WorldWideScience

Sample records for cavities

  1. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  2. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  3. Cavity magnomechanics

    Science.gov (United States)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  4. Crab Cavity Development

    CERN Document Server

    Calaga, R; Burt, G; Ratti, A

    2015-01-01

    The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.

  5. Dawn of Cavity Spintronics

    OpenAIRE

    Hu, Can-Ming

    2015-01-01

    Merging the progress of spintronics with the advancement in cavity quantum electrodynamics and cavity polaritons, a new field of Cavity Spintronics is forming, which connects some of the most exciting modern physics, such as quantum information and quantum optics, with one of the oldest science on the earth, the magnetism.

  6. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  7. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  8. RESONANT CAVITY EXCITATION SYSTEM

    Science.gov (United States)

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  9. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    Science.gov (United States)

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  10. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  11. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  12. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  13. Cavity spin optodynamics

    CERN Document Server

    Brahms, N

    2010-01-01

    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.

  14. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  15. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  16. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  17. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  18. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  19. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  20. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  1. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  2. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  3. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  4. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  5. Niobium superconducting cavity

    CERN Multimedia

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  6. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  7. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  8. Melatonin and oral cavity.

    Science.gov (United States)

    Cengiz, Murat İnanç; Cengiz, Seda; Wang, Hom-Lay

    2012-01-01

    While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  9. Melatonin and Oral Cavity

    Directory of Open Access Journals (Sweden)

    Murat İnanç Cengiz

    2012-01-01

    Full Text Available While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  10. Finemet cavity impedance studies

    CERN Document Server

    Persichelli, S; Migliorati, M; Salvant, B

    2013-01-01

    The aim of the study is to evaluate the impedance of the Finemet kicker cavity to be installed in the PS straight section 02 during LS1, under realistic assumptions of bunch length. Time domain simulations with CST Particle Studio have been performed in order to get the impedance of the cavity and make a comparison with the longitudinal impedance measured for a single cell prototype. The study has been performed on simplified 3D geometries imported from a mechanical CATIA drawing, assuming that the simplications have small impact on the nal results. Simulations confirmed that the longitudinal impedance observed with measurements can be excited by bunches circulating in the PS. In the six-cells Finemet cavity, PS bunches circulating in the center can excite a longitudinal impedance, the real part of which has a maximum of 2 kOhm at 4 MHz. This mode does not seem to have any transverse component. All the eigenmodes of the cavity are strongly damped by the Finemet rings: we predict to have no issues regarding tr...

  11. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased choic

  12. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  13. Teleportation of Cavity Field States via Cavity QED

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss two schemes of teleportation of cavity field states. In the first scheme we consider cavities prepared in a coherent state and in the second scheme we consider cavities prepared in a superposition of zero and one Fock states.

  14. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  15. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  16. Access cavity preparation.

    Science.gov (United States)

    Adams, N; Tomson, P L

    2014-03-01

    Each stage of root canal treatment should be carried out to the highest possible standard. The access cavity is arguably the most important technical stage, as subsequent preparation of the root canal(s) can be severely comprised if this is not well executed. Inadequate access can lead to canals being left untreated, poorly disinfected, difficult to shape and obturate, and may ultimately lead to the failure of the treatment. This paper highlights common features in root canal anatomy and outlines basic principles for locating root canals and producing a good access cavity. It also explores each phase of the preparation in detail and offers suggestions of instruments that have been specifically designed to overcome potential difficulties in the process. Good access design and preparation will result in an operative environment which will facilitate cleaning, shaping and obturation of the root canal system in order to maximise success.

  17. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  18. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  19. Cavity enhanced atomic magnetometry

    OpenAIRE

    Herbert Crepaz; Li Yuan Ley; Rainer Dumke

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage...

  20. Cavity QED by the Numbers

    Science.gov (United States)

    Kimble, H. J.; Boca, A.; Boozer, A. D.; Bowen, W. P.; Buck, J. R.; Chou, C. W.; Duan, L.-M.; Kuzmich, A.; McKeever, J.

    2004-12-01

    Observations of cooling and trapping of N = 1,2,3,... atoms inside a small optical cavity are described. The atom-cavity system operates in a regime of strong coupling for which single photons are sufficient to saturate the atomic response. New theoretical protocols for the efficient engineering of multi-atom entanglement within the setting of cavity QED are described. By trapping a single atom within the cavity mode, a one-atom laser is experimentally realized in a regime of strong coupling. Beyond the setting of cavity QED, quantum correlations have been observed for photon pairs emitted from an atomic ensemble and with a programmable time offset.

  1. Crab Cavities for Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; /Daresbury; Shulte, D.; /CERN; Jones, Roger M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; /Fermilab; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  2. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  3. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  4. Cavity Optomechanical Magnetometer

    CERN Document Server

    Forstner, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H

    2011-01-01

    A cavity optomechanical magnetometer is demonstrated where the magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. Detecting the magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may be possible. This chip-based magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation.

  5. Cavity optomechanical magnetometer.

    Science.gov (United States)

    Forstner, S; Prams, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H

    2012-03-23

    A cavity optomechanical magnetometer is demonstrated. The magnetic-field-induced expansion of a magnetostrictive material is resonantly transduced onto the physical structure of a highly compliant optical microresonator and read out optically with ultrahigh sensitivity. A peak magnetic field sensitivity of 400  nT  Hz(-1/2) is achieved, with theoretical modeling predicting the possibility of sensitivities below 1  pT  Hz(-1/2). This chip-based magnetometer combines high sensitivity and large dynamic range with small size and room temperature operation.

  6. Applications of cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Michael [Booz Allen Hamilton, 3811 Fairfax Drive, Arlington, Virginia 22203 (United States)

    2014-09-15

    Cavity-optomechanics” aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  7. Applications of cavity optomechanics

    Science.gov (United States)

    Metcalfe, Michael

    2014-09-01

    "Cavity-optomechanics" aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  8. JLEIC SRF cavity RF Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the first phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.

  9. Nanofriction in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  10. Cavity coalescence in superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  11. A Scanning Cavity Microscope

    CERN Document Server

    Mader, Matthias; Hänsch, Theodor W; Hunger, David

    2014-01-01

    Imaging of the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1700-fold signal enhancement compared to diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross section of gold nanoparticles with a sensitivity below 1 nm2, we show a method to improve spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for opt...

  12. Shock induced cavity collapse

    Science.gov (United States)

    Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas

    2016-10-01

    Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.

  13. Frequency Tuning for a DQW Crab Cavity

    CERN Document Server

    Verdú-Andrés, Silvia; Ben-Zvi, Ilan; Calaga, Rama; Capatina, Ofelia; Leuxe, Raphael; Skaritka, John; Wu, Qiong; Xiao, Binping; Zanoni, Carlo

    2016-01-01

    The nominal operating frequency for the HL-LHC crab cavities is 400.79 MHz within a bandwidth of ±60kHz. Attaining the required cavity tune implies a good understanding of all the processes that influence the cavity frequency from the moment when the cavity parts are being fabricated until the cavity is installed and under operation. Different tuning options will be available for the DQW crab cavity of LHC. This paper details the different steps in the cavity fabrication and preparation that may introduce a shift in the cavity frequency and introduces the different tuning methods foreseen to bring the cavity frequency to meet the specifications.

  14. LEP radio-frequency cavity

    CERN Multimedia

    1991-01-01

    One of the copper radio-frequency accelerating cavities installed for the first phase of LEP (1989-1995). Bunches of electrons and positrons circulated in LEP in opposite directions and were accelerated in eight different sets of 16 cavities (situated on either side of the four experiments), gaining 400 million volts of accelerating power per turn.

  15. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  16. Quantum entanglement purification in cavities

    CERN Document Server

    Romero, J L; Saavedra, C; Retamal, J C

    2002-01-01

    A physical implementation of an entanglement purification protocol is studied using a cavity quantum electrodynamic based proposal, where, the quantum information is stored in quantum field sates inside cavities. Also a procedure is given for quantifying the degree of entanglement between quantum fields. (Author)

  17. Superconducting cavity model for LEP

    CERN Multimedia

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  18. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-01-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  19. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  20. Vibration insensitive optical ring cavity

    Institute of Scientific and Technical Information of China (English)

    Miao Jin; Jiang Yan-Yi; Fang Su; Bi Zhi-Yi; Ma Long-Sheng

    2009-01-01

    The mounting configuration of an optical ring cavity is optimized for vibration insensitivity by finite element analysis. A minimum response to vertical accelerations is found by simulations made for different supporting positions.

  1. Imaging of the oral cavity.

    Science.gov (United States)

    Meesa, Indu Rekha; Srinivasan, Ashok

    2015-01-01

    The oral cavity is a challenging area in head and neck imaging because of its complex anatomy and the numerous pathophysiologies that involve its contents. This challenge is further compounded by the ubiquitous artifacts that arise from the dental amalgam, which compromise image quality. In this article, the anatomy of the oral cavity is discussed in brief, followed by a description of the imaging technique and some common pathologic abnormalities.

  2. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  3. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  4. Polishing Difficult-To-Reach Cavities

    Science.gov (United States)

    Malinzak, R. Michael; Booth, Gary N.

    1990-01-01

    Springy abrasive tool used to finish surfaces of narrow cavities made by electrical-discharge machining. Robot arm moves vibrator around perimeters of cavities, polishing walls of cavities as it does so. Tool needed because such cavities inaccessible or at least difficult to reach with most surface-finishing tools.

  5. 3D cavity detection technique and its application based on cavity auto scanning laser system

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ling; LI Xi-bing; LI Fa-ben; ZHAO Guo-yan; QIN Yu-hui

    2008-01-01

    Ground constructions and mines are severely threatened by underground cavities especially those unsafe or inaccessible ones. Safe and precise cavity detection is vital for reasonable cavity evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.

  6. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  7. RRR Characteristics for SRF Cavities

    CERN Document Server

    Jung, Yoochul; Joung, Mijoung

    2015-01-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes were fabricated such as a quarter wave resonator (QWR), a half wave resonator (HWR) and a single spoke resonator (SSR). One of the critical factors determining performances of the superconducting cavities is a residual resistance ratio (RRR). The RRR values essentially represent how much niobium is pure and how fast niobium can transmit heat as well. In general, the RRR degrades during electron beam welding due to the impurity incorporation. Thus it is important to maintain RRR above a certain value at which a niobium cavity shows target performance. In this study, RRR degradation related with electron beam welding conditions, for example, welding power, welding speed, and vacuum level will be discussed.

  8. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    K. Heremans

    2005-08-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  9. A micropillar for cavity optomechanics

    CERN Document Server

    Kuhn, A G; Ducloux, O; Chartier, C; Traon, O Le; Briant, T; Cohadon, P -F; Heidmann, A; Michel, C; Pinard, L; Flaminio, R

    2011-01-01

    We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-$\\mu$m diameter low-loss dielectric mirror on top of the pillar and are planning to use this micromirror as part of a high-finesse Fabry-Perot cavity, to laser cool the resonator down to its quantum ground state and to monitor its quantum position fluctuations by quantum-limited optical interferometry.

  10. Entanglement swapping between atom and cavity and generation of entangled state of cavity fields

    Institute of Scientific and Technical Information of China (English)

    Chen Ai-Xi; Deng Li

    2007-01-01

    This paper proposes a scheme where entanglement swapping between atom and cavity can be realized. A-type three-level atoms interacting resonantly with cavity field are considered. By detecting atom and cavity field, it realizes entanglement swapping between atom and cavity. It uses the technique of entanglement swapping to generate an entangled state of two cavity fields by measuring on atoms. It discusses the experimental feasibility of the proposed scheme and application of entangled state of cavity fields.

  11. On cavity modification of stimulated Raman scattering

    CERN Document Server

    Matsko, A B; Letargat, R J; Ilchenko, V S; Maleki, L

    2003-01-01

    We study theoretically stimulated Raman scattering (SRS) in a nonlinear dielectric microcavity and compare SRS thresholds for the cavity and the bulk material it is made of. We show that cavity SRS enhancement results solely from the intensity build up in the cavity and from the differences of the SRS dynamics in free and confined space. There is no significant modification of the Raman gain due to cavity QED effects. We show that the SRS threshold depends significantly on the nature of the dominating cavity decay as well as on the coupling technique with the cavity used for SRS measurements.

  12. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  13. Sterility of the uterine cavity

    DEFF Research Database (Denmark)

    Møller, Birger R.; Kristiansen, Frank V.; Thorsen, Poul;

    1995-01-01

    from the same sites. Nearly a quarter of all the patients harbored one or more microorganisms in the uterus, mostly Gardnerella vaginalis, Enterobacter and Streptococcus agalactiae. We found that in a significant number of cases, the uterine cavity is colonized with potentially pathogenic organisms...

  14. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  15. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  16. A STUDY OF FERRITE CAVITY.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2002-04-19

    This note addresses the general concerns for the design of a ferrite cavity. The parameters are specified for the RCMS, for which the frequency ramp is in the range of 1.27 MHz to 6.44 MHz, or a ratio of 1:5.

  17. A 200 MHz prebunching cavity

    CERN Multimedia

    1977-01-01

    This cavity was installed in the PS ring and proved very efficient in providing a modulation on the PS beam before it is injected into the SPS machine. Moreover it allowed longitudinal instabilities studies at high intensities. Roberto Cappi stands on the left.

  18. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  19. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  20. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  1. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a... restorative materials. The device is intended to prevent penetration of restorative materials, such as...

  2. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. Ian Wilso seems to hold it in his hands. The storage cavities had 4 portholes, 1 each for: RF feed; tuning; connection to the accelerating cavity; vacuum pump. The final storage cavities were larger, to suit the lower LEP accelerating frequency of 352.2 MHz. See also 8002294, 8006510X, 8109346, 8407619X, and Annual Report 1980, p.115.

  3. Theory and technology for superconducting cavities

    CERN Document Server

    Lengeler, Herbert

    1993-01-01

    The course will address Physicist and Engineers who are newcomers in the field of accelerators and accelerating cavities. The elements of RF-Superconductivity will be presented with special relevance to accelerating cavities. The present ststus of achievable accelerating fields and RF losses will be given and their link to the special technologies for cavity fabrication and surface treatments will be stressed. Cavity auxiliaries like main couplers, higher order mode couplers and frequency tuners will be described.

  4. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  5. Power coupler for the ILC crab cavity

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Dexter, A.; Jenkins, R.; /Lancaster U.; Beard, C.; Goudket, P.; McIntosh, P.A.; /Daresbury; Bellantoni, Leo; /Fermilab

    2007-06-01

    The ILC crab cavity will require the design of an appropriate power coupler. The beam-loading in dipole mode cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

  6. Digital Cavities and Their Potential Applications

    CERN Document Server

    Karki, Khadga; Widom, Julia R; Marcus, Andrew H; Pullerits, Tonu

    2013-01-01

    The concept of a digital cavity is presented. The functionality of a tunable radio-frequency/microwave cavity with unrestricted Q-factor is implemented. The theoretical aspects of the cavity and its potential applications in high resolution spectroscopy and synchronization of clocks together with examples in signal processing and data acquisition are discussed.

  7. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  8. A micropillar for cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Aurélien; Neuhaus, Leonhard; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine [Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Paris (France); Van Brackel, Emmanuel [Département de Physique, ENS, Paris (France); Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier [Département Mesures Physiques, ONERA, Châtillon (France); Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele [Laboratoire des Matériaux Avancés, IN2P3-CNRS, Lyon (France)

    2014-12-04

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  9. Dissipative structures in optomechanical cavities

    Science.gov (United States)

    Ruiz-Rivas, Joaquín; Navarrete-Benlloch, Carlos; Patera, Giuseppe; Roldán, Eugenio; de Valcárcel, Germán J.

    2016-03-01

    Motivated by the increasing interest in the properties of multimode optomechanical devices, here we study a system in which a driven longitudinal mode of a large-area optical cavity is dispersively coupled to a deformable mechanical element. Two different models naturally appear in such scenario, for which we predict the formation of periodic patterns, localized structures (cavity solitons), and domain walls, among other complex nonlinear phenomena. Further, we propose a realistic design based on intracavity membranes where our models can be studied experimentally. Apart from its relevance to the field of nonlinear optics, the results put forward here are a necessary step towards understanding the quantum properties of optomechanical systems in the multimode regime of both the optical and the mechanical degrees of freedom.

  10. Retention proposal in complex cavities.

    Directory of Open Access Journals (Sweden)

    Pedro Alvarez Rodríguez

    2003-12-01

    Full Text Available Background: Dental Operatory is the main structure in which Odontology lies. It is not an easy discipline that gives enjoyable results with little effort due to the difficulties that a correct reconstruction of a destroyed dental element offers.The frequency with which pulpar injury occurs while anchoring additional retainers in complex cavities, the technical difficulties the lack of these devices cause and the need to simplify dental procedures lead this study to show the advantages to substitute additional retainers for a retainer surcus. Method: An observational descriptive study was applied to 53 patients(42% of the universe , sample which was selected by means of a simple randomized sample . From a proximal-occlusal cavity, the preparations were extended in a box-like shape towards the bucal or lingual region and the additional retainers were substituted for a surcus which was performed in the gingival wall of the preparation. Calcium Hydroxide of rapid dryness was used as a cavity cover and Policarboxilate cement as a base; then the amalgam restoration was performed. The number of restorations were studied taking into account the patient´s age and the failures due to fractures of amalgam, loss of vitality and periapical changes were assessed taking into consideration the patient´s age and a one- year follow up. Results: Most of the amalgam restorations were performed in patients aged from 35 to 59 years and the relative frequencies due to fractures of amalgam, loss of vitality and periapical changes were very low. Conclusion: The substitution of additional retainers for a retainer surcus in complex cavities of vital molars showed to be advantageous because it guarantees a less degree of pulpar damage and less pulpar damage.

  11. Angioleiomyoma of the Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Arruda, Milena Moreira

    2014-01-01

    Full Text Available Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis.

  12. Angioleiomyoma of the Nasal Cavity

    Science.gov (United States)

    Arruda, Milena Moreira; Monteiro, Daniela Yasbek; Fernandes, Atilio Maximino; Menegatti, Vanessa; Thomazzi, Emerson; Hubner, Ricardo Arthur; Lima, Luiz Guilherme Cernaglia Aureliano de

    2014-01-01

    Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis. PMID:25992133

  13. Optomechanic interactions in phoxonic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); El-Jallal, Said [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); Physique du Rayonnement et de l’Interaction Laser Matière, Faculté des sciences, Université de Moulay Ismail, Meknès (Morocco)

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  14. Optomechanic interactions in phoxonic cavities

    Directory of Open Access Journals (Sweden)

    Bahram Djafari-Rouhani

    2014-12-01

    Full Text Available Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  15. Differential cavity mode spectroscopy: A new cavity enhanced technique for the detection of weak transitions

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Glenn de [Centre for Gravitational Physics, Faculty of Science, The Australian National University, Canberra ACT 0200 (Australia)], E-mail: glenn.devine@jpl.nasa.gov; McClelland, David E.; Gray, Malcolm B. [Centre for Gravitational Physics, Faculty of Science, The Australian National University, Canberra ACT 0200 (Australia)

    2008-06-16

    We present a new cavity enhanced, continuous wave spectroscopic technique for the detection of weak atomic and molecular transitions. Differential Cavity Mode Spectroscopy (DCMS) measures the difference in absorption between two adjacent cavity longitudinal modes to yield a highly sensitive, yet relatively simple, cavity enhanced spectroscopic technique. In addition this relative absorption measurement is, to first order, independent of both laser frequency noise and cavity acoustic noise. Here we present both a theoretical description of this new technique and an initial experimental demonstration.

  16. LHC crab-cavity aspects and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  17. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hall, B. [Lancaster Univ. (United Kingdom); Burt, G. [Lancaster Univ. (United Kingdom); Smith, J. D.A. [Lancaster Univ. (United Kingdom); Rimmer, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Delayen, J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Calaga, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  18. Plasmonic Coupled Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) coupled cavity modes on Moire surfaces. An experimental study has been made of the propagation of SPPs on a thin silver surface that is textured with Moire surface pattern using interference lithography. The Moire surface contains periodic array of one dimensional cavities. The distance between the cavities can be controlled by changing the periodicities of Moire surface. When the SPP cavity separation is sufficiently small, we show splitting of strongly coupled plasmonic cavity modes through numerical simulations. Conversely, when the SPP cavity separation is sufficiently large, SPP cavity modes are found to be localized and do not show splitting of SPP cavity modes . This splitting of SPP cavity modes are well explained with a tight binding model that has been succesfully applied in photonic coupled cavities. Reflection measurements and numerical simulation of a large number of adjacent SPP cavities have shown a coupled resonator optical waveguide (CROW) type plasmonic waveguide band formation within the band gap region of unperturbed uniform grating.

  19. CHECHIA cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Technical Univ. Warsaw (Poland). ELHEP Laboratory, ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). TESLA

    2005-07-01

    The initial control of the superconductive cavity has recently been performed by applying the FPGA (Field Programmable Gate Array) technology system in DESY Hamburg. This first experiment turned attention to the general recognition of the cavity features and projected control methods. The electrical model of the cavity is taken as a consideration origin. The calibration of the signal channel is considered as a key preparation for an efficient cavity driving. The cavity parameters identification is confirmed as a proper approach for the required performance: driving on resonance during filling and field stabilization during flattop time with reasonable power consumption. The feed-forward and feedback modes were applied successfully for the CHECHIA cavity driving. Representative results of experiments are presented for different levels of the cavity field gradient. (orig.)

  20. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  1. SPS RF System an Accelerating Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X.

  2. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  3. Cavities

    Science.gov (United States)

    ... Information Drug Information, Search Drug Names, Generic and Brand Natural Products, Search Pill Identifier News & Commentary ALL NEWS > Resources First Aid Videos Figures Images Audio Pronunciations The One-Page Manual of Health ...

  4. Dynamical tunneling in optical cavities

    CERN Document Server

    Hackenbroich, G; Hackenbroich, Gregor; Noeckel, Jens U.

    1998-01-01

    The lifetime of whispering gallery modes in a dielectric cavity with a metallic inclusion is shown to fluctuate by orders of magnitude when size and location of the inclusion are varied. We ascribe these fluctuations to tunneling transitions between resonances quantized in different regions of phase space. This interpretation is confirmed by a comparison of the classical phase space structure with the Husimi distribution of the resonant modes. A model Hamiltonian is introduced that describes the phenomenon and shows that it can be expected in a more general class of systems.

  5. Basketballs as spherical acoustic cavities

    Science.gov (United States)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  6. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  7. Rationale for designing cavity preparations.

    Science.gov (United States)

    Laswell, H R; Welk, D A

    1985-04-01

    Increased resistance to caries, increased dental awareness, superior diagnostic capabilities, better illumination, optical aids that significantly enhance vision, improved and standardized materials for restoration, and a deeper understanding of the caries process enable a far more conservative approach to tooth preparation. The dentist can concentrate on preserving as much sound tooth structure as possible with less attention being devoted to resistance and retention form that previously demanded in bulk restorations and massive channels and locks that are no longer appropriate. Although caries inhibitory effects have been shown with materials such as silicate cement, glass ionomers, and resins that leach fluoride, in general, dentists should not rely on restorative materials to inhibit the development of future decay. Characteristics of the carious lesion are unique for each tooth according to many factors centering around the plaque pattern for that tooth and not according to zones of natural susceptibility or immunity strictly dictated by morphology. Therefore, no single cavity preparation duplicated from a textbook is likely to be satisfactory for an individual tooth. Furthermore, novices learning the subject of cavity preparation often leave decalcified enamel when they attempt to replicate under clinical conditions that which they have learned in technique courses. This is the major invitation to future caries reappearing adjacent to restorations. Also, failure to duplicate the exact morphology of the tooth surface that has been replaced is likely to alter the pattern of plaque accumulation and create other caries prone areas.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Cavity QED-based quantum walk

    Science.gov (United States)

    di, Tiegang; Hillery, Mark; Zubairy, M. Suhail

    2004-09-01

    We discuss a possible experimental scheme for the implementation of a quantum walk. The scheme is based on the passage of an atom inside a high- Q cavity. The chirality is characterized by the atomic states and the displacement is characterized by the photon number inside the cavity. The quantum steps are described by appropriate interactions with a sequence of classical and quantized cavity fields.

  9. Ray splitting in paraxial optical cavities

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  10. Tunable Cavity Optomechanics with Ultracold Atoms

    CERN Document Server

    Purdy, T P; Botter, T; Brahms, N; Ma, Z -Y; Stamper-Kurn, D M

    2010-01-01

    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.

  11. Continuously tunable, split-cavity gyrotrons

    Science.gov (United States)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  12. Dither Cavity Length Controller with Iodine Locking

    Directory of Open Access Journals (Sweden)

    Lawson Marty

    2016-01-01

    Full Text Available A cavity length controller for a seeded Q-switched frequency doubled Nd:YAG laser is constructed. The cavity length controller uses a piezo-mirror dither voltage to find the optimum length for the seeded cavity. The piezo-mirror dither also dithers the optical frequency of the output pulse. [1]. This dither in optical frequency is then used to lock to an Iodine absorption line.

  13. Mechanical Properties of Ingot Nb Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  14. Novel Geometries for the LHC CRAB Cavity

    CERN Document Server

    Hall, Ben

    2010-01-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme b...

  15. Cavity quantum electrodynamics: coherence in context.

    Science.gov (United States)

    Mabuchi, H; Doherty, A C

    2002-11-15

    Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.

  16. Design of the ILC Crab Cavity System

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin,; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  17. Engineering topological materials in microwave cavity arrays

    CERN Document Server

    Anderson, Brandon M; Owens, Clai; Schuster, David I; Simon, Jonathan

    2016-01-01

    We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry breaking (non-reciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the $\\alpha=1/4$ Hofstadter model. Effective photon-photon interactions are included by coupling the cavities to superconducting qubits, and are sufficient to produce a $\

  18. State of the Art SRF Cavity Performance

    CERN Document Server

    Lilje, L

    2004-01-01

    The paper will review superconducting RF cavity performance for β=1 cavities used in both linear and circular accelerators. These superconducting cavities are used in two kinds of applications: High current storage rings and efficient high duty cycle linacs. In recent years the performance of those cavities has been improving steadily. High accelerating gradients have been achieved using advanced surface preparation techniques like electropolishing and surface cleaning methods like high pressure water rinsing. High intensity beams can be handled with advanced higher-order-mode damping schemes.

  19. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    Science.gov (United States)

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  20. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  1. Slow plasmons in grating cavities

    Science.gov (United States)

    Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun

    2016-03-01

    Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.

  2. Primary leiomyosarcoma of peritoneal cavity

    Directory of Open Access Journals (Sweden)

    Jyotsna Naresh Bharti

    2014-03-01

    Full Text Available Leiomyosarcomas of soft tissue are the rare tumors and the retroperitoneum is the most common site involved. We report a case of primary leiomyosarcoma of the peritoneal cavity which clinically presented with suprapubic, freely mobile, nontender mass which measured 10×10 cm in size. Contrast enhanced computed tomography revealed well defined heterogenous hypodense solid cystic mass. The mass was surgically excised out in its entirety. The histopathological examination revealed spindle cells arranged in alternating fascicles having pleomorphic nuclei, indistinct margin and eosinophilic cytoplasm with foci of haemorrhage, necrosis and 5-6 mitosis/HPF. The spindle cells were immunoreactive for smooth muscle actin, desmin and negative for S-100, CD-34 and c-kit. Histopathology and immunohistochemistry were helpful in making the final confirmatory diagnosis. Leiomyosarcomas are aggressive tumors, with poor prognosis and often difficult to treat. The survival rates are lowest among all soft tissue sarcomas.

  3. Leaky Modes of Dielectric Cavities

    CERN Document Server

    Mansuripur, Masud; Jakobsen, Per

    2016-01-01

    In the absence of external excitation, light trapped within a dielectric medium generally decays by leaking out (and also by getting absorbed within the medium). We analyze the leaky modes of a parallel-plate slab, a solid glass sphere, and a solid glass cylinder, by examining those solutions of Maxwell's equations (for dispersive as well as non-dispersive media) which admit of a complex-valued oscillation frequency. Under certain circumstances, these leaky modes constitute a complete set into which an arbitrary distribution of the electromagnetic field residing inside a dielectric body can be expanded. We provide completeness proofs, and also present results of numerical calculations that illustrate the relationship between the leaky modes and the resonances of dielectric cavities formed by a simple parallel-plate slab, a glass sphere, and a glass cylinder.

  4. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  5. Scheme for Implementation of Quantum Game in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Chun; CAO Shu-Ai; WU Yue-Qin; FANG Mao-Fa; LI Huai-Fan; ZHENG Xiao-Juan; ZHAO Ren; WANG Xin-Wen; LI Ze-Hua

    2008-01-01

    We propose an experimentally feasible scheme to implement two-player quantum game in cavity quantum electrodynamics (QED). During the process, the cavity is only virtually excited, thus our scheme is insensitive to the cavity field states and cavity decay. The scheme can be realized in the range of current cavity QED techniques.

  6. A scheme for implementing quantum game in cavity QED

    Institute of Scientific and Technical Information of China (English)

    CaoShuai; Fang Mao-Fa; Liu Jian-Bin; Wang Xin-Wen; Zheng Xiao-juan

    2009-01-01

    In this paper, we propose a scheme fot implementing quantum game (QG) in cavity quantum electrodynam-ics(QED). In the scheme, the cavity is only virtually excited and thus the proposal is insensitive to the cavity fields states and cavity decay. So our proposal can be experimentally realized in the range of current cavity QED techniques.

  7. The ADMX Microwave Cavity: Present and future

    Science.gov (United States)

    Woollett, Nathan; ADMX Collaboration

    2017-01-01

    The Axion Dark Matter eXperiment (ADMX), a direct-detection axion search, uses a tunable resonant cavity to enhance axion to photon conversion rates to a detectable level when the cavity resonance matches the mass of the axion. It has successfully taken data in the 460 - 890 MHz frequency range and is now probing a similar range with much higher sensitivity. However the axion mass is unknown and may be at higher frequencies than the currently operating system. In anticipation of future runs with an increased mass range, ADMX is conducting extensive research and development of microwave cavities. These developments include photonic band-gap cavities, multi-vane cavities, partitioned cavities, in-phase coupled cavities, and superconducting hybrid cavities. Many of these projects are in different stages between simulations and testing of physical prototypes. The status and current objectives of these projects will be presented. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  8. Collapsing cavities in reactive and nonreactive media

    Science.gov (United States)

    Bourne, Neil K.; Field, John E.

    1991-04-01

    This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.

  9. A spherical cavity in an Einstein universe

    Energy Technology Data Exchange (ETDEWEB)

    Kofinti, N.K.

    1980-03-01

    Suitable metric forms for the regions and a outside a sperical cavity in an Einstein universe are derived by means of perturbation. It is shown that for low proper pressure, the cavity behaves like ''negative'' Schwarzchild mass. Finally, the possibility of carrying over to the exact theory a proposed definition of the gravitational field in a matter is examined.

  10. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...

  11. Cavity-enhanced absorption for optical refrigeration

    CERN Document Server

    Seletskiy, Denis V; Sheik-Bahae, Mansoor

    2009-01-01

    A 20-fold increase over the single path optical absorption is demonstrated with a low loss medium placed in a resonant cavity. This has been applied to laser cooling of Yb:ZBLAN glass resulting in 90% absorption of the incident pump light. A coupled-cavity scheme to achieve active optical impedance matching is analyzed.

  12. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra;

    2009-01-01

    We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally demon...

  13. Coupled-cavity traveling-wave tubes

    Science.gov (United States)

    Connolly, D. J.; Omalley, T. A.

    1980-01-01

    Computer program is developed for analysis of coupled cavity traveling waves tubes (TWT's) which are used in variety of radar and communications applications. Programmers can simulate tubes of arbitrary complexity such as input and output couplers and other features peculiar to one or few cavities which may be modeled by correct choices of input data.

  14. Large grain cavities from pure niobium ingot

    Science.gov (United States)

    Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  15. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.; Williams, D. R.; Zhang, M.

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  16. Superconducting accelerating four-cell cavity

    CERN Multimedia

    1980-01-01

    A close view of the four-cell cavity. This was a prototype designed for LEP2 (LEP1 had warm copper cavities as accelerating elements). The first successful tests were made in December 1980 - reaching a Q = 10^6. (see photo 8012650X)

  17. Continuous optical discharge in a laser cavity

    Science.gov (United States)

    Chivel', Yu. A.

    2016-08-01

    Optical discharge in a laser cavity is experimentally studied. A significant increase in the absorption of laser radiation (up to total absorption) is revealed. Optical schemes for initiation and maintaining of optical discharge in the cavity are proposed for technological applications of the optical discharge.

  18. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. The final storage cavities were larger, to suit the LEP accelerating frequency of 352.2 MHz. Cu-tubes for watercooling are brazed onto the upper half, the lower half is to follow. See also 8006061, 8109346, 8407619X, and Annual Report 1980, p.115.

  19. Subglacial Silicic Eruptions: Wet Cavities and Moist Cavities.

    Science.gov (United States)

    Stevenson, J. A.; McGarvie, D. W.; Gilbert, J. S.; Smellie, J. L.

    2007-05-01

    ice produces water, however in the Kerlingarfjöll eruption (which is thought to have been relatively brief and the vesicular magma is likely to have contained less heat per unit volume) the volumes were small and the subglacial cavity could be appropriately described as 'moist'. The Prestahnúkur eruption occurred in a 'wet' cavity but 'lacustrine' conditions were never developed and the ice was always close to the edifice. Poor sorting and structure in the subglacial deposits are due to a lack of time and space for sorting to occur. In contrast to more mafic eruptions, which are characterised by very strong meltwater-ice interactions, the main influence of the ice during subglacial rhyolite eruptions is reflected in the confinement of eruptive products.

  20. Air flow in a collapsing cavity

    CERN Document Server

    Peters, Ivo R; Lohse, Detlef; van der Meer, Devaraj

    2013-01-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disk on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  1. Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  2. Performance of 3-cell Seamless Niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, Peter K. [JLAB; Ciovati, Gianluigi [JLBA; Jelezov, I. [DESY, Hamburg; Singer, W. [DESY, Hamburg; Singer, X. [DESY, Hamburg

    2009-11-01

    In the last several months we have surface treated and cryogenically tested three TESLA-type 3-cell cavities, which had been manufactured at DESY as seamless assemblies by hydroforming. The cavities were completed at JLab with beam tube/flange assemblies. All three cavities performed very well after they had been post-purified with titanium at 1250C for 3 hrs. The cavities, two of which consisted of an end cell and 2 center cells and one was a center cell assembly, achieved gradients of Eacc = 32 MV/m, 34 MV/m and 35 MV/m without quenches. The performance was limited by the appearance of the “Q-drop” in the absence of field emission. This contribution reports about the various measurements undertaken with these cavities.

  3. A gas jet impacting a cavity

    Science.gov (United States)

    Stiffler, A. Kent; Bakhsh, Hazoor

    1986-11-01

    A subsonic jet impinging upon a cavity is studied to explain the resultant heating phenomenon. Flow visualization within the cavity shows a large central vortex dominating the flow pattern. Velocity measurements inside the cavity are made using a hot-wire anemometer. Temperature is measured with a copper-constantan thermocouple. The velocity field within the cavity is described by a modified Rankine combined vortex. An uncommon form of the energy equation is used to account for turbulent heating in adverse pressure gradients. A theoretical solution is developed to model the temperature field in the cavity. There is a good agreement between the calculated and measured temperatures. The heating effect is related to Ranque-Hilsch tubes.

  4. Cavity cooling below the recoil limit.

    Science.gov (United States)

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-06

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.

  5. Niobium Cavity Electropolishing Modelling and Optimisation

    CERN Document Server

    Ferreira, L M A; Forel, S; Shirra, J A

    2013-01-01

    It’s widely accepted that electropolishing (EP) is the most suitable surface finishing process to achieve high performance bulk Nb accelerating cavities. At CERN and in preparation for the processing of the 704 MHz high-beta Superconducting Proton Linac (SPL) cavities a new vertical electropolishing facility has been assembled and a study is on-going for the modelling of electropolishing on cavities with COMSOL® software. In a first phase, the electrochemical parameters were taken into account for a fixed process temperature and flow rate, and are presented in this poster as well as the results obtained on a real SPL single cell cavity. The procedure to acquire the data used as input for the simulation is presented. The modelling procedure adopted to optimise the cathode geometry, aimed at a uniform current density distribution in the cavity cell for the minimum working potential and total current is explained. Some preliminary results on fluid dynamics is also briefly described.

  6. Optomechanical photon shuttling between photonic cavities

    CERN Document Server

    Li, Huan

    2014-01-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave-mixing between photons and phonons and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong nonlocal effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a novel multi-cavity optomechanical device: a "photon see-saw", in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of the see-saw, are modulated anti-symmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation which strongly modulates the inter-cavity coupling and shuttles photons to the other...

  7. Optomechanical photon shuttling between photonic cavities.

    Science.gov (United States)

    Li, Huan; Li, Mo

    2014-11-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this 'photon see-saw', are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.

  8. Proven procedures guide cavity VCO design

    Science.gov (United States)

    Lefrak, F.

    1981-05-01

    The design of a high performance voltage-tuned cavity oscillator is discussed. The circuit is to be modeled with an equivalent inductance and capacitance. Close attention is to be given to the influence of cavity loading. Center frequency and impedance are computed on the basis of the model's L and C values. The last step is particularly important, since the size of a cavity-based oscillator, such as the Gunn/varactor version is directly related to operating frequency. Attention is given to the parallel L-C circuit representing the cavity, parameter relations concerning the height, higher-order TE modes, and effects of post inductance. The basic oscillator consists of a hollow cavity with metal walls, and diodes mounted on posts.

  9. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira

    2007-01-01

    This study evaluated, in vitro, the loss of tooth substance after cavity preparation for direct and indirect restorations and its relationship with fracture strength of the prepared teeth. Sixty sound human maxillary first premolars were assigned to 6 groups (n=10). MOD direct composite cavities......) or 1/2 (Groups III and VI) of the intercuspal distance. Teeth were weighed (digital balance accurate to 0.001 g) before and after preparation to record tooth substance mass lost during cavity preparation. The prepared teeth were submitted to occlusal loading to determine their fracture strength using...... mass loss (13.91%) than composite resin preparations with the same width (10.02%). 1/2-inlay cavities had 21.34% of mass loss versus 16.19% for the 1/2-composite resin cavities. Fracture strength means (in kgf) were: GI = 187.65; GII = 143.62; GIII = 74.10; GIV = 164.22; GV = 101.92; GVI = 50...

  10. Vertical external cavity surface emitting semiconductor lasers

    CERN Document Server

    Holm, M

    2001-01-01

    Active stabilisation showed a relative locked linewidth of approx 3 kHz. Coarse tuning over 7 nm was achieved using a 3-plate birefingent filter plate while fine-tuning using cavity length change allowed tuning over 250 MHz. Vertical external cavity semiconductor lasers have emerged as an interesting technology based on current vertical cavity semiconductor laser knowledge. High power output into a single transverse mode has attracted companies requiring good fibre coupling for telecommunications systems. The structure comprises of a grown semiconductor Bragg reflector topped with a multiple quantum well gain region. This is then included in an external cavity. This device is then optically pumped to promote laser action. Theoretical modelling of AIGaAs based VECSEL structures was undertaken, showing the effect of device design on laser characteristics. A simple 3-mirror cavity was constructed to assess the static characteristics of the structure. Up to 153 mW of output power was achieved in a single transver...

  11. Cavity solitons and localized patterns in a finite-size optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kozyreff, G. [Optique Nonlineaire Theorique, Universite Libre de Bruxelles (U.L.B.), CP 231 (Belgium); Gelens, L. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel (Belgium)

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  12. Cavity solitons and localized patterns in a finite-size optical cavity

    Science.gov (United States)

    Kozyreff, G.; Gelens, L.

    2011-08-01

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  13. Cavity solitons in vertical-cavity surface-emitting lasers

    CERN Document Server

    Vladimirov, A G; Gurevich, S V; Panajotov, K; Averlant, E; Tlidi, M

    2014-01-01

    We investigate a control of the motion of localized structures of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary localized structure that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally relevant system namely the Vertical-Cavity Surface-Emitting Laser (VCSEL). In the absence of the delay feedback we present experimental evidence of stationary localized structures in a 80 $\\mu$m aperture VCSEL. The spontaneous formation of localized structures takes place above the lasing threshold and under optical injection. Then, we consider the effect of the time-delayed optical feedback and investigate analytically the role of the phase of the feedback and the carrier lifetime on the self-mobility properties of the localized structures. We show that these two parameters affect strongly the space time dynamics of two-dimensional localized structures...

  14. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  15. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  16. Dispersion of coupled mode-gap cavities

    CERN Document Server

    Lian, Jin; Yüce, Emre; De Rossi, Sylvain Combrié Alfredo; Mosk, Allard P

    2015-01-01

    The dispersion of a CROW made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the fact that the cavity mode profile itself is dispersive, i.e., the mode wave function depends on the driving frequency, not the eigenfrequency. This occurs because the photonic crystal cavity resonances do not form a complete set. By taking into account the dispersive mode profile, we formulate a mode coupling model that accurately describes the asymmetric dispersion without introducing any new free parameters.

  17. Piezoelectric Voltage Coupled Reentrant Cavity Resonator

    CERN Document Server

    Carvalho, Natalia C; Floch, Jean-Michel Le; Tobar, Michael Edmund

    2014-01-01

    A piezoelectric voltage coupled microwave reentrant cavity has been developed. The central cavity post is bonded to a piezoelectric actuator allowing the voltage control of small post displacements over a high dynamic range. We show that such a cavity can be implemented as a voltage tunable resonator, a transducer for exciting and measuring mechanical modes of the structure and a transducer for measuring comparative sensitivity of the piezoelectric material. Experiments were conducted at room and cryogenic temperatures with results verified using Finite Element software.

  18. LHC Crab Cavity Coupler Test Boxes

    CERN Document Server

    Mitchell, James; Burt, Graeme; Calaga, Rama; Macpherson, Alick; Montesinos, Eric; Silva, Subashini; Tutte, Adam; Xiao, Binping

    2016-01-01

    The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.

  19. Perturbing open cavities: Anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system

    CERN Document Server

    Ruesink, Freek; Hendrikx, Ruud; Koenderink, A Femius; Verhagen, Ewold

    2015-01-01

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a non-trivial phase relation between cavity and nanoparticle radiation, allowing back-action via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.

  20. Perturbing Open Cavities: Anomalous Resonance Frequency Shifts in a Hybrid Cavity-Nanoantenna System

    Science.gov (United States)

    Ruesink, Freek; Doeleman, Hugo M.; Hendrikx, Ruud; Koenderink, A. Femius; Verhagen, Ewold

    2015-11-01

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.

  1. Frequency combs for cavity cascades: OPO combs and graphene-coupled cavities

    Science.gov (United States)

    Lee, Kevin F.; Kowzan, Grzegorz; Lee, C.-C.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Schibli, T. R.; Maslowski, Piotr; Fermann, M. E.

    2017-01-01

    Frequency combs can be used directly, for example as a highly precise spectroscopic light source. They can also be used indirectly, as a bridge between devices whose high precision requirements would normally make them incompatible. Here, we demonstrate two ways that a frequency comb enables new technologies by matching optical cavities. One cavity is the laser oscillator. A second cavity is a low-threshold doubly-resonant optical parametric oscillator (OPO). Extending optical referencing to the doubly-resonant OPO turns the otherwise unstable device into an extremely precise midinfrared frequency comb. Another cavity is an optical enhancement cavity for amplifying spectral absorption in a gas. With the high speed of a graphene-modulated frequency comb, we can couple a frequency comb directly into a high-finesse cavity for trace gas detection.

  2. Interference and Chaos in Metamaterials Cavities

    Science.gov (United States)

    Litchinitser, Natalia; Jose, Jorge

    2014-03-01

    Optical metamaterials are engineered artificial nanostructures that possess optical properties not available in nature. As metamaterials research continues to mature, their practical applications as well as fundamental questions on wave propagation in these materials attract significant interest. In this talk we focus on wave propagation and interference in chaotic wave cavities with negative or near-zero index of refraction and in double-slit configurations. In this context, we explicitly consider an incomplete two-dimensional D-cavity previously studied, which shows chaotic ray propagation together with scars. We have addressed the question as to how that type of wave propagation is modified by adding metamaterials in these chaotic cavities. We find that the wave interference patterns show significant qualitatively and quantitative changes depending on the effective parameters of the cavity, illumination conditions (planes waves versus beams), and geometry of the system. We will discuss possible experimental setups where these results may be validated.

  3. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  4. Pulp response to bases and cavity depths.

    Science.gov (United States)

    Lee, S J; Walton, R E; Osborne, J W

    1992-04-01

    In cavities of ferret canines, preparation depth and bases were compared as to their effect on odontoblasts and to rate of dentin formation. These were measured by injecting 3H-proline at 0, 20 and 40 days post-preparation. Odontoblast activity was determined by label density in each band; inter-band distances indicated the amount of dentin formed. Correlations were by Pearson's coefficient. The following were determined: 1) cavity depth (remaining dentin thickness) was the major factor in odontoblast response and in dentin formation; deeper cavities suppressed odontoblasts with less subsequent dentin formation at all time periods; 2) basing materials had little effect on odontoblast activity or on the rate of dentin formation. An exception was in deep cavities, with Ca(OH)2 showing more label; this activity was temporary with no increased dentin formation; 3) there was no evidence of a "rebound" response.

  5. section of an accelerating cavity from LEP

    CERN Multimedia

    This is a section of an accelerating cavity from LEP, cut in half to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  6. Prominence Mass Supply and the Cavity

    CERN Document Server

    Schmit, Donald; Luna, Manuel; Karpen, Judy; Innes, Davina

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system: the cavity is under-dense because it is evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolution of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model with diagnostics of dynamic extreme ultraviolet emission (EUV) surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prominence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the SDO/AIA 171\\AA\\ bandpass near the prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset ...

  7. Stafne bone cavity--magnetic resonance imaging.

    Science.gov (United States)

    Segev, Yoram; Puterman, Max; Bodner, Lipa

    2006-07-01

    A case of Stafne bone cavity (SBC) affecting the body of the mandible of a 51-year-old female is reported. The imaging modalities included panoramic radiograph, computed tomography (CT) and magnetic resonance (MR) imaging. Panoramic radiograph and CT were able to determine the outline of the cavity and its three dimensional shape, but failed to precisely diagnose the soft tissue content of the cavity. MR imaging demonstrated that the bony cavity is filled with soft tissue that is continuous and identical in signal with that of the submandibular salivary gland. Based on the MR imaging a diagnosis of SBC was made and no further studies or surgical treatment were initiated. MR imaging should be considered the diagnostic technique in cases where SBC is suspected. Recognition of the lesion should preclude any further treatment or surgical exploration.

  8. Reducing the convective losses of cavity receivers

    Science.gov (United States)

    Flesch, Robert; Grobbel, Johannes; Stadler, Hannes; Uhlig, Ralf; Hoffschmidt, Bernhard

    2016-05-01

    Convective losses reduce the efficiency of cavity receivers used in solar power towers especially under windy conditions. Therefore, measures should be taken to reduce these losses. In this paper two different measures are analyzed: an air curtain and a partial window which covers one third of the aperture opening. The cavity without modifications and the usage of a partial window were analyzed in a cryogenic wind tunnel at -173°C. The cryogenic environment allows transforming the results from the small model cavity to a large scale receiver with Gr≈3.9.1010. The cavity with the two modifications in the wind tunnel environment was analyzed with a CFD model as well. By comparing the numerical and experimental results the model was validated. Both modifications are capable of reducing the convection losses. In the best case a reduction of about 50 % was achieved.

  9. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  10. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  11. Development of rebunching cavities at IAP

    CERN Document Server

    Welsch, C P; Schempp, A

    2000-01-01

    A focus of work at IAP has been the development and optimization of spiral loaded cavities since the 1970s [A. Schempp et al, NIM 135, 409 (1976)]. These cavities feature a high efficiency, a compact design and a big variety of possible fields of application. They find use both as bunchers and post accelerators to vary the final energy of the beam. In comparison to other available designs, the advantage of these structures lies in their small size. Furthermore they can easily be tuned to the required resonance frequency by varying the length of the spiral. Due to the small size of the cavities the required budget can also be kept low. Here, two slightly different types of spiral loaded cavities, which were built for the REX-ISOLDE project at CERN and the intensity upgrade program at GSI are being discussed.

  12. Stable planar mesoscopic photonic crystal cavities

    CERN Document Server

    Magno, Giovanni; Grande, Marco; Lozes-Dupuy, Françoise; Gauthier-Lafaye, Olivier; Calò, Giovanna; Petruzzelli, Vincenzo

    2014-01-01

    Mesoscopic self-collimation in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high-Q factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, due to a beam focusing effect that stabilises the cavity even for small beam sizes, resembling the focusing behaviour of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness. A Q factor higher than 10^4 has been achieved for an optimized 5-period-long mirror cavity. The optimization of the Q factor and the performances in terms of energy storage, field enhancement and confinement are detailed.

  13. Cavity loss induced generation of W states

    Institute of Scientific and Technical Information of China (English)

    Wu Huai-Zhi; Yang Zhen-Biao; Su Wan-Jun; Zhong Zhi-Rong; Zheng Shi-Biao

    2008-01-01

    The existence of decoherence-free subspace (DFS) has been discussed widely.In this paper,we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits.The atoms are divided into two pairs and trapped in two separate optical cavities.Manipulation of atoms within DFS may generate a two-atom maximally entangled state in an individual cavity,which is a stable state.After driving the system out of DFS,the atoms will interact resonantly with the cavity field.The photons leaking from the cavities interfere at the beamsplitter,which destroys which-path information,and are finally detected by one of the detectors,leading to the generation of a W state.In addition,the numerical simulation indicates that the fidelity of the prepared state can,for a very wide parameter regime,be very close to unity.

  14. Quantum Dynamics of Nonlinear Cavity Systems

    OpenAIRE

    Nation, Paul D.

    2010-01-01

    We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...

  15. Cavity QED: applications to quantum computation

    Science.gov (United States)

    Xiong, Han; Zubairy, M. Suhail

    2004-10-01

    Possible schemes to implement the basic quantum gates for quantum computation have been presented based on cavity quantum electrodynamics (QED) systems. We then discuss schemes to implement several important quantum algorithms such as the discrete quantum fourier transform (QFT) algorithm and Grover's quantum search algorithm based on these quantum gates. Some other applications of cavity QED based systems including the implementations of a quantum disentanglement eraser and an entanglement amplifier are also discussed.

  16. Open safety pin in the nasal cavity.

    Science.gov (United States)

    Sen, I; Sikder, B; Sinha, R; Paul, R

    2004-04-01

    Foreign bodies in the nasal cavity are common-day occurrences in Otolaryngologic practice. But an open safety pin in nose with it' s sharp end directed towards roof is a rare incidence, and available literature is silent about this presentation; it is probably, the first of it' s kind being reported. Two cases of safety pins inside the nasal cavity, one open and the other closed, have been presented here with a brief review of literature.

  17. Open safety pin in the nasal cavity

    OpenAIRE

    Sen, I; Sikder, B.; R. Sinha; Paul, R

    2004-01-01

    Foreign bodies in the nasal cavity are common-day occurrences in Otolaryngologic practice. But an open safety pin in nose with it’ s sharp end directed towards roof is a rare incidence, and available literature is silent about this presentation; it is probably, the first of it’ s kind being reported. Two cases of safety pins inside the nasal cavity, one open and the other closed, have been presented here with a brief review of literature.

  18. Cavity QED with Multiple Hyperfine Levels

    CERN Document Server

    Birnbaum, K M; Kimble, H J

    2006-01-01

    We calculate the weak-driving transmission of a linearly polarized cavity mode strongly coupled to the D2 transition of a single Cesium atom. Results are relevant to future experiments with microtoroid cavities, where the single-photon Rabi frequency g exceeds the excited-state hyperfine splittings, and photonic bandgap resonators, where g is greater than both the excited- and ground-state splitting.

  19. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  20. Cavity QED on a nanofiber using a composite photonic crystal cavity

    CERN Document Server

    Yalla, Ramachandrarao; Nayak, Kali P; Hakuta, Kohzo

    2014-01-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. Using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  1. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.

    Science.gov (United States)

    Yalla, Ramachandrarao; Sadgrove, Mark; Nayak, Kali P; Hakuta, Kohzo

    2014-10-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. By using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  2. The emission properties of an atom inside a cavity when manipulating the atoms outside the cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; YE Liu; XIONG Kuang-wei; ZHANG Jin

    2003-01-01

    Considering three two-level atoms initially in the GHZ state, then one atom of them is put into an initially empty cavity and made resonant interaction. It is shown that the emission properties of the atom inside the cavity can be affected only when both of the atoms outside the cavity have been manipulated. This conclusion can also be generalized to n two-level atoms.

  3. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  4. "Fine grain Nb tube for SRF cavities"

    Energy Technology Data Exchange (ETDEWEB)

    Robert E. Barber

    2012-07-08

    Superconducting radio frequency (SRF) cavities used in charged particle linear accelerators, are currently fabricated by deep drawing niobium sheets and welding the drawn dishes together. The Nb sheet has a non-uniform microstructure, which leads to unpredictable cavity shape and surface roughness, and inconsistent "spring-back" during forming. In addition, weld zones cause hot spots during cavity operation. These factors limit linear accelerator performance and increase cavity manufacturing cost. Equal channel angular extrusion (ECAE) can be used to refine and homogenize the microstructure of Nb tube for subsequent hydroforming into SRF cavities. Careful selection of deformation and heat treatment conditions during the processing steps can give a uniform and consistent microstructure in the tube, leading to improved deformability and lower manufacturing costs. Favorable microstructures were achieved in short test samples of RRR Nb tube, which may be particularly suitable for hydroforming into SRF cavity strings. The approach demonstrated could be applicable to microstructure engineering of other tube materials including tantalum, titanium, and zirconium.

  5. Cavity Mode Frequencies and Large Optomechanical Coupling in Two-Membrane Cavity Optomechanics

    CERN Document Server

    Li, J; Malossi, N; Vitali, D

    2015-01-01

    We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes and the corresponding optomechanical coupling. Due to optical interference, extremely large optomechanical coupling of the membrane relative motion is achieved when the two membranes are placed very close to a resonance of the inner cavity formed by the two membranes, and in the limit of highly reflective membranes. The upper bound of the coupling strength is given by the optomechanical coupling associated with the much shorter inner cavity, consistently with the analysis of A. Xuereb et al., Phys. Rev. Lett. 109, 223601 (2012).

  6. Compound parabolic concentrator with cavity for tubular absorbers

    Science.gov (United States)

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  7. Scheme for implementing quantum secret sharing via cavity QED

    Institute of Scientific and Technical Information of China (English)

    Chen Zhi-Hua; Lin Xiu-Min

    2005-01-01

    An experimentally feasible scheme for implementing quantum secret sharing via cavity quantum electrodynamics (QED) is proposed. The scheme requires the large detuning of the cavity field from the atomic transition, the cavity is only virtually excited, thus the requirement on the quality factor of the cavity is greatly loosened.

  8. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  9. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  10. Entanglement distillation for atomic states via cavity QED

    Science.gov (United States)

    Yang, Ming; Song, Wei; Cao, Zhuo-Liang

    2004-10-01

    Following a recent proposal (Phys. Rev. Lett. 85 (2000) 2392) about quantum information processing using dispersive atom-cavity interaction, in this paper, we proposed a physical scheme to concentrate the pure non-maximally entangled atomic states via cavity QED by using atomic collision in a far-off-resonant cavity. The most distinctive advantage of our scheme is that there is no excitation of cavity mode during the distillation procedure. Therefore the requirement on the quality of cavity is greatly loosened.

  11. New Method to Improve the Accelerating Gradient of Superconducting Cavity

    CERN Document Server

    Liu, Zhenchao

    2013-01-01

    Quench is a common phenomenon in a superconducting cavity and often limits the accelerating gradient of the cavity. Accurate location of the quench site can be located by second sound detection. For multi-cell superconducting cavity, one defect may cause the cell with defect quenches and then the whole cavity quenches. Now we proposed a new method to eliminate the bad influence of the quench cell to the whole cavity.

  12. Preparation of Cluster States for Many Atoms in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHAN Zhi-Ming

    2007-01-01

    We propose a scheme for the generation of the cluster states for many atoms in cavity QED. In our scheme,the atoms are sent through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited and no quantum information will be transferred from the atoms to the cavity fields. The advantage is that the cavities are suppressed during the procedure. The scheme can also be generalized to the ion trap system.

  13. Cavity nano-optomechanics: a nanomechanical system in a high finesse optical cavity

    CERN Document Server

    Stapfner, Sebastian; Hunger, David; Paulitschke, Philipp; Reichel, Jakob; Karrai, Khaled; Weig, Eva M; 10.1117/12.705901

    2011-01-01

    The coupling of mechanical oscillators with light has seen a recent surge of interest, as recent reviews report.[1, 2] This coupling is enhanced when confining light in an optical cavity where the mechanical oscillator is integrated as back- mirror or movable wall. At the nano-scale, the optomechanical coupling increases further thanks to a smaller optomechanical interaction volume and reduced mass of the mechanical oscillator. In view of realizing such cavity nano- optomechanics experiments, a scheme was proposed where a sub-wavelength sized nanomechanical oscillator is coupled to a high finesse optical microcavity.[3] Here we present such an experiment involving a single nanomechanical rod precisely positioned into the confined mode of a miniature Fabry-P\\'erot cavity.[4] We describe the employed stabilized cavity set-up and related finesse measurements. We proceed characterizing the nanorod vibration properties using ultrasonic piezo-actuation methods. Using the optical cavity as a transducer of nanomechan...

  14. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Institute of Scientific and Technical Information of China (English)

    Youhua Jia; Biao Zhong; Jianping Yin

    2008-01-01

    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  15. CERN Developments for 704 MHz Superconducting Cavities

    CERN Document Server

    Capatina, O; Aviles Santillana, I; Arnau Izquierdo, G; Bonomi, R; Calatroni, S; Chambrillon, J; Gerigk, F; Garoby, R; Guinchard, M; Junginger, T; Malabaila, M; Marques Antunes Ferreira, L; Mikulas, S; Parma, V; Pillon, F; Renaglia, T; Schirm, K; Tardy, T; Therasse, M; Vacca, A; Valverde Alonso, N; Vande Craen, A

    2013-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium beta=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the stat...

  16. Long Wave Infrared Cavity Enhanced Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Bonebrake, Christopher A.; Aker, Pam M.; Wojcik, Michael D.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2004-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting weapons proliferation. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their production and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development. During FY02, PNNL investigated three LWIR CES implementations beginning with the easiest to implement, direct cavity-enhanced detection (simple CES), including a technique of intermediate difficulty, cavity-dithered phase-sensitive detection (FM recovery CES) through to the most complex technique, that of resonant sideband cavity-enhanced detection also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, or NICE-OHMS.

  17. Inflammatory oral cavity diseases of the cat.

    Science.gov (United States)

    Pedersen, N C

    1992-11-01

    There is a great deal of frustration among veterinarians about the diagnosis and treatment of inflammatory diseases of the oral cavity of the cat. This frustration is due to both the high frequency of feline oral inflammatory lesions and our poor understanding of their causes. This poor understanding can be blamed on several things: (1) a rapidly emerging, but still relatively poor, understanding of feline diseases in general and nutrition in particular; (2) a tendency to lump rather than separate specific oral inflammations; (3) a tendency not to use a thorough and systematic approach to diagnosing oral cavity disease; and (4) the reluctance of veterinarians to apply what is already known about human oral cavity diseases to cats. When problems 2 through 4 are adequately addressed, it becomes apparent that we really know more about oral cavity disease in the cat than we thought we knew and that great progress has been made. The task ahead is to define, in precise medical terms, those remaining disease entities of the oral cavity that pose the greatest health risk to cats, to apply what has been already been discovered from human disease counterparts, and to study them systematically.

  18. Plasmonic band gap cavities on biharmonic gratings

    Science.gov (United States)

    Kocabas, Askin; Seckin Senlik, S.; Aydinli, Atilla

    2008-05-01

    In this paper, we have experimentally demonstrated the formation of plasmonic band gap cavities in infrared and visible wavelength range. The cavity structure is based on a biharmonic metallic grating with selective high dielectric loading. A uniform metallic grating structure enables strong surface plasmon polariton (SPP) excitation and a superimposed second harmonic component forms a band gap for the propagating SPPs. We show that a high dielectric superstructure can dramatically perturb the optical properties of SPPs and enables the control of the plasmonic band gap structure. Selective patterning of the high index superstructure results in an index contrast in and outside the patterned region that forms a cavity. This allows us to excite the SPPs that localize inside the cavity at specific wavelengths, satisfying the cavity resonance condition. Experimentally, we observe the formation of a localized state in the band gap and measure the dispersion diagram. Quality factors as high as 37 have been observed in the infrared wavelength. The simplicity of the fabrication and the method of testing make this approach attractive for applications requiring localization of propagating SPPs.

  19. Resonant cavity monitors for charged beam measurements.

    Science.gov (United States)

    Rutledge, Gary A.

    2003-04-01

    The G_zero experiment at Jefferson Lab, will measure the strange quark content of the proton as it contributes to the proton's charge and magnetic properties. Parity violating elastic electron scattering is being used to measure the physics asymmetry to better than 1 part in 10^7. Helicity correlated properties of the electron beam used in this experiment must be measured to better than 1 in 10^7 over the course of the experiment. G_zero employs two types of beam monitors for this purpose. Standard, 4-wire, ``strip-line'' monitors measure beam positions with a resolution of 20microns. Another type of monitor, Beam Resonant Cavities are being tested. Two sets of three cavities are used to measure beam position in X and Y, as well as beam current. Presented will be the performance and evaluation of these cavities including their theoretical versus actual operation, their noise characteristics, and signal resolution. These cavities can be paired with either linear or logarithmic amplifier electronics. Overall performance of these cavity systems including amplifiers will be compared with standard 'strip-line' monitors.

  20. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  1. DISCHARGING MASTOID CAVITY: A CLINICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Praveen Kumar

    2015-05-01

    Full Text Available CONTEXT: A discharging mastoid cavity is a frustrating condition for both patient and surgeon and can occur after a canal wall down mastoidectomy operation . AIMS: To determine the percentage of patients having a discharging mastoid cavity and to establish the aetiological factors responsible for it . SETTING: Academic tertiary care referral institution . DESIGN: Prospective study MATERIALS AND METHODS: One hundred and sixty nine patie nts with chronic suppurative otitis media with cholesteatoma who underwent a canal wall down mastoidectomy were included in the study . These patients were regularly followed up to detect the occurrence of discharging mastoid cavity . RESULTS: Forty one ( 24 . 26% patients had a discharging mastoid cavity after a mean follow up of 4 . 2 years . The main causes were tympanic membrane perforation with exposed middle ear mucosa and open eustachian tube in thirty two patients ( 78 . 04% , followed by meatal stenosis in twenty five patients ( 60 . 97% and high facial ridge in twenty patients ( 48 . 78% . CONCLUSIONS: Tympanic membrane perforation with exposure of middle ear mucosa , meatal stenosis and a high facial ridge are important causes for a discharging mastoid cavity .

  2. Cavity lining after excavating caries lesions

    DEFF Research Database (Denmark)

    Schwendicke, Falk; Göstemeyer, Gerd; Gluud, Christian

    2015-01-01

    OBJECTIVES: After removal of dentin caries lesions, cavity lining has been advocated. Non-clinical data support this approach, but clinical data are sparse and ambiguous. We aimed at evaluating the benefits and harms of cavity lining using meta-analysis and Trial Sequential Analysis. DATA: We...... included randomized clinical trials comparing restorations without versus with cavity lining for treating primary caries lesions. Only trials reporting failure (defined as need to re-retreat) after ≥1 year follow-up were included. Trial selection, data extraction, and risk of bias assessment were conducted....... STUDY SELECTION: From 128 studies, three randomized trials (89/130 patients or teeth), all treating primary teeth, were included. The trials had high risk of bias. All trials compared no lining versus calcium hydroxide lining after selective caries removal followed by adhesive restoration. Follow...

  3. Decoherence of mesoscopic states of cavity fields

    CERN Document Server

    Fonseca-Romero, K M; De Faria, J G P; Salgueiro, A N; De Toledo di Piza, A F R

    1998-01-01

    We show that two-atom correlation measurements of the type involved in a recent experimental study of the evolution of a mesoscopic superposition state prepared in a definite mode of a high-Q cavity can be used to determine the eigenvalues of the reduced density matrix of the field, provided the assumed dynamical conditions are actually fulfilled to experimental accuracy. These conditions involve i) a purely dispersive coupling of the field to the Rydberg atoms used to manipulate and to monitor the cavity field, and ii) the effective absence of correlations in the ground state of the system consisting of the cavity coupled to the ``reservoir'' which accounts for the decoherence and damping processes. A microscopic calculation at zero temperature is performed and compared to master equation results.

  4. Field Stabilization of Alvarez-Type Cavities

    CERN Document Server

    Du, Xiaonan; Mickat, Sascha; Seibel, Anja

    2016-01-01

    Alvarez-type cavities are commonly used to reliably accelerate high quality hadron beams. Optimization of their longitudinal field homogeneity is usually accomplished by post-couplers, i.e. additional rods being integrated into the cavity. This paper instead proposes to use the stems that keep the drift tubes for that purpose. As their individual azimuthal orientations do not change the cavity's undisturbed operational mode, they comprise a set of free parameters that can be used to modify higher mode field patterns. The latter have significant impact on the robustness of the operational mode w.r.t. eventual perturbations. Several optimized stem configurations are presented and benchmarked against each other. The path to obtain these configurations is paved analytically and worked out in detail through simulations. It is shown that the method provides for flat field distributions and very low field tilt sensitivities without insertion of post-couplers.

  5. Plasmonic coaxial waveguide-cavity devices.

    Science.gov (United States)

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  6. Coupled external cavity photonic crystal enhanced fluorescence.

    Science.gov (United States)

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  7. Ponderomotive light squeezing with atomic cavity optomechanics

    CERN Document Server

    Brooks, Daniel W C; Brahms, Nathan; Purdy, Thomas P; Schreppler, Sydney; Stamper-Kurn, Dan M

    2011-01-01

    Accessing distinctly quantum aspects of the interaction between light and the position of a mechanical object has been an outstanding challenge to cavity-optomechanical systems. Only cold-atom implementations of cavity optomechanics have indicated effects of the quantum fluctuations in the optical radiation pressure force. Here we use such a system, in which quantum photon-number fluctuations significantly drive the center of mass of an atomic ensemble inside a Fabry-Perot cavity. We show that the optomechanical response both amplifies and ponderomotively squeezes the quantum light field. We also demonstrate that classical optical fluctuations can be attenuated by 26 dB or amplified by 20 dB with a weak input pump power of < 40 pW, and characterize the optomechanical amplifier's frequency-dependent gain and phase response in both the amplitude and phase-modulation quadratures.

  8. Nitrogen doping study in ingot niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kneisel, Peter [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Myneni, Ganapati Rao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Makita, Junki [Old Dominion Univ., Norfolk, VA (United States)

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  9. Prominence Mass Supply and the Cavity

    Science.gov (United States)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  10. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  11. Ferrite-filled cavities for compact planar resonators

    Science.gov (United States)

    Keatley, P. S.; Durrant, C. J.; Berry, S. J.; Sirotkin, E.; Hibbins, A. P.; Hicken, R. J.

    2014-01-01

    Sub-wavelength metallic planar cavities, closed at one end, have been constructed by wrapping aluminium foil around teflon or ferrite slabs. Finite cavity width perturbs the fundamental cavity mode frequency of ferrite-filled cavities due to different permeability inside and outside of the cavity, in contrast to teflon-filled cavities, while the cavity length required to achieve a specific resonance frequency is significantly reduced for a ferrite-filled cavity. Ferrite-filled cavities may be excited by an in-plane alternating magnetic field and may be advantageous for high-frequency (HF) and ultra HF tagging and radio frequency identification of metallic objects within security, manufacturing, and shipping environments.

  12. Instrumentation for localized superconducting cavity diagnostics

    Science.gov (United States)

    Conway, Z. A.; Ge, M.; Iwashita, Y.

    2017-03-01

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  13. Fundamental Research in Superconducting RF Cavity Design

    Energy Technology Data Exchange (ETDEWEB)

    Georg Hoffstaetter

    2012-11-13

    This is a 3-year SRF R&D proposal with two main goals: 1) to benefit near term high gradient SRF applications by understanding the causes of quench at high fields in present-day niobium cavities 2) to open the long-range prospects for SRF applications by experimentally verifying the recent exciting theoretical predication for new cavity materials such as Nb3Sn and MgB2. These predictions shwo that ultimately gradients of 100Mv/m to 200MV/m may become possible as material imperfections are overcome.

  14. Energy Levels of Coupled Plasmonic Cavities

    Institute of Scientific and Technical Information of China (English)

    Chuan-Pu Liu; Xin-Li Zhu; Jia-Sen Zhang; Jun Xu; Yamin Leprince-Wang; Da-Peng Yu

    2016-01-01

    We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy.Although the energy of the most antisymmetrically coupled modes is higher than that of the corresponding symmetrically coupled ones,the contrary cases happen for small quantum number modes.We attribute the phenomenon to the different surface plasmon polariton paths between the symmetrically and antisymmetrically coupled modes.These results provide an understanding of the resonant properties in coupled plasmonic cavities,which have potential applications in nanophotonic devices.

  15. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  16. Impedance-matched cavity quantum memory

    CERN Document Server

    Afzelius, Mikael

    2010-01-01

    We consider an atomic frequency comb based quantum memory inside an asymmetric optical cavity. In this configuration it is possible to absorb the input light completely in a system with an effective optical depth of one, provided that the absorption per cavity round trip exactly matches the transmission of the coupling mirror ("impedance matching"). We show that the impedance matching results in a readout efficiency only limited by irreversible atomic dephasing, whose effect can be made very small in systems with large inhomogeneous broadening. Our proposal opens up an attractive route towards quantum memories with close to unit efficiency.

  17. Achieving High Sensitivity in Cavity Optomechanical Magnetometry

    Science.gov (United States)

    2014-03-08

    contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy...architecture  with  Terfenol-­‐D  affixed  to  the  top  of   the   toroid .  (b)  New  cavity  optomechanical  magnetometer...architecture  with  Terfenol-­‐D  affixed  inside   the   toroid  in  a  specially  designed  cavity.   Fig.  2

  18. Accelerating RF cavity of the Booster

    CERN Multimedia

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  19. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  20. Electrostatically tunable optomechanical "zipper" cavity laser

    CERN Document Server

    Perahia, Raviv; Meenehan, Sean; Alegre, Thiago P Mayer; Painter, Oskar

    2010-01-01

    A tunable nanoscale "zipper" laser cavity, formed from two doubly clamped photonic crystal nanobeams, is demonstrated. Pulsed, room temperature, optically pumped lasing action at a wavelength of 1.3 micron is observed for cavities formed in a thin membrane containing InAsP/GaInAsP quantum-wells. Metal electrodes are deposited on the ends of the nanobeams to allow for micro-electro-mechanical actuation. Electrostatic tuning and modulation of the laser wavelength is demonstrated at a rate of 0.25nm/V^2 and a frequency as high as 6.7MHz, respectively.

  1. Intensity correlations near a cavity QED antiresonance

    Science.gov (United States)

    Xu, Qing; Mølmer, Klaus

    2017-02-01

    We explore the antiresonance phenomenon, where a two-level atom is excited inside a single-mode, laser-driven cavity without appreciably exciting the field mode. Antiresonance is well known in classical physics and the excitation of the atomic and field degrees of freedom by a weak laser field can be easily understood in a classical oscillator picture. The temporal intensity correlations in the signal emitted from the atom and from the cavity, however, show strong signs of nonclassical behavior. We calculate these correlations and show how they can be interpreted in terms of a conditional quantum trajectory dynamics of the system.

  2. Transformation optics for cavity array metamaterials.

    Science.gov (United States)

    Quach, James Q; Su, Chun-Hsu; Greentree, Andrew D

    2013-03-11

    Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs' constituent elements are commensurate with the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.

  3. Optical cavity resonator in an expanding universe

    Science.gov (United States)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  4. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables predic...... prediction of short term triaxial behaviour from uniaxial stress-strain curves. Key results from a nonlinear finite element calculation of a gas-filled cavity are given, and the general features are related to a simple nonlinear method of stress evaluation....

  5. Instrumentation for localized superconducting cavity diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Z. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Division; Ge, M. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Iwashita, Y. [Kyoto Univ. (Japan)

    2017-01-12

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  6. Cavity Loss Induced Generation of Entangled Atoms

    CERN Document Server

    Plenio, M B; Beige, A; Knight, P L

    1999-01-01

    We discuss the generation of entangled states of two two-level atoms inside an optical resonator. When the cavity decay is continuously monitored, the absence of photon-counts is associated with the presence of an atomic entangled state. In addition to being conceptually simple, this scheme could be demonstrated with presently available technology. We describe how such a state is generated through conditional dynamics, using quantum jump methods, including both cavity damping and spontaneous emission decay, and evaluate the fidelity and relative entropy of entanglement of the generated state compared with the target entangled state.

  7. BNl 703 MHz superconducting RF cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  8. A STUDY OF RAPID CAVITY TUNING.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2001-07-12

    An FFAG moot likely requires rapid cavity tuning. The cavity must also have a very high gradient. To satisfy both the high power and rapid tuning requirements is a big challenge. Detailed investigation of the possibility is addressed. Included are general thoughts, dual-loop and simple loop analyses, and a study of using ferrite or PIN diodes. Also proposed is a phase control scheme, which may be a better solution if the needed components can be developed. Finally, an energy analysis reveals the difficult of high power tuning.

  9. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  10. Parasitic Cavities Losses in SPEAR-2

    Energy Technology Data Exchange (ETDEWEB)

    Sands, Matt

    2016-12-19

    In PEP the large number of particles in a bunch, together with the small bunch length, may cause grievous energy loss from the beam to parasitic modes in the accelerating cavities. I have recently tried to estimate the parasitic cavity in PEP, based on a paper of Keil and I have obtained the result that the loss to parasitic modes will be about 10 MeV per particle per revolution for a bunch length of about 10 cm. In this note, I bring together some of the considerations that might bear on an experimental investigation of the loss using SPEAR-2.

  11. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cheng, Guangfeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davis, G [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Macha, Kurt [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Overton, Roland [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Spell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  12. Efficient generation of Bell-cat states in remote cavities

    Institute of Scientific and Technical Information of China (English)

    LI Xing; ZHANG Ying-Jie; XIA Yun-Jie

    2008-01-01

    In the context of cavity quantum electrodynamics (QED), a potential scheme is proposed to generate entangled coherentstates. The scheme includes twice interactions of two-level atoms with cavities. In the first interaction, two atoms are sentinto a microwave cavity with the large detuning respectively. And then the second interaction is that the two atoms enteranother microwave cavity and are driven by a resonant classical field meantime. When we choose the proper interactiontime and make measurement on the two atoms, the two microwave cavity mode fields are determinatively entangled. Inaddition, it is easy to generalize the scheme to multi-cavity and multi-atom.

  13. Schemes for Generating Cluster States via Cavity Systems

    Institute of Scientific and Technical Information of China (English)

    DU Gang; LAI Bo-Hui; YU Ya-Fei; ZHANG Zhi-Ming

    2009-01-01

    We propose a scheme for generating an N-atom cluster state via cavity quantum electrodynamics (CQED).In our scheme, there is no transfer of quantum information between the atoms and the cavity, i.e., the cavity is always in the vacuum state, so the cavity decay can be suppressed.Also, the generated cluster state is the entanglement of the ground states, so the atomic spontaneous emission can be avoided.Therefore, the cluster state generated in our scheme has a longer lifetime. Furthermore, the requirement on the quality factor of the cavity greatly loosened for the cavity is only virtually excited.

  14. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  15. Subwavelength rectangular cavity partially filled with left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Tian; Chen Yan; Feng Yi-Jun

    2006-01-01

    In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.

  16. Superconducting RF cavity R&D for future accelerators

    CERN Document Server

    Ginsburg, C M

    2009-01-01

    High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SRF cavity R&D in the context of global projects are reviewed.

  17. Controlled coupling of photonic crystal cavities using photochromic tuning

    CERN Document Server

    Cai, Tao; Solomon, Glenn S; Waks, Edo

    2013-01-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  18. Cavity sideband cooling of a single trapped ion.

    Science.gov (United States)

    Leibrandt, David R; Labaziewicz, Jaroslaw; Vuletić, Vladan; Chuang, Isaac L

    2009-09-04

    We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped (88)Sr(+) ion in the resolved-sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405 (2001)] without any free parameters, validating the rate equation model for cavity cooling.

  19. Bifurcation structure of an optical ring cavity

    DEFF Research Database (Denmark)

    Kubstrup, C.; Mosekilde, Erik

    1996-01-01

    One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...

  20. Hybrid ion chains inside an optical cavity

    Science.gov (United States)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  1. Coherent acoustic excitation of cavity polaritons

    DEFF Research Database (Denmark)

    Poel, Mike van der; de Lima, M. M.; Hey, R.

    and highly nonlinear optical response.Our sample consists of epitaxially grown GaAs/AlGaAs QWs located at the anti-node ofa high Q lambda cavity, which is resonant with the QW excitonic transition3. The SAWfield, which is excited by an interdigital transducer on the piezoelectric GaAs samplesurface...

  2. Optical cavity resonator in an expanding universe

    CERN Document Server

    Kopeikin, Sergei

    2014-01-01

    We study evolution of frequency of a standing electromagnetic (EM) wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. One builds a local coordinate system in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate. Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to decide whether atomic clocks ticks at the same rate as the clocks based on EM modes of a cavity. To resolve the ambiguity we analyzed the cavity rigidity and the oscillation of its EM modes in an expanding universe by employing the Maxwell equations. We found out that both the size of the cavity and the EM frequency experience an adiabatic drift in conformal coordinates as the universe expands. We set up the oscillation equation f...

  3. Defects in III-nitride microdisk cavities

    Science.gov (United States)

    Ren, C. X.; Puchtler, T. J.; Zhu, T.; Griffiths, J. T.; Oliver, R. A.

    2017-03-01

    Nitride microcavities offer an exceptional platform for the investigation of light–matter interactions as well as the development of devices such as high efficiency light emitting diodes (LEDs) and low-threshold nanolasers. Microdisk geometries in particular are attractive for low-threshold lasing applications due to their ability to support high finesse whispering gallery modes (WGMs) and small modal volumes. In this article we review the effect of defects on the properties of nitride microdisk cavities fabricated using photoelectrochemical etching of an InGaN sacrificial superlattice (SSL). Threading dislocations originating from either the original GaN pseudosubstrate are shown to hinder the undercutting of microdisk cavities during the photoelectric chemical etching process resulting in whiskers of unetched material on the underside of microdisks. The unetched whiskers provide a pathway for light to escape, reducing microdisk Q-factor if located in the region occupied by the WGMs. Additionally, dislocations can affect the spectral stability of quantum dot emitters, thus hindering their effective integration in microdisk cavities. Though dislocations are clearly undesirable, the limiting factor on nitride microdisk Q-factor is expected to be internal absorption, indicating that the further optimisation of nitride microdisk cavities must incorporate both the elimination of dislocations and careful tailoring of the active region emission wavelength and background doping levels.

  4. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara;

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of 1...

  5. Uterine cavity assessment prior to IVF.

    Science.gov (United States)

    Pundir, Jyotsna; El Toukhy, Tarek

    2010-11-01

    Approximately 15% of couples are affected with subfertility, of which up to 20% remain unexplained. Uterine cavity abnormalities can be a contributing cause of subfertility and recurrent implantation failure. Uterine cavity assessment has been suggested as a routine investigation in the evaluation of subfertile women. Traditionally, hysterosalpingography has been the most commonly used technique in the evaluation of infertility. Transvaginal ultrasound scan allows visualization of the endometrial lining and cavity, and has been used as a screening test for the assessment of uterine cavity. Abnormal uterine findings on a baseline scan can be further evaluated with saline hysterosonography, which is highly sensitive and specific in identifying intrauterine abnormalities. Hysteroscopy is considered as the definitive diagnostic tool to evaluate any abnormality suspected on hysterosalpingography, transvaginal ultrasound scan or saline hysterosonography during routine investigation of infertile patients. Minimally invasive hysteroscopes have minimized the pain experienced by patients during the procedure and made it feasible to use hysteroscopy as a routine outpatient examination. Following recurrent IVF failure there is some evidence of benefit from hysteroscopy in increasing the chance of pregnancy in the subsequent IVF cycle, both in those with abnormal and normal hysteroscopic findings. Various possible mechanisms have been proposed for this beneficial effect, but more randomized controlled trials are needed before its routine use in the general subfertile population can be recommended.

  6. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  7. Quantization of Electromagnetic Fields in Cavities

    Science.gov (United States)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  8. Design of 162 MHz RF Experimental Cavity

    Institute of Scientific and Technical Information of China (English)

    YIN; Zhi-guo; CAO; Xue-long; GUO; Juan-juan; JI; Bin; FU; Xiao-liang; WEI; Jun-yi

    2015-01-01

    In this paper,a 162MHz RF experimental cavity is designed to study the multipacting multiplier effect of the medium and the metal electrode and its relationship with the plate surface characteristics,and to find out the method for inhibiting multipacting multiplier effects.The

  9. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira;

    2007-01-01

    (Groups I, II and III) and indirect inlay cavities (Groups IV, V and VI) were prepared maintaining standardized dimensions: 2-mm deep pulpal floors, 1.5-mm wide gingival walls and 2-mm high axial walls. Buccolingual width of the occlusal box was established at 1/4 (Groups I and IV), 1/3 (Groups II and V...

  10. Coupling coefficients for coupled-cavity lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lang, R.J.; Yariv, A.

    1987-03-01

    The authors derive simple, analytic formulas for the field coupling coefficients in a two-section coupled-cavity laser using a local field rate equation treatment. They show that there is a correction to the heuristic formulas based on power flow calculated by Marcuse; the correction is in agreement with numerical calculations from a coupled-mode approach.

  11. Pressurized rf cavities in ionizing beams

    Science.gov (United States)

    Freemire, B.; Tollestrup, A. V.; Yonehara, K.; Chung, M.; Torun, Y.; Johnson, R. P.; Flanagan, G.; Hanlet, P. M.; Collura, M. G.; Jana, M. R.; Leonova, M.; Moretti, A.; Schwarz, T.

    2016-06-01

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF6 and O2 were measured.

  12. AGN Heating Through Cavities and Shocks

    NARCIS (Netherlands)

    P.E.J. Nulsen; C. Jones; W.R. Forman; L.P. David; B.R. McNamara; D.A. Rafferty; L. Bîrzan; M. Wise

    2007-01-01

    Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak sho

  13. Shallow Cavities in Multiple-Planet Systems

    CERN Document Server

    Duffell, Paul C

    2014-01-01

    Large cavities are often observed in protoplanetary disks, which might suggest the presence of planets opening gaps in the disk. Multiple planets are necessary to produce a wide cavity in the gas. However, multiple planets may also be a burden to the carving out of very deep gaps. When additional planets are added to the system, the time-dependent perturbations from these additional satellites can stir up gas in the gap, suppressing cavity opening. In this study, we perform two-dimensional numerical hydro calculations of gap opening for single and multiple planets, showing the effect that additional planets have on the gap depths. We show that multiple planets produce much shallower cavities than single planets, so that more massive planets are needed in the multiple-planet case to produce an equivalent gap depth as in the single-planet case. To deplete a gap by a factor of 100 for the parameters chosen in this study, one only requires $M_p \\approx 3.5M_J$ in the single-planet case, but much more massive plan...

  14. Effect of cyanoacrylate treatment of cavity walls.

    Science.gov (United States)

    Fukushi, Y; Fusayama, T

    1980-04-01

    Cyanoacrylate treatment of the cavity wall for composite resin restoration failed to keep adhesion when set, but the marginal closure improved markedly both in vivo and vitro, even when thermal-cycled. It irritated the pulp slightly only at the beginning. Ethylcyanoacrylate was superior to methylcyanoacrylate in regard to adhesion, leakage and pulp response.

  15. Femtosecond SESAM lasers with shortlength cavity

    Science.gov (United States)

    Trunov, V. I.; Pestryakov, Efim V.; Petrov, V. V.; Kirpichnikov, A. V.; Bordzilovskii, A. S.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2003-10-01

    Femtosecond pulse generation in Al2O3:Ti3+ laser with some types of laser cavity configuration with semiconductor saturable absorber mirror (SESAM), based on semiconductor quantum well low temperature (LT) GaAs/AlAs, GaxIn1-xAs/AlyGa1-yAs saturated absorbers and metal mirrors have been investigated.

  16. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  17. Cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Bernhardt, Birgitta; Jacquet, Patrick; Jacquey, Marion; Kobayashi, Yohei; Udem, Thomas; Holzwarth, Ronald; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2009-01-01

    The sensitivity of molecular fingerprinting is dramatically improved when placing the absorbing sample in a high-finesse optical cavity, thanks to the large increase of the effective path-length. As demonstrated recently, when the equidistant lines from a laser frequency comb are simultaneously injected into the cavity over a large spectral range, multiple trace-gases may be identified within a few milliseconds. Analyzing efficiently the light transmitted through the cavity however still remains challenging. Here, a novel approach, cavity-enhanced frequency comb Fourier transform spectroscopy, fully overcomes this difficulty and measures ultrasensitive, broad-bandwidth, high-resolution spectra within a few tens of $\\mu$s. It could be implemented from the Terahertz to the ultraviolet regions without any need for detector arrays. We recorded, within 18 $\\mu$s, spectra of the 1.0 $\\mu$m overtone bands of ammonia spanning 20 nm with 4.5 GHz resolution and a noise-equivalent-absorption at one-second-averaging per ...

  18. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  19. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.

    Science.gov (United States)

    Khankhoje, U K; Kim, S-H; Richards, B C; Hendrickson, J; Sweet, J; Olitzky, J D; Khitrova, G; Gibbs, H M; Scherer, A

    2010-02-10

    In this paper, we present recent progress in the growth, modelling, fabrication and characterization of gallium arsenide (GaAs) two-dimensional (2D) photonic-crystal slab cavities with embedded indium arsenide (InAs) quantum dots (QDs) that are designed for cavity quantum electrodynamics (cQED) experiments. Photonic-crystal modelling and device fabrication are discussed, followed by a detailed discussion of different failure modes that lead to photon loss. It is found that, along with errors introduced during fabrication, other significant factors such as the presence of a bottom substrate and cavity axis orientation with respect to the crystal axis, can influence the cavity quality factor (Q). A useful diagnostic tool in the form of contour finite-difference time domain (FDTD) is employed to analyse device performance.

  20. Influence of cavity loss on an extrinsic Fabry-Perot cavity intensity-based pressure sensor.

    Science.gov (United States)

    Lű, Tao

    2015-09-01

    We present an extrinsic Fabry-Perot cavity intensity-based pressure sensor that mainly comprises a single-mode fiber end and an elastic monocrystalline silicon layer bonded to a silicon diaphragm. We investigated the influence of cavity loss on the performance indexes (PIS) of the intensity-based extrinsic Fabry-Perot cavity optical fiber pressure sensor. A buffer unit made of three incompressible oil cavities attenuated outside pressure and transformed pressure information into cavity length microchange information. Experimental results indicated that, under center quadrature-points within the linear regions of adjacent fringes, for an applied 40 kPa external pressure, cavity length was modulated by pressures of 69.9 kPa-109.9 kPa, 150.1 kPa-190 kPa, 220.1 kPa-259.9 kPa, and 279.9 kPa-319.9 kPa, output intensity ranges increased as 1 μW, 1.02 μW, 1.03 μW, and 1.05 μW, sensitivity increased as 0.01909 μW/kPa, 0.01986 μW/kPa, 0.02127 μW/kPa, and 0.02387 μW/kPa, but linearity degraded, as indicated by the standard deviation of linear fits of 0.02607, 0.02664, 0.02935, and 0.04879 due to cavity loss. Furthermore, the pressure ranges within the same quarter period decreased as 40 kPa, 37.45 kPa, 32.4 kPa, and 30.15 kPa. Consequently, the same lengths of linear regions within adjacent fringes of an approximately sinusoidal curve corresponded to different measurement ranges, linearities, and sensitivities. Initial cavity length must be chosen to optimize both signal strength and the PIS studied here in manufacturing this type sensor.

  1. Sputtering System for QWR Cavity in BRIF Project

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>1 Introduction Four superconducting QWR cavities will be used in HI-13 tandem accelerator upgrade project (BRIF). These niobium coated cavities will be produced by CIAE. Up to now, a niobium sputtering

  2. Incompressible Laminar Flow Over a Three-Dimensional Rectangular Cavity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper investigates unsteady incompressible flow over cavities,Previous research in in compressible cavity-flow has included flow inside and past a 2-dimensional cavity,and flow inside a 3-dimensional cavity,driven by a moving lid.The present research is focused on incompressible flow past a 3-dimensional open shallow cavity.This involves the complex interaction etween the external flow and the re-circulating flow within the cavity.In particular,computation was performed on a 3-dimensonal shallow rectangular cavity with a laminar boundary layer at the cavity and a Reynolds number of 5,000 and 10,000,respectively,A CFD approach,based on the unsteady Navier-Stokes equation for 3-dimensional incompressible flow,was used in the study.Typical results of the computation are presented.Theses results reveal the highly unsteady and complex vortical structures at high Reynolds numbers.

  3. MMIC Cavity Oscillator at 50 and 94 GHz (2007040) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative, ultra-low phase-noise, fully integrated single-chip cavity oscillator is proposed. The cavity is built on a standard MMIC process and has a quality...

  4. Teleportation of Atomic States via Cavity Quantum Electrodynamics

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  5. Unconditional preparation of entanglement between atoms in cascaded optical cavities.

    Science.gov (United States)

    Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-10-24

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high-finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity-QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity-QED parameters and with nonideal coupling.

  6. Preparation of the W state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin; YE Liu

    2004-01-01

    A scheme for preparation of the tripartite W state via cavity quantum electrodynamics is presented in this paper. And the scheme can be generalized to prepare the n-atom W states. The second part of this paper shows how to prepare n-cavity W states. All cavities involved are initially in the vacuum states, thus the requirement on the quality factor of the cavities is greatly loosened.

  7. Three-qubit Fredkin gate based on cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Shao Xiao-Qiang; Chen Li; Zhang Shou

    2009-01-01

    This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity.The scheme is based on the dispersive atom-cavity interaction.By modulating the cavity frequency and the atomic transition frequency appropriately,it obtains the effective form of nonlinear interaction between photons in the three-mode cavity.This availability is testified via numerical analysis.It also considers both the situations with and without dissipation.

  8. The First Nine-Cell TESLA Cavity Made in China

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Yang; JIN Song; XIN Tian-Mu; YAO Zhong-Yuan; CHEN Jia-Er; ZHAO Kui; QUAN Sheng-Wen; ZHANG Bao-Cheng; HAO Jian-Kui; ZHU Feng; LIN Lin; XU Wen-Can; WANG Er-Dong; WANG Fang

    2008-01-01

    A totally home-made 9-cell TESLA type superconducting cavity is made at Peking University. The cavity fabrication is according to DESY specification. The cavity is made of high purity niobium from OTIC, Ningxia.The electron beam welding is carried out at Harbin Institute of Technology, Harbin. By the cooperation, the cavity is tested at Thomas Jefferson National Accelerator Facility, USA. The preliminary result shows the acceleration gradient Eacc is 23 MV/m without quench and has potential for improvement.

  9. Effective Scheme for Generating Cluster States in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    WU Huai-Zhi; YANG Zhen-Biao; ZHENG Shi-Biao

    2007-01-01

    We propose a scheme to prepare many two-mode cavities into one-dimensional cluster states in the context of cavity QED. The left-circularly polarized state and right-circularly polarized state of the cavity are encoded as the logic zero and one of the qubits. In the scheme, the atomic spontaneous emission is suppressed, and the fidelity is unaffected by the cavity decay on the assumption that the detection efficiencies of all the photondetectors are 1.

  10. Installation and Commissioning of CYCIAE-100 RF Cavity

    Institute of Scientific and Technical Information of China (English)

    JI; Bin; XING; Jian-sheng; LIU; Geng-shou; YIN; Zhi-guo; ZHANG; Tian-jue; LEI; Yu; FU; Xiao-liang; LI; Peng-zhan; LV; Yin-long; ZHU; Peng-fei; FU; Li-cheng; LIU; Jie; ZHANG; De-zhi; CUI; Bai-yao; DONG; Huan-jun; WANG; Zhen-hui

    2013-01-01

    The RF cavity is used to establish electrical field for the particle acceleration in the cyclotron,the stability of the RF cavity affects the RF system directly.A RF cavity with high quality can reduce thepower consumption of the RF system and make the cooling system simple.A good design is the first step towards RF cavity with high quality.The installation and commissioning are the next important process to achieve an excellent performance.The height of the

  11. Unconditional preparation of entanglement between atoms in cascaded optical cavities

    CERN Document Server

    Clark, S; Gu, M; Parkins, S; Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-01-01

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity QED parameters and with nonideal coupling.

  12. Control of cavity modes in coupled periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Lavrinenko, Andrei; Ha, Sangwoo;

    2009-01-01

    We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the lateral shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases as the cavities ...

  13. Comparison of Multi-field Coupling Analysis of Accelerator Cavity

    Institute of Scientific and Technical Information of China (English)

    LI; Chun-guang; LI; Jin-hai

    2013-01-01

    In the high power accelerator cavity,the joule heat produced by the electromagnetic fields causes the temperature of the cavity rising which leads to frequency changed,called frequency shift.The analysis of the effect of power to the frequency shift is an important task of accelerator cavity design.It involves heat,structure and high frequency analysis.

  14. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    CERN Document Server

    Crawford, Anthony C

    2016-01-01

    Deeply modulated, continuous, diffusion-limited current waveforms for electropolishing niobium single-cell elliptical radiofrequency cavities are reliably and repeatedly achieved at Fermilab. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500MHz to 3.9 GHz and can be extended to multicell structures.

  15. Preparation of Two-Qutrit Entangled State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIN Xiu-Min; ZHOU Zheng-Wei; WU Yu-Chun; WANG Cheng-Zhi; GUO Guang-Can

    2005-01-01

    @@ We propose a scheme to generate a 3 × 3-dimensional maximally entangled state of two particles. Two three-level atoms interact with a strongly detuned cavity so that the cavity is only virtually excited and efficient decoherence time of the cavity is greatly prolonged. Compared to other protocols, this protocol is simpler and has a higher fidelity.

  16. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  17. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    Science.gov (United States)

    Crawford, Anthony C.

    2017-03-01

    A deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  18. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  19. Fallopian tube insertion into the uterine cavity discovered accidentally during laparoscopic retrieval of a misplaced coil from the pelvic cavity

    OpenAIRE

    Panayotidis, Costas; Foidart, Jean-Michel; Nisolle, Michelle

    2008-01-01

    This article presents for the first time in the literature a case of fallopian tube insertion into the uterine cavity discovered accidentally during laparoscopic retrieval of a misplaced coil from the pelvic cavity. Peer reviewed

  20. Cavity techniques for holographic data storage recording.

    Science.gov (United States)

    Miller, Bo E; Takashima, Yuzuru

    2016-03-21

    Conventionally, reading and writing of data holograms utilizes a fraction of the light power because of a trade off in write and read efficiencies. This system constraint can be mitigated by applying a resonator cavity. Cavities enable more efficient use of the available light leading to enhanced read and write data rates with no additional energy cost. This enhancement is inversely related to diffraction efficiency, so these techniques work well for large capacity holographic data storage having low diffraction efficiency. The enhancement in write data transfer rate is evaluated by writing plane wave holograms and image bearing holograms in Fe:LiNbO3 with a 532 nm wavelength laser. We confirmed 1.2 times enhancement in write data rate, out of a 1.4 theoretical maximum for materials absorption of 16%.

  1. Dynamics of bouncing droplets in annular cavities

    Science.gov (United States)

    Lentz, Zachary Louis; Jalali, Mir Abbas; Alam, Mohammad-Reza

    2014-11-01

    In a cylindrical bath of silicon oil, vertically excited by a frequency of 45 Hz, we trace the motion of bouncing droplets as they fill an annular region. We compute the mean tangential and radial velocity components of the droplets and show that the maximum tangential velocity is larger than the maximum radial velocity by one order of magnitude. Velocity dispersions have almost equal levels in the radial and tangential directions, and their mean values are 1/4 times smaller than the mean tangential velocity. These results show that bouncing droplets undergo random motions within annular cavities determined by the interference patterns of self-induced circumferential waves. We derive analytical relations between the velocity dispersion and the wavelength of surface waves, and calculate the mean tangential velocity of droplets using the random kicks that they experience at the boundaries of the cavity by inward and outward traveling waves.

  2. HOM Couplers for CERN SPL Cavities

    CERN Document Server

    Papke, Kai; Van Rienen, U

    2013-01-01

    Higher-Order-Modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the SPL, which is studied at CERN as the driver for future neutrino facilities. In order to limit beam-induced HOM effects, CERN considers the use of HOM couplers on the cut-off tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to modes of a specific frequency range. In this paper the design process is presented and a comparison is made between various design options for the medium and high-beta SPL cavities, both operating at 704.4 MHz. The RF characteristics and thermal behaviour of the various designs are discussed.

  3. [Oral cavity pathology by renal failure].

    Science.gov (United States)

    Maĭborodin, I V; Minikeev, I M; Kim, S A; Ragimova, T M

    2014-01-01

    The analysis of the scientific literature devoted to organ and tissue changes of oral cavity at the chronic renal insufficiency (CRI)is made. The number of patients in an end-stage of CRI constantly increases and patients receiving renal replacement therapy including hemodialysis, peritoneal dialysis or renal transplantation will comprise an enlarging segment of the dental patient population. Owing to CRI and its treatment there is a set of changes of teeth and oral cavity fabrics which remain even in a end-stage. Renal replacement therapy can affect periodontal tissues including gingival hyperplasia in immune suppressed renal transplantation patients and increased levels of bacterial contamination, gingival inflammation, formation of calculus, and possible increased prevalence and severity of destructive periodontal diseases. Besides, the presence of undiagnosed periodontitis may have significant effects on the medical management of the patients in end-stage of CRI.

  4. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  5. Structure of magnetic fields in intracluster cavities

    CERN Document Server

    Gourgouliatos, Konstantinos Nektarios; Lyutikov, Maxim

    2010-01-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the AGN jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and evaluate the rotation measure for radiation traversing the bubble.

  6. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density......, coupled photonic crystal nanocavity structures are simulated. The resonance frequencies of in-phase and out-of-phase coupled quadrupole modes in rectangular photonic crystal H1 cavities are extracted and are found to vary non-trivially with the intercavity separation. A qualitative explanation is given...... in terms of the in-plane mode profiles. Fareld emission patterns for the structures are calculated based on the finite-dierence time-domain simulations. It is found that only systems with an even number of holes separating the cavities show clear signs of being coupled. This non-trivial coupling behavior...

  7. Histopathologic Approach to Oral Cavity Lesions

    Directory of Open Access Journals (Sweden)

    Cuyan Demirkesen

    2012-12-01

    Full Text Available Diseases of the oral cavity may be either a reflection of system or cutaneous diseases or can be seen as a primary oral lesion. These lesions are inflammatory reactions due to miscellaneous mechanisms, ulceration or erosion, reactive proliferative nodules, precancerous or neoplastic diseases. In this study, microscopic features of the most common diseases, together with their differential diagnosis are discussed. Some of the diseases of the oral cavity have overlapping histopathological findings. In these conditions, ancillary methods such as immunoflourescence or immunohistochemistry can be performed. Deep biopsies from representative areas are essential for proper histopathological diagnosis. Moreover, informing the pathologist about the exact anatomic localization of the biopsy, as well as the clinical findings of the lesion is crucial for a better approach.

  8. Making of a nonlinear optical cavity

    CERN Document Server

    Martínez-Lorente, R; Esteban-Martín, A; García-Monreal, J; Roldán, E; Silva, F

    2016-01-01

    In the article we explain in detail how to build a photorefractive oscillator (PRO), which is a laser-pumped nonlinear optical cavity containing a photorefractive crystal. The specific PRO whose construction we describe systematically, is based on a Fabry-Perot optical cavity working in a non-degenerate four wave-mixing configuration. This particular PRO has the property that the generated beam exhibits laser-like phase invariance and, as an application, we show how a suitably modulated injected beam converts the output field from phase-invariant into phase-bistable. While the emphasis is made on the making of the experimental device and on the way measurements are implemented, some introduction to the photorefractive effect as well as to the necessary concepts of nonlinear dynamics are also given, so that the article is reasonably self-contained.

  9. Performance of production SRF cavities for CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Reece, C.; Benesch, J.; Kneisel, P.; Kushnick, P.; Mammosser, J.; Powers, T.

    1993-06-01

    Construction of the Continuous Electron Beam Accelerator Facility recirculating linac represents the largest scale application of superconducting rf (SRF) technology to date. Over 250 of the eventual 338 SRF 1497 MHz cavities have been assembled into hermetic pairs and completed rf testing at 2.0 K. Although the rf performance characteristics well exceed the CEBAF baseline requirements of Q[sub 0] = 2.4[times]10[sup 9] at 5 MV/m, the usual limiting phenomena are encountered field emission, quenching, Q-switching, will occasional multipacting. An analysis of the occurrence conditions and severity of these phenomena during production cavity testing is presented. The frequency with which performance is limited by quenching suggests that additional material advances may be required for applications which require the reliable achievement of accelerating gradients of more than 15 MV/m. The distributions of frequency and Q for a higher-order mode are also presented.

  10. Quantum networks based on cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2014-07-01

    Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.

  11. A COMPARATIVE STUDY ON COPPER-PLATED UTERINE CAVITY SHAPED IUD AND NON-COPPER BEARING UTERINE CAVITY SHAPED IUD

    Institute of Scientific and Technical Information of China (English)

    ZENGQing-Gu; etal

    1989-01-01

    A comparative randomized clinical trial was carried out between two uterine cavity shaped IUDs: the copper-plated uterine cavity shaped IUD(UCDCu) and non-copper bearing uterine cavity shaped IUD(UCD). The IUDs were used by 1004 and 1005 women

  12. Characterization of transducer cavities to oscillatory inputs

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Hollingshead, J.R.

    1993-12-31

    The design and use of measurement systems must ensure that the data are not computed by the measurement system. A wide variety of sources can be responsible for compromising the integrity of test data. Among the sources of error are transducer calibration errors, signal conditioning problems, recording problems, and characteristics of the mechanical system which introduce errors. In this paper, the characteristics of an acoustic cavity are discussed as they apply to a pressure measurement problem.

  13. Capillary condensation for fluids in spherical cavities

    OpenAIRE

    Urrutia, Ignacio; Szybisz, Leszek

    2005-01-01

    The capillary condensation for fluids into spherical nano-cavities is analyzed within the frame of two theoretical approaches. One description is based on a widely used simplified version of the droplet model formulated for studying atomic nuclei. The other, is a more elaborated calculation performed by applying a density functional theory. The agreement between both models is examined and it is shown that a small correction to the simple fluid model improves the predictions. A connection to ...

  14. Laser in-cavity Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.M.

    1978-09-01

    A new laser interferometer is proposed which can be regarded as an in-cavity Michelson interferometer. It utilizes a polarizing beam splitter in conjunction with two quarter-wave plates to produce oscillations between three mirrors. It would measure a change in length of 10/sup -3/ A that, if used for plasma diagnostics, is equivalent to measuring an electron density of 10/sup 9/ cm/sup -3/ over a plasma length of 1 cm.

  15. Study of multipacting effect in superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; ZHAO Ming-Hua

    2008-01-01

    A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance.It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry.The simulation result is compared with the result of the semi-analytical model in the end.

  16. Dental Sealants Prevent Cavities PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2016-10-18

    This 60 second public service announcement is based on the October 2016 CDC Vital Signs report. Dental sealants, applied soon after a child's permanent molars come in, can protect against cavities for up to nine years. Applying sealants in schools for low-income children could save millions in dental treatment costs.  Created: 10/18/2016 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/18/2016.

  17. The electromagnetic Casimir effect of spherical cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Casimir effect results from the zero-point energy of vacuum. A spherical cavity can be divided into three regions, and we make an analysis of every region and then give a formal solution of Casimir energy. The zeta-function regularization is also used to dispel the divergence of the summation. At the end, we can see the Casimir effect of a single sphere is included in our results.

  18. Controlling spin relaxation with a cavity

    Science.gov (United States)

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Zhou, X.; Stern, M.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Vion, D.; Esteve, D.; Morton, J. J. L.; Bertet, P.

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

  19. Rugged, Tunable Extended-Cavity Diode Laser

    Science.gov (United States)

    Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade

    2007-01-01

    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.

  20. A new awakening for accelerator cavities

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Imagine: an accelerator unbound by length; one that can bring a beam up to the TeV level in just a few hundred metres. Sounds like a dream? Perhaps not for long. At CERN’s Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE), physicists may soon be working to bring this contemporary fairy-tale to life.   The AWAKE experiment in the CNGS facility. Wherever you find a modern linear particle accelerator, you’ll find with it a lengthy series of RF accelerating cavities. Although based on technology first developed over half a century ago, RF cavities have dominated the accelerating world since their inception. However, new developments in plasma accelerator systems may soon be bringing a new player into the game. By harnessing the power of wakefields generated by beams in plasma cells, physicists may be able to produce accelerator gradients of many GV/m –  hundreds of times higher than those achieved in current RF cavities. “Plasma wakef...

  1. Fundamental tests in Cavity Quantum Electrodynamics

    CERN Document Server

    CERN. Geneva

    2010-01-01

    At the dawn of quantum physics, Einstein and Bohr had the dream to confine a photon in a box and to use this contraption in order to illustrate the strange laws of the quantum world. Cavity Quantum Electrodynamics has now made this dream real, allowing us to actually achieve in the laboratory variants of the thought experiments of the founding fathers of quantum theory. In our work at Ecole Normale Supérieure, we use a beam of Rydberg atoms to manipulate and probe non-destructively microwave photons trapped in a very high Q superconducting cavity. We realize ideal quantum non-demolition (QND) measurements of photon numbers, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process. These experiments ope...

  2. Direct Numerical Simulation of Automobile Cavity Tones

    Science.gov (United States)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  3. Atraumatic restorative treatment in atypical cavities

    Directory of Open Access Journals (Sweden)

    Letícia Simino Carvalho

    2009-10-01

    Full Text Available The atraumatic restorative treatment has been widely divulged among professionals in the area of Pediatric Dentistry. This restorative technique is included in the philosophy of Minimal Intervention and is considered one of the most conservative treatments, because only the layer of infected dentin caries is removed. Moreover, the atraumatic restorative treatment has been shown to be less painful than conventional approaches, and local anesthesia is rarely required. After the removal of the infected dentin, the cavities are filled with glass ionomer cement, a material that has antimicrobial capacity, good marginal sealing and constant fluorine release and recharge. In spite of the increasing number of studies about atraumatic restorative treatment, only studies related to restorations in occlusal cavities have shown scientific evidences about the technique. The aim of this study was to evaluate the feasibility of atraumatic restorative treatment in cavities with 3 or more surfaces involved, by means of a clinical case report of a patient with extensive dstruction in primary teeth, who was submitted to atraumatic restorative treatment, and observe the result of the treatment after one year of clinical and radiographic control.

  4. Coherently Opening a High-Q Cavity

    Science.gov (United States)

    Tufarelli, Tommaso; Ferraro, Alessandro; Serafini, Alessio; Bose, Sougato; Kim, M. S.

    2014-04-01

    We propose a general framework to effectively "open" a high-Q resonator, that is, to release the quantum state initially prepared in it in the form of a traveling electromagnetic wave. This is achieved by employing a mediating mode that scatters coherently the radiation from the resonator into a one-dimensional continuum of modes such as a waveguide. The same mechanism may be used to "feed" a desired quantum field to an initially empty cavity. Switching between an open and "closed" resonator may then be obtained by controlling either the detuning of the scatterer or the amount of time it spends in the resonator. First, we introduce the model in its general form, identifying (i) the traveling mode that optimally retains the full quantum information of the resonator field and (ii) a suitable figure of merit that we study analytically in terms of the system parameters. Then, we discuss two feasible implementations based on ensembles of two-level atoms interacting with cavity fields. In addition, we discuss how to integrate traditional cavity QED in our proposal using three-level atoms.

  5. Cavity cooling of an optically levitated nanoparticle

    CERN Document Server

    Kiesel, Nikolai; Delic, Uros; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus

    2013-01-01

    The ability to trap and to manipulate individual atoms is at the heart of current implementations of quantum simulations, quantum computing, and long-distance quantum communication. Controlling the motion of larger particles opens up yet new avenues for quantum science, both for the study of fundamental quantum phenomena in the context of matter wave interference, and for new sensing and transduction applications in the context of quantum optomechanics. Specifically, it has been suggested that cavity cooling of a single nanoparticle in high vacuum allows for the generation of quantum states of motion in a room-temperature environment as well as for unprecedented force sensitivity. Here, we take the first steps into this regime. We demonstrate cavity cooling of an optically levitated nanoparticle consisting of approximately 10e9 atoms. The particle is trapped at modest vacuum levels of a few millibar in the standing-wave field of an optical cavity and is cooled through coherent scattering into the modes of the...

  6. Bioengineering in the oral cavity: our experience

    Directory of Open Access Journals (Sweden)

    Catalfamo L

    2013-10-01

    Full Text Available L Catalfamo,1 E Belli,2 C Nava,1 E Mici,1 A Calvo,1 B D'Alessandro,1 FS De Ponte1 1Unit of Maxillofacial Surgery, University of Messina, Azienda Ospedaliera Universitaria, Policlinico G Martino, Messina, Italy; 2Unit of Maxillofacial Surgery, University Rome Sapienza, Azienda Ospedaliera Sant Andrea, Rome, Italy Background: To date, there are no studies reported in the literature on the possible use of bovine collagen, oxidized regenerated cellulose, or synthetic hyaluronic acid medications in the oral cavity. The aim of this paper is to report the use of bovine collagen, oxidized regenerated cellulose, and synthetic hyaluronic acid medications to improve wound healing in the oral cavity by stimulating granulomatous tissue. Methods: From 2007 to 2011, 80 patients (median age 67 years suffering from oral mucosal lesions participated in this double-blind study. The patients were divided into two groups, each consisting of 40 patients. One group received conventional medications, while the other group of patients were treated with the advanced medications. Results: Advanced medications allowed re-epithelialization of the wound margin in 2–20 days, whereas patients receiving conventional medication showed a median healing duration of 45 days. Conclusion: The results of this study demonstrate that treating oral mucosal wounds with advanced medication has an advantage with regard to wound healing time, allowing patients to have a rapid, functional, and esthetic recovery. Keywords: bioengineering, oral cavity, mucosal recovery

  7. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)∼ {10}10{--}{10}11 achieved on the Nb cavities at 1.3–2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  8. Cavity filling water control below aerator devices

    Institute of Scientific and Technical Information of China (English)

    钱尚拓; 吴建华; 马飞; 徐建荣; 彭育; 汪振

    2014-01-01

    With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aera-tor. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some sui-table geometries of the local slope are designed.

  9. Rapid cavity prototyping using mode matching and globalised scattering matrix

    CERN Document Server

    Shinton, I

    2009-01-01

    Cavity design using traditional mesh based numerical means (such as the finite element or finite difference methods) require large mesh calculations in order to obtain accurate values and cavity optimisation is often not achieved. Here we present a mode matching scheme which utilises a globalised scattering matrix approach that allows cavities with curved surfaces (i.e. cavities with elliptical irises and or equators) to be accurately simulated allowing rapid cavity prototyping and optimisation to be achieved. Results on structures in the CLIC main

  10. Unconventional geometric quantum phase gates with a cavity QED system

    Science.gov (United States)

    Zheng, Shi-Biao

    2004-11-01

    We propose a scheme for realizing two-qubit quantum phase gates via an unconventional geometric phase shift with atoms in a cavity. In the scheme the atoms interact simultaneously with a highly detuned cavity mode and a classical field. The atoms undergo no transitions during the gate operation, while the cavity mode is displaced along a circle in the phase space, aquiring a geometric phase conditional upon the atomic state. Under certain conditions, the atoms are disentangled with the cavity mode and thus the gate is insensitive to both the atomic spontaneous emission and the cavity decay.

  11. Scheme for Generation of Entanglement among Bimodal Cavities

    Institute of Scientific and Technical Information of China (English)

    SONG Xin-Guo; FENG Xun-Li

    2004-01-01

    @@ We present a scheme for generation of an entangled state in many spatially separated bimodal cavity modes via cavity quantum electrodynamics. A V-type three-level atom, initially prepared in a coherent superposition of its excited states, successively passes through both the bimodal cavities. If the atom is measured in its ground state after leaving the last cavity, an entangled state of many cavity modes can be generated. The conditions to generate the maximally entangled state with unity probability are worked out.

  12. Scheme for Quantum Entanglement Swapping on Cavity QED System

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong; YU Yan

    2006-01-01

    We propose a scheme for realizing quantum entanglement swapping between the atoms in cavity QED.With only virtual excitation of the cavity during the interaction between the atoms and cavity, the scheme is insensitive to the cavity mode states and the cavity decay. The ideas can also be utilized for realizing entanglement swapping between the atomic levels in a single atom and the atomic levels in the Bell states and between the atomic levels in the Bell states and the atomic levels in the W states.

  13. The crystal cavities of the New Jersey zeolite region

    Science.gov (United States)

    Schaller, Waldemar Theodore

    1932-01-01

    The crystal cavities present in the mineral complex of the New Jersey traprock region have long excited the interest of mineralogists. In 1914 Fenner made the first detailed and comprehensive study of these cavities and suggested that babingtonite was the original mineral. Soon after this anhydrite was found occupying parts of some of the cavities at one of the quarries. At this time, too, Wherry concluded that glauberite was the original mineral of some of the cavities because of his studies of similar crystal cavities in Triassic shale at different places.

  14. Preparation of W state in resonant bimodal cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a Ⅴ-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the second cavity,the four cavity modes are prepared in the W state. On the other hand we can obtain three-atom W states by sending three Ⅴ-type three-level atoms through a two-mode cavity in turn. The present scheme does not require conditional measurement, and it is easily generalized to preparing 2n-mode W states and n-atom W states.

  15. Analysis of superconducting cavity quench events at SSRF

    Institute of Scientific and Technical Information of China (English)

    HOU Hong-Tao; LI Zheng; LIU Jian-Fei; ZHAO Yu-Bin; ZHAO Shen-jie; ZHANG Zhi-Gang; LUO Chen; FENG Zi-Qiang; MAO Dong-Qing; ZHENG Xiang

    2011-01-01

    Quench is important and dangerous to superconducting RF cavities. This paper illustrates the mechanism of quench and how a quench detector works, and analyzes the quench events happening during beam operations and cavity conditioning. We find that the quench protection is mostly triggered by some reasons such as fluctuation of cavity voltage, multipacting or arc, rather than a real cavity thermal breakdown. The results will be beneficial to optimize the operation parameters of superconducting cavities, to discover the real reasons for beam trip by quench interlock, and to improve the operation stability of superconducting RF systems.

  16. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  17. Interaction between dual cavity modes in a planar photonic microcavity

    Science.gov (United States)

    Noble, Elizabeth; Nair, Rajesh V.; Jagatap, B. N.

    2016-10-01

    We theoretically study the interaction between dual cavity modes in a planar photonic microcavity structure in the optical communication wavelength range. The merging and splitting of cavity mode is analysed with realistic microcavity structures. The merging of dual cavity resonance into a single cavity resonance is achieved by changing the number of layers between the two cavities. The splitting of single cavity resonance into dual cavity resonance is obtained with an increase in the reflectivity of mirrors in the front and rear side of the microcavity structure. The threshold condition for the merging and splitting of cavity mode is established in terms of structural parameters. The physical origin of the merging of dual cavity modes into a single cavity resonance is discussed in terms of the electric field intensity distribution in the microcavity structure. The microcavity structure with dual cavity modes is useful for the generation of entangled photon pairs, for achieving the strong-coupling regime between exciton and photon and for high-resolution multi-wavelength filters in optical communication.

  18. Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks

    CERN Document Server

    Li, Ruoxin

    2010-01-01

    We perform 3D finite element calculations of the fields in microwave cavities and analyze the distributed cavity phase errors of atomic clocks that they produce. The fields of cylindrical cavities are treated as an azimuthal Fourier series. Each of the lowest components produces clock errors with unique characteristics that must be assessed to establish a clock's accuracy. We describe the errors and how to evaluate them. We prove that sharp structures in the cavity do not produce large frequency errors, even at moderately high powers, provided the atomic density varies slowly. We model the amplitude and phase imbalances of the feeds. For larger couplings, these can lead to increased phase errors. We show that phase imbalances produce a novel distributed cavity phase error that depends on the cavity detuning. We also design improved cavities by optimizing the geometry and tuning the mode spectrum so that there are negligible phase variations, allowing this source of systematic error to be dramatically reduced.

  19. Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics

    CERN Document Server

    Spillane, S M; Vahala, K J; Goh, K W; Wilcut, E; Kimble, H J

    2004-01-01

    We investigate the suitability of toroidal microcavities for strong-coupling cavity quantum electrodynamics (QED). Numerical modeling of the optical modes demonstrate a significant reduction of modal volume with respect to the whispering gallery modes of dielectric spheres, while retaining the high quality factors representative of spherical cavities. The extra degree of freedom of toroid microcavities can be used to achieve improved cavity QED characteristics. Numerical results for atom-cavity coupling strength, critical atom number N_0 and critical photon number n_0 for cesium are calculated and shown to exceed values currently possible using Fabry-Perot cavities. Modeling predicts coupling rates g/(2*pi) exceeding 700 MHz and critical atom numbers approaching 10^{-7} in optimized structures. Furthermore, preliminary experimental measurements of toroidal cavities at a wavelength of 852 nm indicate that quality factors in excess of 100 million can be obtained in a 50 micron principal diameter cavity, which w...

  20. Cryogenic rf test of the first plasma etched SRF cavity

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Im, D; Phillips, L; Vušković, L

    2016-01-01

    Plasma etching has a potential to be an alternative processing technology for superconducting radio frequency (SRF) cavities. An apparatus and a method are developed for plasma etching of the inner surfaces of SRF cavities. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used. The single cell cavity is mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. This cavity is then plasma processed. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  1. Blasting practices in a quarry with karstic cavities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The blasting practices in a limestone quarry with karstic cavities have been presented. The existence of karstic cavities in the quarry has reduced blasting efficiency significantly. In order to improve blasting efficiency different blasting strategies (loading holes with ANFO in plastic bag, recording cavity location along the holes and charging the holes according to this information, and modifying blasting pattern according to karstic cavities) had been implemented and the results were evaluated on per ton cost basis. It was concluded that efficient blasting in such aquarries requires determining the size and shape of karstic cavities and based on this information, to modify the blast pattern and charge the holes. The suggested method is to record the cavity along the drill hole and to generate 3D model of cavities. By doing this, the production cost in the limestone quarry has decreased from 0.407 $/t to 0.354 $/t.

  2. Scheme for Implementation of an Economic 1→3 Quantum Cloning Machine via Cavity-Assisted Atomic Collisions in Cavity-QED

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Qiang; LIU Qi; LIANG Xian-Ting; ZHANG Wen-Hai; YE Liu

    2008-01-01

    A scheme to implement of 1→ 3 economic phase-covariant cloning machine for unknown equator state in cavity-QED is proposed. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited so that the cavity quality factor can be loosened.

  3. Selective oxidization cavity confinement for low threshold vertical cavity transistor laser

    Science.gov (United States)

    Wu, M. K.; Liu, M.; Tan, F.; Feng, M.; Holonyak, N.

    2013-07-01

    Data are presented for a low threshold n-p-n vertical cavity transistor laser (VCTL) with improved cavity confinement by trench opening and selective oxidation. The oxide-confined VCTL with a 6.5 × 7.5 μm2 oxide aperture demonstrates a threshold base current of 1.6 mA and an optical power of 150 μW at IB = 3 mA operating at -80 °C due to the mismatch between the quantum well emission peak and the resonant cavity optical mode. The VCTL operation switching from spontaneous to coherent stimulated emission is clearly observed in optical output power L-VCE characteristics. The collector output IC-VCE characteristics demonstrate the VCTL can lase in transistor's forward-active mode with a collector current gain β = 0.48.

  4. Note: Broadband cavity ring-down spectroscopy of an intra-cavity bulk sample.

    Science.gov (United States)

    Zeuner, T; Paa, W; Mühlig, C; Stafast, H

    2013-03-01

    A cavity ring-down (CRD) setup equipped with a pulsed broadband light source (480 nm ≤ λ ≤ 650 nm) and a multichannel detection system (temporal gate width Δτ = 20 ns) is used to simultaneously record the optical loss spectrum of an intra-cavity CaF2 sample and its changes upon transverse ArF laser irradiation at 193 nm. The CRD setup with mirrors of high reflectivity (R > 99.93%) allows to register loss changes of 5 × 10(-5) with a spectral resolution of 0.3 nm in less than 2 min.

  5. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  6. Development of a cavity enhanced aerosol albedometer

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2014-03-01

    Full Text Available We report on the development of a cavity enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS approach and an integrating sphere (IS for simultaneous in situ measurements of aerosol scattering and extinction coefficients in the exact same sample volume. The cavity enhanced albedometer employed a blue light-emitting diode (LED based IBBCEAS approach for the measurement of wavelength-resolved aerosol optical extinction over the spectral range of 445–480 nm. An integrating sphere nephelometer coupled to the IBBCEAS setup was used for the measurement of aerosol scattering. The scattering signal was measured with a single channel photomultiplier tube (PMT, providing an integrated value over a narrow bandwidth (FWHM ~ 9 nm in the spectral region of 465–474 nm. A scattering coefficient at a wavelength of 470 nm was deduced as an averaged scattering value and used for data analysis and instrumental performance comparison. Performance evaluation of the albedometer was carried out using laboratory-generated particles and ambient aerosol. The scattering and extinction measurements of monodisperse polystyrene latex (PSL spheres generated in laboratory proved excellent correlation between two channels of the albedometer. The retrieved refractive index (RI from the measured scattering and extinction efficiencies agreed well with the values reported in previously published papers. Aerosol light scattering and extinction coefficients, single scattering albedo (SSA and NO2 concentrations in an ambient sample were directly and simultaneously measured using the developed albedometer. The developed instrument was validated via an intercomparison of the measured aerosol scattering coefficient and NO2 trace concentration against a TSI 3563 integrating nephelometer and a chemiluminescence detector, respectively.

  7. Water clusters confined in icosahedral fullerene cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rojas, J., E-mail: jhrojas@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Monteseguro, V. [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Breton, J., E-mail: jbreton@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Gomez Llorente, J.M., E-mail: jmgomez@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)

    2012-05-03

    Graphical abstract: Black-Square Display Omitted Highlights: Black-Right-Pointing-Pointer We model the interaction energy of water clusters confined in fullerene cavities. Black-Right-Pointing-Pointer C{sub 60} and C{sub 180} are chosen as icosahedral cavities. Black-Right-Pointing-Pointer The rigid TIP4P and flexible q-TIP4P/F water-water potentials are used. Black-Right-Pointing-Pointer While C{sub 60} can confine exothermically only one water molecule, C{sub 180} does up to 17. Black-Right-Pointing-Pointer New global minimum structures are reported for water clusters inside C{sub 180}. - Abstract: Likely candidates for the global energy minima of endohedral (H{sub 2}O){sub N}-C{sub 60} and (H{sub 2}O){sub N}-C{sub 180}, and exohedral (H{sub 2}O){sub N}C{sub 180} water-fullerene clusters with N Less-Than-Or-Slanted-Equal-To 20, are found using basin-hopping global optimization. The potential energy surfaces are constructed using both the rigid TIP4P and the flexible q-TIP4P/F potentials to model the water-water interaction, together with a Lennard-Jones potential for the water-fullerene interaction. In agreement with previous ab initio studies, we find that the small C{sub 60} cavity is able to encapsulate exothermically only one water molecule. On the other hand, the larger C{sub 180} cavity can encapsulate up to 17 water molecules exothermically. This threshold value is higher than that reported in a previous ab initio study (N Less-Than-Or-Slanted-Equal-To 12). New confined water cluster structures are found. One which is particularly interesting is the structure of (H{sub 2}O){sub 14}-C{sub 180}, with the water molecules forming an internal cage in which six oxygen atoms are located at the vertices of an almost regular octahedron and the eight remaining ones lie on top of the octahedron faces. For N Greater-Than-Or-Slanted-Equal-To 15 one water molecule is always present at the center of the water cage, which is distorted to accommodate the extra molecules.

  8. Discontinuity effects on radial cavity transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, D.B.

    1979-04-01

    Pulse propagation in radial cavity transmission lines such as those found on a radial line accelerator is considered. Specifically, the effects of discontinuities along the line are examined in detail. It is found that previous analyses of such effects have been incorrect, and here two alternate solution techniques are presented. Depending upon the parameters of such a radial line, the discontinuity effects considered here may or may not be significant; however, if they are significant, it is recommended that the alternate solution techniques presented here be used.

  9. Plexiform neurofibromatosis involving face and oral cavity

    Directory of Open Access Journals (Sweden)

    Dorairaj Jayachandran

    2014-01-01

    Full Text Available Plexiform neurofibromas (PNFs are one of the most common and debilitating complications of neurofibromatosis type I (NF-I. They account for substantial morbidity, disfigurement, functional impairment and are life threatening. PNFs can also be subjected to transformation into malignant peripheral nerve sheath tumor (MPNST. This complication is refractory to treat due to paucity of effective therapies for malignant soft tissue sarcomas in general and also the delay in diagnosis from a preexisting tumor. We report a case of PNF of face involving oral cavity with literature review.

  10. Crater and cavity depth in hypervelocity impact

    Science.gov (United States)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  11. Control of multiatom entanglement in a cavity

    CERN Document Server

    Mandilara, A; Kolar, M; Kurizki, G

    2006-01-01

    We propose a general formalism for analytical description of multiatomic ensembles interacting with a single mode quantized cavity field under the assumption that most atoms remain un-excited on average. By combining the obtained formalism with the nilpotent technique for the description of multipartite entanglement we are able to overview in a unified fashion different probabilistic control scenarios of entanglement among atoms or examine atomic ensembles. We then apply the proposed control schemes to the creation of multiatom states useful for quantum information.

  12. Glial heterotopia of the oral cavity

    Directory of Open Access Journals (Sweden)

    Radhames E. Lizardo

    2015-07-01

    Full Text Available We report an unusual case of a glial heterotopia arising from the oral cavity of an African neonate. The patient presented with an external pedunculated oral mass which was connected to the anterior hard palate by a firm, rubbery stalk of mucosal tissue. While the mass appeared painless, it interfered with the infant's feeding and was disturbing to the parents. After a computed tomography scan excluded an intracranial connection, the mass was excised at its base and sent for biopsy. Histopathology examination confirmed glial heterotopia. Glial heterotopias should be included in the differential diagnosis of congenital masses in the oral region.

  13. Long wavelength vertical cavity surface emitting laser

    Science.gov (United States)

    Choquette, Kent D.; Klem, John F.

    2005-08-16

    Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.

  14. Wave Dynamical Chaos in Superconducting Microwave Cavities

    CERN Document Server

    Rehfeld, H; Dembowski, C; Gräf, H D; Hofferbert, R; Richter, A; Lengeler, Herbert

    1997-01-01

    During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense "wave dynamical" point of view. Due to the equivalence between the stationary Schroedinger equation and the classical Helmholtz equation in the two-dimensional case (plain billiards), it is possible to simulate "quantum chaos" with the help of macroscopic, superconducting microwave cavities. Using this technique we investigated spectra of three billiards from the family of Pascal's Snails (Robnik-Billiards) with a different chaoticity in each case in order to test predictions of standard stochastical models for classical chaotic systems.

  15. External cavity diode laser around 657 nm

    Institute of Scientific and Technical Information of China (English)

    Desheng Lǖ (吕德胜); Kaikai Huang (黄凯凯); Fengzhi Wang (王凤芝); DonghaiYang (杨东海)

    2003-01-01

    Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Ramsey spectroscopy experiment, we have constructed a 657-nm laser system based on the LittmanMetcalf configuration with a 660-nm commercial laser diode. Continuously 10-GHz tuning range was achieved with about 100-kHz spectral linewidth, measured with beat-note spectrum of two identical laser systems.

  16. A coupled microwave-cavity system in the Rydberg-atom cavity detector for dark matter axions

    CERN Document Server

    Tada, M; Shibata, M; Kominato, K; Ogawa, I; Funahashi, H; Yamamoto, K; Matsuki, S

    2001-01-01

    A coupled microwave-cavity system of cylindrical TM$_{010}$ single-mode has been developed to search for dark matter axions around 10 $\\mu {\\rm eV}$(2.4 GHz) with the Rydberg-atom cavity detector at 10 mK range temperature. One component of the coupled cavity (conversion cavity) made of oxygen-free high-conductivity copper is used to convert an axion into a single photon with the Primakoff process in the strong magnetic field, while the other component (detection cavity) made of Nb is utilized to detect the converted photons with Rydberg atoms passed through it without magnetic field. Top of the detection cavity is attached to the bottom flange of the mixing chamber of a dilution refrigerator, thus the whole cavity is cooled down to 10 mK range to reduce the background thermal blackbody-photons in the cavity. The cavity resonant frequency is tunable over $\\sim$ 15% by moving dielectric rods inserted independently into each part of the cavities along the cylindrical axis. In order to reduce the heat load from ...

  17. Cavity quantum electrodynamics of a quantum dot in a micropillar cavity: comparison between experiment and theory

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Reitzenstein, S.;

    2010-01-01

    The coupling between a quantum dot (QD) and a micropillar cavity is experimentally investigated by performing time-resolved, correlation, and two-photon interference measurements. The Jaynes-Cummings model including dissipative Lindblad terms and dephasing is analyzed, and all the parameters...... for the model are experimentally determined allowing for a complete comparison between experiment and theory....

  18. The ``Q disease'' in Superconducting Niobium RF Cavities

    Science.gov (United States)

    Knobloch, J.

    2003-07-01

    Superconducting niobium cavities can achieve quality (Q0) factors of 1010-1011, more than six orders of magnitude higher than conventional copper cavities. However, to maintain this performance at high accelerating gradient (20 MV/m) the radio-frequency (rf) surface must be damage and dust free. Cavity preparation techniques therefore routinely include a chemical etch or electropolishing. Under certain conditions, these (and other) treatments can contaminate the niobium with hydrogen. Hydrides may then form when the cavity is cooled through 150 K, even if only a few atomic percent hydrogen are present. If hydrides are formed, the cavity quality can degrade substantially (Q disease). A rapid cooldown often inhibits the hydride formation. Other "cures" include degassing cavities at 900 °C to eliminate the hydrogen. A historical review of the Q disease is provided here, with the emphasis being placed on its discovery, symptoms, mechanism, and cures.

  19. Optically thin hybrid cavity for terahertz photo-conductive detectors

    Science.gov (United States)

    Thompson, R. J.; Siday, T.; Glass, S.; Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.

    2017-01-01

    The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

  20. The first operation of 56 MHz SRF cavity in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); DeSanto, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Goldberg, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A 56 MHz superconducting RF cavity has been designed, fabricated and installed in the Relativistic Heavy Ion Collider (RHIC). The cavity operates at 4.4 K with a “quiet helium source” to isolate the cavity from environmental acoustic noise. The cavity is a beam driven quarter wave resonator. It is detuned and damped during injection and acceleration cycles and is brought to operation only at store energy. For a first test operation, the cavity voltage was stabilized at 300 kV with full beam current. Within both Au + Au and asymmetrical Au + He3 collisions, luminosity improvement was detected from direct measurement, and the hourglass effect was reduced. One higher order mode (HOM) coupler was installed on the cavity. We report in this paper on our measurement of a broadband HOM spectrum excited by the Au beam.

  1. Comparative numerical studies of ion traps with integrated optical cavities

    CERN Document Server

    Podoliak, Nina; Keller, Matthias; Horak, Peter

    2016-01-01

    We study a range of radio-frequency ion trap geometries and investigate the effect of integrating dielectric cavity mirrors on their trapping potential. We aim to identify ion trap and cavity configurations that are best suited for achieving small cavity volumes and thus large ion-photon coupling as required for scalable quantum information networks. In particular, we investigate the trapping potential distortions caused by the dielectric material of the cavity mirrors for different mirror orientations with respect to the trapping electrodes, as well as for mirror misalignment. We also analyze the effect of the mirror material properties such as dielectric constants and surface conductivity, and study the effect of surface charges on the mirrors. The smallest trapping potential distortions are found if the cavities are aligned along the major symmetry axis of the electrode geometries. These cavity configurations also appear to be the most stable with respect to any mirror misalignment.

  2. Multiple-cavity detector for axion dark matter search

    Science.gov (United States)

    Jeong, Junu; Ahn, Saebyeok; Youn, Sungwoo; Semertzidis, Yannis

    2017-01-01

    Exploring higher frequency regions in axion dark matter searches using microwave cavity detectors requires a smaller size of the cavity as the TM010 frequency scales inversely with the cavity radius. One of the intuitive ways to make a maximal use of a given magnet volume, and thereby to increase the experimental sensitivity, is to bundle multiple cavities together and combine their individual outputs ensuring phase-matching of the coherent axion signal. The Experiment of Axion Search aT CAPP (EAST-C) is a dedicated project to develop multiple-cavity systems at the Centre for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS). In this poster, the conceptual design of the phase-matching mechanism and experimental feasibility using a quadruple-cavity system will be presented.

  3. Stability analysis for bad cavity lasers with inhomogeneously broadened gain

    CERN Document Server

    Kazakov, Georgy A

    2016-01-01

    Bad cavity lasers are experiencing renewed interest in the context of active optical frequency standards, due to their enhanced robustness against fluctuations of the laser cavity. The gain medium would consist of narrow-linewidth atoms, either trapped inside the cavity or intersecting the cavity mode dynamically. A finite velocity distribution, atomic interactions, or interactions of realistic multilevel atoms with external field leads to an inhomogeneous broadening of the atomic gain profile. This can bring the bad cavity laser to operate in unstable regimes characterized by complex temporal patterns of the field amplitude. We present a new and efficient method for the stability analysis of bad cavity lasers with inhomogeneously broadened gain. We apply this method to identify the steady-state solutions for the metrology-relevant case of spin-1/2 atoms interacting with an external magnetic field.

  4. SRF Cavity Surface Topography Characterization Using Replica Techniques

    Energy Technology Data Exchange (ETDEWEB)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  5. Laser frequency modulator for modulating a laser cavity

    Science.gov (United States)

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  6. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high......-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour...... an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors....

  7. Unusual Dermoid Cyst in Oral Cavity

    Directory of Open Access Journals (Sweden)

    Evanice Menezes Marçal Vieira

    2014-01-01

    Full Text Available Dermoid cysts in oral cavity are unusual lesions. Their etiology is not yet clear and can be associated with trapped cells as a result of the inclusion error resulting in the development into the ectoderm, mesoderm, and endoderm tissues. The aim of this case report is to evidence the presence of a dermoid cyst in the floor of mouth surgically removed. In the present case, the lesion showed soft consistency, floating, regular borders, smooth surface, and the same color as the adjacent mucosa, asymptomatic and measuring 4.5 × 5.5 cm in its greatest diameter. The initial diagnostic was ranula in consequence of the similarity with clinical characteristics and localization. After surgical removal lesion, a fibrotic capsule was identified with a friable material with intensive yellow color. The microscopic exam showed cystic lesion with cavity lined by squamous stratified epithelium hyperorthokeratinized. Cutaneous attachments, such as sebaceous glands and hair follicles, were present in connective adjacent tissue. Surgical intervention is elective in these situations. All dentists must have a thorough knowledge of this unusual lesion.

  8. Ultrasonic Abrasion: An Alternative for Cavity Preparation

    Directory of Open Access Journals (Sweden)

    Áurea Simone Barrôso VIEIRA

    2007-05-01

    Full Text Available Introduction: Restorative dentistry aims to repair damages caused by caries disease. Along the years, researchers have developed effective and less invasive methods with the goal of preserving the teeth from caries destruction. Therefore, the improvement of scientific knowledge, auxiliary diagnostic systems, dental materials, and new instruments has changed the approaches and treatments in this field. In addition to conservative removal of carious tissue, patient’s comfort has also become a concern in modern dentistry.Purpose: Considering that ultrasonic abrasion has attracted great interest of dental professionals, this article discusses an alternative technique for cavity preparation by literature review, addressing its indications, contra-indications, advantages and limitations compared to the conventional high-speed method.Conclusion: There are not many studies on this subject. The available studies have demonstrated several qualities of the ultrasonic abrasion system, but some aspects remain unclear. Therefore, it is important to highlight that laboratorial and clinical studies in primary/permanent teeth should be conducted to elucidate questionable issues, such as time of cavity preparation, topography, presence of smear layer and microleakage, in order to offer safety to the extensive use of this new technology for both the professional and the patient. In this context, the dentist should always be attentive to innovations referring to minimally invasive techniques.

  9. Devil's Staircase in an Optomechanical Cavity

    CERN Document Server

    Wang, Hui; Buks, Eyal

    2016-01-01

    We study self-excited oscillation (SEO) in an on-fiber optomechanical cavity. While the phase of SEO randomly diffuses in time when the laser power that is injected into the cavity is kept constant, phase locking may occur when the laser power is periodically modulated in time. We investigate the dependence of phase locking on the amplitude and frequency of the laser power modulation. We find that phase locking can be induced with a relatively low modulation amplitude provided that the ratio between the modulation frequency and the frequency of SEO is tuned close to a rational number of relatively low hierarchy in the Farey tree. To account for the experimental results a one dimensional map, which allows evaluating the time evolution of the phase of SEO, is theoretically derived. By calculating the winding number of the one dimensional map the regions of phase locking can be mapped in the plane of modulation amplitude and modulation frequency. Comparison between the theoretical predictions and the experimenta...

  10. The inner cavity of the circumnuclear disc

    CERN Document Server

    Blank, Marvin; Frank, Adam; Carroll-Nellenback, Jonathan J; Duschl, Wolfgang J

    2016-01-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and second, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabi...

  11. The inner cavity of the circumnuclear disc

    Science.gov (United States)

    Blank, M.; Morris, M. R.; Frank, A.; Carroll-Nellenback, J. J.; Duschl, W. J.

    2016-06-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and secondly, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabilizes the inner disc rim against rapid inward migration. Furthermore, this interaction causes instabilities that continuously create clumps that are individually unstable against tidal shearing. Thus the occurrence of such unstable clumps does not necessarily mean that the disc is itself a transient phenomenon. The next steps in this investigation are to explore the effect of the magnetorotational instability on the disc evolution and to test whether the results presented here persist for longer time-scales than those considered here.

  12. Plasmonic external cavity laser refractometric sensor.

    Science.gov (United States)

    Zhang, Meng; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-08-25

    Combining the high sensitivity properties of surface plasmon resonance refractive index sensing with a tunable external cavity laser, we demonstrate a plasmonic external cavity laser (ECL) for high resolution refractometric sensing. The plasmonic ECL utilizes a plasmonic crystal with extraordinary optical transmission (EOT) as the wavelength-selective element, and achieves single mode lasing at the transmission peak of the EOT resonance. The plasmonic ECL refractometric sensor maintains the high sensitivity of a plasmonic crystal sensor, while simultaneously providing a narrow spectral linewidth through lasing emission, resulting in a record high figure of merit for refractometric sensing with an active or passive optical resonator. We demonstrate single-mode and continuous-wave operation of the electrically-pumped laser system, and show the ability to measure refractive index changes with a 3σ detection limit of 1.79 × 10(-6) RIU. The demonstrated approach is a promising path towards label-free optical biosensing with enhanced signal-to-noise ratios for challenging applications in small molecule drug discovery and pathogen sensing.

  13. Isolated secondary fungal infections of pleural cavity

    Directory of Open Access Journals (Sweden)

    Makbule Ergin

    2013-12-01

    Full Text Available Objectives: Pleural fungal infections are rare, but the incidence has been increasing with immunosuppressant diseases and use of immunosuppressive medications. In this report, we present 6 patients with pleural effusions that have been determined fungal infection. Methods: The medical records of patients with followed and treated due to fungal infection of the pleural were retrospectively reviewed. Result: The 6 cases whom was 58 of the value median for age were treated as surgical and medical due to fungal infection of the pleural cavity. Dyspnea, cough and chest pain were the most common symptoms. Fever, night sweats and expectoration are relatively rare. In 4 patients, the infections of pleural cavity developed on the bases of rheumatoid arthritis, tuberculosis, pleural mesothelioma and esophagopleural fistula. In two patients had isolated fungal infections. Cultural positivity was seen in 5 patients. Fungal hyphae were determined by cytopathology in all of the patients. As a surgical procedure, all of the patients underwent decortication or pleural biopsy and pleural irrigation. In all patients, antifungal agents were added to surgical procedures. Full recovery of infection was seen in 5 patients. One patient died. Conclusion: In immunosuppressive patients, the incidence of pleural effusions due to or associated with fungal infections are more common. Addition to culture of pleural fluid, histopathological evaluation of pleura will aid diagnosis. J Clin Exp Invest 2013; 4 (4: 443-446

  14. Porous photonic crystal external cavity laser biosensor

    Science.gov (United States)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-01

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  15. New Device for the Oral Cavity

    Directory of Open Access Journals (Sweden)

    Virginia Pentón García

    2010-02-01

    Full Text Available Background: Apart from the instruments used to work and develop adequate treatments, there are some other instruments in General Dentistry and in Orthodontics in particular, called auxiliary instruments or accessories that help to get a better view of surgical field. A capable surgeon appreciates good instruments and recognizes their urgent need in an efficient way. Objective: To show a new device to work in the oral cavity. Methods: the device which was made of 1,8 mm stainless steal wires is 0,61 meters long . For its construction universal forceps 003-180 for facial arcs and 003-233 heavy corrugated forceps were used. The elaboration of the device started on the one side of the lip retractor, then a first fold was done and after that another fold in the right angle was done in which the wire went down to continue forming a stainless steel strong crossbow-like pattern. After this has been done the lip retractor of the other side was done. Results: The device has a single size hence, it can be used in other fields of dentistry such as Dental Surgery and Endodontics. Although the device is a standard unit, it has three main parts: two lip retractors joined to a resort or crossbow –like pattern. Conclusions: This device makes easier the inspection of the oral cavity, has a standard size. It can be used in different fields of dentistry with great economic advantages.

  16. Cavity Cooling for Ensemble Spin Systems

    Science.gov (United States)

    Cory, David

    2015-03-01

    Recently there has been a surge of interest in exploring thermodynamics in quantum systems where dissipative effects can be exploited to perform useful work. One such example is quantum state engineering where a quantum state of high purity may be prepared by dissipative coupling through a cold thermal bath. This has been used to great effect in many quantum systems where cavity cooling has been used to cool mechanical modes to their quantum ground state through coupling to the resolved sidebands of a high-Q resonator. In this talk we explore how these techniques may be applied to an ensemble spin system. This is an attractive process as it potentially allows for parallel remove of entropy from a large number of quantum systems, enabling an ensemble to achieve a polarization greater than thermal equilibrium, and potentially on a time scale much shorter than thermal relaxation processes. This is achieved by the coupled angular momentum subspaces of the ensemble behaving as larger effective spins, overcoming the weak individual coupling of individual spins to a microwave resonator. Cavity cooling is shown to cool each of these subspaces to their respective ground state, however an additional algorithmic step or dissipative process is required to couple between these subspaces and enable cooling to the full ground state of the joint system.

  17. Unusual Dermoid Cyst in Oral Cavity

    Science.gov (United States)

    Vieira, Evanice Menezes Marçal; Volpato, Luis Evaristo Ricci; Porto, Alessandra Nogueira; Carvalhosa, Artur Aburad; Botelho, Gilberto de Almeida; Bandeca, Matheus Coelho

    2014-01-01

    Dermoid cysts in oral cavity are unusual lesions. Their etiology is not yet clear and can be associated with trapped cells as a result of the inclusion error resulting in the development into the ectoderm, mesoderm, and endoderm tissues. The aim of this case report is to evidence the presence of a dermoid cyst in the floor of mouth surgically removed. In the present case, the lesion showed soft consistency, floating, regular borders, smooth surface, and the same color as the adjacent mucosa, asymptomatic and measuring 4.5 × 5.5 cm in its greatest diameter. The initial diagnostic was ranula in consequence of the similarity with clinical characteristics and localization. After surgical removal lesion, a fibrotic capsule was identified with a friable material with intensive yellow color. The microscopic exam showed cystic lesion with cavity lined by squamous stratified epithelium hyperorthokeratinized. Cutaneous attachments, such as sebaceous glands and hair follicles, were present in connective adjacent tissue. Surgical intervention is elective in these situations. All dentists must have a thorough knowledge of this unusual lesion. PMID:24818032

  18. Thermal Model of a Dish Stirling Cavity-Receiver

    OpenAIRE

    Rubén Gil; Carlos Monné; Nuria Bernal; Mariano Muñoz; Francisco Moreno

    2015-01-01

    This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to deter...

  19. Quantum superdense coding via cavity-assisted interactions

    Institute of Scientific and Technical Information of China (English)

    Pan Guo-Zhu; Yang Ming; Cao Zhuo-Liang

    2009-01-01

    Quantum superdense coding (QSC) is an example of how entanglement can be used to minimize the number of carriers of classical information. This paper proposes two schemes for implementing QSC by means of cavity assisted interactions with single-photon pulses. The schemes are insensitive to the cavity decay and the thermal field, thus it might be realizable based on the current cavity QED techniques.

  20. Preparation of cluster state in large detuned cavity

    Institute of Scientific and Technical Information of China (English)

    Zou Chang-Lin; Gao Guo-Jun; Lu Yan; Li Da-Chuang; Yang Ming; Cao Zhuo-Liang

    2008-01-01

    An experimentally realizable physical scheme for preparing multiqubit cluster states from a large detuned atomcavity interaction is proposed. The scheme is free of any type of measurement and insensitive to the cavity decay, and the cavity field is only virtually excited so that there is no information exchanging between atom and cavity. The time required for the gate operations is very short, which is important for decoherence. We also discuss the experimental feasibility of our scheme.

  1. Scalable photonic quantum computation through cavity-assisted interactions.

    Science.gov (United States)

    Duan, L-M; Kimble, H J

    2004-03-26

    We propose a scheme for scalable photonic quantum computation based on cavity-assisted interaction between single-photon pulses. The prototypical quantum controlled phase-flip gate between the single-photon pulses is achieved by successively reflecting them from an optical cavity with a single-trapped atom. Our proposed protocol is shown to be robust to practical noise and experimental imperfections in current cavity-QED setups.

  2. Simulation of Multipacting in RF cavities and waveguides.

    Science.gov (United States)

    Grudiev, A. V.; Myakishev, D. G.; Yakovlev, V. P.

    1997-05-01

    The code for multipacting simulations in axisymmetrical RF cavities, waveguides and coaxial lines is presented. Physical model includes secondary emission simulations and particle trajectory integration in realistic RF fields. The code calculates multipactor voltage levels and discharge distribution. The paper contains simulation results for 180 MHz cavity of INP microtron-recuperator as well as measured data for this cavity demonstrating good agreement with the calculations.

  3. Modeling of Electromagnetic Heating in RF Copper Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Awida, M. H. [Fermilab; Gonin, I. [Fermilab; Romanov, Romanov [Fermilab; Khabiboulline, T. [Fermilab; Yakovlev, V. [Fermilab

    2016-01-17

    Electromagnetic heating is a critical issue in normal conducting copper RF cavities that are employed in particle accelerators. With several tens to hundreds of kilowatts dissipated RF power, there must be an effective cooling scheme whether it is water or air based or even a combination of both. In this paper we investigate the electromagnetic heating in multiple cavities that were designed at Fermilab exploring how the electromagnetic and thermal analyses are coupled together to properly design the cooling of such cavities.

  4. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  5. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [IIT, Chicago; Grassellino, Anna [Fermilab; Martinello, Martina [Fermilab; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  6. Spontaneous symmetry breaking in synchronously pumped fiber ring cavities

    CERN Document Server

    Schmidberger, Michael J; Biancalana, Fabio; Russell, Philip St J; Joly, Nicolas Y

    2013-01-01

    We introduce a new equation that describes the spatio-temporal evolution of arbitrary pulses propagating in a fiber-ring cavity. This model is a significant extension of the traditionally used Lugiato-Lefever model. We demonstrate spontaneous symmetry breaking as well as multistability regimes in a synchronously pumped fiber-ring cavity. The equation can be applied to virtually any type of waveguide-based ring cavity.

  7. New construction of hybrid and aperiodic ordered PBG cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The band gap of a photonic crystal (PhC) cavity intrinsically avoids HOM problems. In this paper, we present a new PBG structure based on the possible advantage of using hybrid structures and aperiodic lattices. This novel hybrid and aperiodically ordered cavity was designed for apparently higher Q-factor (more than 10300) and achieving large accelerating field gradient. The HOMs in the cavity are able to be absorbed efficiently.

  8. HOM Coupler Notch Filter Tuning for the European XFEL Cavities

    OpenAIRE

    Sulimov, Alexey

    2015-01-01

    The notch filter (NF) tuning prevents the extraction of fundamental mode (1.3 GHz) RF power through Higher Order Modes (HOM) couplers. The procedure of NF tuning was optimized at the beginning of serial European XFEL cavities production. It allows keeping the filter more stable against temperature and pressure changes during cavity cool down. Some statistics of NF condition during cavities and modules cold tests is presented.

  9. Investigations of a Coherently Driven Semiconductor Optical Cavity QED System

    Science.gov (United States)

    2008-09-30

    wavelength range of interest, the wavelength blueshift be- tween room and low temperature is 17 nm. 2 PL measure- ments through the fiber taper are...from the cryostat and blueshifted through a digital etching process 50 and the steps are repeated. 1. Room temperature cavity mode spectroscopy Room...small cavity mode blueshift of 0.8 nm per cycle, and does not degrade the cavity Q for the devices studied Q=105 and the number of etch cycles in

  10. Prototype 350 MHz niobium spoke-loaded cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J. R.; Kedzie, M.; Mammosser, J.; Piller, C.; Shepard, K. W.

    1999-05-10

    This paper reports the development of 350 MHz superconducting cavities of a spoke-loaded geometry, intended for the velocity range 0.2 < v/c < 0.6. Two prototype single-cell cavities have been designed, one optimized for velocity v/c = 0.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details of the design and construction are discussed, along with the results of cold tests.

  11. Cryogenic Testing of High-Velocity Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion University; Delayen, Jean R. [Old Dominion University; Park, HyeKyoung [JLAB

    2014-12-01

    Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, β0= 0.82 single-spoke cavity and a 500 MHz, β0 = 1 double-spoke cavity.

  12. Optimising Blackbody Cavity Shape for Spatially Uniform Integrated Emissivity

    Science.gov (United States)

    Saunders, P.

    2017-01-01

    The emissivity of a blackbody cavity, as seen by a radiation thermometer viewing the cavity, depends on both the field of view of the thermometer and the distribution of local effective emissivity values within the field of view. For cylindro-conical cavities, the local effective emissivity generally attains a maximum value at the apex of the cone and drops along the conical section. Thus, radiation thermometers with different fields of view see different blackbody emissivity values. This impacts, particularly, on the calibration of wide-angle low-temperature radiation thermometers and thermal imaging systems where each pixel responds to a different radiance. The spatial uniformity of the effective emissivity profile depends principally on the cone angle, with a weaker dependence on the length-to-diameter ratio of the cavity, the intrinsic emissivity of the cavity surfaces, and the temperature gradient along the cavity. In this paper, a nonlinear least-squares method is used to determine the optimal cone angle as a function of the cavity parameters. It is concluded that full cone angles close to 160° provide the flattest effective emissivity profile across the conical section of the cavity for typical cavity parameters. A method is also described for calculating the value of integrated emissivity, which includes the umbral and penumbral regions seen by an imaging radiation thermometer.

  13. Optimization of Mold Yield in MultiCavity Sand Castings

    Science.gov (United States)

    Shinde, Vasudev D.; Joshi, Durgesh; Ravi, B.; Narasimhan, K.

    2013-06-01

    The productivity of ductile iron foundries engaging in mass production of castings for the automobile and other engineering sectors depends on the number of cavities per mold. A denser packing of cavities, however, results in slower heat transfer from adjacent cavities, leading to delayed solidification, possible shrinkage defects, and lower mechanical properties. In this article, we propose a methodology to optimize mold yield by selecting the correct combination of the mold box size and the number of cavities based on solidification time and mold temperature. Simulation studies were carried out by modeling solid and hollow cube castings with different values of cavity-wall gap and finding the minimum value of the gap beyond which there is no change in casting solidification time. Then double-cavity molds were modeled with different values of cavity-cavity gap, and simulated to find the minimum value of gap. The simulation results were verified by melting and pouring ductile iron in green sand molds instrumented with thermocouples, and recording the temperature in mold at predetermined locations. The proposed approach can be employed to generate a technological database of minimum gaps for various combinations of part geometry, metal and process, which will be very useful to optimize the mold cavity layouts.

  14. Manipulating nanoscale atom-atom interactions with cavity QED

    CERN Document Server

    Pal, Arpita; Deb, Bimalendu

    2016-01-01

    We theoretically explore manipulation of interactions between excited and ground state atoms at nanoscale separations by cavity quantum electrodynamics (CQED). We develop an adiabatic molecular dressed state formalism and show that it is possible to generate Fano-Feshbach resonances between ground and long-lived excited-state atoms inside a cavity. The resonances are shown to arise due to non-adiabatic coupling near a pseudo-crossing between the dressed state potentials. We illustrate our results with a model study using fermionic $^{171}$Yb atoms in a two-modal cavity. Our study is important for manipulation of interatomic interactions at low energy by cavity field.

  15. Accelerator cavities as a probe of millicharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Gies, H. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jaeckel, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-08-15

    We investigate Schwinger pair production of millicharged fermions in the strong electric field of cavities used for particle accelerators. Even without a direct detection mechanism at hand, millicharged particles, if they exist, contribute to the energy loss of the cavity and thus leave an imprint on the cavity's quality factor. Already conservative estimates substantially constrain the electric charge of these hypothetical particles; the resulting bounds are competitive with the currently best laboratory bounds which arise from experiments based on polarized laser light propagating in a magnetic field. We propose an experimental setup for measuring the electric current comprised of the millicharged particles produced in the cavity. (orig.)

  16. Nylon Sleeve for Cavity Amplifier Holds Tuning Despite Heat

    Science.gov (United States)

    Derr, Lloyd

    1964-01-01

    The problem: Detuning of cavity amplifiers with change in temperature. This results in deterioration of the performance of the amplifier at its design frequency. In cavity amplifiers and filters it is desirable that constant performance be maintained regardless of thermal changes. These changes often cause an "off resonance shift" in a cavity filter and a deterioration of performance in a cavity amplifier. The solution: Mount the tuning probe in a nylon sleeve. Thermal expansion and contraction of the nylon nullifies unwanted capacitive and inductive changes in the resonant elements.

  17. Design of S-band re-entrant cavity BPM

    Institute of Scientific and Technical Information of China (English)

    LUO Qing; SUN Baogen; HE Duohui

    2009-01-01

    An S-band cavity BPM is designed for a new injector for HLS (Hefei Light Source). It consists of two cavities that work on 2448 MHz: a re-entrant position cavity tuned to TM110 mode and a reference cavity tuned to TM010 mode. Cut-through waveguides are used as pickups to suppress the monopole signal. Simulations with different assumption of dimension change are performed to evaluate errors caused by mechanical error and give general tolerance. Design of electronics is given. Theoretical resolution of this design is 31 nm.

  18. Tunable cavity resonator including a plurality of MEMS beams

    Energy Technology Data Exchange (ETDEWEB)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  19. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L. E-mail: lutz.lilje@desy.de; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmueser, P.; Trines, D.; Visentin, B.; Wenninger, H

    2004-01-11

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  20. Improved surface treatment of the superconducting TESLA cavities

    Science.gov (United States)

    Lilje, L.; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmüser, P.; Trines, D.; Visentin, B.; Wenninger, H.

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  1. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L.; Matheisen, A.; Proch, D.; Reschke, D.; Trines, D.; Antoine, C.; Charrier, J.P.; Safa, H.; Visentin, B. [CEA Saclay, DAPHNIA, Gif-sur-Yvette (France); Benvenuti, C.; Bloess, D.; Chiaveri, E.; Ferreira, L.; Losito, R.; Preis, H.; Wenninger, H. [CERN, Geneva (Switzerland); Schmueser, P. [Hamburg Univ. (Germany)

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a center-of-mass energy of 500 GeV an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity. (orig.)

  2. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...... interference between two single photons, is calculated as a function of important parameters describing the cavity QED system and the phonon reservoir, e.g., cavity quality factor, light-matter coupling strength, temperature, and phonon lifetime. We show that non-Markovian effects play an important role...

  3. The spatial relation between EUV cavities and linear polarization signatures

    Science.gov (United States)

    Bak-Stȩślicka, Urszula; Gibson, Sarah E.; Fan, Yuhong; Bethge, Christian; Forland, Blake; Rachmeler, Laurel A.

    2014-01-01

    Solar coronal cavities are regions of rarefied density and elliptical cross-section. The Coronal Multi-channel Polarimeter (CoMP) obtains daily full-Sun coronal observations in linear polarization, allowing a systematic analysis of the coronal magnetic field in polar-crown prominence cavities. These cavities commonly possess a characteristic ``lagomorphic'' signature in linear polarization that may be explained by a magnetic flux-rope model. We analyze the spatial relation between the EUV cavity and the CoMP linear polarization signature.

  4. Ultracold Fermions in a Cavity-Induced Artificial Magnetic Field

    Science.gov (United States)

    Kollath, Corinna; Sheikhan, Ameneh; Wolff, Stefan; Brennecke, Ferdinand

    2016-02-01

    We propose how a fermionic quantum gas confined to an optical lattice and coupled to an optical cavity can self-organize into a state where the spontaneously emerging cavity field amplitude induces an artificial magnetic field. The fermions form either a chiral insulator or a chiral liquid carrying chiral currents. The feedback mechanism via the dynamical cavity field enables robust and fast switching in time of the chiral phases, and the cavity output can be employed for a direct nondestructive measurement of the chiral current.

  5. HOMs Simulation and Measurement Results of IHEP02 Cavity

    CERN Document Server

    Zheng, Hongjuan; Zhao, Tongxian; Gao, Jie

    2015-01-01

    In cavities, there exists not only the fundamental mode which is used to accelerate the beam but also higher order modes (HOMs). The higher order modes excited by beam can seriously affect beam quality, especially for the higher R/Q modes. This paper reports on measured results of higher order modes in the IHEP02 1.3GHz low-loss 9-cell superconducting cavity. Using different methods, Qe of the dangerous modes passbands have been got. The results are compared with TESLA cavity results. R/Q of the first three passbands have also been got by simulation and compared with the results of TESLA cavity.

  6. Physical simulations of cavity closure in a creeping material

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, H.J.; Preece, D.S.

    1985-09-01

    The finite element method has been used extensively to predict the creep closure of underground petroleum storage cavities in rock salt. Even though the numerical modeling requires many simplifying assumptions, the predictions have generally correlated with field data from instrumented wellheads, however, the field data are rather limited. To gain an insight into the behavior of three-dimensional arrays of cavities and to obtain a larger data base for the verification of analytical simulations of creep closure, a series of six centrifuge simulation experiments were performed using a cylindrical block of modeling clay, a creeping material. Three of the simulations were conducted with single, centerline cavities, and three were conducted with a symmetric array of three cavities surrounding a central cavity. The models were subjected to body force loading using a centrifuge. For the single cavity experiments, the models were tested at accelerations of 100, 125 and 150 g's for 2 hours. For the multi-cavity experiments, the simulations were conducted at 100 g's for 3.25 hours. The results are analyzed using dimensional analyses. The analyses illustrate that the centrifuge simulations yield self-consistent simulations of the creep closure of fluid-filled cavities and that the interaction of three-dimensional cavity layouts can be investigated using this technique.

  7. Research on Field Emission and Dark Current in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kexin; Li, Yongming; Palczewski, Ari; Geng, Rongli

    2013-09-01

    Field emission and dark current are issues of concern for SRF cavity performance and SRF linac operation. Complete understanding and reliable control of the issue are still needed, especially in full-scale multi-cell cavities. Our work aims at developing a generic procedure for finding an active field emitter in a multi-cell cavity and benchmarking the procedure through cavity vertical test. Our ultimate goal is to provide feedback to cavity preparation and cavity string assembly in order to reduce or eliminate filed emission in SRF cavities. Systematic analysis of behaviors of field emitted electrons is obtained by ACE3P developed by SLAC. Experimental benchmark of the procedure was carried out in a 9-cell cavity vertical test at JLab. The energy spectrum of Bremsstrahlung X-rays is measured using a NaI(Tl) detector. The end-point energy in the X-ray energy spectrum is taken as the highest kinetic electron energy to predict longitudinal position of the active field emitter. Angular location of the field emitter is determined by an array of silicon diodes around irises of the cavity. High-resolution optical inspection was conducted at the predicted field emitter location.

  8. A stable fiber-based Fabry-Perot cavity

    CERN Document Server

    Steinmetz, T; Colombe, Y; Hunger, D; Hänsch, T W; Warburton, R J; Reichel, J

    2006-01-01

    We report the development of a fiber-based, tunable optical cavity with open access. The cavity is of the Fabry-Perot type and is formed with miniature spherical mirrors positioned on the end of single- or multi-mode optical fibers by a transfer technique which involves lifting a high-quality mirror from a smooth convex substrate, either a ball lens or micro-lens. The cavities typically have a finesse of $\\sim 1,000$ and a mode volume of 600 $\\mu$m$^3$. We demonstrate the detection of small ensembles of cold Rb atoms guided through such a cavity on an atom chip.

  9. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  10. Cavity design for high-frequency axion dark matter detectors.

    Science.gov (United States)

    Stern, I; Chisholm, A A; Hoskins, J; Sikivie, P; Sullivan, N S; Tanner, D B; Carosi, G; van Bibber, K

    2015-12-01

    In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ∼8 μeV (∼2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  11. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  12. Higher Order Mode Properties of Superconducting Two-Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, C. S.; Delayen, J. R.; Olave, R. G.

    2011-07-01

    Multi-Spoke cavities lack the cylindrical symmetry that many other cavity types have, which leads to a more complex Higher Order Mode (HOM) spectrum. In addition, spoke cavities offer a large velocity acceptance which means we must perform a detailed analysis of the particle velocity dependence for each mode's R/Q. We present here a study of the HOM properties of two-spoke cavities designed for high-velocity applications. Frequencies, R/Q and field profiles of HOMs have been calculated and are reported.

  13. Multipacting Analysis of the Superconducting Parallel-bar Cavity

    Energy Technology Data Exchange (ETDEWEB)

    S.U. De Silva, J.R. Delayen,

    2011-03-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.

  14. Superconducting spoke cavities for high-velocity applications

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  15. Two simple schemes for implementing Toffoli gate via atom-cavity field interaction in cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Shao Xiao-Qiang; Chen Li; Zhang Shou

    2009-01-01

    This paper proposes two schemes for implementing three-qubit Toffoli gate with an atom (as target qubit) sent through a two-mode cavity (as control qubits). The first scheme is based on the large-detuning atom-cavity field interaction and the second scheme is based on the resonant atom-field interaction. Both the situations with and without cavity decay and atomic spontaneous emission are considered. The advantages and the experimental feasibility of these two schemes are discussed.

  16. Optical Material Characterization Using Microdisk Cavities

    Science.gov (United States)

    Michael, Christopher P.

    Since Jack Kilby recorded his "Monolithic Idea" for integrated circuits in 1958, microelectronics companies have invested billions of dollars in developing the silicon material system to increase performance and reduce cost. For decades, the industry has made Moore's Law, concerning cost and transistor density, a self-fulfilling prophecy by integrating technical and material requirements vertically down their supply chains and horizontally across competitors in the market. At recent technology nodes, the unacceptable scaling behavior of copper interconnects has become a major design constraint by increasing latency and power consumption---more than 50% of the power consumed by high speed processors is dissipated by intrachip communications. Optical networks at the chip scale are a potential low-power high-bandwidth replacement for conventional global interconnects, but the lack of efficient on-chip optical sources has remained an outstanding problem despite significant advances in silicon optoelectronics. Many material systems are being researched, but there is no ideal candidate even though the established infrastructure strongly favors a CMOS-compatible solution. This thesis focuses on assessing the optical properties of materials using microdisk cavities with the intention to advance processing techniques and materials relevant to silicon photonics. Low-loss microdisk resonators are chosen because of their simplicity and long optical path lengths. A localized photonic probe is developed and characterized that employs a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test tightly arranged devices and to help prototype new fabrication methods. A case study in AlxGa1-xAs illustrates how the optical scattering and absorption losses can be obtained from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its high Er3

  17. Study of Cavity Imperfection Impact on RF-Parameters and Multipole Components in a Superconducting RF-Dipole Cavity

    CERN Document Server

    Olave, R G; Delayen, Jean Roger; De Silva, S U; Li, Z

    2014-01-01

    The ODU/SLAC superconducting rf-dipole cavity is under consideration for the crab-crossing system in the upcoming LHC luminosity upgrade. While the proposed cavity complies well within the rf-parameters and multipolar component restrictions for the LHC system, cavity imperfections arising from cavity fabrication, welding and frequency tuning may have a significant effect in these parameters. We report on an initial study of the impact of deviation from the ideal shape on the cavity’s performance in terms of rf-parameters and multipolar components.

  18. Three-Dimensional Morphology of a Coronal Prominence Cavity

    Science.gov (United States)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Rachmeler, L.; Reeves, K. K.; Schmieder, B.; Schmit, D. J.; Seaton, D. B.; Sterling, A. C.; Tripathi, D.; Williams, D. R.; Zhang, M.

    2010-01-01

    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  19. 8:1 thermal cavity problem

    Energy Technology Data Exchange (ETDEWEB)

    Gresho, P M; Sutton, S

    2000-10-11

    We present results for the 8:1 thermal cavity problem using FIDAP on 3 meshes--each using 3 elements. A brief summary of related results is also included. This contribution comes via the rather versatile and general commercial finite element code, FIDAP. This code still offers the user a wide selection with respect to element choices, statement of governing equations, (e.g., advective form, divergence form) implicit time integrators (variable-step or fixed step, first-order or second-order), and solution techniques for both the nonlinear and linear sets of equations. We have tested quite a number of these variations on this problem; here we report on an interesting subset and will present the remainder at the conference.

  20. Quantum measurements of atoms using cavity QED

    CERN Document Server

    Dada, Adetunmise C; Jones, Martin L; Kendon, Vivien M; Everitt, Mark S

    2010-01-01

    Generalized quantum measurements are an important extension of projective or von Neumann measurements, in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two non-standard quantum measurements using cavity quantum electrodynamics (QED). The first measurement optimally and unabmiguously distinguishes between two non-orthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionisation detection of atoms, and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurement have only been realized on photons. It would be of great interest to have realizations using other physical ...

  1. Cavity cooling of an ensemble spin system.

    Science.gov (United States)

    Wood, Christopher J; Borneman, Troy W; Cory, David G

    2014-02-07

    We describe how sideband cooling techniques may be applied to large spin ensembles in magnetic resonance. Using the Tavis-Cummings model in the presence of a Rabi drive, we solve a Markovian master equation describing the joint spin-cavity dynamics to derive cooling rates as a function of ensemble size. Our calculations indicate that the coupled angular momentum subspaces of a spin ensemble containing roughly 10(11) electron spins may be polarized in a time many orders of magnitude shorter than the typical thermal relaxation time. The described techniques should permit efficient removal of entropy for spin-based quantum information processors and fast polarization of spin samples. The proposed application of a standard technique in quantum optics to magnetic resonance also serves to reinforce the connection between the two fields, which has recently begun to be explored in further detail due to the development of hybrid designs for manufacturing noise-resilient quantum devices.

  2. Long Wave Infrared Cavity Enhanced Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2005-12-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.

  3. EVENTRATION OF LEFT HEMIDIAPHRAGM MIMICKING AS CAVITY

    Directory of Open Access Journals (Sweden)

    Kansal

    2015-10-01

    Full Text Available Eventration of diaphragm is a condition in which there is abnormal elevation of the diaphragm as a result of thinning of muscular layer. It can be congenital as well as acquired. It is more common left sided. Herniation of the abdominal contents can be there. Clinical manifestations range from asymptomatic to life threatening respiratory distress requiring mechanical ventilator support. Ultrasound provides valuable information regarding the integrity of the diaphragm. Other imaging modalities include fluoroscopy, CT and MRI that provide valuable information when diagnosis is in doubt. We are presenting a case report of 25-year-old male with eventration of left hemidiaphragm mimicking as cavity. After taking detail history, examination and proper investigations we finally reached to this diagnosis.

  4. Compact and highly efficient laser pump cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  5. Cavity-Enhanced Ultrafast Transient Absorption Spectroscopy

    CERN Document Server

    Reber, Melanie A R; Allison, Thomas K

    2015-01-01

    We present a new technique using a frequency comb laser and optical cavities for performing ultrafast transient absorption spectroscopy with improved sensitivity. Resonantly enhancing the probe pulses, we demonstrate a sensitivity of $\\Delta$OD $ = 1 \\times 10^{-9}/\\sqrt{\\mbox{Hz}}$ for averaging times as long as 30 s per delay point ($\\Delta$OD$_{min} = 2 \\times 10^{-10}$). Resonantly enhancing the pump pulses allows us to produce a high excitation fraction at high repetition-rate, so that signals can be recorded from samples with optical densities as low as OD $\\approx 10^{-8}$, or column densities $< 10^{10}$ molecules/cm$^2$. This high sensitivity enables new directions for ultrafast spectroscopy.

  6. Cavity optomechanical spring sensing of single molecules

    Science.gov (United States)

    Yu, Wenyan; Jiang, Wei C.; Lin, Qiang; Lu, Tao

    2016-07-01

    Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters.

  7. Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    CERN Document Server

    Childress, L I; Lukin, M D

    2003-01-01

    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.

  8. Absorption and Photoluminescence in Organic Cavity QED

    CERN Document Server

    Herrera, Felipe

    2016-01-01

    Organic microcavities can be engineered to reach exotic quantum regimes of strong and ultrastrong light-matter coupling. However, the microscopic interpretation of their spectroscopic signals can be challenging due to the competition between coherent and dissipative processes involving electrons, vibrations and cavity photons. We develop here a theoretical framework based on the Holstein-Tavis-Cummings model and a Markovian treatment of dissipation to account for previously unexplained spectroscopic features of organic microcavities consistently. We identify conditions for the formation of dark vibronic polaritons, a new class of light-matter excitations that are not visible in absorption but lead to strong photoluminescence lines. We show that photon leakage from dark vibronic polaritons can be responsible for enhancing photoluminescence at the lower polariton frequency, and also explain the apparent breakdown of reciprocity between absorption and emission in the vicinity of the bare molecular transition fre...

  9. Localized Turing patterns in nonlinear optical cavities

    Science.gov (United States)

    Kozyreff, G.

    2012-05-01

    The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.

  10. Climate Modeling: Ocean Cavities below Ice Shelves

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Mark Roger [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-09-12

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolution below ice shelves and near grounding lines.

  11. Exact Description of Decoherence in Optical Cavities

    CERN Document Server

    Romero, K M F

    2002-01-01

    The exact reduced dynamics for the independent oscillator model in the RWA approximation at zero and finite temperatures is derived. It is shown that the information about the interaction and the environment is encapsulated into three time dependent coefficients of the master equation, one of which vanishes in the zero temperature case. In currently used optical cavities all the information about the field dynamics is contained into {\\it two} (or three) experimentally accesible and physically meaningful real functions of time. From the phenomenological point of view it suffices then to carefully measure two ({\\it three}) adequate observables in order to map the evolution of any initial condition, as shown with several examples: (generalized) coherent states, Fock states, Schr\\"odinger cat states, and squeezed states.

  12. The Fungal Biome of the Oral Cavity.

    Science.gov (United States)

    Chandra, Jyotsna; Retuerto, Mauricio; Mukherjee, Pranab K; Ghannoum, Mahmoud

    2016-01-01

    Organisms residing in the oral cavity (oral microbiota) contribute to health and disease, and influence diseases like gingivitis, periodontitis, and oral candidiasis (the most common oral complication of HIV-infection). These organisms are also associated with cancer and other systemic diseases including upper respiratory infections. There is limited knowledge regarding how oral microbes interact together and influence the host immune system. Characterizing the oral microbial community (oral microbiota) in health and disease represents a critical step in gaining insight into various members of this community. While most of the studies characterizing oral microbiota have focused on bacterial community, there are few encouraging studies characterizing the oral mycobiome (the fungal component of the oral microbiota). Our group recently characterized the oral mycobiome in health and disease focusing on HIV. In this chapter we will describe the methods used by our group for characterization of the oral mycobiome.

  13. Squeezing-enhanced measurement sensitivity in a cavity optomechanical system

    DEFF Research Database (Denmark)

    Kerdoncuff, Hugo; Hoff, Ulrich Busk; Harris, Glen I.;

    2015-01-01

    We determine the theoretical limits to squeezing-enhanced measurement sensitivity of mechanical motion in a cavity optomechanical system. The motion of a mechanical resonator is transduced onto quadrature fluctuations of a cavity optical field and a measurement is performed on the optical field e...

  14. Plasma production by means of discharge in a spherical cavity

    NARCIS (Netherlands)

    Antsiferov, P. S.; Dorokhin, L. A.; Koshelev, K. N.

    2010-01-01

    The work is devoted to the study of plasma, appearing as a result of cumulation of shock wave with form close to spherical. The shock wave was obtained by triggering of fast discharge (dI/dt about 10(12) A/s) on inner surface of cavity, made from insulator. Spherical cavity with radius 4.5 mm was fi

  15. Quantum search via superconducting quantum interference devices in a cavity

    Institute of Scientific and Technical Information of China (English)

    Lu Yan; Dong Ping; Xue Zheng-Yuan; Cao Zhuo-Liang

    2007-01-01

    We propose a scheme for implementing the Grover search algorithm with two superconducing quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.

  16. Three qubit quantum phase gate based on cavity QED

    Science.gov (United States)

    Chang, Juntao; Zubairy, M. Suhail

    2004-10-01

    We describe a three qubit quantum phase gate in which the three qubits are represented by the photons in a three-modes optical cavity. This gate is implemented by passing a four-level atom in a cascade configuration through the cavity. We shall discuss the application of such a quantum phase gate to quantum searching.

  17. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  18. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  19. Experimental Investigation on the Pressure Characteristics of Cavity Closure Region

    Institute of Scientific and Technical Information of China (English)

    Yadong Wang; Xulong Yuan; Yuwen Zhang

    2012-01-01

    The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line.The cavitating flow and pressure distribution provide critical aspects of flow field details in the region.The integral of pressure results of the hydrodynamic forces,indicate domination in the design of a supercavitating vehicle.An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region.Ventilation methods were employed to generate artificial cavity,and the ventilation rate was adjusted accordingly to obtain the desired cavity length.An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region.The experimental results show that there is a pressure peak in the cavity closure region,and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric.The transient pressure variations during the cavity formation procedure were also present.The method of measurement in this paper can be referenced by engineers.The result helps to study the flow pattern of cavity closure region,and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.

  20. Performance study of cavity-backed dual-band radiators

    NARCIS (Netherlands)

    Amaldoss, S.E.; Yarovoy, A.

    2011-01-01

    The effectiveness of a cavity for dual-band patch radiator with a frequency ratio of 1.65:1 is analysed. The use of cavities can help in maintaining impedance matching, reducing the levels of mutual coupling between the elements as well as in containing the surface waves, aspects vital to array perf

  1. On the Flow Physics of Effectively Controlled Open Cavity Flows

    Science.gov (United States)

    2013-05-01

    understanding of cavity flow physics gained through many of the early studies. More recent experimental studies like Heller and Delfs (1996), Unalmis et...75-491, 1975. Heller, H., and Delfs , J., “Cavity Pressure Oscillations: The Generating Mechanisms Visualized,” Journal of Sound and Vibration, Vol

  2. Analytical modeling of printed metasurface cavities for computational imaging

    Science.gov (United States)

    F. Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N.; Smith, David R.

    2016-10-01

    We derive simple analytical expressions to model the electromagnetic response of an electrically large printed cavity. The analytical model is then used to develop printed cavities for microwave imaging purposes. The proposed cavity is excited by a cylindrical source and has boundaries formed by subwavelength metallic cylinders (vias) placed at subwavelength distances apart. Given their small size, the electric currents induced on the vias are assumed to have no angular dependence. Applying this approximation simplifies the electromagnetic problem to a matrix equation which can be solved to directly compute the electric current induced on each via. Once the induced currents are known, the electromagnetic field inside the cavity can be computed for every location. We verify the analytical model by comparing its prediction to full-wave simulations. To utilize this cavity in imaging settings, we perforate one side of the printed cavity with radiative slots such that they act as the physical layer of a computational imaging system. An analytical approximation for the slots is also developed, enabling us to obtain estimates of the cavity performance in imaging scenarios. This ability allows us to make informed decisions on the design of the printed metasurface cavity. The utility of the proposed model is further highlighted by demonstrating high-quality experimental imaging; performance metrics, which are consistent between theory and experiment, are also estimated.

  3. STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Tiffany Bass, G. Davis, Christiana Wilson, Mircea Stirbet

    2012-07-01

    CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity testing procedures and analysis were implemented and used by a group of VTA operators. For high power tests, a cavity testing procedure was developed and used in conjunction with a LabVIEW program to collect the test data. Additionally while the cavity was at 2.07K, an HOM survey was performed using a network analyzer and a combination of Excel and Mathematica programs. Data analysis was standardized and an online logbook, Pansophy, was used for data storage and mining. The Pansophy system allowed test results to be easily summarized and searchable across all cavity tests. In this presentation, the CEBAF 12GeV upgrade cavity testing procedure, method for data analysis, and results reporting results will be discussed.

  4. LIGA-fabricated compact mm-wave linear accelerator cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.J.; Bajikar, S.S.; DeCarlo, F.; Kang, Y.W.; Kustom, R.L.; Mancini, D.C.; Nassiri, A.; Lai, B.; Feinerman, A.D.; White, V.

    1998-03-23

    Millimeter-wave rf cavities for use in linear accelerators, free-electron lasers, and mm-wave undulatory are under development at Argonne National Laboratory. Typical cavity dimensions are in the 1000 mm range, and the overall length of the accelerator structure, which consists of 30-100 cavities, is about 50-100 mm. An accuracy of 0.2% in the cavity dimensions is necessary in order to achieve a high Q-factor of the cavity. To achieve this these structures are being fabricated using deep X-ray lithography, electroforming, and assembly (LIGA). The first prototype cavity structures are designed for 108 GHz and 2p/3-mode operation. Input and output couplers are integrated with the cavity structures. The cavities are fabricated on copper substrates by electroforming copper into 1-mm-thick PMMA resists patterned by deep x-ray lithography and polishing the copper down to the desired thickness. These are fabricated separately and subsequently assembled with precision spacing and alignment using microspheres, optical fibers, or microfabricated spacers/alignment pieces. Details of the fabrication process, alignment, and assembly work are presented in here.

  5. Systematization of All Resonance Modes in Circular Dielectric Cavities

    NARCIS (Netherlands)

    Dettmann, C.P.; Morozov, G.V.; Sieber, M.; Waalkens, H.

    2009-01-01

    Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The

  6. Two interacting atoms in a cavity: Entanglement vs decoherence

    CERN Document Server

    Torres, J M; Seligman, T H

    2009-01-01

    We address the problem of two interacting atoms of different species inside a cavity and find the explicit solutions of the corresponding eigenvalue problem. Closed expressions for concurrence and purity as a function of time when the cavity is prepared in a number state are found. The behavior in the concurrence-purity plane is discussed.

  7. Molecular dynamics study of naturally existing cavity couplings in proteins.

    Science.gov (United States)

    Barbany, Montserrat; Meyer, Tim; Hospital, Adam; Faustino, Ignacio; D'Abramo, Marco; Morata, Jordi; Orozco, Modesto; de la Cruz, Xavier

    2015-01-01

    Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.

  8. Foraminiferal shell structures: additional cavity systems produced by supplemental skeletons

    Directory of Open Access Journals (Sweden)

    Davide Bassi

    2006-04-01

    Full Text Available This is the second part of the article, published in Mus. Sci. Nat. vol. 2, which illustrates the larger foraminiferal shell structures. In this poster intercoluclar space, canal system, umbilical cavity system, enveloping canal system, and interlamellar cavity system are described and illustrated.

  9. Active absorption of electromagnetic pulses in a cavity

    CERN Document Server

    Horsley, S A R; Tyc, T; Philbin, T G

    2014-01-01

    We show that a pulse of electromagnetic radiation launched into a cavity can be completely absorbed into an infinitesimal region of space, provided one has a high degree of control over the current flowing through this region. We work out explicit examples of this effect in a cubic cavity and a cylindrical one, and experimentally demonstrate the effect in the microwave regime.

  10. Updating of Optical Inspection System for 6 GHz Superconducting Cavities

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long

    2013-01-01

    As a validation tool for the material properties and the surface treatment process,6 GHz superconducting cavity needs complex surface treatment process during its manufacture.It is verynecessary to record and monitor the statues of the internal surface of the cavity after each surface treatment,such as ultrasonic washing,mechanical polishing,electronic polishing(EP),buffered chemical

  11. Single-cell LEP-type cavity on measurement stand

    CERN Multimedia

    1982-01-01

    A single-cell cavity, made of copper, with tapered connectors for impedance measurements. It was used as a model of LEP-type superconducting cavities, to investigate impedance and higher-order modes and operated at around 600 MHz (the LEP acceleration frequency was 352.2 MHz). See 8202500.

  12. INTERESTING CASE RECORD OF A TOOTH INSIDE NASAL CAVITY

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2011-09-01

    Full Text Available I am presenting an interesting case report of an ectopic eruption of teeth into left nasal cavity. Discussion is focused on clinical, radiological presentation, probable etiology, diagnosis, management and complications.Tooth inside nasal cavity is a rare form of supernumerary teeth which can be identified by performing CTscan.

  13. Phase-selective reversible quantum decoherence in cavity QED experiment

    CERN Document Server

    Filip, R

    2001-01-01

    New feasible cavity QED experiment is proposed to analyse reversible quantum decoherence in consequence of quantum complementarity and entanglement. Utilizing the phase selective manipulations with enviroment, it is demonstrated how the complementarity particularly induces a preservation of visibility, whereas quantum decoherence is more progressive due to pronounced entanglement between system and enviroment. This effect can be directly observed using the proposed cavity QED measurements.

  14. Acoustic mode coupling of two facing, shallow cylindrical cavities

    Science.gov (United States)

    McCarthy, Philip; Ekmekci, Alis

    2016-11-01

    Cavity mode excitation by grazing flows is a well-documented source for noise generation. Similarly to their rectangular equivalents, single cylindrical cavities have been shown to exhibit velocity dependent self-sustaining feedback mechanisms that produce significant tonal noise. The present work investigates the effect of cavity mode coupling on the tonal noise generation for two facing, shallow cylindrical cavities. This geometric arrangement may occur for constrained flows, such as those within ducts, silencers or between aircraft landing gear wheels. For the latter configuration, the present study has observed that the tonal frequency dependence upon the freestream Mach number, associated with the single cavity feedback mechanism, no longer holds true. Instead, two simultaneously present and distinct large amplitude tones that are independent (in frequency) of speed, propagate to the far field. These two, fixed frequency tones are attributable to the first order transverse mode, and the first order transverse and azimuthal modes for the two combined cavities and the volume between them. Altering either the cavity aspect ratio or the inter-cavity spacing thus changes the acoustic resonant volume and translates the centre frequencies of the observed tones correspondingly. The authors would like to thank Bombardier and Messier-Bugatti-Dowty for their continued support.

  15. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  16. On unsteady reacting flow in a channel with a cavity

    Directory of Open Access Journals (Sweden)

    Ivar Ø. Sand

    1991-10-01

    Full Text Available The problem investigated is the stability of a flame anchored by recirculation within a channel with a cavity, acting as a two-dimensional approximation to a gas turbine combustion chamber. This is related to experiments of Vaneveld, Hom and Oppenheim (1982. The hypothesis studied is that hydrodynamic oscillations within the cavity can lead to flashback.

  17. Hybrid III-V/SOI resonant cavity enhanced photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol;

    2016-01-01

    A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated...

  18. Cavity-Beam-Transmitter Interaction Formula Collection with Derivation

    CERN Document Server

    Tückmantel, J

    2010-01-01

    The fundamental beam-cavity-transmitter relations for accelerating and deflecting/crab cavities are presented for steady state and time-varying situations. For completeness a compact proof of the Panofsky-Wenzel theorem is given and the fundamental beam loading theorem is derived.Also the determination of relative bunch form factors is shown.

  19. Teleportation of atomic entangled states with a thermal cavity

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiao-Juan; Fang Mao-Fa; Cai Jian-Wu; Liao Xiang-Ping

    2006-01-01

    We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required,and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.

  20. The statistics of foreshock cavities: results of a Cluster survey

    Directory of Open Access Journals (Sweden)

    L. Billingham

    2008-11-01

    Full Text Available We use Cluster magnetic field, thermal ion, and energetic particle observations upstream of the Earth's bow shock to investigate the occurrence patterns of foreshock cavities. Such cavities are thought to form when bundles of magnetic field connect to the quasi-parallel bow shock. Shock-processed suprathermal ions can then stream along the field, back against the flow of the solar wind. These suprathermals enhance the pressure on shock-connected field lines causing them to expand into the surrounding ambient solar wind plasma. Foreshock cavities exhibit depressions in magnetic field magnitude and thermal ion density, associated with enhanced fluxes of energetic ions. We find typical cavity duration to be few minutes with interior densities and magnetic field magnitudes dropping to ~60% of those in the surrounding solar wind. Cavities are found to occur preferentially in fast, moderate magnetic field strength solar wind streams. Cavities are observed in all parts of the Cluster orbit upstream of the bow shock. When localised in a coordinate system organised by the underlying physical processes in the foreshock, there is a systematic change in foreshock cavity location with IMF cone angle. At low (high cone angles foreshock cavities are observed outside (inside the expected upstream boundary of the intermediate ion foreshock.

  1. Impedance simulation for LEReC booster cavity transformed from ERL gun cavity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-11-24

    Wake impedance induced energy spread is a concern for the low energy cooling electron beam. The impedance simulation of the booster cavity for the LEReC projection is presented in this report. The simulation is done for both non-relativistic and ultra-relativistic cases. The space charge impedance in the first case is discussed. For impedance budget consideration of the electron machine, only simulation of the geometrical impedance in the latter case is necessary since space charge is considered separately.

  2. Strong-Driving-Assisted Probabilistic State Preparation in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Biao

    2006-01-01

    An alternative scheme is proposed for preparing the superpositions of coherent states with controllable weighting factors along a straight line for a cavity field. The scheme is based on the interaction of a single-mode cavity field with a resonant two-level atom driven by a strong classical field. It is in contrast to the previous methods used in cavity QED of injecting a coherent state into a cavity via a microwave source. In the scheme, the interaction between the cavity mode and atoms is fully resonant, thus the required interaction time is greatly shortened. Moreover, the present scheme requires smaller numbers of operations. In view of decoherence, a reduction of interaction time and numbers of operations for the state preparation is very important for experimental implementation of quantum state engineering.

  3. R&D of BEPCII 500 MHz superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beijing Electron-Positron Collider Upgrade (BEPCII) adopts two 500 MHz superconducting cavities (SCCs) in each ring for higher accelerated gradient, higher Q and lower impedance (Wang et al. The proceedings of SRF’07). There’s no spare cavity due to the limited time and funding during BEPCII construction. If any serious trouble happened on either one of the two cavities and could not be recovered in a short time, the operation of BEPCII facility will be affected. Therefore, since 2009 three spare cavities have been fabricated in China to ensure reliable operation, and two of them have been successfully vertically tested in January and July 2011. This paper will briefly present the manufacture, post-process and vertical test performance of the 500 MHz spare cavities.

  4. Cavity preparation machine for the standardization of in vitro preparations

    Directory of Open Access Journals (Sweden)

    Carlos José Soares

    2008-09-01

    Full Text Available Several in vitro studies employ the confection of cavity preparations that are difficult to standardize by means of manual high speed handpieces. This study presents the development of a cavity preparation machine designed to standardize in vitro cavity preparations. A metal base of 25 mm x 25 mm x 4 mm (length x width x height was coupled to a small mobile table which was designed to be able to move by means of two precision micrometers (0.01-mm accuracy in the horizontal directions (right-left, and back-front. A high speed handpiece was coupled to a metallic connecting rod which had an accurate dial indicator enabling control of the vertical movement. The high speed handpiece is also able to move 180° around its longitudinal axis and 360° around its transversal axis. The suggested cavity preparation machine precisely helps in the standardization of cavity preparations for in vitro studies.

  5. Cavity preparation machine for the standardization of in vitro preparations.

    Science.gov (United States)

    Soares, Carlos José; Fonseca, Rodrigo Borges; Gomide, Henner Alberto; Correr-Sobrinho, Lourenço

    2008-01-01

    Several in vitro studies employ the confection of cavity preparations that are difficult to standardize by means of manual high speed handpieces. This study presents the development of a cavity preparation machine designed to standardize in vitro cavity preparations. A metal base of 25 mm x 25 mm x 4 mm (length x width x height) was coupled to a small mobile table which was designed to be able to move by means of two precision micrometers (0.01-mm accuracy) in the horizontal directions (right-left, and back-front). A high speed handpiece was coupled to a metallic connecting rod which had an accurate dial indicator enabling control of the vertical movement. The high speed handpiece is also able to move 180 degrees around its longitudinal axis and 360 degrees around its transversal axis. The suggested cavity preparation machine precisely helps in the standardization of cavity preparations for in vitro studies.

  6. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Makita, Junki [Old Dominion Univ., Norfolk, VA (United States); Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  7. High Quality RF resonant cavity for high gradient linacs

    CERN Document Server

    TianXiu-fang,; Deguo, Xun; Kun, Liu; yong, Hou; Jian, Cheng

    2015-01-01

    In traditional accelerating structures, maximum amplitudes of accelerating fields are restricted by Joule heating losses in conducting walls and electron breakdown. In this paper, a composite accelerating cavity utilizing a resonant, periodic structure with a dielectric sphere located at a spherical conducting cavity center is presented. The presence of the dielectric in the central part of the resonance cavity shifts the magnetic fields maximum from regions close to the metallic wall towards the dielectric surface, which strongly lowers the skin effect losses in the wall. By using the existing ultra-low loss Sapphire dielectrics, we make theory analyze and numerical calculations by MATLAB, and further make simulated calculation by CST for comparison. The results show that all field components at the metallic wall are either zero or very small, so one can expect the cavity to be less prone to electrical breakdowns than the traditional cavity. And the quality factor Q can be three orders of magnitude higher th...

  8. Multilayer structures for X-ray laser cavities

    Science.gov (United States)

    Ceglio, N. M.; Stearns, D. G.; Hawryluk, A. M.

    1985-08-01

    Recent demonstrations of the generation of amplified spontaneous emission at soft X-ray wavelenths have spurred interest in normal incidence multilayer structures for use as X-ray laser (XRL) cavity mirrors. Calculations indicate that cavity mirrors can provide significant enhancement of RXL output, and drive the oscillations to the saturation limit. Novel ideas for cavity output coupling may expand the versatility of XRL devices, while encouraging the marriage of lithographic and multilayer technologies to the general benefit of X-ray optics. Preliminary tests of a double pass cavity have already been conducted. These tests point out the importance of detailed cavity design issues such as precision mirror alignment, mirror damage dynamics, and detailed mirror calibration, to the future success of this field.

  9. Einstein-Maxwell equations for asymmetric resonant cavities

    CERN Document Server

    Frasca, Marco

    2015-01-01

    We analyze the behavior of electromagnetic fields inside a resonant cavity by solving Einstein--Maxwell field equations. It is shown that the modified geometry of space-time inside the cavity due to a propagating mode can affect the propagation of a laser beam. It is seen that components of laser light with a shifted frequency appear originating from the coupling between the laser field and the mode cavity due to gravity. The analysis is extended to the case of an asymmetric resonant cavity taken to be a truncated cone. It is shown that a proper choice of the geometrical parameters of the cavity and dielectric can make the gravitational effects significant for an interferometric setup. This could make possible to realize table-top experiments involving gravitational effects.

  10. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  11. Ionization wave propagation on a micro cavity plasma array

    CERN Document Server

    Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas

    2011-01-01

    Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.

  12. Apparatus and method for plasma processing of SRF cavities

    CERN Document Server

    Upadhyay, J; Peshl, J; Bašović, M; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vuškovića, L

    2015-01-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segment...

  13. Cavity-enhanced Raman Microscopy of Individual Carbon Nanotubes

    CERN Document Server

    Hümmer, Thomas; Hofmann, Matthias S; Hänsch, Theodor W; Högele, Alexander; Hunger, David

    2015-01-01

    Raman spectroscopy reveals chemically specific information, and combined with imaging provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here we use a tunable high-finesse optical microcavity to demonstrate Purcell enhancement of Raman scattering in combination with high-resolution scanning-cavity imaging. We detect cavity-enhanced Raman spectra of individual single-walled carbon nanotubes, expand the technique to hyperspectral imaging, and co-localize measurements with cavity-enhanced absorption microscopy. Direct comparison with confocal Raman microscopy yields a 550-times enhanced collectable Raman scattering spectral density and a 11-fold enhancement of the integrated count rate. The quantitative character, the inherent spectral filtering, and the absence of intrinsic background in cavity-vacuum stimulated Raman scattering renders our technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman tran...

  14. Apparatus and process for passivating an SRF cavity

    Science.gov (United States)

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  15. Fabrication and Testing of Deflecting Cavities for APS

    Energy Technology Data Exchange (ETDEWEB)

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  16. Magnetic Flux Expulsion Studies in Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Posen, Sam [Fermilab; Checchin, Mattia [Fermilab; Crawford, Anthony [Fermilab; Grassellino, Anna [Fermilab; Martinello, Martina [Fermilab; Melnychuk, Oleksandr [Fermilab; Romanenko, Alexander [Fermilab; Sergatskov, Dmitri [Fermilab; Trenikhina, Yulia [Fermilab

    2016-06-01

    With the recent discovery of nitrogen doping treatment for SRF cavities, ultra-high quality factors at medium accelerating fields are regularly achieved in vertical RF tests. To preserve these quality factors into the cryomodule, it is important to consider background magnetic fields, which can become trapped in the surface of the cavity during cooldown and cause Q₀ degradation. Building on the recent discovery that spatial thermal gradients during cooldown can significantly improve expulsion of magnetic flux, a detailed study was performed of flux expulsion on two cavities with different furnace treatments that are cooled in magnetic fields amplitudes representative of what is expected in a realistic cryomodule. In this contribution, we summarize these cavity results, in order to improve understanding of the impact of flux expulsion on cavity performance.

  17. The role of mode match in fiber cavities

    Energy Technology Data Exchange (ETDEWEB)

    Bick, A.; Staarmann, C.; Christoph, P. [ZOQ (Zentrum für Optische Quantentechnologien) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Hellmig, O.; Heinze, J. [ILP (Institut für Laserphysik) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Sengstock, K.; Becker, C., E-mail: cbecker@physnet.uni-hamburg.de [ZOQ (Zentrum für Optische Quantentechnologien) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); ILP (Institut für Laserphysik) Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-01-15

    We study and realize asymmetric fiber-based cavities with optimized mode match to achieve high reflectivity on resonance. This is especially important for mutually coupling two physical systems via light fields, e.g., in quantum hybrid systems. Our detailed theoretical and experimental analysis reveals that on resonance, the interference effect between the directly reflected non-modematched light and the light leaking back out of the cavity can lead to large unexpected losses due to the mode filtering of the incoupling fiber. Strong restrictions for the cavity design result out of this effect and we show that planar-concave cavities are clearly best suited. We validate our analytical model using numerical calculations and demonstrate an experimental realization of an asymmetric fiber Fabry-Pérot cavity with optimized parameters.

  18. Millimeter-long fiber Fabry-Perot cavities.

    Science.gov (United States)

    Ott, Konstantin; Garcia, Sebastien; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-05-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5 mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

  19. Millimeter-long Fiber Fabry-Perot cavities

    CERN Document Server

    Ott, Konstantin; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-01-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

  20. The Role of Mode Match in Asymmetric Fiber Cavities

    CERN Document Server

    Bick, Andreas; Christoph, Philipp; Hellmig, Ortwin; Heinze, Jannes; Sengstock, Klaus; Becker, Christoph

    2015-01-01

    We study and realize asymmetric fiber-based cavities with optimized mode match to achieve high reflectivity on resonance. This is especially important for mutually coupling two physical systems via light fields, e.g. in quantum hybrid systems. Our detailed theoretical and experimental analysis reveals that on resonance the interference effect between the directly reflected non-modematched light and the light leaking back out of the cavity can lead to large unexpected losses due to the mode filtering of the incoupling fiber. Strong restrictions for the cavity design result out of this effect and we show that planar-concave cavities are clearly best suited. We validate our analytical model using numerical calculations and demonstrate an experimental realization of an asymmetric fiber Fabry-P\\'erot cavity with optimized parameters.

  1. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  2. Dusty plasma cavities: probe-induced and natural

    CERN Document Server

    Harris, B J; Hyde, T W

    2014-01-01

    A comprehensive exploration of regional dust evacuation in complex plasma crystals is presented. Voids created in 3D crystals on the International Space Station have provided a rich foundation for experiments, but cavities in dust crystals formed in ground-based experiments have not received as much attention. Inside a modified GEC RF cell, a powered vertical probe was used to clear the central area of a dust crystal, producing a cavity with high cylindrical symmetry. Cavities generated by three mechanisms are examined. First, repulsion of micrometer-sized particles by a negatively charged probe is investigated. A model of this effect developed for a DC plasma is modified and applied to explain new experimental data in RF plasma. Second, the formation of natural cavities is surveyed; a radial ion drag proposed to occur due to a curved sheath is considered in conjunction with thermophoresis and a flattened confinement potential above the center of the electrode. Finally, cavity formation unexpectedly occurs up...

  3. Optomechanical damping of a nanomembrane inside an optical ring cavity

    CERN Document Server

    Yilmaz, Arzu; Wolf, Philip; Schmidt, Dag; Eisele, Max; Zimmermann, Claus; Slama, Sebastian

    2016-01-01

    We experimentally and theoretically investigate mechanical nanooscillators coupled to the light in an optical ring resonator made of dielectric mirrors. We identify an optomechanical damping mechanism that is fundamentally different to the well known cooling in standing wave cavities. While, in a standing wave cavity the mechanical oscillation shifts the resonance frequency of the cavity in a ring resonator the frequency does not change. Instead the position of the nodes is shifted with the mechanical excursion. We derive the damping rates and test the results experimentally with a silicon-nitride nanomembrane. It turns out that scattering from small imperfections of the dielectric mirror coatings has to be taken into account to explain the value of the measured damping rate. We extend our theoretical model and regard a second reflector in the cavity that captures the effects of mirror back scattering. This model can be used to also describe the situation of two membranes that both interact with the cavity fi...

  4. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  5. Benchmarking Microwave Cavity Dark Matter Searches using a Radioactive Source

    CERN Multimedia

    Caspers, F

    2014-01-01

    A radioactive source is proposed as a calibration device to verify the sensitivity of a microwave dark matter search experiment. The interaction of e.g., electrons travelling in an arbitrary direction and velocity through an electromagnetically “empty” microwave cavity can be calculated numerically. We give an estimation of the energy deposited by a charged particle into a particular mode. Numerical examples are given for beta emitters and two particular cases: interaction with a field free cavity and interaction with a cavity which already contains an electromagnetic field. Each particle delivers a certain amount of energy related to the modal R/Q value of the cavity. The transferred energy is a function of the particles trajectory and its velocity. It results in a resonant response of the cavity, which can be observed using a sensitive microwave receiver, provided that the deposited energy is significantly above the single photon threshold.

  6. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...

  7. A method based on potential theory for calculating air cavity formation of an air cavity resistance reduction ship

    Institute of Scientific and Technical Information of China (English)

    LI Yun-bo; WU Xiao-yu; MA Yong; WANG Jin-guang

    2008-01-01

    This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship's resistance through an air-cavity.On the basis of potential theory and on the assumption of an ideal and irrotational fluid,this paper drives a method for calculating air cavity formation using slender ship theory then points out the parameters directly related to the formation of air cavities and their interrelationships.Simulations showed that the formation of an air cavity is affected by cavitation number,velocity,groove geometry and groove size.When the ship's velocity and groove structure are given,the cavitation number must be within range to form a steady air cavity.The interface between air and water forms a wave shape and could be adjustedby an air injection system.

  8. Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field

    CERN Document Server

    Gonnella, Dan

    2015-01-01

    Future particle accelerators such as the the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac (ERL) require hundreds of superconducting RF (SRF) cavities operating in continuous wave (CW) mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0). In order to reach these high Q0's in the case of LCLS-II, nitrogen-doping has been proposed as a cavity preparation technique. When dealing with Q0's greater than 1x10^10, the effects of ambient magnetic field on Q0 become significant. Here we show that the sensitivity that a cavity has to ambient magnetic field is highly dependent on the cavity preparation. Specifically, standard electropolished and 120C baked cavities show a sensitivity of ~0.8 and ~0.6 nOhm/mG trapped, respectively, while nitrogen-doped cavities show a sensitivity of ~2 to 5 nOhm/mG trapped. Less doping results in weaker sensitivity. This difference in sensitivities is ...

  9. RF breakdown of 805 MHz cavities in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Bowring, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kochemirovskiy, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leonova, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moretti, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Peterson, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freemire, B. [Illinois Inst. of Technology, Chicago, IL (United States); Lane, P. [Illinois Inst. of Technology, Chicago, IL (United States); Torun, Y. [Illinois Inst. of Technology, Chicago, IL (United States); Haase, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-03

    Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures in the presence of strong magnetic fields. We have measured the breakdown rate in several RF cavities operating at several frequencies. Cavities operating within solenoidal magnetic fields B > 0.25 T show an increased RF breakdown rate at lower gradients compared with similar operation when B = 0 T. Ultimately, this breakdown behavior limits the maximum safe operating gradient of the cavity. Beyond ionization cooling, this issue affects the design of photoinjectors and klystrons, among other applications. We have built an 805 MHz pillbox-type RF cavity to serve as an experimental testbed for this phenomenon. This cavity is designed to study the problem of RF breakdown in strong magnetic fields using various cavity materials and surface treatments, and with precise control over sources of systematic error. We present results from tests in which the cavity was run with all copper surfaces in a variety of magnetic fields.

  10. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2–4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  11. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Parsons, Gregory [North Carolina State Univ., Raleigh, NC (United States); Williams, Philip [North Carolina State Univ., Raleigh, NC (United States); Oldham, Christopher [North Carolina State Univ., Raleigh, NC (United States); Mundy, Zach [North Carolina State Univ., Raleigh, NC (United States); Dolgashev, Valery [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  12. Mechanical properties of niobium radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G., E-mail: gciovati@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Dhakal, P.; Matalevich, J.; Myneni, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W. [Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany)

    2015-08-26

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5 GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.

  13. Resonance Photon Generation in a Vibrating Cavity

    CERN Document Server

    Dodonov, V V

    1998-01-01

    The problem of photon creation from vacuum due to the nonstationary Casimir effect in an ideal one-dimensional Fabry--Perot cavity with vibrating walls is solved in the resonance case, when the frequency of vibrations is close to the frequency of some unperturbed electromagnetic mode: $\\omega_w=p(\\pi c/L_0)(1+\\delta)$, $|\\delta|\\ll 1$, (p=1,2,...). An explicit analytical expression for the total energy in all the modes shows an exponential growth if $|\\delta|$ is less than the dimensionless amplitude of vibrations $\\epsilon\\ll 1$, the increment being proportional to $p\\sqrt{\\epsilon^2-\\delta^2}$. The rate of photon generation from vacuum in the (j+ps)th mode goes asymptotically to a constant value $cp^2\\sin^2(\\pi j/p)\\sqrt{\\epsilon^2-\\delta^2}/[\\pi L_0 (j+ps)]$, the numbers of photons in the modes with indices p,2p,3p,... being the integrals of motion. The total number of photons in all the modes is proportional to $p^3(\\epsilon^2-\\delta^2) t^2$ in the short-time and in the long-time limits. In the case of st...

  14. Acoustic transfer admittance of cylindrical cavities

    Science.gov (United States)

    Guianvarc'h, C.; Durocher, J.-N.; Bruneau, M.; Bruneau, A.-M.

    2006-05-01

    The reciprocity calibration method uses two microphones acoustically connected by a coupler, a cylindrical cavity closed at each end by the diaphragms of the transmitting and receiving microphones. The acoustic transfer admittance of the coupler, including the thermal conductivity effect of the fluid, must be modelled precisely to obtain the accurate sensitivity of the microphones from the electrical transfer impedance measurement. It appears that the analytical model quoted in the current standard [International Electrotechnical Commission IEC 61064-2, Measurement Microphones, Part 2: Primary Method for Pressure Calibration of Laboratory Standard Microphones by the Reciprocity Technique, 1992] is not the appropriate one and that it should be revised, as also suggested by a recent EUROMET project report [K. Rasmussen, Datafiles simulating a pressure reciprocity calibration of microphones, EUROMET Project 294 Report PL-13, 2001]. Thus, it is the aim of the paper to investigate analytically the acoustic field inside the coupler, revisiting the assumptions of the earlier work, leading to a coherent description and therefore providing clarity which should facilitate discussion of a possible revised standard.

  15. Gross morphology of rhea oropharyngeal cavity

    Directory of Open Access Journals (Sweden)

    Marcio N. Rodrigues

    2012-12-01

    Full Text Available The rhea (Rhea americana americana is an american bird belonging to Ratite's family. Studies related to its morphology are still scarce. This study aims to describe the macroscopic structures of the oropharyngeal cavity. Five heads (2 to 6 months old formalin preserved were anatomically dissected to expose the oropharynx. The oropharynx of the rhea was "bell-shaped" composed by the maxillary and mandibular rhamphotheca. The roof and floor presented two distinct regions different in colour of the mucosa. The rostral region was pale pink contrasting to grey coloured caudal region. The median longitudinal ridge extended rostrally from the apex of the choana to the tip of the beak in the roof and it is clearly more prominent and rigid than the homolog in the floor that appeared thin and stretched merely along the rostral portion of the regio interramalis. The floor was formed by the interramal region, (regio interramalis tongue and laryngeal mound containing glove-shaped glottis. This study confirmed the basic morphology of the oropharinx of the rhea. However, important morphological information not previously described is highlighted and contradictory information present in the literature is clarified.

  16. Optical re-injection in cavity-enhanced absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leen, J. Brian, E-mail: b.leen@lgrinc.com; O’Keefe, Anthony [Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041 (United States)

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  17. Optical re-injection in cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  18. Novel deflecting cavity design for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.

    2011-07-25

    To prevent significant loss of the luminosity due to large crossing angle in the future ERL based Electron Ion Collider at BNL (eRHIC), there is a demand for crab cavities. In this article, we will present a novel design of the deflecting/crabbing 181 MHz superconducting RF cavity that will fulfil the requirements of eRHIC. The quarter-wave resonator structure of the new cavity possesses many advantages, such as compact size, high R{sub t}/Q, the absence of the same order mode and lower order mode, and easy higher order mode damping. We will present the properties and characteristics of the new cavity in detail. As the accelerator systems grow in complexity, developing compact and efficient deflecting cavities is of great interest. Such cavities will benefit situations where the beam line space is limited. The future linac-ring type electron-ion collider requires implementation of a crab-crossing scheme for both beams at the interaction region. The ion beam has a long bunches and high rigidity. Therefore, it requires a low frequency, large kicking angle deflector. The frequency of the deflecting mode for the current collider design is 181 MHz, and the deflecting angle is {approx}5 mrad for each beam. At such low frequency, the previous designs of the crab cavities will have very large dimensions, and also will be confronted by typical problems of damping the Lower Order Mode (LOM), the Same Order Mode (SOM), and as usual, the Higher Order Modes (HOM). In this paper we describe how one can use the concept of a quarter-wave (QW) resonator for a deflecting/crabbing cavity, and use its fundamental mode to deflect the beam. The simplicity of the cavity geometry and the large separation between its fundamental mode and the first HOM make it very attractive.

  19. Diffraction-limited Fabry-Perot Cavity in the Near Concentric Regime

    CERN Document Server

    Durak, Kadir; Leong, Victor; Straupe, Stanislav; Kurtsiefer, Christian

    2014-01-01

    Nearly concentric optical cavities can be used to prepare optical fields with a very small mode volume. We implement an anaclastic design of a such a cavity that significantly simplifies mode matching to the fundamental cavity mode. The cavity is shown to have diffraction-limited performance for a mode volume of $\\approx10^4\\lambda^3$. This is in sharp contrast with the behavior of cavities with plano-concave mirrors, where aberrations significantly increase the losses in the fundamental mode. We estimate the related cavity QED parameters and show that the proposed cavity design allows for strong coupling without a need for high finesse or small physical cavity volume.

  20. Strong driving assisted multipartite entanglement in cavity QED

    CERN Document Server

    Solano, E; Walther, H

    2003-01-01

    We propose a method for generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. We show that when a judicious choice of the cavity detuning and the applied coherent field detuning is made, vacuum Rabi coupling produces a large number of important multipartite entangled states. We can even produce entangled states involving different cavity modes. Tuning of parameters also permit us to switch from Jaynes-Cummings like interaction to anti-Jaynes-Cummings like interaction.

  1. Early prototype of a superconducting RF cavity for LEP

    CERN Multimedia

    1979-01-01

    As early as 1979, before LEP became an approved project, studies were located in the ISR Division. Although Cu-cavities were foreseen, certainly for the 1st energy-stage, superconducting cavities were explored as a possible alternative for the 2nd energy-stage. This began with very basic studies of manufacture and properties of Nb-cavities. This one, held by Mr.Girel, was made from bulk Nb-sheet, 2.5 mm thick. It was dimensioned for tests at 500 MHz (LEP accelerating RF was 352.2 MHz). See also 8004204, 8007354, 8209255, 8210054, 8312339.

  2. Unidirectional superscattering by multilayered cavities of effective radial anisotropy

    CERN Document Server

    Liu, Wei; Shi, Jianhua; Hu, Haojun

    2016-01-01

    We achieve unidirectional forward superscattering by multilayered spherical cavities which are effectively radially anisotropic. It is demonstrated that, relying on the large effective anisotropy, the electric and magnetic dipoles can be tuned to spectrally overlap in such cavities, which satisfies the Kerker's condition of simultaneous backward scattering suppression and forward scattering enhancement. We show such scattering pattern shaping can be obtained in both all-dielectric and plasmonic multilayered cavities, and believe that the mechanism we have revealed provides extra freedom for scattering shaping, which may play a significant role in many scattering related applications and also in optoelectronic devices made up of intrinsically anisotropic two dimensional materials.

  3. Indirect Coupling between Two Cavity Photon Systems via Ferromagnetic Resonance

    CERN Document Server

    Hyde, Paul; Harder, Michael; Match, Christophe; Hu, Can-Ming

    2016-01-01

    We experimentally realize indirect coupling between two cavity modes via strong coupling with the ferromagnetic resonance in Yttrium Iron Garnet (YIG). We find that some indirectly coupled modes of our system can have a higher microwave transmission than the individual uncoupled modes. Using a coupled harmonic oscillator model, the influence of the oscillation phase difference between the two cavity modes on the nature of the indirect coupling is revealed. These indirectly coupled microwave modes can be controlled using an external magnetic field or by tuning the cavity height. This work has potential for use in controllable optical devices and information processing technologies.

  4. Wakefield calculation for superconducting TM110 cavity without azimuthal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, Leo; /Fermilab; Burt, Graeme; /Lancaster U.

    2006-08-01

    The 3.9GHz TM{sub 110} mode deflecting cavity developed at FNAL has many applications, including use as a longitudinal bunch profile diagnostic, and as a crab cavity candidate for the ILC. These applications involve beams with substantial time structure. For the 13-cell version intended for the bunch profile application, long-range wakes have been evaluated in the frequency domain and short-range wakes have been evaluated in the time domain. Higher-order interactions of the main field in the cavity with the beam have also been parameterized. Pedagogic derivations are included as appendices.

  5. Observation of Three Mode Parametric Interactions in Long Optical Cavities

    CERN Document Server

    Zhao, C; Fan, Y; Slagmolen, S Gras B J J; Miao, H; Blair, P Barriga D G; Hosken, D J; Brooks, A F; Veitch, P J; Mudge, D; Munch, J

    2008-01-01

    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.

  6. Design of the Advanced Virgo non-degenerate recycling cavities

    Energy Technology Data Exchange (ETDEWEB)

    Granata, M; Barsuglia, M [Laboratoire Astroparticule et Cosmologie (APC) 10 rue Alice Domon et Leonie Duquet, 75013 Paris (France); Flaminio, R [Laboratoire des Materiaux Avances (LMA), IN2P3/CNRS F-69622 Villeurbanne, Lyon (France); Freise, A [School of Physics and Astronomy, University of Birmingham Birmingham, B15 2TT (United Kingdom); Hild, S [Institute for Gravitational Research, Department of Physics and Astronomy University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Marque, J, E-mail: granata@apc.univ-paris7.f [European Gravitational Observatory (EGO) I-56021 Cascina (Italy)

    2010-05-01

    Advanced Virgo is the project to upgrade the interferometric gravitational wave detector Virgo, and it foresees the implementation of power and signal non-degenerate recycling cavities. Such cavities suppress the build-up of high order modes of the resonating sidebands, with some advantage for the commissioning of the detector and the build-up of the gravitational signal. Here we present the baseline design of the Advanced Virgo non-degenerate recycling cavities, giving some preliminary results of simulations about the tolerances of this design to astigmatism, mirror figure errors and thermal lensing.

  7. Large Petermann factor in chaotic cavities with many scattering channels

    CERN Document Server

    Frahm, K M; Patra, M; Beenakker, C W J

    1999-01-01

    The quantum-limited linewidth of a laser cavity is enhanced above the Schawlow-Townes value by the Petermann factor K, due to the non-orthogonality of the cavity modes. The average Petermann factor $$ in an ensemble of cavities with chaotic scattering and broken time-reversal symmetry is calculated non-perturbatively using random-matrix theory and the supersymmetry technique, as a function of the decay rate $\\Gamma$ of the lasing mode and the number of scattering channels N. We find for $N\\gg 1$ that for typical values of $\\Gamma$ the average Petermann factor $\\propto \\sqrt{N}\\gg 1$ is parametrically larger than unity.

  8. Strong-driving-assisted multipartite entanglement in cavity QED.

    Science.gov (United States)

    Solano, E; Agarwal, G S; Walther, H

    2003-01-17

    We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings-like interaction.

  9. Spectroscopic evaluation of photodynamic therapy of the intraperitoneal cavity

    Science.gov (United States)

    Finlay, Jarod C.; Sandell, Julia L.; Zhu, Timothy C.; Lewis, Robert; Cengel, Keith A.; Hahn, Stephen M.

    2015-01-01

    We present the results of spectroscopic measurements of diffuse reflectance and fluorescence before and after photodynamic therapy of healthy canine peritoneal cavity. Animals were treated intra-operatively after iv injection of the benzoporphyrin derivative (BPD). The small bowel was treated using a uniform light field projected by a microlenstipped fiber. The cavity was then filled with scattering medium and the remaining organs were treated using a moving diffuser. Diffuse reflectance and fluorescence measurements were made using a multi-fiber optical probe positioned on the surface of various tissues within the cavity before and after illumination. The measured data were analyzed to quantify hemoglobin concentration and oxygenation and sensitizer concentration. PMID:26028798

  10. HFSS Simulation on Cavity Coupling for Axion Detecting Experiment

    CERN Document Server

    Yeo, Beomki

    2015-01-01

    In the resonant cavity experiment, it is vital maximize signal power at detector with the minimized reflection from source. Return loss is minimized when the impedance of source and cavity are matched to each other and this is called impedance matching. Establishing tunable antenna on source is required to get a impedance matching. Geometry and position of antenna is varied depending on the electromagnetic eld of cavity. This research is dedicated to simulation to nd such a proper design of coupling antenna, especially for axion dark matter detecting experiment. HFSS solver was used for the simulation.

  11. Optical cavity coupled surface plasmon resonance sensing for enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Zheng Zheng; Xin Zhao; Jinsong Zhu; Jim Diamond

    2008-01-01

    A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.

  12. Conditional control of quantum beats in a cavity QED system

    CERN Document Server

    Norris, D G; Orozco, L A; 10.1088/1742-6596/274/1/012143

    2011-01-01

    We probe a ground-state superposition that produces a quantum beat in the intensity correlation of a two-mode cavity QED system. We mix drive with scattered light from an atomic beam traversing the cavity, and effectively measure the interference between the drive and the light from the atom. When a photon escapes the cavity, and upon detection, it triggers our feedback which modulates the drive at the same beat frequency but opposite phase for a given time window. This results in a partial interruption of the beat oscillation in the correlation function, that then returns to oscillate.

  13. Deformable two-dimensional photonic crystal slab for cavity optomechanics

    CERN Document Server

    Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I

    2011-01-01

    We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects

  14. High-Q silicon carbide photonic-crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan Y. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  15. Cavity BPM with Dipole-Mode-Selective Coupler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zenghai; Johnson, Ronald; Smith, Stephen R.; /SLAC; Naito, Takashi; /KEK, Tsukuba; Rifkin, Jeffrey

    2006-06-21

    In this paper, we present a novel position sensitive signal pickup scheme for a cavity BPM. The scheme utilizes the H-plane of the waveguide to couple magnetically to the side of the cavity, which results in a selective coupling to the dipole mode and a total rejection of the monopole mode. This scheme greatly simplifies the BPM geometry and relaxes machining tolerances. We will present detailed numerical studies on such a cavity BPM, analyze its resolution limit and tolerance requirements for a nanometer resolution. Finally present the measurement results of a X-band prototype.

  16. Design of a Cavity of Drift Tube Linac

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiu-long; LV; Wei-xing; LI; Jin-hai; HUANG; Jun; WU; Qing-feng

    2013-01-01

    The drift tube Linac(DTL)is used as accelerating of low energy proton beam with high intensity.Its operating frequency is 325 MHz with handling power of 2.5 kW.The cavity of DTL consists of circularwaveguide,drift tube,post coupler and tuner.First,the beam parameters of the cavity of DTL is calculated by using beam dynamic codes,and then the electromagnetic field distribution and RF parameters of the cavity of DTL is calculated by using

  17. Generation of nonclassical states in a large detuning cavity

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying-Jie; Ren Ting-Qi; Xia Yun-Jie

    2008-01-01

    By using the theory of cavity QED, we study the system in which a two-level atom interacts with a cavity in the case of large detuning. Through the selective detecting of atomic state, SchrSdinger cat states and entangled coherent states are easily generated. When the atom is driven by a weak classical field and the cavity field is in the Schr(o)dinger cat state, we study the conditions of generating the Fock states and the maximal success probability. The maximal success probability in our scheme is larger than the previous one.

  18. Reduction of convective losses in solar cavity receivers

    Science.gov (United States)

    Hughes, Graham; Pye, John; Kaufer, Martin; Abbasi-Shavazi, Ehsan; Zhang, Jack; McIntosh, Adam; Lindley, Tim

    2016-05-01

    Two design innovations are reported that can help improve the thermal performance of a solar cavity receiver. These innovations utilise the natural variation of wall temperature inside the cavity and active management of airflow in the vicinity of the receiver. The results of computational fluid dynamics modelling and laboratory-scale experiments suggest that the convective loss from a receiver can be reduced substantially by either mechanism. A further benefit is that both radiative and overall thermal losses from the cavity may be reduced. Further work to assess the performance of such receiver designs under operational conditions is discussed.

  19. First prototype Copper-Niobium RF Superconducting Cavity

    CERN Multimedia

    1983-01-01

    This is the first RF superconducting cavity made of copper with a very thin layer of pure niobium deposited on the inner wall by sputtering. This new developpment lead to a considerable increase of performance and stability of superconducting cavities and to non-negligible economy. The work was carried out in the ISR workshop. This technique was adopted for the LEP II accelerating cavities. At the centre is Cristoforo Benvenuti, inventor of this important technology, with his assistants, Nadia Circelli and Max Hauer, carrying the sputtering electrode. See also 8209255, 8312339.

  20. Influence of Er:YAG laser ablation on cavity surface and cavity shape

    Science.gov (United States)

    Jelinkova, Helena; Dostalova, Tatjana; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-04-01

    The cavity surface and shape after Er:YAG laser ablation at different energies, number of pulses and at a different repetition rate were observed. Longitudinal sections of extracted human incisors and transverse sections of ivory tusk were cut and polished to flat and glazed surfaces. The samples thickness was from 3 to 5 mm. The Er:YAG laser was operating in a free-running (long pulse) mode. The laser radiation was focused onto the tooth surface by CaF2 lens (f equals 55 mm). During the experiment, the teeth were steady and the radiation was delivered by a special mechanical arm fixed in a special holder; fine water mist was also used (water-mJ/min, a pressure of two atm, air-pressure three atm). The shapes of the prepared cavities were studied either by using a varying laser energies (from 70 mJ to 500 mJ) for a constant number of pulses, or a varying number of pulses (from one to thirty) for constant laser energy. The repetition rate was changed from 1 to 2 Hz. For evaluating the surfaces, shapes, and profiles, scanning electron microscopy and photographs from a light microscope were used. The results were analyzed both quantitatively and qualitatively. It is seen that there is no linear relation between the radiation pulse energy and the size of the prepared holes. With increasing the incident energy the cavity depth growth is limited. There exists some saturation not only in the enamel and dentin but especially in the homogeneous ivory.