ions, has yielded cryolite and stoichiometric K2NaAlF6 below 340 °C. The phase K2NaAl3F12 present in two polymorphic forms, has not formed a wide range of solid solutions; however, a slight excess of potassium ions has improved the stability of the high-temperature form.

  12. Influence of layering on the formation and growth of solution pipes

    Directory of Open Access Journals (Sweden)

    Karine ePetrus

    2016-01-01

    Full Text Available In karst systems, hydraulic conduits called solution pipes (or wormholes are formed as a result of the dissolution of limestone rocks by the water surcharged with CO2. The solution pipes are the end result of a positive feedback between spatial variations in porosity in the rock matrix and the local dissolution rate. Here, we investigate numerically the effect of rock stratification on the solution pipe growth, using a simple model system with a number of horizontal layers, which are less porous than the rest of the matrix. Stratification is shown to affect the resulting piping patterns in a variety of ways. First of all, it enhances the competition between the pipes, impeding the growth of the shorter ones and enhancing the flow in the longer ones, which therefore grow longer. This is reflected in the change of the pipe length distribution, which becomes steeper as the porosity contrast between the layers is increased. Additionally, stratification affects the shapes of individual solution pipes, with characteristic widening of the profiles in between the layers and narrowing within the layers. These results are in qualitative agreement with the piping morphologies observed in nature.

  13. Sourceless formation evaluation. An LWD solution providing density and neutron measurements without the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, R.; Reichel, N. [Schlumberger, Sungai Buloh (Malaysia)

    2013-08-01

    For many years the industry has been searching for a way to eliminate the logistical difficulties and risk associated with deployment of radioisotopes for formation evaluation. The traditional gamma-gamma density (GGD) measurement uses the scattering of 662-keV gamma rays from a 137Cs radioisotopic source, with a 30.17-year half-life, to determine formation density. The traditional neutron measurement uses an Am-Be source emitting neutrons with an energy around 4 MeV, with a half-life of 432 years. Both these radioisotopic sources pose health, security, and environmental risks. Pulsed-neutron generators have been used in the industry for several decades in wireline tools and more recently in logging-while-drilling tools. These generators produce 14-MeV neutrons, many of which interact with the nuclei in the formation. Elastic collisions allow a neutron porosity measurement to be derived, which has been available to the industry since 2005. Inelastic interactions are typically followed by the emission of a variety of high-energy gamma rays. Similar to the case of the GGD measurement, the transport and attenuation of these gamma rays is a strong function of the formation density. However, the gamma-ray source is now distributed over a volume within the formation, where gamma rays have been induced by neutron interactions and the source can no longer be considered to be a point as in the case of a radioisotopic source. In addition, the extent of the induced source region depends on the transport of the fast neutrons from the source to the point of gamma-ray production. Even though the physics is more complex, it is possible to measure the formation density if the fast neutron transport is taken into account when deriving the density answer. This paper briefly reviews the physics underlying the sourceless neutron porosity and recently introduced neutron-gamma density (SNGD) measurement, demonstrates how they can be used in traditional workflows and illustrates their

  14. Formation of metastabil liquid phases in the isotonic solution of sodium cloraide during cooling

    Directory of Open Access Journals (Sweden)

    A. T. Ходько

    2016-07-01

    Full Text Available In this paper the cooling process cryomicroscopy of 0.15 M of isotonic sodium chloride solution was conducted. It was shown that there is liquid – liquid phase change before the crystallization process. As a result, the coarse system (highly concentrated emulsion was formed. The dispersed phase and the disperse medium in a binary system with the same qualitative chemical composition differ in concentration. Therefore, the greater is the volume ratio of the coexisting phases, the greater is the difference in their quantitative compositions. The dispersed phase, that composes the main volume in the system under investigation, should have lower NaCl concentration than the disperse medium and the initial solution. In this case it will be hypotonic (and disperse medium – hypertonic in relation to cytoplasm of human internal environment. This physical-chemical factor, which hasn’t been considered previously, might be responsible for osmotic damage in living cells during cryopreservation of cell suspensions.

  15. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  16. FILM FORMATION ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS UNDER OPEN CIRCUIT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1980-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO{sub 4} and LiAsF{sub 6} at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fastformation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionicconductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  17. The integration of traditional and advanced design in the formation of sustainable New Rural Housing solutions.

    Science.gov (United States)

    Khai Tran, Van

    2018-04-01

    Socio-economic growth in Vietnam greatly depends on the new rural development process in this country; the work is considered a strategic position in national development. Thus, the study of the principles of the architectural design of new rural housing solutions in accordance with the New Rural Environment as required by the Vietnam Ministry of Construction has become urgent. Climate change has become a global concern, so the creation of significant impacts by architectural designs to respond to climate change and make the living environment of rural people better is a major demand. Experience has shown that the dogmatic application of current urban-type housing does not reach the requirements of New Rural Housing. This research intends to show that the solutions of the traditional Vietnamese rural house, which retains the advantages of traditional architecture with excellent characteristics that have been challenged over thousands of years, when combined with advanced design methodologies and technologies, will be the appropriate solution for ‘New Rural Housing’.

  18. Wet etching of InSb surfaces in aqueous solutions: Controlled oxide formation

    Energy Technology Data Exchange (ETDEWEB)

    Aureau, D., E-mail: damien.aureau@chimie.uvsq.fr [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Chaghi, R.; Gerard, I. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Sik, H.; Fleury, J. [Sagem Defense Sécurité, 72-74, rue de la tour Billy, 95101, Argenteuil Cedex (France); Etcheberry, A. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France)

    2013-07-01

    This paper investigates the wet etching of InSb surfaces by two different oxidant agents: Br{sub 2} and H{sub 2}O{sub 2} and the consecutive oxides generation onto the surfaces. The strong dependence between the chemical composition of the etching baths and the nature of the final surface chemistry of this low band-gap III–V semiconductor will be especially highlighted. One aqueous etching solution combined hydrobromic acid and Bromine (HBr–Br{sub 2}:H{sub 2}O) with adjusted concentrations. The other solution combines orthophosphoric and citric acids with hydrogen peroxide (H{sub 3}PO{sub 4}–H{sub 2}O{sub 2}:H{sub 2}O). Depending on its composition, each formulation gave rise to variable etching rate. The dosage of Indium traces in the etching solution by atomic absorption spectroscopy (AAS) gives the kinetic variation of the dissolution process. The variations on etching rates are associated to the properties and the nature of the formed oxides on InSb surfaces. Surface characterization is specifically performed by X-ray photoelectron spectroscopy (XPS). A clear evidence of the differences between the formed oxides is highlighted. Atomic force microscopy is used to monitor the surface morphology and pointed out that very different final morphologies can be reached. This paper presents new results on the strong variability of the InSb oxides in relation with the InSb reactivity toward environment interaction.

  19. Interaction of Myoglobin colloids with BSA in solution: Insights into complex formation and elastic compliance.

    Science.gov (United States)

    Madhumitha, D; Dhathathreyan, Aruna

    2017-12-01

    This work focusses on the supramolecular complex formed between Myoglobin (Mb) and Bovine Serum Albumin (BSA) at colloids/solution interface at pH 4.0 and pH 7.5. Electrostatic interactions between Mb as colloids and BSA solution (pH=7.5 and 4.0) have been confirmed by Zeta potential that suggest that while Mb has a narrow interaction range, BSA has a wider interaction space. The organization of Mb colloids in BSA characterized using dilational rheological parameters show that the Mb colloids are elastic and the strong adsorbed water layers on the surface restrict the deformation, regulated by the viscoelastic surface layer. Stability of the complexes analyzed using UV-vis, Fluorescence and Circular dichroic spectroscopy indicate that there is a 1:1 interaction between Mb and BSA with a binding constant of about 10 5 M -1 . Quartz Crystal microbalance with dissipation has been used to evaluate the elastic compliance of the complexes of Mb colloids dispersed in very dilute BSA solution. The higher elastic compliance at pH=4.0 (than at pH=7.5) and the complex sizes correlate with changes in zeta potential suggesting that the mechanical properties of the protein in colloids are dependent on both the electrostatic interaction as well as the degree of hydration of the colloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Instability and droplet formation in evaporating thin films of a binary solution

    Science.gov (United States)

    Govor, Leonid V.; Parisi, Jürgen; Bauer, Gottfried H.; Reiter, Günter

    2005-05-01

    We consider an instability phenomenon in a bilayer structure resulting from phase separation in a thin film of mixed solutions located on a water surface. The top layer consists of a hexane/hexadecylamine solution with thickness d2 , the lower one of an amyl acetate/cellulose solution with thickness d1 . During evaporation of the solvents from both layers, their thickness, surface tension, and viscosity change continuously with time. The thickness d2 decreases significantly faster than the thickness d1 , because the evaporation rate of hexane is much larger than that of amyl acetate. Eventually, the top layer decomposes into droplets when its thickness d2 was only a few nm, while the thickness d1 was still some 100nm . In addition to the experiments, we present calculations based on energetic arguments which are in good agreement with experimentally determined geometrical parameters of the droplet pattern, such as droplet diameter, droplet height, interdroplet distance, and number of droplets per unit area.

  1. From solid solution to cluster formation of Fe and Cr in α-Zr

    International Nuclear Information System (INIS)

    Burr, P.A.; Wenman, M.R.; Gault, B.; Moody, M.P.; Ivermark, M.; Rushton, M.J.D.; Preuss, M.; Edwards, L.; Grimes, R.W.

    2015-01-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  2. Global weak solutions for a compressible gas-liquid model with well-formation interaction

    Science.gov (United States)

    Evje, Steinar

    The objective of this work is to explore a compressible gas-liquid model designed for modeling of well flow processes. We build into the model well-reservoir interaction by allowing flow of gas between well and formation (surrounding reservoir). Inflow of gas and subsequent expansion of gas as it ascends towards the top of the well (a so-called gas kick) represents a major concern for various well operations in the context of petroleum engineering. We obtain a global existence result under suitable assumptions on the regularity of initial data and the rate function that controls the flow of gas between well and formation. Uniqueness is also obtained by imposing more regularity on the initial data. The key estimates are to obtain appropriate lower and upper bounds on the gas and liquid masses. For that purpose we introduce a transformed version of the original model that is highly convenient for analysis of the original model. In particular, in the analysis of the transformed model additional terms, representing well-formation interaction, can be treated by natural extensions of arguments that previously have been employed for the single-phase Navier-Stokes model. The analysis ensures that transition to single-phase regions do not appear when the initial state is a true gas-liquid mixture.

  3. TiO2 Nanotubes on Ti Dental Implant. Part 1: Formation and Aging in Hank’s Solution

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2017-05-01

    Full Text Available Self-organized TiO2 nanotube layer has been formed on titanium screws with complex geometry, which are used as dental implants. TiO2 nanotubes film was grown by potentiostatic anodizing in H3PO4 and HF aqueous solution. During anodizing, the titanium screws were mounted on a rotating apparatus to produce a uniform structure both on the peaks and on the valleys of the threads. X-ray diffraction (XRD, Scanning electron microscopy (SEM, Energy dispersive X-ray (EDX and electrochemical characterization were used to evaluate the layer, chemical composition and electrochemical properties of the samples. Aging in Hank’s solution of both untreated and nanotubes covered screw, showed that: (i samples are covered by an amorphous oxide layer, (ii the nanotubes increases the corrosion resistance of the implant, and (iii the presence of the nanotubes catalyses the formation of chemical compounds containing Ca and P.

  4. Exact solution of CKP equation and formation and interaction of two solitons in pair-ion-electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Batool, Nazia; Jahangir, R. [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); National Center of Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Masood, W. [National Center of Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); COMSATS Institute of Information Technology, Islamabad (Pakistan); Siddiq, M. [National Center of Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan)

    2016-08-15

    In the present investigation, cylindrical Kadomstev-Petviashvili (CKP) equation is derived in pair-ion-electron plasmas to study the propagation and interaction of two solitons. Using a novel gauge transformation, two soliton solutions of CKP equation are found analytically by using Hirota's method and to the best of our knowledge have been used in plasma physics for the first time. Interestingly, it is observed that unlike the planar Kadomstev-Petviashvili (KP) equation, the CKP equation admits horseshoe-like solitary structures. Another non-trivial feature of CKP solitary solution is that the interaction parameter gets modified by the plasma parameters contrary to the one obtained for Korteweg–de Vries equation. The importance of the present investigation to understand the formation and interaction of solitons in laboratory produced pair plasmas is also highlighted.

  5. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2

    Directory of Open Access Journals (Sweden)

    Zhao Z

    2015-04-01

    Full Text Available Zheng Zhao,1,3 Maobin Xie,2 Yi Li,2 Aizheng Chen,4 Gang Li,5 Jing Zhang,2 Huawen Hu,2 Xinyu Wang,1,3 Shipu Li1,31State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People’s Republic of China; 2Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong; 3Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People’s Republic of China; 4College of Chemical Engineering, Huaqiao University, Xiamen, People’s Republic of China; 5National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of ChinaAbstract: In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2 (SEDS was employed to prepare curcumin nanoparticles for the first time. A 24 full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P =20 MPa, T =35°C, flow rate of solution =0.5 mL.min-1, concentration of solution =0.5%. Fourier transform infrared (FTIR spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The

  6. Spontaneous polyiodide formation by unbalancing of charge in room-temperature ionic liquid-lithium salt solutions

    Science.gov (United States)

    Kishimura, Hiroaki; Aono, Masami; Kyuko, Yoshiki; Nagaya, Shoki; Koyama, Shu; Abe, Hiroshi

    2018-03-01

    Spontaneous formations of polyiodides, Im-, were observed in room-temperature ionic liquid (RTIL)-lithium salt solutions. The RTILs consisted of 1-alkyl-3-methylimidazolium iodide, [Cnmim][I] (n = 3, 4, and 6). The lithium salt used was lithium bis(fluorosulfonyl)imide, Li[FSI]. By Raman spectroscopy, the gradual increase in the peak intensities of the polyiodides at a fixed temperature in the [Cnmim][I]-Li[FSI]-ethanol mixtures was observed along with color changes of the mixtures. Because no polyiodides were observed in the [C4mim][I] - [C4mim][FSI] mixture, it was determined that the spontaneous formation of Im- without external addition of iodine was induced by the Li ion.

  7. Formation of magnetite (Fe3O4)in aqueous media and properties of the interface magnetite/solution

    International Nuclear Information System (INIS)

    Regazzoni, A.E.

    1984-01-01

    The formation of Fe 3 O 4 particles in aqueous media and the properties of the Fe 3 O 4 /aqueous solution interface are studied. This system is of particular interest in nuclear reactor chemistry, since Fe 3 O 4 was identified as the main component of the corrosion products of nuclear power plants cooled with pressurized water, of the Atucha I and II, and Embalse type. Four methods for the synthesis of Fe 3 O 4 are described: a) controlled oxidation of Fe(OH) 2 in the presence of NaNO 3 at 25 deg C; b) controlled oxidation of Fe(OH) 2 in the presence of NaNO 3 and N 2 H 4 and at 100 deg C; c) alkalinization of a F 2+ and Fe 3+ solutions at 80 deg C; d) simultaneous oxidation and alkalinization of a Fe 2+ . The interfacial properties of Fe 3 O 4 particles suspended in aqueous solutions of indifferent electrolytes are described. These properties are essential for the activity transport associated with the corrosion products. Finally, the adsorption of H 3 BO 3 , Hsub(n)PO 4 sup(n-3) and n Co(II) in the Fe 3 O 4 /solution interface at 30 deg C. It is concluded that the adsorbed species are chemically bonded to surface metal ions. (M.E.L.) [es

  8. Using Automated Processes to Generate Test Items And Their Associated Solutions and Rationales to Support Formative Feedback

    Directory of Open Access Journals (Sweden)

    Mark Gierl

    2015-08-01

    Full Text Available Automatic item generation is the process of using item models to produce assessment tasks using computer technology. An item model is similar to a template that highlights the elements in the task that must be manipulated to produce new items. The purpose of our study is to describe an innovative method for generating large numbers of diverse and heterogeneous items along with their solutions and associated rationales to support formative feedback. We demonstrate the method by generating items in two diverse content areas, mathematics and nonverbal reasoning

  9. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  10. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    Science.gov (United States)

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  11. On the a priori possibility of the formation of hexameric mini-hairpin d(GCGAGC) in solution

    Science.gov (United States)

    Rubin, Yu. V.; Belous, L. F.; Evstigneev, M. P.

    2012-11-01

    Combined high-level (M05-2x, M06-2x functionals of DFT method) and semi-empirical structural and energetic analyses have confirmed the a priori possibility for the formation of the shortest ever known hexameric hairpin d(GCGAGC) with GA loop in aqueous solution. The origin of stabilisation comes from intramolecular H-bonding and hydrophobic interactions and, to lesser extent, from intramolecular van der Waals and electrostatic forces. This result provides a basis for seeking of such mini-hairpins in experiment.

  12. Determination of dextrose in peritoneal dialysis solution by localized surface plasmon resonance technique based on silver nanoparticles formation

    Science.gov (United States)

    Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari

    2017-07-01

    Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.

  13. Theoretical predictions of complex formation of group-4 elements Zr, Hf, and Rf in H2SO4 solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Polakova, D.; Omtvedt, J.P.

    2006-01-01

    A process of step-wise complexation of group-4 elements Zr, Hf, and Rf in H 2 SO 4 solutions has been considered theoretically. Relative values of the free energy change of the M(SO 4 ) 2 (H 2 O) 4 , M(SO 4 ) 3 (H 2 O) 2 2- and M(SO 4 ) 4 4- (M = Zr, Hf, and Rf) formation reactions from hydrated and partially hydrolyzed cations have been calculated using the fully relativistic density functional theory method. They proved to be very similar for reactions of Zr and Hf. At low H 2 SO 4 concentrations, Hf should, however, have a slight preference for the complex formation, especially, when hydrolysis takes place, while with increasing H 2 SO 4 concentration and decreasing hydrolysis, the trend should be Zr > Hf. According to the results, Rf should exhibit a weaker tendency to complex formation than Zr and Hf at the entire range of acid concentrations, i.e., for all types of complexes. Thus, the predicted trend is Zr > Hf >> Rf. The same trend is also found for the formation of R 4 M(SO 4 ) 4 , where R is a monovalent cation. Accordingly, the trend in the K d (distribution coefficient) values in anion-exchange separations of group-4 elements should be: Zr > Hf >> Rf. The obtained trend for Zr and Hf is in agreement with literature data on extraction of these elements in macro-concentrations from sulphuric acid solutions and with recent experiments on extraction of single species by TOA in toluene using the SISAK technique. (orig.)

  14. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiangli [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189 (China); Xing, Tiantian [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Lou, Yongbing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189 (China); Chen, Jinxi, E-mail: chenjinxi@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189 (China)

    2016-03-15

    Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from various cobalt sources and 2-methylimidazolate (Hmim) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co{sup 2+} molar ratios and experimental condition. Using Co(NO{sub 3}){sub 2} as cobalt source, small-sized ZIF-67 crystals with agglomeration were formed. For CoCl{sub 2}, small-sized rhombic dodecahedron were obtained. While large-sized crystals of rhombic dodecahedron structure were obtained from CoSO{sub 4} and Co(OAc){sub 2}. Under hydrothermal condition, the size of ZIF-67 crystals tended to be more uniform and the morphology were more regular comparing to non-hydrothermal condition. This study provides a simple way to control the size and morphology of ZIF-67 crystals prepared in aqueous solution. - Graphical abstract: Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from four different cobalt sources (Co(NO{sub 3}){sub 2}, CoCl{sub 2}, CoSO{sub 4} and Co(OAc){sub 2}) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co{sup 2+} molar ratios and experimental condition. - Highlights: • The particle size and morphology were determined by the reactivity of cobalt salt. • ZIF-67 could be prepared from CoSO{sub 4} and Co(OAc){sub 2} at Hmim/Co{sup 2+} molar ratio of 10. • Uniform and regular particles were obtained under hydrothermal condition.

  15. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution

    International Nuclear Information System (INIS)

    Guo, Xiangli; Xing, Tiantian; Lou, Yongbing; Chen, Jinxi

    2016-01-01

    Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from various cobalt sources and 2-methylimidazolate (Hmim) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co 2+ molar ratios and experimental condition. Using Co(NO 3 ) 2 as cobalt source, small-sized ZIF-67 crystals with agglomeration were formed. For CoCl 2 , small-sized rhombic dodecahedron were obtained. While large-sized crystals of rhombic dodecahedron structure were obtained from CoSO 4 and Co(OAc) 2 . Under hydrothermal condition, the size of ZIF-67 crystals tended to be more uniform and the morphology were more regular comparing to non-hydrothermal condition. This study provides a simple way to control the size and morphology of ZIF-67 crystals prepared in aqueous solution. - Graphical abstract: Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from four different cobalt sources (Co(NO 3 ) 2 , CoCl 2 , CoSO 4 and Co(OAc) 2 ) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co 2+ molar ratios and experimental condition. - Highlights: • The particle size and morphology were determined by the reactivity of cobalt salt. • ZIF-67 could be prepared from CoSO 4 and Co(OAc) 2 at Hmim/Co 2+ molar ratio of 10. • Uniform and regular particles were obtained under hydrothermal condition.

  16. Ion pair formation in copper sulfate aqueous solutions at high temperatures

    International Nuclear Information System (INIS)

    Mendez De Leo, Lucila P.; Bianchi, Hugo L.; Fernandez-Prini, Roberto

    2005-01-01

    Ionic association between Cu 2+ (aq) and SO42-(aq) has been studied in the temperature range (298 to 473) K using a spectrophotometric technique. Experiments were designed to minimize the contribution of other protolytic equilibria in solution. The values of the ionic association equilibrium constant at different temperatures and pressures were fitted to an appropriate equation that allows the calculation of the thermodynamic quantities for states close to the saturation line. Using Bjerrum's model for ionic association evidence for two ion pair populations was obtained. The process of ion pairing is discussed and a possibility to reconcile the continuum model (Bjerrum) with molecular simulation results is suggested

  17. Corpus-based Online Word Formation Exercises for Advanced Learners of English – Challenges and Solutions

    OpenAIRE

    Krynicki, Grzegorz

    2013-01-01

    The paper presents the design and operation of an online platform for word formation practice. The system is based on a pre-defined list of pairs of base and derived forms and usage examples drawn automatically from the British National Corpus. A procedure for the extraction of example sentences is outlined. Results of 372 users’ interacting with the system for over 4.5 month are reviewed. The question about what factors influence users’ evaluation of specific exercises as more difficult is a...

  18. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions.

    Directory of Open Access Journals (Sweden)

    Jose Guerrero

    Full Text Available Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time.

  19. Accelerated formation of nanocarbons in solution plasma using benzene substituted with CF3 group

    Science.gov (United States)

    Panomsuwan, Gasidit; Lun Li, Oi; Saito, Nagahiro; Ishizaki, Takahiro

    2018-01-01

    Nanocarbons were synthesized by a solution plasma method using benzene (C6H6) and benzotrifluoride (C5H5CF3) as precursors. The effects of the substituted CF3 group on the overall properties of synthesized nanocarbons were investigated and discussed. As determined from the characterization results, the nanocarbons obtained from both benzene and benzotrifluoride mainly exhibited an amorphous structure and their diameter was about 20–40 nm. There were no notable differences in morphology, surface area, and crystalline structure observed between them. Interestingly, the synthesis rate of nanocarbons from benzotrifluoride (20.3 mg/min) was almost three fold higher than that from benzene (7.6 mg/min). Moreover, a lower H/C ratio was observed in the case of nanocarbons from benzotrifluoride, indicating its more efficient H abstraction. The higher synthesis rate and lower H/C ratio of nanocarbons from benzotrifluoride were possibly attributed to the CF3 radicals generated in the reaction fields of solution plasma during synthesis.

  20. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions.

    Science.gov (United States)

    Guerrero, Jose; Oliver, Gabriel; Valero, Oscar

    2017-01-01

    Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time.

  1. Formation of passivating layers by 1,2,4-triazole derivatives on copper in aqueous solutions

    Science.gov (United States)

    Kuznetsov, Yu. I.; Shikhaliev, Kh. S.; Agafonkina, M. O.; Andreeva, N. P.; Semiletov, A. M.; Chirkunov, A. A.; Potapov, A. Yu.; Solov'ev, V. E.

    2017-12-01

    Ellipsometry and electrochemical measurements are used to study the adsorption of some substituted 1,2,4-triazoles on copper and their effect on dissolution of copper in aqueous buffer solutions at pH 7.4. It is found that the adsorption of triazole compounds on copper is polymolecular at potential E = 0.0 V, in relation to a normal hydrogen electrode. The first layer is described by the Temkin equation with free adsorption energy (-Δ G a 0) = 55.2-76.3 kJ/mol and an energy heterogeneity factor that varies from 0.91 to 2.5. The maximum value of -Δ G a 0 is found for an acid and a hydrogen sulfide corrosion inhibitor that is a mixture of triazole derivatives. The same inhibitor is the one least sensitive to the energy heterogeneity of the surface of a copper electrode, due to its high chemical reactivity and ability to be adsorbed on different active sites. This inhibitor is likely chemisorbed on copper and forms an ultrathin coating in an aqueous solution that is vastly superior to similar coatings produced by the familiar corrosion inhibitors of triazole group compounds in protecting against atmospheric corrosion.

  2. Evidence for the Formation of Benzacridine Derivatives in Alkaline-Treated Sunflower Meal and Model Solutions

    Directory of Open Access Journals (Sweden)

    Verena Bongartz

    2016-01-01

    Full Text Available Sunflower extraction meal (SEM is an economically interesting protein source. During alkaline extraction of proteins, the presence of chlorogenic acid (CQA in the meal gives rise to the formation of o-quinones. Reactions with nucleophiles present in proteins can lead to green discoloration. Although such reactions have been known for a long time, there is a lack of information on the chemical nature of the reaction products. SEM and model systems consisting of amino acids and CQA were subjected to alkaline treatment and, for comparison, to oxidation of CQA by polyphenoloxidase (PPO. Several green trihydroxy benzacridine (TBA derivatives were tentatively identified in all samples by UHPLC-DAD-MS/MS. Surprisingly, in alkaline-treated samples of particular amino acids as well as in SEM, the same six TBA isomers were detected. In contrast, the enzymatically oxidized samples resulted in only three TBA derivatives. Contrary to previous findings, neither peptide nor amino acid residues were attached to the resultant benzacridine core. The results indicate that the formation of TBA derivatives is caused by the reaction between CQA quinones and free NH2 groups. Further research is necessary to elucidate the structure of the addition products for a comprehensive evaluation of food and feed safety aspects.

  3. Inhibitory effect of liposomal solutions of grape seed extract on the formation of heterocyclic aromatic amines.

    Science.gov (United States)

    Natale, Daniela; Gibis, Monika; Rodriguez-Estrada, Maria Teresa; Weiss, Jochen

    2014-01-08

    The effectiveness of grape seed extract (GSE) encapsulated in liposomes to inhibit the formation of heterocyclic aromatic amines (HAA) during frying of beef patties was assessed. All liposomal systems were prepared by high pressure homogenization at 22 500 psi. A total of six samples (rapeseed oil (control), GSE at 0.1% and 0.2%, and GSE-containing liposomes with 1%, 2%, and 5% soy lecithin) were investigated. MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine), Norharman, and Harman were found after the marinade application and frying. PhIP concentrations decreased upon marination with GSE (0.1%) and GSE-containing liposomes (1% and 5%) (p oil control (p < 0.01) while no effect on β-carboline formation was observed. Results are in contrast to previous studies that had shown that liposomal encapsulation may enhance effectiveness of polyphenols to inhibit radical reactions. A mechanistic model was proposed to explain the observed differences.

  4. Analysis of solutes in groundwaters from the Rustler Formation at and near the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Robinson, K.L.

    1997-09-01

    Between 1976 and 1986, groundwater samples from more than 60 locations in the vicinity of the Waste Isolation Pilot Plant site were collected and analyzed for a variety of major, minor, and trace solutes. Most of the samples were from the Rustler Formation (the Culebra Dolomite, the Magenta Dolomite, or the zone at the contact between the Rustler and underlying Salado Formations) or the Dewey Lake Red Beds. The analytical data from the laboratories are presented here with accompanying discussions of sample collection methods, supporting field measurements, and laboratory analytical methods. A comparison of four data sets and a preliminary evaluation of the data for the major solutes (Cl - , SO 4 -2 , Na, K, Ca, and Mg) shows that the data for samples analyzed by UNC/Bendix for SNL seem to be the most reliable, but that at some locations, samples representative of the native, unperturbed groundwater have not been collected. At other locations, the water chemistry has apparently changed between sampling episodes

  5. Formation of a supersaturated carbon solution in a metal under the process of carbon nano fibers obtaining by PECVD

    International Nuclear Information System (INIS)

    Takopulo, D. A.; Fisenko, S. P.

    2012-01-01

    Heat and mass transfer processes in a highly porous carbon layer appeared on a catalytic surface of a plasma chemical reactor during carbon nano fibers obtaining by PECVD (plasma enhanced CVD) are considered. Nano fibers formation in such a process is carried out as a result of the catalytic decomposition of the carbon contained plasma pyrolysis yields followed by carbon atoms diffusion into the catalyst bulk with a subsequent formation of carbon in a metal solid solution. The results of the numerical investigation of the transfer processes in the porous layer have shown that the layer thickness growth significantly reduces the catalytic surface temperature. This effect causes the carbon solid solution supersaturation, which is an obligatory condition of the carbon clusters nucleation. The transfer problems initial data have been obtained in a result of experimental investigations of thin porous carbon layers gathered from the catalytic surface of the plasma chemical reactor. It have been determined that the layer porosity has an average value of about 70%, and it's effective heat conductivity in the temperature range of 600-1000 C is about 10 -1 W/(m*K) and slightly depends on the temperature. A numerical modeling has been made for a steady state approximation. The correctness of this approximation is based on the comparison of the steady stale stabilization characteristic time with the porous layer growth characteristic time. The latter appeared to be much longer than the former one. (authors).

  6. Formation of Bi(II) and Bi(IV) in aqueous hydrochloric solutions of Bi(III)

    International Nuclear Information System (INIS)

    Aleksandrov, A.I.; Makarov, I.E.

    1987-01-01

    They have detected the formation of Bi(II) and Bi(IV) in concentrated hydrochloric acid solutions and determined certain of their physicochemical properties using low-temperature radiolysis with optical recording, EPR spectroscopy, and pulse radiolysis. The formation of bismuth (II) and bismuth (IV) under the action of ionizing radiation on hydrochloric acid solutions of bismuth (III) has been shown by low-temperature and pulse radiolysis. The kinetics of bismuth (IV) disappearance at 300 0 K have a complex nature and would seem to be caused both by the disproportionation of bismuth (IV) and the reaction of bismuth (IV) with bismuth (II), which leads to bismuth (III). The properties of bismuth (IV), which is formed from the reaction of Cl 2 - with bismuth (III) agree with previously established relationships on the variation in optical transition energies and the unpaired electron density at the s atomic orbital of the ion for the series of isoelectronic ions mercury (I), thallium (II), lead (III), and bismuth (IV) in the 2 S/sub 1/2/ state

  7. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Velasco Maldonado, Paola S. [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Hernández-Montoya, Virginia, E-mail: virginia.hernandez@yahoo.com.mx [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Concheso, A.; Montes-Morán, Miguel A. [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, E-33080, Oviedo (Spain)

    2016-11-15

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO{sub 3} on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb{sup 2+} from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N{sub 2} at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb{sup 2+} was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb{sup 2+} removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO{sub 3} on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb{sup 2+}. Accordingly, retention capacities as high as 63 mg of Pb{sup 2+} per gram of adsorbent have been attained.

  8. Water as a solute: competitive shell formation in (He,Ne) mixed microdroplets.

    Science.gov (United States)

    Marinetti, F; Gianturco, F A

    2011-02-14

    Quantum Monte Carlo (QMC) stochastic calculations are carried out for a series of mixed rare gas clusters containing He and Ne which further include one H(2)O molecule as a single dopant. The ab initio potentials employed in the calculations, and the structural details provided by the QMC results, clearly reveal that the differences in the interaction forces which exist between the two solvent adatoms and the molecular solute are causing strongly competing environments that generate preferential shell structuring when surrounding the water molecule. The different behaviour of the two solvents, and the energetics of mixing, are analyzed in detail for small aggregates and for larger mixtures, revealing structural effects which originate from the different networking between solvent adatoms.

  9. Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation.

    Science.gov (United States)

    Takano, Shingo

    2012-04-01

    Glioblastomas are highly vascular tumors. Recent preclinical and clinical investigations have revealed that agents targeting angiogenesis may have efficacy against this type of tumor. Antibodies to vascular endothelial growth factor are being studied in this patient population. Unfortunately, treatment inevitably fails. This review provides an update on recent research on the mechanisms by which tumor cells acquire resistance, and discusses recent preclinical and experimental development of novel new-generation anti-angiogenic agents that overcome this problem, especially those based on the molecular mechanisms of tumor vessel formation. The tumor vasculature not only nourishes glioblastomas, but also provides a specialized microenvironment for tumor stem-like cells and for the brain tumor. The factors, pathways, and interactions described in this review provide information about the cell biology of glioblastomas which may ultimately result in new modes of treatment.

  10. Ion beam induced surface pattern formation and stable travelling wave solutions.

    Science.gov (United States)

    Numazawa, Satoshi; Smith, Roger

    2013-03-06

    The formation of ripple structures on ion bombarded semiconductor surfaces is examined theoretically. Previous models are discussed and a new nonlinear model is formulated, based on the infinitesimal local atomic relocation induced by elastic nuclear collisions in the early stages of collision cascades and an associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important, and it is shown that in this case certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results are in very good agreement with experimental observations.

  11. Solution x-ray scattering and structure formation in protein dynamics

    Science.gov (United States)

    Nasedkin, Alexandr; Davidsson, Jan; Niemi, Antti J.; Peng, Xubiao

    2017-12-01

    We propose a computationally effective approach that builds on Landau mean-field theory in combination with modern nonequilibrium statistical mechanics to model and interpret protein dynamics and structure formation in small- to wide-angle x-ray scattering (S/WAXS) experiments. We develop the methodology by analyzing experimental data in the case of Engrailed homeodomain protein as an example. We demonstrate how to interpret S/WAXS data qualitatively with a good precision and over an extended temperature range. We explain experimental observations in terms of protein phase structure, and we make predictions for future experiments and for how to analyze data at different ambient temperature values. We conclude that the approach we propose has the potential to become a highly accurate, computationally effective, and predictive tool for analyzing S/WAXS data. For this, we compare our results with those obtained previously in an all-atom molecular dynamics simulation.

  12. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation.

    Science.gov (United States)

    Xue, Feng; Wu, Er-Jun; Zhang, Pei-Xun; Li-Ya, A; Kou, Yu-Hui; Yin, Xiao-Feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  13. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  14. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  15. At the crossroad of photochemistry and radiation chemistry: formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation.

    Science.gov (United States)

    Tomanová, Kateřina; Precek, Martin; Múčka, Viliam; Vyšín, Luděk; Juha, Libor; Čuba, Václav

    2017-11-08

    Formation yields of ˙OH radicals were precisely determined in aqueous solutions of coumarin-3-carboxylic acid and ferrous sulfate (i.e., Fricke dosimeter) exposed to 253.7 nm radiation delivered from a continuous source. Quantum yield of ˙OH radicals was determined as ∼0.08, i.e., roughly one out of twelve photons, efficiently absorbed in UV-illuminated solutions, produced one ˙OH radical. Energetically, a water molecule should undergo a correlated action of at least two 4.9 eV photons delivering enough energy for direct H-OH dissociation (5.0-5.4 eV). We suggest a mechanism based on an interaction of two water molecules, both in long-living triplet states. An intermolecular transfer of excitation energy provided a sufficient amount of energy for the dissociation of one water molecule into ˙OH and H˙ radicals. In an aqueous solution of phospholipids, quantum yields of hydroperoxides formed under these irradiation conditions decreased with total effectively absorbed energy (i.e. a dose), similar to the radiation chemical yields obtained during an exposure to ionizing radiation, such as gamma rays from radionuclide sources. Under 253.7 nm irradiation, one ˙OH radical causes a peroxidation of 34 phospholipid molecules. This implicates chain mechanism of the reaction.

  16. On the collapse of cavities

    Science.gov (United States)

    Bourne, N. K.

    The collapse of a single cavity, or a cloud of bubbles has several physical consequences when in proximity to a structure or resident within a material during deformation. The earliest recognized of these was cavitation erosion of the propellers of steam ships. However, other processes include the rapid collapse of cavities leading to hot spots in explosives from which reaction ensues, or the more recent phenomenon of light generation by oscillating single bubbles or clouds. In the collapse of a cavity, the least considered but the most important mechanism is asymmetric closure. One of the consequences of this is the formation of jets leading to local high pressures and shears that result in the damage or reaction mechanisms observed. The challenge for the future remains in understanding the effects of cloud cavitation since it is likely that only one bubble in perhaps millions in a cloud catalyses an event. The review follows the author's work in the understanding of shock-induced cavity collapse and highlights several results which indicate the importance of this problem in a variety of fields.

  17. Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution.

    Science.gov (United States)

    Drozd, Greg T; McNeill, V Faye

    2014-04-01

    Aqueous-phase reactions of organic compounds are of general importance in environmental systems. Reactions of α-dicarbonyl compounds in the aqueous phase of atmospheric aerosols can impact their climate-relevant physical properties including hygroscopicity and absorption of light. Less-reactive water-soluble organic compounds may contribute an organic matrix component to the aqueous environment, potentially impacting the reaction kinetics. In this work we demonstrate the effects of organic matrices on the self-reactions of glyoxal (Gly) and methylglyoxal (mGly) in aqueous solutions containing ammonium sulfate. At an organic-to-sulfate mass ratio of 2 : 1, carbohydrate-like matrices resembling oxidized organic aerosol material reduce the rate of formation of light-absorbing products by up to an order of magnitude. The greatest decreases in the reaction rates were observed for organic matrices with smaller, more linear molecular structures. Initial UV-Vis spectra, product studies, relative rate data, acidity changes, and viscosity measurements suggest that shifts in carbonyl equilibria, due in part to (hemi)acetal formation with the matrix, reduce the rate of formation of light-absorbing imidazole and oligomer species.

  18. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Sašo, E-mail: saso.gyergyek@ijs.si [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Primc, Darinka [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Plantan, Ivan [Lek Pharmaceuticals d.d., Mengeš (Slovenia)

    2015-03-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe{sup 3+} ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles.

  19. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    Science.gov (United States)

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  20. Small-angle X-ray scattering study of conditions for the formation of growth units of protein crystals in lysozyme solutions

    Science.gov (United States)

    Dyakova, Yu. A.; Ilina, K. B.; Konarev, P. V.; Kryukova, A. E.; Marchenkova, M. A.; Blagov, A. E.; Volkov, V. V.; Pisarevsky, Yu. V.; Kovalchuk, M. V.

    2017-05-01

    The structural composition of lysozyme solutions favorable for the formation of the tetragonal form of protein crystals was studied by synchrotron-based small-angle X-ray scattering depending on the protein concentration and the temperature. Along with lysozyme monomers, dimers and octamers are found in crystallization solutions; the octamer content increases with an increase in the protein concentration.

  1. Thermodynamics of the complex formation between thorium(IV) and some polydentate ligands in aqueous solution

    International Nuclear Information System (INIS)

    Di Bernado, P.; Cassol, A.; Tomat, G.; Bismondo, A.; Magon, L.

    1983-01-01

    The changes in free energy, enthalpy, and entropy for the formation of thorium(IV)-oxydiacetate, -iminodiacetate, -thiodiacetate, and -succinate complexes have been determined by potentiometric and calorimetric titrations at 25 deg C in aqueous 1 mol dm - 3 sodium perchlorate. All the ligands form 1:1 chelate complexes with the thorium(IV) ion the stability of which is dependent on both the chelate ring dimensions and the nature of the donor group in the chain. The order of the relative stabilities (iminodiacetate > oxydiacetate > thiodiacetate > succinate) is mainly dependent on the reaction enthalpies, since the δS values are close to each other. In the thorium(IV)-oxydiacetate system the maximum number of three ligands for every metal ion was reached. Because of precipitation of solid compounds in the other systems, it was only possible to define complexes with a lower number of co-ordinated ligands: two for succinate and thiodiacetate, and one for iminodiacetate. Owing to the lower stability of the chelate ring of thiodiacetate and succinate complexes and the high basicity of the amino-group of iminodiacetate, these ligands form also unchelated protonated complexes. (author)

  2. Spall formation in solution mined storage caverns based on a creep and fracture analysis

    International Nuclear Information System (INIS)

    Munson, Darrell E.

    2000-01-01

    Because of limited direct observation, understanding of the interior conditions of the massive storage caverns constructed in Gulf Coast salt domes is realizable only through predictions of salt response. Determination of the potential for formation of salt spans, leading to eventual salt falls, is based on salt creep and fracture using the Multimechanism-Deformation Coupled Fracture (MCDF) model. This is a continuum model for creep, coupled to continuum damage evolution. The model has been successfully tested against underground results of damage around several test rooms at the Waste Isolation Pilot Plant (WIPP). Model simulations, here, evaluate observations made in the Strategic Petroleum Reserve (SPR) storage caverns, namely, the accumulation of material on cavern floors and evidence of salt falls. A simulation of a smooth cavern wall indicates damage is maximum at the surface but diminishes monotonically into the salt, which suggests the source of salt accumulation is surface sluffing. If a protuberance occurs on the wall, fracture damage can form beneath the protuberance, which will eventually cause fracture, and lead to a salt fall

  3. Hydration and ion pair formation in common aqueous La(III) salt solutions--a Raman scattering and DFT study.

    Science.gov (United States)

    Rudolph, Wolfram W; Irmer, Gert

    2015-01-07

    Raman spectra of aqueous lanthanum perchlorate, triflate (trifluorosulfonate), chloride and nitrate solutions were measured over a broad concentration (0.121-3.050 mol L(-1)) range at room temperature (23 °C). A very weak mode at 343 cm(-1) with a full width at half height at 49 cm(-1) in the isotropic spectrum suggests that the nona-aqua La(III) ion is thermodynamically stable in dilute perchlorate solutions (∼0.2 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The La(3+) nona-hydrate was also detected in a 1.2 mol L(-1) La(CF3SO3)3(aq). In lanthanum chloride solutions chloro-complex formation was detected over the measured concentration range from 0.5-3.050 mol L(-1). The chloro-complexes in LaCl3(aq) are fairly weak and disappear with dilution. At a concentration La(OH2)(9-n)Cln](+3-n) (n = 1-3) were formed. The La(NO3)3(aq) spectra were compared with a spectrum of a 0.409 mol L(-1) NaNO3(aq) and it was concluded that in La(NO3)3(aq) over the concentration range from 0.121-1.844 mol L(-1), nitrato-complexes, [La(OH2)(9-n)(NO3)n](+3-n) (n = 1, 2) were formed. These nitrato-complexes are quite weak and disappear with dilution La(OH2)9](3+) with the polarizable dielectric continuum are in good agreement with data from recent structural experimental measurements and high quality simulations. The DFT frequency of the La-O stretching mode at 328.2 cm(-1), is only slightly smaller than the experimental one.

  4. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  5. Electrochemical formation of green rusts in deaerated seawater-like solutions

    Energy Technology Data Exchange (ETDEWEB)

    Refait, Ph., E-mail: prefait@univ-lr.fr [Laboratoire d' etude des materiaux en milieux agressifs (LEMMA), EA 3167, Universite de La Rochelle, Bat. Marie Curie, Av. Michel Crepeau, F-17 042 La Rochelle Cedex 01 (France); Fed. de Recherche en Environnement et Developpement Durable, FR CNRS 3097 (France); Nguyen, D.D. [Laboratoire d' etude des materiaux en milieux agressifs (LEMMA), EA 3167, Universite de La Rochelle, Bat. Marie Curie, Av. Michel Crepeau, F-17 042 La Rochelle Cedex 01 (France); Hue University' s College of Education, Hue (Viet Nam); Jeannin, M. [Laboratoire d' etude des materiaux en milieux agressifs (LEMMA), EA 3167, Universite de La Rochelle, Bat. Marie Curie, Av. Michel Crepeau, F-17 042 La Rochelle Cedex 01 (France); Fed. de Recherche en Environnement et Developpement Durable, FR CNRS 3097 (France); Sable, S. [Littoral, Environnement et Societe (LiENSs), UMR 6250, CNRS-Univ. La Rochelle, Bat. Marie Curie, Av. Michel Crepeau, F-17 042 La Rochelle Cedex 01 (France); Fed. de Recherche en Environnement et Developpement Durable, FR CNRS 3097 (France); Langumier, M. [Laboratoire d' etude des materiaux en milieux agressifs (LEMMA), EA 3167, Universite de La Rochelle, Bat. Marie Curie, Av. Michel Crepeau, F-17 042 La Rochelle Cedex 01 (France); Littoral, Environnement et Societe (LiENSs), UMR 6250, CNRS-Univ. La Rochelle, Bat. Marie Curie, Av. Michel Crepeau, F-17 042 La Rochelle Cedex 01 (France); Fed. de Recherche en Environnement et Developpement Durable, FR CNRS 3097 (France); Sabot, R. [Laboratoire d' etude des materiaux en milieux agressifs (LEMMA), EA 3167, Universite de La Rochelle, Bat. Marie Curie, Av. Michel Crepeau, F-17 042 La Rochelle Cedex 01 (France); Fed. de Recherche en Environnement et Developpement Durable, FR CNRS 3097 (France)

    2011-07-15

    Highlights: > Sulphated green rust could be electro-generated on carbon steel in anoxic seawater-like electrolytes. > Rust layers grown during 11 years on carbon steel in natural seawater were thoroughly characterised by {mu}-Raman spectroscopy. > The mechanism of marine corrosion of carbon steel in anoxic conditions could be specified. - Abstract: Carbon steel electrodes were polarised at a potential {approx}150 mV higher than the open circuit potential, in a deaerated seawater-like electrolyte (0.5 mol dm{sup -3} NaCl, 0.03 mol dm{sup -3} Na{sub 2}SO{sub 4}, 0.003 mol dm{sup -3} NaHCO{sub 3}). X-ray diffraction and {mu}-Raman analysis demonstrated that a layer mainly composed of GR(SO{sub 4}{sup 2-}) had grown on the steel surface. GR(SO{sub 4}{sup 2-}) was accompanied by traces of GR(CO{sub 3}{sup 2-}). Similar experiments performed in a solution composed of 0.3 mol dm{sup -3} of Na{sub 2}SO{sub 4} and 0.03 mol dm{sup -3} of NaHCO{sub 3} led to the same result. The nature of the GR forming on steel is thus mainly linked to the sulphate to carbonate concentration ratio. Finally, carbon steel coupons immersed for 11 years in the harbour of La Rochelle (Atlantic coast) were removed from seawater for analysis. The inner part of the rust layer proved to be mainly composed of magnetite, GR(SO{sub 4}{sup 2-}) and iron sulphide FeS. This definitively confirms that GR(SO{sub 4}{sup 2-}), as Fe{sub 3}O{sub 4} and FeS, can form from steel in O{sub 2}-depleted environments.

  6. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    -dimensional pore network, the dependence of the mass balance in all major directions is taken into account, either as a three-dimensional network of pores with specific geometry (cylinders, sinusoidal cells), or as a homogeneous random medium (Darcy description). The distribution of the crystals along the porous medium was calculated in the case of selective crystallization on the walls, which is the predominant effect to date in the experiments. The crystals distribution was also examined in the case where crystallization was carried out in the bulk solution. Salts sedimentation experiments were simulated both in an unsaturated porous medium and in a medium saturated with an oil phase. A comparison of the simulation results with corresponding experimental results was performed in order to design improved selective sedimentation of salts systems in porous formations. ACKNOWLEDGMENTS This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program "Education and Lifelong Learning" under the action Aristeia II (Code No 4420).

  7. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  8. STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Minoru; Kawatate, Yutaka; Funabiki, Atsushi; Jeong, Soon-Ki; Abe, Takeshi; Ogumi, Zempachi [Kyoto University (Japan). Graduate School of Engineering

    1999-07-01

    Lithium intercalation within graphite was studied in an electrolyte system. 1 M LiClO{sub 4} dissolved in trifluoropropylene carbonate (TFPC). Lithium was intercalated within graphite in TFPC. The reversible capacity obtained (275 mAh g{sup -1}) was smaller than that in ethylene carbonate-based solutions while the irreversible capacity was larger (335 mAh g{sup -1}). The morphology change of the basal plane of highly oriented pyrolytic graphite (HOPG) was observed by electrochemical scanning tunnelling microscopy (STM) to obtain information about passivating film (solid electrolyte interface, SEI) formation in this solvent system. The exfoliation of graphite layers was observed at 1.1 and 1.0 V vs. Li{sup +}/Li, and then swelling of graphite layers appeared along step edges at 0.5 V. The feature observed at 0.5 V was considered as SEI itself in this solvent system. (Author)

  9. (RbxK1-x)3C60 superconductors: Formation of a continuous series of solid solutions

    International Nuclear Information System (INIS)

    Chia-Chun Chen; Kelty, S.P.; Lieber, C.M.

    1991-01-01

    By means of an approach that employs alkali-metal alloys, bulk single-phase (Rb x K 1-x ) 3 C 60 superconductors have been prepared for all x between 0 and 1. For x = 1 it is shown that the maximum superconducting fraction, which approaches 100% in sintered pellets, occurs at a Rb to C 60 ratio of 3:1. More importantly, single-phase superconductors are formed at all intermediate values of x, and it is shown that the transition temperature (T c ) increases linearly with x in the series of materials. The formation of a continuous range of solid solutions demonstrates that the rubidium- and potassium-doped C 60 superconducting phases must be isostructural, and furthermore, suggests that the linear increase in T c with x results from a chemical pressure effect

  10. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  11. Seismic resonances of acoustic cavities

    Science.gov (United States)

    Schneider, F. M.; Esterhazy, S.; Perugia, I.; Bokelmann, G.

    2016-12-01

    The goal of an On-Site Inspection (OSI) is to clarify at a possible testsite whether a member state of the Comprehensive nuclear Test Ban Treaty (CTBT)has violated its rules by conducting a underground nuclear test. Compared toatmospheric and underwater tests underground nuclear explosions are the mostdifficult to detect.One primary structural target for the field team during an OSI is the detectionof an underground cavity, created by underground nuclear explosions. Theapplication of seismic-resonances of the cavity for its detection has beenproposed in the CTBT by mentioning "resonance seismometry" as possibletechnique during OSIs. We modeled the interaction of a seismic wave-field withan underground cavity by a sphere filled with an acoustic medium surrounded byan elastic full space. For this setting the solution of the seismic wave-fieldcan be computed analytically. Using this approach the appearance of acousticresonances can be predicted in the theoretical calculations. Resonance peaksappear in the spectrum derived for the elastic domain surrounding the acousticcavity, which scale in width with the density of the acoustic medium. For lowdensities in the acoustic medium as for an gas-filled cavity, the spectralpeaks become very narrow and therefore hard to resolve. The resonancefrequencies, however can be correlated to the discrete set of eigenmodes of theacoustic cavity and can thus be predicted if the dimension of the cavity isknown. Origin of the resonance peaks are internal reverberations of wavescoupling in the acoustic domain and causing an echoing signal that couples outto the elastic domain again. In the gas-filled case the amplitudes in timedomain are very low.Beside theoretical considerations we seek to find real data examples fromsimilar settings. As example we analyze a 3D active seismic data set fromFelsőpetény, Hungary that has been conducted between 2012 and 2014 on behalf ofthe CTBTO. In the subsurface of this area a former clay mine is

  12. Supersaturating drug delivery systems: effect of hydrophilic cyclodextrins and other excipients on the formation and stabilization of supersaturated drug solutions.

    Science.gov (United States)

    Brewster, M E; Vandecruys, R; Verreck, G; Peeters, J

    2008-03-01

    Supersaturating drug delivery systems (SDDS) utilize two important design elements in their preparation including converting the drug of interest into a high energy state or other rapidly dissolving form to facilitate the formation of supersaturated drug solutions and providing a means for stabilizing the formed supersaturated solution such that significant drug absorption is possible from the gastrointestinal tract. This has been referred to as a "spring" and "parachute" approach. The current effort is designed to assess materials which may affect properties in SDDS. To this end, a series of excipients was tested in a co-solvent/solvent quench method to assess their ability to attain and maintain supersaturation for a group of 14 drug development candidates. The approach focussed on hydrophilic cyclodextrins including hydroxypropyl-beta-cyclodextrin (HPbetaCD) and sulfobutyl-beta-cyclodextrin (SBEbetaCD). Various rheological polymers and surfactants were also included in the study. Consistent with previous investigations, the pharmaceutical polymers, as a class, had minimal effects on the extent of supersaturation but tended to be good stabilizers while the surfactants tended to provide for the greatest degree of supersaturation but the formed systems were poorly stable. This study found that hydrophilic cyclodextrins, especially SBEbetaCD, gave superior results in terms of attaining and maintaining supersaturation. A knowledge of the behavior and performance of excipients in this context can be useful in designing solid oral dosage forms for difficult-to-formulate drugs and drug candidates.

  13. An effective route for the room temperature formation of Pd coatings on multiwalled carbon nanotubes in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Joon [Dept. of Chemistry, Chungnam National University, Daejeon (Korea, Republic of); Lee, Im Kyu; Song, Jae Hee [Dept. of Chemistry, Sunc hon National University, Suncheon (Korea, Republic of)

    2016-10-15

    We present an easy one-pot synthesis route for the production of palladium nanoparticles and multiwalled carbon nanotubes (MWCNTs)-supported Pd-nanomaterial composites by a simple proton beam irradiation process in an aqueous solution at room temperature. Pristine and surface-modified MWCNTs were used to prepare MWCNT–Pd hybrids. Pd nanoparticles on the surfaces of MWCNTs were produced in situ in an aqueous solution without the addition of any harsh reducing agent. Pristine and thiolated MWCNTs were both densely decorated with spherical Pd nanoparticles and eventually Pd nanowire formation on MWCNTs was realized when reaction times exceeded 60 min. The thicknesses of Pd coatings on MWCNT surfaces were controlled by varying the concentration of MWCNTs in the reaction mixture. MWCNT-Pd composites were characterized by time-resolved transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray spectroscopy, and the results obtained showed that Pd coatings were continuous, and resulted in a MWCNT-supported Pd nanowire structure.

  14. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State UniversityErmak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvey; Kumeev, Roman [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Gridchin, Sergei [Ivanovo State University of Chemistry and Technology, Ivanovo (Russian Federation)

    2014-10-20

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH{sub 2}, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH{sub 2}, N{sup −} or NH2, N{sup −}, COO-coordination modes of GlyGly in the complex ZnNtaGGH{sub −1}. - Abstract: The isothermal calorimetry, pH-potentiometric titration and {sup 1}H and {sup 13}C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn{sup 2+}–Nta{sup 3–}–L{sup −} (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed.

  15. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    Science.gov (United States)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-11-01

    A new procedure of elimination of Pb2+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N2 at -196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb2+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb2+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb2+. Accordingly, retention capacities as high as 63 mg of Pb2+ per gram of adsorbent have been attained.

  16. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  17. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format

    KAUST Repository

    Dolgov, Sergey

    2015-11-03

    We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.

  18. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  19. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  20. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  1. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe

    Science.gov (United States)

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A.; Dunstan, Dave E.; Hartley, Patrick G.; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  2. Injections of Algesic Solutions into Muscle Activate the Lateral Reticular Formation: A Nociceptive Relay of the Spinoreticulothalamic Tract.

    Directory of Open Access Journals (Sweden)

    W Michael Panneton

    Full Text Available Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300 μl of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF. Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in

  3. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    Science.gov (United States)

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  4. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  5. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  6. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Intravenous administration of hyperoxygenated solution attenuates pulmonary edema formation in phosgene-induced acute lung injury in rabbits.

    Science.gov (United States)

    Wang, Ling; Liu, Chunran; Zhang, Hui; Gao, Changjun; Chai, Wei; Xu, Ruifen; Wang, Hui-xia; Xu, Lixian

    2010-11-01

    The aim of this study was to investigate the post-treatment effect of intravenous hyperoxygenated solution (HOS) on pulmonary parameters in rabbits whole-body-exposed to the toxic gas phosgene. Twenty-four New Zealand rabbits were divided into four groups randomly: rabbits were exposed whole-body to either filtered room air or 539 ppm phosgene for 5 minutes followed by room air washout for 5 minutes. Phosgene-exposed group (exposed to phosgene without treatment, PH group); Control group (exposed to air, Control group); Lactate Ringer's solution (LRS)-treated group (intravenous infusion of LRS by 30 ml·kg-1 after phosgene exposure, LRS group); Hyperoxygenated solution (HOS)-treated group (intravenous infusion of HOS after phosgene exposure by 30 mL·kg-1, HOS group). Arterial blood was collected for blood gas analysis at 1, 3, 8, and 12 hours after phosgene or air exposure. Rabbits were put to death 12 hours after exposure. Lung edema was assessed gravimetrically by measuring tissue wet/dry weight ratio (W/D) and lung coefficient (LC). Bronchoalveolar lavage (BAL) was performed and fluid was analyzed for total maloaldehyde (MDA), glutathione peroxidase (GSH-Px), and protein concentration. Lungs were perfused with saline to remove blood, snap-frozen in liquid nitrogen (N2), analyzed for tissue reduced glutathione (GSH) and oxidized glutathione (GSSG). Parts of lung tissues were reserved for histopathology examination. In the PH, LRS, and HOS groups, phosgene inhalation caused serious lung edema, W/D and LC, lung tissue GSSG, BALF MDA, and protein content increased significantly. Meanwhile, PaO2, lung tissue GSH, and BALF GSH-Px decreased markedly. However, after HOS treatment in the HOS group, PaO2 was clearly higher than that in the PH group and LRS group at 3, 8, 12 hours (P 0.05). Intravenous HOS infusion after phosgene exposure can clearly lessen phosgene-induced lung edema formation, lipid peroxidatic reaction, and ameliorate hypoxemia associated with

  8. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  9. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  10. Multicolor cavity soliton.

    Science.gov (United States)

    Luo, Rui; Liang, Hanxiao; Lin, Qiang

    2016-07-25

    We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.

  11. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  12. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  13. Verification of Radicals Formation in Ethanol-Water Mixture Based Solution Plasma and Their Relation to the Rate of Reaction.

    Science.gov (United States)

    Sudare, Tomohito; Ueno, Tomonaga; Watthanaphanit, Anyarat; Saito, Nagahiro

    2015-12-03

    Our previous research demonstrated that using ethanol-water mixture as a liquid medium for the synthesis of gold nanoparticles by the solution plasma process (SPP) could lead to an increment of the reaction rate of ∼35.2 times faster than that in pure water. This drastic change was observed when a small amount of ethanol, that is, at an ethanol mole fraction (χethanol) of 0.089, was added in the system. After this composition, the reaction rate decreased continuously. To better understand what happens in the ethanol-water mixture-based SPP, in this study, effect of the ethanol content on the radical formation in the system was verified. We focused on detecting the magnetic resonance of electronic spins using electron spin resonance spectroscopy to determine the type and quantity of the generated radicals at each χethanol. Results indicated that ethanol radicals were generated in the ethanol-water mixtures and exhibited maximum quantity at the xethanol of 0.089. Relationship between the ethanol radical yield and the rate of reaction, along with possible mechanism responsible for the observed phenomenon, is discussed in this paper.

  14. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  15. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  16. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  17. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  18. Nylon Sleeve for Cavity Amplifier Holds Tuning Despite Heat

    Science.gov (United States)

    Derr, Lloyd

    1964-01-01

    The problem: Detuning of cavity amplifiers with change in temperature. This results in deterioration of the performance of the amplifier at its design frequency. In cavity amplifiers and filters it is desirable that constant performance be maintained regardless of thermal changes. These changes often cause an "off resonance shift" in a cavity filter and a deterioration of performance in a cavity amplifier. The solution: Mount the tuning probe in a nylon sleeve. Thermal expansion and contraction of the nylon nullifies unwanted capacitive and inductive changes in the resonant elements.

  19. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  20. Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas.

    Science.gov (United States)

    Dharmarathne, Leena; Grieser, Franz

    2016-01-21

    The sonolysis of aqueous solutions containing acetic acid, methane, or carbon dioxide in the presence of nitrogen gas was found to produce a number of different amino acids at a rate of ∼1 to 100 nM/min, using ultrasound at an operating power of 70 W and 355 kHz. Gas-phase elementary reactions are suggested, and discussed, to account for the formation of the complex biomolecules from the low molar mass solutes used. On the basis of the results, a new hypothesis is presented to explain the formation of amino acids under primitive atmospheric conditions and how their formation may be linked to the eventual abiotic genesis of life on Earth.

  1. Coherent acoustic excitation of cavity polaritons

    DEFF Research Database (Denmark)

    Poel, Mike van der; de Lima, M. M.; Hey, R.

    and highly nonlinear optical response.Our sample consists of epitaxially grown GaAs/AlGaAs QWs located at the anti-node ofa high Q lambda cavity, which is resonant with the QW excitonic transition3. The SAWfield, which is excited by an interdigital transducer on the piezoelectric GaAs samplesurface......, modulates the refractive index and displaces the material causing a harmonicmodulation of the PBG structure1. This periodic modulation of the cavity-exciton systemleads to in-plane mini-Brillouin zone (MBZ) formation. The very high vacuum-Rabisplitting of our sample enables us to clearly resolve...

  2. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  3. On the Permeation by Dioxygen of Urate Oxidase from Aspergillus flavus in Complex with Xanthine Anion: Dioxygen Pathways and a Portrait of the Enzyme Cavities from Molecular Dynamics Simulations in Water Solution.

    Science.gov (United States)

    Pietra, Francesco

    2016-06-01

    This work describes molecular dynamics (MD) simulations in aqueous media for the complex of the homotetrameric urate oxidase (UOX) from Aspergillus flavus with xanthine anion (5) in the presence of dioxygen (O2 ). After 196.6 ns of trajectory from unrestrained MD, a O2 molecule was observed leaving the bulk solvent to penetrate the enzyme between two subunits, A/C. From here, the same O2 molecule was observed migrating, across subunit C, to the hydrophobic cavity that shares residue V227 with the active site. The latter was finally attained, after 378.3 ns of trajectory, with O2 at a bonding distance from 5. The reverse same O2 pathway, from 5 to the bulk solvent, was observed as preferred pathway under random acceleration MD (RAMD), where an external, randomly oriented force was acting on O2 . Both MD and RAMD simulations revealed several cavities populated by O2 during its migration from the bulk solvent to the active site or backwards. Paying attention to the last hydrophobic cavity that apparently serves as O2 reservoir for the active site, it was noticed that its volume undergoes ample fluctuations during the MD simulation, as expected from the thermal motion of a flexible protein, independently from the particular subunit and no matter whether the cavity is filled or not by O2 . © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  5. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  6. Prominence Mass Supply and the Cavity

    Science.gov (United States)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  7. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  8. A spherical cavity model for quadrupolar dielectrics

    Science.gov (United States)

    Dimitrova, Iglika M.; Slavchov, Radomir I.; Ivanov, Tzanko; Mosbach, Sebastian

    2016-03-01

    The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole moments are studied based on a model of the Onsager type (molecule in the centre of a spherical cavity). The dielectric permittivity ɛ and the macroscopic quadrupole polarizability αQ of the fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole, quadrupolarizability). The effect of αQ is to increase the reaction field, to bring forth reaction field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid. The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric permittivity of several liquids (Ar, Kr, Xe, CH4, N2, CO2, CS2, C6H6, H2O, CH3OH). The theory is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure and temperature. The cavity radii are also determined for these liquids, and it is shown that they are functions of density only. This extension of Onsager's theory will be important for non-polar solutions (fuel, crude oil, liquid CO2), especially at increased pressures.

  9. Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution

    NARCIS (Netherlands)

    Barrère, F.; van Blitterswijk, Clemens; de Groot, K.; Layrolle, P.

    2002-01-01

    Biomimetic calcium-phosphate (Ca-P) coatings were applied on Ti6Al4V by using simulated body fluids concentrated by a factor 5 (SBF×5). The production of SBF×5 solution was possible by decreasing the pH of the solution to approximately 6 using CO2 gas. The subsequent release of this mildly acidic

  10. Quasilinear infiltration from an elliptical cavity

    Science.gov (United States)

    Kuhlman, Kristopher L.; Warrick, Arthur W.

    2008-08-01

    We develop analytic solutions to the linearized steady-state Richards equation for head and total flowrate due to an elliptic cylinder cavity with a specified pressure head boundary condition. They are generalizations of the circular cylinder cavity solutions of Philip [Philip JR. Steady infiltration from circular cylindrical cavities. Soil Sci Soc Am J 1984;48:270-8]. The circular and strip sources are limiting cases of the elliptical cylinder solution, derived for both horizontally- and vertically-aligned ellipses. We give approximate rational polynomial expressions for total flowrate from an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution is in terms of Mathieu functions, which themselves are generalizations of and computed from trigonometric and Bessel functions. The required Mathieu functions are computed from a matrix eigenvector problem, a modern approach that is straightforward to implement using available linear algebra libraries. Although less efficient and potentially less accurate than the iterative continued fraction approach, the matrix approach is simpler to understand and implement and is valid over a wider parameter range.

  11. Reprocessing cruds: zirconium (IV) contribution to their formation dibutylphosphoric acid demixion induced by zirconium (IV) in nitric acid solutions. Solubility of zirconium (IV) in HDBP

    International Nuclear Information System (INIS)

    Livet, J.; Berthon, C.

    1994-01-01

    The low Zr(IV) compounds solubility with the most important degradation products of tributylphosphate (TBP), the PUREX process extractant (dibutylphosphoric acid (HDBP) and monobutylphosphoric acid (H 2 MBP)), can strongly disturb the implementation of the process (clogging or third phases formation). CEA studied systematically the formation and the properties of these compounds: 31 P nuclear magnetic resonance spectroscopy allowed to understand the original Zr(IV) property that induces demixions of HDBP from aqueous nitric solutions. The temperature variation and the spectra simulation induce that Zr(IV) is very soluble in pure HDBP (more than 1M). Zr(IV) in HDBP solutions can also be prepared by dissolving Zr(DBP) 2 (NO 3 ) 2 in HDBP. 4 figs., 4 refs

  12. Reprocessing cruds: zirconium (IV) contribution to their formation dibutylphosphoric acid demixion induced by zirconium (IV) in nitric acid solutions. Solubility of zirconium (IV) in HDBP

    Energy Technology Data Exchange (ETDEWEB)

    Livet, J.; Berthon, C.

    1994-12-31

    The low Zr(IV) compounds solubility with the most important degradation products of tributylphosphate (TBP), the PUREX process extractant (dibutylphosphoric acid (HDBP) and monobutylphosphoric acid (H{sub 2}MBP)), can strongly disturb the implementation of the process (clogging or third phases formation). CEA studied systematically the formation and the properties of these compounds: {sup 31}P nuclear magnetic resonance spectroscopy allowed to understand the original Zr(IV) property that induces demixions of HDBP from aqueous nitric solutions. The temperature variation and the spectra simulation induce that Zr(IV) is very soluble in pure HDBP (more than 1M). Zr(IV) in HDBP solutions can also be prepared by dissolving Zr(DBP){sub 2}(NO{sub 3}){sub 2} in HDBP. 4 figs., 4 refs.

  13. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  14. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  15. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  16. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  17. What's a Cavity?

    Science.gov (United States)

    ... and deeper over time. Cavities are also called dental caries (say: KARE-eez), and if you have a ... made up mostly of the germs that cause tooth decay. The bacteria in your mouth make acids and when plaque clings to your teeth, the acids can eat away at the outermost ...

  18. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  19. Epithelial Dysplasia in Oral Cavity

    Directory of Open Access Journals (Sweden)

    Samaneh Shirani

    2014-09-01

    Full Text Available Among oral lesions, we encounter a series of malignant epithelial lesions that go through clinical and histopathologic processes in order to be diagnosed. Identifying these processes along with the etiology knowledge of these lesions is very important in prevention and early treatments. Dysplasia is the step preceding the formation of squamous cell carcinoma in lesions which have the potential to undergo dysplasia. Identification of etiological factors, clinical and histopathologic methods has been the topic of many articles. This article, reviews various articles presenting oral cavity dysplasia, new clinical methods of identifying lesions, and the immunohistochemical research which proposes various markers for providing more precise identification of such lesions. This article also briefly analyzes new treatment methods such as tissue engineering.

  20. LC-MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    Energy Technology Data Exchange (ETDEWEB)

    Slegers, Catherine [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)]. E-mail: catherine.slegers@skynet.be; Maquille, Aubert [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Deridder, Veronique [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Sonveaux, Etienne [Unite de Chimie Pharmaceutique et de Radiopharmacie, Universite Catholique de Louvain, Brussels (Belgium); Habib Jiwan, Jean-Louis [Laboratoire de Spectrometrie de Masse, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Tilquin, Bernard [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)

    2006-09-15

    E-beam and gamma products from the radiolysis of aqueous solutions of ({+-})-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of ({+-})-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed.

  1. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    Science.gov (United States)

    Murray, B. J.; Haddrell, A. E.; Peppe, S.; Davies, J. F.; Reid, J. P.; O'Sullivan, D.; Price, H. C.; Kumar, R.; Saunders, R. W.; Plane, J. M. C.; Umo, N. S.; Wilson, T. W.

    2012-09-01

    Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O). In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH). On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth

  2. Multipactor in crossed rf fields on the cavity equator

    Directory of Open Access Journals (Sweden)

    Valery Shemelin

    2013-01-01

    Full Text Available Multipactor discharge in an accelerating superconducting elliptic cavity occurs usually near its equator. As simulations show, the dimensions of the trajectories of multipacting electrons are very small compared to the dimensions of a cavity. This feature gives a way for solving explicit equations of motion instead of cumbersome simulations. Electric and magnetic fields near the cavity equator are presented in a form of expansions up to the third power of coordinates. Comparisons with numerical calculations of fields made with the SLANS code for the TESLA cavity cells, as well as with the analytical solution for a spherical cavity, are done. These fields are used for solving the equations of motion of electrons in crossed rf fields near the equator. Based on the analysis of these equations, general features of multipacting in this area are obtained. Results are compared with simulations and experimental data. The experimental formulas for multipacting zones are explained and their dependence on the cavity geometries is shown. Because of small sizes of electron trajectories, the influence of the weld seams is taken into account. This suggests a possible explanation of multipacting in a cavity which was not found by simulations. The developed approach allows evaluation of multipacting in a cavity without its simulations but after an analysis of fields in the equatorial region. These fields can be computed by any code used for cavity calculation.

  3. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Directory of Open Access Journals (Sweden)

    Mariana Braic

    2014-08-01

    The deposited films exhibited only solid solution (fcc, bcc or hcp or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema׳s approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  4. The first solution heats and primary curvature of formation enthalpy isotherms of liquid binary iron alloys with scandium, yttrium, lanthanum and cerium

    International Nuclear Information System (INIS)

    Esin, Yu.O.; Valishev, M.G.; Ermakov, A.F.; Demin, S.E.; Gel'd, P.V.

    1984-01-01

    Experimental values of the first solution heats Δ anti Hsub(i)sup(0) and initial curvature Δ 2 anti Hsub(i)sup(0) of formation enthalpy isotherms of alloys for diluted iron alloys with scandium, yttrium, lanthanum and cerium are discussed. The first partial enthalpy of liquid scandium dissolution in liquid iron is shown to be equal to - (42.3+-3) kJ/g-at. The minimum value of integral formation enthalpy, as calculated by means of a polynomial approximating the experimental data, makes up - (8+-1) kJ/g-at. at 29 at.% Sc. The value Δsup(2)anti Hsub(Sc)sup(0) turned out to be equal to 46+-20 kJ/g-at. The considered electronic structure model correctly reflects basic features of the alloy formation energetics in the investigated systems

  5. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2012-09-01

    Full Text Available Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O. In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH. On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the

  6. Changeability of Oral Cavity Environment

    OpenAIRE

    Surdacka, Anna; Strzyka?a, Krystyna; Rydzewska, Anna

    2007-01-01

    Objectives In dentistry, the results of in vivo studies on drugs, dental fillings or prostheses are routinely evaluated based on selected oral cavity environment parameters at specific time points. Such evaluation may be confounded by ongoing changes in the oral cavity environment induced by diet, drug use, stress and other factors. The study aimed to confirm oral cavity environment changeability. Methods 24 healthy individuals aged 20?30 had their oral cavity environment prepared by having p...

  7. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  8. Single-cavity SLED device

    International Nuclear Information System (INIS)

    Lippmann, B.A.

    1984-09-01

    The conventional SLED device used at SLAC requires two cavities. However, the same effect can be obtained with a single cavity; the theory and operation of the device is the same, only the hardware is changed. The single-cavity device is described here

  9. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  10. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-30

    In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.

  11. A Pass Band Performance Simulation Code of Coupled Cavities

    CERN Document Server

    Tao, X

    2004-01-01

    A simulation code of accelerating cavities named PPSC is developed by the solutions of the microwave equivalent circuit equations. PPSC can give the pass band performance of periodic or non-periodic accelerating structures, such as the dispersion frequency and the reflection factor of the cavity, the field distribution of each mode and so on. The natural parameters of the structure, such as the number of the cavities, the resonant frequencies and Q-factors of each cavity, the coupling factor between two cavities, and the locations of the couplers, can be changed easily to see the different results of the simulation. The code is written based on MS Visual Basic under MS windows. With these, a user-friendly interface is made. Some simple examples was simulated and gave reliable results.

  12. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  13. Digital Cavity Resonance Monitor, alternative method of measuring cavity microphonics

    International Nuclear Information System (INIS)

    Tomasz Plawski; G. Davis; Hai Dong; J. Hovater; John Musson; Thomas Powers

    2005-01-01

    As is well known, mechanical vibration or microphonics in a cryomodule causes the cavity resonance frequency to change at the vibration frequency. One way to measure the cavity microphonics is to drive the cavity with a Phase Locked Loop. Measurement of the instantaneous frequency or PLL error signal provides information about the cavity microphonic frequencies. Although the PLL error signal is available directly, precision frequency measurements require additional instrumentation, a Cavity Resonance Monitor (CRM). The analog version of such a device has been successfully used for several cavity tests [1]. In this paper we present a prototype of a Digital Cavity Resonance Monitor designed and built in the last year. The hardware of this instrument consists of an RF downconverter, digital quadrature demodulator and digital processor motherboard (Altera FPGA). The motherboard processes received data and computes frequency changes with a resolution of 0.2 Hz, with a 3 kHz output bandwidth

  14. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant.

    Science.gov (United States)

    Furikado, Yuki; Nagahata, Tomomi; Okamoto, Takuya; Sugaya, Tomoaki; Iwatsuki, Satoshi; Inamo, Masahiko; Takagi, Hideo D; Odani, Akira; Ishihara, Koji

    2014-10-06

    To establish a detailed reaction mechanism for the condensation between a boronic acid, RB(OH)2, and a diol, H2L, in aqueous solution, the acid dissociation constants (Ka(BL)) of boronic acid diol esters (HBLs) were determined based on the well-established concept of conditional formation constants of metal complexes. The pKa values of HBLs were 2.30, 2.77, and 2.00 for the reaction systems, 2,4-difluorophenylboronic acid and chromotropic acid, 3-nitrophenylboronic acid and alizarin red S, and phenylboronic acid and alizarin red S, respectively. A general and precise reaction mechanism of RB(OH)2 with H2L in aqueous solution, which can serve as a universal reaction mechanism for RB(OH)2 and H2L, was proposed on the basis of (a) the relative kinetic reactivities of the RB(OH)2 and its conjugate base, that is, the boronate ion, toward H2L, and (b) the determined pKa values of HBLs. The use of the conditional formation constant, K', based on the main reaction: RB(OH)2 + H2L (K1)⇌ RB(L)(OH)(-) + H3O(+) instead of the binding constant has been proposed for the general reaction of uncomplexed boronic acid species (B') with uncomplexed diol species (L') to form boronic acid diol complex species (esters, BL') in aqueous solution at pH 5-11: B' + L' (K')⇌ BL'. The proposed reaction mechanism explains perfectly the formation of boronic acid diol ester in aqueous solution. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    Energy Technology Data Exchange (ETDEWEB)

    Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Olszynski, Marcin [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Mielniczek-Brzóska, Ewa [Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University of Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa (Poland)

    2015-11-15

    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.

  16. Formation Damage due to Drilling and Fracturing Fluids and Its Solution for Tight Naturally Fractured Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Tianbo Liang

    2017-01-01

    Full Text Available Drilling and fracturing fluids can interact with reservoir rock and cause formation damage that impedes hydrocarbon production. Tight sandstone reservoir with well-developed natural fractures has a complex pore structure where pores and pore throats have a wide range of diameters; formation damage in such type of reservoir can be complicated and severe. Reservoir rock samples with a wide range of fracture widths are tested through a multistep coreflood platform, where formation damage caused by the drilling and/or fracturing fluid is quantitatively evaluated and systematically studied. To further mitigate this damage, an acidic treating fluid is screened and evaluated using the same coreflood platform. Experimental results indicate that the drilling fluid causes the major damage, and the chosen treating fluid can enhance rock permeability both effectively and efficiently at least at the room temperature with the overburden pressure.

  17. Ternary complex formation of Eu(III) and Am(III) with pyridine-2,6-dicarboxylate in aqueous solutions

    International Nuclear Information System (INIS)

    Park, Kyoung K.; Kwon, Tae R.; Park, Yeong J.; Jung, Euo C.; Kim, Won H.

    2007-01-01

    Ternary hydroxo complex formation of Eu(III) with pyridine-2,6-dicarboxylate (PDA) was investigated by potentiometry and fluorescence spectrophotometry. Curves of equilibrium pH versus amount of OH - added showed that the pH for the precipitation of Eu(III) was decreased due to the formation of ternary hydroxo complex, EuOHL(s) (L = PDA), which was confirmed by the enhancement of fluorescence intensity of Eu(III) in precipitate with PDA excitation wavelength. The ternary hydroxo complex species was also confirmed by the analysis of concentrations of the Eu(III), OH - and PDA in the precipitate. Solubility products of EuOHL(s) and Eu(OH) 3 were determined as pK sp 0 =19.2±0.2 and 24.5 ± 0.1, respectively. Similar behavior for the ternary hydroxo complex formation was observed for trace 241 Am(III) added to Eu(III)

  18. A study on the probability of twin plane formation during the nucleation of AgBr and AgCl crystals in the aqueous gelatin solution

    Science.gov (United States)

    Ohzeki, Katsuhisa; Hosoya, Yoichi

    2007-07-01

    A study was made on the probability of twin plane formation during the nucleation of AgBr and AgCl crystals. The growth condition was controlled to keep the number of the nuclei, neither decreasing owing to their dissolution, nor increasing owing to the formation of a new nucleus during the growth process. Under the condition, the nuclei were grown to have {1 1 1} faces on their surfaces by controlling pAg in a reaction solution and by use of growth modifier in case of AgCl crystal formation. The number of twin planes in each crystal was judged according to a conventional way on the basis of its morphology. The dependence of the number of twin planes per crystal on the probability of twin plain formation was in accordance with Poisson distribution, indicating the random formation of a twin plane on the {1 1 1} faces of a nucleus. The result that the ratio of number of AgCl crystals with parallel twin planes to all the multiply twinned crystals was about 10% supports the random formation of a twin plane and suggests that the twin plane formation took place on {1 1 1} surfaces at the possible eight corner of a nucleus. On the other hand, the ratio of the number of AgBr crystals with parallel twin planes to all the multiply twinned crystals was more than 50%. The result was explained by the anisotropic growth of a singly twinned nucleus according to the higher growth rate of {1 0 0} surfaces than that of {1 1 1} surfaces.

  19. Explicit solution format for complex-valued natural frequency of beam with R-shunted piezoelectric laminate transducer

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Cöent, Adrien Le

    2014-01-01

    Analysis and design of resistive shunt circuits for piezoelectric damping of beam structures is often based on a representation in terms of the single target vibration mode of the beam, neglecting spill-over effects from the out-of-bandwidth or residual vibration modes. In this article, a solution...

  20. Formation of a 25 mol% Fe2O3-Al2O3 solid solution prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Mørup, Steen; Linderoth, Søren

    1996-01-01

    The phase transformation process of a 25 mol% Fe2O3-Al2O3 powder mixture during high-energy ball milling has been studied by x-ray diffraction and Mossbauer spectroscopy. A metastable solid solution of 25 mol % Fe2O3 in Al2O3 with corundum structure has successfully been prepared after a milling...

  1. A Solution-Based Intelligent Tutoring System Integrated with an Online Game-Based Formative Assessment: Development and Evaluation

    Science.gov (United States)

    Hooshyar, Danial; Ahmad, Rodina Binti; Yousefi, Moslem; Fathi, Moein; Abdollahi, Abbas; Horng, Shi-Jinn; Lim, Heuiseok

    2016-01-01

    Nowadays, intelligent tutoring systems are considered an effective research tool for learning systems and problem-solving skill improvement. Nonetheless, such individualized systems may cause students to lose learning motivation when interaction and timely guidance are lacking. In order to address this problem, a solution-based intelligent…

  2. Uptake and Release of Cerium During Fe-Oxide Formation and Transformation in Fe(II) Solutions

    DEFF Research Database (Denmark)

    Nedel, Sorin; Dideriksen, Knud; Christiansen, Bo C.

    2010-01-01

    Fe-oxides are ubiquitous in soils and sediments and form during Fe(0) corrosion. Depending on redox conditions and solution composition, Fe-oxides such as ferrihydrite, goethite, magnetite, and green rust (GR) may form. These phases typically have high surface area and large affinity for adsorpti...

  3. INDUCTION OF AGGREGATE FORMATION OF CATIONIC POLYSOAPS AND SURFACTANTS BY LOW CONCENTRATIONS OF ADDITIVES IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    WANG, GJ; ENGBERTS, JBFN

    The induction of aggregate formation of cationic polysoaps ((CL)-Copol C1-12), cetyltrimethylammonium bromide (CTAB), n-dodecyltrimethylammonium bromide (DTAB), and n-dodecylmethyldiallylammonium bromide (DMDAAB) by low concentrations of Methyl Orange (10(-5)-10(-4) M) and anionic surfactants

  4. Cavity RF mode analysis using a boundary-integral method

    International Nuclear Information System (INIS)

    Jong, M.S. de; Adams, F.P.

    1993-01-01

    A 3-dimensional boundary-integral method has been developed for rf cavity mode analysis. A frequency-dependent, homogeneous linear matrix equation is generated from a variant of the magnetic field integral equation (MFIE) where the domain of integration is a closed surface specifying the rf envelope of the cavity. Frequencies at which the MFIE has non-zero solutions are mode frequencies of the cavity, and the solutions are the corresponding surface magnetic field distributions. The MFIE can then be used to calculate the electric and magnetic field at any other point inside the cavity. Forward iteration is used to find the largest complex eigenvalue of the matrix at a specific frequency. This eigenvalue is 1 when the frequency corresponds to a cavity rf resonance. The matrix equivalent of the MFIE is produced by approximating the cavity surface by a set of perfectly conducting surface elements, and assuming that the surface magnetic field has constant amplitude on each element. The method can handle cavities with complex symmetries, and be easily integrated with finite-element heat-transfer and stress analysis codes

  5. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  6. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  7. Spatial field configuration in a cavity with nonresonant feedback

    Energy Technology Data Exchange (ETDEWEB)

    Belonuchkin, V.E.; Eskin, N.I.; Kozel, S.M.; Kuznetsov, E.P.; Lokshin, G.R.

    1978-03-01

    An investigation is made of the spatial characteristics of the field in a cavity one of whose mirrors is replaced by a diffuse reflector with a ''wide'' scattering indicatrix. A derivation is given of a system of integral equations for the determination of the field correlation function in the cavity and its approximate solution is given. It is shown that the nature of the field correlation function is established after the first reflection: subsequent reflections simply result in small corrections. An estimate is obtained of the field correlation radius in the cavity.

  8. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  9. EFFECTS OF NATURAL ORIFICE SECRETIONS IN PERITONEAL CAVITY IN THE BACKGROUND OF NATURAL ORIFICE TRANSLUMINAL ENDOSCOPIC SURGERY (NOTES AN EXPERIMENTAL STUDY IN ANIMALS

    Directory of Open Access Journals (Sweden)

    Devendra

    2015-03-01

    Full Text Available Natural Orifice Transluminal Endoscopic Surgery (NOTES is a new form of minimally invasive surgery which eliminates traditional skin incisions by accessing internal body cavities through natural orifices. In our experimental animal study, we compared the incidences intraperitoneal abscess formation , culture swab of peritoneal cavity positive for organism, intraperitoneal adhesion formation and mean adhesion score before and after lavaging the portal of entry of albino rat , i.e. transgastric and transvaginal. On vaginal route as a portal of entry into peritoneal cavity , on the 7th day , 66% rats developed abscesses , 88% rats had culture swab positive and 88% rats developed intraperitoneal adhesion (grade - 2 before any cleansing of vaginal cavity with antiseptic solution . Now after lavage with povidone iodine solution, only 11% developed abscesses , 22% were peritoneal swab culture positive and 33% had interbowel and parietal adhesion of (grade 0 - 1. On 21 st day , the complication observed was adhesion formation in pre lavage group of 66% incidence and 16% after vaginal lavage. The incidence of complications were reduced significantly after lavage with antiseptic solution as shown by p values (p<0.01 for abscess formation, p< 0.01 for culture positivity and p< 0.01 for adhesions formation. Also the mean adhesion scoring was significantly reduced (p <0.02 after vaginal lavage on the 7 th day. Gastric route as the portal of entry into the peritoneal cavity, again the same variables were compared on the 7th and the 21st day , but wash was given with antibiotic solution (Cefazolin. On the 7th day , 44% had abscesses, 77% were culture positive and 66% had adhesions (Grade 1 - 2 before gastric lavage with antibiotic solution . After wash of stomach, 11% were culture positive and 44% developed adhesions (Grade 0 - 1. Here, abscess formation (p<0.02 and mean adhesion scoring (p<0.05 were significantly reduced after stomach wash. On the 21st day

  10. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  11. XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Summary of reports

    International Nuclear Information System (INIS)

    2011-01-01

    The collection contains materials of plenary, sectional and poster sessions, presented at the XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Theoretical questions and new experimental methods of chemistry of solutions, structure and dynamics of molecular and ion-molecular systems in solution and at the phase boundary; modern aspects of applied chemistry of solutions are discussed [ru

  12. Spinning process variables and polymer solution effects in the die-swell phenomenon during hollow fiber membranes formation

    Directory of Open Access Journals (Sweden)

    Pereira C.C.

    2000-01-01

    Full Text Available During hollow fiber spinning many variables are involved whose effects are still not completely clear. However, its understanding is of great interest because the control of these variables may originate membranes with the desired morphologies and physical properties. In this work, the phase inversion process induced by the immersion precipitation technique was applied to prepare hollow fibers membranes. It was verified that some of the variables involved, can promote a visco-elastic polymer solution expansion, called die-swell phenomenon, which is undesired since it may lead to low reproducibility of the permeation properties. The effects of the distance between spinneret and precipitation bath, the bore liquid composition, and the polymer solution composition were analyzed and discussed in order to avoid this phenomenon. According to the results, it was verified that the parameters investigated might promote a delay precipitation, which restrained the visco-elastic expansion.

  13. Formation of CaCO3 deposits on hard surfaces--effect of bulk solution conditions and surface properties.

    Science.gov (United States)

    Wang, Hao; Alfredsson, Viveka; Tropsch, Juergen; Ettl, Roland; Nylander, Tommy

    2013-05-22

    We have studied nucleation and crystal growth of calcium carbonate on hard surfaces, i.e. stainless steel and silica, at different temperatures, in relation to the corresponding bulk processes, using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ellipsometry. In the bulk solution, a mixture of all three calcium carbonate crystalline polymorphs, calcite, aragonite, and vaterite, as well as amorphous particles was observed at 25 °C, while at 55 °C aragonite and calcite crystals dominated. On surfaces only calcite crystals were observed at 25 °C, whereas aragonite and calcite crystal adsorbed on the surfaces at 55 °C. Two kinds of nucleation and adsorption mechanism of CaCO3 crystals on hard surfaces were observed, depending on the surface orientation (vertical or horizontal, i.e., subject to sedimentation) in the bulk solution. A model for the relation between interfacial layer structure, the substrate, and the solution crystallization is discussed based on the observed difference in deposition between type of surfaces and surface orientation. In addition, the effect of magnesium ion on the morphology of calcium carbonate crystals is discussed.

  14. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Directory of Open Access Journals (Sweden)

    A. John Blacker

    2015-12-01

    Full Text Available The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  15. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors.

    Science.gov (United States)

    Blacker, A John; Jolley, Katherine E

    2015-01-01

    The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72-100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  16. Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments.

    Science.gov (United States)

    GhavamiNejad, Amin; Hashmi, Saud; Joh, Han-Ik; Lee, Sungho; Lee, Youn-Sik; Vatankhah-Varnoosfaderani, Mohammad; Stadler, Florian J

    2014-05-14

    Poly N-isopropyl acrylamide (PNI) radically polymerized in aqueous solution in the presence of graphene oxide (GO) can significantly change the properties of the resulting solution from a regular polymer solution to a soft solid with a GO content of only 0.176 wt% (3 wt% with respect to PNI). However, these properties require the presence of both grafting and supramolecular interactions between polymer chains and hydrophilic groups on GO (-OH, -COOH), proven by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction and spectroscopy (XRD) and Raman spectra. While very low GO-contents (below 0.05 wt%) only lead to a labile structure, which can be disassembled by shear, higher contents yield composites with solid-like characteristics. This is clearly evident from the rheological behaviour, which changes significantly at a GO content around 0.15 wt%. Intensive shearing destroys the weak network, which cannot reform quickly at lower GO-concentrations, while at intermediate concentrations, restructuring is fast. GO-contents of 0.176 wt% lead to a material behaviour, which almost perfectly recovers from small deformations (creep and creep recovery compliance almost match) but larger deformations lead to permanent damage to the sample.

  17. Formation and Physiochemical Properties of Silver Nanoparticles with Various Exopolysaccharides of a Medicinal Fungus in Aqueous Solution.

    Science.gov (United States)

    Jian, Wenjie; Zhang, Lu; Siu, Ka-Chai; Song, Angxin; Wu, Jian-Yong

    2016-12-29

    Natural polysaccharides are the most widely used biopolymers for green synthesis of eco-friendly silver nanoparticles (AgNPs). In a previous study, a high molecular weight (MW) fraction of exopolysaccharides (EPS) produced by a medicinal fungus Cs-HK1 has been shown useful for green and facile synthesis of AgNPs in water. This study was to further evaluate the effects of molecular properties of EPS on the formation, stability and properties of AgNPs with different EPS fractions at various pH conditions. Three EPS fractions (P 0.5 , P 2.0 and P 5.0 : MW high to low and protein content low to high) were reacted with silver nitrate at various pH 3.0-8.0 in water. The most favorable pH range was 5.5-8.0 for the formation and stable dispersion of AgNPs. At a given pH, the maximum amount of AgNPs was produced with P 5.0 , and the minimum with P 0.5 . The shape, size and physiochemical properties of AgNPs were strongly affected by the molecular characteristics of EPS (MW and conformation). The results may be helpful for understanding the factors and mechanisms for formation of stable AgNPs with natural polysaccharides and the interactions between AgNPs and the polysaccharide hydrocolloids in water.

  18. Formation and Physiochemical Properties of Silver Nanoparticles with Various Exopolysaccharides of a Medicinal Fungus in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wenjie Jian

    2016-12-01

    Full Text Available Natural polysaccharides are the most widely used biopolymers for green synthesis of eco-friendly silver nanoparticles (AgNPs. In a previous study, a high molecular weight (MW fraction of exopolysaccharides (EPS produced by a medicinal fungus Cs-HK1 has been shown useful for green and facile synthesis of AgNPs in water. This study was to further evaluate the effects of molecular properties of EPS on the formation, stability and properties of AgNPs with different EPS fractions at various pH conditions. Three EPS fractions (P0.5, P2.0 and P5.0: MW high to low and protein content low to high were reacted with silver nitrate at various pH 3.0–8.0 in water. The most favorable pH range was 5.5–8.0 for the formation and stable dispersion of AgNPs. At a given pH, the maximum amount of AgNPs was produced with P5.0, and the minimum with P0.5. The shape, size and physiochemical properties of AgNPs were strongly affected by the molecular characteristics of EPS (MW and conformation. The results may be helpful for understanding the factors and mechanisms for formation of stable AgNPs with natural polysaccharides and the interactions between AgNPs and the polysaccharide hydrocolloids in water.

  19. Reduced Dental Plaque Formation in Dogs Drinking a Solution Containing Natural Antimicrobial Herbal Enzymes and Organic Matcha Green Tea

    Directory of Open Access Journals (Sweden)

    Michael I. Lindinger

    2016-01-01

    Full Text Available The results of an exploratory, multicenter clinical study confirmed the hypothesis that a novel, natural, and safe oral care product (OCP reduced the rate of plaque formation on teeth of dogs consuming the OCP (antimicrobial plant-derived enzymes, organic matcha green tea, cultured dextrose, sodium bicarbonate, and ascorbic acid compared to controls. Healthy dogs without periodontitis, of varying breeds, sex, and age, were recruited and enrolled, using nonrandomized stratification methods, into a control and treatment groups. Treatment group dogs drank only water into which OCP was suspended, for 28 days. Control group dogs drank their normal household water. On day 0 all teeth were cleaned by a veterinarian and gingivitis was assessed. On days 14, 21, and 28 plaque index, plaque thickness, gingivitis, freshness of breath, and general health were assessed. Over the 28 days of study, dogs on the OCP had significant reduction in plaque index and plaque thickness compared to controls. By day 14 OCP reduced plaque formation by 37%; the 28-day reduction in plaque index and coverage averaged 22% with no measurable gingivitis or calculus. Conclusion. Using the OCP attenuated dental plaque formation when consumed as normal drinking water and in the absence of other modes of oral care.

  20. Highly efficient exciplex formation via radical ion pair recombination in X-irradiated alkane solutions for luminophores with short fluorescence lifetimes.

    Science.gov (United States)

    Melnikov, Anatoly R; Kalneus, Evgeny V; Korolev, Valeri V; Dranov, Igor G; Kruppa, Alexander I; Stass, Dmitri V

    2014-08-01

    X-irradiation of alkane solutions of N,N-dimethylaniline with various organic luminophores produces characteristic emission bands ascribed to the corresponding exciplexes. In contrast to optical generation, which requires diffusion-controlled quenching of excited states, an additional channel of exciplex formation via irreversible recombination of radical ion pairs is operative here, which produces exciplexes in solution with high efficiency even for p-terphenyl and diphenylacetylene having fluorescence decay times of 0.95 ns and 8 ps, respectively. The exciplex emission band is sensitive to an external magnetic field and exerts a very large observed magnetic field effect of up to 20%, the maximum possible value under the conditions of the described experiment.

  1. Comparative study of the efficiency of complex formation and extraction of thorium by solutions of certain alkylaromatic α-hydroxy acids in heptanol

    International Nuclear Information System (INIS)

    Charykov, A.K.; Aleksandrova, E.A.; Vasil'eva, O.N.

    1986-01-01

    The constants for the extraction of thorium by solutions of alkylaromatic α-hydroxy acids in heptanol occur in the order log K/sub ex/ (hydroxydiphenylacetic acid) > log K/sub ex/ (phenoxyacetic acid) > log K/sub ex/ (hydroxyphenylacetic acid). For the example of extraction equilibria involving the participation of thorium carboxylate complexes an extraction efficiency parameter is introduced which enables the efficiency of extraction to be predicted on the basis of information on the formation constants of the neutral complexes and the dissociation constants of the extractant acids in the aqueous phase

  2. Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations

    Science.gov (United States)

    van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea

    2016-01-01

    Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.

  3. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  4. Effect of architecture on the formation of surface multilayer structures at the air-solution interface from mixtures of surfactant with small poly(ethyleneimine)s.

    Science.gov (United States)

    Halacheva, Silvia S; Penfold, Jeff; Thomas, Robert K; Webster, John R P

    2012-04-17

    The impact of ethyleneimine architecture on the adsorption behavior of mixtures of small poly(ethyleneimines) and oligoethyleneimines (OEIs) with the anionic surfactant sodium dodecylsulfate (SDS) at the air-solution interface has been studied by surface tension (ST) and neutron reflectivity (NR). The strong surface interaction between OEI and SDS gives rise to complex surface tension behavior that has a pronounced pH dependence. The NR data provide more direct access to the surface structure and show that the patterns of ST behavior are correlated with substantial OEI/SDS adsorption and the spontaneous formation of surface multilayer structures. The regions of surface multilayer formation depend upon SDS and OEI concentrations, on the solution pH, and on the OEI architecture, linear or branched. For the linear OEIs (octaethyleneimine, linear poly(ethyleneimine) or LPEI(8), and decaethyleneimine, LPEI(10)) with SDS, surface multilayer formation occurs over a range of OEI and SDS concentrations at pH 7 and to a much lesser extent at pH 10, whereas at pH 3 only monolayer adsorption occurs. In contrast, for branched OEIs BPEI(8) and BPEI(10) surface multilayer formation occurs over a wide range of OEI and SDS concentrations at pH 3 and 7, and at pH 10, the adsorption is mainly in the form of a monolayer. The results provide important insight into how the OEI architecture and pH can be used to control and manipulate the nature of the OEI/surfactant adsorption. © 2012 American Chemical Society

  5. At the crossroad of photochemistry and radiation chemistry: formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation

    Czech Academy of Sciences Publication Activity Database

    Tomanová, K.; Přeček, Martin; Múčka, V.; Vyšín, Luděk; Juha, Libor; Čuba, V.

    2017-01-01

    Roč. 19, č. 43 (2017), s. 29402-29408 ISSN 1463-9076 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606; GA ČR GA17-06479S; GA ČR GA13-28721S Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : UV photolysis * water * aqueous solutions * quantum yields * OH radicals Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.123, year: 2016

  6. Investigating the spontaneous formation of SDS micelle in aqueous solution using a coarse-grained force field

    Directory of Open Access Journals (Sweden)

    José Maria Pires

    2012-01-01

    Full Text Available A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.

  7. Degradation and Byproduct Formation of Parathion in Aqueous Solutions by UV and UV/H2O2 Treatment

    OpenAIRE

    Wu, Changlong; Linden, Karl G.

    2008-01-01

    The photodegradation of parathion, a US EPA Contaminant Candidate List pesticide, in aqueous solutions by UV and UV/H2O2 processes in batch reactors was evaluated. Direct photolysis of parathion both by LP (low pressure) and MP (medium pressure) lamps at pH 7 were very slow with quantum yields of 6.67 ± 0.33 ×10−4 and 6.00 ± 1.06 ×10−4 mol E−1, respectively. Hydrogen peroxide enhanced the photodegradation of parathion through the reaction between UV generated hydroxyl radical and parathion wi...

  8. Oral cavity eumycetoma

    Directory of Open Access Journals (Sweden)

    Gisele Alborghetti Nai

    2011-06-01

    Full Text Available Mycetoma is a pathological process in which eumycotic (fungal or actinomycotic causative agents from exogenous source produce grains. It is a localized chronic and deforming infectious disease of subcutaneous tissue, skin and bones. We report the first case of eumycetoma of the oral cavity in world literature. CASE REPORT: A 43-year-old male patient, complaining of swelling and fistula in the hard palate. On examination, swelling of the anterior and middle hard palate, with fistula draining a dark liquid was observed. The panoramic radiograph showed extensive radiolucent area involving the region of teeth 21-26 and the computerized tomography showed communication with the nasal cavity, suggesting the diagnosis of periapical cyst. Surgery was performed to remove the lesion. Histopathological examination revealed purulent material with characteristic grain. Gram staining for bacteria was negative and Grocott-Gomori staining for the detection of fungi was positive, concluding the diagnosis of eumycetoma. The patient was treated with ketoconazole for nine months, and was considered cured at the end of treatment. CONCLUSION: Histopathological examination, using histochemical staining, and direct microscopic grains examination can provide the distinction between eumycetoma and actinomycetoma accurately.

  9. Development of large grain cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2013-01-01

    Full Text Available DESY activities on 1.3 GHz tesla shape single cell and nine-cell large grain (LG resonators are presented; results of the past five years are covered. The R&D program explores the potential for production of elliptical superconducting cavities. The main efforts have been devoted to material investigation, development of LG disk production, cavity fabrication from this material, and a search for appropriate treatment. More than 250 LG disks are manufactured; several single cell and 11 nine-cell resonators are produced and rf tested after buffered chemical polishing and after additional electropolishing. A maximum accelerating gradient of approximately 45  MV/m for this type of cavity was achieved in two resonators. Two of the LG cavities have been installed and are currently being used in the FLASH accelerator operation. Assembly of a cryomodule, consisting of LG cavities only, is in the works. Perspectives of the LG cavity application are discussed.

  10. Mechanism simulation of H2O2 formation by γ-rays irradiation in boric acid solution

    International Nuclear Information System (INIS)

    Sunaryo, Geni Rina; Sumijanto; Arifal; Latifah, Siti Nurul; Santoso, Urip

    1998-01-01

    The mechanism reaction analysis of boric aid solutions up to temperature of 150 o C was done to understand the reaction mechanism, so the further action for reducing the diluted oxygen in cooling system can be determined. The analysis was done by using fitting method between experimental and simulation results by F acsimile s oftware. The inputs data is one of the probable scheme reactions in aeration boric acid which is irradiated by using γ-rays including the rate constants, G-value, doses and the temperature dependence systems concentration. The unknown rate constant at high temperature is calculated by using the activation energy of 3 kcal. From the fitting simulation, it is known that the presence of proton and oxygen in the solution will in crease the oxidizer of H 2 O 2 production 10 times, but higher oxygen concentration of 1μM will not give the significant effect anymore. The most reactive species for oxygen degradation is H radical at 25 o C. The fraction reaction of H atom and oxygen increase 10 times higher at 150 o C. The degradation reaction of oxygen by hydrated electron at 150 o C become significant. From the fitting simulation, it is known that the reaction between boric acid and hydrogen peroxide degradation species such OH and H was assumed to be occurred with the rate constants of 6 magnitude

  11. Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions

    Science.gov (United States)

    Boday, Dylan J.; Tolbert, Stephanie; Keller, Michael W.; Li, Zhe; Wertz, Jason T.; Muriithi, Beatrice; Loy, Douglas A.

    2014-03-01

    Silica and polysilsesquioxane particles are used as fillers in composites, catalyst supports, chromatographic separations media, and even as additives to cosmetics. The particles are generally prepared by hydrolysis and condensation of tetraalkoxysilanes and/or organotrialkoxysilanes, respectively, in aqueous alcohol solutions. In this study, we have discovered a new, non-aqueous approach to prepare silica and polysilsesquioxane particles. Spherical, nearly monodisperse, silica particles (600-6,000 nm) were prepared from the reaction of tetramethoxysilane with formic acid (4-8 equivalents) in toluene or toluene/tetrahydrofuran solutions. Polymerization of organotrialkoxysilanes with formic acid failed to afford particles, but bridged polysilsesquioxane particles were obtained from monomers with two trialkoxysilyl group attached to an organic-bridging group. The mild acidic conditions allowed particles to be prepared from monomers, such as bis(3-triethoxysilylpropyl)tetrasulfide, which are unstable to Stöber or base-catalyzed emulsion polymerization conditions. The bridged polysilsesquioxane particles were generally less spherical and more polydisperse than silica particles. Both silica and bridged polysilsesquioxane nanoparticles could be prepared in good yields at monomer concentrations considerably higher than used in Stöber or emulsion approaches.

  12. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    Science.gov (United States)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  13. Postirradiation flap infection about the oral cavity

    International Nuclear Information System (INIS)

    Cabbabe, E.B.; Herbold, D.R.; Sunwoo, Y.C.; Baroudi, I.F.

    1983-01-01

    Postirradiation alteration of oral flora is well documented in the literature. Infection as a complication leading to partial or complete loss of a flap used to reconstruct a defect in the oral cavity is a worrisome outcome. We describe how a flap that was judged clinically to be viable became overwhelmingly infected with the Klebsiella oxytoca, an oral cavity pathogen encountered in this patient following irradiation. Local and systemic changes led to detachment of the flap. This complication may be explained, in view of the absence of venous congestion or arterial ischemia both clinically and pathologically, by the proven contamination of the flap by the Klebsiella pathogen. Local factors resulted in lower resistance and subsequent overwhelming infection. Discussion of the case, review of pertinent literature, and proposed solutions are presented

  14. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  15. Formation of zinc–oxianion complex adlayer by underpotential deposition of Zn on Au(1 1 1) electrode: Preferential formation of zinc monohydrogen phosphate complex in weakly acidic solutions

    International Nuclear Information System (INIS)

    Taguchi, Satoshi; Kondo, Masanari; Mori, Hiroki; Aramata, Akiko

    2013-01-01

    Highlights: • Zn upd was studied on Au(1 1 1) electrode in weakly acidic solutions at pH ≃ 4. • Anion co-adsorption with upd Zn was investigated with oxianions and halide anions. • No co-adsorption of halide on upd Zn progressed in the solution with halide. • Surface complex adlayer of zinc–phosphate was formed in Zn upd at pH ≃ 4. • The surface complex was ZnHPO 4 adsorbed with mono-electron transfer. -- Abstract: The underpotential deposition (upd) of zinc was studied on Au(1 1 1) electrode in weakly acidic solutions by voltammetry. The difference of anion co-adsorption strength was investigated on upd Zn in the solutions containing phosphate, sulfate, perchlorate, and halides. The order of anion co-adsorption strength was found to be phosphate > sulfate, phosphate ≫ perchlorate, and phosphate ≫ halides. We present the electrochemical evidence that no co-adsorption of halide progresses on upd Zn at E > −0.7 V (vs. SCE) in spite of the relatively high adsorbability of halide on Au(1 1 1). In 0.1 M KH 2 PO 4 (pH = 4.4), the amount of charge density of the upd Zn stripping corresponded to that of 1/3 monolayer of the Zn adlayer formed as a result of mono-electron transfer between −0.35 V and −0.6 V. The coverage was coincident with that inferred from the (√3 × √3)R30° STM image reported by us in the same condition. The formation of zinc–oxianion (phosphate and sulfate) surface complexes by Zn upd was proposed base on the difference of complex formation constants among the related zinc–anion complexes. Identification of the zinc–phosphate surface complex was thermodynamically carried out around pH = 4 with a Nernst equation, where the shifts of Zn upd peak potential were investigated with the concentration changes of Zn 2+ , H 2 PO 4 − , and H + under an imaginarily reversible condition. The formation of ZnHPO 4 surface complex was concluded in the Zn upd with mono-electron transfer and explained a recent XAS analysis, which

  16. Formation of hexagonal boron nitride nanoscrolls induced by inclusion and exclusion of self-assembling molecules in solution process

    Science.gov (United States)

    Hwang, Da Young; Suh, Dong Hack

    2014-05-01

    Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs.Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00897a

  17. Environmentally benign formation of polymeric microspheres by rapid expansion of supercritical carbon dioxide solution with a nonsolvent.

    Science.gov (United States)

    Matsuyama, K; Mishima, K; Umemoto, H; Yamaguchi, S

    2001-10-15

    A novel method is reported for forming polymer microparticles, which reduce atmospheric emissions of environmentally harmful volatile organic compounds such as toluene and xylene used as paint solvent in paint industry. The polymer microparticles have formed through rapid expansion from supercritical solution with a nonsolvent (RESS-N). Solubilization of poly(styrene)-b-(poly(methyl methacrylate)-co-poly (glycidyl methacrylate)) copolymer(PS-b-(PMMA-co-PGMA), MW = 5000, PS/PMMA/PGMA = 2/5/3), poly(ethylene glycol) (PEG, M. W = 4000), bisphenol A type epoxy resin (EP, MW = 3000), poly(methyl methacrylate) (PMMA; MW = 15000, 75000, 120000), and poly(oxyalkylene) alkylphenyl ether (MW = 4000) in carbon dioxide (CO2) was achieved with the use of small alcohols as cosolvents. The solubility of the PS-b-(PMMA-co-PGMA) is extremely low in either CO2 or ethanol but becomes 20 wt % in a mixture of the two. Because ethanol is a nonsolvent for the polymer, it can be used as a cosolvent in rapid expansion from supercritical solution to produce 1-3 microm particles that do not agglomerate. Obtained polymer particles by RESS-N were applied as powder coatings. The resulting coatings have a smooth and coherent film. The particle size distribution of microspheres was controlled by changing the polymer concentration, preexpansion pressure, temperature, and injection distance. The feed compositions were more effective than the other factors in controlling the particle size. The polymeric microparticles formed by RESS-N method can be utilized to make the thin coating film without anytoxic organic solvents and/or surfactants.

  18. Reaction of atomic oxygen with alkanes. Regioselective alcohol formation on γ-radiolysis of liquid carbon dioxide solutions of alkanes

    International Nuclear Information System (INIS)

    Hori, A.; Takamuku, S.; Sakurai, H.

    1977-01-01

    Gamma-radiolysis of liquid carbon dioxide in the presence of cyclohexane, methylcyclohexane, and cis- or trans-decalin has been studied at 0 0 C. The main products were corresponding alcohols and carbonyl compounds. The oxidizing species from carbon dioxide apparently shows selective attack on C--H bonds of alkane in the order tertiary greater than secondary greater than primary. The observed tendency could be rationalized in terms of the reaction of ground state triplet oxygen atoms, O( 3 P), with alkane in liquid carbon dioxide. In the case of cis- and trans-decalin, highly configurational retention of decalol-9 was observed. The formation of a dimer of alkane was negligibly small. The rapid recombination of radical pairs initially formed by the reaction of O( 3 P) atoms with alkane in a solvent cage is proposed. In addition, the production of cyclohexanone from cyclohexanol is described

  19. Uptake and Release of Cerium During Fe-Oxide Formation and Transformation in Fe(II) Solutions

    DEFF Research Database (Denmark)

    Nedel, Sorin; Dideriksen, Knud; Christiansen, Bo C.

    2010-01-01

    of trace components. Further, Fe(II)-Fe(III) (hydr)oxides are redox active. Cerium, a member of the lanthanide family, can be used as an analogue for the tri- and tetra-valent actinides found in radioactive waste, expected to be stored in subsurface repositories. In experiments with ferrihydrite, Ce...... microscopy revealed that it formed discrete nanocrystals of CeO2(s). These results demonstrate that Fe-oxide interaction with radionuclides is likely to depend strongly on the local redox conditions. By analogy with Ce, the trivalent actinides are not expected to be sequestered by preformed GR in anoxic...... environments. Our results also suggest that trivalent actinides and lanthanides are released when dissimilatory iron reduction of Fe(III)-oxides leads to GR formation However, under oxidizing conditions, GR may influence radionuclide mobility by catalyzing their transformation to a higher oxidation state....

  20. Formation of poly(butyl 2-cyanoacrylate) microcapsules and the microencapsulation of aqueous solutions of [125I]-labelled proteins

    International Nuclear Information System (INIS)

    Wood, D.A.; Whateley, T.L.; Florence, A.T.

    1981-01-01

    Some featrues of the polymerization reaction of butyl 2-cyanoacrylate at different aqueous/organic solvent interfaces have been investigated. In particular, the effects of pH and the presence of protein on the formation of microcapsules by in situ interfacial polymerization of butyl 2-cyanoacrylate in w/o emulsions have been studied. [ 125 I]-labelled proteins have been used to study the procedure as a method of microencapsulating enzymes or other proteins within potentially biodegradable membranes. Preliminary in vitro degradation studies suggest that degradation of the microcapsules is inhibited by low levels of their breakdown products, thus allowing the storage of the microcapsules as aqueous suspensions for prolonged periods in sealed containers. (Auth.)

  1. Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 °C.

    Science.gov (United States)

    Conway, William; Fernandes, Debra; Beyad, Yaser; Burns, Robert; Lawrance, Geoffrey; Puxty, Graeme; Maeder, Marcel

    2013-02-07

    Piperazine (PZ) is widely recognized as a promising solvent for postcombustion capture (PCC) of carbon dioxide (CO(2)). In view of the highly conflicting data describing the kinetic reactions of CO(2)(aq) in piperazine solutions, the present study focuses on the identification of the chemical mechanism, specifically the kinetic pathways for CO(2)(aq) in piperazine solutions that form the mono- and dicarbamates, using the analysis of stopped-flow spectrophotometric kinetic measurements and (1)H NMR spectroscopic data at 25.0 °C. The complete set of rate and equilibrium constants for the kinetic pathways, including estimations for the protonation constants of the suite of piperazine carbamates/carbamic acids, is reported here using an extended kinetic model which incorporates all possible reactions for CO(2)(aq) in piperazine solutions. From the kinetic data determined in the present study, the reaction of CO(2)(aq) with free PZ was found to be the dominant reactive pathway. The superior reactivity of piperazine is confirmed in the kinetic rate constant determined for the formation of piperazine monocarbamic acid (k(7) = 2.43(3) × 10(4) M(-1) s(-1)), which is within the wide range of published values, making it one of the faster reacting amines. The corresponding equilibrium constant for the formation of the monocarbamic acid, K(7), markedly exceeds that of other monoamines. Kinetic and equilibrium constants for the remaining pathways indicate a minor contribution to the overall kinetics at high pH; however, these pathways may become more significant at higher CO(2) loadings and lower pH values where the concentrations of the reactive species are correspondingly higher.

  2. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2Hydrogenation: Integrated Reaction and Catalyst Separation for CO2-Scrubbing Solutions.

    Science.gov (United States)

    Scott, Martin; Blas Molinos, Beatriz; Westhues, Christian; Franciò, Giancarlo; Leitner, Walter

    2017-03-22

    Aqueous biphasic systems were investigated for the production of formate-amine adducts by metal-catalyzed CO 2 hydrogenation, including typical scrubbing solutions as feedstocks. Different hydrophobic organic solvents and ionic liquids could be employed as the stationary phase for cis-[Ru(dppm) 2 Cl 2 ] (dppm=bis-diphenylphosphinomethane) as prototypical catalyst without any modification or tagging of the complex. The amines were found to partition between the two phases depending on their structure, whereas the formate-amine adducts were nearly quantitatively extracted into the aqueous phase, providing a favorable phase behavior for the envisaged integrated reaction/separation sequence. The solvent pair of methyl isobutyl carbinol (MIBC) and water led to the most practical and productive system and repeated use of the catalyst phase was demonstrated. The highest single batch activity with a TOF av of approximately 35 000 h -1 and an initial TOF of approximately 180 000 h -1 was achieved in the presence of NEt 3 . Owing to higher stability, the highest productivities were obtained with methyl diethanolamine (Aminosol CST 115) and monoethanolamine (MEA), which are used in commercial scale CO 2 -scrubbing processes. Saturated aqueous solutions (CO 2 overpressure 5-10 bar) of MEA could be converted into the corresponding formate adducts with average turnover frequencies up to 14×10 3  h -1 with an overall yield of 70 % based on the amine, corresponding to a total turnover number of 150 000 over eleven recycling experiments. This opens the possibility for integrated approaches to carbon capture and utilization. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Indications of the formation of an oversaturated solid solution during hydrogenation of Mg-Ni based nanocomposite produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)

    2009-07-15

    An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg{sub 2}Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid-gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg{sub 2}Ni and H without any sign of Mg{sub 2}NiH{sub 4} hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg{sub 2}NiH{sub 4}, and the second one with the Mg{sub 2}NiH{sub 4} desorption. (author)

  4. Nanostructured gadolinium-doped ceria microsphere synthesis from ion exchange resin: Multi-scale in-situ studies of solid solution formation

    Energy Technology Data Exchange (ETDEWEB)

    Caisso, Marie [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Institut Européen des Membranes, UMR 5635 CNRS-ENSCM-UM2, CC047, Université Montpellier 2, F-34095 Montpellier Cedex 5 (France); Lebreton, Florent; Horlait, Denis [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Picart, Sébastien [CEA, DEN, DRCP/SERA/LCAR, F-30207 Bagnols-sur-Cèze Cedex (France); Martin, Philippe M.; Bès, René [CEA, DEN, DEC/SESC/LLCC, F-13108 Saint-Paul-Lez-Durance Cedex (France); Renard, Catherine; Roussel, Pascal [Unité de Catalyse et Chimie du Solide, UMR 8012 CNRS, Ecole Nationale Supérieure de Chimie de Lille BP 90108, 59652 Villeneuve d’Ascq Cedex (France); Neuville, Daniel R. [Institut de Physique du Globe de Paris-CNRS, Géochimie and Cosmochimie, 1 rue Jussieu, 75005 Paris (France); Dardenne, Kathy; Rothe, Jörg [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Delahaye, Thibaud, E-mail: thibaud.delahaye@cea.fr [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Ayral, André [Institut Européen des Membranes, UMR 5635 CNRS-ENSCM-UM2, CC047, Université Montpellier 2, F-34095 Montpellier Cedex 5 (France)

    2014-10-15

    In the current nano-sized material revolution, the main limitations to a large-scale deployment of nanomaterials involve health concerns related to nano-dissemination via air. Developing new chemical routes benefiting from nano-size advantages while avoiding their hazards could overcome these limitations. Addressing this need, a chemical route leading to soft nano-particle agglomerates, i.e., macroscopic precursors presenting the ability to be decomposed into nano-sized materials, was developed and applied to Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ}. Using cerium/gadolinium-loaded ion exchange resin, the Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ} solid solution formation as a function of temperature was studied in-situ through X-ray diffraction, X-ray absorption spectroscopy and Raman spectroscopy. Temperatures corresponding to the organic skeleton decomposition and to the mixed oxide crystallization were identified. An optimal heat treatment, leading to nanostructured soft agglomerates, was established. Microsphere processing capabilities were evaluated and particle size distribution measurements were recorded. A very low fracture strength was calculated, and a nanometric particle size distribution (170 nm) was determined. - Graphical abstract: The elaboration of micro-spherical precursors leading to the formation of nano-oxide soft agglomerates was studied and approved through the use of ion exchange resin loaded with cerium and gadolinium. The formation of the solid solution was followed through in-situ measurements such as XAS, XRD, Raman, TGA and DSC. Key temperatures were identified for the formation of the mixed-oxide. Following this study, the microstructure and particle size of oxide microspheres formed highlight the formation of soft nano-arrangments. - Highlights: • Soft microspherical agglomerates able to be decomposed into nano-sized materials. • In situ study of cerium/gadolinium-loaded ion exchange resin conversion in oxide. • In situ multi-scale study

  5. MEDICI reactor cavity model

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Trebilcock, W.

    1983-01-01

    The MEDICI reactor cavity model is currently under development with the goal of providing a flexible, relatively realistic treatment of ex-vessel severe accident phenomena suitable for large-system codes like CONTAIN and MELCOR. The code is being developed with an emphasis on top-down design, to facilitate adaptability and multiple applications. A brief description of the overall code structure is provided. One of the key new models is then described in more detail. This is a dynamic quench model for debris beds. An example calculation using this model is presented. The question of whether it is necessary to consider the simultaneous motion of the quench front and ablation of the concrete is addressed with some scoping models

  6. Degradation and Byproduct Formation of Parathion in Aqueous Solutions by UV and UV/H2O2 Treatment

    Science.gov (United States)

    Wu, Changlong; Linden, Karl G.

    2013-01-01

    The photodegradation of parathion, a US EPA Contaminant Candidate List pesticide, in aqueous solutions by UV and UV/H2O2 processes in batch reactors was evaluated. Direct photolysis of parathion both by LP (low pressure) and MP (medium pressure) lamps at pH 7 were very slow with quantum yields of 6.67 ± 0.33 ×10−4 and 6.00 ± 1.06 ×10−4 mol E−1, respectively. Hydrogen peroxide enhanced the photodegradation of parathion through the reaction between UV generated hydroxyl radical and parathion with a second-order reaction rate constant of 9.70 ± 0.45×109 M−1 s−1. However, addition of hydrogen peroxide did not result in a linear increase in the degradation rate. An optimum molar ratio between hydrogen peroxide and parathion was determined to be between 300 – 400. Photodegradation of parathion yielded several organic byproducts, of which the paraoxon, 4-nitrophenol, O,O,O-triethyl thiophosphate and O,O diethyl-methyl thiophosphate were quantified and their occurrence during UV/H2O2 processes were discussed. NO2−, PO43−, NO3− and SO42− were the major anionic byproducts of parathion photodegradation and their recover ratio were also discussed. A photodegradation mechanism scheme suggesting three simultaneous pathways was proposed in the study. PMID:18834610

  7. The plasma-induced formation of silver nanocrystals in aqueous solution and their catalytic activity for oxygen reduction

    Science.gov (United States)

    Kim, Sung-Min; Lee, Sang-Yul

    2018-02-01

    Ag nanocrystals with different architectures are synthesized using a submerged plasma discharge without the involvement of any chemicals. The Ag architecture relies on the electron density in the plasma that could enable the Ag ions to be reduced instantaneously to generate a large number of small Ag nanoparticles. With a low electron density of 7.1 × 10‑22 m‑3, the Ag nanowires with a corrugated structure induced by twinning and stacking faults are formed along the entire longitudinal 〈111〉 direction. However, with a high electron density 13.7 × 10‑22 m‑3, the Ag nanodendrites are constructed with a defect-free structure. Due to the unique structure composed of twins and stacking faults, the Ag nanowires show a specific current density that is 2.7 times higher than the Ag nanodendrites towards the oxygen reduction reaction. This work not only suggests a synthetic route to the formation of nanowires with structural defects but also offers a rational design of electrocatalysts with enhanced catalytic activity.

  8. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    Science.gov (United States)

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Superconducting cavity model for LEP

    CERN Document Server

    CERN PhotoLab

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  10. Three dimensional density cavities in guide field collisionless magnetic reconnection

    Science.gov (United States)

    Markidis, S.; Lapenta, G.; Divin, A.; Goldman, M.; Newman, D.; Andersson, L.

    2012-03-01

    Particle-in-cell simulations of collisionless magnetic reconnection with a guide field reveal for the first time the three dimensional features of the low density regions along the magnetic reconnection separatrices, the so-called cavities. It is found that structures with further lower density develop within the cavities. Because their appearance is similar to the rib shape, these formations are here called low density ribs. Their location remains approximately fixed in time and their density progressively decreases, as electron currents along the cavities evacuate them. They develop along the magnetic field lines and are supported by a strong perpendicular electric field that oscillates in space. In addition, bipolar parallel electric field structures form as isolated spheres between the cavities and the outflow plasma, along the direction of the low density ribs and of magnetic field lines.

  11. In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films

    KAUST Repository

    Richter, Lee J.

    2014-09-29

    The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.

  12. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays

    Science.gov (United States)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  13. Superconducting Storage Cavity for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  14. Mechanical Properties of Niobium Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Matalevich, Joseph R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Myneni, Ganapati Rao [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  15. Changeability of oral cavity environment.

    Science.gov (United States)

    Surdacka, Anna; Strzyka A, Krystyna; Rydzewska, Anna

    2007-01-01

    In dentistry, the results of in vivo studies on drugs, dental fillings or prostheses are routinely evaluated based on selected oral cavity environment parameters at specific time points. Such evaluation may be confounded by ongoing changes in the oral cavity environment induced by diet, drug use, stress and other factors. The study aimed to confirm oral cavity environment changeability. 24 healthy individuals aged 20-30 had their oral cavity environment prepared by having professional hygiene procedures performed and caries lesions filled. Baseline examination and the examination two years afterwards, evaluated clinical and laboratory parameters of oral cavity environment. Caries incidence was determined based on DMFT and DMFS values, oral cavity hygiene on Plaque Index (acc. Silness & Loe) and Hygiene Index (acc. O'Leary), and the gingival status on Gingival Index (acc. Loe & Silness) and Gingival Bleeding Index (acc. Ainamo & Bay). Saliva osmolarity, pH and concentrations of Ca(2+), Pi, Na(+), Cl(-), total protein, albumins, F(-) and Sr(2+) were determined. The results confirmed ongoing changeability of the oral cavity environment. After 2 years of the study reduction in oral cavity hygiene parameters PLI and HI (P<0.1), and gingival indices as well as lower saliva concentration of Ca(2+) (P<.001), Pi (P<.06), K(+) (P<.04), Sr(2+) (P<.03), Na(+) (P<.1), against the baseline values, were observed. Total protein and albumin saliva concentrations were also significantly lower. Physiological oral cavity environment is subject to constant, individually different, changes which should be considered when analysing studies that employ oral cavity environment parameters.

  16. Direct Numerical Simulation of Automobile Cavity Tones

    Science.gov (United States)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  17. Giant Submandibular Calculus Eroding Oral Cavity Mucosa

    Directory of Open Access Journals (Sweden)

    Eng Haw Lim

    2017-09-01

    Full Text Available Sialolithiasis is the formation of calculi or sialoliths in the salivary gland. It is the most common benign condition of the salivary gland. Sialolithiasis can occur in all salivary glands. The submandibular gland is most commonly affected followed by the parotid gland. Calculi commonly measure less than 10 mm. Calculi of more than 15 mm are termed giant salivary gland calculi and are infrequently reported in the literature. Here, we report a case of unusually large submandibular gland calculus of 5 cm in greatest dimension which caused erosion of the oral cavity.

  18. Giant Submandibular Calculus Eroding Oral Cavity Mucosa.

    Science.gov (United States)

    Lim, Eng Haw; Nadarajah, Sanjeevan; Mohamad, Irfan

    2017-09-01

    Sialolithiasis is the formation of calculi or sialoliths in the salivary gland. It is the most common benign condition of the salivary gland. Sialolithiasis can occur in all salivary glands. The submandibular gland is most commonly affected followed by the parotid gland. Calculi commonly measure less than 10 mm. Calculi of more than 15 mm are termed giant salivary gland calculi and are infrequently reported in the literature. Here, we report a case of unusually large submandibular gland calculus of 5 cm in greatest dimension which caused erosion of the oral cavity.

  19. Further Insight Relative to Cavity Radiation III: Gedanken Experiments, Irreversibility, and Kirchhoff's Law

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2016-01-01

    Full Text Available Recently, gedanken experiments have been proposed in order to examine the validity of Kirchhoff’s Law of Thermal Emission (P.-M. Robitaille, Further Insight Relative to Cavity Radiation: A Thought Experiment Refuting Kirchhoff’s Law, Prog. Phys., 2014, v. 10, no. 1, 38–40; P.-M. Robitaille, Further Insight Relative to Cavity Radiation II: Gedanken Experiments and Kirchhoff’s Law, Prog. Phys., 2014, v. 10, no. 2, 116–120. In the second of these works, real materials (i.e. graphite and silver were utilized in or- der to construct two separate cavities at the same temperature which are then placed in thermal contact with one another. It was hypothesized that the graphite cavity initially contained blackbody radiation and that the silver cavity was devoid of radiation. In the case of the silver cavity, all of the energy of the system was assigned to the phonons in its walls. When the cavities were brought together and a small hole introduced between the cavities, it was hypothesized that thermal contact between the cavity walls would enable the transformation of phonon energy into photon energy, eventually resulting in filling the silver cavity with black radiation. Energy contained within the wall of the silver cavity was believed to be reversibly trapped. However, in allowing energy to flow reversibly out of the walls of the silver cavity in this context, it has been assumed that the silver conduction bands could be neglected and that only phonon energy need be considered. However, the reflectivity attributed to the silver cavity should be con- sidered uniquely as a result of energy associated with the formation of its conduction bands. Such formation must be considered irreversible. It will be demonstrated that under these conditions Kirchhoff’s law, once again, does not hold. The lack of ther- mal radiation within the silver cavity does not lead to a violation of the second law of thermodynamics.

  20. Standard Glbbs Energy of Formation of the Hydroxyl Radical in Aqueous Solution. Rate Constants for the Reaction C102- -t O3 S 03- -t CIO,

    DEFF Research Database (Denmark)

    Klaning, U. K.; Sehested, Knud; Holcman, J.

    1985-01-01

    The rate constants of the following reactions were determined by pulse radiolysis and stopped-flow experiments: C102- + O3 + C102 + 03-(k f= (4 f 1) X lo6 dm3 mol-' s-', k, = (1.8 f 0.2) X lo5 dm3 mol-' s-]); C102 + OH - C103- + H+ (k = (4.0 * 0.4) X lo9 dm3 mol-' s-l); C102 + 0- - C103- (k = (2.......7 * 0.4) X lo9 dm3 mol-' s-l); and O3 + C102 - C103 + O2 (k = (1.05 f 0.10) X lo3 dm3 mol-l s-'), where kf is the forward rate of reaction and k, is the reverse rate of reaction. The standard Gibbs energy of formation of OH in aqueous solution A&O,,(OH) and the corresponding standard oxidation potential...

  1. Nonlocal Intracranial Cavity Extraction

    Science.gov (United States)

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  2. Nonlocal Intracranial Cavity Extraction

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2014-01-01

    Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.

  3. Dissection of the water cavity of yeast thioredoxin 1: the effect of a hydrophobic residue in the cavity.

    Science.gov (United States)

    Iqbal, Anwar; Gomes-Neto, Francisco; Myiamoto, Catarina Akiko; Valente, Ana Paula; Almeida, Fabio C L

    2015-04-21

    The water cavity of yeast thioredoxin 1 (yTrx1) is an ancestral, conserved structural element that is poorly understood. We recently demonstrated that the water cavity is involved in the complex protein dynamics that are responsible for the catalytically relevant event of coupling hydration, proton exchange, and motion at the interacting loops. Its main feature is the presence of the conserved polar residue, Asp24, which is buried in a hydrophobic cavity. Here, we evaluated the role of the solvation of Asp24 as the main element that is responsible for the formation of the water cavity in thioredoxins. We showed that the substitution of Asp24 with a hydrophobic residue (D24A) was not sufficient to completely close the cavity. The dynamics of the D24A mutant of yTrx1 at multiple time scales revealed that the D24A mutant presents motions at different time scales near the active site, interaction loops, and water cavity, revealing the existence of a smaller dissected cavity. Molecular dynamics simulation, along with experimental molecular dynamics, allowed a detailed description of the water cavity in wild-type yTrx1 and D24A. The cavity connects the interacting loops, the central β-sheet, and α-helices 2 and 4. It is formed by three contiguous lobes, which we call lobes A-C. Lobe A is hydrophilic and the most superficial. It is formed primarily by the conserved Lys54. Lobe B is the central lobe formed by the catalytically important residues Cys33 and Asp24, which are strategically positioned. Lobe C is the most hydrophobic and is formed by the conserved cis-Pro73. The central lobe B is closed upon introduction of the D24A mutation, revealing that independent forces other than solvation of Asp24 maintain lobes A and C in the open configuration. These data allow us to better understand the properties of this enzyme.

  4. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  5. The effect of ethanol on the formation and physico-chemical properties of particles generated from budesonide solution-based pressurized metered-dose inhalers.

    Science.gov (United States)

    Zhu, Bing; Traini, Daniela; Chan, Hak-Kim; Young, Paul M

    2013-11-01

    The aerosol performance of budesonide solution-based pressurized metered-dose inhalers (HFA 134a), with various amounts of ethanol (5-30%, w/w) as co-solvents, was evaluated using impaction and laser diffraction techniques. With the increase of ethanol concentration in a formulation, the mass median aerodynamic diameter was increased and the fine particle fraction showed a significant decline. Although data obtained from laser diffraction oversized that of the impaction measurements, good correlations were established between the two sets of data. Particles emitted from all the five formulations in this study were amorphous, with two different types of morphology - the majority had a smooth surface with a solid core and the others were internally porous with coral-like surface morphology. The addition of ethanol in the formulation decreased the percentage of such irregular-shape particles from 52% to 2.5% approximately, when the ethanol concentration was increased from 5% to 30%, respectively. A hypothesis regarding the possible particle formation mechanisms was also established. Due to the difference of droplet composition from the designed formulation during the atomization process, the two types of particle may have gone through distinct drying processes: both droplets will have a very short period of co-evaporation, droplets with less ethanol may be dried during such period; while the droplets containing more ethanol will undergo an extra condensation stage before the final particle formation.

  6. Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. [in prebiotic evolution

    Science.gov (United States)

    Weber, A. L.

    1982-01-01

    N-acetylcysteine reacts efficiently with pyruvaldehyde (methylglyoxal) in aqueous solution (pH 7.0) in the presence of a weak base, like imidazole or phosphate, to give the thioester, N-acetyl, S-lactoylcysteine. Reactions of 100 mM N-acetylcysteine with 14 mM, 24 mM and 41 mM pyruvaldehyde yield, respectively, 86%, 76% and 59% N-acetyl, S-lactoylcysteine based on pyruvaldehyde. The decrease in the percent yield at higher pyruvaldehyde concentrations suggests that during its formation the thioester is not only consumed by hydrolysis, but also by reaction with some substance in the pyruvaldehyde preparation. Indeed, purified N-acetyl, S-lactoylcysteine disappears much more rapidly in the presence of pyruvaldehyde than in its absence. Presumably, N-acetyl, S-lactoylcysteine synthesis occurs by rearrangement of the hemithioacetal of N-acetylcysteine and pyruvaldehyde. The significance of this pathway of thioester formation to molecular evolution is discussed.

  7. Flow transitions in three-dimensional double-diffusive fingering convection in a porous cavity

    Science.gov (United States)

    Sezai, I.

    2002-08-01

    In the present study the existence of multiple three-dimensional double-diffusive flow patterns in a horizontal rectangular porous cavity of a square cross-section, having horizontal aspect ratios Ax = Ay = 2 is investigated numerically. Opposing vertical gradients of temperature and concentration are applied between the two horizontal walls of the cavity, where the solute gradient is destabilizing against a stabilizing temperature gradient. All vertical walls are considered to be impermeable and adiabatic. The Brinkman and Forchheimer terms are included in the momentum equations where the convective terms are retained. The effect of the buoyancy ratio, N, thermal Rayleigh number, RaT and Lewis number, Le, on the formation of multiple flow patterns is investigated over a wide range of parameters. Altogether 36 symmetric flow structures have been identified when each of the parameters N, RaT, and Le is varied independently, keeping the others as constants. The results of the calculations are presented in terms of the average Sherwood number curves consisting of different solution branches, where transitions between the branches are indicated. The flow patterns are classified according to their symmetry properties and the type of symmetries broken or preserved are identified during the bifurcation processes.

  8. Call for Papers: Cavity QED

    Science.gov (United States)

    Lange, W.; Gerard, J.-M.

    2003-06-01

    Cavity QED interactions of light and matter have been investigated in a wide range of systems covering the spectrum from microwaves to optical frequencies, using media as diverse as single atoms and semiconductors. Impressive progress has been achieved technologically as well as conceptually. This topical issue of Journal of Optics B: Quantum and Semiclassical Optics is intended to provide a comprehensive account of the current state of the art of cavity QED by uniting contributions from researchers active across this field. As Guest Editors of this topical issue, we invite manuscripts on current theoretical and experimental work on any aspects of cavity QED. The topics to be covered will include, but are not limited to: bulletCavity QED in optical microcavities bulletSemiconductor cavity QED bulletQuantum dot cavity QED bulletRydberg atoms in microwave cavities bulletPhotonic crystal cavity QED bulletMicrosphere resonators bulletMicrolasers and micromasers bulletMicrodroplets bulletDielectric cavity QED bulletCavity QED-based quantum information processing bulletQuantum state engineering in cavities The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the

  9. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  10. Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    -linear zone and the volume reduction. Results are given for cavities in rock salt, and a comparison with measured stress concentrations is used to support the assumption of a hydrostatic stress state in undisturbed salt formations. Finally a method to estimate convergence due to creep is outlined....

  11. Computed tomography of the normal feline nasal cavity and paranasal sinuses

    International Nuclear Information System (INIS)

    Losonsky, J.M.; Abbott, L.C.; Kuriashkin, I.V.

    1997-01-01

    Computed tomography (CT) images of the feline nasal cavity and paranasal sinuses were acquired from normal adult cats, Good resolution and anatomic detail were obtained from the CT images using soft tissue formatting. A description of normal feline nasal cavity and paranasal sinus anatomy using CT is presented

  12. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  13. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  14. Loggerhead oral cavity morphometry study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard external morphometrics and internal oral cavity morphometrics data were collected on wild and captive reared loggerhead sea turtles in size classes ranging...

  15. Bistability of Cavity Magnon Polaritons.

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C-M; You, J Q

    2018-02-02

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  16. Software layer for FPGA-based TESLA cavity control system

    Science.gov (United States)

    Koprek, Waldemar; Kaleta, Pawel; Szewinski, Jaroslaw; Pozniak, Krzysztof T.; Czarski, Tomasz; Romaniuk, Ryszard S.

    2005-02-01

    The paper describes design and practical realization of software for laboratory purposes to control FPGA-based photonic and electronic equipment. There is presented a universal solution for all relevant devices with FPGA chips and gigabit optical links. The paper describes architecture of the software layers and program solutions of hardware communication based on Internal Interface (II) technology. Such a solution was used for superconducting Cavity Controller and Simulator (SIMCON) for the TESLA experiment in DESY (Hamburg). A number of practical examples of the software solutions for the SIMCON system were given in this paper.

  17. Sterility of the uterine cavity

    DEFF Research Database (Denmark)

    Møller, Birger R.; Kristiansen, Frank V.; Thorsen, Poul

    1995-01-01

    In a prospective open study the sterility of the uterine cavity was evaluated in 99 women admitted for hysterectomy. The indications for hysterectomy were in most cases persistent irregular vaginal bleeding and fibromyomas of the uterus. Samples for both aerobic and anaerobic bacteria, Chlamydia ...... which may play a causative role in endometritis. The results indicate that inflammation of the uterine cavity should be evaluated by hysteroscopic examination before hysterectomy is undertaken in patients with persistent irregular vaginal bleeding. Udgivelsesdato: 1995-Mar...

  18. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  19. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.

    Science.gov (United States)

    Ghazvini, Saba; Kalonia, Cavan; Volkin, David B; Dhar, Prajnaparamita

    2016-05-01

    Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls. At lower pH, mAb solutions exhibited larger hysteresis in their surface pressure versus area isotherms and increased number of particles in bulk solution, when subjected to interfacial stresses. mAb samples subjected to 750-1000 interfacial compression-expansion cycles in 6 h contained high particle numbers in bulk solution, and displayed similar particulation trends when agitated in vials. At compression rates of 50 cycles in 6 h, however, particle levels in mAb solutions were comparable to unstressed controls, despite protein aggregates being present at the air-solution interface. These results suggest that while the air-solution interface serves as a nucleation site for initiating protein aggregation, the number of protein particles measured in bulk mAb solutions depends on the total number of compression cycles that proteins at the air-solution interface are subjected to within a fixed time. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  1. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2‐Scrubbing Solutions

    Science.gov (United States)

    Scott, Martin; Blas Molinos, Beatriz; Westhues, Christian

    2017-01-01

    Abstract Aqueous biphasic systems were investigated for the production of formate–amine adducts by metal‐catalyzed CO2 hydrogenation, including typical scrubbing solutions as feedstocks. Different hydrophobic organic solvents and ionic liquids could be employed as the stationary phase for cis‐[Ru(dppm)2Cl2] (dppm=bis‐diphenylphosphinomethane) as prototypical catalyst without any modification or tagging of the complex. The amines were found to partition between the two phases depending on their structure, whereas the formate–amine adducts were nearly quantitatively extracted into the aqueous phase, providing a favorable phase behavior for the envisaged integrated reaction/separation sequence. The solvent pair of methyl isobutyl carbinol (MIBC) and water led to the most practical and productive system and repeated use of the catalyst phase was demonstrated. The highest single batch activity with a TOFav of approximately 35 000 h−1 and an initial TOF of approximately 180 000 h−1 was achieved in the presence of NEt3. Owing to higher stability, the highest productivities were obtained with methyl diethanolamine (Aminosol CST 115) and monoethanolamine (MEA), which are used in commercial scale CO2‐scrubbing processes. Saturated aqueous solutions (CO2 overpressure 5–10 bar) of MEA could be converted into the corresponding formate adducts with average turnover frequencies up to 14×103 h−1 with an overall yield of 70 % based on the amine, corresponding to a total turnover number of 150 000 over eleven recycling experiments. This opens the possibility for integrated approaches to carbon capture and utilization. PMID:28103428

  2. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a device that consists of a compound intended to coat a prepared cavity of a tooth before insertion of...

  3. Quantum transport through ballistic chaotic cavities: a statistical approach

    International Nuclear Information System (INIS)

    Mello, P.A.

    1998-01-01

    The problem of quantum chaotic scattering is addressed by means of a statistical model for the scattering matrix. The model, introduced in the past in the context of nuclear physics, describes the problem in terms of a prompt and an equilibrated component: it incorporates the average value of the scattering matrix to describe the prompt processes and satisfies the requirements of flux conservation, causality and ergodicity. The model is applied to the analysis of electronic transport through ballistic mesoscopic cavities: it describes well the results arising form the numerical solution of the Schroedinger equation for two-dimensional cavities. (Author)

  4. Cell Microtubules as Cavities Quantum Coherence and Energy Transfer?

    CERN Document Server

    Mavromatos, Nikolaos E

    2000-01-01

    A model is presented for dissipationless energy transfer in cell microtubules due to quantum coherent states. The model is based on conjectured (hydrated) ferroelectric properties of microtubular arrangements. Ferroelectricity is essential in providing the necessary isolation against thermal losses in thin interior regions, full of ordered water, near the tubulin dimer walls of the microtubule. These play the role of cavity regions, which are similar to electromagnetic cavities of quantum optics. As a result, the formation of (macroscopic) quantum coherent states of electric dipoles on the tubulin dimers may occur. Some experiments, inspired by quantum optics, are suggested for the falsification of this scenario.

  5. Engineering interactions between long-lived cavities

    Science.gov (United States)

    Gao, Yvonne; Rosenblum, Serge; Reinhold, Philip; Wang, Chen; Axline, Christopher; Frunzio, Luigi; Girvin, Steven M.; Jiang, Liang; Mirrahimi, Mazyar; Devoret, Michel H.; Schoelkopf, Robert J.

    The availability of large Hilbert dimensions and outstanding coherence properties make superconducting cavities promising systems for storing quantum information. Recent experiments in cQED has demonstrated that redundantly encoding logical qubits in such cavities is a hardware-efficient approach toward error-correctable quantum memories. In order to tap into the power of these protected memories for quantum information processing, robust inter-cavity operations are required. A simple way to realise such operations between two cavities is using the non-linearity of the Josephson junction. To do so, we adopt a multi-cavity architecture where a fixed-frequency, single junction transmon simultaneously couples to two highly coherent 3D cavities. Using only external RF drives, we demonstrate transmon-cavity as well as cavity-cavity SWAP operations and show that such interactions are essential building blocks for implementing multi-cavity conditional logics.

  6. Core-Shell Fibers Electrospun from Phase-Separated Blend Solutions: Fiber Formation Mechanism and Unique Energy Dissipation for Synergistic Fiber Toughness.

    Science.gov (United States)

    Wang, Chi; Hsiue, Ting-Ting

    2017-09-11

    Through single-tube electrospinning, the biodegradable core-shell fibers of poly(3-hydroxybutyrate) (PHB) and poly(d,l-lactic acid) (PDLLA) were obtained from blend solutions with different compositions at a total polymer concentration of 7 wt %. Regardless whether PHB is the major or minor component (PHB/PDLLA = 90/10, 75/25, 50/50, and 25/75 wt. ratio), these phase-separated solutions all yielded core-shell fibers with PHB as core and PDLLA as shell. A new scenario of core-shell fiber formation was proposed on the basis of the relative magnitude of the intrinsic relaxation rate of fluids and external extension rate during electrospinning. The effects of blend compositions on the morphologies of the Taylor cone, whipping jet, and as-spun fibers were investigated. The diameters of core-shell fibers can be tailored by simply varying the PHB/PDLLA ratios. Two scaling laws describing the apparent viscosity (η o ) dependence of the outer fiber diameter (d fo ) and core fiber diameter (d fc ) were derived. That is, d fo ∼ η o 0.38 and d fc ∼ η o 0.86 . The microstructures of the as-spun fibers were determined by differential scanning calorimetry, Fourier transform infrared spectroscopy, and synchrotron wide-angle and small-angle X-ray scatterings. Results showed that the PDLLA component was in the amorphous state, and the crystallizability of PHB component remained unchanged, except the amorphous 10/90 fibers electrospun from a miscible solution state. The synergistic mechanical properties of the core-shell fibers were obtained, along with the ductile PDLLA shell enclosing the brittle PHB core. The enhanced toughness was attributed to the fragmentation of the brittle PHB core and necking fracture of the ductile PDLLA shell, which served as an effective route for energy dissipation. Compared with the neat PHB fiber, the 90/10 and 75/25 core-shell fibers possessed larger elastic moduli, which was attributed to the high PHB crystal orientation in their core sections

  7. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs

  8. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  9. Assessment of semiempirical enthalpy of formation in solution as an effective energy function to discriminate native-like structures in protein decoy sets.

    Science.gov (United States)

    Urquiza-Carvalho, Gabriel Aires; Fragoso, Wallace Duarte; Rocha, Gerd Bruno

    2016-08-05

    In this work, we tested the PM6, PM6-DH+, PM6-D3, and PM7 enthalpies of formation in aqueous solution as scoring functions across 33 decoy sets to discriminate native structures or good models in a decoy set. In each set these semiempirical quantum chemistry methods were compared according to enthalpic and geometric criteria. Enthalpically, we compared the methods according to how much lower was the enthalpy of each native, when compared with the mean enthalpy of its set. Geometrically, we compared the methods according to the fraction of native contacts (Q), which is a measure of geometric closeness between an arbitrary structure and the native. For each set and method, the Q of the best decoy was compared with the Q0 , which is the Q of the decoy closest to the native in the set. It was shown that the PM7 method is able to assign larger energy differences between the native structure and the decoys in a set, arguably because of a better description of dispersion interactions, however PM6-DH+ was slightly better than the rest at selecting geometrically good models in the absence of a native structure in the set. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Conductance Studies on Complex Formation between c-Methylcalix[4]resorcinarene and Titanium (III in Acetonitrile-H2O Binary Solutions

    Directory of Open Access Journals (Sweden)

    Naghmeh Saadati

    2013-09-01

    Full Text Available Calixresorcinarenes have proved to be unique molecules for molecular recognition via hydrogen bonding, hydrophobic and ionic interactions with suitable substrates such as cations. The study of the interactions involved in the complexation of different cations with calixresorcinarenes in solvent mixtures is important for a better understanding of the mechanism of biological transport, molecular recognition, and other analytical applications. This article summarizes different aspects of the complexes of the Ti3+ metal cation with c-methylcalix[4]resorcinarene (CMCR as studied by conductometry in acetonitrile (AN–water (H2O binary mixtures at different temperatures. Conductance data show that the metal cation/ligand (ML stoichiometry of the complexes in solution is 1:1 in all cases. Non-linear behaviour was observed for the variation of logKf of the complexes vs. the composition of the binary solvent mixtures. Selectivity of CMCR for the Ti3+ cation is sensitive to solvent composition; in some cases and at certain compositions of the mixed solvent systems, the selectivity order is changed. Values of thermodynamic parameters (, for formation of the CMCR–Ti3+ complexes in AN–H2O binary systems were obtained from the temperature dependence of stability constants, and the results show that the thermodynamics of complexation reactions are affected by the nature and composition of the mixed solvents.

  11. Analysis of short-term reactor cavity transient

    International Nuclear Information System (INIS)

    Cheng, T.C.; Fischer, S.R.

    1981-01-01

    Following the transient of a hypothetical loss-of-coolant accident (LOCA) in a nuclear reactor, peak pressures are reached within the first 0.03 s at different locations inside the reactor cavity. Due to the complicated multidimensional nature of the reactor cavity, the short-term analysis of the LOCA transient cannot be performed by using traditional containment codes, such as CONTEMPT. The advanced containment code, BEACON/MOD3, developed at the Idaho National Engineering Laboratory (INEL), can be adapted for such analysis. This code provides Eulerian, one and two-dimensional, nonhomogeneous, nonequilibrium flow modeling as well as lumped parameter, homogeneous, equilibrium flow modeling for the solution of two-component, two-phase flow problems. The purpose of this paper is to demonstrate the capability of the BEACON code to analyze complex containment geometry such as a reactor cavity

  12. Cavity QED with atomic mirrors

    Science.gov (United States)

    Chang, D. E.; Jiang, L.; Gorshkov, A. V.; Kimble, H. J.

    2012-06-01

    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated ‘impurity’ atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a ‘strong coupling’ regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.

  13. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  14. Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions. Formation of Na-Np(V)-OH solid phases at 22 C

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Vladimir G. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Fellhauer, David; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Altmaier, Marcus [Karlsruhe Institute of Technology (Germany). Inst. for Nuclear Waste Disposal; Kalmykov, Stepan N. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-03-01

    . Furthermore, the XRD pattern collected for one of the pink solid phases match the data recently reported for NaNpO{sub 2}(OH){sub 2}(cr). UV-vis/NIR spectra collected in 0.1-5.0 M NaCl solutions show the predominance of NpO{sub 2}{sup +} (≥80%) at pH{sub m} ≤ 10.3. This observation is consistent with the Np(V) hydrolysis scheme currently selected in the NEA-TDB. This work provides sound evidences on the formation of ternary Na-Np(V)-OH solid phases in Na-rich hyperalkaline solutions and ambient temperature conditions. Given the unexpectedly high complexity of the system, further experimental efforts dedicated to assess the thermodynamic properties of these solid phases are needed, especially in view of their likely relevance as solubility controlling Np(V) solid phases in Na-rich systems such as saline and cement-based environments in the context of the safety assessment for nuclear waste disposal.

  15. Coeliac cavity ultrasonic diagnosis apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ando, O.; Suwaki, T.

    1983-07-05

    A coeliac cavity ultrasonic diagnosis apparatus is disclosed which includes an ultrasonic transducer or scanner portion adapted to be inserted into a coeliac cavity to effect a sector scan of an ultrasonic beam to produce an ultrasonic image of internal tissues and in which the ultrasonic oscillator on the one hand and an ultrasonic reflecting mirror and rotary disc on the other hand are relatively rotated so as to effect the sector scan of the ultrasonic beam and the rotary angle of the rotary disc is detected so as to obtain a deflecting angle of the ultrasonic beam and a display on a cathode ray tube of a precise ultrasonic picture image.

  16. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    Heremans K.

    2005-01-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  17. Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver

    International Nuclear Information System (INIS)

    Ponton, A.

    2009-07-01

    EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)

  18. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise Christine [Northwestern Univ., Evanston, IL (United States)

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  19. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  20. Cavity polaritons in one-dimensional photonic crystals containing dye molecule-titanate nanosheet hybrids

    Science.gov (United States)

    Ishii, Kenta; Suzuki, Makoto; Chen, Changdong; Feng, Qi; Nakanishi, Shunsuke; Tsurumachi, Noriaki

    2014-02-01

    We investigated the optical properties of one dimensional photonic crystal (1D-PC) microcavity with a wedge-shaped cavity layer containing fluorescent pseudoisocyanine (PIC)-gelatin and nonfluorescent PIC-H1.07Ti1.73O4•nH2O (HTO) nanohybrids. In the case of the PIC-gelatin, the formation of cavity polaritons with a Rabi splitting energy of 49.2 meV was clearly observed. Contrary to our expectations, the formation of cavity polaritons in the case of the PIC-HTO nanohybrids was also observed, even though their splitting energy of 5.8 meV was small. Although different possible explanations were considered, at present, there is insufficient information to completely explain the phenomena. The formation of cavity polaritons with nonfluorescent excitons is indeed very rare and therefore interesting.

  1. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide ...

  2. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  3. A 200 MHz prebunching cavity

    CERN Multimedia

    1977-01-01

    This cavity was installed in the PS ring and proved very efficient in providing a modulation on the PS beam before it is injected into the SPS machine. Moreover it allowed longitudinal instabilities studies at high intensities. Roberto Cappi stands on the left.

  4. Improving cooling of cavity blackbodies

    Science.gov (United States)

    Barrat, Catherine; Chauvel, Gildas

    2013-10-01

    A cavity blackbody is the appropriate IR reference source for IR sensors which require high radiance levels. It combines high emissivity independent from wavelength and high speed warm up and high stability thanks to its light trap structure. However, the inconvenient of this structure is that it leads to a prohibitive cooling time. HGH developed a method to speed up the cooling time.

  5. Stable–streamlined and helical cavities following the impact of Leidenfrost spheres

    KAUST Repository

    Mansoor, Mohammad M.

    2017-06-23

    We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.

  6. Effect of cold cap boundary conditions on Joule-heating flow in the sloping bottom cavity

    International Nuclear Information System (INIS)

    Zhou, Jiaju; Tanaka, Hiromasa; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2015-01-01

    Flow behavior in a sloping bottom cavity is observed to study the effect of cavity shape on flow behavior for Joule-heating flow. In the former study, a simple cubic cavity is applied to study the chaotic flow behavior of Joule-heating convection due to simplification as the real melter case is complicated. In this study, a sloping bottom cavity of the dimension one-fifth of the actual melter is applied to study the detail flow behavior. Carbon electrodes and top cooling surface are placed to make Joule-heating and the chaotic flow behavior. The working fluid is 80%wt Glycerol-water solution with LiCl as electrolyte. To observe the chaotic flow behavior spatio-temporally, Ultrasonic Velocity Profiler (UVP) is applied in this experiment to obtain the one-dimensional continuous velocity profiles in the center line of cavity. Particle Image Velocity (PIV) method is also applied to observe the two-dimensional flow behavior and to examine the cross-check between UVP and PIV for the chaotic flow behavior with temperature distribution. The flow profiles of the former cubic cavity and the sloping bottom cavity are compared changing voltage magnitude and cooling temperature of the electrodes side to analyze the effect of cavity shape under Joule-heating condition. The flow behavior in the upper part of the sloping bottom cavity is similar to that in the cubic cavity in the experiment in whole cavity, the range down-flow achieved is larger than the cubic cavity. (author)

  7. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  8. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  9. CAVE: A package for detection and quantitative analysis of internal cavities in a system of overlapping balls: Application to proteins

    Science.gov (United States)

    Buša, Ján; Hayryan, Shura; Hu, Chin-Kun; Skřivánek, Jaroslav; Wu, Ming-Chya

    2010-12-01

    We developed a software package ( CAVE) in Fortran language to detect internal cavities in proteins which can be applied also to an arbitrary system of balls. The volume, the surface area and other quantitative characteristics of the cavities can be calculated. The code is based on the recently suggested enveloping triangulation algorithm [J. Buša et al., J. Comp. Chem. 30 (2009) 346] for computing volume and surface area of the cavity by analytical equations. Different standard sets of atomic radii can be used. The PDB compatible file containing the atomic coordinates must be stored on the disk in advance. Testing of the code on different proteins and artificial ball systems showed efficiency and accuracy of the algorithm. The program is fast. It can handle a system of several thousands of balls in the order of seconds on contemporary PC's. The code is open source and free. Program summaryProgram title: CAVE Catalogue identifier: AEHC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 8670 No. of bytes in distributed program, including test data, etc.: 100 131 Distribution format: tar.gz Programming language: Fortran Computer: PC Pentium and Core Operating system: Linux system and Windows XP system Classification: 16.1 Nature of problem: Molecular structure analysis. Solution method: Analytical method for cavities detection, and numerical algorithm for volume and surface area calculation based on the analytical formulas, after using the stereographic transformation. Running time: Depends on the size of the molecule under consideration. The test example included in the distribution takes about 1 minute to run.

  10. An economical wireless cavity-nest viewer

    Science.gov (United States)

    Daniel P. Huebner; Sarah R. Hurteau

    2007-01-01

    Inspection of cavity nests and nest boxes is often required during studies of cavity-nesting birds, and fiberscopes and pole-mounted video cameras are sometimes used for such inspection. However, the cost of these systems may be prohibitive for some potential users. We describe a user-built, wireless cavity viewer that can be used to access cavities as high as 15 m and...

  11. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  12. Reactor cavity streaming: the problem and engineered solutions

    International Nuclear Information System (INIS)

    Iotti, R.C.; Yang, T.L.; Rogers, W.H.

    1979-01-01

    Experience at operating pressurized water reactors has revealed that air gaps between the reactor vessel and the biological shield wall can provide paths for radiation streaming, which may prohibitively limit the accessibility required to areas in the containment during power operation, increase personnel exposure during shutdown, and cause radiation damage to equipment and cables located above the vessel. Several concepts of shield are discussed together with their predicted effectiveness. The analytical methods employed to determine the streaming magnitude and the shield effectiveness are also discussed and their accuracy is measured by comparison with actual measurement at an operating plant

  13. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  14. Formation, spectroscopic characterization, and solution stability of an [Fe4S4]2+ cluster derived from β-cyclodextrin dithiolate.

    Science.gov (United States)

    Lo, Wayne; Zhang, Ping; Ling, Chang-Chun; Huang, Shaw; Holm, R H

    2012-09-17

    The formation and solution properties, including stability in mixed aqueous-Me(2)SO media, have been investigated for an [Fe(4)S(4)](2+) cluster derived from β-cyclodextrin (CD) dithiolate. Clusters of the type [Fe(4)S(4)(SAr)(4)](2-) (Ar = Ph, C(6)H(4)-3-F) are generated in Me(2)SO by redox reactions of [Fe(4)S(4)(SEt)(4)](2-) with 2 equiv of ArSSAr. An analogous reaction with the intramolecular disulfide of 6(A),6(D)-(3-NHCOC(6)H(4)-1-SH)(2)-6(A),6(D)-dideoxy-β-cyclodextrin (14), whose synthesis is described, affords a completely substituted cluster formulated as [Fe(4)S(4){β-CD-(1,3-NHCOC(6)H(4)S)(2)}(2)](2-) (15). Ligand binding is indicated by a circular dichroism spectrum and also by UV-visible and isotropically shifted (1)H NMR spectra and redox behavior convincingly similar to [Fe(4)S(4)(SPh)(4)](2-). One formulation of 15 is a single cluster to which two dithiolates are bound, each in bidentate coordination. With there being no proven precedent for this binding mode, we show that the cluster [Fe(4)S(4)(S(2)-m-xyl)(2)](2-) is a single cubane whose m-xylyldithiolate ligands are bound in a bidentate arrangement. This same structure type was proposed for a cluster formulated as [Fe(4)S(4){β-CD-(1,3-SC(6)H(4)S)(2)}(2)](2-) (16; Kuroda et al. J. Am. Chem. Soc.1988, 110, 4049-4050) and reported to be water-stable. Clusters 15 and 16 are derived from similar ligands differing only in the spacer group between the thiolate binding site and the CD platform. In our search for clusters stable in aqueous or organic-aqueous mixed solvents that are potential candidates for the reconstitution of scaffold proteins implicated in cluster biogenesis, 15 is the most stable cluster that we have thus far encountered under anaerobic conditions in the absence of added ligand.

  15. Experimental studies of light emission phenomena in superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, P.L. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Delayen, J.R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport, News, VA 23606 (United States); Center for Accelerator Science, Old Dominion University, Norfolk, VA, 23529 (United States); Fryberger, D., E-mail: fryberger@slac.stanford.ed [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Goree, W.S. [2G Enterprises, Pacific Grove, CA 93950 (United States); Mammosser, J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport, News, VA 23606 (United States); Szalata, Z.M.; Weisend, J.G. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2009-12-21

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from approx1/2 to approx2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW-controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects <=1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  16. Gastrophysics of the Oral Cavity.

    Science.gov (United States)

    Mouritsen, Ole G

    2016-01-01

    Gastrophysics is the science that pertains to the physical and physico-chemical description of the empirical world of gastronomy, with focus on sensory perception in the oral cavity and how it is related to the materials properties of food and cooking processes. Flavor (taste and smell), mouthfeel, chemesthesis, and astringency are all related to the chemical properties and the texture of the food and how the food is transformed in the oral cavity. The present topical review will primarily focus attention on the somatosensory perception of food (mouthfeel or texture) and how it interacts with basic tastes (sour, bitter, sweet, salty, and umami) and chemesthetic action. Issues regarding diet, nutrition, and health will be put into an evolutionary perspective, and some mention will be made of umami and its importance for (oral) health.

  17. A micropillar for cavity optomechanics

    Science.gov (United States)

    Kuhn, Aurélien; Neuhaus, Leonhard; Van Brackel, Emmanuel; Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine

    2014-12-01

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  18. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also...... described, and their implications for microdroplet resonator technology are discussed. Optofluidic implementations of microdroplet resonators are reviewed with emphasis on the basic optomechanical properties....

  19. Two-channel interaction models in cavity QED

    International Nuclear Information System (INIS)

    Wang, L.

    1993-01-01

    The authors introduce four fully quantized models of light-matter interactions in optical or microwave cavities. These are the first exactly soluble models in cavity quantum electrodynamics (cavity QED) that provide two transition channels for the flipping of atomic states. In these models a loss-free cavity is assumed to support three or four quantized field modes, which are coupled to a single atom. The atom exchanges photons with the cavity, in either the Raman configuration including both Stokes and anti-Stokes modes, or through two-photon cascade processes. The authors obtain the effective Hamiltonians for these models by adiabatically eliminating an off-resonant intermediate atomic level, and discuss their novel properties in comparison to the existing one-channel Jaynes-Cummings models. They give a detailed description of a method to find exact analytic solutions for the eigenfunctions and eigenvalues for the Hamiltonians of four models. These are also valid when the AC Stark shifts are included. It is shown that the eigenvalues can be expressed in very simple terms, and formulas for normalized eigenvectors are also given, as well as discussions of some of their simple properties. Heisenberg picture equations of motions are derived for several operators with solutions provided in a couple of cases. The dynamics of the systems with both Fock state and coherent state fields are demonstrated and discussed using the model's two key variables, the atomic inversion and the expectation value of photon number. Clear evidences of high efficiency mode-mixing are seen in both the Raman and cascade configurations, and different kinds of collapses and revivals are encountered in the atomic inversions. Effects of several factors like the AC Stark shift and variations in the complex coupling constants are also illustrated

  20. Optomechanic interactions in phoxonic cavities

    Directory of Open Access Journals (Sweden)

    Bahram Djafari-Rouhani

    2014-12-01

    Full Text Available Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  1. Optomechanic interactions in phoxonic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); El-Jallal, Said [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); Physique du Rayonnement et de l’Interaction Laser Matière, Faculté des sciences, Université de Moulay Ismail, Meknès (Morocco)

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  2. Status of the ILC Crab Cavity Development

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Dexter, A.; /Cockcroft Inst. Accel. Sci. Tech.; Beard, C.; Goudket, P.; McIntosh, P.; /Daresbury; Bellantoni, L.; /Fermilab; Grimm, T.; Li, Z.; Xiao, L.; /SLAC

    2011-10-20

    The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide in the horizontal plane, the cavity phase must be strictly controlled to avoid the bunch centre being deflected too much. In order to keep the phase stability within the required limits it is required that the cavity be superconducting to avoid thermal effects in both the cavity and its RF source. At the location of the crab cavity in the ILC there is only 23 cm separation between the centre of the cavity and the extraction line, hence the cavity must be small enough to fit in this space. This, along with the difficulty of making high frequency SRF components, set the frequency of the cavity to 3.9 GHz.

  3. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  4. Action of acoustical oscillations and hydrodynamic factors on the chemical activity of iodne in solution

    International Nuclear Information System (INIS)

    Nikolaev, L.A.; Fadeev, G.N.

    1984-01-01

    Investigation results on the effect of acoustic oscillations within the frequency range of 1-500 Hz on aqueous iodine solutions and dark blue iodide-starch complex have been presented. Experiments were carried out within the range of action of acoustical and hydrodynamic oscillations without visual formation of bubbles. Form of kinetic dependences corresponds to the first order reaction in respect to iodine. Sharp increase of solution electric conductivity and noticeable increase of medium acidity were observed after the action of oscillations. It has been shown that low-frequency oscillations strengthen iodine hydrolysis and lead to iodate atom formation. Effect of oscillations with 25-30 Hz upon the iodide-starch complex results in the complex destruction, i. e. iodide atom chains removal out of clathrate starch cavities. Formation of iodide-starch complexes is promoted under the action of 250 Hz frequency, as such oscillations lead to the change of starch structure, but do not effect upon iodide

  5. Syndrome of shperical enlightement (cavitary formation)

    International Nuclear Information System (INIS)

    Ginzburg, M.A.

    1987-01-01

    Syndrome is characterized by spherical enlightement surrounded by a closed ring-shaped shadow. Such picture is created by the lung cavity. Intrasyndrome differential diagnosis of the cavitary formations in the lungs and differential diagnosis of restricted pneumothorax, intrapulmonary cavities are given. Ethiology, pathogenesis and pathomorphology of spherical enlightement syndrome, its clinical picture and investigation methods are discussed

  6. Investigation of superconducting niobium 1170 MHz cavities

    International Nuclear Information System (INIS)

    Anashin, V.V.; Bibko, S.I.; Fadeyev, E.I.

    1988-01-01

    The design, fabrication and experiments with superconducting L-band single cell cavities are described. These cavities model a cell of an accelerating RF structure. The cavities have been fabricated from technical grade and higher purity grade sheet niobium using deep-drawing, electron beam welding and chemical polishing. They have spherical geometry and are excited in the TM 010 mode. A computerized set-up was used for cavity tests. Qo=1.5 x 10 9 and E acc = 4.3 MV/m were obtained in the cavity made of higher purity grade niobium. 6 references, 8 figures, 3 tables

  7. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-12-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.

  8. Cavity Optomechanics at Millikelvin Temperatures

    Science.gov (United States)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  9. STRUCTURAL ANALYSIS OF SUPERCONDUCTING ACCELERATOR CAVITIES

    International Nuclear Information System (INIS)

    Schrage, D.

    2000-01-01

    The static and dynamic structural behavior of superconducting cavities for various projects was determined by finite element structural analysis. The β = 0.61 cavity shape for the Neutron Science Project was studied in detail and found to meet all design requirements if fabricated from five millimeter thick material with a single annular stiffener. This 600 MHz cavity will have a Lorentz coefficient of minus1.8 Hz/(Mv/meter) 2 and a lowest structural resonance of more than 100 Hz. Cavities at β = 0.48, 0.61, and 0.77 were analyzed for a Neutron Science Project concept which would incorporate 7-cell cavities. The medium and high beta cavities were found to meet all criteria but it was not possible to generate a β = 0.48 cavity with a Lorentz coefficient of less than minus3 Hz/(Mv/meter) 2

  10. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  11. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B. [CI Lancaster University (Great Britain); Burt, G. [CI Lancaster University (Great Britain); Lingwood, C. [CI Lancaster University (Great Britain); Rimmer, Robert [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  12. Relations between pressurized triaxial cavities and moment tensor distributions

    Directory of Open Access Journals (Sweden)

    Claudio Ferrari

    2015-09-01

    Full Text Available Pressurized cavities are commonly used to compute ground deformation in volcanic areas: the set of available solutions is limited and in some cases the moment tensors inferred from inversion of geodetic data cannot be associated with any of the available models. Two different source models (pure tensile source, TS and mixed tensile/shear source, MS are studied using a boundary element approach for rectangular dislocations buried in a homogeneous elastic medium employing a new C/C++ code which provides a new implementation of the dc3d Okada fortran code. Pressurized triaxial cavities are obtained assigning the overpressure in the middle of each boundary element distributed over the cavity surface. The MS model shows a moment domain very similar to triaxial ellipsoidal cavities. The TS and MS models are also compared in terms of the total volume increment limiting the analysis to cubic sources: the observed discrepancy (~10% is interpreted in terms of the different deformation of the source interior which provides significantly different internal contributions (~30%. Comparing the MS model with a Mogi source with the some volume, the overpressure of the latter must be ~37% greater than the former, in order to obtain the same surface deformation; however the outward expansion and the inner contraction separately differ by ~±10% and the total volume increments differ only by ~2%. Thus, the density estimations for the intrusion extracted from the MS model and the Mogi model are nearly identical.

  13. Segregation gettering by implantation-formed cavities and B-Si precipitates in silicon

    International Nuclear Information System (INIS)

    Myers, S.M.; Petersen, G.A.; Follstaedt, D.M.

    1998-01-01

    The authors show that Fe, Co, Cu, and Au in Si undergo strong segregation gettering to cavities and B-Si precipitates formed by He or B ion implantation and annealing. The respective mechanisms are argued to be chemisorption on the cavity walls and occupation of solution sites within the disordered, B-rich, B-Si phase. The strengths of the reactions are evaluated, enabling prediction of gettering performance

  14. Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics

    Directory of Open Access Journals (Sweden)

    Selin Aradag

    2017-01-01

    Full Text Available Supersonic flow over cavities has been of interest since 1960s because cavities represent the bomb bays of aircraft. The flow is transient, turbulent, and complicated. Pressure fluctuations inside the cavity can impede successful weapon release. The objective of this study is to use active and passive control methods on supersonic cavity flow numerically to decrease or eliminate pressure oscillations. Jet blowing at several locations on the front and aft walls of the cavity configuration is used as an active control method. Several techniques are used for passive control including using a cover plate to separate the flow dynamics inside and outside of the cavity, trailing edge wall modifications, such as inclination of the trailing edge, and providing curvature to the trailing edge wall. The results of active and passive control techniques are compared with the baseline case in terms of pressure fluctuations, sound pressure levels at the leading edge, trailing edge walls, and cavity floor and in terms of formation of the flow structures and the results are presented. It is observed from the results that modification of the trailing edge wall is the most effective of the control methods tested leading to up to 40 dB reductions in cavity tones.

  15. OPTICAL PARAMETRIC OSCILLATORS: Optimal feedback in efficient single-cavity optical parametric oscillators

    Science.gov (United States)

    Petnikova, V. M.; Shuvalov, Vladimir V.

    2010-09-01

    An approach based on the description of competition of quadratic processes of merging and decomposition of quanta resulting in the formation of cnoidal waves on an effective cascade cubic Kerr-type nonlinearity is used to optimise the scheme of a single-cavity optical parametric oscillator. It is shown that the use of a feedback circuit (cavity) decreases the period of cnoidal waves produced in a nonlinear crystal, while the optimisation procedure of the transfer constant of this circuit (reflectivity of the output mirror of the cavity) is reduced to matching this period with the nonlinear crystal length.

  16. Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning.

    Science.gov (United States)

    Cadafalch Gazquez, Gerard; Smulders, Vera; Veldhuis, Sjoerd A; Wieringa, Paul; Moroni, Lorenzo; Boukamp, Bernard A; Ten Elshof, Johan E

    2017-01-13

    The fabrication process of ceramic yttria-stabilized zirconia (YSZ) and nickel oxide nanofibers by electrospinning is reported. The preparation of hollow YSZ nanofibers and aligned nanofiber arrays is also demonstrated. The influence of the process parameters of the electrospinning process, the physicochemical properties of the spinning solutions, and the thermal treatment procedure on spinnability and final microstructure of the ceramic fibers was determined. The fiber diameter can be varied from hundreds of nanometers to more than a micrometer by controlling the solution properties of the electrospinning process, while the grain size and surface roughness of the resulting fibers are mainly controlled via the final thermal annealing process. Although most observed phenomena are in qualitative agreement with previous studies on the electrospinning of polymeric nanofibers, one of the main differences is the high ionic strength of ceramic precursor solutions, which may hamper the spinnability. A strategy to control the effective ionic strength of precursor solutions is also presented.

  17. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays

    International Nuclear Information System (INIS)

    Yamashita, M.; Konishi, H.; Kozakura, T.; Mizuki, J.; Uchida, H.

    2005-01-01

    Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na 2 SO 4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH) 2 and Fe(OH) 3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na 2 SO 4 solution film, whereas β-FeOOH appeared only under the NaCl solution film

  18. Understanding cavity QED effects from cavity classical electrodynamics

    International Nuclear Information System (INIS)

    Taddei, M.M.; Kort-Kamp, W.J.M.; Farina, C.

    2011-01-01

    Full text: Our work intends to show how cavity classical electrodynamics can be used for achieving results with direct quantum analogues. It is shown how the classical interaction between a real radiating electric dipole and a perfectly-conducting surface can be used to obtain information about some cavity quantum electrodynamics effects related to radiative properties of atomic systems. Based on the case of an oscillating electric dipole (a classical representation of an excited atom) in front of a perfectly-conducting sphere, two main physical quantities can be computed, the classical dipole frequency shift and the change in the rate of energy loss from radiation reaction, both due to the presence of the sphere. The link from classical to quantum can be made via interpreting, for example, the dipole frequency as the atom's dominant transition frequency. The frequency shift due to the sphere can be related through E = (h/2π) to the energy shift of the system, i.e., the dispersive interaction between the atom and the sphere; while the change in energy loss can be related to the alteration of the atom's spontaneous emission due to the sphere. The amazing result is that this classical method, once corresponded classical quantities to quantum ones such as exemplified above with frequency, can predict the two above-mentioned quantum effects analytically with the correct functional dependencies on all geometric and atomic parameters, being off only by a constant pre factor. (author)

  19. Oral cavity anaerobic pathogens in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Bertl, Kristina; Zijnge, Vincent; Zatorska, Beata; Leonhard, Matthias; Schneider-Stickler, Berit; Harmsen, Hermie J. M.

    BACKGROUND: A polymerase chain reaction (PCR)-based method has been used to identify oral anaerobic pathogens in biofilms on voice prostheses. The purpose of the present study was to determine the location of those pathogens inside the biofilms. METHODS: Biofilms of 15 voice prostheses were sampled

  20. Condensation of amino acids to form peptides in aqueous solution induced by the oxidation of sulfur(iv): an oxidative model for prebiotic peptide formation.

    Science.gov (United States)

    Chen, Fei; Yang, Dan

    2007-02-01

    Condensation of amino acids to peptides is an important step during the origin of life. However, up to now, successful explanations for plausible prebiotic peptide formation pathways have been limited. Here we report that the oxidation of sulfur (IV) can induce the condensation reaction of carboxylic acids and amines to form amides, and the condensation reaction of amino acids to form peptides. This might be a general reaction contributing to prebiotic peptide formation.

  1. Formation Mechanism of 2CaO·SiO2 and 3CaO·P2O5 Solid Solution in CaO-SiO2-FetO-P2O5 Slags

    Science.gov (United States)

    Dou, Xiaofei; Zhu, Mingmei; Lin, Tiancheng; Wang, Yu; Xie, Bin; Zhu, Bin; Zhou, Hong

    In this study, the formation of 2CaO·SiO2 and 3CaO·P2O5 solid solution (nC2S-C3P) in hot metal dephosphorization process is discussed. The variations of CaO and SiO2 mass, both in nC2S-C3P solid solution phase and liquid slag phase with increasing P2O5 mass in CaO-SiO2-FetO-P2O5 slags were calculated using Factsage software. CaO-SiO2-FeOt-P2O5 slag containing up to 18 % P2O5 was melted at 1823 K then cooled to 1673 K. The contents of CaO and SiO2 both in the solid solution phase and liquid slag phase of quenched samples were observed and analyzed by SEM/EDS. Both the calculated and experimental results show that the contents of CaO and SiO2 in the solid solution phase decreased, just opposite in the liquid slag phase, with increasing P2O5 content in the slags. Formation mechanism of nC2S-C3P solid solution in the slags was derived based on the ionic structure theory of molten slag. The SiO44- in the nC2S-C3P solid solution can be replaced by PO43- in the liquid phase resulting in the increasing of free Ca2+ and SiO44- in liquid phase.

  2. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  3. Cancer of the oral cavity.

    Science.gov (United States)

    Montero, Pablo H; Patel, Snehal G

    2015-07-01

    Cancer of the oral cavity is one of the most common malignancies worldwide. Although early diagnosis is relatively easy, presentation with advanced disease is not uncommon. The standard of care is primary surgical resection with or without postoperative adjuvant therapy. Improvements in surgical techniques combined with the routine use of postoperative radiation or chemoradiation therapy have resulted in improved survival. Successful treatment is predicated on multidisciplinary treatment strategies to maximize oncologic control and minimize impact of therapy on form and function. Prevention of oral cancer requires better education about lifestyle-related risk factors, and improved awareness and tools for early diagnosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  5. Rebuild of Capture Cavity 1 at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Harms, E. [Fermilab; Arkan, T. [Fermilab; Borissov, E. [Fermilab; Dhanaraj, N. [Fermilab; Hocker, A. [Fermilab; Orlov, Y. [Fermilab; Peterson, T. [Fermilab; Premo, K. [Fermilab

    2014-01-01

    The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.

  6. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  7. Unique space saving accelerator cavity design

    International Nuclear Information System (INIS)

    Kim, H.; Fugitt, J.; Crosby, F.; Johnson, R.

    1981-03-01

    A cavity with 3 series gaps was designed and modeled to operate at 70 MHz as a SuperHILAC post acceleration buncher (8.5 MeV/A). Because of a cross-coupling scheme, the 3 cells operate in the 1/2 β lambda mode instead of the β lambda mode of an Alvarez cavity. This coupling results in a cavity with diameter reduced from 3 to less than one meter and a length half that of an Alvarez cavity for the same energy gain. The 3 gaps are electrically in parallel but mechanically in series. The cavity has high Q and shunt impedance. This type of cavity appears to be useful for low velocity beams with β less than or equal to 0.2

  8. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    Directory of Open Access Journals (Sweden)

    Matthew J Chabalko

    Full Text Available Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR, which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  9. Protein-like proton exchange in a synthetic host cavity.

    Science.gov (United States)

    Hart-Cooper, William M; Sgarlata, Carmelo; Perrin, Charles L; Toste, F Dean; Bergman, Robert G; Raymond, Kenneth N

    2015-12-15

    The mechanism of proton exchange in a metal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes.

  10. Design of 325 MHz spoke cavity

    International Nuclear Information System (INIS)

    Sha Peng; Huang Hong; Dai Jianping; Zu Guoquan; Li Han

    2012-01-01

    Spoke cavity can be used in the low-energy section of the proton accelerator. It has many significant advantages: compact structure, high value of R/Q, etc. The ADS (Accelerator Driven System) project will adopt many spoke cavities with different β values. Therefore, IHEP has began the research of β=0.14, 325 MHz spoke cavity. In this pa per, the dimensions, RF performances and mechanical properties of it are studied. (authors)

  11. Induced Cavities for Photonic Quantum Gates

    Science.gov (United States)

    Lahad, Ohr; Firstenberg, Ofer

    2017-09-01

    Effective cavities can be optically induced in atomic media and employed to strengthen optical nonlinearities. Here we study the integration of induced cavities with a photonic quantum gate based on Rydberg blockade. Accounting for loss in the atomic medium, we calculate the corresponding finesse and gate infidelity. Our analysis shows that the conventional limits imposed by the blockade optical depth are mitigated by the induced cavity in long media, thus establishing the total optical depth of the medium as a complementary resource.

  12. Computer simulation of bubble formation

    International Nuclear Information System (INIS)

    Insepov, Z.; Bazhirov, T.; Norman, G.; Stegailov, V.

    2007-01-01

    Properties of liquid metals (Li, Pb, Na) containing nano-scale cavities were studied by atomistic Molecular Dynamics (MD). Two atomistic models of cavity simulation were developed that cover a wide area in the phase diagram with negative pressure. In the first model, the thermodynamics of cavity formation, stability and the dynamics of cavity evolution in bulk liquid metals have been studied. Radial densities, pressures, surface tensions, and work functions of nano-scale cavities of various radii were calculated for liquid Li, Na, and Pb at various temperatures and densities, and at small negative pressures near the liquid-gas spinodal, and the work functions for cavity formation in liquid Li were calculated and compared with the available experimental data. The cavitation rate can further be obtained by using the classical nucleation theory (CNT). The second model is based on the stability study and on the kinetics of cavitation of the stretched liquid metals. A MD method was used to simulate cavitation in a metastable Pb and Li melts and determine the stability limits. States at temperatures below critical (T < 0.5 Tc) and large negative pressures were considered. The kinetic boundary of liquid phase stability was shown to be different from the spinodal. The kinetics and dynamics of cavitation were studied. The pressure dependences of cavitation frequencies were obtained for several temperatures. The results of MD calculations were compared with estimates based on classical nucleation theory. (authors)

  13. Formation of malonic dialdehyde and other 2-thiobarbituric-acid-active products in γ-radiolysis of DNA and DNA model substances in aqueous solution

    International Nuclear Information System (INIS)

    Langfinger, K.D.

    1984-01-01

    During radiation-induced DNA strand break, a product was observed which reacts positively with 2-thiobarbituric acid (TBA) to malonic dialdehyde (MDA) but is not a free MDA. The paper therefore discusses the formation of products during γ irradiation of DNA and DNA model substances which react positively with TBA to MDA. This reaction is highly sensitive but has low specificity, so that further analytical techniques were used for characterisation. These were: kinematic studies on chromophore formation using TBA, UV spectroscopy, and chromatography. The investigations comprised 1. Irradiation of sugars and polyalcohols. 2. Irradiation of nucleosides and nucleotides. 3. Irradiation of DNA. (orig./PW) [de

  14. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  15. Novel Geometries for the LHC CRAB Cavity

    CERN Document Server

    Hall, Ben

    2010-01-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme b...

  16. Mechanical Properties of Ingot Nb Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  17. Superconducting niobium cavity with cooling fins

    International Nuclear Information System (INIS)

    Isagawa, Shigeru.

    1978-04-01

    Cooling efficiency of a superconducting cavity is shown to be improved by applying a fin structure. Internal heating can be suppressed in a certain degree and the higher rf field is expected to be reached on surfaces of the cavity which is immersed in superfluid He 4 liquid. The rf measurements were made on a C-band niobium cavity with cylindrical and circular fins around the wall. Fields of 39 mT and 25 MV/m were attained for TM 010 mode cavity after surface treatments including high temperature annealing in a UHV furnace. (auth.)

  18. Design of the ILC Crab Cavity System

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin,; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  19. Dissociation and Dioxygen Formation in Hydroxide Solutions of Tris (2,2- bipyridyl) Iron (III) and Tris (1,10-phenanthroline) Iron (III)

    DEFF Research Database (Denmark)

    Nord, G.; Pedersen, B.; Bjergbakke, Erling

    1983-01-01

    The fast redox reactions of the title Fe(II1) complexes in basic solutions give the Fe(I1) complexes and coordinated ligand N-oxide as primary products. Further reactions by parallel paths include dissociation to give the free ligand N-oxide and catalysis by hydroxy Fe(II1) complexes leading...

  20. Effect of aqueous solution and load on the formation of DLC transfer layer against Co-Cr-Mo for joint prosthesis.

    Science.gov (United States)

    Guo, Feifei; Zhou, Zhifeng; Hua, Meng; Dong, Guangneng

    2015-09-01

    Diamond-like carbon (DLC) coating exhibits excellent mechanical properties such as high hardness, low friction and wear, which offer a promising solution for the metal-on-metal hip joint implants. In the study, the hydrogen-free DLC coating with the element Cr as the interlay addition was deposited on the surface of the Co-Cr-Mo alloy by a unbalanced magnetron sputtering method. The coating thickness was controlled as 2 µm. Nano-indentation test indicated the hardness was about 13 GPa. DLC coated Co-Cr-Mo alloy disc against un-coated Co-Cr-Mo alloy pin (spherical end SR9.5) comprised the friction pairs in the pin-on-disc tribotest under bovine serum albumin solution (BSA) and physiological saline(PS).The tribological behavior under different BSA concetrations(2-20 mg/ml), and applied load (2-15N) was investigated.DLC transfer layer did not form under BSA solution, even though different BSA concetration and applied load changed. The coefficient of friction(COF) under 6 mg/ml BSA at 10 N was the lowest as 0.10. A higher COF of 0.13 was obtained under 20 mg/ml BSA. The boundary absorption layer of protein is the main factor for the counterparts. However, the continous DLC transfer layer was observed under PS solution, which make a lower COF of 0.08. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. In-plane diffraction loss free optical cavity using coated optical fiber and silicon micromachined spherical mirror

    Science.gov (United States)

    Sabry, Yasser; Bourouina, Tarik; Saadany, Bassam; Khalil, Diaa

    2013-03-01

    Light trapping in optical cavities has many applications in optical telecommunications, biomedical optics, atomic studies, and chemical analysis. Efficient optical coupling in these cavities is an important engineering problem that affects greatly the cavity performance. One interesting way to form an optical cavity, while simultaneously connected to the rest of the optical systems, is to use an optical fiber surface as one of the cavity mirrors while the second mirror is fabricated by MEMS technology. In this way, cavity tuning with a MEMS actuator is a simple achievable task with low cost in mass production. The main problem in this solution is the high diffraction loss associated with the small spot size at the output of the standard single-mode fiber (SMF). Diffraction loss in the cavity is usually overcome by using an expensive lensed fiber or by inserting a coated lens in the cavity leading to a long cavity with small free spectral range (FSR). In this work, we report a Fabry-Perot cavity formed by a multilayer-coated cleaved-surface SMF inserted into a grove while facing a spherical micromirror; both are fabricated by silicon micromachining. The light is trapped inside the cavity while propagating in-plane of the wafer substrate. The light is injected in and collected from a Corning SMF-28 optical fiber with a coated surface reflectivity of about 98% at 1330 nm (O-band). The silicon mirror surface is aluminum metalized with a reflectivity of about 92%. The measured cavity has a line width of 0.45 nm around 1330 nm with a FSR of 26 nm. The obtained results indicate an almost diffraction-loss free optical cavity with a quality factor close to 3000, limited by the optical surfaces reflectivity that can be improved in future by an optimized mirror fabrication process and better matching of the fiber multilayer coating.

  2. Direct formation of new, phase-stable, and photoactive anatase-type Ti1-2XNbXScXO2 solid solution nanoparticles by hydrothermal method

    International Nuclear Information System (INIS)

    Hirano, Masanori; Ito, Takaharu

    2008-01-01

    A new anatase phase of photoactive Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) solid solutions was directly formed as nanoparticles from precursor solutions of TiOSO 4 , NbCl 5 , and Sc(NO 3 ) 3 under mild hydrothermal conditions at 180 deg. C for 5 h using the hydrolysis of urea. With the increase of the content of niobium and scandium from X = 0 to 0.2, the lattice parameters a 0 and c 0 , the crystallite size, and the optical band gap of anatase gradually increased. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The anatase-type Ti 1-2X Nb X Sc X O 2 (X = 0.05) showed approximately two times and three times as high photocatalytic activity as those of the hydrothermal anatase-type pure TiO 2 and commercially available reference pure TiO 2 (ST-01), respectively. The anatase phase of Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) existed stably up to 900 deg. C during heat treatment in air. New rutile-type Ti 1-2X Nb X Sc X O 2 solid solutions are formed through the phase transformation. The starting temperature of anatase-to-rutile phase transformation for Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) solid solutions was delayed but its completing temperature was accelerated

  3. Long-term cavity closure in non-linear rocks

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel Walter

    2017-08-01

    The time dependent closure of pressurized cavities in viscous rocks due to far-field loads is a problem encountered in many applications like drilling, cavity abandonment and porosity closure. The non-linear nature of the flow of rocks prevents the use of simple solutions for hole closure and calls for the development of appropriate expressions reproducing all the dependencies observed in nature. An approximate solution is presented for the closure velocity of a pressurized cylindrical cavity in a non-linear viscous medium subjected to a combined pressure and shear stress load in the far field. The embedding medium is treated as homogeneous, isotropic, and incompressible and follows a Carreau viscosity model. We derive analytical solutions for the end-member cases of the pressure and shear loads. The exact analytical solution for pressure loads shows that the closure velocity vR is given by the implicit expression {Δ p}/{2{μ _0D_{II}^*}} = - 1/2B( {v_R^2}/{RD_{II^* + v_R^2}};1/2, - 1/{2n}} ), where Δp is the pressure load, R is the hole radius, B is the incomplete beta function, and μ0, D_{II}^*, n are, respectively, the threshold viscosity, transition rate and stress exponent of the Carreau model. The closure velocity is dominated by the linear mechanism under pressure loads smaller than 1.8{μ _0}D_{II}^* and by the non-linear one under large pressure loads. In the non-linear regime, pressure variations support an increasing part of the load with increasing degree of non-linearity. The decay of the stress perturbation in the non-linear zone varies as r- 2/n where r is the radial distance to the hole. A solution for the maximum closure velocity at the cavity rim vRmax under far-field shear is given: v_{R\\max} = ( {1 + {\\overline {M_s}}^{-1/2})R\\overline D_{II}, where \\overline M_s = (1 +{\\overline{D_{II}}^2} \\big nD_{II}^*^2} ) \\big ( 1 + {\\overline {D_{II}}^2} \\big D{_{II}^*}^2 ) and \\overline D_{II} is the second invariant of the far

  4. Primary leiomyosarcoma of peritoneal cavity

    Directory of Open Access Journals (Sweden)

    Jyotsna Naresh Bharti

    2014-03-01

    Full Text Available Leiomyosarcomas of soft tissue are the rare tumors and the retroperitoneum is the most common site involved. We report a case of primary leiomyosarcoma of the peritoneal cavity which clinically presented with suprapubic, freely mobile, nontender mass which measured 10×10 cm in size. Contrast enhanced computed tomography revealed well defined heterogenous hypodense solid cystic mass. The mass was surgically excised out in its entirety. The histopathological examination revealed spindle cells arranged in alternating fascicles having pleomorphic nuclei, indistinct margin and eosinophilic cytoplasm with foci of haemorrhage, necrosis and 5-6 mitosis/HPF. The spindle cells were immunoreactive for smooth muscle actin, desmin and negative for S-100, CD-34 and c-kit. Histopathology and immunohistochemistry were helpful in making the final confirmatory diagnosis. Leiomyosarcomas are aggressive tumors, with poor prognosis and often difficult to treat. The survival rates are lowest among all soft tissue sarcomas.

  5. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities

    International Nuclear Information System (INIS)

    Zhang Ke; Li Zhiyuan

    2010-01-01

    In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.

  6. The cavity electromagnetic field within the polarizable continuum model of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  7. Electrokinetic motion of a charged colloidal sphere in a spherical cavity with magnetic fields

    Science.gov (United States)

    Hsieh, Tzu H.; Keh, Huan J.

    2011-01-01

    The magnetohydrodynamic (MHD) effects on the translation and rotation of a charged colloidal sphere situated at the center of a spherical cavity filled with an arbitrary electrolyte solution when a constant magnetic field is imposed are analyzed at the quasisteady state. The electric double layers adjacent to the solid surfaces may have an arbitrary thickness relative to the particle and cavity radii. Through the use of a perturbation method to the leading order, the Stokes equations modified with the electric/Lorentz force term are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution in the fluid phase from solving the linearized Poisson-Boltzmann equation, we obtain explicit formulas for the translational and angular velocities of the colloidal sphere produced by the MHD effects valid for all values of the particle-to-cavity size ratio. For the limiting case of an infinitely large cavity with an uncharged wall, our result reduces to the relevant solution for an unbounded spherical particle available in the literature. The boundary effect on the MHD motion of the spherical particle is a qualitatively and quantitatively sensible function of the parameters a/b and κa, where a and b are the radii of the particle and cavity, respectively, and κ is the reciprocal of the Debye screening length. In general, the proximity of the cavity wall reduces the MHD migration but intensifies the MHD rotation of the particle.

  8. Kinetics of α-MnOOH Nanoparticle Formation through Enzymatically Catalyzed Biomineralization inside Apoferritin

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Yue [Department of Energy, Environmental; Jung, Haesung [Department of Energy, Environmental; Kim, Doyoon [Department of Energy, Environmental; Jun, Young-Shin [Department of Energy, Environmental

    2017-09-29

    While biomineralization in apoferritin has effectively synthesized highly monodispersed nanoparticles of various metal oxides and hydroxides, the detailed kinetics and mechanisms of Mn(III) (hydr)oxide formation inside apoferritin cavities have not been reported. To address this knowledge gap, we first identified the phase of solid Mn(III) formed inside apoferritin cavities as α-MnOOH. To analyze the oxidation and nucleation mechanism of α-MnOOH inside apoferritin by quantifying oxidized Mn, we used a colorimetric method with leucoberbelin blue (LBB) solution. In this method, LBB disassembled apoferritin by inducing an acidic pH environment, and reduced α-MnOOH nanoparticles. The LBB-enabled kinetic analyses of α-MnOOH nanoparticle formation suggested that the orders of reaction with respect to Mn2+ and OH– are 2 and 4, respectively, and α-MnOOH formation follows two-step pathways: First, soluble Mn2+ undergoes apoferritin-catalyzed oxidation at the ferroxidase dinuclear center, forming a Mn(III)-protein complex, P-[Mn2O2(OH)2]. Second, the oxidized Mn(III) dissociates from the protein binding sites and is subsequently nucleated to form α-MnOOH nanoparticles in the apoferritin cavities. This study reveals key kinetics and mechanistic information on the Mn-apoferritin systems, and the results facilitate applications of apoferritin as a means of nanomaterial synthesis.

  9. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  10. The effect of ultrasonic frequency on the formation of colloidal gold

    International Nuclear Information System (INIS)

    Caruso, R.; Grieser, F.

    1996-01-01

    Full text: Ultrasonic irradiation of aqueous solutions is known to produce hydrogen and hydroxyl radicals due to a process called acoustic cavitation. This phenomenon involves the formation, growth and collapse of microbubbles in solution. The cavitation threshold, the resonant size of the bubble, the ratio of stable to transient cavities produced and many other bubble properties depend on the frequency of the applied l sound field. A study of the reduction of Au III to colloidal gold in the presence of alcohol at a number of frequencies: 20, 358, 500 and 1062 kHz has been undertaken to observe any differences in the chemical effects of the ultrasonic frequency. Alcohols are surface active molecules, therefore on bubble collapse the alcohol is present to scavenge some of the primary radicals before they recombine. The secondary radicals produced are more stable and hence can disperse into the bulk solution, where reaction with solute can occur

  11. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine oxide particles in the coastal marine boundary layer

    Science.gov (United States)

    Murray, B. J.; Haddrell, A. E.; Peppe, S.; Davies, J. F.; Reid, J. P.; O'Sullivan, D.; Price, H. C.; Kumar, R.; Saunders, R. W.; Plane, J. M. C.; Umo, N. S.; Wilson, T. W.

    2012-03-01

    Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. There has been some debate over the chemical identity of these particles. Hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5 · H2O). In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH). On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass, but subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only ~6 %, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth factors observed in field experiments.

  12. Theoretical reaction pathways for the formation of (Si(OH)5)(1-) and the deprotonation of orthosilicic acid in basic solution

    Science.gov (United States)

    Kubicki, J. D.; Xiao, Y.; Lasaga, A. C.

    1993-01-01

    The stability of (Si(OH)5)(1-) is predicted by means of molecular orbital calculations. Si is predicted to be as stable in basic aqueous solutions as hydrated (/OH/3SiO)(1-) and more stable than Si(OH)4 + (OH)(1-). Vibrational analysis of (Si(OH)5)(1-) predicts Raman and IR spectra that are not compatible with the presence of Si in some silicate glasses under ambient temperature compression.

  13. Boundary element methods for dielectric cavity construction and integration

    Science.gov (United States)

    Chen, Feiwu; Chipman, Daniel M.

    2003-11-01

    Improvements in boundary element methods are described for solution of reaction field equations that incorporate important dielectric effects of solvation, including influences of volume polarization, into electronic structure calculations on solute properties. Most current implementations assume constant boundary elements on the cavity surface separating solvent from solute, often employing an empirical parameter to enhance slow convergence associated with the treatment of singularities. In this work we describe a scheme for the linear interpolation of boundary elements and the analytic treatment of singularities that improves convergence without the need for any empirical parameter. Another advance is described for isodensity surface triangulation that succeeds even with molecular surfaces having prominent pockets, which cause the failure of previous simpler methods. Numerical examples are presented to demonstrate the efficacy of these new procedures in practice.

  14. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Hisao, E-mail: yanagi@ms.naist.jp; Tamura, Kenji [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-08-15

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  15. Statistical wave scattering: from the atomic nucleus to mesoscopic systems to microwave cavities

    Energy Technology Data Exchange (ETDEWEB)

    Mello, P.A. [IFUNAM, 01000 Mexico Distrito Federal (Mexico)

    2007-12-15

    Universal statistical aspects of wave scattering by a variety of physical systems ranging from atomic nuclei to mesoscopic systems and microwave cavities are described. A statistical model for the scattering matrix is employed to address the problem of quantum chaotic scattering. The model, introduced in the past in the context of nuclear physics, discusses the problem in terms of a prompt and an equilibrated component: it incorporates the average value of the scattering matrix to account for the prompt processes and satisfies the requirements of flux conservation, causality and ergodicity. The main application of the model is the analysis of electronic transport through ballistic mesoscopic cavities whose classical dynamics is chaotic, although it can be applied to the propagation of microwaves through cavities of a similar shape. The model describes well the results from the numerical solutions of the Schrodinger equation for two-dimensional cavities. (Author)

  16. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  17. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra

    2009-01-01

    demonstrate a PhC cavity with a quality factor of Q15 000 that exhibits a temperature-independent resonance. Temperature-stable cavities constitute a major building block in the development of a large suite of applications from high-sensitivity sensor systems for chemical and biomedical applications...

  18. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira

    2007-01-01

    This study evaluated, in vitro, the loss of tooth substance after cavity preparation for direct and indirect restorations and its relationship with fracture strength of the prepared teeth. Sixty sound human maxillary first premolars were assigned to 6 groups (n=10). MOD direct composite cavities...

  19. Superconducting rf cavities for accelerator application

    International Nuclear Information System (INIS)

    Proch, D.

    1988-01-01

    The subject of this paper is a review of superconducting cavities for accelerator application (β = 1). The layout of a typical accelerating unit is described and important parameters are discussed. Recent cavity measurements and storage ring beam tests are reported and the present state of the art is summarized

  20. Telescopic Examination of the mastoid Cavity

    OpenAIRE

    Bhandari, Anita; Sharma, Man Prakash; Bapna, A. S.

    1998-01-01

    Otoendoscopy enables viewing of different angles of the tympanomastoid area and approach to them for better prognosis. A comparative study of post-operative mastoid cavities has been done using the Hopkin’s rod telescope, Otoscope and microscope. Various procedures have also been done successfully on the mastoid cavity using the telescope on an outdoor basis.

  1. Toroidal 12 cavity klystron : a novel approach

    International Nuclear Information System (INIS)

    Hazarika, A.B.R.

    2013-01-01

    A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)

  2. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. The final storage cavities were larger, to suit the LEP accelerating frequency of 352.2 MHz. Cu-tubes for watercooling are brazed onto the upper half, the lower half is to follow. See also 8006061, 8109346, 8407619X, and Annual Report 1980, p.115.

  3. The gastro-oesophageal common cavity revisited

    NARCIS (Netherlands)

    Aanen, M. C.; Bredenoord, A. J.; Samsom, M.; Smout, A. J. P. M.

    2006-01-01

    The manometric common cavity phenomenon has been used as indicator of gastro-oesophageal reflux of liquid or gaseous substances. Using combined pH and impedance recording as reference standard the value of a common cavity as indicator of gastro-oesophageal reflux was tested. Ten healthy male

  4. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  5. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...

  6. Inertial confinement fusion reactor cavity phenomena

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Hafer, J.F.; Devaney, J.J.; Pendergrass, J.H.

    1978-01-01

    Cavity phenomena in Inertial Confinement Fusion (ICF) are created by the interaction of energy released by the fuel pellet microexplosion with the medium inside the reactor cavity. The ambient state of the medium in ICF reactor cavities is restricted primarily by its effects on laser beam propagation and on the fuel pellet trajectory. Therefore, a relatively wide choice of ambient conditions can be exploited to gain first-wall protection and advantages in energy extraction. Depending on the choice of ambient cavity conditions and on fuel pellet design, a variety of physical phenomena may develop and dominate the ICF reactor cavity design. Because of the cavity phenomena, the forms of energy released by the fuel-pellet microexplosion are modified before reaching the first wall, thus giving rise to different cavity design problems. The types of cavity phenomena encountered in the conceptual design of ICF reactors are examined, the approaches available for their modeling and analysis are discussed, and some results are presented. Most phenomena are sufficiently well understood to permit valid engineering assessments of the proposed ICF reactor concepts

  7. Study of cervical spondylosis with a small cavity in the cervical cord

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Yoshinobu; Abe, Hiroshi; Isu, Toyohiko; Tsuru, Mitsuo; Miyasaka, Kazuo (Hokkaido Univ., Sapporo (Japan). School of Medicine); Mitsumori, Kenji

    1984-06-01

    We report six cases of cervical spondylosis associated with a small intramedullary cavity. Delayed CT myelography was essential in detecting the cavity. The characteristic radiological findings were as follows: 1) An anterior compression of the cord was seen at several cervical disc levels in all cases. 2) In addition, a pincers effect was found essentially. 3) The cavities which were demonstrated as high-density areas on delayed CTM were situated in the gray matter bilaterally, had the appearance of fried eggs, and showed localized disc-disease levels. It seems that static, dynamic, and ischemic factors all play a part in the formation of these cavities. This cavitation may be related to the sign of the upper extremities in some cases.

  8. Microwave Detection of Electron-Phonon Interactions in a Cavity-Coupled Double Quantum Dot

    Science.gov (United States)

    Hartke, T. R.; Liu, Y.-Y.; Gullans, M. J.; Petta, J. R.

    2018-03-01

    Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit oscillations that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.

  9. On the Mechanisms of Formation of Memory Channels and Development of Negative Differential Resistance in Solid Solutions of the TlInTe2-TlYbTe2 System

    Science.gov (United States)

    Akhmedova, A. M.

    2018-04-01

    The behavior of an electronic subsystem is investigated in the course of formation and development of a memory channel in solid solutions of the TlInTe2-TlYbTe2 system. An analysis of the current-voltage characteristics allows getting an insight into the reason for a sharp change in electrical conductance of the specimens under study during their transition from the high-resistance to high-conductance state and the reasons for the well known instability of threshold converters, which makes it possible to design devices with high threshold voltage stability.

  10. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira

    2007-01-01

    This study evaluated, in vitro, the loss of tooth substance after cavity preparation for direct and indirect restorations and its relationship with fracture strength of the prepared teeth. Sixty sound human maxillary first premolars were assigned to 6 groups (n=10). MOD direct composite cavities......) or 1/2 (Groups III and VI) of the intercuspal distance. Teeth were weighed (digital balance accurate to 0.001 g) before and after preparation to record tooth substance mass lost during cavity preparation. The prepared teeth were submitted to occlusal loading to determine their fracture strength using...... a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Tukey test (alpha= 0.05). 1/4-inlay cavities had higher percent mean mass loss (9.71%) than composite resin cavities with the same width (7.07%). 1/3-inlay preparations also produced higher percent mean...

  11. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  12. Statistics of magnetoconductance in ballistic cavities

    International Nuclear Information System (INIS)

    Yang, X.; Ishio, H.; Burgdoerfer, J.

    1995-01-01

    The statistical properties of magnetoconductance in ballistic microcavities are investigated numerically. The distribution of conductance for chaotic cavities is found to follow the renormalized Porter-Thomas distribution suggested by random-matrix theory for the Gaussian ensemble while the conductance distribution of regular cavities in magnetic fields is nonuniversal and shifted towards the maximum value for a given number of open channels. The renormalized Porter-Thomas distribution implies a universal dependence of fluctuation amplitude on the mean conductance for chaotic cavities in the absence of time-reversal symmetry. The fluctuation amplitude for regular cavities is found to be larger than the saturation value of the fluctuation amplitude of chaotic cavities predicted by random-matrix theory. The change of the mean conductance as a function of the external magnetic field is consistent with semiclassical predictions

  13. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  14. rf breakdown with external magnetic fields in 201 and 805 MHz cavities

    Directory of Open Access Journals (Sweden)

    R. B. Palmer

    2009-03-01

    Full Text Available Neutrino factory and muon collider cooling lattices require both high gradient rf cavities and strong focusing solenoids. Experiments have shown that there may be serious problems operating rf in the required magnetic fields. Experimental observations using vacuum rf cavities in magnetic fields are discussed, current published models of breakdown with and without magnetic fields are briefly summarized, and some of their predictions compared with observations. A new theory of magnetic field dependent breakdown is presented. It is proposed that electrons emitted by field emission on asperities on one side of a cavity are focused by the magnetic field to the other side where they induce mechanical fatigue leading to cavity surface damage in small spots. Metal is then electrostatically drawn from the molten spots, becomes vaporized and ionized by field emission from the remaining damage, and causes breakdown. The theory is fitted to existing 805 MHz data and predictions are made for performance at 201 MHz. The model predicts breakdown gradients significantly below those specified for either the International Scoping Study neutrino factory or a muon collider. Possible solutions to these problems are discussed, including designs for magnetically insulated rf in which the cavity walls are designed to be parallel to chosen magnetic field contour lines and consequently damage from field emission is expected to be suppressed. An experimental program that could study these problems and their possible solution is outlined. We also mention the use of high pressure gas as an alternative possible solution.

  15. Disposal of nuclear waste in host rock formations featuring high-saline solutions – Implementation of a thermodynamic reference database (THEREDA)

    International Nuclear Information System (INIS)

    Moog, H.C.; Bok, F.; Marquardt, C.M.; Brendler, V.

    2015-01-01

    Highlights: • Facilitate net-worked development and administration of a thermodynamic database. • Data are internally consistent and fully documented: quality, source, type of origin. • Based on Pitzer formalism, optimized for solubility calculations in high-saline media. • Maintained by automatically running internal calculations, triggered by the editors. • Download of parameter files for PHREEQC, Geochemist’s Workbench, EQ3/6 8.0a, CHEMAPP. - Abstract: Research on the solubility of hazardous substances in saturated salt solutions is an ongoing task in Germany. Several institutions deliver contributions in line with their respective expertise. Scientific studies ultimately yield thermodynamic data which are used for thermodynamic equilibrium modelling. In order to join forces and render thermodynamic equilibrium calculations comparable it was decided to setup a common thermodynamic reference database (THEREDA) from which ready-to-use parameter files for commonly used geochemical codes should be created. It is the objective of this paper to explain how THEREDA is designed from a data management point-of-view, both conceptionally and technically. Data tables and mutual dependencies are described that allow managing administration of data for aqueous solution, solids, solid solutions, and surfaces. Moreover, quality assurance, traceability, consistency, and efficient, long-term maintenance are major topics shaping the database structure. Finally, robust and flexible human interfaces (to editors as well as end-users) are implemented. This paper is not aimed at giving an account of the model definitions, system selections, evaluation schemes, and thermodynamic data themselves stored in THEREDA, which represent the actual scientific work done by many more scientists within the project. However, this methodological guide to THEREDA has its own merits as it helps to bring thermodynamic data to work. Its specific implementation may serve as a useful example

  16. Study of the formation and solution properties of worm-like micelles formed using both N-hexadecyl-N-methylpiperidinium bromide-based cationic surfactant and anionic surfactant.

    Directory of Open Access Journals (Sweden)

    Zhihu Yan

    Full Text Available The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB with the anionic surfactant sodium laurate (SL in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles.

  17. Electromagnetic and mechanical design of gridded radio-frequency cavity windows

    Energy Technology Data Exchange (ETDEWEB)

    Alsharo' a, Mohammad M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2004-12-01

    Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements.

  18. Electromagnetic and mechanical design of gridded radio-frequency cavity windows

    International Nuclear Information System (INIS)

    Alsharoa, Mohammad M.

    2004-01-01

    Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements

  19. Luminescent photonic crystal cavities for fiber-optic sensors, coupled dissimilar cavities and optofluidics

    Science.gov (United States)

    Dündar, Mehmet A.; Wang, Bowen; Siahaan, Timothy; Voorbraak, Joost A. M.; Speijcken, Noud W. L.; Nötzel, Richard; van der Hoek, Marinus J.; He, Sailing; Fiore, Andrea; Van der Heijden, Rob W.

    2012-06-01

    Photonic crystal (PhC) cavities made in broadband luminescent material offer attractive possibilities for flexible active devices. The luminescence enables the cavity to operate as an autonomous entity. New applications of this property are demonstrated for cavities made in the InGaAsP underetched semiconductor membrane with embedded InAs Quantum Dots that emit in the range of 1400-1600 nm. Planar photonic crystal membrane nanocavities were released from the parent chip by mechanical nanomanipulation. The released cavity particle could be bonded on an arbitrary surface, which was exploited to make a novel fiber-optic tip sensor with a PhC cavity attached to the tip. A single mode from a short cavity is shown to couple simultaneously to at least three cavity modes of a long cavity, as concluded from level anticrossing data when the small cavity was photothermally tuned. Reconfigurable and movable cavities were created by locally varying the infiltration status by liquid oil near a PhC waveguide or defect cavity. Liquid was displaced locally on a micron scale using capillary force effects or laser-induced evaporation and condensation phenomena.

  20. Cavity solitons and localized patterns in a finite-size optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kozyreff, G. [Optique Nonlineaire Theorique, Universite Libre de Bruxelles (U.L.B.), CP 231 (Belgium); Gelens, L. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel (Belgium)

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.