Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-10-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Cavity quantum electrodynamics: Beyond strong
Murch, Kater
2017-01-01
When light and matter are strongly coupled, they lose their distinct character and merge into a hybrid state. Three experiments explore this exotic regime using artificial atoms, with promise for quantum technologies.
Energy Technology Data Exchange (ETDEWEB)
Dodonov, A.V., E-mail: adodonov@fis.unb.br [Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70910-900 Brasília, DF (Brazil); Dodonov, V.V., E-mail: vdodonov@fis.unb.br [Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70910-900 Brasília, DF (Brazil)
2011-11-21
We study numerically the evolution of the cavity electromagnetic field mode which is in resonance with an oscillating boundary (dynamical Casimir effect), taking into account the interaction between the field and a two-level atom, that may or not be continuously monitored by a coupled atomic excitation detector. We analyze the behavior of the field statistics and the quadrature squeezing properties in different regimes, demonstrating that at the expense of decreasing the number of produced photons and the degree of squeezing, one can create qualitatively new types of cavity field states. -- Highlights: ► We study the statistics of photons created in a cavity via dynamical Casimir effect. ► We take into account the interaction with a two-level atom placed inside the cavity. ► The field–atom dynamics is calculated numerically for the Rabi coupling. ► The interaction with a detector can totally change the statistics of created photons. ► The statistics can vary from weakly super-Poissonian to strong “hyper-Poissonian”.
Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics
Han, Xu; Tang, Hong X
2016-01-01
High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceeding $2\\times10^{3}$, deep in the strong coupling regime. By implementation of the non-contact coupling scheme to reduce mechanical dissipation, the system exhibits excellent coherence characterized by a frequency-quality factor product of $7.5\\times10^{15}\\,\\textrm{Hz}$. Interesting dynamics of temporal oscillations of the microwave energy is observed, implying the coherent conversion between phonons and photons. The demonstrated high frequency cavity piezo-electromechanics is compatible with superconducting qubits, repre...
Strong Interactions of Photon Pairs in Cavity QED
Kimble, H. J.
2008-05-01
The charge and spin degrees of freedom of massive particles have relatively large long-range interactions, which enable nonlinear coupling between pairs of atoms, ions, electrons, and diverse quasi-particles. By contrast, photons have vanishingly small cross-sections for direct coupling. Instead, photon interactions must be mediated by a material system. Even then,typical materials produce photon-photon couplings that are orders of magnitude too small for nontrivial dynamics with individual photon pairs. The leading exception to this state of affairs is cavity quantum electrodynamics (cQED), where strong interactions between light and matter at the single-photon level have enabled a wide set of scientific advances [1]. My presentation will describe two experiments in the Caltech Quantum Optics Group where strong interactions of photon pairs have been observed. The work in Ref. [2] provided the initial realization of photon blockade for an atomic system by using a Fabry-Perot cavity containing one atom strongly coupled to the cavity field. The underlying blockade mechanism was the quantum anharmonicity of the ladder of energy levels for the composite atom-cavity system. Beyond this structural effect, a new % dynamical mechanism was identified in Ref. [3] for which photon transport is regulated by the conditional state of one intracavity atom, leading to an efficient mechanism that is insensitive to many experimental imperfections and which achieves high efficiency for single-photon transport. The experiment utilized the interaction of an atom with the fields of a microtoroidal resonator [4]. Regulation was achieved by way of an interference effect involving the directly transmitted optical field, the intracavity field in the absence of the atom, and the polarization field radiated by the atom, with the requisite nonlinearity provided by the quantum character of the emission from one atom.[1] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J
Protein dynamics: hydration and cavities
Directory of Open Access Journals (Sweden)
K. Heremans
2005-08-01
Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.
Strong-Driving-Assisted Probabilistic State Preparation in Cavity QED
Institute of Scientific and Technical Information of China (English)
YANG Zhen-Biao
2006-01-01
An alternative scheme is proposed for preparing the superpositions of coherent states with controllable weighting factors along a straight line for a cavity field. The scheme is based on the interaction of a single-mode cavity field with a resonant two-level atom driven by a strong classical field. It is in contrast to the previous methods used in cavity QED of injecting a coherent state into a cavity via a microwave source. In the scheme, the interaction between the cavity mode and atoms is fully resonant, thus the required interaction time is greatly shortened. Moreover, the present scheme requires smaller numbers of operations. In view of decoherence, a reduction of interaction time and numbers of operations for the state preparation is very important for experimental implementation of quantum state engineering.
RF breakdown of 805 MHz cavities in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Bowring, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kochemirovskiy, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leonova, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moretti, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Peterson, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freemire, B. [Illinois Inst. of Technology, Chicago, IL (United States); Lane, P. [Illinois Inst. of Technology, Chicago, IL (United States); Torun, Y. [Illinois Inst. of Technology, Chicago, IL (United States); Haase, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-05-03
Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures in the presence of strong magnetic fields. We have measured the breakdown rate in several RF cavities operating at several frequencies. Cavities operating within solenoidal magnetic fields B > 0.25 T show an increased RF breakdown rate at lower gradients compared with similar operation when B = 0 T. Ultimately, this breakdown behavior limits the maximum safe operating gradient of the cavity. Beyond ionization cooling, this issue affects the design of photoinjectors and klystrons, among other applications. We have built an 805 MHz pillbox-type RF cavity to serve as an experimental testbed for this phenomenon. This cavity is designed to study the problem of RF breakdown in strong magnetic fields using various cavity materials and surface treatments, and with precise control over sources of systematic error. We present results from tests in which the cavity was run with all copper surfaces in a variety of magnetic fields.
Strong-driving-assisted multipartite entanglement in cavity QED.
Solano, E; Agarwal, G S; Walther, H
2003-01-17
We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings-like interaction.
Strong driving assisted multipartite entanglement in cavity QED
Solano, E; Walther, H
2003-01-01
We propose a method for generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. We show that when a judicious choice of the cavity detuning and the applied coherent field detuning is made, vacuum Rabi coupling produces a large number of important multipartite entangled states. We can even produce entangled states involving different cavity modes. Tuning of parameters also permit us to switch from Jaynes-Cummings like interaction to anti-Jaynes-Cummings like interaction.
Novel Ion Trap Design for Strong Ion-Cavity Coupling
Directory of Open Access Journals (Sweden)
Alejandro Márquez Seco
2016-04-01
Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.
Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system
Englund, Dirk; Bajcsy, Michal; Faraon, Andrei; Petroff, Pierre; vuckovic, Jelena
2011-01-01
We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two pulsed beams (40ps pulses) at the single photon level. Our results show that the quantum dot-nanocavity system creates strong, controllable interactions at the single photon level.
Lattice-supersolid phase of strongly correlated bosons in an optical cavity
Li, Yongqiang; He, Liang; Hofstetter, Walter
2013-05-01
We numerically simulate strongly correlated ultracold bosons coupled to a high-finesse cavity field, pumped by a laser beam in the transverse direction. Assuming a weak classical optical lattice added in the cavity direction, we model this system by a generalized Bose-Hubbard model, which is solved by means of bosonic dynamical mean-field theory. The complete phase diagram is established, which contains two novel self-organized quantum phases, lattice supersolid and checkerboard solid, in addition to conventional phases such as superfluid and Mott insulator. At finite but low temperature, thermal fluctuations are found to enhance the buildup of the self-organized phases. We demonstrate that cavity-mediated long-range interactions can give rise to stable lattice supersolid and checkerboard solid phases even in the regime of strong s-wave scattering. In the presence of a harmonic trap, we discuss coexistence of these self-organized phases, as relevant to experiments.
Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities
DEFF Research Database (Denmark)
Madsen, Kristian Høeg
deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...
Polariton Analysis of a Four-Level Atom Strongly Coupled to a Cavity Mode
Rebic, S; Tan, S M
2002-01-01
We present a complete analytical solution for a single four-level atom strongly coupled to a cavity field mode and driven by external coherent laser fields. The four-level atomic system consists of a three-level subsystem in an EIT configuration, plus an additional atomic level; this system has been predicted to exhibit a photon blockade effect. The solution is presented in terms of polaritons. An effective Hamiltonian obtained by this procedure is analyzed from the viewpoint of an effective two-level system, and the dynamic Stark splitting of dressed states is discussed. The fluorescence spectrum of light exiting the cavity mode is analyzed and relevant transitions identified.
Atomic entanglement sudden death in a strongly driven cavity QED system
Zhang, Ying-Jie; Man, Zhong-Xiao; Xia, Yun-Jie
2008-01-01
We study the entanglement dynamics of strongly driven atoms off-resonantly coupled with cavity fields. We consider conditions characterized not only by the atom-field coupling but also by the atom-field detuning. By studying two different models within the framework of cavity QED, we show that the so-called atomic entanglement sudden death (ESD) always occurs if the atom-field coupling lager than the atom-field detuning, and is independent of the type of initial atomic state.
Quantum Dynamics of Nonlinear Cavity Systems
Nation, Paul D.
2010-01-01
We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...
Dynamical tunneling in optical cavities
Hackenbroich, G; Hackenbroich, Gregor; Noeckel, Jens U.
1998-01-01
The lifetime of whispering gallery modes in a dielectric cavity with a metallic inclusion is shown to fluctuate by orders of magnitude when size and location of the inclusion are varied. We ascribe these fluctuations to tunneling transitions between resonances quantized in different regions of phase space. This interpretation is confirmed by a comparison of the classical phase space structure with the Husimi distribution of the resonant modes. A model Hamiltonian is introduced that describes the phenomenon and shows that it can be expected in a more general class of systems.
Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System
Institute of Scientific and Technical Information of China (English)
ZHANG Peng-Fei; ZHANG Yu-Chi; LI Gang; DU Jin-Jin; ZHANG Yan-Feng; GUO Yan-Qiang; WANG Jun-Min; ZHANG Tian-Cai; LI Wei-Dong
2011-01-01
We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.%@@ We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to be Ω＝2π×23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.
Collective strong coupling of cold potassium atoms in a ring cavity
Culver, Robert; Megyeri, Balázs; Pahwa, Komal; Mudarikwa, Lawrence; Holynski, Michael; Courteille, Philippe W; Goldwin, Jon
2016-01-01
We present experiments on ensemble cavity quantum electrodynamics with cold potassium atoms in a high-finesse ring cavity. Potassium-39 atoms are cooled in a two-dimensional magneto-optical trap, and transferred to a three-dimensional trap which intersects the cavity mode. The apparatus is described in detail and the first observations of strong coupling with potassium atoms are presented. Collective strong coupling of atoms and light is demonstrated via the splitting of the cavity transmission spectrum and the avoided crossing of the normal modes.
Wave Dynamical Chaos in Superconducting Microwave Cavities
Rehfeld, H; Dembowski, C; Gräf, H D; Hofferbert, R; Richter, A; Lengeler, Herbert
1997-01-01
During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense "wave dynamical" point of view. Due to the equivalence between the stationary Schroedinger equation and the classical Helmholtz equation in the two-dimensional case (plain billiards), it is possible to simulate "quantum chaos" with the help of macroscopic, superconducting microwave cavities. Using this technique we investigated spectra of three billiards from the family of Pascal's Snails (Robnik-Billiards) with a different chaoticity in each case in order to test predictions of standard stochastical models for classical chaotic systems.
Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance
Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.
2016-04-01
We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.
Exciton-polariton dynamics in quantum dot-cavity system
Energy Technology Data Exchange (ETDEWEB)
Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica
2012-07-01
Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum
Dynamic Color Displays Using Stepwise Cavity Resonators.
Chen, Yiqin; Duan, Xiaoyang; Matuschek, Marcus; Zhou, Yanming; Neubrech, Frank; Duan, Huigao; Liu, Na
2017-09-13
High-resolution multicolor printing based on pixelated optical nanostructures is of great importance for promoting advances in color display science. So far, most of the work in this field has been focused on achieving static colors, limiting many potential applications. This inevitably calls for the development of dynamic color displays with advanced and innovative functionalities. In this Letter, we demonstrate a novel dynamic color printing scheme using magnesium-based pixelated Fabry-Pérot cavities by gray scale nanolithography. With controlled hydrogenation and dehydrogenation, magnesium undergoes unique metal and dielectric transitions, enabling distinct blank and color states from the pixelated Fabry-Pérot resonators. Following such a scheme, we first demonstrate dynamic Ishihara plates, in which the encrypted images can only be read out using hydrogen as information decoding key. We also demonstrate a new type of dynamic color generation, which enables fascinating transformations between black/white printing and color printing with fine tonal tuning. Our work will find wide-ranging applications in full-color printing and displays, colorimetric sensing, information encryption and anticounterfeiting.
Coupled spin-light dynamics in cavity optomagnonics
Viola Kusminskiy, Silvia; Tang, Hong X.; Marquardt, Florian
2016-09-01
Experiments during the past 2 years have shown strong resonant photon-magnon coupling in microwave cavities, while coupling in the optical regime was demonstrated very recently for the first time. Unlike with microwaves, the coupling in optical cavities is parametric, akin to optomechanical systems. This line of research promises to evolve into a new field of optomagnonics, aimed at the coherent manipulation of elementary magnetic excitations in solid-state systems by optical means. In this work we derive the microscopic optomagnonic Hamiltonian. In the linear regime the system reduces to the well-known optomechanical case, with remarkably large coupling. Going beyond that, we study the optically induced nonlinear classical dynamics of a macrospin. In the fast-cavity regime we obtain an effective equation of motion for the spin and show that the light field induces a dissipative term reminiscent of Gilbert damping. The induced dissipation coefficient, however, can change sign on the Bloch sphere, giving rise to self-sustained oscillations. When the full dynamics of the system is considered, the system can enter a chaotic regime by successive period doubling of the oscillations.
Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings
2015-08-24
AFRL-AFOSR-VA-TR-2015-0246 Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings Hui Deng UNIVERSITY OF MICHIGAN Final Report...TITLE AND SUBTITLE Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0256... photons was demonstrated in the designable microcavity structure for the first time, establishing a robust light-matter hybrid states with designable
Atoms and Molecules in Cavities: From Weak to Strong Coupling in QED Chemistry
Flick, Johannes; Appel, Heiko; Rubio, Angel
2016-01-01
In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. Therefore, we analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong coupling limit and for individual photon modes as well as for the multi-mode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections and efficiency for quantum control. We conclude by applying our novel recently developed quantum-electrodynamical density-functional theory to single-photon emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This paves the road to describe matter-photon interactions from first-principles and addresses the emergence of new states of matter in chemistry and material science.
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2017-03-21
In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. We analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong-coupling limit and for individual photon modes as well as for the multimode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections, and efficiency for quantum control. We conclude by applying our recently developed quantum-electrodynamical density-functional theory to spontaneous emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This work paves the way to describe matter-photon interactions from first principles and addresses the emergence of new states of matter in chemistry and material science.
Energy Technology Data Exchange (ETDEWEB)
Caliebe, D.; Arp, O.; Piel, A. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet, Kiel (Germany)
2011-07-15
The penetration of a dusty plasma by fast charged projectiles is studied under microgravity conditions. The mass and charge of the projectiles are larger than those of the target particles. A projectile generates a dust-free cavity in its wake, whose shape strongly depends on the projectile velocity. The faster the projectile the more elongated becomes the cavity while its cross-section decreases. The opening time of the cavity is found independent of the projectile velocity. For supersonic projectiles, the dynamics of the cavity can be decomposed into an initial impulse and a subsequent elastic response that can be modeled by a damped harmonic oscillator.
Cavity-induced modifications of molecular structure in the strong coupling regime
Galego, Javier; Feist, Johannes
2015-01-01
In most theoretical descriptions of collective strong coupling of organic molecules to a cavity mode, the molecules are modeled as simple two-level systems. This picture fails to describe the rich structure provided by their internal rovibrational (nuclear) degrees of freedom. We investigate a first-principles model that fully takes into account both electronic and nuclear degrees of freedom, allowing an exploration of the phenomenon of strong coupling from an entirely new perspective. First, we demonstrate the limitations of applicability of the Born-Oppenheimer approximation in strongly coupled molecule-cavity structures. For the case of two molecules, we also show how dark states, which within the two-level picture are effectively decoupled from the cavity, are indeed affected by the formation of collective strong coupling. Finally, we discuss ground-state modifications in the ultra-strong coupling regime and show that some molecular observables are affected by the collective coupling strength, while other...
All-optical switching in a continuously operated and strongly coupled atom-cavity system
Dutta, Sourav
2016-01-01
We experimentally demonstrate collective strong coupling, optical bi-stability (OB) and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.
Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip
Zou, Chang-Ling; Jiang, Liang; Tang, Hong X
2016-01-01
Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.
Dynamics of a movable micro-mirror in a nonlinear optical cavity
Kumar, Tarun; ManMohan,
2009-01-01
We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a $\\chi^{(3)}$ medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due to the photon blockade mechanism. This study demonstrates that NMS could be used as a tool to observe the photon blockade effect. We also found that the backaction cooling of the movable mirror is reduced in the presence of the Kerr medium.
Dynamical simulations of strongly correlated electron materials
Kress, Joel; Barros, Kipton; Batista, Cristian; Chern, Gia-Wei; Kotliar, Gabriel
We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.
Chaotic dynamics of a classical radiant cavity
Benenti, G; Guarneri, I; Benenti, Giuliano; Casati, Giulio; Guarneri, Italo
1999-01-01
The statistical properties of a classical electromagnetic field in interaction with matter are numerically investigated on a one-dimensional model of a radiant cavity, conservative and with finite total energy. Our results suggest a trend towards equipartition of energy, with the relaxation times of the normal modes of the cavity increasing with the mode frequency according to a law, the form of which depends on the shape of the charge distribution.
Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Lodahl, Peter
2013-01-01
We present detuning-dependent spectral and decay-rate measurements to study the difference between the spectral and dynamical properties of single quantum dots embedded in micropillar and photonic crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes......–Cummings model, whereas systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to the coupling of other exciton lines to the cavity and interference of different propagation paths toward the detector of the fields emitted by the quantum dot. In contrast......, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities, we observe an anti-crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of a strong coupling. However, time...
Molecular dynamics study of naturally existing cavity couplings in proteins.
Barbany, Montserrat; Meyer, Tim; Hospital, Adam; Faustino, Ignacio; D'Abramo, Marco; Morata, Jordi; Orozco, Modesto; de la Cruz, Xavier
2015-01-01
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.
High-flux cold rubidium atomic beam for strongly-coupled cavity QED
Energy Technology Data Exchange (ETDEWEB)
Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)
2012-08-15
This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.
Strong gravitational lensing versus dynamic galactic mass
Energy Technology Data Exchange (ETDEWEB)
Guimaraes, Antonio C.C.; Sodre Junior, Laerte [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas. Dept. de Astronomia
2006-07-01
The mass associated to a galaxy is a fundamental property necessary for its description and for the understating of its structure, formation and evolution. In the cosmological context, the mass and density profile of galaxies and galaxy clusters is relevant for the understanding of dark matter properties and the formation dynamics of structures in the Universe. We find the masses of 15 galaxies from the SLACS Survey through two methods: using the stellar velocity dispersion (dynamic method) and using strong gravitational lensing. We discover a discrepancy between the masses obtained through these two methods and develop several models to explain it. We test the models suggested by calculating {chi}{sup 2} statistics and the Bayesian information criteria. Statistical fluctuation and a constant systematic error are strongly discarded as explanations for the mass discrepancy. Our results show evidence of projection effects on the line of sight that add a contamination mass in the strong lensing galactic mass determination. This effect was already observed in greater detail in weak and strong gravitational lensing measures of cluster of galaxies, but was little explored before in the case of strong lensing by galaxies. (author)
Strong Dynamics and Inflation: a review
Channuie, Phongpichit
2014-01-01
In this article, we review how strong dynamics can be efficiently employed as a viable alternative to study the mechanism of cosmic inflation. We examine single-field inflation in which the inflaton emerges as a bound state stemming from various strongly interacting field theories. We constrain the number of e-foldings for composite models of inflation in order to obtain a successful inflation. We study a set of cosmological parameters, e.g., the primordial spectral index $n_{s}$ and tensor-to-scalar ratio $r$, and confront the predicted results with the joint Planck data, and with the recent BICEP2 data.
Strong dynamics and inflation: A review
Directory of Open Access Journals (Sweden)
Phongpichit Channuie
2015-03-01
Full Text Available In this article, we review how strong dynamics can be efficiently employed as a viable alternative to study the mechanism of cosmic inflation. We examine single-field inflation in which the inflaton emerges as a bound state stemming from various strongly interacting field theories. We constrain the number of e-foldings for composite models of inflation in order to obtain a successful inflation. We study a set of cosmological parameters, e.g., the primordial spectral index ns and tensor-to-scalar ratio r, and confront the predicted results with the joint Planck data, and with the recent BICEP2 data.
Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity
Abdurakhimov, L. V.; Yamashiro, R.; Badrutdinov, A. O.; Konstantinov, D.
2016-07-01
The strong coupling regime is observed in a system of two-dimensional electrons whose cyclotron motion is coupled to an electromagnetic mode in a Fabry-Perot cavity resonator. Rabi splitting of eigenfrequencies of the coupled motion is observed both in the cavity reflection spectrum and ac current of the electrons, the latter probed by measuring their bolometric photoresponse. Despite the fact that similar observations of Rabi splitting in many-particle systems have been described as a quantum-mechanical effect, we show that the observed splitting can be explained completely by a model based on classical electrodynamics.
Effective dynamics of strongly dissipative Rydberg gases
Marcuzzi, M; Olmos, B; Lesanovsky, I
2014-01-01
We investigate the evolution of interacting Rydberg gases in the limit of strong noise and dissipation. Starting from a description in terms of a Markovian quantum master equation we derive effective equations of motion that govern the dynamics on a "coarse-grained" timescale where fast dissipative degrees of freedom have been adiabatically eliminated. Specifically, we consider two scenarios which are of relevance for current theoretical and experimental studies --- Rydberg atoms in a two-level (spin) approximation subject to strong dephasing noise as well as Rydberg atoms under so-called electromagnetically induced transparency (EIT) conditions and fast radiative decay. In the former case we find that the effective dynamics is described by classical rate equations up to second order in an appropriate perturbative expansion. This drastically reduces the computational complexity of numerical simulations in comparison to the full quantum master equation. When accounting for the fourth order correction in this e...
Non-destructive detection of ions using atom-cavity collective strong coupling
Dutta, Sourav
2016-01-01
We present a technique, based on atoms coupled to an optical cavity, for non-destructive detection of trapped ions. We demonstrate the vacuum-Rabi splitting (VRS), arising due to the collective strong coupling of ultracold Rb atoms to a cavity, to change in presence of trapped Rb+ ions. The Rb+ ions are optically dark and the Rb atoms are prepared in a dark magneto-optical trap (MOT). The VRS is measured on an optically open transition of the initially dark Rb atoms. The measurement itself is fast, non-destructive and has sufficient fidelity to permit the measurement of atomic-state selective ion-atom collision rate. This demonstration illustrates a method based on atom-cavity coupling to measure two particle interactions generically and non-destructively.
Lasing by driven atoms-cavity system in collective strong coupling regime.
Sawant, Rahul; Rangwala, S A
2017-09-12
The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.
Dynamics of bouncing droplets in annular cavities
Lentz, Zachary Louis; Jalali, Mir Abbas; Alam, Mohammad-Reza
2014-11-01
In a cylindrical bath of silicon oil, vertically excited by a frequency of 45 Hz, we trace the motion of bouncing droplets as they fill an annular region. We compute the mean tangential and radial velocity components of the droplets and show that the maximum tangential velocity is larger than the maximum radial velocity by one order of magnitude. Velocity dispersions have almost equal levels in the radial and tangential directions, and their mean values are 1/4 times smaller than the mean tangential velocity. These results show that bouncing droplets undergo random motions within annular cavities determined by the interference patterns of self-induced circumferential waves. We derive analytical relations between the velocity dispersion and the wavelength of surface waves, and calculate the mean tangential velocity of droplets using the random kicks that they experience at the boundaries of the cavity by inward and outward traveling waves.
Discovering Strong Top Dynamics at the LHC
Chivukula, R Sekhar; Ittisamai, Pawin; Logan, Heather E; Martin, Adam; Ren, Jing; Simmons, Elizabeth H
2012-01-01
We analyze the phenomenology of the top-pion and top-Higgs states in models with strong top dynamics, and translate the present LHC constraints on the SM Higgs into bounds on these scalar states. We then present the discovery prospects for top-pions and top-Higgs at the LHC in the available parameter space by doing a detailed signal/background analysis. We explore the possibility that the potential Higgs signal at a mass of approximately 125 GeV observed at the LHC is consistent with a neutral pseudoscalar top-pion state.
Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities
Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A
2015-01-01
Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...
Entanglement dynamics of two distant atoms in two detuning cavities
Institute of Scientific and Technical Information of China (English)
Ji Xin; L(u) Tian-Quan; Zhang Shou
2010-01-01
We investigate the entanglement dynamics via the concurrence of two distant atoms interacting off-resonantly with two cavity fields in Fock states, respectively. We find that the evolution of entanglement has sudden death and sudden birth phenomena, that with the increase of photon numbers in the two cavities, the alternate frequency of sudden death and sudden birth turns fast, and that the amplitude of concurrence oscillates regularly with oscillation frequency becoming slow when the cavity fields have the same photon numbers. While, the maximum of concurrence declines and the amplitude of concurrence oscillates irregularly when the two cavity fields have different photon numbers. In addition, we find the length of death time is dependent on the initial entanglement.
Towards gauge unified, supersymmetric hidden strong dynamics
Chiang, Cheng-Wei; Ye, Fang
2016-01-01
We consider a class of models with extra complex scalars that are charged under both the Standard Model and a hidden strongly coupled $SU(N)_H$ gauge sector, and discuss the scenarios where the new scalars are identified as the messenger fields that mediate the spontaneously broken supersymmetries from the hidden sector to the visible sector. The new scalars are embedded into 5-plets and 10-plets of an $SU(5)_V$ gauge group that potentially unifies the Standard Model gauge groups. They also form a tower of bound states via hidden strong dynamics around the TeV scale. The Higgs bosons remain as elementary particles. Quadratically divergent contributions to the Higgs mass from the Standard Model fermions are canceled by the new scalar contributions to alleviate the fine-tuning problem. We also discuss a supersymmetrized version of this class of models, consisting of the minimal supersymmetric Standard Model plus extra chiral multiplets where the new scalars reside. Due to the hidden strong force, the new low-en...
Quantum dynamic behaviour in a coupled cavities system
Institute of Scientific and Technical Information of China (English)
Peng Jun; Wu Yun-Wen; Li Xiao-Juan
2012-01-01
The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investigated.The exact dynamic solutions in the general condition are obtained via Laplace transform.The simple analytical solutions are obtained in several particular cases,which demonstrate the clear and simple physical picture for the quantum state transition of the system.In the large detuning or hoppling case,the quantum states transferring between qubits follow a slow periodic oscillation induced by the very weak excitation of the cavity mode.In the large coupling case,the system can be interpreted as two Jaynes-Cummings model subsystems which interact through photon hop between the two cavities.In the case of λ≈△(》) g,the quantum states transition of qubits is accompanied by the excitation of the cavity,and the cavity modes have the same dynamic behaviours and the amplitude of probability is equal to 0.25 which does not change with the variation of parameter.
Dynamics of a vertical cavity quantum cascade phonon laser structure
Maryam, W.; Akimov, A. V.; Campion, R. P.; Kent, A. J.
2013-07-01
Driven primarily by scientific curiosity, but also by the potential applications of intense sources of coherent sound, researchers have targeted the phonon laser (saser) since the invention of the optical laser over 50 years ago. Here we fabricate a vertical cavity structure designed to operate as a saser oscillator device at a frequency of 325 GHz. It is based on a semiconductor superlattice gain medium, inside a multimode cavity between two acoustic Bragg reflectors. We measure the acoustic output of the device as a function of time after applying electrical pumping. The emission builds in intensity reaching a steady state on a timescale of order 0.1 μs. We show that the results are consistent with a model of the dynamics of a saser cavity exactly analogous to the models used for describing laser dynamics. We also obtain estimates for the gain coefficient, steady-state acoustic power output and efficiency of the device.
Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces
Mansoor, Mohammad M.
2012-12-01
Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.
Footprints of New Strong Dynamics via Anomaly
Nakai, Yuichiro; Tobioka, Kohsaku
2015-01-01
Chiral anomaly provides a smoking-gun evidence of a new confining gauge theory. Motivated by a reported event excess in diphoton invariant mass distribution at the LHC, we discuss a scenario that a pseudo-Nambu-Goldstone (pNG) boson of a new QCD-like theory is produced by gluon fusion and decays into a pair of the standard model gauge bosons. Despite the strong dynamics, the production cross section and the decay widths are determined by anomaly matching condition. The excess can be explained by the pNG boson with mass of around 750 GeV. The model also predicts exotic hadrons such as a color octet scalar and baryons which are within the reach of the LHC experiment.
Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity
DEFF Research Database (Denmark)
Gammelmark, S.; Molmer, K.; Alt, W.
2014-01-01
We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...
Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity
DEFF Research Database (Denmark)
Gammelmark, S.; Molmer, K.; Alt, W.
2014-01-01
manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory......We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...
Optimal Sizes of Dielectric Microspheres for Cavity QED with Strong Coupling
Buck, J R
2002-01-01
The whispering gallery modes (WGMs) of quartz microspheres are investigated for the purpose of strong coupling between single photons and atoms in cavity quantum electrodynamics (cavity QED). Within our current understanding of the loss mechanisms of the WGMs, the saturation photon number, n, and critical atom number, N, cannot be minimized simultaneously, so that an "optimal" sphere size is taken to be the radius for which the geometric mean, (n x N)^(1/2), is minimized. While a general treatment is given for the dimensionless parameters used to characterize the atom-cavity system, detailed consideration is given to the D2 transition in atomic Cesium (852nm) using fused-silica microspheres, for which the maximum coupling coefficient g/(2*pi)=750MHz occurs for a sphere radius a=3.63microns corresponding to the minimum for n=6.06x10^(-6). By contrast, the minimum for N=9.00x10^(-6) occurs for a sphere radius of a=8.12microns, while the optimal sphere size for which (n x N)^(1/2) is minimized occurs at a=7.83mi...
Quantum Dot Cavity-QED in the Presence of Strong Electron-Phonon Interactions
Wilson-Rae, I
2001-01-01
A quantum dot strongly coupled to a single high finesse optical microcavity mode constitutes a new fundamental system for quantum optics. Here, the effect of exciton-phonon interactions on reversible quantum-dot cavity coupling is analysed without making Born-Markov approximation. The analysis is based on techniques that have been used to study the ``spin boson'' Hamiltonian. Observability of vacuum-Rabi splitting depends on the strength and the frequency dependence of the spectral density function characterizing the interactions with phonons, both of which can be influenced by phonon confinement.
Institute of Scientific and Technical Information of China (English)
SHAO Xiao-Qiang; ZHANG Shou
2008-01-01
We propose a scheme for one-step generation of cluster states with atoms sent through a thermal cavity with strong classical driving field, based on the resonant atom-cavity interaction so that the operating time is sharply short, which is important in the view of decoherence.
Institute of Scientific and Technical Information of China (English)
Chen Li; Shao Xiao-qiang; Zhang Shou
2009-01-01
We examine the entanglement dynamics between two strongly driven atoms off-resonantly coupled with a singlemode cavity via the two-photon process with the help of negativity in two different types of initial states. The results show that entanglement sudden death may occur under both the above conditions and the sudden death effect can be monitored by modulating the atom-cavity detunings. Furthermore, we also find an atomic decoherence-free subspace so that the initial entanglement between two atoms remains invariable in application.
Tlidi, M.; Fernandez-Oto, C.; Clerc, M. G.; Escaff, D.; Kockaert, P.
2015-11-01
We investigate the formation of a localized plateau beam in the transverse section of a nonlinear optical ring cavity filled with a metamaterial and a nonlocal medium such as a nematic liquid crystal. We show that, far from the modulational instability regime, localized structures with a varying width may be stable in one and two-dimensional settings. The mechanism of stabilization is related with strong nonlocal coupling mediated by a Lorentzian type of kernel. We show that there exists stable bright and dark localized structures. A reduction of Lugiato-Lefever equation in the regime close to the nascent bistability allows us to analytically derive a simple formula for the width of localized structures in one-dimensional systems. Direct numerical simulations of the dynamical model agree with the analytical predictions.
Fano-resonance induced strong-coupling of a hyperbolic cavity to a quantum emitter
Hasan, Mehedi; Belov, Pavel
2015-01-01
Light-matter interaction is studied for an open quantum system in the strong-coupling regime. A quantum dot and a hyperbolic cavity of spherical geometry is shown to couple light with large Rabi frequency and the role of Fano resonance is shown in the coupling mechanism. High Purcell factor and large Lamb shift are outlined. In the near-field spectrum, two distinct anti-crossings are evident, namely -- the one near the epsilon near zero (ENZ) frequency (from the effective medium description) which is detectable in the far-field, and the second anti-crossing is a pseudomode that does not appear in the far-field spectrum. This delineates the phenomenon `farfield propagating large Purcell factor'. Finally, we remark the fidelity of the strong-coupling, i.e. how prone the strong-coupling with respect to the loss mechanisms. This study on strong-coupling will have applications for spectroscopy, control over chemical reaction rate, microcavity, and in quantum information technology.
Route from spontaneous decay to complex multimode dynamics in cavity QED
Krimer, Dmitry O; Rotter, Stefan; Tureci, Hakan E
2013-01-01
We study the non-Markovian quantum dynamics of an emitter inside an open multimode cavity, focusing on the case where the emitter is resonant with high-frequency cavity modes. Based on a Green's function technique suited for open photonic structures, we study the crossovers between three distinct regimes as the coupling strength is gradually increased: (i) overdamped decay with a time scale given by the Purcell modified decay rate, (ii) underdamped oscillations with a time scale given by the effective vacuum Rabi frequency, and (iii) pulsed revivals. The final multimode strong coupling regime (iii) gives rise to quantum revivals of the atomic inversion on a time scale associated with the cavity round-trip time. We show that the crucial parameter to capture the crossovers between these regimes is the nonlinear Lamb shift, accounted for exactly in our formalism.
Hughes, Stephen; Yao, P
2009-03-02
We present a rigorous medium-dependent theory for describing the quantum field emitted and detected from a single quantum dot exciton, strongly coupled to a planar photonic crystal nanocavity, from which the exact spectrum is derived. By using simple mode decomposition techniques, this exact spectrum is subsequently reduced to two separate user-friendly forms, in terms of the leaky cavity mode emission and the radiation mode emission. On application to study exciton-cavity coupling in the strong coupling regime, besides a pronounced modification of the usual vacuum Rabi spectral doublet, we predict several new effects associated with the leaky cavity mode emission, including the appearance of an off-resonance cavity mode and a loss-induced on-resonance spectral triplet. The cavity mode emission is shown to completely dominate the emitted spectrum, even for large cavity-exciton detunings, whereby the usual cavity-QED formulas developed for radiation-mode emission drastically fail. These predictions are in qualitative agreement with several "mystery observations" reported in recent experiments, and apply to a wide range of semiconductor cavities.
X-Ray cavities and temperature jumps in strong cool core cluster Abell 2390
Sonkamble, S S; Pawar, P K; Patil, M K
2014-01-01
We present results based on the systematic analysis of high resolution 95\\,ks \\textit{Chandra} observations of the strong cool core cluster Abell 2390 at the redshift of z = 0.228, which hosts an energetic radio AGN. This analysis has enabled us to investigate five X-ray deficient cavities in the hot atmosphere of Abell 2390 within central 30\\arcsec, three of which are newly detected. Presence of these cavities have been confirmed through a various image processing techniques like, the surface brightness profiles, unsharp masked image, as well as 2D elliptical model subtracted residual map. Temperature profile as well as 2D temperature map revealed structures in the distribution of ICM, in the sense that ICM in NW direction is relatively cooler than that on the SE direction. Two temperature jumps, one from 6\\,keV to 9.25\\,keV at 72 kpc on the north direction, and the other from 6\\,keV to 10.27\\,keV at 108 kpc in the east direction have been observed. These temperature jumps are associated with the shocks with...
Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback
DEFF Research Database (Denmark)
Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo
-signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain......The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small...... copression in the lasing mode. An integral equation for the electrical field is derived from the frequency domain model and used for time domain simulations of large-signal behavior....
Gas dynamics in strong centrifugal fields
Energy Technology Data Exchange (ETDEWEB)
Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)
2015-03-10
Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.
Nonlinear dynamics and millikelvin cavity-cooling of levitated nanoparticles
Fonseca, P Z G; Millen, J; Monteiro, T S; Barker, P F
2015-01-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of matter. A nonlinear coupling offers access to rich new physics, in both the quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising of a nanosphere levitated and cooled in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere to millikelvin temperatures for indefinite periods of time in high vacuum. We observe cooling of the linear and non-linear motion, leading to a $10^5$ fold reduction in phonon number $n_p$, attaining final occupancies of $n_p = 100-1000$. This work puts cavity cooling of a levitated object to the quantum ground-state firmly within reach.
Rimberg, A. J.; Blencowe, M. P.; Armour, A. D.; Nation, P. D.
2014-05-01
We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field.
Chaotic ray dynamics in an optical cavity with a beam splitter
Puentes, G; Woerdman, J P
2003-01-01
We investigate the ray dynamics in an optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. Using Hamiltonian optics, we show that such a simple device presents a surprisingly rich chaotic ray dynamics.
Strong-Field Resonant Dynamics in Semiconductors.
Wismer, Michael S; Kruchinin, Stanislav Yu; Ciappina, Marcelo; Stockman, Mark I; Yakovlev, Vladislav S
2016-05-13
We predict that a direct band gap semiconductor (GaAs) resonantly excited by a strong ultrashort laser pulse exhibits a novel regime: kicked anharmonic Rabi oscillations. In this regime, Rabi oscillations are strongly coupled to intraband motion, and interband transitions mainly take place when electrons pass near the Brillouin zone center where electron populations undergo very rapid changes. The asymmetry of the residual population distribution induces an electric current controlled by the carrier-envelope phase of the driving pulse. The predicted effects are experimentally observable using photoemission and terahertz spectroscopies.
... may pass these bacteria to a child through kissing, sampling the child's food, or sharing eating utensils. ... pass decay-causing bacteria to their children through kissing or sharing eating utensils. Symptoms of Cavities Whether ...
DEFF Research Database (Denmark)
Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Andersen, Peter E.;
2009-01-01
We present a measurement series of the efficiency of periodically poled KTP used for second-harmonic generation in an external phase-locked cavity. Due to the high absorption (0.01 cm^−1) in the PPKTP crystal at the pump wavelength a strong thermal dephasing of the periodically poled grating...... is observed for high pump powers. For four different resonator setups, it was experimentally found that a threshold parameter could be defined as the ratio between the focal intensity in the crystal and the single-pass conversion efficiency. The value of this threshold for the onset of strong thermal...... dephasing was found to be 1.41×10^10 W^2 m^-2 in our 30-mm long PPKTP sample. This threshold parameter marks the onset of thermally induced instability that leads to a degradation of the SHG conversion efficiency. Above the threshold the shape of the resonance peaks of the resonator changed from symmetrical...
Measurements of SCRF cavity dynamic heat load in horizontal test system
Energy Technology Data Exchange (ETDEWEB)
DeGraff, B.D.; Bossert, R.J.; Pei, L.; Soyars, W.M.; /Fermilab
2009-11-01
The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.
Dynamics of atom-field entanglement in a bimodal cavity
Deçordi, G L
2015-01-01
We investigate some aspects of the dynamics and entanglement of bipartite quantum system (atom-quantized field), coupled to a third ``external" subsystem (quantized field). We make use of the Raman coupled model; a three-level atom in a lambda configuration interacting with two modes of the quantized cavity field. We consider the far off resonance limit, which allows the derivation of an effective Hamiltonian of a two-level atom coupled to the fields. We also make a comparison with the situation in which one of the modes is treated classically rather than prepared in a quantum field (coherent state).
Spin, Isospin and Strong Interaction Dynamics
Directory of Open Access Journals (Sweden)
Comay E.
2011-10-01
Full Text Available The structure of spin and isospin is analyzed. Although both spin and isospin are related to the same SU(2 group, they represent different dynamical effects. The Wigner-Racah algebra is used for providing a description of bound states of several Dirac particles in general and of the proton state in particular. Isospin states of the four ∆ (1232 baryons are discussed. The work explains the small contribution of quarks spin to the overall proton spin (the proton spin crisis. It is also proved that the addition of QCD’s color is not required for a construction of an antisymmetric state for the ∆ ++ (1232 baryon.
DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES
Energy Technology Data Exchange (ETDEWEB)
Parfrey, Kyle [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Beloborodov, Andrei M.; Hui, Lam, E-mail: parfrey@astro.princeton.edu [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)
2013-09-10
Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.
Complex Dynamics of Nano-Mechanical Membrane in Cavity Optomechanics
Akram, Muhammad Javed
2016-01-01
Theoretical analysis of a suspended nano-mechanical membrane subject to an optical driving field in cavity optomechanics is presented, which is confirmed through numerical simulations. In the presence of an optical field between its mirrors a high finesse nano-mechanical resonator acts as an oscillator driven by radiation pressure force. The periodic nature of the radiation pressure force makes the nano-mechanical membrane in the optomechanical system as kicked harmonic oscillator. Mathematically the physical system displays a stochastic web map that helps to understand several properties of the kicked membrane in classical phase space. We find that our web map is area preserving, and displays quasi-periodic symmetrical structures in phase space which we express as q-fold symmetry. It is shown that under appropriate control of certain parameters, namely the frequency ratio (q) and the kicking strength (K), the dynamics of kicked membrane exhibits chaotic dynamics. We provide the stability analysis by means of...
DEFF Research Database (Denmark)
Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo
2005-01-01
An external cavity laser with strong grating-filtered feedback to an antireflection-coated facet is studied with a time-domain integral equation for the electric field, which reproduces the modes of the oscillation condition as steady-state solutions. For each mode, the stability and spectral...
Energy Technology Data Exchange (ETDEWEB)
Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)
2011-07-15
We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.
Realization of collective strong coupling with ion Coulomb crystals in an optical cavity
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
crystal 16 and an optical field. The obtained coherence times are in the millisecond range and indicate that Coulomb crystals positioned inside optical cavities are promising for realizing a variety of quantum-information devices, including quantum repeaters 12 and quantum memories for light 17, 18......Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...
Saturation dynamics and working limits of saturated absorption cavity ringdown spectroscopy.
Sadiek, Ibrahim; Friedrichs, Gernot
2016-08-17
Cavity ringdown spectroscopy (CRDS) in the linear absorption regime is a well-established method for sensitive trace gas detection, but only a few studies have addressed quantitative measurements in the presence of a saturated sample. In fact, saturation is usually avoided in order to escape from the required complex modeling of the saturation process that depends on the characteristics of the absorbing species, its interaction with the surrounding gas as well as on the temporal and spectral characteristics of the cavity excitation. Conversely, the novel saturated-absorption cavity ringdown spectroscopy approach (SCAR/Sat-CRDS) takes advantage of sample saturation in order to allow one to extract both the gas absorption and the empty cavity loss rates from a single ringdown event. Using a new continuous-wave infrared CRD spectrometer equipped with a tunable narrow-bandwidth high-power OPO laser system and a 18 bit digitizer, the transient dynamics of absorption saturation and the working limits of the Sat-CRDS approach in terms of its ability to extract reliable trace gas concentrations have been experimentally studied in this work. Using a strong methane transition as a test case, the excitation power P0 and saturation power PS have been systematically varied to explore a wide range of saturation regimes. At pressures 5 μbar γc, a pronounced coupling between the two parameters has been observed. Finally, a standard error analysis was performed revealing that the Sat-CRDS approach holds its advantages over conventional CRDS implementations in particular when the attainable ultimate detection sensitivity is limited by uncertainties in the empty cavity ringdown constant.
Correlation functions of scattering matrix elements in microwave cavities with strong absorption
Energy Technology Data Exchange (ETDEWEB)
Schaefer, R [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany); Gorin, T [Theoretische Quantendynamik, Fakultaet fuer Physik, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Seligman, T H [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Campus Morelos, CP 62251, Cuernavaca, Morelos (Mexico); Stoeckmann, H-J [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany)
2003-03-28
The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.
Correlation functions of scattering matrix elements in microwave cavities with strong absorption
Schäfer, R.; Gorin, T.; Seligman, T. H.; Stöckmann, H.-J.
2003-03-01
The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.
A strongly complete proof system for propositional dynamic logic
Renardel de Lavalette, Gerard; Kooi, Barteld; Verbrugge, Rineke
2002-01-01
Propositional dynamic logic (PDL) is complete but not compact. As a consequence, strong completeness (the property Γ |= φ ⇒ Γ |- φ) does not hold for the standard finitary axiomatisation. In this paper, we present an infinitary proof system of PDL and prove strong completeness. The result is extende
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Energy Technology Data Exchange (ETDEWEB)
Yuan Xiaozhong [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: yxz@sjtu.edu.cn; Zhu Kadi [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China); Li Waisang [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong (China)
2004-08-30
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Foerster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Yuan, Xiao-Zhong; Zhu, Ka-Di; Li, Wai-Sang
2004-08-01
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Förster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
Integrated Fiber-Mirror Ion Trap for Strong Ion-Cavity Coupling
Brandstätter, Birgit; Schüppert, Klemens; Casabone, Bernardo; Friebe, Konstantin; Stute, Andreas; Schmidt, Piet O; Deutsch, Christian; Reichel, Jakob; Blatt, Rainer; Northup, Tracy E
2013-01-01
We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements we infer a single-atom cooperativity of up to $12$ for FFPCs longer than $200 \\mu$m in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We discuss experiments to anneal fiber m...
Temporal dynamics of all-optical switching in Photonic Crystal Cavity
DEFF Research Database (Denmark)
Colman, Pierre; Heuck, Mikkel; Yu, Yi;
2014-01-01
The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....
Electron Dynamics in Nanostructures in Strong Laser Fields
Energy Technology Data Exchange (ETDEWEB)
Kling, Matthias
2014-09-11
The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.
Martinello, M; Checchin, M; Grassellino, A; Crawford, A C; Melnychuk, A; Sergatskov, D A
2015-01-01
Cool-down dynamics of superconducting accelerating cavities became particularly important for obtaining very high quality factors in SRF cavities. Previous studies proved that when cavity is cooled fast, the quality factor is higher than when cavity is cooled slowly. This has been discovered to derive from the fact that a fast cool-down allows better magnetic field expulsion during the superconducting transition. In this paper we describe the first experiment where the temperature all around the cavity was mapped during the cavity cool-down through transition temperature, proving the existence of two different transition dynamics: a sharp superconducting-normal conducting transition during fast cool-down which favors flux expulsion and nucleation phase transition during slow cool-down, which leads to full flux trapping.
Evolutionary dynamics with fluctuating population sizes and strong mutualism
Chotibut, Thiparat; Nelson, David R.
2015-08-01
Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.
Strong-field short-pulse nondipole dynamics
DEFF Research Database (Denmark)
Dimitrovski, Darko; Førre, Morten; Madsen, Lars Bojer
2009-01-01
We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer and cont......We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer...
DYNAMICAL FORMATION OF CAVITY IN TRANSVERSELY ISOTROPIC HYPER-ELASTIC SPHERES
Institute of Scientific and Technical Information of China (English)
任九生; 程昌钧
2003-01-01
The cavity formation in a radial transversely isotropic hyper-elastic sphere of an incompressible Ogden material, subjected to a suddenly applied uniform radial tensile boundary deadload, is studied following the theory of finite deformation dynamics. A cavity forms at the center of the sphere when the tensile load is greater than its critical value. It is proved that the evolution of the cavity radius with time follows that of nonlinear periodic oscillations.
Dynamical equilibration in strongly-interacting parton-hadron matter
Ozvenchuk, Vitalii; Linnyk, Olena; Gorenstein, Mark; Cassing, Wolfgang
2011-01-01
We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results - including the partonic equation of state - in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential) and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa) occurs dynamically by interactions. Different thermodynamical distributions of the strongly-interacting quark-gluon plasma (sQGP) are addressed and discussed.
Influence of second sideband excitation on the dynamics of trapped ions in a cavity
Institute of Scientific and Technical Information of China (English)
刘翔; 方卯发
2003-01-01
We study the dynamics of a trapped ion placed at an antinode of the standing wave inside a high finesse cavity with consideration of the second sideband excitation between the ionic internal levels and the light field. We investigate the entanglement of the three subsystems embodying the ionic internal levels, the vibrational mode of the ion and the cavity field.
Full observation of single-atom dynamics in cavity QED
Mabuchi, H; Kimble, H J; Mabuchi, Hideo; Ye, Jun
1998-01-01
We report the use of broadband heterodyne spectroscopy to perform continuous measurement of the interaction energy between one atom and a high-finesse optical cavity, during individual transit events of $\\sim 250$ $\\mu$s duration. Measurements over a wide range of atom-cavity detunings reveal the transition from resonant to dispersive coupling, via the transfer of atom-induced signals from the amplitude to the phase of light transmitted through the cavity. By suppressing all sources of excess technical noise, we approach a measurement regime in which the broadband photocurrent may be interpreted as a classical record of conditional quantum evolution in the sense of recently developed quantum trajectory theories.
Asymmetric sequential Landau-Zener dynamics of Bose condensed atoms in a cavity
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Lee, Chaohong
2016-01-01
We explore the asymmetric sequential Landau-Zener (LZ) dynamics in an ensemble of interacting Bose condensed two-level atoms coupled with a cavity field. Assuming the couplings between all atoms and the cavity field are identical, the interplay between atom-atom interaction and detuning may lead to a series of LZ transitions. Unlike the conventional sequential LZ transitions, which are symmetric to the zero detuning, the LZ transitions of Bose condensed atoms in a cavity field are asymmetric and sensitively depend on the photon number distribution of the cavity. In LZ processes involving single excitation numbers, both the variance of the relative atom number and the step slope of the sequential population ladder are asymmetric, and the asymmetry become more significant for smaller excitation numbers. Furthermore, in LZ processes involving multiple excitation numbers, there may appear asymmetric population ladders with decreasing step heights. During a dynamical LZ process, due to the atom-cavity coupling, th...
Strongly Deterministic Population Dynamics in Closed Microbial Communities
Directory of Open Access Journals (Sweden)
Zak Frentz
2015-10-01
Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.
New Mechanism of Flavor Symmetry Breaking from Supersymmetric Strong Dynamics
Carone, C D; Moroi, T; Carone, Christopher D.; Hall, Lawrence J.; Moroi, Takeo
1997-01-01
We present a class of supersymmetric models in which flavor symmetries are broken dynamically, by a set of composite flavon fields. The strong dynamics that is responsible for confinement in the flavor sector also drives flavor symmetry breaking vacuum expectation values, as a consequence of a quantum-deformed moduli space. Yukawa couplings result as a power series in the ratio of the confinement to Planck scale, and the fermion mass hierarchy depends on the differing number of preons in different flavor symmetry-breaking operators. We present viable non-Abelian and Abelian flavor models that incorporate this mechanism.
Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.
Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M
2013-04-26
We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.
Dynamical electroweak symmetry breaking due to strong Yukawa interactions
Beneš, Petr; Brauner, Tomáš; Smetana, Adam
2009-11-01
We present a new mechanism for electroweak symmetry breaking (EWSB) based on a strong Yukawa dynamics. We consider an SU(2)L × U(1)Y gauge invariant model endowed with the usual Standard Model fermion multiplets and with two massive scalar doublets. We show that, unlike in the Standard Model, EWSB is possible even with vanishing vacuum expectation values of the scalars. Such EWSB is achieved dynamically by means of the (presumably strong) Yukawa couplings and manifests itself by the emergence of fermion and gauge boson masses and scalar mass splittings, which are expressed in a closed form in terms of the fermion and scalar proper self-energies. The 'would-be' Nambu-Goldstone bosons are shown to be composites of both the fermions and the scalars. We demonstrate that the simplest version of the model is compatible with basic experimental constraints.
Strong Analog Classical Simulation of Coherent Quantum Dynamics
Wang, Dong-Sheng
2017-02-01
A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods. Funding support from NSERC of Canada and a research fellowship at Department of Physics and Astronomy, University of British Columbia are acknowledged
Directory of Open Access Journals (Sweden)
A. Stockklauser
2017-03-01
Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238 MHz at a resonator linewidth κ/2π=12 MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40 MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.
The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion
DEFF Research Database (Denmark)
Hansson, I.; Mørch, Knud Aage
1980-01-01
The erosion of solids caused by cavitating liquids is a result of the concerted collapse of clusters of cavities. In vibratory cavitation equipment the clusters grow and collapse adjacent to a solid surface and are typically of hemispherical or cylindrical form. In the present paper the collapse...... process of these clusters is described and the collapse equations are developed and solved. The theoretical results are compared with results from high-speed photography of the clusters and with the initial stages of cavitation erosion on metal specimens. Experimental and theoretical results show...... the ambient pressure. Therefore the collapse velocity of the individual cavities increases towards the cluster center, which explains that the erosion, being caused by the individual cavities, occurs predominantly in this region. Likewise, the pressure increase at the cluster boundary explains why materials...
Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity
DEFF Research Database (Denmark)
Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang;
2010-01-01
We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...
Quantum dynamics of a strongly driven Josephson Junction
Energy Technology Data Exchange (ETDEWEB)
Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)
2015-07-01
A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.
Dynamical equilibration in strongly-interacting parton-hadron matter
Directory of Open Access Journals (Sweden)
Gorenstein M.
2011-04-01
Full Text Available We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP are addressed and discussed.
Schneeweiss, Philipp; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen
2016-01-01
We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as its out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75+/-1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.
Single Cavity Trapped Vortex Combustor Dynamics – Part-1: Experiments
Directory of Open Access Journals (Sweden)
Atul Singhal
2011-03-01
Full Text Available In the present work, a water-cooled, modular, atmospheric pressure Trapped Vortex Combustor (TVC test rig is designed and fabricated for reacting and non-reacting flow experiments. The unique features of this rig consist of a continuously variable length-to-depth ratio (L/D of the cavity and optical access through quartz plates provided on three sides for visualization. Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation. Reacting flow experiments for the selected cases indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. The pressure drop across the single cavity TVC is observed to be lower as compared to conventional combustors. Temperatures are measured at the exit using thermocouples and corrected for radiative losses. Species concentrations are measured at the exit using an exhaust gas analyzer. The combustion efficiency is observed to be around 97-99 % and the pattern factor is observed to be in the range of 0.08 to 0.13. High-speed imaging made possible by the optical access indicates that the overall combustion is fairly steady, and there is no vortex shedding downstream.
Structure and dynamics of microphase separated polymers containing strong associations
Colbert, Rachel Sarah
The morphology and dynamics of microphase separated polymers containing strong associations (i.e., ionic associations and hydrogen bonding) are investigated in this dissertation. The microphase separated domains in these polymers act as physical crosslinks and are expected to strongly influence molecular dynamics. Small-angle X-ray scattering (SAXS) is utilized to quantify microphase separation characteristics and broadband dielectric relaxation spectroscopy reveals the sensitivity of polymer dynamics to the presence of microphase segregation in the polymers studied. A model ionomer, sulfonated polystyrene (SPS) is chosen to probe the effect of ionic aggregation. The microphase separation and dynamics in polyurethanes and polyureas, containing strongly hydrogen bonded hard domains, are also examined. The role of ion associations on aggregate morphology and polymer dynamics of SPS is investigated via the systematic variation of sulfonation level, neutralization, and ion type. Evidence of acid group aggregation was found at 3.5, 6.7 and 9.5 mol% sulfonation. Upon neutralization, spherical aggregates ˜2 nm in diameter are revealed from SAXS and scanning transmission electron microscopy. Aggregate size is found to be independent of degree of sulfonation and neutralization level, however, aggregate composition becomes increasingly ionic with increasing neutralization. The polymer segmental relaxation process is highly sensitive to changes in ion content, neutralization and ion type. The relaxation time of this process slows with increasing ion content as the number density of ionic aggregates increases, similar to the effect of chemical crosslinking. The breadth of this process is sensitive to the interaction strength of the neutralizing ion type. For SPS neutralized with Zn2+, two distinct segmental relaxations are observed, a matrix segmental relaxation and a slow segmental process, the strength of which correlates with an increase in volume fraction of the region of
Concert halls with strong lateral reflections enhance musical dynamics.
Pätynen, Jukka; Tervo, Sakari; Robinson, Philip W; Lokki, Tapio
2014-03-25
One of the most thrilling cultural experiences is to hear live symphony-orchestra music build up from a whispering passage to a monumental fortissimo. The impact of such a crescendo has been thought to depend only on the musicians' skill, but here we show that interactions between the concert-hall acoustics and listeners' hearing also play a major role in musical dynamics. These interactions contribute to the shoebox-type concert hall's established success, but little prior research has been devoted to dynamic expression in this three-part transmission chain as a complete system. More forceful orchestral playing disproportionately excites high frequency harmonics more than those near the note's fundamental. This effect results in not only more sound energy, but also a different tone color. The concert hall transmits this sound, and the room geometry defines from which directions acoustic reflections arrive at the listener. Binaural directional hearing emphasizes high frequencies more when sound arrives from the sides of the head rather than from the median plane. Simultaneously, these same frequencies are emphasized by higher orchestral-playing dynamics. When the room geometry provides reflections from these directions, the perceived dynamic range is enhanced. Current room-acoustic evaluation methods assume linear behavior and thus neglect this effect. The hypothesis presented here is that the auditory excitation by reflections is emphasized with an orchestra forte most in concert halls with strong lateral reflections. The enhanced dynamic range provides an explanation for the success of rectangularly shaped concert-hall geometry.
Moon, Yoon-Jong; Moon, Daeyoung; Jang, Jeonghwan; Na, Jin-Young; Song, Jung-Hwan; Seo, Min-Kyo; Kim, Sunghee; Bae, Dukkyu; Park, Eun Hyun; Park, Yongjo; Kim, Sun-Kyung; Yoon, Euijoon
2016-05-11
Two-dimensional high-index-contrast dielectric gratings exhibit unconventional transmission and reflection due to their morphologies. For light-emitting devices, these characteristics help guided modes defeat total internal reflections, thereby enhancing the outcoupling efficiency into an ambient medium. However, the outcoupling ability is typically impeded by the limited index contrast given by pattern media. Here, we report strong-diffraction, high-index-contrast cavity engineered substrates (CESs) in which hexagonally arranged hemispherical air cavities are covered with a 80 nm thick crystallized alumina shell. Wavelength-resolved diffraction measurements and Fourier analysis on GaN-grown CESs reveal that the high-index-contrast air/alumina core/shell patterns lead to dramatic excitation of the low-order diffraction modes. Large-area (1075 × 750 μm(2)) blue-emitting InGaN/GaN light-emitting diodes (LEDs) fabricated on a 3 μm pitch CES exhibit ∼39% enhancement in the optical power compared to state-of-the-art, patterned-sapphire-substrate LEDs, while preserving all of the electrical metrics that are relevant to LED devices. Full-vectorial simulations quantitatively demonstrate the enhanced optical power of CES LEDs and show a progressive increase in the extraction efficiency as the air cavity volume is expanded. This trend in light extraction is observed for both lateral- and flip-chip-geometry LEDs. Measurements of far-field profiles indicate a substantial beaming effect for CES LEDs, despite their few-micron-pitch pattern. Near-to-far-field transformation simulations and polarization analysis demonstrate that the improved extraction efficiency of CES LEDs is ascribed to the increase in emissions via the top escape route and to the extraction of transverse-magnetic polarized light.
Carmeli, Itai; Hieflero, Omri; Liliach, Igal; Zalevsky, Zeev; Mujica, Vladimiro; Richeter, Shachar
2014-01-01
The interaction between molecules and surface plasmons in defined geometries can lead to new light mater hybrid states where light propagation is strongly influenced by molecular photon absorption. Their application range from lasing LEDs to controlling chemical reactions and are relevant in light harvesting. The coupling between the electromagnetic field and molecular excitations may also lead to macroscopic extended coherent states characterized by an increase in temporal and spatial coherency. In this respect, it is intriguing to explore the coherency of the hybrid system for molecules that possess highly efficient exciton energy transfer. Such a molecule, is the photosynthetic light harvesting complex photosystem I which has an extended antenna system dedicated for efficient light harvesting. In this work, we demonstrate space quantization of light transmission through a single slit in free standing Au film coated with several layers of PS I. A self assembly technique for multilayer fabrication is used, e...
DYNAMICAL FORMATION OF CAVITY IN A COMPOSED HYPER-ELASTIC SPHERE
Institute of Scientific and Technical Information of China (English)
任九生; 程昌钧
2004-01-01
The dynamical formation of cavity in a hyper-elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead-load, was studied following the theory of finite deformation dynamics. Besides a trivial solution corresponding to the homogeneous static state, a cavity forms at the center of the sphere when the tensile load is larger than its critical value. An exact differential relation between the cavity radius and the tensile land was obtained. It is proved that the evolution of cavity radius with time displays nonlinear periodic oscillations. The phase diagram for oscillation, the maximum amplitude, the approximate period and the critical load were all discussed.
Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity.
Copie, F; Conforti, M; Kudlinski, A; Trillo, S; Mussot, A
2017-02-01
We experimentally investigate the round-trip-to-round-trip dynamics of the modulation instability spectrum in a passive fiber-ring cavity presenting an inhomogeneous dispersion profile. By implementing a real-time spectroscopy technique, we are able to record successive single-shot spectra, which display the evolution of the system toward a stationary state. We find that the two instability regimes (Turing and Faraday) that compete in this kind of inhomogeneous cavity not only differ by their characteristic frequency but also by their dynamical behavior. The dynamic transition between those two regimes of instability is also presented.
Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics
Directory of Open Access Journals (Sweden)
Selin Aradag
2017-01-01
Full Text Available Supersonic flow over cavities has been of interest since 1960s because cavities represent the bomb bays of aircraft. The flow is transient, turbulent, and complicated. Pressure fluctuations inside the cavity can impede successful weapon release. The objective of this study is to use active and passive control methods on supersonic cavity flow numerically to decrease or eliminate pressure oscillations. Jet blowing at several locations on the front and aft walls of the cavity configuration is used as an active control method. Several techniques are used for passive control including using a cover plate to separate the flow dynamics inside and outside of the cavity, trailing edge wall modifications, such as inclination of the trailing edge, and providing curvature to the trailing edge wall. The results of active and passive control techniques are compared with the baseline case in terms of pressure fluctuations, sound pressure levels at the leading edge, trailing edge walls, and cavity floor and in terms of formation of the flow structures and the results are presented. It is observed from the results that modification of the trailing edge wall is the most effective of the control methods tested leading to up to 40 dB reductions in cavity tones.
Symmetry Breaking Patterns for the Little Higgs from Strong Dynamics
Batra, Puneet
2007-01-01
We show how the symmetry breaking pattern of the simplest little Higgs model, and that of the smallest moose model that incorporates an approximate custodial SU(2), can be realized through the condensation of strongly coupled fermions. In each case a custodial SU(2) symmetry of the new strong dynamics limits the sizes of corrections to precision electroweak observables. In the case of the simplest little Higgs, there are no new light states beyond those present in the original model. However, our realization of the symmetry breaking pattern of the moose model predicts an additional scalar field with mass of order a TeV or higher that has exactly the same quantum numbers as the Standard Model Higgs and which decays primarily to third generation quarks.
Dynamic Stark effect in strongly coupled microcavity exciton polaritons.
Hayat, Alex; Lange, Christoph; Rozema, Lee A; Darabi, Ardavan; van Driel, Henry M; Steinberg, Aephraim M; Nelsen, Bryan; Snoke, David W; Pfeiffer, Loren N; West, Kenneth W
2012-07-20
We present experimental observations of a nonresonant dynamic Stark shift in strongly coupled microcavity quantum well exciton polaritons--a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated in a GaAs/AlGaAs system at 10 K by femtosecond pump-probe measurements, with the blueshift approaching the meV scale for a pump fluence of 2 mJ cm(-2) and 50 meV red detuning, in good agreement with theory. The energy level structure of the strongly coupled polariton Rabi doublet remains unaffected by the blueshift. The demonstrated effect should allow generation of ultrafast density-independent potentials and imprinting well-defined phase profiles on polariton condensates, providing a powerful tool for manipulation of these condensates, similar to dipole potentials in cold-atom systems.
Anomaly-induced dynamical refringence in strong-field QED
Mueller, Niklas; Berges, Jürgen
2016-01-01
We investigate the impact of the Adler-Bell-Jackiw anomaly on the nonequilibrium evolution of strong-field quantum electrodynamics (QED) using real-time lattice gauge theory techniques. For field strengths exceeding the Schwinger limit for pair production, we encounter a highly absorptive medium with anomaly-induced dynamical refractive properties. In contrast to earlier expectations based on equilibrium properties, where net anomalous effects vanish because of the trivial vacuum structure, we find that out-of-equilibrium conditions can have dramatic consequences for the presence of quantum currents with distinctive macroscopic signatures. We observe an intriguing tracking behavior, where the system spends longest times near collinear field configurations with maximum anomalous current. Apart from the potential relevance of our findings for future laser experiments, similar phenomena related to the chiral magnetic effect are expected to play an important role for strong QED fields during initial stages of hea...
Driven-dissipative dynamics of a strongly interacting Rydberg gas
Glaetzle, A W; Zhao, B; Pupillo, G; Zoller, P
2012-01-01
We study the non-equilibrium many-body dynamics of a cold gas of ground state alkali atoms weakly admixed by Rydberg states with laser light. On a timescale shorter than the lifetime of the dressed states, effective dipole-dipole or van der Waals interactions between atoms can lead to the formation of strongly correlated phases, such as atomic crystals. Using a semiclassical approach, we study the long-time dynamics where decoherence and dissipative processes due to spontaneous emission and blackbody radiation dominate, leading to heating and melting of atomic crystals as well as particle losses. These effects can be substantially mitigated by performing active laser cooling in the presence of atomic dressing.
Observation of nonlinear thermal optical dynamics in a chalcogenide nanobeam cavity
Sun, Yue; Choi, Duk-Yong; Sukhorukov, Andrey A
2016-01-01
We present a theoretical and experimental analysis of nonlinear thermo-optic effects in suspended chalcogenide glass nanobeam cavities. We measure the power dependent resonance peaks and characterise the dynamic nonlinear thermo-optic response of the cavity under modulated light input. Several distinct nonlinear characteristics are identified, including a modified spectral response containing periodic fringes, a critical wavelength jump and saturated time delay for modulation frequency faster than the thermal characteristic time. We reveal that the coupling to a parasitic Fabry-Perot cavity enables isolated thermal equilibrium states resulting in the discontinuous thermo-optic critical point.
Entanglement dynamics between an isolated atom and a moving atom in the cavity
Institute of Scientific and Technical Information of China (English)
Deng Xiao-Juan; Fang Mao-Fa; Kang Guo-Dong
2009-01-01
The entanglement dynamics between an isolated atom and a moving atom interacting with a cavity field is investigated. The results show that there appears sudden death of entanglement between the isolated atom and the moving atom and that the time of entanglement sudden death (ESD) is independent of the initial state of the system. It is interesting that the isolated atom can also entangle with a cavity field, though they do not interact with each other originally, which stems from the fact that the entanglement between the isolated atom and the moving atom may turn into the entanglement between the isolated atom and the cavity.
Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke;
2011-01-01
We measure the detuning-dependent dynamics of a quasiresonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics...
Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.
Faust, Thomas; Rieger, Johannes; Seitner, Maximilian J; Krenn, Peter; Kotthaus, Jörg P; Weig, Eva M
2012-07-20
The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate.
Strong Entropy for System of Isentropic Gas Dynamics
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this paper, we study three special families of strong entropy-entropy flux pairs (η/O, qO), (η/±, q±),represented by different kernels, of the isentropic gas dynamics system with the adiabatic exponent γ∈ (3, ∞).Through the perturbation technique through the perturbation technique, we proved, we proved the H-1 com-pactncss of ηit+qix, i=1, 2, 3 with respect to the perturbation solutions given by the Cauchy problem (6) and (7), where (ηi, qi) are suitable linear combinations of (ηO, qO), (η±, q±).
Fluid Dynamics and Viscosity in Strongly Correlated Fluids
Schaefer, Thomas
2014-01-01
We review the modern view of fluid dynamics as an effective low energy, long wavelength theory of many body systems at finite temperature. We introduce the notion of a nearly perfect fluid, defined by a ratio $\\eta/s$ of shear viscosity to entropy density of order $\\hbar/k_B$ or less. Nearly perfect fluids exhibit hydrodynamic behavior at all distances down to the microscopic length scale of the fluid. We summarize arguments that suggest that there is fundamental limit to fluidity, and review the current experimental situation with regard to measurements of $\\eta/s$ in strongly coupled quantum fluids.
Diboson Resonance as a Portal to Hidden Strong Dynamics
Chiang, Cheng-Wei; Harigaya, Keisuke; Ibe, Masahiro; Yanagida, Tsutomu T
2015-01-01
We propose a new explanation for excess events observed in the search for a high-mass resonance decaying into dibosons by the ATLAS experiment. The resonance is identified as a composite spin-$0$ particle that couples to the Standard Model gauge bosons via dimension-5 operators. The excess events can be explained if the dimension-5 operators are suppressed by a mass scale of ${\\cal O}(1$--$10$) TeV. We also construct a model of hidden strong gauge dynamics which realizes the spin-$0$ particle as its lightest composite state, with appropriate couplings to Standard Model gauge bosons.
Controlling spontaneous emission dynamics in semiconductor micro cavities
Gayral, B.
Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality in other words a long photon storage time are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed. L'émission spontanée de lumière peut être contrôlée, ainsi que nous l'enseigne l'électrodynamique quantique en cavité, ce fait a été démontré expérimentalement en physique atomique. En particulier, coupler un émetteur à un mode photonique résonnant d'une cavité peut exalter son taux d'émission spontanée : c'est l'effet Purcell. Bien qu'il semble très prometteur de mettre en pratique ces concepts pour améliorer les dispositifs semi-conducteurs émetteurs de lumière, le choix du système émetteur/cavité est crucial. Nous montrons que les boîtes quantiques semi-conductrices sont des bons candidats pour observer l'effet Purcell. Il faut par ailleurs des cavités de faible volume ayant une grande qualité optique en d'autres mots un long temps de
McCloud, Peter L.
2010-01-01
Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.
Controlled impact of a disk on a water surface: Cavity dynamics
Bergmann, Raymond; Gekle, Stephan; van der Bos, Arjan; Lohse, Detlef
2008-01-01
In this paper we study the transient surface cavity which is created by the controlled impact of a disk of radius h0 on a water surface at Froude numbers below 200. The dynamics of the transient free surface is recorded by high speed imaging and compared to boundary integral simulations. An excellent agreement is found between both. The flow surrounding the cavity is measured with high speed particle image velocimetry and is found to also agree perfectly with the flow field obtained from the simulations. We present a simple model for the radial dynamics of the cavity based on the collapse of an infinite cylinder. This model accounts for the observed asymmetry of the radial dynamics between the expansion and contraction phase of the cavity. It reproduces the scaling of the closure depth and total depth of the cavity which are both found to scale roughly proportional to Fr^{1/2} with a weakly Froude number dependent prefactor. In addition, the model accurately captures the dynamics of the minimal radius of the ...
Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity
Bemani, F.; Motazedifard, Ali; Roknizadeh, R.; Naderi, M. H.; Vitali, D.
2017-08-01
Spontaneous synchronization is a significant collective behavior of weakly coupled systems. Due to their inherent nonlinear nature, optomechanical systems can exhibit self-sustained oscillations which can be exploited for synchronizing different mechanical resonators. In this paper, we explore the synchronization dynamics of two membranes coupled to a common optical field within a cavity, and pumped with a strong blue-detuned laser drive. We focus on the system quantum dynamics in the parameter regime corresponding to synchronization of the classical motion of the two membranes. With an appropriate definition of the phase difference operator for the resonators, we study synchronization in the quantum case through the covariance matrix formalism. We find that for sufficiently large driving, quantum synchronization is robust with respect to quantum fluctuations and to thermal noise up to not too large temperatures. Under synchronization, the two membranes are never entangled, while quantum discord behaves similarly to quantum synchronization, that is, it is larger when the variance of the phase difference is smaller.
Energy Technology Data Exchange (ETDEWEB)
Lusseyran, F; Gueniat, F; Basley, J; Douay, C L; Pastur, L R; Faure, T M [LIMSI-CNRS BP 133, F-91403 Orsay Cedex (France); Schmid, P J [LadHyX, Ecole Polytechnique, F-91128 Palaiseau (France)
2011-12-22
The dynamic dimension of an impinging flow may be significantly reduced by its boundary conditions and self-sustained oscillations they induce. The spectral signature is associated with remarkable spatial coherent structures. Dynamic modes decomposition (DMD) makes it possible to directly extract the dynamical properties of a non-linearly saturated flow. We apply DMD to highlight the spectral contribution of the longitudinal and transverse structures of an experimental open-cavity flow.
Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider
Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A
2009-01-01
Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...
Microwave Imaging Using a Disordered Cavity with a Dynamically Tunable Impedance Surface
Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.
2016-11-01
We perform microwave imaging using a dynamically reconfigurable aperture based on a tunable disordered cavity. The electrically large cavity is cubic with a spherical deformation and supports a multitude of distinct electromagnetic modes that vary as a function of excitation frequency. With a set of irises introduced into one wall of the cavity, the cavity modes couple to spatially distinct radiative modes that vary as a function of the driving frequency. To increase the diversity of the radiated fields, we replace one of the cavity walls with a variable impedance surface consisting of a set of varactor-populated mushroom structures grouped into pixels. The reflection phase of each pixel is independently changed with application of a voltage bias, effectively altering the surface impedance. We demonstrate high-fidelity imaging and examine the role of the impedance-tunable boundary condition, revealing superior performance in comparison with just frequency-diverse measurements. We also demonstrate single-frequency imaging, which can significantly reduce the demands on the required microwave source. The dynamic cavity imager may find relevance in security screening, through-wall imaging, biomedical diagnostics, and radar applications.
Can strong-field ionization prepare attosecond dynamics?
Pabst, Stefan
2015-01-01
Strong-field ionization (SFI) has been shown to prepare wave packets with few-femtosecond periods. Here, we explore whether this technique can be extended to the attosecond time scale. We introduce an intuitive model for predicting the bandwidth of ionic states that can be coherently prepared by SFI. This bandwidth is given by the Fourier-transformed sub-cycle SFI rate and decreases considerably with increasing central wavelength of the ionizing pulse. Many-body calculations based on time-dependent configuration-interaction singles (TDCIS) quantitatively support this result and reveal an additional decrease of the bandwidth as a consequence of channel interactions and non-adiabatic dynamics. Our results further predict that multi-cycle femtosecond pulses can coherently prepare attosecond wave packets with higher selectivity and versatility compared to single-cycle pulses.
Soliton-Complex Dynamics in Strongly Dispersive Medium
Bogdan, M M; Maugin, G A; Bogdan, Mikhail M.; Kosevich, Arnold M.; Maugin, Gerard A.
1999-01-01
The concept of soliton complex in a nonlinear dispersive medium is proposed. It is shown that strongly interacting identical topological solitons in the medium can form bound soliton complexes which move without radiation. This phenomenon is considered to be universal and applicable to various physical systems. The soliton complex and its "excited" states are described analytically and numerically as solutions of nonlinear dispersive equations with the fourth and higher spatial or mixed derivatives. The dispersive sine-Gordon, double and triple sine-Gordon, and piecewise-linear models are studied in detail. Mechanisms and conditions of the formation of soliton complexes, and peculiarities of their stationary dynamics are investigated. A phenomenological approach to the description of the complexes and the classification of all the possible complex states are proposed. Some examples of physical systems, where the phenomenon can be experimentally observed, are briefly discussed.
Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics
Institute of Scientific and Technical Information of China (English)
Zhaoxia PU; Joshua HACKER
2009-01-01
This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.
Magnetospheric Cavity Modes Driven by Solar Wind Dynamic Pressure Fluctuations
Claudepierre, S G; Elkington, S R; Lotko, W; Hudson, M K; 10.1029/2009GL039045
2010-01-01
We present results from Lyon-Fedder-Mobarry (LFM) global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere interaction. We use these simulations to investigate the role that solar wind dynamic pressure fluctuations play in the generation of magnetospheric ultra-low frequency (ULF) pulsations. The simulations presented in this study are driven with idealized solar wind input conditions. In four of the simulations, we introduce monochromatic ULF fluctuations in the upstream solar wind dynamic pressure. In the fifth simulation, we introduce a continuum of ULF frequencies in the upstream solar wind dynamic pressure fluctuations. In this numerical experiment, the idealized nature of the solar wind driving conditions allows us to study the magnetospheric response to only a fluctuating upstream dynamic pressure, while holding all other solar wind driving parameters constant. The simulation results suggest that ULF fluctuations in the solar wind dynamic pressure can drive magnet...
Dynamic response of cylindrical lined cavity in elastic medium
Institute of Scientific and Technical Information of China (English)
高盟; 王滢; 高广运
2013-01-01
An analytical solution to the transient dynamic response of a cylindrical lining subjected to an internal loading was presented and the dynamic interaction between the lining and surrounding soil was considered. The lining structure and the soil were treated as a cylindrical elastic shell and an infinite elastic compressible medium, respectively. A two-dimensional axisymmetric wave equation was derived from the governing equation of displacement by introducing the potential functions. Shell equation of motion was established based on continuity conditions. The closed-form solution for dynamic response of the lining due to an impact loading was obtained in Laplace transforms and inverse transforms. Detailed parametric studies were also presented to illustrate the influences of the Poisson ratio of soil, the dynamic shear moduli of both soil and lining and the thickness of lining on dynamic response of the lining.
Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors
Energy Technology Data Exchange (ETDEWEB)
Stephen, Damian G., E-mail: foovian@gmail.co [Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Floor 5, Boston, MA 02115 (United States); Dixon, James A. [Department of Psychology, University of Connecticut, 406 Babbidge Rd., Unit 1020, Storrs, CT 06269-1020 (United States); Haskins Laboratories, 300 George St., New Haven, CT 06511 (United States)
2011-01-15
Research highlights: We investigated anticipatory behaviors in response to chaotic metronomes. We assessed multifractal structure in tap intervals and onset intervals. Strength of multifractality in tap intervals appears to match that in onset intervals. - Abstract: Previous research on anticipatory behaviors has found that the fractal scaling of human behavior may attune to the fractal scaling of an unpredictable signal [Stephen DG, Stepp N, Dixon JA, Turvey MT. Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A 2008;387:5271-8]. We propose to explain this attunement as a case of multifractal cascade dynamics [Schertzer D, Lovejoy S. Generalised scale invariance in turbulent phenomena. Physico-Chem Hydrodyn J 1985;6:623-5] in which perceptual-motor fluctuations are coordinated across multiple time scales. This account will serve to sharpen the contrast between strong and weak anticipation: whereas the former entails a sensitivity to the intermittent temporal structure of an unpredictable signal, the latter simply predicts sensitivity to an aggregate description of an unpredictable signal irrespective of actual sequence. We pursue this distinction through a reanalysis of Stephen et al.'s data by examining the relationship between the widths of singularity spectra for intertap interval time series and for each corresponding interonset interval time series. We find that the attunement of fractal scaling reported by Stephen et al. was not the trivial result of sensitivity to temporal structure in aggregate but reflected a subtle sensitivity to the coordination across multiple time scales of fluctuation in the unpredictable signal.
Large mass hierarchies from strongly-coupled dynamics
Athenodorou, Andreas; Bergner, Georg; Elander, Daniel; Lin, C -J David; Lucini, Biagio; Piai, Maurizio
2016-01-01
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio $R$ between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in ...
Dynamical Dark Matter from Strongly-Coupled Dark Sectors
Dienes, Keith R; Su, Shufang; Thomas, Brooks
2016-01-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose decay widths are balanced against their cosmological abundances. Previous studies of this framework have focused on a particular class of DDM ensembles --- motivated primarily by KK towers in theories with extra dimensions --- in which the density of states scales roughly as a polynomial of mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles in which the density of states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the "hadrons" associated with the confining phase of a strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and abundances can emerge naturally --- even with an ex...
Strong Coulomb Coupling in Relativistic Quantum Constraint Dynamics
Bawin, M.; Cugnon, J.; Sazdjian, H.
We study, in the framework of relativistic quantum constraint dynamics, the bound state problem of two oppositely charged spin 1/2 particles, with masses m1 and m2, in mutual electromagnetic interaction. We search for the critical value of the coupling constant α for which the bound state energy reaches the lower continuum, thus indicating the instability of the heavier particle or of the strongly coupled QED vacuum in the equal mass case. Two different choices of the electromagnetic potential are considered, corresponding to different extensions of the substitution rule into the nonperturbative region of α: (i) the Todorov potential, already introduced in the quasipotential approach and used by Crater and Van Alstine in Constraint Dynamics; (ii) a second potential (potential II), characterized by a regular behavior at short distances. For the Todorov potential we find that for m2>m1 there is always a critical value αc of α, depending on m2/m1, for which instability occurs. In the equal mass case, instability is reached at αc=1/2 with a vanishing value of the cutoff radius, generally needed for this potential at short distances. For potential II, on the other hand, we find that instability occurs only for m2>2.16 m1.
The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Statics and dynamics of strongly charged soft matter
Energy Technology Data Exchange (ETDEWEB)
Boroudjerdi, H. [Physics Department, TU Munich, 85748 Garching (Germany); Kim, Y.-W. [Physics Department, TU Munich, 85748 Garching (Germany); Naji, A. [Physics Department, TU Munich, 85748 Garching (Germany); Netz, R.R. [Physics Department, TU Munich, 85748 Garching (Germany)]. E-mail: netz@ph.tum.de; Schlagberger, X. [Physics Department, TU Munich, 85748 Garching (Germany); Serr, A. [Physics Department, TU Munich, 85748 Garching (Germany)
2005-09-01
Soft matter materials, such as polymers, membranes, proteins, are often electrically charged. This makes them water soluble, which is of great importance in technological application and a prerequisite for biological function. We discuss a few static and dynamic systems that are dominated by charge effects. One class comprises complexation between oppositely charged objects, for example the adsorption of charged ions or charged polymers on oppositely charged substrates of different geometry. Here the main questions are whether adsorption occurs and what the effective charge of the resulting complex is. We explicitly discuss the adsorption behavior of polyelectrolytes on substrates of planar, cylindrical and spherical geometry with specific reference to DNA adsorption on supported charged lipid layers, DNA adsorption on oppositely charged cylindrical dendro-polymers, and DNA binding on globular histone proteins, respectively. In all these systems salt plays a crucial role, and some of the important features can already be obtained on the linear Debye-Hueckel level. The second class comprises effective interactions between similarly charged objects. Here the main theme is to understand the experimental finding that similarly and highly charged bodies attract each other in the presence of multi-valent counterions. This is demonstrated using field-theoretic arguments as well as Monte-Carlo simulations for the case of two homogeneously charged bodies. Realistic surfaces, on the other hand, are corrugated and also exhibit modulated charge distributions, which is important for static properties such as the counterion-density distribution, but has even more pronounced consequences for dynamic properties such as the counterion mobility. More pronounced dynamic effects are obtained with highly condensed charged systems in strong electric fields. Likewise, an electrostatically collapsed highly charged polymer is unfolded and oriented in strong electric fields. All charged
Dynamics of water molecules in the active-site cavity of human cytochromes P450
DEFF Research Database (Denmark)
Rydberg, Patrik; Rod, Thomas Holm; Olsen, Lars;
2007-01-01
have quite big cavities, with 41 water molecules on average in 2C8 and 54-58 in 2C9 and 3A4, giving a water volume of 1500-2100 A3. The two crystal structures of 2C9 differ quite appreciably, whereas those of 3A4 are quite similar. The active-site cavity is connected to the surroundings by three to six......We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot...
Cavity-assisted dynamical quantum phase transition in superconducting quantum simulators
Tian, Lin
Coupling a quantum many-body system to a cavity can create bifurcation points in the phase diagram, where the many-body system switches between different phases. Here I will discuss the dynamical quantum phase transitions at the bifurcation points of a one-dimensional transverse field Ising model coupled to a cavity. The Ising model can be emulated with various types of superconducting qubits connected in a chain. With a time-dependent Bogoliubov method, we show that an infinitesimal quench of the driving field can cause gradual evolution of the transverse field on the Ising spins to pass through the quantum critical point. Our calculation shows that the cavity-induced nonlinearity plays an important role in the dynamics of this system. Quasiparticles can be excited in the Ising chain during this process, which results in the deviation of the system from its adiabatic ground state. This work is supported by the National Science Foundation under Award Number 0956064.
Imagawa, S.; Kawakata, H.; Doi, I.; Yoshimitsu, N.; Murakami, O.; Nakatani, M.; Naoi, M.; Philipp, J.; Ward, A.; Visser, V.; Masakale, T.; Milev, A. M.; Durrheim, R. J.; Ribeiro, L.; Ward, M.; Ogasawara, H.
2013-12-01
To investigate short-wavelength heterogeneity of the crust, scattered waves contained in coda waves are useful. In general, locations of the scatterers are estimated from the travel times of scattered waves with a stochastic back-projection method, so that artifacts may emerge if seismic stations and sources are inadequately distributed. In this study, using coda waves, we try to locate well-mapped cavities such as tunnels, shafts and stopes in the Cooke4 Gold Mine in South Africa. At this mine, we have developed a dense seismic network in the vicinity of a region with high seismicity. The seismic network is narrow and the source distribution is far from being uniform, which can cause artifacts. We use 3-component accelerograms recorded at 6 stations about 1 km below surface in the shaft pillar area. The data are recorded for 6.6 ms at the sampling frequency of 500 kHz. Considering the size (2-4 m) of tunnels and shafts, a band-pass filter of 800-1600 Hz is applied. Considering the distribution of seismic sources and stations, and also the data length, an analysis volume of 300×300×260 m3 is set and divided into blocks of 4×4×4 m3. In general, the exponential decays of the coda wave amplitude from an event tend to be the same regardless of the distance from seismic source to station (Aki, 1980). If strong scatterers exist, a phase with relatively large amplitude would appear at the corresponding time. We identify such phases by looking for phases where the amplitude significantly exceeds the overall envelope of S-coda. Using the travel time of thus picked 'scattering phase', we locate the corresponding scatterer. Since our target structures are highly localized strong scatterers, we assume single scattering in the present analysis, as, for example, Matsumoto et al. (2006). The block containing the estimated scatterer location receives votes according to the amplitude of the scattering phase. By adding votes from all the traces, we have obtained a three
Reflective SOA fiber cavity adaptive laser source for measuring dynamic strains
Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar
2016-04-01
Smart sensors based on Optical fiber Bragg gratings (FBGs) are suitable for structural health monitoring of dynamic strains in civil, aerospace, and mechanical structures. In these structures, dynamic strains with high frequencies reveal acoustic emissions cracking or impact loading. It is necessary to find a practical tool for monitoring such structural damages. In this work, we explore an intelligent system based on a reflective semiconductor optical amplifier (RSOA)- FBG composed as a fiber cavity for measuring dynamic strain in intelligent structures. The ASE light emitted from a RSOA laser and reflected by a FBG is amplified in the fiber cavity and coupled out by a 90:10 coupler, which is demodulated by a low frequency compensated Michelson interferometer using a proportional-integral-derivative (PID) controller and is monitored via a photodetector. As the wavelength of the FBG shifts due to dynamic strain, the wavelength of the optical output from the laser cavity shifts accordingly, which is demodulated by the Michelson Interferometer. Because the RSOA has a quick transition time, the RSOA- FBG fiber cavity shows an ability of high frequency response to the FBG reflective spectrum shift, with frequency response extending to megahertz.
Dynamic Range of Vertical Cavity Surface Emitting Lasers in Multimode Links
Energy Technology Data Exchange (ETDEWEB)
Lee, H.L.T.; Dalal, R.V.; Ram, R.J.; Choquette, K.D.
1999-07-07
The authors report spurious free dynamic range measurements of 850nm vertical cavity surface emitting lasers in short multimode links for radio frequency communication. For a 27m fiber link, the dynamic range at optimal bias was greater than 95dB-Hz{sup 2/3} for modulation frequencies between 1 and 5.5 GHz, which exceeds the requirements for antenna remoting in microcellular networks. In a free space link, they have measured the highest dynamic range in an 850nm vertical cavity surface emitting laser of 113dB-Hz{sup 2/3} at 900MHz. We have also investigated the effects of modal noise and differential mode delay on the dynamic range for longer lengths of fiber.
Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
Energy Technology Data Exchange (ETDEWEB)
Seena, Abu [Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sung, Hyung Jin, E-mail: hjsung@kaist.ac.kr [Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)
2011-12-15
Highlights: Black-Right-Pointing-Pointer DMD modes were extracted from two cavity flow data set at Re{sub D} = 12,000 and 3000. Black-Right-Pointing-Pointer At Re{sub D} = 3000, frequencies of boundary layer and shear layer structures coincides. Black-Right-Pointing-Pointer Boundary layer structures exceed in size with shear layer structures. Black-Right-Pointing-Pointer At Re{sub D} = 12,000, structure showed coherence leading to self-sustained oscillations. Black-Right-Pointing-Pointer Hydrodynamic resonance occurs if coherence exists in wavenumber and frequency. - Abstract: Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (Re{sub D} = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/{theta}) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.
Dynamical Dark Matter from strongly-coupled dark sectors
Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks
2017-02-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. Previous studies of this framework have focused on a particular class of DDM ensembles—motivated primarily by Kaluza-Klein towers in theories with extra dimensions—in which the density of dark states scales roughly as a polynomial of the mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles in which the density of dark states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and abundances can emerge naturally—even with an exponentially rising density of states. We also study the effective equations of state for such ensembles, and investigate some of the model-independent observational constraints on such ensembles that follow directly from these equations of state. In general, we find that such constraints tend to introduce correlations between various properties of these DDM ensembles such as their associated mass scales, lifetimes, and abundance distributions. For example, we find that these constraints allow DDM ensembles with energy scales ranging from the GeV scale all the way to the Planck scale, but that the total present-day cosmological abundance of the dark sector must be spread across an increasing number of different states in the ensemble as these energy scales are dialed from the Planck scale down to the GeV scale. Numerous other correlations and constraints are also discussed.
Dynamic Behavior of Lambda-Type Three-Level Atoms and Two-Mode Cavity Field
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the adiabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.
Arellano-Sotelo, H.; Kir'yanov, A. V.; Barmenkov, Yu. O.; Aboites, V.
2011-02-01
We report the use of nonlinear dynamics of an erbium-doped fiber laser (EDFL) at pump modulation, namely the period-1 pulsed regime, for intra-cavity loss sensing and demonstrate noticeable sensitivity enhancement of an EDFL-based sensor, provided by this arrangement. Experimentally, we obtain a ten-fold increase of the sensor response, i.e. peak-to-peak pulse amplitude against loss variation, as compared with the standard sensing schemes using a low-power wide-spectrum light emitting diode (LED) or fiber laser without external modulation. This advantage originates from a strong dependence of pulse amplitude in the period-1 regime on intra-cavity loss variable that is, in turn, determined by the interrelation of relaxation frequency (an internal EDFL parameter) and frequency and depth of external (pump) modulation. A modeling of the EDFL-based sensor, presented for the case when the laser operates in the period-1 regime, allows an insight into the sensor operation details and opens the gate to its further optimization. The proposed sensing method seems to be a proper choice for the applications where an intra-cavity sensor's head has high internal loss (≥10 dB) while sensed loss is varied within a quite narrow range (a few dB).
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Dynamical formation and growth of cavity in a sphere composed of two incompressible thermal-hyperelastic Gent-Thomas materials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs suddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
Parra-Rivas, P; Matías, M A; Colet, P; Gelens, L
2014-01-01
In Ref. [Parra-Rivas at al., 2013], using the Swift-Hohenberg equation, we introduced a mechanism that allows to generate oscillatory and excitable soliton dynamics. This mechanism was based on a competition between a pinning force at inhomogeneities and a pulling force due to drift. Here, we study the effect of such inhomogeneities and drift on temporal solitons and Kerr frequency combs in fiber cavities and microresonators, described by the Lugiato-Lefever equation with periodic boundary conditions. We demonstrate that for low values of the frequency detuning the competition between inhomogeneities and drift leads to similar dynamics at the defect location, confirming the generality of the mechanism. The intrinsic periodic nature of ring cavities and microresonators introduces, however, some interesting differences in the final global states. For higher values of the detuning we observe that the dynamics is no longer described by the same mechanism and it is considerably more complex.
Parra-Rivas, P; Gomila, D; Matías, M A; Colet, P; Gelens, L
2014-12-15
In [Phys. Rev. Lett. 110, 064103 (2013)], using the Swift-Hohenberg equation, we introduced a mechanism that allows to generate oscillatory and excitable soliton dynamics. This mechanism was based on a competition between a pinning force at inhomogeneities and a pulling force due to drift. Here, we study the effect of such inhomogeneities and drift on temporal solitons and Kerr frequency combs in fiber cavities and microresonators, described by the Lugiato-Lefever equation with periodic boundary conditions. We demonstrate that for low values of the frequency detuning the competition between inhomogeneities and drift leads to similar dynamics at the defect location, confirming the generality of the mechanism. The intrinsic periodic nature of ring cavities and microresonators introduces, however, some interesting differences in the final global states. For higher values of the detuning we observe that the dynamics is no longer described by the same mechanism and it is considerably more complex.
Energy Technology Data Exchange (ETDEWEB)
Benedetti, G.A.; Benson, J.Z.
1994-11-01
The purpose of this report is to develop a mathematical model for a pressure transducer mounted in a fluid filled cavity (a system) and examine the pressure ``measurement`` error of the cavity and transducer by computing the dynamic response (output pressure) of the system to a specified pressure time history (input pressure). The ``measurement`` error is determined by comparing the calculated output pressure to the specified input pressure. The dynamic response of a transducer mounted at one end of a one-dimensional acoustical cavity is determined. The cavity is filled with a compressible isentropic fluid, and the fluid at the open end of the cavity (i.e., the boundary at x = 0) is subjected to a specified uniform axial input pressure. At the other end of the cavity the transducer is represented as a mass, spring, and damper system. Consequently, the boundary condition at x = {ell} is also time dependent. The general solution to the boundary value problem, as well as the steady state solution for periodic excitation, is obtained by integrating a coupled set of ordinary differential equations.
Nanofriction in Cavity Quantum Electrodynamics.
Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
Dunkelberger, A. D.; Spann, B. T.; Fears, K. P.; Simpkins, B. S.; Owrutsky, J. C.
2016-11-01
Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump-probe infrared spectroscopy of the cavity-coupled C-O stretching band of W(CO)6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems.
Effect of Non-Condensable Gas on Cavity Dynamics and Sheet to Cloud Transition
Makiharju, Simo; Ganesh, Harish; Ceccio, Steven
2014-11-01
Partial cavitation occurs in numerous industrial and naval applications. Cavities on lifting surfaces, in cryogenic rocket motors or in fuel injectors can damage equipment and in general be detrimental to the system performance, especially as partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments incipient, intermittent cloud shedding and fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. Gas was injected directly into the cavitation region downstream of the wedge's apex or into the recirculating region such that with the same amount of injected gas less ended up in the shear layer. The cavity dynamics were studied with and without gas injection. The hypothesis to be tested were that i) relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapor production and ii) gas introduced into the separated region can dampen the auto oscillations. The authors also examined whether the presence of gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by re-entrant jet. The work was supported by ONR Grant Number N00014-11-1-0449.
Directory of Open Access Journals (Sweden)
Saleh Alshomrani
2012-07-01
Full Text Available Graphs are the basis of many real life applications. In our research we compare and analyse strongly connected components algorithm by using general techniques for efficient implementation. This experimental procedure exemplify in two contexts. 1. Comparison of strongly connected components algorithms. 2. Analysis of particular algorithm. Such a practice will enable java programmers, especially for those who work on such algorithms to use them efficiently. In this paper we described algorithms implementation, test and benchmark to experiment the performance of algorithms. During experimenting we found some interesting results as Cheriyan-Mehlhorn-Gabow algorithm outperform then Tarjan's algorithm
Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback
DEFF Research Database (Denmark)
Chi, Mingjun; Petersen, Paul Michael
2014-01-01
of the cases, the output of the laser shows a periodic oscillation corresponding to a single roundtrip external-cavity loop, but the dynamic behavior disappears in some case; when the zero-order lateral-mode is selected, periodic oscillation corresponding to a double roundtrip external-cavity loop is observed....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....
DYNAMICS INSIDE THE RADIO AND X-RAY CLUSTER CAVITIES OF CYGNUS A AND SIMILAR FRII SOURCES
Energy Technology Data Exchange (ETDEWEB)
Mathews, William G.; Guo Fulai, E-mail: mathews@ucolick.org [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2012-08-10
We describe approximate axisymmetric computations of the dynamical evolution of material inside radio lobes and X-ray cluster gas cavities in Fanaroff-Riley II (FRII) sources such as Cygnus A. All energy is delivered by a jet to the lobe/cavity via a moving hotspot where jet energy dissipates in a reverse shock. Our calculations describe the evolution of hot plasma, cosmic rays (CRs), and toroidal magnetic fields flowing from the hotspot into the cavity. Many important observational features are explained. Gas, CRs, and field flow back along the cavity surface in a 'boundary backflow' consistent with detailed FRII observations. Computed ages of backflowing CRs are consistent with observed radio-synchrotron age variations only if shear instabilities in the boundary backflow are damped and we assume this is done with viscosity of unknown origin. We compute a faint thermal jet along the symmetry axis and suggest that it is responsible for redirecting the Cygnus A nonthermal jet. Magnetic fields estimated from synchrotron self-Compton (SSC) X-radiation observed near the hotspot evolve into radio lobe fields. Computed profiles of radio-synchrotron lobe emission perpendicular to the jet reveal dramatically limb-brightened emission in excellent agreement with FRII observation, although computed lobe fields exceed those observed. Strong winds flowing from hotspots naturally create kiloparsec-sized spatial offsets between hotspot nonthermal X-ray inverse Compton (IC-CMB) emission and radio-synchrotron emission that peaks 1-2 kpc ahead where the field increases due to wind compression. In our computed version of Cygnus A, nonthermal X-ray emission increases from the hotspot (some IC-CMB, mostly SSC) toward the offset radio-synchrotron peak (mostly SSC).
Schelte, Christian; Panajotov, Krassimir; Tlidi, Mustapha; Gurevich, Svetlana V.
2017-08-01
We consider a wide-aperture surface-emitting laser with a saturable absorber section subjected to time-delayed feedback. We adopt the mean-field approach assuming a single longitudinal mode operation of the solitary vertical-cavity surface-emitting laser (VCSEL). We investigate cavity soliton dynamics under the effect of time-delayed feedback in a self-imaging configuration where diffraction in the external cavity is negligible. Using bifurcation analysis, direct numerical simulations, and numerical path-continuation methods, we identify the possible bifurcations and map them in a plane of feedback parameters. We show that for both the homogeneous and localized stationary lasing solutions in one spatial dimension, the time-delayed feedback induces complex spatiotemporal dynamics, in particular a period doubling route to chaos, quasiperiodic oscillations, and multistability of the stationary solutions.
Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming
Energy Technology Data Exchange (ETDEWEB)
Maduskar, Pragnya, E-mail: pragnya.maduskar@radboudumc.nl; Hogeweg, Laurens; Sánchez, Clara I.; Ginneken, Bram van [Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, 6525 GA (Netherlands); Jong, Pim A. de [Department of Radiology, University Medical Center Utrecht, 3584 CX (Netherlands); Peters-Bax, Liesbeth [Department of Radiology, Radboud University Medical Center, Nijmegen, 6525 GA (Netherlands); Dawson, Rodney [University of Cape Town Lung Institute, Cape Town 7700 (South Africa); Ayles, Helen [Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT (United Kingdom)
2014-07-15
Purpose: Efficacy of tuberculosis (TB) treatment is often monitored using chest radiography. Monitoring size of cavities in pulmonary tuberculosis is important as the size predicts severity of the disease and its persistence under therapy predicts relapse. The authors present a method for automatic cavity segmentation in chest radiographs. Methods: A two stage method is proposed to segment the cavity borders, given a user defined seed point close to the center of the cavity. First, a supervised learning approach is employed to train a pixel classifier using texture and radial features to identify the border pixels of the cavity. A likelihood value of belonging to the cavity border is assigned to each pixel by the classifier. The authors experimented with four different classifiers:k-nearest neighbor (kNN), linear discriminant analysis (LDA), GentleBoost (GB), and random forest (RF). Next, the constructed likelihood map was used as an input cost image in the polar transformed image space for dynamic programming to trace the optimal maximum cost path. This constructed path corresponds to the segmented cavity contour in image space. Results: The method was evaluated on 100 chest radiographs (CXRs) containing 126 cavities. The reference segmentation was manually delineated by an experienced chest radiologist. An independent observer (a chest radiologist) also delineated all cavities to estimate interobserver variability. Jaccard overlap measure Ω was computed between the reference segmentation and the automatic segmentation; and between the reference segmentation and the independent observer's segmentation for all cavities. A median overlap Ω of 0.81 (0.76 ± 0.16), and 0.85 (0.82 ± 0.11) was achieved between the reference segmentation and the automatic segmentation, and between the segmentations by the two radiologists, respectively. The best reported mean contour distance and Hausdorff distance between the reference and the automatic segmentation were
Deflecting cavity dynamics for time-resolved machine studies of SXFEL user facility
Song, Minghao; Liu, Bo; Wang, Dong
2016-01-01
Radio frequency deflectors are widely used for time-resolved electron beam energy, emittance and radiation profile measurements in modern free electron laser facilities. In this paper, we present the beam dynamics aspects of the deflecting cavity of SXFEL user facility, which is located at the exit of the undulator. With a targeted time resolution around 10 fs, it is expected to be an important tool for time-resolved commissioning and machine studies for SXFEL user facility.
Energy Technology Data Exchange (ETDEWEB)
Stocchino, Alessandro [Department of Environmental Engineering, University of Genoa (Italy); Repetto, Rodolfo [Department of Engineering of Structures, Water and Soil, University of L' Aquila (Italy); Cafferata, Chiara [Department of Environmental Engineering, University of Genoa (Italy)
2007-04-07
The dynamics of the vitreous body induced by eye rotations is studied experimentally. In particular, we consider the case in which the vitreous cavity is filled by a Newtonian fluid, either because the vitreous is liquefied or because it has been replaced, after vitrectomy, by a viscous fluid. We employ a rigid Perspex container which models, in a magnified scale, the vitreous cavity of the human eye. The shape of the cavity closely resembles that of the real vitreous chamber; in particular, the anterior part of the container is concave in order to model the presence of the eye lens. The container is filled with glycerol and is mounted on the shaft of a computer-controlled motor which rotates according to a periodic time law. PIV (particle image velocimetry) measurements are taken on the equatorial plane orthogonal to the axis of rotation. The experimental measurements show that the velocity field is strongly influenced by the deformed geometry of the domain. In particular, the formation of a vortex in the vicinity of the lens, which migrates in time towards the core of the domain, is invariably observed. The vortex path is tracked in time by means of a vortex identification technique and it is found that it is significantly influenced by the Womersley number of the flow. Particle trajectories are computed from the PIV measurements. Particles initially located at different positions on the equatorial horizontal plane (perpendicular to the axis of rotation) tend to concentrate in narrow regions adjacent to the lens, thus suggesting the existence, in such regions, of a vertical fluid ejection. Such a strong flow three-dimensionality, which is essentially induced by the irregular shape of the domain, may play a significant role in the mixing processes taking place inside the eye globe. The tangential stresses acting on the rigid boundary of the domain are also computed from the experimental measurements showing that regions subject to particularly intense stresses
Bossa, Cecilia; Amadei, Andrea; Daidone, Isabella; Anselmi, Massimiliano; Vallone, Beatrice; Brunori, Maurizio; Di Nola, Alfredo
2005-01-01
The results of extended (80-ns) molecular dynamics simulations of wild-type and YQR triple mutant of sperm whale deoxy myoglobin in water are reported and compared with the results of the simulation of the intermediate(s) obtained by photodissociation of CO in the wild-type protein. The opening/closure of pathways between preexistent cavities is different in the three systems. For the photodissociated state, we previously reported a clear-cut correlation between the opening probability and th...
Magnetic dynamics of weakly and strongly interacting hematite nanoparticles
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen
2000-01-01
The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance.......3(-0.8)(+1.0) x 10(-10) s for a rotation of the sublattice magnetization directions in the rhombohedral (111) plane. The corresponding median superparamagnetic blocking temperature is about 150 K. The dynamics of the second, dry sample, in which the particles are uncoated and thus allowed to aggregate, is slowed...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...
Spatially: resolved heterogeneous dynamics in a strong colloidal gel
Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto
2015-05-01
We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.
A Non-Hermitian Approach to Non-Linear Switching Dynamics in Coupled Cavity-Waveguide Systems
DEFF Research Database (Denmark)
Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper
2012-01-01
We present a non-Hermitian perturbation theory employing quasi-normal modes to investigate non-linear all-optical switching dynamics in a photonic crystal coupled cavity-waveguide system and compare with finite-difference-time-domain simulations.......We present a non-Hermitian perturbation theory employing quasi-normal modes to investigate non-linear all-optical switching dynamics in a photonic crystal coupled cavity-waveguide system and compare with finite-difference-time-domain simulations....
Ultra-strong coupling of molecular materials: spectroscopy and dynamics
George, Jino; Wang, Shaojun; Chervy, Thibault; Canaquier-Durand, Antoine; Schaeffer, Gaël; Lehn, Jean-Marie; Hutchison, James A.; Genet, Cyriaque; Ebbesen, Thomas W
2015-01-01
We report here a study of light–matter strong coupling involving three molecules with very different photo-physical properties. In particular we analyze their emission properties and show that the excitation spectra are very different from the static absorption of the coupled systems. Furthermore we
Sánchez, Claudia; Vidal, Valérie; Melo, Francisco
2015-08-01
We report an experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently used as an experimental model system for the investigation of the acoustic emission from the bursting of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the linear acoustic regime. For large initial membrane deformation, the rupture time τ rup is small compared to the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is described.
Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity
Energy Technology Data Exchange (ETDEWEB)
Jarlov, C., E-mail: clement.jarlov@epfl.ch; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E. [Laboratory of Physics of Nanostructures, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
2015-11-09
Exciton and cavity mode (CM) dynamics in site-controlled pyramidal quantum dots (QDs), integrated with linear photonic crystal membrane cavities, are investigated for a range of temperatures and photo-excitation power levels. The absence of spurious multi-excitonic effects, normally observed in similar structures based on self-assembled QDs, permits the observation of effects intrinsic to two-level systems embedded in a solid state matrix and interacting with optical cavity modes. The coupled exciton and CM dynamics follow the same trend, indicating that the CM is fed only by the exciton transition. The Purcell reduction of the QD and CM decay times is reproduced well by a theoretical model that includes exciton linewidth broadening and temperature dependent non-radiative processes, from which we extract a Purcell factor of 17 ± 5. For excitation powers above QD saturation, we show the influence of quantum wire barrier states at short delay time, and demonstrate the absence of multiexcitonic background emission.
Long term dynamics of the high luminosity Large Hadron Collider with crab cavities
Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.
2016-10-01
The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.
Light asymmetric dark matter from new strong dynamics
DEFF Research Database (Denmark)
Frandsen, Mads Toudal; Sarkar, Subir; Schmidt-Hoberg, Kai
2011-01-01
A ~5 GeV `dark baryon' with a cosmic asymmetry similar to that of baryons is a natural candidate for the dark matter. We study the possibility of generating such a state through dynamical electroweak symmetry breaking, and show that it can share the relic baryon asymmetry via sphaleron interactions...
Strong dynamics, composite Higgs and the conformal window
Nogradi, Daniel
2016-01-01
We review recent progress in the lattice investigations of near-conformal non-abelian gauge theories relevant for dynamical symmetry breaking and model building of composite Higgs models. The emphasis is placed on the mass spectrum and the running renormalized coupling. The role of a light composite scalar isosinglet particle as a composite Higgs particle is highlighted.
Xiong, Xiaoyan Y Z; Sha, Wei E I; Lo, Yat Hei; Chew, Weng Cho
2016-01-01
Second-harmonic (SH) generation is tremendously important for nonlinear sensing, microscopy and communication system. One of the great challenges of current designs is to enhance the SH signal and simultaneously tune its radiation direction with a high directivity. In contrast to the linear plasmonic scattering dominated by a bulk dipolar mode, a complex surface-induced multipolar interaction sets a fundamental limit to control the SH radiation from metallic nanostructures. In this work, we harness plasmonic hybridization mechanism together with a special selection rule governing the SH radiation to achieve the high-intensity and tunable-direction emission by a metallic particle-in-cavity nanoantenna (PIC-NA). The nanoantenna is modelled with a first-principle, self-consistent boundary element method, which considers the depletion of pump waves. The giant SH enhancement arises from a hybridized gap plasmon resonance between the small particle and the large cavity that functions as a concentrator and reflector...
Dynamical decoherence in a cavity with a large number of two-level atoms
Frasca, M
2004-01-01
We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, then the state collapses on a single coherent state describing a classical radiation mode. This appear as a true dynamical effect that could be observed in experiments with cavities.
Dynamic properties of a pulse-pumped fiber laser with a short, high-gain cavity
Yang, Chaolin; Guo, Junhong; Wei, Pu; Wan, Hongdan; Xu, Ji; Wang, Jin
2016-09-01
We demonstrate a pulsed high-gain all-fiber laser without intracavity modulators, where a short and heavily Erbium-doped fiber is used as the gain medium in a ring cavity. By pulsed-pumping this short high gain cavity and tuning an intracavity variable optical coupler, the laser generates optical pulses with a pulse-width of μs at a repetition rate in the order of kHz down to one-shot operation. Furthermore, dynamic properties of this laser are investigated theoretically based on a traveling-wave-model, in which an adaptive-discrete-grid-finite-difference-method is applied. The simulation results validate the experimental results. The demonstrated pulsed laser is compact, flexible and cost-effective, which will have great potential for applications in all-optical sensing and communication systems.
Short Pulse Dynamics in Strongly Nonlinear Dissipative Granular Chains
Rosas, Alexandre; Romero, Aldo H.; Nesterenko, Vitali F.; Lindenberg, Katja
2008-01-01
We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an attenuating solitary wave, is dominated by discreteness and nonlinearity effects as in a dissipationless chain, and has the shorter lifetime. The other is a purely dissipative sho...
Rotational dynamics in ammonia borane: Evidence of strong isotope effects
Energy Technology Data Exchange (ETDEWEB)
Cantelli, Rosario; Paolone, Annalisa; Palumbo, Oriele; Leardini, F.; Autrey, Thomas; Karkamkar, Abhijeet J.; Luedtke, Avery T.
2013-12-15
This work reports anelastic spectroscopy measurements on the partially deuterated (ND3BH3 and NH3BD3) and perdeuterated (ND3BD3) ammonia borane (NH3BH3) compounds. The relaxations previously reported in NH3BH3 are observed in all the samples, and are ascribed to the rotational and torsional dynamics of NH(D)3BH(D)3 complexes. A new thermally activated peak appears at 70 K (for a vibration frequency of 1 kHz) in the spectrum of NH3BD3 and ND3BD3. The peak is practically a single-time Debye process, indicating absence of interaction between the relaxing units, and has a strikingly high intensity. A secondary relaxation process is also detected around 55 K. The anelastic spectrum of the ND3BH3 only displays this less intense process at 55 K. The analysis of the peaks supplies information about the dynamics of the relaxing species, and the obtained results provide indications on the effect of partial and selective deuteration on the hydrogen (deuterium) dynamics.
Short-pulse dynamics in strongly nonlinear dissipative granular chains.
Rosas, Alexandre; Romero, Aldo H; Nesterenko, Vitali F; Lindenberg, Katja
2008-11-01
We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an attenuating solitary wave, dominated by discreteness and nonlinearity effects as in a dissipationless chain, and has the shorter lifetime. The other is a purely dissipative shocklike structure with a much longer lifetime and exists only in the presence of dissipation. The range of viscosities and initial configurations that lead to this complex wave disturbance are explored.
On the classical dynamics of strongly driven anharmonic oscillators
Breuer, H. P.; Dietz, K.; Holthaus, M.
1990-12-01
We investigate the dynamics of periodically driven anharmonic oscillators. In particular, we consider values of the coupling strength which are orders of magnitude higher than those required for the overlap of primary resonances. We observe a division of phase space into a regular and a stochastic region. Both regions are separated by a sharp chaos border which sets an upper limit to the stochastic heating of particles; its dependence on the coupling strength is studied. We construct perpetual adiabatic invariants governing regular motion. A bifurcation mechanism leading to the annihilation of resonances is explained.
Entanglement dynamics of a strongly driven trapped atom
Roghani, Maryam; Breuer, Heinz-Peter
2011-01-01
We study the entanglement between the internal electronic and the external vibrational degrees of freedom of a trapped atom which is driven by two lasers into electromagnetically-induced transparency. It is shown that basic features of the intricate entanglement dynamics can be traced to Landau-Zener splittings (avoided crossings) in the spectrum of the atom-laser field Hamiltonian. We further construct an effective Hamiltonian that describes the behavior of entanglement under dissipation induced by spontaneous emission processes. The proposed approach is applicable to a broad range of scenarios for the control of entanglement between electronic and translational degrees of freedom of trapped atoms through suitable laser fields.
Evolutionary dynamics of fluctuating populations with strong mutualism
Chotibut, Thiparat; Nelson, David
2013-03-01
Evolutionary game theory with finite interacting populations is receiving increased attention, including subtle phenomena associated with number fluctuations, i.e., ``genetic drift.'' Models of cooperation and competition often utilize a simplified Moran model, with a strictly fixed total population size. We explore a more general evolutionary model with independent fluctuations in the numbers of two distinct species, in a regime characterized by ``strong mutualism.'' The model has two absorbing states, each corresponding to fixation of one of the two species, and allows exploration of the interplay between growth, competition, and mutualism. When mutualism is favored, number fluctuations eventually drive the system away from a stable fixed point, characterized by cooperation, to one of the absorbing states. Well-mixed populations will thus be taken over by a single species in a finite time, despite the bias towards cooperation. We calculate both the fixation probability and the mean fixation time as a function of the initial conditions and carrying capacities in the strong mutualism regime, using the method of matched asymptotic expansions. Our results are compared to computer simulations.
Delocalization of Electrons in Strong Insulators at High Dynamic Pressures
Directory of Open Access Journals (Sweden)
William J. Nellis
2011-06-01
Full Text Available Systematics of material responses to shock flows at high dynamic pressures are discussed. Dissipation in shock flows drives structural and electronic transitions or crossovers, such as used to synthesize metallic liquid hydrogen and most probably Al2O3 metallic glass. The term “metal” here means electrical conduction in a degenerate system, which occurs by band overlap in degenerate condensed matter, rather than by thermal ionization in a non-degenerate plasma. Since H2 and probably disordered Al2O3 become poor metals with minimum metallic conductivity (MMC virtually all insulators with intermediate strengths do so as well under dynamic compression. That is, the magnitude of strength determines the split between thermal energy and disorder, which determines material response. These crossovers occur via a transition from insulators with electrons localized in chemical bonds to poor metals with electron energy bands. For example, radial extents of outermost electrons of Al and O atoms are 7 a0 and 4 a0, respectively, much greater than 1.7 a0 needed for onset of hybridization at 300 GPa. All such insulators are Mott insulators, provided the term “correlated electrons” includes chemical bonds.
DTL cavity design and beam dynamics for a TAC linear proton accelerator
Caliskan, A.; Yılmaz, M.
2012-02-01
A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.
DTL cavity design and beam dynamics for a TAC linear proton accelerator
Institute of Scientific and Technical Information of China (English)
A. Caliskan; M. Yi1maz
2012-01-01
A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project.Optimization criteria in cavity design are effective shunt impedance (ZTT),transit-time factor and electrical breakdown limit.In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor.Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA.The results of both codes have been compared.In the beam dynamical studies,the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.
Strong chaos without butterfly effect in dynamical systems with feedback
Boffetta, G; Vulpiani, A; Boffetta, Guido; Paladin, Giovanni; Vulpiani, Angelo
1995-01-01
We discuss the predictability of a conservative system that drives a chaotic system with positive maximum Lyapunov exponent \\lambda_0, such as the erratic motion of an asteroid in the gravitational field of two bodies of much larger mass. We consider the case where in absence of feedback (restricted model), the driving system is regular and completely predictable. A small feedback of strength \\epsilon still allows a good forecasting in the driving system up to a very long time T_p \\sim \\epsilon^{-\\alpha}, where \\alpha depends on the details of the system. The most interesting situation happens when the Lyapunov exponent of the total system is strongly chaotic with \\lambda_{tot} \\approx \\lambda_0 , practically independent of \\epsilon. Therefore an exponential amplification of a small incertitude on the initial conditions in the driving system for any \\epsilon \
Strongly nonlinear dynamics of electrolytes in large ac voltages
Olesen, Laurits H; Bruus, Henrik
2009-01-01
We study the response of a model micro-electrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two novel features - significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasi-equilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination", since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and co...
Strong semiclassical approximation of Wigner functions for the Hartree dynamics
Athanassoulis, Agissilaos
2011-01-01
We consider the Wigner equation corresponding to a nonlinear Schrödinger evolution of the Hartree type in the semiclassical limit h → 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L 2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L 2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which - as it is well known - is not pointwise positive in general.
The cavity approach to parallel dynamics of Ising spins on a graph
Neri, I.; Bollé, D.
2009-08-01
We use the cavity method to study the parallel dynamics of disordered Ising models on a graph. In particular, we derive a set of recursive equations in single-site probabilities of paths propagating along the edges of the graph. These equations are analogous to the cavity equations for equilibrium models and are exact on a tree. On graphs with exclusively directed edges we find an exact expression for the stationary distribution. We present the phase diagrams for an Ising model on an asymmetric Bethe lattice and for a neural network with Hebbian interactions on an asymmetric scale-free graph. For graphs with a nonzero fraction of symmetric edges the equations can be solved for a finite number of time steps. Theoretical predictions are confirmed by simulations. Using a heuristic method the cavity equations are extended to a set of equations that determine the marginals of the stationary distribution of Ising models on graphs with a nonzero fraction of symmetric edges. The results from this method are discussed and compared with simulations.
Xiong, Xiaoyan Y. Z.; Jiang, Li Jun; Sha, Wei E. I.; Lo, Yat Hei; Fang, Ming; Chew, Weng Cho; Choy, Wallace C. H.
2016-11-01
Second-harmonic (SH) generation is tremendously important for nonlinear sensing, microscopy, and communication systems. One of the great challenges of current designs is to enhance the SH signal and simultaneously tune its radiation direction with a high directivity. In contrast to the linear plasmonic scattering dominated by a bulk dipolar mode, a complex surface-induced multipolar source at the doubled frequency sets a fundamental limit to control the SH radiation from metallic nanostructures. In this work, we harness a plasmonic hybridization mechanism together with a special selection rule governing the SH radiation to achieve the high-intensity and tunable-direction emission by a metallic particle-in-cavity nanoantenna (PIC-NA). The nanoantenna is modelled with a first-principle, self-consistent boundary element method, which considers the depletion of pump waves. The giant SH enhancement arises from a hybridized gap plasmon resonance between the small particle and the large cavity that functions as a concentrator and reflector. Centrosymmetry breaking of the PIC-NA not only modifies the gap plasmon mode boosting the SH signal, but also redirects the SH wave with a unidirectional emission. The PIC-NA has a significantly larger SH conversion efficiency compared to existing literature. The main beam of the radiation pattern can be steered over a wide angle by tuning the particle's position.
Static and Dynamic Amplification Using Strong Mechanical Coupling
Ilyas, Saad
2016-07-28
Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100
Energy Technology Data Exchange (ETDEWEB)
Magazù, Salvatore; Migliardo, Federica [Dipartimento di Fisica, Università di Messina, C. da Papardo n° 31, P.O. Box 55, Vill. S. Agata, 98166 Messina (Italy); Benedetto, Antonio, E-mail: antonio.benedetto@ucd.ie [School of Physics, University College Dublin-UCD, Belfield Campus, Dublin 2 (Ireland); School of Medical Sciences, Sydney Medical School, The University of Sydney, Anderson Stuart Building F13, Sydney, NSW 2006 (Australia); Vertessy, Beata [Institute of Enzymology, Hungarian Academy of Sciences, Karolina 29, H-1113 Budapest (Hungary)
2013-10-16
Highlights: • The role played by the instrumental energy resolution in neutron scattering is presented. • The effect of natural bioprotectants on protein dynamics is shown. • A connection between the protein dynamical transition and the fragile-to-strong dynamical crossover is formulated. - Abstract: In this work Elastic Incoherent Neutron Scattering (EINS) results on lysozyme water mixtures in absence and in presence of bioprotectant systems are presented. The EINS data have been collected by using the IN13 and the IN10 spectrometers at the Institut Laue-Langevin (ILL, Grenoble, France) allowing to evaluate the temperature behaviour of the mean square displacement and of the relaxation time for the investigated systems. The obtained experimental findings together with theoretical calculations allow to put into evidence the role played by the spectrometer resolution and to clarify the connexion between the registered protein dynamical transition, the system relaxation time, and the instrumental energy resolution.
Schneider, Katharina
2016-01-01
We describe the design, fabrication, and characterization of a one-dimensional silicon photonic crystal cavity in which a central slot is used to enhance the overlap between highly localized optical and mechanical modes. The optical mode has an extremely small mode volume of 0.017 $(\\lambda_{vac}/n)^3$, and an optomechanical vacuum coupling rate of 310 kHz is measured. With optical quality factors up to $1.2 \\cdot 10^5$, fabricated devices are in the resolved-sideband regime. The electric field has its maximum at the slot wall and couples to the in-plane breathing motion of the slot. The optomechanical coupling is thus dominated by the moving-boundary effect, which we simulate to be six times greater than the photoelastic effect, in contrast to most structures, where the photoelastic effect is often the primary coupling mechanism.
Beam dynamics in a rebunching CH cavity with high space charge
Energy Technology Data Exchange (ETDEWEB)
Schwarz, Malte; Heilmann, Manuel; Meusel, Oliver; Noll, Daniel; Podlech, Holger; Ratzinger, Ulrich; Seibel, Anja [Institute for Applied Physics, Goethe-University, Frankfurt am Main (Germany)
2013-07-01
The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is under construction with expected first beam in 2013. It will allow research on nucleosynthesis of elements in stars by the s-process as well as on neutron capture cross sections for activation experiments providing knowledge gain on transmutation of radioactive waste and fusion reactor materials. The 5-gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination and completes the LINAC section. It will be used for varying the output energy between 1.8 and 2.2 MeV as well as for focusing the proton beam bunch longitudinally to compensate the huge space charge forces at high currents up to 200 mA. Therefore beam dynamics and beam transport performance research on this CH cavity is under progress. It includes benchmarking of different beam dynamic codes like LORASR, TraceWin and a new particle-in-cell tracking code for non-relativistic beams currently under development at IAP as well as validation of the results by measurements. Furthermore, this CH rebuncher serves as prototype for CH cavity operation at MYRRHA (Mol, Belgium), an Accelerator Driven System (ADS) for transmutation of high level nuclear waste.
Characterizing the dynamics of cavity solitons and frequency combs in the Lugiato-Lefever equation
Parra-Rivas, P.; Gomila, D.; Gelens, L.
2016-04-01
In this work we present a detailed analysis of bifurcation structures of cavity solitons (CSs) and determine the different dynamical regimes in the Lugiato-Lefever (LL) equation in the presence of anomalous and normal chromatic dispersion regimes. Such an analysis has been shown to also increase our understanding of frequency combs (FCs). A FC consists in a set of equidistant spectral lines that can be used to measure light frequencies and time intervals more easily and precisely than ever before. Due to the duality between CSs in microcavities and FCs, we can gain information about the behavior of FCs by analyzing the dynamics of CSs. In the anomalous dispersion case bright CSs are organized in what is known as a homoclinic snaking bifurcation structure. In contrast, in the normal dispersion regime dark CSs are organized differently, in a structure known as collapsing snaking. Despite the differences in bifurcation scenarios, both types of CSs present similar temporal instabilities.
Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi
2013-07-01
The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.
Linear beam dynamics and ampere class superconducting RF cavities at RHIC
Calaga, Rama R.
-cell electron gun and a five-cell SRF linac cavity are presented. Several RF and beam dynamics issues ultimately resulting in an optimum cavity design are discussed in detail.
Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J
2017-03-09
As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.
Dynamics and control of a spacecraft with a moving pulsating ball in a spherical cavity
Vreeburg, J. P. B.
1997-01-01
A model with two interacting bodies, for a spacecraft with liquid, has been developed. The spacecraft without liquid is the 'tank' and is characterized by its inertial properties and the location and size of a spherical cavity. In the cavity is located the 'slug', a sphere of uniform density with a variable radius. At the point of contact between slug and tank the interaction force and torque are prescribed as a function of liquid properties and state variables. The model is named SMS, for Sloshsat Motion Simulator. Its initial objective is to support the development of control laws for the Sloshsat spacecraft, presently under development and scheduled to be launched in 1998. Sloshsat is to perform a series of experiments for the validation of CFD models of spacecraft with onboard liquid. The SMS parameters are to be predicted by CFD simulations and finally to be validated by Sloshsat results. The special feature of SMS is the variable size of the slug. It provides a degree of freedom for the modelling of the variable shape of onboard liquid. The dynamic behaviour of SMS is illustrated and discussed for some particular cases, including a PAM-D nutation model. Control of SMS is evaluated for commanded uniform rotation about its intermediate principal axis and stabilized by a cold-gas jet system with 12 nozzles. The cavity centre is on the axis of rotation but not at the centre of mass of the tank. Although the tank is easily stabilized by its reaction control system, a very small friction between slug and tank causes angular momentum to accumulate in the slug motion and results in large oscillations of Size.
Villar, Paula I.; Soba, Alejandro
2017-07-01
We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.
Dynamic compensation of an rf cavity failure in a superconducting linac
Directory of Open Access Journals (Sweden)
Jean-Luc Biarrotte
2008-07-01
Full Text Available An accelerator driven system (ADS for transmutation of nuclear waste typically requires a 600 MeV–1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional “reliability”: because of the induced thermal stress to the subcritical core, the number of unwanted “beam trips” should not exceed a few per year, a specification that is several orders of magnitude above usual performance. In order to meet this extremely high reliability, the accelerator needs to implement, to the maximum possible extent, a fault-tolerance strategy that would allow beam operation in the presence of most of the envisaged faults that could occur in its beam line components, and in particular rf systems’ failures. This document describes the results of the simulations performed for the analysis of the fault-tolerance capability of the XT-ADS superconducting linac in the case of an rf cavity failure. A new simulation tool, mixing transient rf behavior of the accelerating cavities with full 6D description of the beam dynamics, has been developed for this purpose. Fast fault-recovery scenarios are proposed, and required research and development is identified.
Strong ground-motion prediction from Stochastic-dynamic source models
Guatteri, Mariagiovanna; Mai, P.M.; Beroza, G.C.; Boatwright, J.
2003-01-01
In the absence of sufficient data in the very near source, predictions of the intensity and variability of ground motions from future large earthquakes depend strongly on our ability to develop realistic models of the earthquake source. In this article we simulate near-fault strong ground motion using dynamic source models. We use a boundary integral method to simulate dynamic rupture of earthquakes by specifying dynamic source parameters (fracture energy and stress drop) as spatial random fields. We choose these quantities such that they are consistent with the statistical properties of slip heterogeneity found in finite-source models of past earthquakes. From these rupture models we compute theoretical strong-motion seismograms up to a frequency of 2 Hz for several realizations of a scenario strike-slip Mw 7.0 earthquake and compare empirical response spectra, spectra obtained from our dynamic models, and spectra determined from corresponding kinematic simulations. We find that spatial and temporal variations in slip, slip rise time, and rupture propagation consistent with dynamic rupture models exert a strong influence on near-source ground motion. Our results lead to a feasible approach to specify the variability in the rupture time distribution in kinematic models through a generalization of Andrews' (1976) result relating rupture speed to apparent fracture energy, stress drop, and crack length to 3D dynamic models. This suggests that a simplified representation of dynamic rupture may be obtained to approximate the effects of dynamic rupture without having to do full dynamic simulations.
Bossa, Cecilia; Amadei, Andrea; Daidone, Isabella; Anselmi, Massimiliano; Vallone, Beatrice; Brunori, Maurizio; Di Nola, Alfredo
2005-01-01
The results of extended (80-ns) molecular dynamics simulations of wild-type and YQR triple mutant of sperm whale deoxy myoglobin in water are reported and compared with the results of the simulation of the intermediate(s) obtained by photodissociation of CO in the wild-type protein. The opening/closure of pathways between preexistent cavities is different in the three systems. For the photodissociated state, we previously reported a clear-cut correlation between the opening probability and the presence of the photolyzed CO in the proximity of the passage; here we show that in wild-type deoxy myoglobin, opening is almost random. In wild-type deoxy myoglobin, the passage between the distal pocket and the solvent is strictly correlated to the presence/absence of a water molecule that simultaneously interacts with the distal histidine side chain and the heme iron; conversely, in the photodissociated myoglobin, the connection with the bulk solvent is always open when CO is in the vicinity of the A pyrrole ring. In YQR deoxy myoglobin, the mutated Gln(E7)64 is stably H-bonded with the mutated Tyr(B10)29. The essential dynamics analysis unveils a different behavior for the three systems. The motion amplitude is progressively restricted in going from wild-type to YQR deoxy myoglobin and to wild-type myoglobin photoproduct. In all cases, the principal motions involve mainly the same regions, but their directions are different. Analysis of the dynamics of the preexisting cavities indicates large fluctuations and frequent connections with the solvent, in agreement with the earlier hypothesis that some of the ligand may escape from the protein through these pathways. PMID:15849248
Energy Technology Data Exchange (ETDEWEB)
Frisani, Angelo; Hassan, Yassin A; Ugaz, Victor M
2010-11-02
The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the
Strong mode coupling in InP quantum dot-based GaInP microdisk cavity dimers
Witzany, M.; Liu, T.-L.; Shim, J.-B.; Hargart, F.; Koroknay, E.; Schulz, W.-M.; Jetter, M.; Hu, E.; Wiersig, J.; Michler, P.
2013-01-01
We report on strong mode coupling in closely spaced GaInP microdisk dimer structures including InP quantum dots as the active medium. Using electron beam lithography and a combination of dry- and wet-etch processes, dimers with inter-disk separations down to d < 100 nm have been fabricated. Applying a photo-thermal heating scheme, we overcome the spectral mode detuning due to the size mismatch between the two disks forming the dimer. We observe signatures of mode coupling in the corresponding photoluminescence spectra with coupling energies of up to 0.66 MeV. With the aid of a numerical analysis, we specify the geometrical and physical factors of the microdisk dimer precisely, and reproduce its spectrum with good agreement.
Lee, Jinkyo
1993-01-01
Efficient and accurate analytical or semi-analytical solutions have been developed for the dynamics of one and two dimensional linear structures employing elemental dynamic flexibility formulation. This dissertation is divided into three parts. In the first, the elemental flexibility formulation is developed for Euler-Bernoulli beams having discontinuous section properties, which can be viewed as the synthesis of uniform beams, and the exactness of the solution is established. In the second, the elemental flexibility formulation is extended to thin rectangular plates having Levy boundary conditions, and conditions under which the exact solution can be achieved are presented. In the third, the structural-acoustic problem of Helmholtz fluid enclosed by a partially flexible cavity is posed and solved. Here, a concise analytical representation of the structural dynamics is used in conjunction with a boundary element approach for the fluid medium to give an efficient and accurate semi-analytical solution. All three sections are organized along similar lines. Following an introduction and review of the pertinent literature, the governing equations are derived and solved, a series of example problems is presented, the results from the examples are compared with similar results from the literature, and efficacy of the method when compared with other methods is discussed. This is followed by a general conclusions section and a series of appendices.
Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model
Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.
2017-01-01
Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025
Cockle, Kristina L; Martin, Kathy
2015-04-01
Network analysis offers insight into the structure and function of ecological communities, but little is known about how empirical networks change over time during perturbations. "Nest webs" are commensal networks that link secondary cavity-nesting vertebrates (e.g., bluebirds, ducks, and squirrels, which depend on tree cavities for nesting) with the excavators (e.g., woodpeckers) that produce cavities. In central British Columbia, Canada, Northern Flicker (Colaptes auratus) is considered a keystone excavator, providing most cavities for secondary cavity-nesters. However, roles of species in the network, and overall network architecture, are expected to vary with population fluctuations. Many excavator species increased in abundance in association with a pulse of food (adult and larval beetles) during an outbreak of mountain pine beetle (Dendroctonus ponderosae), which peaked in 2003-2004. We studied nest-web dynamics from 1998 to 2011 to determine how network architecture changed during this resource pulse. Cavity availability increased at the onset of the beetle outbreak and peaked in 2005. During and after the outbreak, secondary cavity-nesters increased their use of cavities made by five species of beetle-eating excavators, and decreased their use of flicker cavities. We found low link turnover, with 74% of links conserved from year to year. Nevertheless, the network increased in evenness and diversity of interactions, and declined slightly in nestedness and niche overlap. These patterns remained evident seven years after the beetle outbreak, suggesting a legacy effect. In contrast to previous snapshot studies of nest webs, our dynamic approach reveals how the role of each cavity producer, and thus quantitative network architecture, can vary over time. The increase in interaction diversity with the beetle outbreak adds to growing evidence that insect outbreaks can increase components of biodiversity in forest ecosystems at various temporal scales. The observed
Transition to complex dynamics in the cubic lid-driven cavity
Lopez, Juan M.; Welfert, Bruno D.; Wu, Ke; Yalim, Jason
2017-07-01
The onset of time dependence in the cubic lid-driven cavity is surprisingly complicated, given the simplicity of the geometry and the modest value of the Reynolds number at which it occurs. The onset is characterized by finite-amplitude oscillations that appear to be stable for long times, but are subjected to intermittent bursts at irregular times during which the reflection symmetry about the spanwise midplane is broken. The complex dynamics are shown to be intimately related to the subcritical nature of the instability of the steady basic state. We use a spectral collocation numerical technique, solving both in the full three-dimensional space and in the symmetric subspace, and use selective frequency damping and Arnoldi iterations about the unstable basic state to determine its bifurcations. Edge tracking is also used to investigate a number of time-dependent saddle states. Putting all this together, we show that the complex dynamics are organized by two successive Hopf bifurcations, the first of which is shown to be subcritical. All local states are unstable in the full space at higher Reynolds numbers, leading to the intermittent bursting behavior.
DEFF Research Database (Denmark)
Langbein, Wolfgang Werner; Hvam, Jørn Märcher
2002-01-01
The directional dynamics of the resonant Rayleigh scattering from a semiconductor microcavity is investigated. When optically exciting the lower polariton branch, the strong dispersion results in a directional emission on a ring. The coherent emission ring shows a reduction of its angular width...... for increasing time after excitation, giving direct evidence for the time-energy uncertainty in the dynamics of the scattering by disorder. The ring width converges with time to a finite value, a direct measure of an intrinsic momentum broadening of the polariton states localized by multiple disorder scattering....
Energy Technology Data Exchange (ETDEWEB)
Meister, Selina; Kubala, Bjoern; Gramich, Vera; Mecklenburg, Michael; Stockburger, Juergen T.; Ankerhold, Joachim [Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany)
2015-07-01
Motivated by recent experiments a superconducting hybrid circuit consisting of a voltage biased Josephson junction in series with a resonator is studied. For strong driving the dynamics of the system can be very complex, even in the classical regime. Studying the dissipative dynamics within a Langevin-type description, we obtain well-defined dynamical steady states. In contrast to the well-known case of anharmonic potentials, like the Duffing or parametric oscillator, in our case the non-linearity stems from the peculiar way the external drive couples to the system [2]. We investigate the resonance behaviour of this non-linear hybrid system, in particular when driving at higher- or subharmonics. The resulting down- and up-conversions can be observed both, as resonances in the I-V curve, and in the emitted microwave radiation, which yields additional spectral information.
Computational strong-field quantum dynamics intense light-matter interactions
2017-01-01
This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.
Dynamic response of cylindrical cavity to anti-plane impact load by using analytical approach
Institute of Scientific and Technical Information of China (English)
翟朝娇; 夏唐代; 杜国庆; 丁智
2014-01-01
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied. Using Laplace transform combining with contour integral of the Laplace inverse transform specifically, the general analytical expressions of the soil displacement and stress are obtained in the time domain, respectively. And the numerical solutions of the problem computed by analytical expressions are presented. In the time domain, the dynamic responses of the infinite elastic soil are analyzed, and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results. One observes good agreement between analytical and numerical inversion results, lending the further support to the method presented. Finally, some valuable shear wave propagation laws are gained:the displacement of the soil remains zero before the wave arrival, and after the shear wave arrival, the stress and the displacement at this point increase abruptly, then reduce and tend to the static value gradually at last. The wave attenuates along the radial, therefore the farther the wave is from the source, the smaller the stress and the displacement are, and the stress and the displacement are just functions of the radial distance from the axis.
Dynamic Localization Condition of Two Electrons in a Strong dc-ac Biased Quantum Dot Molecule
Institute of Scientific and Technical Information of China (English)
WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi
2004-01-01
@@ We present a perturbation investigation of dynamic localization condition of two electrons in a strong dc-ac biased quantum dot molecule. By reducing the system to an Hubbard-type effective two-site model and by applying Floquet theory, we find that the dynamical localization phenomenon occurs under certain values of the large strength of the dc and ac field. This demonstrates the possibility of using appropriate dc-ac fields to manipulate dynamical localized states in mesoscopic devices, which is an essential component of practical schemes for quantum information processing. Our conclusion is instructive to the field of quantum function devices.
Towards a cross-correlation approach to strong-field dynamics in Black Hole spacetimes
Jaramillo, J L; Moesta, P; Rezzolla, L
2012-01-01
The qualitative and quantitative understanding of near-horizon gravitational dynamics in the strong-field regime represents a challenge both at a fundamental level and in astrophysical applications. Recent advances in numerical relativity and in the geometric characterization of black hole horizons open new conceptual and technical avenues into the problem. We discuss here a research methodology in which spacetime dynamics is probed through the cross-correlation of geometric quantities constructed on the black hole horizon and on null infinity. These two hypersurfaces respond to evolving gravitational fields in the bulk, providing canonical "test screens" in a "scattering"-like perspective onto spacetime dynamics. More specifically, we adopt a 3+1 Initial Value Problem approach to the construction of generic spacetimes and discuss the role and properties of dynamical trapping horizons as canonical inner "screens" in this context. We apply these ideas and techniques to the study of the recoil dynamics in post-...
Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating
DEFF Research Database (Denmark)
Taghizadeh, Alireza; Chung, Il-Sug
2017-01-01
strength. This can be implemented by employing a high-contrast grating (HCG) as the coupling reflector in a system of two coupled vertical cavities, and engineering both the HCG reflection phase and amplitude response. Several examples of HCG-based coupled cavities with novel features are discussed...
Jansen, M.; Zuidema, P.A.; Anten, N.P.R.; Martínez-Ramos, M.
2012-01-01
1. Persistent variation in growth rate between individual plants can have strong effects on population dynamics as fast growers reach the reproductive size at an earlier age and thus potentially contribute more to population growth than slow growers. In tropical forests, such persistent growth diffe
Yang, Hong-Liu; Radons, Günter
2008-01-01
Crossover from weak to strong chaos in high-dimensional Hamiltonian systems at the strong stochasticity threshold (SST) was anticipated to indicate a global transition in the geometric structure of phase space. Our recent study of Fermi-Pasta-Ulam models showed that corresponding to this transition the energy density dependence of all Lyapunov exponents is identical apart from a scaling factor. The current investigation of the dynamic XY model discovers an alternative scenario for the energy dependence of the system dynamics at SSTs. Though similar in tendency, the Lyapunov exponents now show individually different energy dependencies except in the near-harmonic regime. Such a finding restricts the use of indices such as the largest Lyapunov exponent and the Ricci curvatures to characterize the global transition in the dynamics of high-dimensional Hamiltonian systems. These observations are consistent with our conjecture that the quasi-isotropy assumption works well only when parametric resonances are the dominant sources of dynamical instabilities. Moreover, numerical simulations demonstrate the existence of hydrodynamical Lyapunov modes (HLMs) in the dynamic XY model and show that corresponding to the crossover in the Lyapunov exponents there is also a smooth transition in the energy density dependence of significance measures of HLMs. In particular, our numerical results confirm that strong chaos is essential for the appearance of HLMs.
LHC Limits on the Top-Higgs in Models with Strong Top-Quark Dynamics
Chivukula, R Sekhar; Logan, Heather E; Martin, Adam; Simmons, Elizabeth H
2011-01-01
LHC searches for the standard model Higgs Boson in WW or ZZ decay modes place strong constraints on the top-Higgs state predicted in many models with new dynamics preferentially affecting top quarks. Such a state couples strongly to top-quarks, and is therefore produced through gluon fusion at a rate enhanced relative to the rate for the standard model Higgs boson. A top-Higgs state with mass less than 300 GeV is excluded at 95% CL if the associated top-pion has a mass of 150 GeV, and the constraint is even stronger if the mass of the top-pion state exceeds the top-quark mass or if the top-pion decay constant is a substantial fraction of the weak scale. These results have significant implications for theories with strong top dynamics, such as topcolor-assisted technicolor, top-seesaw models, and certain Higgsless models.
Effects of inner electrons on atomic strong-field ionization dynamics
Rapp, J
2013-01-01
The influence of inner electrons on the ionization dynamics in strong laser fields is investigated in a wavelength regime where the inner electron dynamics is usually assumed to be negligible. The role of inner electrons is of particular interest for the application of frozen-core approximations and pseudopotentials in time-dependent density functional theory (TDDFT) and the single-active-electron (SAE) approximation in strong-field laser physics. Results of TDDFT and SAE calculations are compared with exact ones obtained by the numerical ab initio solution of the three-electron time-dependent Schr\\"odinger equation for a lithium model atom. It is found that dynamical anti-screening may substantially alter the ionization rate in the single-photon regime. Requirements for the validity of the approximations in the single and multiphoton ionization domain are identified.
Tagliamonti, Vincent; Zhao, Arthur; Rozgonyi, Tamás; Marquetand, Philipp; Weinacht, Thomas
2016-01-01
We study strong field molecular ionization using few- (four to ten) cycle laser pulses. Employing a supercontinuum light source, we are able to tune the optical laser wavelength (photon energy) over a range of about $\\sim$200 nm (500 meV). We measure the photoelectron spectrum for a series of different molecules as a function of laser intensity, frequency, and bandwidth and illustrate how the ionization dynamics vary with these parameters. We find that multiphoton resonances and nonadiabatic dynamics (internal conversion) play an important role and result in ionization to different ionic continua. Interestingly, while nuclear dynamics can be "frozen" for sufficiently short laser pulses, we find that resonances strongly influence the photoelectron spectrum and final cationic state of the molecule regardless of pulse duration -- even for pulses that are less than four cycles in duration.
Kumar, Abhay
2013-01-01
The small bandwidth of superconducting cavities makes the study of dynamic Lorentz force detuning and its compensation indispensable in case of pulsed mode operation of high gradient accelerators. In this paper, we present the study of this detuning and also propose an optimized design for five cell 650 MHz {\\beta}g= 0.9 elliptic superconducting cavities, which will be used in the high energy section of the 1 GeV H-LINAC for the proposed Indian Spallation Neutron Source project, by suitably inserting the inter-cell stiffeners. The paper presents a sequential design methodology which starts with study of static Lorentz force detuning and tunability; and progresses to find out the structural modes and related dynamic detuning values by performing transient calculations. The developed methodology is general in nature and can be used for a three dimensional model of any geometry. The work will be useful for optimizing the design against dynamic Lorentz force detuning of SRF cavities of any shape.
Decay dynamics in a strongly driven atom-molecule coupled system
Rakshit, Arpita; Deb, Bimalendu
2013-01-01
Within the framework of master equation, we study decay dynamics of an atom-molecule system strongly coupled by two photoassociation lasers. Summing over the infinite number of electromagnetic vacuum modes that are coupled to the laser-dressed atom-molecule system, we obtain an integro-differential master equation for the the system's reduced density matrix. The equation is numerically solved to describe system dynamics in the presence of decay. In particular, we discuss correlated spontaneous emission from a pair of electronically excited diatomic ro-vibrational states due to their laser induced coupling to the ground continuum of atomic scattering states. This allows us to calculate time-dependence of emitted radiation intensity. It exhibits quantum beats due to coherent dynamics. The phase difference between the two driving fields is found to significantly affect the decay dynamics and the beats. Our results demonstrate the possibility to control decay from the molecular excited states and the decoherence ...
Energy Technology Data Exchange (ETDEWEB)
Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)
2015-10-20
In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.
Dynamics Inside the Radio and X-ray Cluster Cavities of Cygnus A and Similar FRII Sources
Mathews, William G
2012-01-01
We describe approximate axisymmetric computations of the dynamical evolution of material inside radio lobes and X-ray cluster gas cavities in Fanaroff-Riley II sources such as Cygnus A. All energy is delivered by a jet to the lobe/cavity via a moving hotspot where jet energy dissipates in a reverse shock. Our calculations describe the evolution of hot plasma, cosmic rays (CRs) and toroidal magnetic fields flowing from the hotspot into the cavity. Many observed features are explained. Gas, CRs and field flow back along the cavity surface in a "boundary backflow" consistent with detailed FRII observations. Computed ages of backflowing CRs are consistent with observed radio-synchrotron age variations only if shear instabilities in the boundary backflow are damped and we assume this is done with viscosity of unknown origin. Magnetic fields estimated from synchrotron self-Compton (SSC) X-radiation observed near the hotspot evolve into radio lobe fields. Computed profiles of radio synchrotron lobe emission perpendi...
Parkin, E R; Hoare, M G; Wright, N J; Drake, J J
2009-01-01
2D axis-symmetric hydrodynamical simulations are presented which explore the interaction of stellar and disk winds with surrounding infalling cloud material. The star, and its accompanying disk, blow winds inside a cavity cleared out by an earlier jet. The collision of the winds with their surroundings generates shock heated plasma which reaches temperatures up to ~10^8 K. Attenuated X-ray spectra are calculated from solving the equation of radiative transfer along lines-of-sight. This process is repeated at various epochs throughout the simulations to examine the evolution of the intrinsic and attenuated flux. We find that the dynamic nature of the wind-cavity interaction fuels intrinsic variability in the observed emission on timescales of several hundred years. This is principally due to variations in the position of the reverse shock which is influenced by changes in the shape of the cavity wall. The collision of the winds with the cavity wall can cause clumps of cloud material to be stripped away. Mixing...
MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY
Energy Technology Data Exchange (ETDEWEB)
Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab
2016-09-26
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.
Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium
Liu, Hao; Kang, Wei; Zhang, Qi; Zhang, Yin; Duan, Huilin; He, X. T.
2016-12-01
Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.
Equilibration Dynamics of Strongly Interacting Bosons in 2D Lattices with Disorder
Yan, Mi; Hui, Hoi-Yin; Rigol, Marcos; Scarola, V. W.
2017-08-01
Motivated by recent optical lattice experiments [J.-y. Choi et al., Science 352, 1547 (2016), 10.1126/science.aaf8834], we study the dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system.
Solvable model of dissipative dynamics in the deep strong coupling regime
Bina, M; Casanova, J; Garcia-Ripoll, J J; Lulli, A; Casagrande, F; Solano, E
2011-01-01
We describe the dynamics of a qubit interacting with a bosonic mode coupled to a zero-temperature bath in the deep strong coupling (DSC) regime. We provide an analytical solution for this open system dynamics in the off-resonance case of the qubit-mode interaction. Collapses and revivals of parity chain populations and the oscillatory behavior of the mean photon number are predicted. At the same time, photon number wave packets, propagating back and forth along parity chains, become incoherently mixed. Finally, we investigate numerically the effect of detuning on the validity of the analytical solution.
Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman Operator Theory
2017-03-01
calculus, applied mathematics, Director’s Research Initiative 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...ARL-TR-7959 MAR 2017 US Army Research Laboratory Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman...report when it is no longer needed. Do not return it to the originator. ARL-TR-7959 ● MAR 2017 US Army Research Laboratory Global
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
Energy Technology Data Exchange (ETDEWEB)
Mottola, E.; Bhattacharya, T.; Cooper, F. [and others
1998-12-31
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.
Energy Technology Data Exchange (ETDEWEB)
Li, S.; Pons, R. (Autonoma de Barcelona (Spain). Dept. of Fisica); Zhang, Y. (Chongqing Inst. of Posts and Telecommunications, Sichuan (China). Telecommunications Engineering Dept.)
1994-08-01
In this paper, the authors study a laser using a nonlinear Fabry-Perot etalon as a cavity mirror. First, using the semiclassical laser theory and the differential equation for the lossy nonlinear Fabry-Perot etalon, they develop dynamic equations describing this system for single-mode operation. In this model, the frequency-pulling effect, a finite response time of the nonlinear medium, and a finite-cavity round-trip time of the Fabry-Perot etalon are included. Second, based on this model, they analyze the stability of this laser and give some numerical results. The results show that (1) this system can exist in the stable state and in the unstable state; (2) there are not only saddle-node bifurcations but also Hopf bifurcations; (3) the detuning parameter will effect the characteristics of the bistability and the number and distribution of Hopf bifurcation points.
Beam dynamic simulations of the CLIC crab cavity and implications on the BDS
Energy Technology Data Exchange (ETDEWEB)
Shinton, I.R.R., E-mail: ian.shinton@stfc.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Burt, G. [Engineering Department, Lancaster University, Lancaster (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Glasman, C.J.; Jones, R.M. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Wolski, A. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom)
2011-11-21
The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as 'Crab cavities', are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.
Energy Technology Data Exchange (ETDEWEB)
Zhang, P.; Baboi, N.; Jones, R.M.; Eddy, N.
2012-11-01
Beam-excited higher order modes (HOMs) can provide remote diagnostics information of the beam position and cavity misalignment. In this paper we report on recent studies on the resolution with specially selected series of modes with custom-built electronics. This constitutes the first report of measurements of these cavities in which we obtained a resolution of 20 micron in beam offset. Details of the setup of the electronics and HOM measurements are provided.
Energy Technology Data Exchange (ETDEWEB)
Tahira, Rabia; Ikram, Manzoor; Zubairy, M Suhail [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Bougouffa, Smail [Department of Physics, Faculty of Science, Taibah University, PO Box 30002, Madinah (Saudi Arabia)
2010-02-14
We investigate the phenomenon of sudden death of entanglement in a high-dimensional bipartite system subjected to dissipative environments with an arbitrary initial pure entangled state between two fields in the cavities. We find that in a vacuum reservoir, the presence of the state where one or more than one (two) photons in each cavity are present is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for infinite time and decays asymptotically with the decay of individual qubits. For pure two-qubit entangled states in a thermal environment, we observe that sudden death of entanglement always occurs. The sudden death time of the entangled states is related to the number of photons in the cavities, the temperature of the reservoir and the initial preparation of the entangled states.
Quantum phases and dynamics of bosonic atoms trapped in a single-mode optical cavity
Sundar, Bhuvanesh; Mueller, Erich
2016-05-01
Motivated by experiments performed by R. Landig et al. (arXiv:1511.00007), we theoretically explore the behavior of bosonic atoms trapped in a single-mode cavity in the presence of a two-dimensional optical lattice. As explained by arXiv:1511.00007, Rayleigh scattering of light from the lattice-inducing beams into the cavity produces infinite-range cavity-mediated interactions between the atoms, leading to competition between superfluid, supersolid, Mott insulating and charge density wave phases. We calculate the phase diagram for a uniform trap using a variation of the Gutzwiller Ansatz. We also calculate the spatial distribution of the different phases in the gas in the presence of a harmonic trap. We explore hysteretic behavior when parameters of the system are changed.
Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron
Badgley, Karie Elizabeth
There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for
Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin
2016-11-01
In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.
Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.
2017-04-01
In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the
Energy Technology Data Exchange (ETDEWEB)
Park, Byung Kwan; Kim, Bohyun; Park, Jong Min; Ryu, Jeong Ah [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology, Center for Imaging Science, Seoul (Korea); Kim, Mi Sung [Kwandong University College of Medicine, Department of Radiology, Myongji Hospital, Seoul (Korea); Bae, Duk Soo [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Obstetrics and Gynecology, Seoul (Korea); Ahn, Geung Hwan [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Pathology, Seoul (Korea)
2006-07-15
The objectives of this study were to determine the usefulness of magnetic resonance (MR) imaging in the differentiation of various lesions causing an abnormality of the endometrial cavity by evaluating the imaging features on dynamic contrast-enhanced study and late contrast-enhanced T1-weighted images (T1WI). Contrast-enhanced MR imaging of 59 pathologically proven lesions that showed an abnormality of the endometrial cavity, including 32 endometrial cancers, five sarcomas, nine hyperplastic polyps, nine submucosal myomas, three hyperplasia, and one adenomyoma, were retrospectively reviewed. The enhancement degree and patterns on dynamic contrast-enhanced study and late contrast-enhanced T1WI were compared among different pathologies. On dynamic contrast-enhanced study, 72% (23/32) of endometrial cancers showed early peak enhancement to be reached within 1 min following intravenous administration of contrast material. On late-contrast-enhanced T1WI, lesions showed weak enhancement with gradual washout. Ninety-five percent (21/22) of benign lesions and 100% (5/5) of sarcomas showed late peak enhancement to be reached in 2-3 min following intravenous administration of contrast material. On late contrast-enhanced T1WI, both of these lesions showed persistent strong enhancement. Different enhancement patterns on dynamic contrast-enhanced MR imaging and late contrast-enhanced T1WI can provide a useful clue in the differentiation of various lesions causing an abnormality of the endometrial cavity. (orig.)
Mohamed, A.-B. A.; Eleuch, H.
2017-02-01
An analytical description of a three-level atom in an optical cavity coupled to the environment is obtained. The Husimi function and the Wehrl density are calculated to investigate the information loss dynamics of the phase space. The Wehrl entropy and the atomic information entropy are explored to study the coherence loss of the three-level system. We show that these measures, as non-classical indicators, are very sensitive not only to the coupling strength to the reservoir but also to the initial state.
On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas
Energy Technology Data Exchange (ETDEWEB)
Sakhel, Roger R., E-mail: rogersakhel@yahoo.com [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Balqa Applied University, Amman 11134 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)
2015-12-01
The dynamics of a Bose–Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross–Pitaevskii equation is solved numerically by the split-step Crank–Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.
A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics.
Mabey, P; Richardson, S; White, T G; Fletcher, L B; Glenzer, S H; Hartley, N J; Vorberger, J; Gericke, D O; Gregori, G
2017-01-30
The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.
Dynamics of compressional Mach cones in a strongly coupled complex plasma
Bandyopadhyay, P; Kadyan, Sangeeta; Sen, Abhijit
2016-01-01
Using a Generalised-Hydrodynamic (GH) fluid model we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.
Experimental measurement of non-Markovian dynamics and self-diffusion in a strongly coupled plasma
Strickler, T S; McQuillen, P; Daligault, J; Killian, T C
2015-01-01
We present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short timescales compared to the inverse collision rate. Non-exponential decay towards equilibrium for the average velocity of a tagged population of ions heralds non-Markovian dynamics and a breakdown of assumptions underlying standard kinetic theory. We prove the equivalence of the average-velocity curve to the velocity autocorrelation function, a fundamental statistical quantity that provides access to equilibrium transport coefficients and aspects of individual particle trajectories in a regime where experimental measurements have been lacking. From our data, we calculate the ion self-diffusion constant. This demonstrates the utility of ultracold neutral plasmas for isolating the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.
Strong ties promote the epidemic prevalence in susceptible-infected-susceptible spreading dynamics
Cui, Ai-Xiang; Zhou, Tao
2013-01-01
Understanding spreading dynamics will benefit society as a whole in better preventing and controlling diseases, as well as facilitating the socially responsible information while depressing destructive rumors. In network-based spreading dynamics, edges with different weights may play far different roles: a friend from afar usually brings novel stories, and an intimate relationship is highly risky for a flu epidemic. In this article, we propose a weighted susceptible-infected-susceptible model on complex networks, where the weight of an edge is defined by the topological proximity of the two associated nodes. Each infected individual is allowed to select limited number of neighbors to contact, and a tunable parameter is introduced to control the preference to contact through high-weight or low-weight edges. Experimental results on six real networks show that the epidemic prevalence can be largely promoted when strong ties are favored in the spreading process. By comparing with two statistical null models respe...
Mallamace, F.; Broccio, M.; Corsaro, C.; Faraone, A.; Wanderlingh, U.; Liu, L.; Mou, C.-Y.; Chen, S. H.
2006-04-01
By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature TL=223±2K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1/D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time ⟨τT⟩, as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.
Mallamace, F; Broccio, M; Corsaro, C; Faraone, A; Wanderlingh, U; Liu, L; Mou, C-Y; Chen, S H
2006-04-28
By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature T(L)=223+/-2 K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280 K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time tau(T), as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.
Spin dynamics in weakly and strongly interacting NiO nanoparticles
DEFF Research Database (Denmark)
Bahl, Christian Robert Haffenden; Lefmann, Kim; Kuhn, Luise Theil;
2006-01-01
The spin dynamics of plate-shaped nanoparticles of NiO has been studied by inelastic neutron scattering and Mossbauer spectroscopy. A value of the in-plane anisotropy energy constant significantly larger than the bulk value has been measured. The temperature and field dependence of the energy...... of the antiferromagnetic resonance mode associated with this in-plane anisotropy has been studied. Both Mossbauer spectroscopy and neutron scattering data show that the magnetic fluctuations are strongly affected by the strength of interparticle interactions....
On the strong coupling dynamics of heterotic string theory onC3/Z3
Energy Technology Data Exchange (ETDEWEB)
Ganor, O.J.; Sonnenschein, J.
2002-02-28
The authors study the strong coupling dynamics of the heterotic E{sub 8} x E{sub 8} string theory on the orbifolds T{sup 6}/Z{sub 3} and C{sup 3}/Z{sub 3} using the duality with the Horava-Witten M-theory picture. This leads us to a conjecture about the low energy description of the five dimensional E{sub 0}-theory (the CFT that describes the singularity region of M-theory on C{sup 3}/Z{sub 3}) compactified on S{sup 1}/Z{sub 2}.
Heavy-Quark Diffusion Dynamics in Quark-Gluon Plasma under Strong Magnetic Fields
Hattori, Koichi; Yee, Ho-Ung; Yin, Yi
2016-01-01
We discuss heavy-quark dynamics in the quark-gluon plasma under a strong magnetic field induced by colliding nuclei. By the use of the diagrammatic resummation techniques for Hard Thermal Loop and the external magnetic field, we show analytic results of heavy-quark diffusion coefficient and drag force which become anisotropic due to the preferred spatial orientation in the magnetic field. We argue that the anisotropic diffusion coefficient gives rise to an enhancement/suppression of the heavy-quark elliptic flow depending on the transverse momentum.
Dynamic Elasticity of a Magnetic Fluid Column in a Strong Magnetic Field
Polunin, V. M.; Ryapolov, P. A.; Shel'deshova, E. V.; Kuz'ko, A. E.; Aref'ev, I. M.
2017-07-01
The elastomagnetic parameters of a magnetic fluid kept by magnetic levitation in a tube placed horizontally in a strong magnetic field are measured, including the oscillation frequency, the ponderomotive and dynamic elasticity coefficients, the magnetization curve, and the magnetic field strength and its gradient. Results of calculations for the model of ponderomotive elasticity for the examined sample of the magnetic fluid corrected for the resistance of the moving viscous fluid are in good agreement with the experimental magnetization curve. The described method is of interest for a study of magnetophoresis, nanoparticle aggregations, viscosity, and their time dependences in magnetic colloids.
Rovibrational dynamics of LiCs dimers in strong electric fields
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Ferez, R. [Instituto ' Carlos I' de Fisica Teorica y Computacional and Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)], E-mail: rogonzal@ugr.es; Mayle, M. [Theoretische Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)], E-mail: Michael.Mayle@pci.uni-heidelberg.de; Schmelcher, P. [Theoretische Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany)], E-mail: Peter.Schmelcher@pci.uni-heidelberg.de
2006-10-26
We investigate the effects of a strong electric field on the rovibrational dynamics of LiCs in its {sup 1}{sigma}{sup +} electronic ground state. Using a hybrid computational technique combining discretisation and basis set methods, the rovibrational Schroedinger equation is solved. Results for energy levels and various expectation values are presented. The validity of the previous developed effective and adiabatic rotor approaches is investigated. The electric field-induced hybridization is analyzed up to high rotational excitations and for a large range of magnetic quantum numbers.
Ozvenchuk, V; Gorenstein, M I; Bratkovskaya, E L; Cassing, W
2012-01-01
We study the kinetic and chemical equilibration in `infinite' parton matter within the Parton-Hadron-String Dynamics off-shell transport approach, which is based on a dynamical quasiparticle model (DQPM) for partons matched to reproduce lattice QCD results -- including the partonic equation of state -- in thermodynamic equilibrium. The `infinite' parton matter is simulated by a system of quarks and gluons within a cubic box with periodic boundary conditions, at different energy densities, initialized slightly out of kinetic and chemical equilibrium. We investigate the approach of the system to equilibrium and the time scales for the equilibration of different observables. We, furthermore, study particle distributions in the strongly-interacting quark-gluon plasma (sQGP) including partonic spectral functions, momentum distributions, abundances of the different parton species and their fluctuations (scaled variance, skewness, kurtosis) in equilibrium. We also compare the results of the microscopic calculations ...
High resolution field study of sediment dynamics on a strongly heterogeneous bed
Bailly Du Bois, P.; Blanpain, O.; Lafite, R.; Cugier, P.; Lunven, M.
2010-12-01
Extensive field measurements have been carried out at several stations in a macrotidal inner continental shelf in the English Channel (around 25 m depth) during spring tide period. The strong tidal current measured (up to 1.6 m.s-1) allowed sediment dynamics on a bed characterised by a mixture of size with coarse grains to be dominant. Data acquired in such hydro-sedimentary conditions are scarce. A new instrument, the DYnamic Sediment Profile Imagery (DySPI) system, was specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected covered: 1) grain size range (side scan sonar, video observations, Shipeck grab samples, DySPI images) and vertical sorting (stratigraphic sampling by divers) of sediment cover, 2) hydrodynamic features (acoustic Doppler velocimeter, acoustic Doppler profiler), 3) suspended load nature and dynamics (optical backscatter, chlorophyll fluorometer, particle size analyser, Niskin bottles, scanning electron microscopy), 4) sand and gravel bedload transport estimates (DySPI image processing), 5) transfer dynamics of fine grains within a coarse matrix and their depth of penetration (radionuclides measurements in stratigraphic samples). The four stations present different grain size vertical sorting from a quasi-permanent armouring to a homogenous distribution. The sediment cover condition is directly linked to hydrodynamic capacity and sediment availability. Fine grain ratio within deep sediment layers (up to 10 cm) is higher when the bed armouring is durable. However, fine sediments are not permanently depth trapped: deep layers are composed of few years-old radionuclide tracers fixed on fine grains and a vertical mixing coefficient has been evaluated for each sediment cover. Fine grain dynamics within a coarse matrix is inversely proportional to the robustness of the armour layer. For current
Parametric generation of radiation in a dynamic cavity with frequency dispersion
Energy Technology Data Exchange (ETDEWEB)
Rosanov, N N; Fedorov, E G; Matskovsky, A A [Federal State Unitary Enterprise ' Scientific and Industrial Corporation ' Vavilov State Optical Institute' , St. Petersburg (Russian Federation)
2016-01-31
A numerical simulation of the parametric generation of electromagnetic radiation in a cavity with periodically oscillating mirrors and Lorentz-type frequency dispersion has been performed. It is shown that initially weak seed radiation can be transformed into intense short pulses, the shape of which under steady-state conditions changes periodically when reflecting from mirrors and, depending on the dispersion characteristics, corresponds to uni- or bipolar pulses. (letters)
DEFF Research Database (Denmark)
Wang, Shaofei; Guo, Hairun; Bai, Xuekun
2014-01-01
, showing that temporal shifts of steady-state intracavity solitons are induced by high-odd-order dispersion rather than high-even-order dispersion. The role of HOD on comb spectral envelopes is also elucidated through analyzing the intracavity dispersive wave generations. We further demonstrate...... that the spectral envelope of a broadband optical frequency comb can be engineered by using a cavity dispersion profile with multiple zero dispersion wavelengths. © 2014 Optical Society of America....
Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?
Energy Technology Data Exchange (ETDEWEB)
Maximenko, Yulia; /Moscow, MIPT; Segatskov, Dmitri A.; /Fermilab
2011-03-01
A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problem to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Tesfa, Sintayehu, E-mail: sint_tesfa@yahoo.com [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany); Physics Department, Dilla University, PO Box 419, Dilla (Ethiopia)
2011-10-15
A detailed analysis of the time evolution of the two-mode squeezing, entanglement and intensity of the cavity radiation of a two-photon correlated emission laser initially seeded with a thermal light is presented. The dependences of the degree of two-mode squeezing and entanglement on the intensity of the thermal light and time are found to have a more or less similar nature, although the actual values differ, especially in the early stages of the process and when the atoms are initially prepared with nearly 50:50 probability to be in the upper and lower energy levels. Seeding the cavity degrades the nonclassical features significantly, particularly in the vicinity of t=0. It is also shown that the mean photon number in a wider time span has a dip when mode b is seeded but a peak when mode a is seeded. Moreover, it turns out that the effect of the seed light on the nonclassical features and intensity of the cavity radiation decreases significantly with time, an outcome essentially attributed to the pertinent emission-absorption mechanism. This can be taken as an encouraging aspect in the practical utilization of this model as a source of a bright entangled light.
Zou, Peng; Dalfovo, Franco; Sharma, Rishi; Liu, Xia-Ji; Hu, Hui
2016-11-01
We theoretically investigate the dynamic structure factor of a strongly interacting Fermi gas at the crossover from Bardeen-Cooper-Schrieffer superfluids to Bose-Einstein condensates, by developing an improved random phase approximation within the framework of a density functional theory (DFT)—the so-called superfluid local density approximation. Compared with the previous random-phase-approximation studies based on the standard Bogoliubov-de Gennes equations, the use of the DFT greatly improves the accuracy of the equation of state at the crossover, and leads to a better description of both collective Bogoliubov-Anderson-Goldstone phonon mode and single-particle fermionic excitations at small transferred momentum. Near unitarity, where the s-wave scattering length diverges, we show that the single-particle excitations start to significantly contribute to the spectrum of dynamic structure factor once the frequency is above a threshold of the energy gap at 2{{Δ }}. The sharp rise in the spectrum at this threshold can be utilized to measure the pairing gap Δ. Together with the sound velocity determined from the phonon branch, the dynamic structure factor provides us some key information of the crossover Fermi superfluid. Our predictions could be examined in experiments with 6Li or 40K atoms using Bragg spectroscopy.
Gatare, I; Sciamanna, M; Nizette, M; Thienpont, H; Panajotov, K
2009-08-01
We report theoretically on the interplay between polarization switching and bifurcations to nonlinear dynamics in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection. Qualitatively different bifurcation scenarios leading to polarization switching are found and mapped out in the plane of the injection parameters, i.e., the frequency detuning vs injection strength plane. A Hopf bifurcation mechanism on the two-polarization-mode solution determines the injection-locking boundaries and influences polarization switching induced by optical injection. We furthermore report on a torus bifurcation emerging from a two-linearly polarized (LP) mode time-periodic dynamics before polarization switching and injection locking appear. It corresponds to an interesting combination of relaxation oscillation dynamics in the x -LP mode together with wave mixing dynamics in the injected y -LP mode. In agreement with recent experiments, we unveil a period-doubling route to chaos that involves both VCSEL orthogonal LP modes. The corresponding region of chaotic dynamics coincides with abrupt changes in the polarization switching boundaries in the plane of the injection parameters.
Ganesh, Rajaraman; Charan, Harish
2016-07-01
Understanding vortical flows under external forcing in two dimensional (2D) fluids is a fundamental paradigm for structure formation in driven, dissipative systems. Considering Yukawa liquid as a prototype for strongly correlated or strongly coupled plasmas characterized by coupling strength (Γ, the ratio of average potential to kinetic energy per particle) and screening parameter (κ, ratio of mean inter-particle distance to shielding length), we address two important problems: 1. Onset of Rayleigh Benard convection cell (RBCC) in 2D Yukawa liquids subject to gravity and external temperature gradient 2. Onset of von Karman vortices in 2D Yukawa liquid under external pressure head, using large scale, first principles molecular dynamics simulations. For typical values of (Γ,κ), existence of a critical external temperature difference is demonstrated, beyond which RBCC are seen to set in. Beyond this critical external temperature difference, the strength of the maximum convective flow velocity is shown to exhibit a new, hitherto unsuspected linear relationship with external temperature difference and with a slope independent of (Γ,κ). The time taken for the transients to settle down to a steady state RBCC τ_s, is found to be maximum close to the above said critical external temperature difference and is seen to reduce with increasing external temperature difference. For the range of values of (Γ, κ) considered here, τ_s ≃ 10 000-20 000;ω^{-1}_{pd}, where ω_{pd} is dust plasma frequency. As Γ is increased to very high values, due to strong coupling effects, RBC cells are seen to be in a transient state without attaining a steady state for as long as 100 000;ω^{-1}_{pd}, even for a very high external temperature difference. In the second part, we address the existence of universal relation between Strouhal (St) and Rayleigh (Ry) numbers for Yukawa liquid using first principles based classical molecular dynamics. The flow past an obstacle is seen to indeed
Cell dynamics in the pulpal healing process following cavity preparation in rat molars.
Harada, Masahiro; Kenmotsu, Shin-Ichi; Nakasone, Naohiro; Nakakura-Ohshima, Kuniko; Ohshima, Hayato
2008-10-01
Odontoblast-lineage cells acquire heat-shock protein (HSP)-25-immunoreactivity (IR) after they complete their cell division, suggesting that this protein acts as a switch between cell proliferation and differentiation during tooth development. However, there are few available data concerning the relationship between cell proliferation and differentiation following cavity preparation. The present study aims to clarify the expression of HSP-25 in the odontoblast-lineage cells with their proliferative activity after cavity preparation by immunocytochemistry for HSP-25 and cell proliferation assay using 5-bromo-2'-deoxyuridine (BrdU) labeling. In untreated control teeth, intense HSP-25-IR was found in odontoblasts and some subodontoblastic mesenchymal cells. Cavity preparation caused the destruction of odontoblasts and the disappearance of HSP-25-IR was conspicuous at the affected site, although some cells retained HSP-25-IR and subsequently most of them disappeared from the pulp-dentin border by postoperative day 1. Contrary, some subodontoblastic mesenchymal cells with weak HSP-25-IR began to take the place of degenerated cells, although no proliferative activity was recognizable in the dental pulp. Interestingly, proliferative cells in the dental pulp significantly increased in number on day 2 when the newly differentiating cells already arranged along the pulp-dentin border, and continued their proliferative activity in the wide range of the pulp tissue until day 5. These findings indicate that progenitor cells equipped in the subodontoblastic layer firstly migrate and differentiate into new odontoblast-like cells to compensate for the loss of the odontoblast layer, and subsequently the reorganization of dental pulp was completed by active proliferation of the mesenchymal cells occurring in a wide range of pulp tissue.
Tortora, C; Romanowsky, A J; Jetzer, Ph
2010-01-01
We analyze the correlations between central dark matter (DM) content of early-type galaxies and their sizes and ages, using a sample of intermediate-redshift (z ~ 0.2) gravitational lenses from the SLACS survey, and by comparing them to a larger sample of z ~ 0 galaxies. We decompose the deprojected galaxy masses into DM and stellar components using combinations of strong lensing, stellar dynamics, and stellar populations modeling. For a given stellar mass, we find that for galaxies with larger sizes, the DM fraction increases and the mean DM density decreases, consistently with the cuspy halos expected in cosmological formation scenarios. The DM fraction also decreases with stellar age, which can be partially explained by the inverse correlation between size and age. The residual trend may point to systematic dependencies on formation epoch of halo contraction or stellar initial mass functions. These results are in agreement with recent findings based on local galaxies by Napolitano, Romanowsky & Tortora...
Resseguier, Valentin; Chapron, Bertrand
2016-01-01
Models under location uncertainty are derived assuming that a component of the velocity is uncorrelated in time. The material derivative is accordingly modified to include an advection correction, inhomogeneous and anisotropic diffusion terms and a multiplicative noise contribution. This change can be consitently applied to all fluid dynamics evolution laws. This paper continues to explore benefits of this framework and consequences of specific scaling assumptions. Starting from a Boussinesq model under location uncertainty, a model is developed to describe a mesoscale flow subject to a strong underlying submesoscale activity. As obtained, the geostrophic balance is modified and the Quasi-Geostrophic (QG) assumptions remarkably lead to a zero Potential Vorticity (PV). The ensuing Surface Quasi-Geostrophic (SQG) model provides a simple diagnosis of warm frontolysis and cold frontogenesis.
Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions
Jameson Graber, P.; Shomberg, Joseph L.
2016-04-01
We establish the well-posedness of a strongly damped semilinear wave equation equipped with nonlinear hyperbolic dynamic boundary conditions. Results are carried out with the presence of a parameter distinguishing whether the underlying operator is analytic, α >0 , or only of Gevrey class, α =0 . We establish the existence of a global attractor for each α \\in ≤ft[0,1\\right], and we show that the family of global attractors is upper-semicontinuous as α \\to 0. Furthermore, for each α \\in ≤ft[0,1\\right] , we show the existence of a weak exponential attractor. A weak exponential attractor is a finite dimensional compact set in the weak topology of the phase space. This result ensures the corresponding global attractor also possesses finite fractal dimension in the weak topology; moreover, the dimension is independent of the perturbation parameter α. In both settings, attractors are found under minimal assumptions on the nonlinear terms.
Dynamic coherent backscattering of ultrasound in three-dimensional strongly-scattering media
Cobus, L. A.; Tiggelen, B. A. van; Derode, A.; Page, J. H.
2017-05-01
We present measurements of the diffusion coefficient of ultrasound in strongly scattering three-dimensional (3D) disordered media using the dynamic coherent backscattering (CBS) effect. Our experiments measure the CBS of ultrasonic waves using a transducer array placed in the far-field of a 3D slab sample of brazed aluminum beads surrounded by vacuum. We extend to 3D media the general microscopic theory of CBS that was developed initially for acoustic waves in 2D. This theory is valid in the strong scattering, but still diffuse, regime that is realized in our sample, and is evaluated in the diffuse far field limit encountered in our experiments. By comparing our theory with the experimental data, we obtain an accurate measurement of the Boltzmann diffusion coefficient of ultrasound in our sample. We find that the value of DB is quite small, 0.74 ± 0.03 mm2/μs, and comment on the implications of this slow transport for the energy velocity.
Hole dynamics and spin currents after ionization in strong circularly polarized laser fields
Barth, Ingo
2014-01-01
We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analysing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down densi...
Dynamic equilibrium of collective degrees of freedom in strongly correlated quantum matter
Wölfle, Peter
2014-12-01
Strongly correlated quantum systems may assume states stabilized by dynamic equilibrium of competing collective degrees of freedom. As a first example we consider the Kondo effect, which may be viewed as governed by a subtle balance of an infinite growth of the exchange coupling constant controled by an increasing local spin relaxation rate, leading to a Fermi liquid stable fixed point at low temperatures. As a second example the quantum critical behavior in antiferromagnetic metals will be considered. It is often found experimentally that the quasiparticle effective mass appears to diverge at the quantum critical point in spite of the fact that the critical spin fluctuations seem to be in the weak coupling domain - a contradiction. It will be shown that the feedback of the diverging mass into the spin fluctuation spectrum allows to establish a balance of the fermionic and bosonic singular degrees of freedom, leading to strong-coupling type quantum critical behavior. The resulting self-consistent theory obeys hyper-scaling of the dominant fermionic degrees of freedom, while the bosonic interaction is still in the weak coupling domain. Excellent agreement is found with experiment for the two candidate cases CeCu6-xAux and YbRh2Si2.
Dynamical analysis of strong-lensing galaxy groups at intermediate redshift
Muñoz, R P; Verdugo, T; Garrido, F; Limousin, M; Padilla, N; Foëx, G; Cabanac, R; Gavazzi, R; Barrientos, L F; Richard, J
2012-01-01
We present VLT spectroscopic observations of 7 discovered galaxy groups between 0.3
Dilepton production by dynamical quasiparticles in the strongly interacting quark gluon plasma
Linnyk, O
2010-01-01
The dilepton production by the constituents of the strongly interacting quark-gluon-plasma (sQGP) is addressed. In order to make quantitative predictions at realistically low plasma temperatures (O(T_c)), experimentally relevant low dilepton mass (O(1 GeV)) and strong coupling (alphaS=0.5-1), we take into account not only the higher order pQCD reaction mechanisms, but also the non-perturbative spectral functions (off-shellness) and self-energies of the quarks, anti-quarks and gluons thus going beyond the leading twist. For this purpose, our calculations utilize parametrizations of the non-perturbative propagators for quarks and gluons provided by the dynamical quasi-particle model (DQPM) matched to reproduce lattice data. The DQPM describes QCD properties in terms of single-particle Green's functions (in the sense of a two-particle irreducible approach) and leads to the notion of the constituents of the sQGP being effective quasiparticles, which are massive and have broad spectral functions (due to large inte...
Dynamics of strong and radiative decays of Ds-mesons in the hadrogenesis conjecture
Soyeur, Madeleine
2009-01-01
The positive parity scalar D$_{s0}^*$(2317) and axial-vector D$_{s1}^*$(2460) charmed strange mesons are generated by coupled-channel dynamics through the s-wave scattering of Goldstone bosons off the pseudoscalar and vector D(D$_s$)-meson ground states. The specific masses of these states are obtained as a consequence of the attraction arising from the Weinberg-Tomozawa interaction in the chiral Lagrangian. Chiral corrections to order Q$_\\chi^2$ are calculated and found to be small. The D$_{s0}^*$(2317) and D$_{s1}^*$(2460) mesons decay either strongly into the isospin-violating $\\pi^0$D$_s$ and $\\pi^0$D$_s^*$ channels or electromagnetically. We show that the $\\pi^0$-$\\eta$ and (K$^0$D$^+$-K$^+$D$^0$) mixings act constructively to generate strong widths of the order of 140 keV and emphasize the sensitivity of this value to the $KD$ component of the states. The one-loop contribution to the radiative decay amplitudes of scalar and axial-vector states is calculated using the electromagnetic Lagrangian to chiral...
Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames
Liao, Ying-Hao
2013-11-02
The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.
Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method
Wang, Chengjie; Eldredge, Jeff D.
2014-11-01
A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.
Ni, Wenjie; Wang, Mingxin
2016-10-01
This paper is devoted to study the dynamical properties and stationary patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in the prey population. We first analyze the nonnegative constant equilibrium solutions and their stabilities, and then study the dynamical properties of time-dependent solutions. Moreover, we investigate the stationary patterns induced by diffusions (Turing pattern). Our results show that the impact of the strong Allee effect essentially increases the system spatiotemporal complexity.
Neil, Simon R. T.; Maeda, Kiminori; Henbest, Kevin B.; Goez, Martin; Hemmens, Robert; Timmel, Christiane R.; Mackenzie, Stuart R.
2010-04-01
Cavity enhanced absorption spectroscopy (CEAS) combined with phase-sensitive detection is employed to study the effects of static magnetic fields on radical recombination reactions. The chemical system comprises the photochemically generated thionine semiquinone radical and a 1,4-diazabicyclo[2.2.2]octane (DABCO) cationic radical in a micellar solution of sodium dodecyl sulphate. Data obtained using the modulated CEAS technique, describing the magnetic field effect (MFE) on reaction yields, are shown to be superior to those obtained using conventional transient absorption (TA) flash photolysis methods typically employed for these measurements. The high sensitivity afforded by modulated CEAS detection is discussed in terms of the new possibilities it offers such as the measurement of magnetic field effects in real biological systems which have hitherto been largely beyond the detection capabilities of existing techniques.
Dynamical formation of a Reissner-Nordstr\\"om black hole with scalar hair in a cavity
Sanchis-Gual, Nicolas; Herdeiro, Carlos; Font, José A; Montero, Pedro J
2016-01-01
In a recent letter, we presented numerical relativity simulations, solving the full Einstein--Maxwell--Klein-Gordon equations, of superradiantly unstable Reissner-Nordstr\\"om black holes (BHs), enclosed in a cavity. Low frequency, spherical perturbations of a charged scalar field, trigger this instability. The system's evolution was followed into the non-linear regime, until it relaxed into an equilibrium configuration, found to be a $\\textit{hairy}$ BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory, and promote a non-monotonic behaviour of the scalar field energy. Furthermore, we discuss in detail the influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the scalar field char...
Brahms, N
2010-01-01
The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.
Yahashiri, Atsushi; Rubach, Jon K; Plapp, Bryce V
2014-02-11
A role for protein dynamics in enzymatic catalysis of hydrogen transfer has received substantial scientific support, but the connections between protein structure and catalysis remain to be established. Valine residues 203 and 207 are at the binding site for the nicotinamide ring of the coenzyme in liver alcohol dehydrogenase and have been suggested to facilitate catalysis with "protein-promoting vibrations" (PPV). We find that the V207A substitution has small effects on steady-state kinetic constants and the rate of hydrogen transfer; the introduced cavity is empty and is tolerated with minimal effects on structure (determined at 1.2 Å for the complex with NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to support a role for Val-207 in the dynamics of catalysis. The protein structures and ligand geometries (including donor-acceptor distances) in the V203A enzyme complexed with NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined at 1.1 Å) are very similar to those for the wild-type enzyme, except that the introduced cavity accommodates a new water molecule that contacts the nicotinamide ring. The structures of the V203A enzyme complexes suggest, in contrast to previous studies, that the diminished tunneling and decreased rate of hydride transfer (16-fold, relative to that of the wild-type enzyme) are not due to differences in ground-state ligand geometries. The V203A substitution may alter the PPV and the reorganization energy for hydrogen transfer, but the protein scaffold and equilibrium thermal motions within the Michaelis complex may be more significant for enzyme catalysis.
Rate dynamics of leaky integrate-and-fire neurons with strong synapses
Directory of Open Access Journals (Sweden)
Eilen Nordlie
2010-12-01
Full Text Available Firing-rate models provide a practical tool for studying the dynamics of trial- or population-averaged neuronal signals. A wealth of theoretical and experimental studies has been dedicated to the derivation or extraction of such models by investigating the firing-rate response characteristics of ensembles of neurons. The majority of these studies assumes that neurons receive input spikes at a high rate through weak synapses (diffusion approximation. For many biological neural systems, however, this assumption cannot be justified. So far, it is unclear how time-varying presynaptic firing rates are transmitted by a population of neurons if the diffusion assumption is dropped. Here, we numerically investigate the stationary and non-stationary firing-rate response properties of leaky integrate-and-fire (LIF neurons receiving input spikes through excitatory synapses with alpha-function shaped postsynaptic currents for strong synaptic weights. Input spike trains are modelled by inhomogeneous Poisson point-processes with sinusoidal rate. Average rates, modulation amplitudes and phases of the period-averaged spike responses are measured for a broad range of stimulus, synapse and neuron parameters. Across wide parameter regions, the resulting transfer functions can be approximated by a linear 1st-order low-pass filter. Below a critical synaptic weight, the cutoff frequencies are approximately constant and determined by the synaptic time constants. Only for synapses with unrealistically strong weights are the cutoff frequencies significantly increased. To account for stimuli with larger modulation depths, we combine the measured linear transfer function with the nonlinear response characteristics obtained for stationary inputs. The resulting linear-nonlinear model accurately predicts the population response for a variety of non-sinusoidal stimuli.
Järvinen, J.; Ahokas, J.; Sheludyakov, S.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Zvezdov, D.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Gwak, M.; Lee, SangGap; Lee, Soonchil; Vlasenko, L.
2014-12-01
Efficient manipulation of nuclear spins is important for utilizing them as qubits for quantum computing. In this work we report record high polarizations of 31P and 29Si nuclear spins in P-doped silicon in a strong magnetic field (4.6 T) and at temperatures below 1 K. We reached 31P nuclear polarization values exceeding 98 % after 20 min of pumping the high-field electron spin resonance (ESR) line with a very small microwave power of 0.4 μ W . We evaluate that the ratio of the hyperfine-state populations increases by three orders of magnitude after 2 hours of pumping, and an extremely pure nuclear spin state can be created, with less than 0.01 ppb impurities. A negative dynamic nuclear polarization has been observed by pumping the low-field ESR line of 31P followed by the flip-flip cross relaxation, the transition which is fully forbidden for isolated donors. We estimate that while pumping the ESR transitions of 31P also the nuclei of 29Si get polarized, and polarization exceeding 60 % has been obtained. We performed measurements of relaxation rates of flip-flop and flip-flip transitions which turned out to be nearly temperature independent. Temperature dependence of the 31P nuclear relaxation was studied down to 0.75 K, below which the relaxation time became too long to be measured. We found that the polarization evolution under pumping and during relaxation deviates substantially from a simple exponential function of time. We suggest that the nonexponential polarization dynamics of 31P donors is mediated by the orientation of 29Si nuclei, which affect the transition probabilities of the forbidden cross-relaxation processes.
Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics
Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro
2015-11-01
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.
Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field
Hernández, D.; Karcher, Ch
2017-07-01
Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 magnetic field, droplet rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.
Viriato: A Fourier-Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics
Loureiro, N. F.; Dorland, W.; Fazendeiro, L.; Kanekar, A.; Mallet, A.; Vilelas, M. S.; Zocco, A.
2016-09-01
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations (Zocco and Schekochihin, 2011) (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations (Schekochihin et al., 2009). Two main applications of these equations are magnetized (Alfvénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.
Large scale dynamics in a turbulent compressible rotor/stator cavity flow at high Reynolds number
Lachize, C.; Verhille, G.; Le Gal, P.
2016-08-01
This paper reports an experimental investigation of a turbulent flow confined within a rotor/stator cavity of aspect ratio close to unity at high Reynolds number. The experiments have been driven by changing both the rotation rate of the disk and the thermodynamical properties of the working fluid. This fluid is sulfur hexafluoride (SF6) whose physical properties are adjusted by imposing the operating temperature and the absolute pressure in a pressurized vessel, especially near the critical point of SF6 reached for T c = 45.58 ◦C, P c = 37.55 bar. This original set-up allows to obtain Reynolds numbers as high as 2 × 107 together with compressibility effects as the Mach number can reach 0.5. Pressure measurements reveal that the resulting fully turbulent flow shows both a direct and an inverse cascade as observed in rotating turbulence and in accordance with Kraichnan conjecture for 2D-turbulence. The spectra are however dominated by low-frequency peaks, which are subharmonics of the rotating disk frequency, involving large scale structures at small azimuthal wavenumbers. These modes appear for a Reynolds number around 105 and experience a transition at a critical Reynolds number Re c ≈ 106. Moreover they show an unexpected nonlinear behavior that we understand with the help of a low dimensional amplitude equations.
Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons
Sanchis-Gual, Nicolas; Font, José A; Herdeiro, Carlos; Radu, Eugen
2016-01-01
Recent numerical relativity simulations within the Einstein--Maxwell--(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordstr\\"om black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of the superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these $\\textit{unstable}$ solitons leads, again, to the formation of a hairy BH. In some other cases, unstable solitons evolve into a (bald) Reissner-Nordstr\\"om BH. These results establish that the system admits two distinct channels to form hairy BHs at the threshold of superradiance: growing hair from an unstable (bald) BH, or growing a horizon from an unstabl...
Dilbeck, Preston L; Bao, Han; Neveu, Curtis L; Burnap, Robert L
2013-10-01
The active site of water oxidation in Photosystem II (PSII) is a Mn4CaO5 cluster that is located in a cavity between the D1 and CP43 protein subunits by which it is coordinated. The remainder of this cavity is filled with water molecules, which serve as a source of substrate and participate in poorly understood hydrogen bond networks that may modulate the function of the Mn4CaO5 cluster. These water molecules interact with the first and second sphere amino acid ligands to the Mn4CaO5 cluster and some water interacts directly with the Mn4CaO5 cluster. Here, the results of mutations to the amino acids that line the walls of several predicted cavities in the immediate vicinity of the Mn4CaO5 cluster were examined in Synechocystis sp. PCC 6803. Of these, mutations of Val185 in the D1 subunit resulted in the most interesting functional alterations. The hydrophobic D1-Val185 occupies a location contacting water molecules that are positioned between the redox active tyrosine (YZ) and the putative proton gate residue, D1-Asp61, and at a position opposite the oxo bridge atom, O5, of the cluster. Mutations of the residue D1-Val185 were produced, with the intention that the substitute residue would extend into the water cavity that includes H2O molecules that interact with the Mn4CaO5 cluster, amino acid ligands of the Mn4CaO5 cluster, YZ and the chloride co-factor of PSII. Three of these mutants, D1-Val185Asn, D1-Val185Thr, and D1-Val185Phe, were able to accumulate significant levels of charge separating PSII and were characterized using polarographic and fluorescent techniques. Of the three substitutions, the phenylalanine substitution was the most severe with a complete inability to evolve oxygen, despite being able to accumulate PSII and to undergo stable charge separation. The threonine substitution had no apparent effect on oxygen evolution other than a 40% reduction in the steady state rate of O2 production compared to the case of wild-type Synechocystis , due to a
DEFF Research Database (Denmark)
Heuck, Mikkel; Combrié, S.; Lehoucq, G.
2013-01-01
Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination.......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...
Intensity correlations near a cavity QED antiresonance
Xu, Qing; Mølmer, Klaus
2017-02-01
We explore the antiresonance phenomenon, where a two-level atom is excited inside a single-mode, laser-driven cavity without appreciably exciting the field mode. Antiresonance is well known in classical physics and the excitation of the atomic and field degrees of freedom by a weak laser field can be easily understood in a classical oscillator picture. The temporal intensity correlations in the signal emitted from the atom and from the cavity, however, show strong signs of nonclassical behavior. We calculate these correlations and show how they can be interpreted in terms of a conditional quantum trajectory dynamics of the system.
DEFF Research Database (Denmark)
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, P.
2012-01-01
of the physics and emphasize the important role played by the effective phonon density, describing the availability of phonons for scattering, in quantum dot decay dynamics. Based on the analytical expressions, we present the parameter regimes where phonon effects are expected to be important. Also, we include...
Influence of second sideband excitation on the dynamics of trapped ions in a cavity
Institute of Scientific and Technical Information of China (English)
刘翔; 方卯发
2003-01-01
We study the dynamics of a trapped ion placed at an antinode of the standing wave inside a high finesse cavitywith consideration of the second sideband excitation between the ionic internal levels and the light field. We investigatethe entanglement of the three subsystems embodying the ionic internal levels, the vibrational mode of the ion and thecavity field.
Viesca, R. C.; Garagash, D.
2013-12-01
Seismological estimates of fracture energy show a scaling with the total slip of an earthquake [e.g., Abercrombie and Rice, GJI 2005]. Potential sources for this scale dependency are coseismic fault strength reductions that continue with increasing slip or an increasing amount of off-fault inelastic deformation with dynamic rupture propagation [e.g., Andrews, JGR 2005; Rice, JGR 2006]. Here, we investigate the former mechanism by solving for the slip dependence of fracture energy at the crack tip of a dynamically propagating rupture in which weakening takes place by strong reductions of friction via flash heating of asperity contacts and thermal pressurization of pore fluid leading to reductions in effective normal stress. Laboratory measurements of small characteristic slip evolution distances for friction (~10 μm at low slip rates of μm-mm/s, possibly up to 1 mm for slip rates near 0.1 m/s) [e.g., Marone and Kilgore, Nature 1993; Kohli et al., JGR 2011] imply that flash weakening of friction occurs at small slips before any significant thermal pressurization and may thus have a negligible contribution to the total fracture energy [Brantut and Rice, GRL 2011; Garagash, AGU 2011]. The subsequent manner of weakening under thermal pressurization (the dominant contributor to fracture energy) spans a range of behavior from the deformation of a finite-thickness shear zone in which diffusion is negligible (i.e., undrained-adiabatic) to that in which large-scale diffusion obscures the existence of a thin shear zone and thermal pressurization effectively occurs by the heating of slip on a plane. Separating the contribution of flash heating, the dynamic rupture solutions reduce to a problem with a single parameter, which is the ratio of the undrained-adiabatic slip-weakening distance (δc) to the characteristic slip-on-a-plane slip-weakening distance (L*). However, for any value of the parameter, there are two end-member scalings of the fracture energy: for small slip
强耦合光机械腔中的简正模式分裂和冷却%Normal mode splitting and cooling in strong coupling optomechanical cavity
Institute of Scientific and Technical Information of China (English)
陈华俊; 米贤武
2011-01-01
研究由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的腔光机械动力学行为.通过量子朗之万方程具体研究了机械振子的涨落光谱、机械阻尼与共振频移和基态冷却.随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且数值模拟结果和实验结果相符合.同时推导了有效机械阻尼和共振频移.红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大.此外,引入一种近似机制来研究振子的基态冷却,并且考虑在解析边带机制下简正模式分裂对机械振子冷却的影响.最后,数值讨论了初始浴温度、输入激光功率和机械品质因数这三个因素对机械振子冷却的影响.%A model describing optomechanical dynamics via radiation-pressure coupling with a driven optical cavity is investigated by a linearized quantum Langevin equation.The spectrum of the oscillator presents normal mode splitting with the increase of the input laser power in strong coupling regime and our results are in good agreement with the experimental results.The effective mechanical damping and the resonance frequency shift are derived.The redshifted sideband leads to the cooling of the mechanical oscillator,and the blueshifted motional sideband results in amplification.Furthermore,an approximate mechanism is introduced to analyze the cooling of the mechanical oscillator.Since both the normal mode splitting and cooling require working in the resolved sideband regime,whether the normal mode splitting influences the cooling of the mirror is considered.Meanwhile,we give three key factors influencing the cooling of mechanical oscillator,these being initial bath temperature,input laser power and mechanical quality factor.
Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong
2016-05-01
Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.
Kimble, H. J.; Boca, A.; Boozer, A. D.; Bowen, W. P.; Buck, J. R.; Chou, C. W.; Duan, L.-M.; Kuzmich, A.; McKeever, J.
2004-12-01
Observations of cooling and trapping of N = 1,2,3,... atoms inside a small optical cavity are described. The atom-cavity system operates in a regime of strong coupling for which single photons are sufficient to saturate the atomic response. New theoretical protocols for the efficient engineering of multi-atom entanglement within the setting of cavity QED are described. By trapping a single atom within the cavity mode, a one-atom laser is experimentally realized in a regime of strong coupling. Beyond the setting of cavity QED, quantum correlations have been observed for photon pairs emitted from an atomic ensemble and with a programmable time offset.
Li, M. Y.; Jähme, H.; Soldat, H.; Gerhardt, N. C.; Hofmann, M. R.; Ackemann, T.
2010-11-01
We analyze the spin-induced circular polarization dynamics at the threshold of vertical-cavity surface-emitting lasers at room-temperature using a hybrid excitation combining electrically pumping without spin preference and spin-polarized optical injection. After a short pulse of spin-polarized excitation, fast oscillations of the circular polarization degree (CPD) are observed within the relaxation oscillations. A theoretical investigation of this behavior on the basis of a rate equation model shows that these fast oscillations of CPD could be suppressed by means of a reduction of the birefringence of the laser cavity.
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Energy Technology Data Exchange (ETDEWEB)
Ren, Qing-Bao [Department of Physics, Lishui University, Lishui 323000 (China); Luo, Meng-Bo, E-mail: Luomengbo@zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China)
2013-10-30
We study the dynamics of a two-dimensional vortex system in a strong square pinning array at the second matching field. Two kinds of depinning behaviors, a continuous depinning transition at weak pinning and a discontinuous one at strong pinning, are found. We show that the two different kinds of vortex depinning transitions can be identified in transport as a function of the pinning strength and temperature. Moreover, interstitial vortex state can be probed from the transport properties of vortices.
Sanders, Scott E; Nahler, N Hendrik; Wrede, Eckart
2013-01-01
We describe a novel experimental setup that combines the advantages of both laser-induced fluorescence and cavity ring-down techniques. The simultaneous measurement of the ring-down and fluorescence signals from the same sample in a single laser beam delivers the calibration of the fluorescence measurement to gain absolute quantities: absorption cross section, sample density and fluorescence quantum yield. At the same time, the fluorescence measurement extends the dynamic range of a stand-alone cavity ring-down setup from typically three to at least six orders of magnitude. The methodology of this combined cavity-enhanced laser-induced fluorescence (CELIF) technique is developed and rigorously tested against the spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density measurements in a cell.
... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...
Bunching of temporal cavity solitons via forward Brillouin scattering
Erkintalo, Miro; Jang, Jae K; Coen, Stéphane; Murdoch, Stuart G
2015-01-01
We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.
Directory of Open Access Journals (Sweden)
David Alesini
2003-07-01
Full Text Available A high-harmonic rf system is going to be installed in both rings of the DAΦNE Φ-Factory collider to improve the Touschek lifetime. The main goal of this paper is to study the impact of the 3rd harmonic cavity on beam dynamics making a special emphasis on the dynamics of a bunch train with a gap. The shift of the coherent synchrotron frequencies of the coupled-bunch modes has been estimated. In the following we investigated the effect of magnification of the synchrotron phase spread and beam spectrum variation due to the gap. Besides we simulated the bunch lengthening for different bunches along the unevenly filled train and evaluated the Touschek lifetime enhancement taking into account the obtained bunch distributions. Finally, the “cavity parking” option is discussed. It can be considered as a reliable backup procedure consisting of tuning the cavity away from the 3rd harmonic frequency and in between two revolution harmonics. It allows recovering, approximately, the same operating conditions as were before the harmonic cavity installation.
Dynamics of Weak, Bifurcated and Strong Hydrogen Bonds in Lithium Nitrate Trihydrate
Energy Technology Data Exchange (ETDEWEB)
Werhahn, Jasper C.; Pandelov, S.; Xantheas, Sotiris S.; Iglev, H.
2011-07-07
The properties of three distinct types of hydrogen bonds, namely a weak, a bifurcated and a strong one, all present in/the LiNO3 (HDO)(D2O)2 hydrate lattice unit cell are studied using steady-state and time-resolved spectroscopy. The lifetimes of the OH stretching vibrations for the three individual bonds are 2.2 ps (weak), 1.7 ps (bifurcated), and 1.2 ps (strong), respectively. For the first time the properties of bifurcated H bonds can thus be unambiguously directly compared to those of weak and strong H bonds in the same system. The values of their OH stretching vibration lifetime, anharmonicity, red shift and bond strength lie between those for the strong and weak H bonds. The experimentally observed inhomogeneous broadening of their spectral signature is attributed to the coupling with a low frequency intermolecular wagging vibration/
Partanen, Lauri
2017-01-01
Sulfuric and hydrochloric acids participate in several important chemical processes occurring in the atmosphere. Due to its tendency to react with water molecules, sulfuric acid is an important factor in cloud formation and related phenomena. Hydrochloric acid is heavily implicated in stratospheric ozone depletion because of its role as a temporary reservoir for chlorine radicals. In this thesis, the thermodynamics and dynamics of these two acids are investigated. The dynamic part focuse...
Strong dispersal in a parasitoid wasp overwhelms habitat fragmentation and host population dynamics.
Couchoux, C; Seppä, P; van Nouhuys, S
2016-07-01
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full-siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co-evolution of host resistance and parasite virulence. © 2016 John Wiley & Sons Ltd.
Albertin, Warren; Miot-Sertier, Cécile; Bely, Marina; Marullo, Philippe; Coulon, Joana; Moine, Virginie; Colonna-Ceccaldi, Benoit; Masneuf-Pomarede, Isabelle
2014-05-16
Yeast species of Hanseniaspora and Candida genus are predominant during the early stages of winemaking, while species of Metschnikowia, Pichia, Zygoascus, Issatchenkia, Torulaspora and other genera are present at lower population levels. The impact of common oenological practices on yeast dynamics during the prefermentative stage and the early stage of alcoholic fermentation (AF) remains elusive. In this work, the effect of four prefermentative oenological practices (clarification degree, temperature, sulphite and starter yeast addition) on yeast dynamics was evaluated in a Chardonnay grape must. The growth curves of four genus or species, namely Saccharomyces spp., Hanseniaspora spp., Candida zemplinina and Torulaspora delbrueckii, were followed by quantitative PCR. The fermentation kinetics were also recorded, as well as the production of acetic acid. Variance analysis allowed determining the effect of each practice and their interaction factors, as well as their relative importance on yeast dynamics and fermentation kinetics. Our experimental design showed that the population dynamics of the four species were differently impacted by the oenological practices, with some species being more sensitive than others to the clarification degree (C. zemplinina), sulphite addition (Saccharomyces spp.), starter yeast inoculation (Hanseniaspora spp.) or prefermentation temperature (T. delbrueckii). Significant interaction effects between practices were revealed, highlighting the interest of experimental design allowing interaction analysis, as some factors may buffer the effect of other ones. Hanseniaspora genus showed atypical behaviour: growth dynamics showed a decrease during AF that we interpreted as early cellular lysis. In conclusion, this study provides new insights on the impact of common oenological practices on the dynamics of non-Saccharomyces yeast that will be useful for a better management of mixed fermentation between S. cerevisiae and non
Bahi, J M; Guyeux, C; Richard, A
2011-01-01
Chaotic functions are characterized by sensitivity to initial conditions, transitivity, and regularity. Providing new functions with such properties is a real challenge. This work shows that one can associate with any Boolean network a continuous function, whose discrete-time iterations are chaotic if and only if the iteration graph of the Boolean network is strongly connected. Then, sufficient conditions for this strong connectivity are expressed on the interaction graph of this network, leading to a constructive method of chaotic function computation. The whole approach is evaluated in the chaos-based pseudo-random number generation context.
Energy Technology Data Exchange (ETDEWEB)
Lee, C.C.; Ku, W.; Hsueh, H.C.
2010-08-30
Within the framework of time-dependent density-functional theory (TDDFT), we derive the dynamical linear response of local-density approximation plus U functional and benchmark it on NiO, a prototypical Mott insulator. Formulated using real-space Wannier functions, our computationally inexpensive framework gives detailed insights into the formation of tightly bound Frenkel excitons with reasonable accuracy. Specifically, a strong hybridization of multiple excitons is found to significantly modify the exciton properties. Furthermore, our study exposes a significant generic limitation of adiabatic approximation in TDDFT with hybrid functionals and in existing Bethe-Salpeter-equation approaches, advocating the necessity of strongly energy-dependent kernels in future development.
Energy Technology Data Exchange (ETDEWEB)
Snoek, M; Titvinidze, I; Toeke, C; Hofstetter, W [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt/Main (Germany); Byczuk, K [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg, 86135 Augsburg (Germany)], E-mail: snoek@itp.uni-frankfurt.de
2008-09-15
We apply dynamical mean-field theory to strongly interacting fermions in an inhomogeneous environment. With the help of this real-space dynamical mean-field theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.
Ahmadivand, Arash; Pala, Nezih
2015-02-01
In this study, we investigated numerically the plasmon response of a planar negative-index metamaterial composed of symmetric molecular orientations of Au ring/disk nanocavities in a heptamer cluster. Using the plasmon hybridization theory and considering the optical response of an individual nanocluster, we determined the accurate geometrical sizes for a ring/disk nanocavity heptamer. It is shown that the proposed well-organized nanocluster can be tailored to support strong and sharp Fano resonances in the visible spectrum. Surrounding and filling the heptamer clusters by various metasurfaces with different chemical characteristics, and illuminating the structure with an incident light source, we proved that this configuration reflects low losses and isotropic features, including a pronounced Fano dip in the visible spectrum. Technically, employing numerical methods and tuning the geometrical sizes of the structure, we tuned and induced the Fano dip in the visible range, while the dark and bright plasmon resonance extremes are blueshifted to shorter wavelengths dramatically. Considering the calculated transmission window, we quantified the effective refractive index for the structure, while the substance of the substrate material was varied. Using Si, GaP, and InP semiconductors as substrate materials, we calculated and compared the corresponding figure of merit (FOM) for different regimes. The highest possible FOM was obtained for the GaP-Au-GaP negative-refractive-index metamaterial composed of ring/disk nanocavity heptamers as 62.4 at λ∼690 nm (arounnd the position of the Fano dip). Despite the outstanding symmetric nature of the suggested heptamer array, we provided sharp Fano dips by the appropriate tuning of the geometrical and chemical parameters. This study yields a method to employ ring/disk nanocavity heptamers as a negative-refractive-index metamaterial in designing highly accurate localization of surface plasmon resonance sensing devices and
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
DEFF Research Database (Denmark)
Volosniev, A. G.; Petrosyan, D.; Valiente, M.
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...
Point vortex models and the dynamics of strong vortices in the atmosphere and oceans
Energy Technology Data Exchange (ETDEWEB)
Aref, H.; Stremler, M.A. [Illinois Univ., Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics
2001-07-01
Point vortex dynamics has a special 'flavor' since it combines fluid mechanics, which usually entails the solution of partial differential equations, with the theory of dynamical systems, which is usually concerned with a small number of ordinary differential equations. Modern developments have shown that very complicated things can happen already for a small number of ODEs. In the case of classical point vortices on the unbounded plane, the two-vortex problem is integrable and very simple. Furthermore, one has the interesting result that the three-vortex problem is integrable. Generally, dynamical three-body problems are non-integrable unless the system in question is integrable for any number of particles. Four point vortices, on the other hand, can display chaotic motion. Indeed, the transition from integrability to chaos occurs already for the problem of passive advection of a particle in the flow field produced by the integrable three-vortex motion. The motion of the advected particle can be chaotic. This insight led to the concept of chaotic advection, which has since emerged as a general paradigm of flow kinematics and fluid mixing, and has been actively pursued in the context of very viscous flows. Here again there are important connections to geophysical fluid dynamics. Thus, Zimmerman and collaborators have emphasized that the mixing in shallow tidal basins, such as the Wadden sea, is probably more appropriately described by chaotic advection than by turbulent transport models. (orig.)
Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter
2012-09-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure.
Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins
Directory of Open Access Journals (Sweden)
A. Voigt
2012-12-01
Full Text Available The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO_{2} and a critical sea-ice cover (SI, both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO_{2}, SI^{*}, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO_{2}, SI^{*} in the atmosphere–ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma continents and solar insolation (94% of modern. In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO_{2}, SI^{*} ≈ (500 ppm, 55%. Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO_{2}, SI^{*} ≈ (204 ppm, 70%. This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO_{2}: (CO_{2}, SI^{*} ≈ (2 ppm, 85%. Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO_{2} for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO_{2}. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true
Evaporation of droplets on strong and low-pinning surfaces and dynamics of the triple line
Bormashenko, Edward; Zinigrad, Michael
2011-01-01
Evaporation of water droplets deposited on metal and polymer substrates was studied. The evaporated droplet demonstrates different behaviors on low-pinning (polymer) and strong-pinning (metallic) surfaces. When deposited on polymer surfaces, the evaporated droplet is featured by stick-slip sliding, whereas on strong-pinning metallic surfaces it does not show such kind of motion and demonstrates the giant contact-angle hysteresis. Stick-slip motion of droplets is described satisfactorily by the Shanahan-Sefiane model relating this kind of motion to surmounting potential barriers caused by the pinning of the triple (three-phase) line. The experimentally established "stick" times coincide with the values predicted by the Shanahan-Sefiane theory. The values of potential barriers are reported. The notion of the equilibrium contact angle is refined.
Electron-beam dynamics in a strong laser field including quantum radiation reaction
Neitz, Norman
2014-01-01
The evolution of an electron beam colliding head-on with a strong plane-wave field is investigated in the framework of strong-field QED including radiation-reaction effects due to photon emission. Employing a kinetic approach to describe the electron and the photon distribution it is shown that at a given total laser fluence the final electron distribution depends on the shape of the laser envelope and on the pulse duration, in contrast to the classical predictions of radiation reaction based on the Landau-Lifshitz equation. Finally, it is investigated how the pair-creation process leads to a nonlinear coupled evolution of the electrons in the beam, of the produced charged particles, and of the emitted photons.
Electron-beam dynamics in a strong laser field including quantum radiation reaction
Neitz, N.; Di Piazza, A.
2014-08-01
The evolution of an electron beam colliding head on with a strong plane-wave field is investigated in the framework of strong-field QED including radiation-reaction effects due to photon emission. Employing a kinetic approach to describe the electron and the photon distribution it is shown that at a given total laser fluence the final electron distribution depends on the shape of the laser envelope and on the pulse duration, in contrast to the classical predictions of radiation reaction based on the Landau-Lifshitz equation. Finally, it is investigated how the pair-creation process leads to a nonlinear coupled evolution of the electrons in the beam, of the produced charged particles, and of the emitted photons.
Energy Technology Data Exchange (ETDEWEB)
Nakamae, Sawako, E-mail: Sawako.nakamae@cea.fr
2014-04-15
Interacting magnetic nanoparticles display a wide variety of magnetic behaviors ranging from modified superparamagnetism, superspin glass to possibly, superferromagnetism. The superspin glass state is described by its slow and out-of-equilibrium magnetic behaviors akin to those found in atomic spin glasses. In this article, recent experimental findings on superspin correlation length growth and the violation of the fluctuation-dissipation theorem obtained in concentrated frozen ferrofluids are presented to illustrate certain out-of-equilibrium dynamics behavior in superspin glasses. - Highlights: • Recent experimental findings on superspin glass dynamics in magnetic nanoparticle systems. • Advantages of magnetic nanoparticles for the study of spin glass physics. • Open questions and future directions in superspin glass research.
Dynamic random links enhance diversity-induced coherence in strongly coupled neuronal systems
Indian Academy of Sciences (India)
Neeraj Kumar Kamal; Sudeshna Sinha
2015-02-01
We investigate the influence of diversity on the temporal regularity of spiking in a ring of coupled model neurons. We find diversity-induced coherence in the spike events, with an optimal amount of parametric heterogeneity at the nodal level yielding the greatest regularity in the spike train. Further, we investigate the system under random spatial connections, where the links are both dynamic and quenched, and in all the cases we observe marked diversity-induced coherence. We quantitatively find the effect of coupling strength and random rewiring probability, on the optimal coherence that can be achieved under diversity. Our results indicate that the largest coherence in the spike events emerge when the coupling strength is high, and when the underlying connections are mostly random and dynamically changing.
Durach, Maxim; Rusina, Anastasia; Kling, Matthias F.; Stockman, Mark I.
2011-08-01
We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a ≲1V/Å field causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in plasmonic oscillations of polarization and a significant population of the conduction band evolving on a ˜1fs time scale. These phenomena are due to a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.
On the role of the Coulomb potential in strong field atomic ionization dynamics
Energy Technology Data Exchange (ETDEWEB)
Tetchou Nganso, H.M. [Laboratoire de Physique Atomique, Moleculaire et Optique (PAMO), Universite Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium)], E-mail: htetchou@yahoo.com; Giraud, S. [Ecole Normale Superieure de Cachan, Antenne de Bretagne, Avenue Robert Schuman, Campus de Ker Lann, F-35170 Bruz (France); Piraux, B. [Laboratoire de Physique Atomique, Moleculaire et Optique (PAMO), Universite Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Popov, Yu.V. [Nuclear Physics Institute, Moscow State University, Moscow 119992 (Russian Federation); Kwato Njock, M.G. [Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580 Douala (Cameroon)
2007-10-15
In this paper, we present a model aimed at exploring the role of the Coulomb potential in the mechanism of ionization of atomic hydrogen exposed to a strong low frequency pulsed laser field. Our approach is based on the solution of the time-dependent Schroedinger equation in momentum space. Although we are in a frequency and intensity regime where tunnelling is expected to dominate, our results indicate that the atomic structure associated to the Coulomb potential plays a significant role for low energy ejected electrons.
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
DEFF Research Database (Denmark)
Volosniev, A. G.; Petrosyan, D.; Valiente, M.
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...... find that bosonic atoms offer more flexibility for tuning independently the parameters of the spin Hamiltonian through interatomic (intra-species) interaction which is absent for fermions due to the Pauli exclusion principle. Our formalism can have important implications for control and manipulation...
Observation of a strong interplanar electric field in a dynamical diffraction of polarized neutrons
Alexeev, V. L.; Fedorov, V. V.; Lapin, E. G.; Leushkin, E. K.; Rumiantsev, V. L.; Sumbaev, O. I.; Voronin, V. V.
1989-11-01
The first experimental study of the Schwinger interaction of polarized neutrons with an electric field of a noncentrosymmetric perfect crystal (α-quartz) was made for two wave dynamical diffraction. Phase shifts of Pendellösung fringes for two different spin to crystal field orientations were measured. The theory of the effect is given. The calculated value of SiO2 (11 overline20) interplanar electr field, seen by the diffracted neutron, is 2.1 × 10 8 V/cm. This is in good agreement with the experimental result: (1.8 ± 0.3) × 10 8 V/cm.
Electron correlation dynamics of strong-field double ionization of atoms below recollision threshold
Energy Technology Data Exchange (ETDEWEB)
Liu Yunquan; Gong Qihuang [Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Ye Difa; Liu Jie [Center for Applied Physics and Technology, Peking University, 100084 Beijing (China); Rudenko, A; Tschuch, S; Duerr, M; Moshammer, R; Ullrich, J [Max-Planck-Institut fuer Kernphysik, D-69117 Heidelberg (Germany); Siegel, M; Morgner, U, E-mail: yunquan.liu@pku.edu.cn [Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany)
2011-02-01
In recent combined experimental and theoretical study we have explored nonsequential double ionization of neon and argon atoms in the infrared light field (800nm) below the recollision threshold. We find that the two-electron correlation dynamics depends on atomic structure- 'side-by-side emission' (correlation) for Ne and 'back-to-back emission' (anticorrelation) for argon atoms. This can be explained theoretically within our three dimensional classical model calculation including tunnelling effect. The multiple recollisions as well as recollision-induced-excitation-tunnelling (RIET) effect dominate the anticorrelation of argon, whereas the laser-assisted instantaneous recollision dominates the correlation of neon.
Dynamical core polarization of two-active-electron systems in strong laser fields
Zhao, Zengxiu
2013-01-01
The ionization of two-active-electron systems by intense laser fields is investigated theoretically. In comparison with time-dependent Hartree-Fock and exact two electron simulation, we show that the ionization rate is overestimated in SAE approximation. A modified single-active-electron model is formulated by taking into account of the dynamical core polarization. Applying the new approach to Ca atoms, it is found that the polarization of the core can be considered instantaneous and the large polarizability of the cation suppresses the ionization by 50% while the photoelectron cut-off energy increases slightly. The existed tunneling ionization formulation can be corrected analytically by considering core polarization.
Cavity QED experiments with ion Coulomb crystals
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....
Panda, Manas K; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče
2016-07-12
The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10(-6) K(-1), αb = 238.8 × 10(-6) K(-1) and αc = -290.0 × 10(-6) K(-1), the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously.
Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF
Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.; Li, C. K.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Séguin, F. H.; Petrasso, R. D.; Zylstra, A. B.; Kagan, G.; Hoffman, N. M.; Svyatsky, D.; Wilks, S. C.; Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.
2017-06-01
Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ˜ 1 mg cc-1), high-temperature ({{T}\\text{i}}˜ keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers ({{N}\\text{K}}\\equiv {λ\\text{ii}}/R ). Slightly kinetic implosions ({{N}\\text{K}}˜ 0.01 -0.05) follow the expected yield trend with experimentally-inferred N K, suggesting effects associated with long mean-free-paths (such as energetic tail-ion loss) provide the dominant yield reduction mechanisms. In contrast, highly kinetic implosions (Rinderknecht et al 2015 Phys. Rev. Lett. 114 025001) with inferred {{N}\\text{K}}>0.5 produce the opposite yield trend from the Knudsen-number prediction, confirming the dominance of multi-species physics in these experiments. The impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.
Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators
Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit
2017-01-01
In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.
Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim
2010-03-01
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.
Ginzburg-Landau vortex dynamics with pinning and strong applied currents
Serfaty, Sylvia
2010-01-01
We study a mixed heat and Schr\\"odinger Ginzburg-Landau evolution equation on a bounded two-dimensional domain with an electric current applied on the boundary and a pinning potential term. This is meant to model a superconductor subjected to an applied electric current and electromagnetic field and containing impurities. Such a current is expected to set the vortices in motion, while the pinning term drives them toward minima of the pinning potential and "pins" them there. We derive the limiting dynamics of a finite number of vortices in the limit of a large Ginzburg-Landau parameter, or $\\ep \\to 0$, when the intensity of the electric current and applied magnetic field on the boundary scale like $\\lep$. We show that the limiting velocity of the vortices is the sum of a Lorentz force, due to the current, and a pinning force. We state an analogous result for a model Ginzburg-Landau equation without magnetic field but with forcing terms. Our proof provides a unified approach to various proofs of dynamics of Gin...
Exploring effects of strong interactions in enhancing masses of dynamical origin
de Oca, Alejandro Cabo Montes
2010-01-01
The previous investigation on the question of a dynamical generation of large quark masses in a modified version of PQCD is considered here from another viewpoint. For this purpose the mass parameter of the quarks in QCD (or equivalently, a source in the generating functional for the quark condensate composite operator in massless QCD) is assumed to have a dynamical origin. Examples of this kind are the same Yukawa interaction in the Standard Model (SM) and the case of the masses generated by fluxes within compactified spaces in superstring theories. The simple case of a real scalar field without self-interaction is assumed in this first exploration. The effective action as a function of the scalar "mass" field background is evaluated up to two loops in the minimal substraction (MS) scheme. After substituting the one loop renormalization group (RG) expression for the coupling as a function of \\mu and assuming \\Lambda_{QCD}=217 MeV, the minimum of the effective potential is fixed at a scalar field value which ...
Exploring effects of strong interactions in enhancing masses of dynamical origin
Energy Technology Data Exchange (ETDEWEB)
Cabo Montes de Oca, Alejandro [International Centre for Theoretical Physics, Trieste (Italy); Instituto de Cibernetica, Matematica y Fisica, Grupo de Fisica Teorica, Vedado, La Habana (Cuba)
2011-04-15
A previous study of the dynamical generation of masses in massless QCD is considered from another viewpoint. The quark mass is assumed to have a dynamical origin and is substituted for by a scalar field without self-interaction. The potential for the new field background is evaluated up to two loops. Expressing the running coupling in terms of the scale parameter {mu}, the potential minimum is chosen to fix m{sub top}=175 GeV when {mu}{sub 0}=498 MeV. The second derivative of the potential predicts a scalar field mass of 126.76 GeV. This number is close to the value 114 GeV, which preliminary data taken at CERN suggested to be associated with the Higgs particle. However, the simplifying assumptions limit the validity of the calculations done, as indicated by the large value of {alpha}=(g{sup 2})/(4{pi})=1.077 obtained. However, supporting statements about the possibility of improving the scheme come from the necessary inclusion of weak and scalar field couplings and mass counterterms in the renormalization procedure, in common with the seemingly needed consideration of the massive W and Z fields, if the real conditions of the SM model are intended to be approached. (orig.)
Strong scaling of general-purpose molecular dynamics simulations on GPUs
Glaser, Jens; Anderson, Joshua A; Lui, Pak; Spiga, Filippo; Millan, Jaime A; Morse, David C; Glotzer, Sharon C
2014-01-01
We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, arXiv:1308.5587). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, J. Comp. Phys. 117, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., J. Comp. Phys. 227, 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3,375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5x.
Potts, Jonathan R; Petrovskii, Sergei V
2017-05-07
Animal movement is a key mechanism for shaping population dynamics. The effect of interactions between competing animals on a population's survival has been studied for many decades. However, interactions also affect an animal's subsequent movement decisions. Despite this, the indirect effect of these decisions on animal survival is much less well-understood. Here, we incorporate movement responses to foreign animals into a model of two competing populations, where inter-specific competition is greater than intra-specific competition. When movement is diffusive, the travelling wave moves from the stronger population to the weaker. However, by incorporating behaviourally induced directed movement towards the stronger population, the weaker one can slow the travelling wave down, even reversing its direction. Hence movement responses can switch the predictions of traditional mechanistic models. Furthermore, when environmental heterogeneity is combined with aggressive movement strategies, it is possible for spatially segregated co-existence to emerge. In this situation, the spatial patterns of the competing populations have the unusual feature that they are slightly out-of-phase with the environmental patterns. Finally, incorporating dynamic movement responses can also enable stable co-existence in a homogeneous environment, giving a new mechanism for spatially segregated co-existence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.
2016-01-01
Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.
Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring
Levichev, Eugene; Shatilov, Dmitry
2010-01-01
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850
Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver
2016-12-01
Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural
Kirichek, Oleg; Soper, Alan; Dzyuba, Boris; Callear, Sam; Fuller, Barry
2015-01-01
The nucleation and growth of crystalline ice during cooling, and further crystallization processes during re-warming are considered to be key processes determining the success of low temperature storage of biological objects, as used in medical, agricultural and nature conservation applications. To avoid these problems a method, termed vitrification, is being developed to inhibit ice formation by use of high concentration of cryoprotectants and ultra-rapid cooling, but this is only successful across a limited number of biological objects and in small volume applications. This study explores physical processes of ice crystal formation in a model cryoprotective solution used previously in trials on vitrification of complex biological systems, to improve our understanding of the process and identify limiting biophysical factors. Here we present results of neutron scattering experiments which show that even if ice crystal formation has been suppressed during quench cooling, the water molecules, mobilised during warming, can crystallise as detectable ice. The crystallisation happens right after melting of the glass phase formed during quench cooling, whilst the sample is still transiting deep cryogenic temperatures. We also observe strong water isotope effects on ice crystallisation processes in the cryoprotectant mixture. In the neutron scattering experiment with a fully protiated water component, we observe ready crystallisation occurring just after the glass melting transition. On the contrary with a fully deuteriated water component, the process of crystallisation is either completely or substantially supressed. This behaviour might be explained by nuclear quantum effects in water. The strong isotope effect, observed here, may play an important role in development of new cryopreservation strategies.
Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V
Collins, Michelle L. M.; Tollerud, Erik J.; Sand, David J.; Bonaca, Ana; Willman, Beth; Strader, Jay
2017-01-01
We present a chemodynamical analysis of the Leo V dwarf galaxy, based on Keck II DEIMOS spectra of 8 member stars. We find a systemic velocity for the system of population through extended star formation. Owing to the tentative photometric evidence for tidal substructure around Leo V, we also investigate whether there is any evidence for tidal stripping or shocking of the system within its dynamics. We measure a significant velocity gradient across the system, of dv/dχ = -4.1^{+2.8}_{-2.6} km s^{-1} per arcmin (or dv/dχ = -71.9^{+50.8}_{-45.6} km s^{-1} kpc-1), which points almost directly toward the Galactic centre. We argue that Leo V is likely a dwarf on the brink of dissolution, having just barely survived a past encounter with the centre of the Milky Way.
Cavity QED experiments with ion Coulomb crystals
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....
Pure gravity mediation and spontaneous B–L breaking from strong dynamics
Directory of Open Access Journals (Sweden)
Kaladi S. Babu
2016-04-01
Full Text Available In pure gravity mediation (PGM, the most minimal scheme for the mediation of supersymmetry (SUSY breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B–L, the Abelian gauge symmetry associated with the difference between baryon number B and lepton number L. The F-term of the SUSY-breaking field then not only breaks SUSY, but also B–L, which relates the respective spontaneous breaking of SUSY and B–L at a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, ΛN∼m3/2. Assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m3/2≳1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B–L is identified as a weakly gauged flavor symmetry. We also discuss the effect of the B–L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B–L D-term.
Directory of Open Access Journals (Sweden)
D. Kiyashchenko
2003-01-01
Full Text Available Investigations of the distribution of regional seismicity and the results of numerical simulations of the seismic process show the increase of inhomogenity in spatio-temporal distribution of the seismicity prior to large earthquakes and formation of inhomogeneous clusters in a wide range of scales. Since that, the multifractal approach is appropriate to investigate the details of such dynamics. Here we analyze the dynamics of the seismicity distribution before a number of strong earthquakes occurred in two seismically active regions of the world: Japan and Southern California. In order to study the evolution of spatial inhomogeneity of the seismicity distribution, we consider variations of two multifractal characteristics: information entropy of multifractal measure generation process and the higher-order generalized fractal dimension of the continuum of the earthquake epicenters. Also we studied the dynamics of the level of spatio-temporal correlations in the seismicity distribution. It is found that two aforementioned multifractal characteristics tend to decrease and the level of spatio-temporal correlations tends to increase before the majority of considered strong earthquakes. Such a tendency can be considered as an earthquake precursory signature. Therefore, the results obtained show the possibility to use multifractal and correlation characteristics of the spatio-temporal distribution of regional seismicity for seismic hazard risk evaluation.
Dynamics of zonal flow saturation in strong collisionless drift wave turbulence
Kim, Eun-jin; Diamond, P. H.
2002-11-01
Generalized Kelvin-Helmholtz (GKH) instability is examined as a mechanism for the saturation of zonal flows in the collisionless regime. By focusing on strong turbulence regimes, GKH instability is analyzed in the presence of a background of finite-amplitude drift waves. A detailed study of a simple model with cold ions shows that nonlinear excitation of GKH modes via modulational instability can be comparable to their linear generation. Furthermore, it is demonstrated that zonal flows are likely to grow faster than GKH mode near marginality, with insignificant turbulent viscous damping by linear GKH. The effect of finite ion temperature fluctuations is incorporated in a simple toroidal ion temperature gradient model, within which both zonal flow and temperature are generated by modulational instability. The phase between the two is calculated self-consistently and shown to be positive. Furthermore, the correction to nonlinear generation of GKH modes appears to be small, being of order O(ρi2k2). Thus, the role of linear GKH instability in the saturation of collisionless zonal flows, in general, seems dubious.
Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
We find a correspondence between semiclassical gauge theories quantized on the light-front and a dual gravity model in anti-de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence - light-front holography - leads to a light-front Hamiltonian and relativistic bound-state wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. Light-front holography also allows a precise mapping of transition amplitudes from AdS to physical space-time. In contrast with the usual AdS/QCD framework, the internal structure of hadrons is explicitly introduced in the gauge/gravity correspondence and the angular momentum of the constituents plays a key role. We also discuss how to introduce higher Fock-states in the correspondence as well as their relevance for describing the detailed structure of space and time-like form factors.
Reflection of a strong magnetic-gas-dynamic shock wave from an elliptical cylinder
Energy Technology Data Exchange (ETDEWEB)
Gorbachev, L.P.; Sokolov, V.B.
1977-10-01
A study is made of a strong, plane shock wave with uniform parameters propagating in a gas with infinite electric conductivity when a homogeneous magnetic field is present tangential to the leading edge of the shock wave when the wave encounters an elliptical cylinder which is stationary in the direction of propagation of the shock wave. The generatrix of the cylinder is parallel to the magnetic field, and the shock wave moves along one of the semiaxes of the ellipse in the perpendicular cross section of the cylinder. Expressions are derived for the flow parameters of the gas beyond the reflected shock wave, ignoring the viscosity and heat conductivity of the gas and assuming the Hall effect to be slight. As t ..-->.. infinity steady supersonic flow is established around the cylinder and the velocity D of the reflected shock wave with respect to the cylinder drops toward zero. A graph shows the results of calculation of the pressure on the surface of the cylinder. 7 references, 1 figure.
Reorientation dynamics of nematics encapsulated in microscopic volumes in a strong electric field
Zakharov, A. V.; Vakulenko, A. A.; Pasechnik, S. V.
2016-09-01
We theoretically describe a new regime of reorientation of the director field widehat n and velocity v of a nematic liquid crystal (LC) encapsulated in a rectangular cell under the action of strong electric field E directed at angle α ( π/2) to the horizontal surfaces bounding the LC cell. The numerical calculations in the framework of nonlinear generalization of the classical Eriksen-Leslie theory showed that at certain relations between the torques and momenta affecting the unit LC volume and E ≫ E th, transition periodic structures can arise during reorientation of widehat n, if the corresponding distortion mode has the fastest response and, thus, suppresses all the rest of the modes, including uniform ones. The position of sites of these periodic structures is affected by the value of field E, angle α, and the character of anchoring of LC molecules to the bounding surfaces. The calculations performed for the nematic formed by 4-n-penthyl-4'-cyanobiphenyl showed that several vortexes can form in an LC cell under the action of reorientation of the nematic field; the boundaries of these vortexes are determined by the positions of periodic structure sites.
Iliafar, Sara; Vezenov, Dmitri; Jagota, Anand
2013-02-01
We used brownian dynamics to study the peeling of a polymer molecule, represented by a freely jointed chain, from a frictionless surface in an implicit solvent with parameters representative of single-stranded DNA adsorbed on graphite. For slow peeling rates, simulations match the predictions of an equilibrium statistical thermodynamic model. We show that deviations from equilibrium peeling forces are dominated by a combination of Stokes (viscous) drag forces acting on the desorbed section of the chain and a finite rate of hopping over a desorption barrier. Characteristic velocities separating equilibrium and nonequilibrium regimes are many orders of magnitude higher than values accessible in force spectroscopy experiments. Finite probe stiffness resulted in disappearance of force spikes due to desorption of individual links predicted by the statistical thermodynamic model under displacement control. Probe fluctuations also masked sharp transitions in peeling force between blocks of distinct sequences, indicating limitation in the ability of single-molecule force spectroscopy to distinguish small differences in homologous molecular structures.
Roslund, Jonathan; Roth, Matthias; Guyon, Laurent; Boutou, Véronique; Courvoisier, Francois; Wolf, Jean-Pierre; Rabitz, Herschel
2011-01-21
Fundamental molecular selectivity limits are probed by exploiting laser-controlled quantum interferences for the creation of distinct spectral signatures in two flavin molecules, erstwhile nearly indistinguishable via steady-state methods. Optimal dynamic discrimination (ODD) uses optimally shaped laser fields to transiently amplify minute molecular variations that would otherwise go unnoticed with linear absorption and fluorescence techniques. ODD is experimentally demonstrated by combining an optimally shaped UV pump pulse with a time-delayed, fluorescence-depleting IR pulse for discrimination amongst riboflavin and flavin mononucleotide in aqueous solution, which are structurally and spectroscopically very similar. Closed-loop, adaptive pulse shaping discovers a set of UV pulses that induce disparate responses from the two flavins and allows for concomitant flavin discrimination of ∼16σ. Additionally, attainment of ODD permits quantitative, analytical detection of the individual constituents in a flavin mixture. The successful implementation of ODD on quantum systems of such high complexity bodes well for the future development of the field and the use of ODD techniques in a variety of demanding practical applications.
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V
Collins, Michelle L M; Sand, David J; Bonaca, Ana; Willman, Beth; Strader, Jay
2016-01-01
We present a chemodynamical analysis of the Leo~V dwarf galaxy, based on Keck II DEIMOS spectra of 8 member stars. We find a systemic velocity for the system of $\\langle v_r\\rangle = 170.9^{+ 2.1}_{-1.9}$kms$^{-1}$, and barely resolve a velocity dispersion for the system, with $\\sigma_{vr} = 2.3^{+3.2}_{-1.6}$kms$^{-1}$, consistent with previous studies of Leo~V. The poorly resolved dispersion means we are unable to concretely determine whether Leo~V is dark matter dominated. We find an average metallicity for the dwarf of [Fe/H]$ = -2.48\\pm0.21$, and measure a significant spread in the iron abundance of its member stars, with $-3.1\\le$[Fe/H]$\\le-1.9$ dex, which cleanly identifies Leo~V as a dwarf galaxy that has been able to self-enrich its stellar population through extended star formation. Owing to the tentative photometric evidence for tidal substructure around Leo~V, we also investigate whether there is any dynamical evidence for tidal stripping or shocking of the system. We measure a significant velocit...
On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.
Pump-probe reflectivity study of ultrafast dynamics of strongly correlated 5f electrons inUO2
Energy Technology Data Exchange (ETDEWEB)
Au, Yongqiang Q [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory; Durakiewicz, Tomasz [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory
2010-01-01
5f electrons in the Mott insulator UO{sub 2} produce intriguing electronic states and dynamics, such as strong correlation and f-f excitations. We have performed femtosecond pump-probe reflectivity measurements on a single crystal UO{sub 2} at temperatures 5-300 K to study the ultrafast dynamics of photoexcited 5f electrons. The laser pulses at 400 nm pump 5 f electrons across the Mott gap, while those at 800 nm probe the pump-induced change of reflectivity. We find temperature-dependent excitation and relaxation processes and long-lived acoustic phonons, and extract picosecond risetimes and microsecond relaxation times at low temperatures. The observed slow relaxation is ascribed to the decay of Hubbard excitons formed by U{sup 3+}-U{sup 5+} pairs.
Uncovering new strong dynamics via topological interactions at the 100 TeV collider arXiv
Molinaro, Emiliano; Thomsen, Anders Eller; Vignaroli, Natascia
In models of composite Higgs dynamics new composite pseudoscalars can interact with the Higgs and electroweak gauge bosons via anomalous interactions, stemming from the topological sector of the underlying theory. We show that a future 100 TeV proton-proton collider (FCC-pp) will be able to test this important sector and thus shed light on the strong dynamics which generates the Higgs and other composite states. To elucidate our results we focus on the topological interactions of a minimal composite Higgs model with a fermionic ultraviolet completion, based on the coset $\\text{SU}(4)/\\text{Sp}(4)$. We suggest the strategy to test these interactions at the FCC-pp and analyse the expected reach.
Sushruth, Manu; Fried, Jasper P.; Anane, Abdelmadjid; Xavier, Stephane; Deranlot, Cyrile; Cros, Vincent; Metaxas, Peter J.
2017-08-01
We demonstrate an enhanced, bidirectional, in-plane magnetic field tuning of the gyrotropic resonance frequency of a magnetic vortex within a ferromagnetic disk by introducing a flat edge. When the core is in its vicinity, the flat edge locally reduces the core's directional dynamic stiffness for movement parallel to the edge. This strongly reduces the net dynamic core stiffness, leading to the gyrotropic frequency being significantly less than when the core is centered (or located near the round edge). This leads to the measurable range of gyrotropic frequencies being more than doubled and also results in a clear chirality-mediated bistability of the gyrotropic resonance frequency due to what is effectively a chirality dependence of the core's confining potential.
Sannino, Francesco
2008-01-01
We summarize basic features associated to dynamical breaking of the electroweak symmetry. The knowledge of the phase diagram of strongly coupled theories as function of the number of colors, flavors and matter representation plays a fundamental role when trying to construct viable extensions of the standard model (SM). Therefore we will report on the status of the phase diagram for SU(N) gauge theories with fermionic matter transforming according to arbitrary representations of the underlying gauge group. We will discuss how the phase diagram can be used to construct unparticle models. We will then review Minimal Walking Technicolor (MWT) and other extensions, such as partially gauged and split technicolor. MWT is a sufficiently general, symmetry wise, model to be considered as a benchmark for any model aiming at breaking the electroweak symmetry dynamically. The unification of the standard model gauge couplings will be revisited within technicolor extensions of the SM. A number of appendices are added to rev...
Single and Coupled Nanobeam Cavities
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.
2013-01-01
for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...
Metastable Phases and Dynamics of Low-Dimensional Strongly-Correlated Atomic Quantum Gases
Pielawa, Susanne
In this thesis we theoretically study low-dimensional, strongly correlated systems of cold atoms, which are not in an equilibrium situation. This is motivated by recent experimental progress, which has made it possible to study quantum many-body physics in a controllable and clean setting; and parameters can be changed during the experiment. In Chapter 2 and 3 we study phases and quantum phase transitions of 'tilted' Mott insulator of bosons. We analyze a variety of lattices and tilt directions in two dimensions: square, decorated square, triangular, and kagome. We show that there are rich possibilities for correlated phases with non-trivial entanglement of pseudospin degrees of freedom encoded in the boson density. For certain configurations three-body interactions are necessary to ensure that the energy of the effective resonant subspace is bounded from below. We find quantum phases with Ising density wave order, with superfluidity transverse to the tilt direction, a quantum liquid state with no broken symmetry. We also find cases for which the resonant subspace is described by effective quantum dimer models. In Chapter 4 we study spin 1/2 chains with a Heisenberg interaction which are coupled in a way that would arise if they are taken off graphene at a zig-zag edge. In Chapter 5 we theoretically analyze interference patterns of parametrically driven one-dimensional cold atomic systems. The parametric driving leads to spatial oscillations in the interference patter, which can be analyzed to obtain the sound velocity of the 1d system, and to probe spin-charge separation.
Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V
Collins, Michelle L. M.; Tollerud, Erik J.; Sand, David J.; Bonaca, Ana; Willman, Beth; Strader, Jay
2017-05-01
We present a chemodynamical analysis of the Leo V dwarf galaxy, based on the Keck II DEIMOS spectra of eight member stars. We find a systemic velocity for the system of < v_r\\rangle = 170.9^{+ 2.1}_{-1.9} km s^{-1} and barely resolve a velocity dispersion for the system, with σ _{vr} = 2.3^{+3.2}_{-1.6} km s^{-1}, consistent with previous studies of Leo V. The poorly resolved dispersion means we are unable to adequately constrain the dark-matter content of Leo V. We find an average metallicity for the dwarf of [Fe/H] =-2.48 ± 0.21 and measure a significant spread in the iron abundance of its member stars, with -3.1 ≤ [Fe/H] ≤-1.9 dex, which clearly identifies Leo V as a dwarf galaxy that has been able to self-enrich its stellar population through extended star formation. Owing to the tentative photometric evidence for the tidal substructure around Leo V, we also investigate whether there is any evidence for tidal stripping or shocking of the system within its dynamics. We measure a significant velocity gradient across the system, of dv/dχ = -4.1^{+2.8}_{-2.6} km s^{-1} arcmin-1 (or dv/dχ = -71.9^{+50.8}_{-45.6} km s^{-1} kpc-1), which points almost directly towards the Galactic Centre. We argue that Leo V is likely a dwarf on the brink of dissolution, having just barely survived a past encounter with the centre of the Milky Way.
Strong dynamics near open heavy flavor thresholds, hadronic molecules and hadroquarkonium
Dubynskiy, Sergiy
Some properties of the old and new states of quarkonium as well as QCD based methods for studying those states are discussed. A general formula for observable effects of isospin violation in the production of heavy mesons in e+e-- annihilation is derived in Chapter 2. In addition the production and scattering amplitudes of heavy mesons with the presence of two closely spaced narrow resonances are studied. In Chapter 3 an alternative viable source of the X(3872) resonance with simple kinematics is suggested. Further, the transitions from resonance X(3872) to the chicJ states of charmonium with emission of one or two pions are considered. It is found that the relative rates for these transitions to final states with different J may shed light on the understanding of isotopic structure of the X(3872) and the prominence of the four-quark component in it's internal dynamics. Chapter 4 is devoted to study of new JPC = 1---- resonances. It is argued that relatively compact charmonium states, J/psi, psi(2 S), chic, can very likely be bound inside light hadronic matter, in particular inside higher resonances made from light quarks and/or gluons. The charmonium state in such binding essentially retains its properties, so that the bound system decays into light mesons and a particular charmonium resonance. Such bound states of a new type, hadro-charmonium, may explain the properties of some of the recently observed resonant peaks, in particular of Y(4.26), Y(4.32--4.36), Y(4.66), and Z(4.43). Further possible implications of the suggested picture for the observed states and existence of other states of hadro-charmonium and hadro-bottomonium are discussed. In Chapter 5 it is argued that the existing analysis of the experimental data on the dipion transition Upsilon(3 S) → Upsilon(1S) pipi was incomplete and suggestions to remove the internal ambiguity are made.
Nelson, Daniel R; Fleming, George T; Kilcup, Gregory W
2003-01-17
A standing mystery in the standard model is the unnatural smallness of the strong CP violating phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the constants of the chiral Lagrangian essential for the determination of the up quark mass, 2alpha(8)-alpha(5), is presented. We find 2alpha(8)-alpha(5)=0.29+/-0.18, which corresponds to m(u)/m(d)=0.410+/-0.036. This is the first such calculation using a physical number of dynamical light quarks, N(f)=3.
Dynamic analysis of V-folded cavity for TEM00 operation of end-pumped solid-state laser
Institute of Scientific and Technical Information of China (English)
Cunfa Li; Xiangchun Shi
2005-01-01
Based on graphic analysis design method of optical resonator, a simple design expression of V-folded cavity of end-pumped solid-state lasers with TEMoo operation is described, which satisfies two criterias of the resonator design. We give numerical simulation of spot size as a function of thermal focal length using this design approach whose advantages axe validated experimentally.
Benusiglio, Adrien; Clanet, Christophe
2012-01-01
We present a fluid dynamics video on cavities created by explosions of firecrackers at the water free surface. We use three types of firecrackers containing 1, 1.3 and 5 g of flash powder. The firecrackers are held with their center at the surface of water in a cubic meter pool. The movies are recorded from the side with a high-speed video camera. Without confinement the explosion produces an hemispherical cavity. Right after the explosion this cavity grows isotropically, the bottom then stops while the sides continue to expand. In the next phase the bottom of the cavity accelerates backwards to the surface. During this phase the convergence of the flow creates a central jet that rises above the free surface. In the last part of the video the explosion is confined in a vertical open tube made of glass and of centimetric diameter. The explosion creates a cylindrical cavity that develops towards the free end of the tube. Depending on the charge, the cavity can either stop inside the tube or at its exit, but nev...
Ryzhov, I. V.; Vasil'ev, N. A.; Kosova, I. S.; Shtager, M. D.; Malyshev, V. A.
2017-05-01
Cooperative radiation emitted by an ensemble of three-level optical systems with a doublet in the ground state (Λ scheme), which is placed into a cyclic cavity, is studied theoretically. In contrast to the two-level model of emitters, this process with such a configuration of operating transitions may occur without population inversion in the whole, if the doublet is prepared at the initial instant in a superposition (coherent) state. In the ideal case of a Hamilton system, in which the cavity losses and relaxation in the radiator ensemble are disregarded, the conservation laws are derived, which allow a substantial reduction of the dimension of the phase space of the model (ℝ11 → ℝ5) and the application of methods of dynamics of nonlinear systems for analyzing the three-level superradiance under these conditions. The possibility of different (both quasiperiodic and chaotic) scenarios of the three-level superradiance is demonstrated on the basis of Poincaré's mappings. Global bifurcation of the system upon a transition from the conventional superradiance regime to inversionless one is revealed. The effects of cavity losses, as well as homogeneous and inhomogeneous broadening in the system of radiators on the regularities found are also discussed.
1988-01-01
The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.
Deng, Chunqing; Shen, Feiruo; Ashhab, Sahel; Lupascu, Adrian
2016-09-01
We consider the dynamics of a two-level system (qubit) driven by strong and short resonant pulses in the framework of Floquet theory. First we derive analytical expressions for the quasienergies and Floquet states of the driven system. If the pulse amplitude varies very slowly, the system adiabatically follows the instantaneous Floquet states, which acquire dynamical phases that depend on the evolution of the quasienergies over time. The difference between the phases acquired by the two Floquet states corresponds to a qubit state rotation, generalizing the notion of Rabi oscillations to the case of large driving amplitudes. If the pulse amplitude changes very fast, the evolution is nonadiabatic, with transitions taking place between the Floquet states. We quantify and analyze the nonadiabatic transitions during the pulse by employing adiabatic perturbation theory and exact numerical simulations. We find that, for certain combinations of pulse rise and fall times and maximum driving amplitude, a destructive interference effect leads to a remarkably strong suppression of transitions between the Floquet states. This effect provides the basis of a quantum control protocol, which we name Floquet interference efficient suppression of transitions in the adiabatic basis (FIESTA), that can be used to design ultrafast high-fidelity single-qubit quantum gates.
Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter
2017-08-01
We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M */L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M ⊙. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to IMF at low stellar masses (m ≲ 0.3 M ⊙), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M */L relative to the mean matched-σ ETG. We provide the spectra used in this study to facilitate future comparisons.
Characterization and Dynamic Analysis of Long-Cavity Multi-Section Gain- Levered Quantum-Dot Lasers
2013-03-01
linewidth-enhancement factor to values greater than one [19]. This is combined with the original quantum-dot emission wavelength being blueshifted ...16]. Figure 12: Blueshift of the quantum-dot emission due to state filling. Each spectrum is marked with the corresponding laser cavity length...distinct second peak near 1222 nm. This spectral feature continues to blueshift as biasing is increased to 500 mA. The fundamental spectral feature widens
Pylon Effects on a Scramjet Cavity Flameholder Flowfield
2008-09-01
3.5 4.0 4.5 5.0 0 100 200 300 400 500 600 y ( c m ) Streamwise Velocity (m/s) CFD PIV PROBE ANALYTICAL SURF . PRESS. 49 IV. Computational Approach...combination of wind tunnel experimentation and steady-state computational fluid dynamics ( CFD ). Flowfield effects of the pylon-cavity were examined...approximately three times the mass exchange between the cavity and overlying flow. Both CFD and particle image velocimetry data showed strong upward flow
Tee, Wei-Ven; Ripen, Adiratna Mat; Mohamad, Saharuddin Bin
2016-01-01
Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of −37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR. PMID:27786277
On cavity modification of stimulated Raman scattering
Matsko, A B; Letargat, R J; Ilchenko, V S; Maleki, L
2003-01-01
We study theoretically stimulated Raman scattering (SRS) in a nonlinear dielectric microcavity and compare SRS thresholds for the cavity and the bulk material it is made of. We show that cavity SRS enhancement results solely from the intensity build up in the cavity and from the differences of the SRS dynamics in free and confined space. There is no significant modification of the Raman gain due to cavity QED effects. We show that the SRS threshold depends significantly on the nature of the dominating cavity decay as well as on the coupling technique with the cavity used for SRS measurements.
DEFF Research Database (Denmark)
Kildemoes, Helle Wallach; Andersen, Morten
-state (untreated, treated, dead) semi-Markov model to analyse the dynamics of drug use. Transitions were from untreated to treated (incidence), the reverse (discontinuation), and from either untreated or treated to dead. Stratified by sex and age categories, prevalence trends of "growth driving" drug categories...... were analysed, exploring trends in incidence- mortality- and discontinuation rates. Trends in prevalence proportions were estimated from logistic regression. Incidence-, discontinuation and mortality rates from Poisson regression. Results: The total cardiovascular treatment intensity increased from 285...
Panchadhyayee, Pradipta
2013-11-01
We investigate the dynamical behaviour of atomic response in a closed three-level V-type atomic system with the variation of different relevant parameters to exhibit transient evolution of absorption, gain and transparency in the probe response. The oscillations in probe absorption and gain can be efficiently modulated by changing the values of the Rabi frequency, detuning and the collective phase involved in the system. The interesting outcome of the work is the generation of coherence controlled loop-structure with varying amplitudes in the oscillatory probe response of the probe field at various parameter conditions. The prominence of these structures is observed when the coherence induced in a one-photon excitation path is strongly modified by two-step excitations driven by the coherent fields operating in closed interaction contour. In contrast to purely resonant case, the time interval between two successive loops gets significantly reduced with the application of non-zero detuning in the coherent fields.
Lebon, Gerard S. B.; Pericleous, Koulis; Tzanakis, Iakovos; Eskin, Dmitry G.
2015-10-01
Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front.
Zagoya, C; Ronto, M; Shalashilin, D V; Faria, C Figueira de Morisson
2014-01-01
We assess the suitability of quantum and semiclassical initial value representations, exemplified by the coupled coherent states (CCS) method and the Herman Kluk (HK) propagator, respectively, for modeling the dynamics of an electronic wave packet in a strong laser field, if this wave packet is initially bound. Using Wigner quasiprobability distributions and ensembles of classical trajectories, we identify signatures of over-the-barrier and tunnel ionization in phase space for static and time-dependent fields and the relevant sets of phase-space trajectories in order to model such features. Overall, we find good agreement with the full solution of the time-dependent Schr\\"odinger equation (TDSE) for Wigner distributions constructed with both initial-value representations. Our results indicate that the HK propagator does not fully account for tunneling and over-the-barrier reflections. However, it is able to partly reproduce features associated with the wave packet crossing classically forbidden regions, altho...
Directory of Open Access Journals (Sweden)
P. Tosi
2006-06-01
Full Text Available From 08/01/1983 to 28/03/1990, at the Bishkek ElectroMagnetic (EM test site (Northern Tien Shan and Chu Valley area, Central Asia, strong currents, up to 2.5 kA, were released at a 4.5 km long electrical (grounded dipole. This area is seismically active and a catalogue with about 14100 events from 1975 to 1996 has been analyzed. The seismic catalogue was divided into three parts: 1975-1983 first part with no EM experiments, 1983-1990 second part during EM experiments and 1988-1996 after experiments part. Qualitative and quantitative time series non- linear analysis was applied to waiting times of earthquakes to the above three sub catalogue periods. The qualitative approach includes visual inspection of reconstructed phase space, Iterated Function Systems (IFS and Recurrence Quantification Analysis (RQA. The quantitative approach followed correlation integral calculation of reconstructed phase space of waiting time distribution, with noise reduction and surrogate testing methods. Moreover the Lempel- Ziv algorithmic complexity measure (LZC was calculated. General dynamics of earthquakes temporal distribution around the test area, reveals properties of low dimensional non linearity. Strong EM discharges lead to the increase in extent of regularity in earthquakes temporal distribution. After cessation of EM experiments the earthquakes temporal distribution becomes much more random than before experiments. To avoid non valid conclusions several tests were applied to our data set: differentiation of the time series was applied to check results not affected by non stationarity; the surrogate data approach was followed to reject the hypothesis that dynamics belongs to the colored noise type. Small earthquakes, below completeness threshold, were added to the analysis to check results robustness.
Indian Academy of Sciences (India)
Hirendra N Ghosh
2007-03-01
Dynamics of interfacial electron transfer (ET) in ruthenium polypyridyl complex [{bis-(2,2'-bpy)-(4-[2-(4'-methyl-[2,2']bipyridinyl-4-yl)-vinyl]-benzene-1,2-diol)}ruthenium(II) hexafluorophosphate] (Ru-cat) and 5,10,15-tris phenyl-20-(3,4-dihydroxy benzene) porphyrin (TPP-cat)-sensitized TiO2 nanoparticles have been investigated using femtosecond transient absorption spectroscopic detection in the visible and near-infrared region. We have observed that both Ru-cat and TPP-cat are coupled strongly with the TiO2 nanoparticles through their pendant catechol moieties. We have observed a single exponential and pulse-width limited (< 100 fs) electron injection from nonthermalized-excited states of Ru-complex. Here electron injection competes with the singlet-triplet manifold relaxation due to strong coupling of catecholate binding, which is a unique observation. Optical absorption measurements indicate that the catechol moiety interacts with TiO2 nanoparticles showing the characteristic pure catechol-TiO2 charge-transfer (CT) band in the visible region. Transient absorption studies on TPP-cat/TiO2 system exciting both the Soret band at 400 nm and the Q-band at 800 nm have been carried out to determine excitation wavelength-dependence on ET dynamics. The reaction channel for the electron-injection process has been found to be different for both the excitation wavelengths. Excitation at 800 nm, is found directly populate directly the excited CT state from where diffusion of electrons into the conduction band takes place. On the other hand, excitation at 400 nm light excites both the CT band of cat-TiO2 and also Soret band of TPP-cat.
Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.
Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas
2013-01-01
We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.
1992-01-01
1988). 7. V . Buzk, Phys. Lett. A 139, 231 (1989); Phys. Rev. A 39, 3196 (1989). 8. M. V . Satyanarayana , P. Rice, R. Vyas and H. J. Carmichael, J. Opt...nth-order Hermite polynomial andn P- a + a* v . (12) - cosh7, v - sinh7 . (13) Thus, the initial density matrix elements of the cavity field are pnn...Perlmutter, R. V . DeVoe and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986). 4. L. A. Wu, H. J. Kimble, J. L. Hall and H. Wu, Phys. Rev. Lett. 57, 2520
Newman, Andrew B; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter
2016-01-01
We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, they were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-$\\sigma$ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar $M_*/L$ using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find find good agreement among these methods for one galaxy. The other two galaxies show 2-5$\\sigma$ tension, depending on the dark matter contribution, when considering IMFs with a fixed low-mass cut-off ...
Ilday, Serim; Akguc, Gursoy B.; Tokel, Onur; Makey, Ghaith; Yavuz, Ozgun; Yavuz, Koray; Pavlov, Ihor; Ilday, F. Omer; Gulseren, Oguz
We report a new dynamical self-assembly mechanism, where judicious use of convective and strong Brownian forces enables effective patterning of colloidal nanoparticles that are almost two orders of magnitude smaller than the laser beam. Optical trapping or tweezing effects are not involved, but the laser is used to create steep thermal gradients through multi-photon absorption, and thereby guide the colloids through convective forces. Convective forces can be thought as a positive feedback mechanism that helps to form and reinforce pattern, while Brownian motion act as a competing negative feedback mechanism to limit the growth of the pattern, as well as to increase the possibilities of bifurcation into different patterns, analogous to the competition observed in reaction-diffusion systems. By steering stochastic processes through these forces, we are able to gain control over the emergent pattern such as to form-deform-reform of a pattern, to change its shape and transport it spatially within seconds. This enables us to dynamically initiate and control large patterns comprised of hundreds of colloids. Further, by not relying on any specific chemical, optical or magnetic interaction, this new method is, in principle, completely independent of the material type being assembled.
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
Energy Technology Data Exchange (ETDEWEB)
Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2013-12-07
We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.
Harris, R.
2015-12-01
I summarize the progress by the Southern California Earthquake Center (SCEC) and U.S. Geological Survey (USGS) Dynamic Rupture Code Comparison Group, that examines if the results produced by multiple researchers' earthquake simulation codes agree with each other when computing benchmark scenarios of dynamically propagating earthquake ruptures. These types of computer simulations have no analytical solutions with which to compare, so we use qualitative and quantitative inter-code comparisons to check if they are operating satisfactorily. To date we have tested the codes against benchmark exercises that incorporate a range of features, including single and multiple planar faults, single rough faults, slip-weakening, rate-state, and thermal pressurization friction, elastic and visco-plastic off-fault behavior, complete stress drops that lead to extreme ground motion, heterogeneous initial stresses, and heterogeneous material (rock) structure. Our goal is reproducibility, and we focus on the types of earthquake-simulation assumptions that have been or will be used in basic studies of earthquake physics, or in direct applications to specific earthquake hazard problems. Our group's goals are to make sure that when our earthquake-simulation codes simulate these types of earthquake scenarios along with the resulting simulated strong ground shaking, that the codes are operating as expected. For more introductory information about our group and our work, please see our group's overview papers, Harris et al., Seismological Research Letters, 2009, and Harris et al., Seismological Research Letters, 2011, along with our website, scecdata.usc.edu/cvws.
Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence
2016-11-01
More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.
Smith, Albert A; Corzilius, Björn; Haze, Olesya; Swager, Timothy M; Griffin, Robert G
2013-12-01
We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization--suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.
Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Herdeiro, Carlos; Font, José A.; Montero, Pedro J.
2016-08-01
In a recent Letter [Sanchis-Gual et al., Phys. Rev. Lett. 116, 141101 (2016)], we presented numerical relativity simulations, solving the full Einstein-Maxwell-Klein-Gordon equations, of superradiantly unstable Reissner-Nordström black holes (BHs), enclosed in a cavity. Low frequency, spherical perturbations of a charged scalar field trigger this instability. The system's evolution was followed into the nonlinear regime, until it relaxed into an equilibrium configuration, found to be a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory, and promote a nonmonotonic behavior of the scalar field energy. Furthermore, we discuss in detail the influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the scalar field charge, the mass, and the position of the cavity's boundary (mirror). We also investigate the "explosive" nonlinear regime previously reported to be akin to a bosenova. A mode analysis shows that the "explosions" can be interpreted as the decay into the BH of modes that exit the superradiant regime.
Institute of Scientific and Technical Information of China (English)
Chau-ShioungYeh; Tsung-JenTeng; Wen-ShinnShyu; I-ChangTsai
2002-01-01
In this paper, based on a variational formalism which originally proposed by Mei [1] for infinite elastic medium and extended by Yeh, et al. [2,3] for elastic half-plane, a hybrid method which combines the finite element and series expansion method is implemented to solve the diffraction of plane waves by a cavity buried in an elastic half-plane. The finite domain which encloses all inhomogeneities including the cavity can be easily formulated by finite element methods. The unknown boundary data obtained by subtracting the known free fields from the total fields which include the boundary nodal displacements and tractions at the interface between the finite domain and the surrounding elastic half-plane are not independent of each other and can be correlated through aseries repre sentation. Due to the continuity condition at the interface, the same series representation is still valid for the exterior elastic half-plane to represents the scattered wave. The unknown coefficients of this series are treated as generalized coordinates and can be easily formulated by the same variational principle. The expansion function of the series is composed of basis function. Each basis function is constructed from the basis function for an infinite plane by superimposing an additional homogeneous reflective term to satisfy both traction free conditions at ground surface and radiation conditions at infinity. The numerical results are made against those obtained by boundary element methods, and good agreements are found.
Brela, Mateusz Z; Wójcik, Marek J; Witek, Łukasz J; Boczar, Marek; Wrona, Ewa; Hashim, Rauzah; Ozaki, Yukihiro
2016-04-28
In this study, the proton dynamics of hydrogen bonds for two forms of crystalline aspirin was investigated by the Born-Oppenheimer molecular dynamics (BOMD) method. Analysis of the geometrical parameters of hydrogen bonds using BOMD reveals significant differences in hydrogen bonding between the two crystalline forms of aspirin, Form I and Form II. Analysis of the trajectory for Form I shows spontaneous proton transfer in cyclic dimers, which is absent in Form II. Quantization of the O-H stretching modes allows a detailed discussion on the strength of hydrogen-bonding interactions. The focal point of our study is examination of the hydrogen bond characteristics in the crystal structure and clarification of the influence of hydrogen bonding on the presence of the two crystalline forms of aspirin. In the BOMD method, thermal motions were taken into account. Solving the Schrödinger equation for the snapshots of 2D proton potentials, extracted from MD, gives the best agreement with IR spectra. The character of medium-strong hydrogen bonds in Form I of aspirin was compared with that of weaker hydrogen bonds in aspirin Form II. Two proton minima are present in the potential function for the hydrogen bonds in Form I. The band contours, calculated by using one- and two-dimensional O-H quantization, reflect the differences in the hydrogen bond strengths between the two crystalline forms of aspirin, as well as the strong hydrogen bonding in the cyclic dimers of Form I and the medium-strong hydrogen bonding in Form II.
Directory of Open Access Journals (Sweden)
Kyong Hon Kim
2012-01-01
Full Text Available We review the temporal dynamics of the laser output spectrum and polarization state of 1.55 μm wavelength single-mode (SM vertical-cavity surface-emitting lasers (VCSELs induced by external optical beam injection. Injection of an external continuous-wave laser beam to a gain-switched SM VCSEL near the resonance wavelength corresponding to its main polarization-mode output was critical for improvement of its laser pulse generation characteristics, such as pulse timing-jitter reduction, linewidth narrowing, pulse amplitude enhancement, and pulse width shortening. Pulse injection of pulse width shorter than the cavity photon lifetime into the SM VCSEL in the orthogonal polarization direction with respect to its main polarization mode caused temporal delay of the polarization recovery after polarization switching (PS, and its delay was found to be the minimum at an optimized bias current. Polarization-mode bistability was observed even in the laser output of an SM VCSEL of a standard circularly cylindrical shape and used for all-optical flip-flop operations with set and reset injection pulses of very low pulse energy of order of the 3.5~4.5 fJ.
Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.
Pirkkalainen, J-M; Cho, S U; Li, Jian; Paraoanu, G S; Hakonen, P J; Sillanpää, M A
2013-02-14
Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.
Ray splitting in paraxial optical cavities
Puentes, G; Woerdman, J P
2003-01-01
We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.
Zhang, Haiyang; Feng, Wei; Li, Cong; Lv, Yongqin; Tan, Tianwei
2012-01-01
Acetic acid acts as one component of the mobile phase to influence separation of puerarin from daidzin when using β-cyclodextrin-substituted media. In this work considering an explicit acetic acid solution, host-guest complexes of β-cyclodextrin (β-CD) with puerarin and daidzin were investigated by molecular dynamics simulations. Computational results indicate different shuttle motions of puerarin and daidzin inside the cavity of β-CD. A model detailing the shuttle motion was constructed, and the relationships between shuttle depth and guest rotation angles, hydrogen bonds, and host-guest interaction energies were analyzed. The results can be used to explain the chromatographic retention mechanisms of puerarin and daidzin with β-CD, and to explore the complexity of host-guest interactions involving β-CD.
Chen, Shaoqiang; Asahara, Akifumi; Ito, Takashi; Zhang, Jiangyong; Zhang, Baoping; Suemoto, Tohru; Yoshita, Masahiro; Akiyama, Hidefumi
2014-02-24
The gain-switching dynamics of single-mode pulses were studied in blue InGaN multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) through impulsive optical pumping. We measured the shortest single-mode pulses of 6.0 ps in width with a method of up-conversion, and also obtained the pulse width and the delay time as functions of pump powers from streak-camera measurements. Single-mode rate-equation calculations quantitatively and consistently explained the observed data. The calculations indicated that the pulse width in the present VCSELs was mostly limited by modal gain, and suggested that subpicosecond pulses should be possible within feasible device parameters.
Institute of Scientific and Technical Information of China (English)
陈华俊; 米贤武
2012-01-01
A model describing optomechanical dynamics via radiation-pressure coupling with a driven optical cavity was investigated by a linearized quantum Langevin equation under resolved sideband regime.Both the movable mirror and output field present the normal mode splitting with increasing of the input laser power and the results approach the experiment very well.The effective mechanical damping and resonance frequency shift are derived.The redshift sideband leads to cooling of the mechanical oscillator and the blueshift motional sideband results in amplification.Furthermore,an approximation scheme is introduced to analyze cooling of the mechanical oscillator.Since both the normal mode splitting and cooling require working in the resolved sideband regime,whether the normal mode splitting influence cooling of the mirror is considered.Meanwhile,the key factors that dominate the ground state cooling are also discussed.%在解析边带机制下用量子郎之万方程研究一种由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的光机械动力学行为.随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且结果和实验相符合.也推导了有效机械阻尼和共振频移.红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大.此外,引入一种近似机制来研究振子的冷却.由于简正模式分裂和基态冷却都要求在解析边带机制下,这就需要考虑简正模式分裂是否会影响到振子的冷却.同时也讨论了操控基态冷却的关键因素.
Dissipative preparation of entanglement in optical cavities
DEFF Research Database (Denmark)
Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg
2011-01-01
We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...... as compared to preparation protocols based on coherent unitary dynamics...
Energy Technology Data Exchange (ETDEWEB)
Silas Beane; Konstantinos Orginos; Martin Savage
2007-04-01
We determine the strong-isospin violating component of the neutron-proton mass difference from fully-dynamical lattice QCD and partially-quenched QCD calculations of the nucleon mass, constrained by partially-quenched chiral perturbation theory at one-loop level. The lattice calculations were performed with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b = 0.125 fm, lattice spatial size of L = 2.5 fm and pion masses ranging from m{sub {pi}} {approx} 290 MeV to {approx} 350 MeV. At the physical value of the pion mass, we predict M{sub n}-M{sub p}|{sup d-u} = 2.26 {+-} 0.57 {+-} 0.42 {+-} 0.10 MeV where the first error is statistical, the second error is due to the uncertainty in the ratio of light-quark masses, {eta} = m{sub u}/m{sub d}, determined by MILC, and the third error is an estimate of the systematic due to chiral extrapolation.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
Rhoads, James E; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A
2014-01-01
We report on two regularly rotating galaxies at redshift z=2, using high resolution spectra of the bright [CII] 158 micron emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSS J120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed v sin(i) = 120 +/- 7 km/s and gas velocity dispersion sigma < 23 km/s. The best fitting model for the Clone is a rotationally supported disk having v sin(i) = 79 +/- 11 km/s and sigma < 4km/s. However the Clone is also consistent with a family of dispersion-dominated models having sigma = 92 +/- 20 km/s. Our results showcase the potential of the [CII] line as a kinematic probe of high redshift galaxy dynamics: [CII] is bright; accessible to heterodyne receivers with exquisite velocity resolution; and traces dense star-forming inte...
Mathur, D; Dharmadhikari, A K; Dharmadhikari, J A
2013-01-01
Carrier envelope phase (CEP) stabilized 5 fs and 22 fs pulses of intense 800 nm light are used to probe the strong-field ionization dynamics of multielectron entities, xenon and carbon disulfide. We compare ion yields obtained with and without CEP-stabilization: with 8-cycle (22 fs) pulses, Xe$^{6+}$ yields are suppressed (relative to Xe$^+$ yields) by between 30% and 50%, depending on phase, reflecting the phase dependence of non-sequential ionization and its contribution to the formation of higher charge states. On the other hand, ion yields for Xe$^{q+}$ ($q$=2-4) with CEP-stablized pulses are enhanced (by up to 50%) compared to those with CEP-unstabilized pulses. Such enhancment is particulary pronounced with 2-cycle (5 fs) pulses and is distinctly phase-dependent. Orbital shape and symmetry are found to have a bearing on the response of CS$_2$ to variations in optical field that are effected as CE phase is controllably altered, keeping the overall intensity constant. Molecular fragmentation is found to d...
Finemet cavity impedance studies
Persichelli, S; Migliorati, M; Salvant, B
2013-01-01
The aim of the study is to evaluate the impedance of the Finemet kicker cavity to be installed in the PS straight section 02 during LS1, under realistic assumptions of bunch length. Time domain simulations with CST Particle Studio have been performed in order to get the impedance of the cavity and make a comparison with the longitudinal impedance measured for a single cell prototype. The study has been performed on simplified 3D geometries imported from a mechanical CATIA drawing, assuming that the simplications have small impact on the nal results. Simulations confirmed that the longitudinal impedance observed with measurements can be excited by bunches circulating in the PS. In the six-cells Finemet cavity, PS bunches circulating in the center can excite a longitudinal impedance, the real part of which has a maximum of 2 kOhm at 4 MHz. This mode does not seem to have any transverse component. All the eigenmodes of the cavity are strongly damped by the Finemet rings: we predict to have no issues regarding tr...
LHC crab-cavity aspects and strategy
Energy Technology Data Exchange (ETDEWEB)
Calaga, R.; Tomas, R.; Zimmermann, F.
2010-05-23
The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.
Energy Technology Data Exchange (ETDEWEB)
Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)
2015-11-30
Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.
Numerical Simulation of the Flow over a Model of the Cavities on a Butterfly Wing
Institute of Scientific and Technical Information of China (English)
无
1995-01-01
The objective of this paper is to present results of numerical simulations for the flow over cavities modeling the scale structures on the upper surface of a typical butterly wing,The numerical results,obtained using a vortex method,Show that the dynamics of the flow are strongly dependent on the Reynolds number of the flow.The large coherent structures,formed in the cavity of adjoining scales,exhibit a stationary behaviour for low Reynolds number flows,while they exhibit stong dynamics and instabilities for high Reynolds number flows.The numerical resuts are in very good agreement with corresponding experimental results available in the literature.
Laporte, Sara; Finocchi, Fabio; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne; Guyot, François; Saitta, Antonino Marco
2015-08-21
We report a density-functional theory (DFT)-based study of the interface of bulk water with a prototypical oxide surface, MgO(001), and focus our study on the often-overlooked surface electric field. In particular, we observe that the bare MgO(001) surface, although charge-neutral and defectless, has an intense electric field on the Å scale. The MgO(001) surface covered with 1 water monolayer (1 ML) is investigated via a supercell accounting for the experimentally-observed (2 × 3) reconstruction, stable at ambient temperature, and in which two out of six water molecules are dissociated. This 1 ML-hydrated surface is also found to have a high, albeit short-ranged, normal component of the field. Finally, the oxide/water interface is studied via room-temperature ab initio molecular dynamics (AIMD) using 34 H2O molecules between two MgO(001) surfaces. To our best knowledge this is the first AIMD study of the MgO(001)/liquid water interface in which all atoms are treated using DFT and including several layers above the first adsorbed layer. We observe that the surface electric field, averaged over the AIMD trajectories, is still very strong on the fully-wet surface, peaking at about 3 V Å(-1). Even in the presence of bulk-like water, the structure of the first layer in contact with the surface remains similar to the (2 × 3)-reconstructed ice ad-layer on MgO(001). Moreover, we observe proton exchange within the first layer, and between the first and second layers - indeed, the O-O distances close to the surface are found to be distributed towards shorter distances, a property which has been shown to directly promote proton transfer.
Dugan, Edward T.; Kutikkad, Kiratadas
The conceptual, burst-mode gaseous-core reactor (GCR) space nuclear power system presently subjected to reactor-dynamics and system stability studies operates on a closed Brayton cycle, via disk MHD generator for energy conversion. While the gaseous fuel density power coefficient of reactivity is found to be capable of rapidly stabilizing the GCR system, the power of this feedback renders standard external reactivity insertions inadequate for significant power-level changes during normal operation.
Cavity optomechanics with a nonlinear photonic-crystal nanomembrane
Energy Technology Data Exchange (ETDEWEB)
Makles, Kevin; Kuhn, Aurélien; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine [Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Case 74, 4 place Jussieu, F75252 Paris Cedex 05 (France); Antoni, Thomas [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis, France and Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Case 74, 4 place Jussieu, F75252 Paris Cedex 05 (France); Braive, Rémy [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis, France and Université Paris Diderot, 10, rue Alice Domon et Léonie Duquet, 75205 Paris, Cedex 13 (France); Sagnes, Isabelle; Robert-Philip, Isabelle [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis (France)
2014-12-04
We have designed, fabricated and characterized a nanomembrane which could be used as a moving end mirror of a Fabry-Perot cavity. The high reflectivity and optimized mechanical properties of the membrane should allow us to demonstrate the mechanical ground state of the membrane. As any sub-micron mechanical resonator, our system demonstrates nonlinear dynamical effects. We characterize the mechanical response to a strong pump drive and observe a shift in the oscillation frequency and phase conjugation of the mechanical mode. Such nonlinear effects are expected to play a role in the quantum dynamics of the membrane as well.
Chan, P; Tsang, H
2005-09-19
Erbium doped fiber amplifier (EDFA) gain transient dynamics are studied in the context of their application in optically reconfigurable networks. We address the question of how to design the EDFA in order to minimize the gain transients present in the output signals of the EDFA when the system is optically reconfigured such that the total average input power levels and wavelengths are changed. Both experimental measurements and theoretical simulations show that the amplitude transients depend on the length of the erbium doped fiber (EDF) and the erbium concentration. We show how it may be possible to reduce the gain transients by appropriate design of the EDFA.
Coupled Resonator Vertical Cavity Laser Diode
Energy Technology Data Exchange (ETDEWEB)
CHOQUETTE, KENT D.; CHOW, WENG W.; FISCHER, ARTHUR J.; GEIB, KENT M.; HOU, HONG Q.
1999-09-16
We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.
Energy Technology Data Exchange (ETDEWEB)
Kaindl, Robert A.; Averitt, Richard D.
2006-11-14
Perhaps the most important aspect of contemporary condensed matter physics involves understanding strong Coulomb interactions between the large number of electrons in a solid. Electronic correlations lead to the emergence of new system properties, such as metal-insulator transitions, superconductivity, magneto-resistance, Bose-Einstein condensation, the formation of excitonic gases, or the integer and fractional Quantum Hall effects. The discovery of high-Tc superconductivity in particular was a watershed event, leading to dramatic experimental and theoretical advances in the field of correlated-electron systems. Such materials often exhibit competition between the charge, lattice, spin, and orbital degrees of freedom, whose cause-effect relationships are difficult to ascertain. Experimental insight into the properties of solids is traditionally obtained by time-averaged probes, which measure e.g., linear optical spectra, electrical conduction properties, or the occupied band structure in thermal equilibrium. Many novel physical properties arise from excitations out of the ground state into energetically higher states by thermal, optical, or electrical means. This leads to fundamental interactions between the system's constituents, such as electron-phonon and electron-electron interactions, which occur on ultrafast timescales. While these interactions underlie the physical properties of solids, they are often only indirectly inferred from time-averaged measurements. Time-resolved spectroscopy, consequently, is playing an ever increasing role to provide insight into light-matter interaction, microscopic processes, or cause-effect relationships that determine the physics of complex materials. In the past, experiments using visible and near-infrared femtosecond pulses have been extensively employed, e.g. to follow relaxation and dephasing processes in metals and semiconductors. However, many basic excitations in strongly-correlated electron systems and nanoscale
Forest, M. Gregory; Sircar, Sarthok; Wang, Qi; Zhou, Ruhai
2006-10-01
We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional rate parameters). We solve the Smoluchowski equation of the reduced model to explore: (i) the effect of introducing a coplanar magnetic field on each sheared monodomain attractor of the Doi-Hess kinetic theory and (ii) the coupling of coplanar extensional flow and magnetic fields. For (i), we show each sheared attractor (steady and unsteady, with peak axis in and out of the shearing plane, periodic and chaotic orbits) undergoes its own transition sequence versus magnetic field strength. Nonetheless, robust predictions emerge: out-of-plane degrees of freedom are arrested with increasing field strength, and a unique flow-aligning or tumbling/wagging limit cycle emerges above a threshold magnetic field strength or modified geometry parameter value. For (ii), irrotational flows coupled with a coplanar magnetic field yield only steady states. We characterize all (generically biaxial) equilibria in terms of an explicit Boltzmann distribution, providing a natural generalization of analytical results on pure nematic equilibria [P. Constantin, I. Kevrekidis, and E. S. Titi, Arch. Rat. Mech. Anal. 174, 365 (2004); P. Constantin, I. Kevrekidis, and E. S. Titi, Discrete and Continuous Dynamical Systems 11, 101 (2004); P. Constantin and J. Vukadinovic, Nonlinearity 18, 441 (2005); H. Liu, H. Zhang, and P
Subfemtosecond electron dynamics of H{sub 2} in strong fields or the quest for the molecular clock
Energy Technology Data Exchange (ETDEWEB)
Staudte, A.
2005-07-01
In this work we have studied experimentally and theoretically hydrogen and deuterium molecules in strong laser fields. We wanted to demonstrate that control of dynamical processes on the time scale below a single laser cycle (2.7 fs) can be achieved even without using attosecond pulses just by employing the advanced experimental technique COLTRIMS. In order to do this, we have pursued two goals: 1. To examine, whether laser steered electron wavepackets can be used for laser induced electron diffraction (LIED) on molecules. 2. To demonstrate, that the double ionization of H{sub 2} can be followed with sub laser cycle temporal resolution (the molecular clock). Laser induced electron diffraction needs linearly polarized light since its mechanism relies on rescattering of the ionized electron in the molecular potential. With rescattering occurring within a few hundred attoseconds, LIED is really a process of attosecond physics. In principle, two extreme scattering geometries are possible for a homonuclear diatomic molecule like H{sub 2}: the perpendicular geometry, which corresponds to the classical double slit experiment where the electron microbunch is steered transversely to the molecular axis, and the tangential geometry with the electron moving parallel to the molecular axis. Experimental restrictions prevented us to investigate the perpendicular geometry. The molecular clock, on the other hand, employs circularly polarized light to map the absolute phase of the laser electric field onto the spatial direction of the electron momentum. Thereby, a full laser cycle is mapped onto 360 in momentum space. Thus, different electron ejection angles in the laboratory frame correspond to different ejection times. Together with the correlated kinetic energy release of the Coulomb exploding molecules an unambiguous clock running from 0-8 fs with a few 100 as resolution can be envisioned. In direct relation to this experiment, we studied the influence of the long range
DEFF Research Database (Denmark)
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter;
2010-01-01
We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian...
Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene.
Jiang, Leyong; Guo, Jun; Wu, Leiming; Dai, Xiaoyu; Xiang, Yuanjiang
2015-11-30
We investigate theoretically the optical bistability from a Fabry-Perot cavity with graphene in the terahertz (THz) frequency. It is demonstrated that the optical bistablility in this cavity can be realized due to the electric field enhancement and the giant third-order nonlinear conductivity of graphene. The optical bistable behavior is strongly dependent on the transmission amplitude of the mirror and the position of the graphene in the cavity. It is especially important that the hysterical behaviors of the transmitted light rely on the optical conductivity of graphene, making the Fabry-Perot cavity to be a good candidate for dynamic tunable optical bistable device in the THz frequencies, owing to the possibility of high tunability of graphene conductivity by means of external electrostatic or magnetostatic field.
Cavity Optomechanical Magnetometer
Forstner, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H
2011-01-01
A cavity optomechanical magnetometer is demonstrated where the magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. Detecting the magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may be possible. This chip-based magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation.
Cavity optomechanical magnetometer.
Forstner, S; Prams, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H
2012-03-23
A cavity optomechanical magnetometer is demonstrated. The magnetic-field-induced expansion of a magnetostrictive material is resonantly transduced onto the physical structure of a highly compliant optical microresonator and read out optically with ultrahigh sensitivity. A peak magnetic field sensitivity of 400 nT Hz(-1/2) is achieved, with theoretical modeling predicting the possibility of sensitivities below 1 pT Hz(-1/2). This chip-based magnetometer combines high sensitivity and large dynamic range with small size and room temperature operation.
Cavities/tooth decay Overview By Mayo Clinic Staff Cavities are permanently damaged areas in the hard surface of your teeth ... into tiny openings or holes. Cavities, also called tooth decay or caries, are caused by a combination of ...
Optomechanical photon shuttling between photonic cavities
Li, Huan
2014-01-01
Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave-mixing between photons and phonons and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong nonlocal effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a novel multi-cavity optomechanical device: a "photon see-saw", in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of the see-saw, are modulated anti-symmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation which strongly modulates the inter-cavity coupling and shuttles photons to the other...
Optomechanical photon shuttling between photonic cavities.
Li, Huan; Li, Mo
2014-11-01
Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this 'photon see-saw', are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.
Novel Geometries for the LHC Crab Cavity
Energy Technology Data Exchange (ETDEWEB)
Hall, B. [Lancaster Univ. (United Kingdom); Burt, G. [Lancaster Univ. (United Kingdom); Smith, J. D.A. [Lancaster Univ. (United Kingdom); Rimmer, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Delayen, J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Calaga, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2009-05-01
In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.
Plasmonic Coupled Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) coupled cavity modes on Moire surfaces. An experimental study has been made of the propagation of SPPs on a thin silver surface that is textured with Moire surface pattern using interference lithography. The Moire surface contains periodic array of one dimensional cavities. The distance between the cavities can be controlled by changing the periodicities of Moire surface. When the SPP cavity separation is sufficiently small, we show splitting of strongly coupled plasmonic cavity modes through numerical simulations. Conversely, when the SPP cavity separation is sufficiently large, SPP cavity modes are found to be localized and do not show splitting of SPP cavity modes . This splitting of SPP cavity modes are well explained with a tight binding model that has been succesfully applied in photonic coupled cavities. Reflection measurements and numerical simulation of a large number of adjacent SPP cavities have shown a coupled resonator optical waveguide (CROW) type plasmonic waveguide band formation within the band gap region of unperturbed uniform grating.
Nachtigallová, Dana; Vrbka, L; Bludský, O; Nachtigall, P
2008-07-28
The interaction of acetonitrile with the extra-framework Na(+) cations in zeolites, namely Na-LTA and Na-FER, was investigated. The relative stabilities of possible types of adsorption complexes were calculated at the periodic DFT level. Individual effects on the complex stability and on the vibrational dynamics of adsorbed acetonitrile were qualitatively analysed on various cluster models. The acetonitrile primarily interacts with the Na(+) cation (via the N end), and the complex stability is modulated by the interaction of the methyl group with the framework oxygen atoms, which has a partial hydrogen-bond character. In line with the results of recent analyses of CO interactions with metal-exchanged zeolites [D. Nachtigallová, O. Bludský, C. O. Areán, R. Bulanek and P. Nachtigall, Phys. Chem. Chem. Phys., 2006, 8, 4849], two types of effects should be taken into consideration for acetonitrile complexes in Na-zeolites: (i) the effects from the bottom, reflecting the accessibility and coordination of the primary metal cation, to which the acetonitrile molecule is bonded via the N atom; and (ii) the effects from the top, including H-bond formation (stabilising effect) or repulsion due to the secondary metal cation. The effect from the bottom results in a blue shift of nu(CN) while the effect from the top (H-bond formation) results in a red shift in both nu(CN) and nu(CH).
Simulation of hydrodynamically interacting particles confined by a spherical cavity
Aponte-Rivera, Christian; Zia, Roseanna N.
2016-06-01
We present a theoretical framework to model the behavior of a concentrated colloidal dispersion confined inside a spherical cavity. Prior attempts to model such behavior were limited to a single enclosed particle and attempts to enlarge such models to two or more particles have seen limited success owing to the challenges of accurately modeling many-body and singular hydrodynamic interactions. To overcome these difficulties, we have developed a set of hydrodynamic mobility functions that couple particle motion with hydrodynamic traction moments that, when inverted and combined with near-field resistance functions, form a complete coupling tensor that accurately captures both the far-field and near-field physics and is valid for an arbitrary number of spherical particles enclosed by a spherical cavity of arbitrary relative size a /R , where a and R are the particle and cavity size, respectively. This framework is then utilized to study the effect of spherical confinement on the self- and entrained motion of the colloids, for a range of particle-to-cavity size ratios. The self-motion of a finite-size enclosed particle is studied first, recovering prior results published in the literature: The hydrodynamic mobility of the particle is greatest at the center of the cavity and decays as (a /R ) /(1 -y2) , where y is the particle distance to the cavity center. Near the cavity wall, the no-slip surfaces couple strongly and mobility along the cavity radius vanishes as ξ ≡R -(a +y ) , where y is center-to-center distance from particle to cavity. Corresponding motion transverse to the cavity radius vanishes as [ln(1/ξ ) ] -1. The effect of confinement on entrainment of a particle in the flow created by the motion of others is also studied, where we find that confinement exerts a qualitative effect on the strength and anisotropy of entrainment of a passive particle dragged by the flow of a forced particle. As expected, entrainment strength decays with increased distance
Cavity solitons in vertical-cavity surface-emitting lasers
Vladimirov, A G; Gurevich, S V; Panajotov, K; Averlant, E; Tlidi, M
2014-01-01
We investigate a control of the motion of localized structures of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary localized structure that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally relevant system namely the Vertical-Cavity Surface-Emitting Laser (VCSEL). In the absence of the delay feedback we present experimental evidence of stationary localized structures in a 80 $\\mu$m aperture VCSEL. The spontaneous formation of localized structures takes place above the lasing threshold and under optical injection. Then, we consider the effect of the time-delayed optical feedback and investigate analytically the role of the phase of the feedback and the carrier lifetime on the self-mobility properties of the localized structures. We show that these two parameters affect strongly the space time dynamics of two-dimensional localized structures...
Dynamic data reconciliation based on constrained strong tracking filter%基于约束强跟踪滤波器的动态数据协调
Institute of Scientific and Technical Information of China (English)
蒋余厂; 刘爱伦
2011-01-01
A new dynamic data reconciliation method based on constrained strong tracking filter was proposed. Strong tracking filter was used for dynamic data reconciliation, while algebraic constraints were embedded in strong tracking filter, not only to overcome the shortcomings of traditional extended Kalman filter which loses tracking ability for mutant state when the system reaches a steady state and cannot deal with algebraic constraints, but also to save the iterative nature of the algorithm and greatly reduce computation time of the dynamic data reconciliation with algebraic constraints. An adaptive strategy was introduced for dynamic data reconciliation of large-scale systems, which further reduced the computing time of reconciliation. Two simulations of examples proved the efficiency and superiority of the proposed algorithm.%@@ 引言 在实际工业过程中,由于过程测量数据的不平衡性和不完备性,给过程分析和研究工作带来了很多困难,甚至失败.因此必须对过程数据进行校正,然而目前的数据校正方法大部分是面对稳态过程的,但实际情况中过程的条件更多地是处在变化之中,此时稳态数据校正方法已不能满足要求.
A systematic search for X-ray cavities in galaxy clusters, groups, and elliptical galaxies
Shin, Jaejin; Mulchaey, John S
2016-01-01
We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using $\\beta$-modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-ray center similar to previous studies (i.e., Birzan et al. 2004; Diehl et al. 2008; Dong et al. 2010). We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.
Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas
2016-10-01
Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.
Cavity quantum electrodynamics: coherence in context.
Mabuchi, H; Doherty, A C
2002-11-15
Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.
Non-destructive monitoring of Bloch oscillations in an optical cavity
Keßler, H; Venkatesh, B P; Georges, Ch; Hemmerich, A
2016-01-01
Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. In this article we show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly impro...
Brela, Mateusz Z; Wójcik, Marek J; Boczar, Marek; Witek, Łukasz; Yasuda, Mitsuru; Ozaki, Yukihiro
2015-06-25
We studied proton dynamics of a hydrogen bonds of the crystalline l-ascorbic acid. Our approach was based on the Car-Parrinello molecular dynamics. The focal point of our study was simulation of the infrared spectra of l-ascorbic acid associated with the O-H stretching modes that are very sensitive to the strength of hydrogen bonding. In the l-ascorbic acid there are four kinds of hydrogen bonds. We calculated their spectra by using anharmonic approximation and the time course of the dipole moment function as obtained from the Car-Parrinello simulation. The quantization of the nuclear motion of the protons was made to perform detailed analysis of strength and properties of hydrogen bonds. We presented double minimum proton potentials with small value of barriers for medium-strong hydrogen bonds. We have also shown the difference character of medium-strong hydrogen bonds compared to weaker hydrogen bonds in the l-ascorbic acid.
Calaga, R; Burt, G; Ratti, A
2015-01-01
The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.
Cavity solitons and localized patterns in a finite-size optical cavity
Energy Technology Data Exchange (ETDEWEB)
Kozyreff, G. [Optique Nonlineaire Theorique, Universite Libre de Bruxelles (U.L.B.), CP 231 (Belgium); Gelens, L. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel (Belgium)
2011-08-15
In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.
Cavity solitons and localized patterns in a finite-size optical cavity
Kozyreff, G.; Gelens, L.
2011-08-01
In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.
Energy Technology Data Exchange (ETDEWEB)
Nakamae, Sawako, E-mail: Sawako.nakamae@cea.fr
2014-11-15
Interacting magnetic nanoparticles display a wide variety of magnetic behaviors ranging from modified superparamagnetism, superspin glass to possibly, superferromagnetism. The superspin glass state is described by its slow and out-of-equilibrium magnetic behaviors akin to those found in atomic spin glasses. In this article, recent experimental findings on superspin correlation length growth and the violation of the fluctuation-dissipation theorem obtained in concentrated frozen ferrofluids are presented to illustrate certain out-of-equilibrium dynamics behavior in superspin glasses. - Highlights: • Recent experimental findings on superspin glass dynamics in magnetic nanoparticle systems. • Advantages of magnetic nanoparticles for the study of spin glass physics. • Open questions and future directions in superspin glass research.
Martinez-Pedrero, Fernando; Tierno, Pietro; Johansen, Tom H; Straube, Arthur V
2016-02-03
The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be found in a broad range of physical and biological disciplines. Here we report the direct experimental observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the latter propelled above a traveling wave potential generated by a structured magnetic substrate. We develop a rigorously reduced theoretical framework and describe the dynamics of the system in terms of a generalized one-dimensional dissipative Frenkel-Kontorova model. The front dynamics is explored in a wide range of field parameters close to and far from depinning, where the discrete and continuum limits apply. We show how symmetry breaking and finite size of chains are used to control the direction of front propagation, a universal feature relevant to different systems and important for real applications.
Liu, Hao; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X T
2016-01-01
We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)], which explicitly takes the excitation of electrons into consideration. Non-equilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D$_2$ molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on the large scale, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor corresponding to the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel mater...
Tarabrin, S. P.
2007-12-01
The interaction of a weak gravitational wave with a Fabry-Perot cavity is analysed beyond the long-wavelength approximation in the input-mirror locally Lorentzian frame of reference taking the light pressure into account. The generalised expressions are obtained for the coefficient of pondermotive optical rigidity, the motion law of the moving mirror of the cavity and the response function of the cavity. It is shown that the latter is a sum of two phase shifts of a circulating light wave: the phase incursion after reflection from the moving mirror and the phase incursion due to the direct interaction of gravitational and light waves in the cavity. The possibility of the resonance detection of high-frequency gravitational waves by using the optical rigidity effect is considered.
Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Trillo, Stefano; Mussot, Arnaud
2017-05-15
We present a theoretical and experimental study of the modulation instability process in a dispersion oscillating passive fiber-ring resonator in the low dispersion region. Generally, the modulation of the dispersion along the cavity length is responsible for the emergence of a regime characterised by multiple parametric resonances (or Faraday instabilities). We show that, under weak dispersion conditions, a huge number of Faraday sidebands can grow under the influence of fourth order dispersion. We specifically designed a piecewise uniform fiber-ring cavity and report on experiments that confirm our theoretical predictions. We recorded the dynamics of this system revealing strong interactions between the different sidebands in agreement with numerical simulations.
Self-Frequency Shift of Cavity Soliton in Kerr Frequency Comb
Zhang, Lin; Kimerling, Lionel C; Michel, Jurgen
2014-01-01
We show that the ultrashort cavity soliton in octave-spanning Kerr frequency comb generation exhibits striking self-adaptiveness and robustness to external perturbations, resulting in a novel frequency shifting/cancellation mechanism and gigantic dispersive wave generation in response to the strong frequency dependence of Kerr nonlinearity, Raman scattering, chromatic dispersion, and cavity Q. These observations open up a great avenue towards versatile manipulation of nonlinear soliton dynamics, flexible spectrum engineering of mode-locked Kerr frequency combs, and highly efficient frequency translation of optical waves.
Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.
Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis
2014-02-01
We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.
Preparation of Two-Qutrit Entangled State in Cavity QED
Institute of Scientific and Technical Information of China (English)
LIN Xiu-Min; ZHOU Zheng-Wei; WU Yu-Chun; WANG Cheng-Zhi; GUO Guang-Can
2005-01-01
@@ We propose a scheme to generate a 3 × 3-dimensional maximally entangled state of two particles. Two three-level atoms interact with a strongly detuned cavity so that the cavity is only virtually excited and efficient decoherence time of the cavity is greatly prolonged. Compared to other protocols, this protocol is simpler and has a higher fidelity.
Controlled coupling of photonic crystal cavities using photochromic tuning
Cai, Tao; Solomon, Glenn S; Waks, Edo
2013-01-01
We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.
Nonlinear switching dynamics in a photonic-crystal nanocavity
DEFF Research Database (Denmark)
Yu, Yi; Palushani, Evarist; Heuck, Mikkel;
2014-01-01
the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms......We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...
Cavity sideband cooling of a single trapped ion.
Leibrandt, David R; Labaziewicz, Jaroslaw; Vuletić, Vladan; Chuang, Isaac L
2009-09-04
We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped (88)Sr(+) ion in the resolved-sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405 (2001)] without any free parameters, validating the rate equation model for cavity cooling.
Ghosh, D; Bhattacharya, S; Ghosh, J; Das, R
2003-01-01
This paper reports an investigation on the two-particle long-range angular correlation among the target fragments produced in sup 2 sup 8 Si-AgBr interactions at 14.5 AGeV, sup 1 sup 6 O-AgBr interactions at 60 AGeV and sup 3 sup 2 S-AgBr interactions at 200 AGeV. The experimental data have been compared with Monte Carlo simulated events to extract dynamical correlation. The data exhibit two-particle long-range correlation in emission angle space at all energies. (author)
Suzuki, Masahiko; Kudo, Kazue; Kojima, Kazuki; Yasue, Tsuneo; Akutsu, Noriko; Diño, Wilson Agerico; Kasai, Hideaki; Bauer, Ernst; Koshikawa, Takanori
2013-10-09
Materials with perpendicular magnetic anisotropy can reduce the threshold current density of the current-induced domain wall motion. Co/Ni multilayers show strong perpendicular magnetic anisotropy and therefore it has become a highly potential candidate of current-induced domain wall motion memories. However, the details of the mechanism which stabilizes the strong perpendicular magnetization in Co/Ni multilayers have not yet been understood. In the present work, the evolution of the magnetic domain structure of multilayers consisting of pairs of 2 or 3 monolayers (ML) of Ni and 1 ML of Co on W(110) was investigated during growth with spin-polarized low-energy electron microscopy. An interesting phenomenon, that the magnetic domain structure changed drastically during growth, was revealed. In the early stages of the growth the magnetization alternated between in-plane upon Co deposition and out-of-plane upon Ni deposition. The change of the magnetization direction occurred within a range of less than 0.2 ML during Ni or Co deposition, with break-up of the existing domains followed by growth of new domains. The Ni and Co thickness at which the magnetization direction switched shifted gradually with the number of Co/Ni pairs. Above 3-4 Co/Ni pairs it stayed out-of-plane. The results indicate clearly that the Co-Ni interfaces play the important role of enhancing the perpendicular magnetic anisotropy.
Liu, Hao; Zhang, Yin; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X. T.
2017-02-01
We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007), 10.1103/PhysRevLett.99.185003], which explicitly takes the excitation of electrons into consideration. Nonequilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D2 molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on large scales, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor that accounts for the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion.
Liu, Hao; Zhang, Yin; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X T
2017-02-01
We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.185003], which explicitly takes the excitation of electrons into consideration. Nonequilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D_{2} molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on large scales, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor that accounts for the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion.
Energy Technology Data Exchange (ETDEWEB)
Chong, S-H [Institute for Molecular Science, Okazaki 444-8585 (Japan); Chen, S-H [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Mallamace, F, E-mail: chong@ims.ac.j [Dipartimento di Fisica, Universita di Messina and IRCCS Neurolesi ' Bonino-Pulejo' , I-98166 Messina (Italy)
2009-12-16
It is argued that the extended mode-coupling theory for glass transition predicts a dynamic crossover in the alpha-relaxation time and in the self-diffusion constant as a general implication of the structure of its equations of motion. This crossover occurs near the critical temperature T{sub c} of the idealized version of the theory, and is caused by the change in the dynamics from the one determined by the cage effect to that dominated by hopping processes. When combined with a model for the hopping kernel deduced from the dynamical theory for diffusion-jump processes, the dynamic crossover can be identified as the fragile-to-strong crossover (FSC) in which the alpha-relaxation time and the self-diffusion constant cross over from a non-Arrhenius to an Arrhenius behavior. Since the present theory does not resort to the existence of the so-called Widom line, to which the FSC in confined water has been attributed, it provides a possible explanation of the FSC observed in a variety of glass-forming systems in which the existence of the Widom line is unlikely. In addition, the present theory predicts that the Stokes-Einstein relation (SER) breaks down in different ways on the fragile and strong sides of the FSC, in agreement with the experimental observation in confined water. It is also demonstrated that the violation of the SER in both the fragile and strong regions can be fitted reasonably well by a single fractional relation with an empirical exponent of 0.85.
The inner cavity of the circumnuclear disc
Blank, Marvin; Frank, Adam; Carroll-Nellenback, Jonathan J; Duschl, Wolfgang J
2016-01-01
The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and second, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabi...
The inner cavity of the circumnuclear disc
Blank, M.; Morris, M. R.; Frank, A.; Carroll-Nellenback, J. J.; Duschl, W. J.
2016-06-01
The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and secondly, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabilizes the inner disc rim against rapid inward migration. Furthermore, this interaction causes instabilities that continuously create clumps that are individually unstable against tidal shearing. Thus the occurrence of such unstable clumps does not necessarily mean that the disc is itself a transient phenomenon. The next steps in this investigation are to explore the effect of the magnetorotational instability on the disc evolution and to test whether the results presented here persist for longer time-scales than those considered here.
Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Spaans, Marco; Strauss, Michael A.
2014-01-01
We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.
Directory of Open Access Journals (Sweden)
Jeng Hei Chow
2016-07-01
Full Text Available An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%–80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.
Takei, Nobuyuki; Genes, Claudiu; Pupillo, Guido; Goto, Haruka; Koyasu, Kuniaki; Chiba, Hisashi; Weidemüller, Matthias; Ohmori, Kenji
2015-01-01
Many-body interactions govern a variety of important quantum phenomena ranging from superconductivity and magnetism in condensed matter to solvent effects in chemistry. Understanding those interactions beyond mean field is a holy grail of modern sciences. AMO physics with advanced laser technologies has recently emerged as a new platform to study quantum many-body systems. One of its latest developments is the study of long-range interactions among ultracold particles to reveal the effects of many-body correlations. Rydberg atoms distinguish themselves by their large dipole moments and tunability of dipolar interactions. Most of ultracold Rydberg experiments have been performed with narrow-band lasers in the Rydberg blockade regime. Here we demonstrate an ultracold Rydberg gas in a complementary regime, where electronic coherence is created using a broadband picosecond laser pulse, thus circumventing the Rydberg blockade to induce strong many-body correlations. The effects of long-range Rydberg interactions h...
On the quantum (in)stability in cavity QED
Prants, S V
2005-01-01
The stability and instability of quantum motion is studied in the context of cavity quantum electrodynamics (QED). It is shown that the Jaynes-Cummings dynamics can be unstable in the regime of chaotic walking of an atom in the quantized field of a standing wave in the absence of any other interaction with environment. This quantum instability manifests itself in strong variations of quantum purity and entropy and in exponential sensitivity of fidelity of quantum states to small variations in the atom-field detuning. It is quantified in terms of the respective classical maximal Lyapunov exponent that can be estimated in appropriate in-out experiments.
Novel Geometries for the LHC CRAB Cavity
Hall, Ben
2010-01-01
In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme b...
Eslami, Babak; López-Guerra, Enrique A.; Raftari, Maryam; Solares, Santiago D.
2016-04-01
Addition of a strong base to Nafion® proton exchange membranes is a common practice in industry to increase their overall performance in fuel cells. Here, we investigate the evolution of the nano-rheological properties of Nafion thin films as a function of the casting pH, via characterization with static and dynamic, contact and intermittent-contact atomic force microscopy (AFM) techniques. The addition of KOH causes non-monotonic changes in the viscoelastic properties of the films, which behave as highly dissipative, softer materials near neutral pH values, and as harder, more elastic materials at extreme pH values. We quantify this behavior through calculation of the temporal evolution of the compliance and the glassy compliance under static AFM measurements. We complement these observations with dynamic AFM metrics, including dissipated power and virial (for intermittent-contact-mode measurements), and contact resonance frequency and quality factor (for dynamic contact-mode measurements). We explain the non-monotonic material property behavior in terms of the degree of ionic crosslinking and moisture content of the films, which vary with the addition of KOH. This work focuses on the special case study of the addition of strong bases, but the observed mechanical property changes are broadly related to water plasticizing effects and ionic crosslinking, which are also important in other types of films.
Vikas, Hash(0x125f4490)
2011-02-01
Evolution of the helium atom in a strong time-dependent (TD) magnetic field ( B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schrödinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs "dynamically" from the CDFT based approach under similar computational constraints.
Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities
Energy Technology Data Exchange (ETDEWEB)
Lane, Peter Gwin [IIT, Chicago
2016-07-01
Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.
SU(3) Yang-Mills Hamiltonian in the flux-tube gauge: Strong coupling expansion and glueball dynamics
Pavel, Hans-Peter
2016-01-01
It is shown that the formulation of the SU(3) Yang-Mills quantum Hamiltonian in the "flux-tube gauge" A_{a1}=0 for all a=1,2,4,5,6,7 and A_{a2}=0 for all a=5,7 allows for a systematic and practical strong coupling expansion of the Hamiltonian in \\lambda\\equiv g^{-2/3}, equivalent to an expansion in the number of spatial derivatives. Introducing an infinite spatial lattice with box length a, the "free part" is the sum of Hamiltonians of Yang-Mills quantum mechanics of constant fields for each box, and the "interaction terms" contain higher and higher number of spatial derivatives connecting different boxes. The Faddeev-Popov operator, its determinant and inverse, are rather simple, but show a highly non-trivial periodic structure of six Gribov-horizons separating six Weyl-chambers. The energy eigensystem of the gauge reduced Hamiltonian of SU(3) Yang-Mills mechanics of spatially constant fields can be calculated in principle with arbitrary high precision using the orthonormal basis of all solutions of the corr...
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B
1997-01-01
We introduce a condition for the strong decoherence of a set of alternative histories of a closed quantum-mechanical system such as the universe. The condition applies, for a pure initial state, to sets of homogeneous histories that are chains of projections, generally branch-dependent. Strong decoherence implies the consistency of probability sum rules but not every set of consistent or even medium decoherent histories is strongly decoherent. Two conditions characterize a strongly decoherent set of histories: (1) At any time the operators that effectively commute with generalized records of history up to that moment provide the pool from which --- with suitable adjustment for elapsed time --- the chains of projections extending history to the future may be drawn. (2) Under the adjustment process, generalized record operators acting on the initial state of the universe are approximately unchanged. This expresses the permanence of generalized records. The strong decoherence conditions (1) and (2) guarantee wha...
Collapse-revival of squeezing of two atoms in dissipative cavities
Institute of Scientific and Technical Information of China (English)
邹红梅; 方卯发
2016-01-01
Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavity couplings, non-Markovian effects and resonant frequencies of an atom and its cavity. The results show that a collapse–revival phenomenon will occur in the atomic squeezing and this process is accompanied by the buildup and decay of entanglement between two atoms. Enhancing the atom–cavity coupling can increase the frequency of the collapse–revival of the atomic squeezing. The stronger the non-Markovian effect is, the more obvious the collapse–revival phenomenon is. In particular, if the atom–cavity coupling or the non-Markovian effect is very strong, the atomic squeezing will tend to a stably periodic oscillation in a long time. The oscillatory frequency of the atomic squeezing is dependent on the resonant frequency of the atom and its cavity.
Yudin, Dmitry; Shelykh, Ivan A.
2016-10-01
A nonperturbative interaction of an electronic system with a laser field can substantially modify its physical properties. In particular, in two-dimensional (2D) materials with a lack of inversion symmetry, the achievement of a regime of strong light-matter coupling allows direct optical tuning of the strength of the Rashba spin-orbit interaction (SOI). Capitalizing on these results, we build a theory of the dynamical conductivity of a 2D electron gas with both Rashba and Dresselhaus SOIs coupled to an off-resonant high-frequency electromagnetic wave. We argue that strong light-matter coupling modifies qualitatively the dispersion of the electrons and can be used as a powerful tool to probe and manipulate the coupling strengths and adjust the frequency range where optical conductivity is essentially nonzero.
Bakalov, Petar; Locquet, Jean-Pierre
Using an inhomogeneous dynamical mean-field theory (IDMFT) approach to the single-band Hubbard model we investigate the properties of thin-film superlattices made up of alternating strongly (U1) and weakly (U2 U2), superlattice parameters (L1 ,L2) and transverse electric field on the correlation driven Mott-Hubbard metal-to-insulator transition. We find that when the periodicity of the superlattice is such that the strongly correlated regions are below a certain thickness, the MIT is suppressed due to proximity effects. This work was partially funded by the Flemish Fund for Scientific Research (FWO - Vlaanderen) under FWO Grant G.0520.10 and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster.
Fuini, John F
2015-01-01
Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled N=4 supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibratio...
Fuini, John F.; Yaffe, Laurence G.
2015-07-01
Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibration times which agrees quite well with our results.
Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light-emitting diodes
Energy Technology Data Exchange (ETDEWEB)
Li, Panpan; Li, Hongjian; Li, Zhi; Kang, Junjie; Yi, Xiaoyan; Li, Jinmin; Wang, Guohong [Semiconductor Lighting R and D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)
2015-02-21
Temperature dependence and time-resolved photoluminescence (TRPL) have been carried out to study carrier dynamics for 585 nm InGaN amber light-emitting diodes (LEDs). It is found that in InGaN amber LEDs, peak emission energy only shows a slight blueshift from 588 to 575 nm, as temperature increased from 10 K to 300 K. Moreover, radiative recombination lifetime has demonstrated independent of temperature based TRPL results. These two features indicate that a strong carrier localization effect plays a dominant role in carrier dynamics for InGaN amber LEDs. Also, activation energy of 40.3 meV is obtained through Arrhenius plot of PL intensity versus temperature.
Cerrillo, Javier; Buser, Maximilian; Brandes, Tobias
2016-12-01
Nonequilibrium transport properties of quantum systems have recently become experimentally accessible in a number of platforms in so-called full-counting experiments that measure transient and steady-state nonequilibrium transport dynamics. We show that the effect of the measurement back-action can be exploited to establish general relationships between transport coefficients in the transient regime which take the form of fluctuation-dissipation theorems in the steady state. This result becomes most conspicuous in the transient dynamics of open quantum systems under strong-coupling to non-Markovian environments in nonequilibrium settings. In order to explore this regime, a new simulation method based in a hierarchy of equations of motion has been developed. We instantiate our proposal with the study of energetic conductance between two baths connected via a few level system.
Bani, Philipson; Boudon, Georges; Balcone-Boissard, Hélène; Delmelle, Pierre; Quiniou, Thomas; Lefèvre, Jérôme; Bule, Esline Garaebiti; Hiroshi, Shinohara; Lardy, Michel
2016-08-01
Gaua, a little known volcano in the northern part of Vanuatu archipelago, went through a long term eruptive activity between September 2009 and July 2010. The eruption started by a phreatic to phreatomagmatic activity which progressively shifted into a magmatic discharge. The first eruptive phase involved the hydrothermal system in place. The latter was likely influenced by seawater seepage, leading to the formation of anhydrite. Magma involved hereafter this opening phase is of basaltic andesite and basaltic trachyandesite composition (high K calc-alkaline series), typical of the northern part of the Vanuatu archipelago. The 2009-2010 activity discharged at least 184 kt of SO2 and a significant amount of halogens (72 kt Cl and 217 kt F). Such halogen releases indicate that Gaua is a strong source of halogens into the atmosphere. High and sustained amount of F discharges are known to induce health issues and should not be ignored on Gaua island. During this eruption the quiescent and voluminous Lake Letas was slightly affected by the eruption. Nevertheless the hydrothermal discharge point into the lake, situated on the southeastern part of Mt. Garet appeared to be relatively active. At this particular location rock forming elements, leached out from volcanic rock by acid fluids released by the new intrusion of magma, were discharged along with anions into Lake Letas. This release has triggered localized chemistry changes in the lake. We speculate that this discharge has also disturbed the bottom water in a limited perimeter, remobilizing reduced Fe to the surface and subsequently triggering the change in the water color by Fe oxidation.
Mode interactions of a high-subsonic deep cavity
Chen, Zhenli; Adams, Nikolaus A.
2017-05-01
To understand the interactions of the acoustic modes associated with the tunnel walls and the cavity oscillations in the experiment, flows over a deep cavity having a length-to-depth ratio L/D = 0.42 at high subsonic speeds with and without an upper tunnel wall were investigated by using an implicit large-eddy simulation with an adaptive local deconvolution method. The results of the simulations with the upper tunnel wall converge well to the experimental results as the resolution increases. However, in the simulations without the upper tunnel wall the flow converges to a different mean state. The mode interactions were analyzed by using a Dynamic Mode Decomposition (DMD) method based on a memory-efficient snapshot algorithm. It was found that nearly trapped global modes, which have almost zero upstream and downstream radiation, can occur. The interactions of the trapped modes, the acoustic resonant modes in the cavity, and the shear-layer modes can be observed in the DMD modes of the flow with the upper tunnel wall, which results in the enhancement of harmonic modes and the existence of higher-order modes. In the flow without the upper tunnel wall, the pressure waves can transmit freely away from the cavity, but the interactions of the acoustic resonant modes and the shear-layer modes can also be observed when the frequencies of both kinds of modes coincide. The effects of the ratio of the cavity depth to the tunnel height (D/H) on the formation of trapped modes were also investigated. As the ratio D/H decreases, the frequency window of the trapped modes shrinks and finally closes, which is consistent with a theoretical model. It can be concluded that the effects of the upper tunnel wall on the dynamics of the cavity flow are strong and are promoted by the interactions of different kinds of modes. The appearance and enhancement of high order harmonic modes in the high-subsonic deep cavity are due to the effects of the trapped modes, but are not due to the directly
Zeng, Bin; Li, Guihua; Yao, Jinping; Zhang, Haisu; Ni, Jielei; Jing, Chenrui; Xie, Hongqiang; Cheng, Ya
2014-01-01
Molecular rotational spectroscopy based on strong-field-ionization-induced nitrogen laser is employed to investigate the time evolution of the rotational wave packet composed by a coherent superposition of quantum rotational states created in a field-free molecular alignment. We show that this technique uniquely allows real-time observation of the ultrafast dynamics of the individual rotational states in the rotational wavepacket. Our analysis also shows that there exist two channels of generation of the nitrogen laser, shedding new light on the population inversion mechanism behind the air laser generated by intense femtosecond laser pulses.
Hu, Can-Ming
2015-01-01
Merging the progress of spintronics with the advancement in cavity quantum electrodynamics and cavity polaritons, a new field of Cavity Spintronics is forming, which connects some of the most exciting modern physics, such as quantum information and quantum optics, with one of the oldest science on the earth, the magnetism.
Niobium Cavity Electropolishing Modelling and Optimisation
Ferreira, L M A; Forel, S; Shirra, J A
2013-01-01
It’s widely accepted that electropolishing (EP) is the most suitable surface finishing process to achieve high performance bulk Nb accelerating cavities. At CERN and in preparation for the processing of the 704 MHz high-beta Superconducting Proton Linac (SPL) cavities a new vertical electropolishing facility has been assembled and a study is on-going for the modelling of electropolishing on cavities with COMSOL® software. In a first phase, the electrochemical parameters were taken into account for a fixed process temperature and flow rate, and are presented in this poster as well as the results obtained on a real SPL single cell cavity. The procedure to acquire the data used as input for the simulation is presented. The modelling procedure adopted to optimise the cathode geometry, aimed at a uniform current density distribution in the cavity cell for the minimum working potential and total current is explained. Some preliminary results on fluid dynamics is also briefly described.
Perturbing Open Cavities: Anomalous Resonance Frequency Shifts in a Hybrid Cavity-Nanoantenna System
Ruesink, Freek; Doeleman, Hugo M.; Hendrikx, Ruud; Koenderink, A. Femius; Verhagen, Ewold
2015-11-01
The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.
Perturbing open cavities: Anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system
Ruesink, Freek; Hendrikx, Ruud; Koenderink, A Femius; Verhagen, Ewold
2015-01-01
The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a non-trivial phase relation between cavity and nanoparticle radiation, allowing back-action via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.
Without the strong force, there could be no life. The carbon in living matter is synthesised in stars via the strong force. Lighter atomic nuclei become bound together in a process called nuclear fusion. A minor change in this interaction would make life impossible. As its name suggests, the strong force is the most powerful of the 4 forces, yet its sphere of influence is limited to within the atomic nucleus. Indeed it is the strong force that holds together the quarks inside the positively charged protons. Without this glue, the quarks would fly apart repulsed by electromagnetism. In fact, it is impossible to separate 2 quarks : so much energy is needed, that a second pair of quarks is produced. Text for the interactive: Can you pull apart the quarks inside a proton?
Magnetic microtraps for cavity QED, Bose-Einstein condensates, and atom optics
Lev, Benjamin L.
The system comprised of an atom strongly coupled to photons, known as cavity quantum electrodynamics (QED), provides a rich experimental setting for quantum information processing, both in the implementation of quantum logic gates and in the development of quantum networks. Moreover, studies of cavity QED will help elucidate the dynamics of continuously observed open quantum systems with quantum-limited feedback. To achieve these goals in cavity QED, a neutral atom must be tightly confined inside a high-finesse cavity with small mode volume for long periods of time. Microfabricated wires on a substrate---known as an atom chip---can create a sufficiently high-curvature magnetic potential to trap atoms in the Lamb-Dicke regime. We have recently integrated an optical fiber Fabry-Perot cavity with such a device. The microwires allow the on-chip collection and laser cooling of neutral atoms, and allow the magnetic waveguiding of these atoms to an Ioffe trap inside the cavity mode. Magnetically trapped intracavity atoms have been detected with this cavity QED system. A similar experiment employing microdisks and photonic bandgap cavities is nearing completion. With these more exotic cavities, a robust and scalable atom-cavity chip system will deeply probe the strong coupling regime of cavity QED with magnetically trapped atoms. Atom chips have found great success in producing and manipulating Bose-Einstein condensates and in creating novel atom optical elements. An on-chip BEC has been attained in a miniaturized system incorporating an atom chip designed for atom interferometry and for studies of Josephson effects of a BEC in a double-well potential. Using similar microfabrication techniques, we created and demonstrated a specular magnetic atom mirror formed from a standard computer hard drive. This device, in conjunction with micron-sized charged circular pads, can produce a 1-D ring trap which may prove useful for studying Tonks gases in a ring geometry and for
Verdugo, T.; Limousin, M.; Motta, V.; Mamon, G. A.; Foëx, G.; Gastaldello, F.; Jullo, E.; Biviano, A.; Rojas, K.; Muñoz, R. P.; Cabanac, R.; Magaña, J.; Fernández-Trincado, J. G.; Adame, L.; De Leo, M. A.
2016-10-01
Context. The mass distribution in galaxy clusters and groups is an important cosmological probe. It has become clear in recent years that mass profiles are best recovered when combining complementary probes of the gravitational potential. Strong lensing (SL) is very accurate in the inner regions, but other probes are required to constrain the mass distribution in the outer regions, such as weak lensing or studies of dynamics. Aims: We constrain the mass distribution of a cluster showing gravitational arcs by combining a strong lensing method with a dynamical method using the velocities of its 24 member galaxies. Methods: We present a new framework in which we simultaneously fit SL and dynamical data. The SL analysis is based on the LENSTOOL software and the dynamical analysis uses the MAMPOSSt code, which we integrated into LENSTOOL. After describing the implementation of this new tool, we applied it to the galaxy group SL2S J02140-0535 (zspec = 0.44), which we had previously studied. We used new VLT/FORS2 spectroscopy of multiple images and group members, as well as shallow X-ray data from XMM. Results: We confirm that the observed lensing features in SL2S J02140-0535 belong to different background sources. One of these sources is located at zspec = 1.017 ± 0.001, whereas the other source is located at zspec = 1.628 ± 0.001. With the analysis of our new and our previously reported spectroscopic data, we find 24 secure members for SL2S J02140-0535. Both data sets are well reproduced by a single NFW mass profile; the dark matter halo coincides with the peak of the light distribution, with scale radius, concentration, and mass equal to rs = 82+44-17 kpc, c200 = 10.0+1.7-2.5, and M200 = 1.0+0.5-0.2 × 1014 M⊙ respectively. These parameters are better constrained when we fit SL and dynamical information simultaneously. The mass contours of our best model agrees with the direction defined by the luminosity contours and the X-ray emission of SL2S J02140-0535. The
Supersonic flows over cavities
Institute of Scientific and Technical Information of China (English)
Tianwen FANG; Meng DING; Jin ZHOU
2008-01-01
The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.
Gamp, A
2011-01-01
We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.
A Study of the Weak Shock Wave Propagating over a Porous Wall/Cavity System
Institute of Scientific and Technical Information of China (English)
H.D.KIM; S.J.JUNG; T.AOKI; T.SETOGUCHI
2005-01-01
The present computational study addresses the attenuation of the shock wave propagating in a duct, using a porous wall/cavity system. In the present study, a weak shock wave propagating over the porous wall/cavity system is investigated with computational fluid dynamics. A total variation diminishing scheme is employed to solve the unsteady, two-dimensional, compressible, Navier-Stokes equations. The Mach number of an initial shock wave is changed in the range from 1.02 to 1.12. Several different types of porous wall/cavity systems are tested to investigate the passive control effects. The results show that wall pressure strongly fluctuates due to diffraction and reflection processes of the shock waves behind the incident shock wave. From the results, it is understood that for effective alleviation of tunnel impulse waves, the length of the perforated region should be sufficiently long.
Diffraction-limited Fabry-Perot Cavity in the Near Concentric Regime
Durak, Kadir; Leong, Victor; Straupe, Stanislav; Kurtsiefer, Christian
2014-01-01
Nearly concentric optical cavities can be used to prepare optical fields with a very small mode volume. We implement an anaclastic design of a such a cavity that significantly simplifies mode matching to the fundamental cavity mode. The cavity is shown to have diffraction-limited performance for a mode volume of $\\approx10^4\\lambda^3$. This is in sharp contrast with the behavior of cavities with plano-concave mirrors, where aberrations significantly increase the losses in the fundamental mode. We estimate the related cavity QED parameters and show that the proposed cavity design allows for strong coupling without a need for high finesse or small physical cavity volume.
RESONANT CAVITY EXCITATION SYSTEM
Baker, W.R.; Kerns, Q.A.; Riedel, J.
1959-01-13
An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.
Collapsing cavities in reactive and nonreactive media
Bourne, Neil K.; Field, John E.
1991-04-01
This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.
Weak and strong interactions between dark solitons and dispersive waves
Oreshnikov, Ivan; Yulin, Alexey
2015-01-01
The effect of mutual interaction between dark solitons and dispersive waves is investigated numerically and analytically. The condition of the resonant scattering of dispersive waves on dark solitons is derived and compared against the results of numerical simulations. It is shown that the interaction with intense dispersive waves affects the dynamics of the soltons strongly changing their frequencies and accelerating or decelerating the solitons. It is also demonstrated that two dark solitons can form a cavity for dispersive weaves bouncing between the two dark solitons. The differences of the resonant scattering of the dispersive waves on the dark and bright solitons are discussed. In particular we demonstrate that two dark solitons and dispersive wave bouncing in between them create solitonic cavity with convex "mirrors" unlike the concave "mirror" in case of the bright solitons.
Cavity turnover and equilibrium cavity densities in a cottonwood bottomland
Sedgwick, James A.; Knopf, Fritz L.
1992-01-01
A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.
Piezoelectric Voltage Coupled Reentrant Cavity Resonator
Carvalho, Natalia C; Floch, Jean-Michel Le; Tobar, Michael Edmund
2014-01-01
A piezoelectric voltage coupled microwave reentrant cavity has been developed. The central cavity post is bonded to a piezoelectric actuator allowing the voltage control of small post displacements over a high dynamic range. We show that such a cavity can be implemented as a voltage tunable resonator, a transducer for exciting and measuring mechanical modes of the structure and a transducer for measuring comparative sensitivity of the piezoelectric material. Experiments were conducted at room and cryogenic temperatures with results verified using Finite Element software.
Pandian, Arun; Stellingwerf, Robert F.; Abarzhi, Snezhana I.
2017-07-01
While it is a common wisdom that initial conditions influence the evolution of the Richtmyer-Meshkov instability (RMI), the research in this area is focused primarily on the effects of the wavelength and amplitude of the interface perturbation. The information has hitherto largely ignored the influences on RMI dynamics of the relative phase of waves constituting a multiwave initial perturbation and the interference of the perturbation waves. In this work we systematically study the influence of the relative phase and the interference of waves constituting a multiwave initial perturbation on a strong-shock-driven Richtmyer-Meshkov unstable interface separating ideal fluids with contrast densities. We apply group theory analysis and smoothed particle hydrodynamics numerical simulations. For verification and validation of the simulations, qualitative and quantitative comparisons are performed with rigorous zeroth-order, linear, and nonlinear theories as well as with gas dynamics experiments achieving good agreement. For a sample case of a two-wave (two-mode) initial perturbation we select the first-wave amplitude enabling the maximum initial growth rate of the RMI and we vary the second-wave amplitude from 1% to 100% of the first-wave amplitude. We also vary the relative phase of the first and second waves and consider the in-phase, the antiphase and the random-phase cases. We find that the relative phase and the interference of waves are important factors of RMI dynamics influencing qualitatively and quantitatively the symmetry, morphology, and growth rate of the Richtmyer-Meshkov unstable interface, as well as the order and disorder in strong-shock-driven RMI.
Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng
2017-07-01
Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.
Energy Technology Data Exchange (ETDEWEB)
Vikas [Quantum Chemistry Group, Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, 160014 Chandigrah (India)
2011-02-15
Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10{sup 11} G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10{sup 9} G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10{sup 9} G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)
Cavity QED with Multiple Hyperfine Levels
Birnbaum, K M; Kimble, H J
2006-01-01
We calculate the weak-driving transmission of a linearly polarized cavity mode strongly coupled to the D2 transition of a single Cesium atom. Results are relevant to future experiments with microtoroid cavities, where the single-photon Rabi frequency g exceeds the excited-state hyperfine splittings, and photonic bandgap resonators, where g is greater than both the excited- and ground-state splitting.
Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.
2010-01-01
We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.